WorldWideScience

Sample records for snake river field

  1. 78 FR 17227 - Notice of Intent To Amend the Snake River Resource Management Plan for the Pinedale Field Office...

    Science.gov (United States)

    2013-03-20

    ...-176935] Notice of Intent To Amend the Snake River Resource Management Plan for the Pinedale Field Office... Snake River RMP and by this notice is announcing the beginning of the scoping process to solicit public... Street, Pinedale, WY 82941. Email: [email protected] with ``Snake River Amendment'' in the subject line...

  2. 50 CFR 226.205 - Critical habitat for Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River...

    Science.gov (United States)

    2010-10-01

    ... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...

  3. 33 CFR 117.1058 - Snake River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake River. 117.1058 Section 117... OPERATION REGULATIONS Specific Requirements Washington § 117.1058 Snake River. (a) The draw of the Burlington Northern Santa Fe railroad bridge across the Snake River at mile 1.5 between Pasco and Burbank is...

  4. Phreatic explosions during basaltic fissure eruptions: Kings Bowl lava field, Snake River Plain, USA

    Science.gov (United States)

    Hughes, Scott S.; Kobs Nawotniak, Shannon E.; Sears, Derek W. G.; Borg, Christian; Garry, William Brent; Christiansen, Eric H.; Haberle, Christopher W.; Lim, Darlene S. S.; Heldmann, Jennifer L.

    2018-02-01

    Physical and compositional measurements are made at the 7 km-long ( 2200 years B.P.) Kings Bowl basaltic fissure system and surrounding lava field in order to further understand the interaction of fissure-fed lavas with phreatic explosive events. These assessments are intended to elucidate the cause and potential for hazards associated with phreatic phases that occur during basaltic fissure eruptions. In the present paper we focus on a general understanding of the geological history of the site. We utilize geospatial analysis of lava surfaces, lithologic and geochemical signatures of lava flows and explosively ejected blocks, and surveys via ground observation and remote sensing. Lithologic and geochemical signatures readily distinguish between Kings Bowl and underlying pre-Kings Bowl lava flows, both of which comprise phreatic ejecta from the Kings Bowl fissure. These basalt types, as well as neighboring lava flows from the contemporaneous Wapi lava field and the older Inferno Chasm vent and outflow channel, fall compositionally within the framework of eastern Snake River Plain olivine tholeiites. Total volume of lava in the Kings Bowl field is estimated to be 0.0125 km3, compared to a previous estimate of 0.005 km3. The main (central) lava lake lost a total of 0.0018 km3 of magma by either drain-back into the fissure system or breakout flows from breached levees. Phreatic explosions along the Kings Bowl fissure system occurred after magma supply was cut off, leading to fissure evacuation, and were triggered by magma withdrawal. The fissure system produced multiple phreatic explosions and the main pit is accompanied by others that occur as subordinate pits and linear blast corridors along the fissure. The drop in magma supply and the concomitant influx of groundwater were necessary processes that led to the formation of Kings Bowl and other pits along the fissure. A conceptual model is presented that has relevance to the broader range of low-volume, monogenetic

  5. 33 CFR 117.385 - Snake River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake River. 117.385 Section 117.385 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Idaho § 117.385 Snake River. The drawspan of the U.S. 12 bridge...

  6. 27 CFR 9.208 - Snake River Valley.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Snake River Valley. 9.208... Snake River Valley. (a) Name. The name of the viticultural area described in this section is “Snake River Valley”. For purposes of part 4 of this chapter, “Snake River Valley” is a term of viticultural...

  7. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Science.gov (United States)

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River... Snake—Asotin 17060103 17060103 17060103 Upper Grande Ronde 17060104 Wallowa 17060105 Lower Grande Ronde...

  8. 2015 OLC FEMA Lidar: Snake River, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Snake River FEMA study area. This study area is located...

  9. Water utilization in the Snake River Basin

    Science.gov (United States)

    Hoyt, William Glenn; Stabler, Herman

    1935-01-01

    The purpose of this report is to describe the present utilization of the water in the Snake River Basin with special reference to irrigation and power and to present essential facts concerning possible future utilization. No detailed plan of development is suggested. An attempt has been made, however, to discuss features that should be taken into account in the formulation of a definite plan of development. On account of the size of the area involved, which is practically as large as the New England States and New York combined, and the magnitude of present development and future possibilities, considerable details have of necessity been omitted. The records of stream flow in the basin are contained in the reports on surface water supply published annually by the Geological Survey. These records are of the greatest value in connection with the present and future regulation and utilization of the basin's largest asset water.

  10. 2015 OLC FEMA Lidar DEM: Snake River, ID

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Snake River FEMA study area. This study area is located...

  11. Fish Culture data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  12. Spawning data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  13. Production data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  14. Growth data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  15. Broodyear data - Snake River sockeye salmon captive propagation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gene rescue captive broodstock program was established for ESA-listed endangered Snake River sockeye salmon from Redfish Lake, Idaho. The program has consisted of...

  16. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix I: Economics

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  17. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix C: Water Quality

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower-Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  18. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix K: Real Estate

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects-on four lower Snake River salmon and steelhead stocks listed for protection- under the Endangered Species Act (ESA). The U.S...

  19. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix J: Plan Formulation

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  20. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix D: Natural River Drawdown Engineering

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  1. 77 FR 3115 - Safety Zone; Grain-Shipment Vessels, Columbia and Snake Rivers

    Science.gov (United States)

    2012-01-23

    ...-AA00 Safety Zone; Grain-Shipment Vessels, Columbia and Snake Rivers AGENCY: Coast Guard, DHS. ACTION... Terminal, Longview, WA, while they are located on the Columbia and Snake Rivers. This safety zone extends... on the Columbia and Snake rivers when vessels begin arriving at EGT, Longview, WA. Under 5 U.S.C. 553...

  2. Field of a helical Siberian Snake

    Energy Technology Data Exchange (ETDEWEB)

    Luccio, A. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    To preserve the spin polarization of a beam of high energy protons in a circular accelerator, magnets with periodic magnetic field, called Siberian Snakes are being used. Recently, it was proposed to build Siberian Snakes with superconducting helical dipoles. In a helical, or twisted dipole, the magnetic field is perpendicular to the axis of the helix and rotates around it as one proceeds along the magnet. In an engineering study of a 4 Tesla helical snake, the coil geometry is derived, by twisting, from the geometry of a cosine superconducting dipole. While waiting for magnetic measurement data on such a prototype, an analytical expression for the field of the helice is important, to calculate the particle trajectories and the spin precession in the helix. This model will also allow to determine the optical characteristics of the snake, as an insertion in the lattice of the accelerator. In particular, one can calculate the integrated multipoles through the magnet and the equivalent transfer matrix. An expression for the field in the helix body, i.e., excluding the fringe field was given in a classical paper. An alternate expression can be found by elaborating on the treatment of the field of a transverse wiggler obtained under the rather general conditions that the variables are separable. This expression exactly satisfies Maxwell`s div and curl equations for a stationary field, {del} {center_dot} B = 0, {del} x B = 0. This approach is useful in that it will allow one to use much of the work already done on the problem of inserting wigglers and undulators in the lattice of a circular accelerator.

  3. Yellowstone-Snake River Plain seismic profilling experiment: Crustal structure of the eastern Snake River Plain

    International Nuclear Information System (INIS)

    Braile, L.W.; Smith, R.B.; Ansorge, J.; Baker, M.R.; Sparlin, M.A.; Prodehl, C.; Schilly, M.M.; Healy, J.H.; Mueller, S.; Olsen, K.H.

    1982-01-01

    Seismic refraction profiles recorded along the eastern Snake River Plain (ESRP) in southeastern Idaho during the 1978 Yellowstone-Snake River Plain cooperative seismic profiling experiment are interpreted to infer the crustal velocity and attenuation (Q-1) structure of the ESRP. Travel-time and synthetic seismogram modeling of a 250 km reversed refraction profile as well as a 100 km detailed profile indicate that the crust of the ESRP is highly anomalous. Approximately 3 to 6 km of volcanic rocks (with some interbedded sediments) overlie an upper-crustal layer (compressional velocity approx. =6.1 km/s) which thins southwestward along the ESRP from a thickness of 10 km near Island Park Caldera to 2 to 3 km beneath the central and southwestern portions of the ESRP. An intermediate-velocity (approx. =6.5 km/s) layer extends from approx. =10 to approx. =20 km depth. a thick (approx. =22 km) lower crust of compressional velocity 6.8 km/s, a total crustall thickness of approx. =42 km, and a P/sub n/ velocity of approx. =7.9 km/s is observed in the ESRP, similar to the western Snake River Plain and the Rocky Mountains Provinces. High attenuation is evident on the amplitude corrected seismic data due to low-Q values in the volcanic rocks (Q/sub p/ = 20 to 200) and throughout the crust (Q/sub p/ = 160 to 300). Based on these characteristics of the crustal structure and volcanic-age progression data, it is suggested that the ESRP has resulted from an intensitive period of intrusion of mantle-derived basaltic magma into the upper crust generating explosive silicic volcanism and associated regional uplift and caldera collapse. This activity began about 15 m.y. ago in southwestern Idaho and has migrated northeast to its present position at Yellowstone. Subsequent cooling of the intruded upper crust results in the 6.5 km/s velocity intermediate layer. Crustal subsidence and periodic basaltic volcanism as represented by the ESRP complete the sequence of crustal evolution

  4. Snake River Fall Chinook Salmon life history investigations

    Science.gov (United States)

    Erhardt, John M.; Bickford, Brad; Hemingway, Rulon J.; Rhodes, Tobyn N.; Tiffan, Kenneth F.

    2017-01-01

    Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993). Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the

  5. History of Snake River Canyon Indicated by Revised Stratigraphy of Snake River Group Near Hagerman and King Hill, Idaho: With a Section on Paleomagnetism

    Science.gov (United States)

    Malde, Harold E.; Cox, Allan

    1971-01-01

    A discovery that debris left by the Bonneville Flood (Melon Gravel) overlies McKinney Basalt about 200 feet above the Snake River near King Hill requires that the stratigraphy of the Snake River Group be revised. In former usage, the McKinney Basalt and its immediately older companion, the Wendell Grade Basalt, were considered on the basis of equivocal field relations to be younger than the Melon Gravel and were assigned to the Recent. These lava flows are here reclassified as Pleistocene. The Bancroft Springs Basalt, which consists of both subaerial lava and pillow lava in a former Snake River canyon, was previously separated from the McKinney but is now combined with the McKinney. Accordingly, the name Bancroft Springs Basalt is here abandoned. This revised stratigraphy is first described from geomorphic relations of the McKinney Basalt near King Hill and is then discussed in the light of drainage changes caused by local lava flows during entrenchment of the Snake River. Near King Hill, a former Snake River canyon was completely filled by McKinney Basalt at the place called Bancroft Springs, hut the depth of this lava in the next several miles of the canyon downstream (along a route that approximately coincides with the present canyon) steadily decreased. This ancestral geomorphology is inferred from the former canyon route and, also, from the continuity in gradient of the McKinney lava surface downstream from Bancroft Springs. The drainage history recorded by various lava flows and river deposits of the Snake River Group indicates that the McKinney and Wendell Grade Basalts erupted after the Snake River canyon had reached its present depth of about 500 feet. The Snake River of that time, as far downstream as Bliss, flowed approximately along its present route. The Wood River of that time, however, skirted the north flank of Gooding Butte and joined the ancestral Snake at a junction, now concealed by lava, north of the present canyon about 3 miles west of Bliss

  6. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Summary

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four -lower Snake- Rive salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  7. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River and Lower Snake River Reservoirs, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjomn (Bjornn), Theodore C.

    1997-03-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2).

  8. Fall chinook salmon survival and supplementation studies in the Snake River and Lower Snake River reservoirs: Annual report 1995

    International Nuclear Information System (INIS)

    Williams, John G.; Bjornn, Theodore C.

    1997-01-01

    In 1994, the National Marine Fisheries Service and the US Fish and Wildlife Service began a cooperative study to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River. The primary study objectives were to (1) determine the feasibility of estimating detection and passage survival probabilities of natural and hatchery subyearling fall chinook salmon released in the Snake River (Chapter 1), (2) investigate relationships between detection and passage survival probabilities and travel time of subyearling fall chinook salmon and environmental influences such as flow volume and water temperature (Chapter 1), (3) monitor and evaluate dispersal of hatchery subyearling chinook salmon into nearshore rearing areas used by natural fish (Chapter 2), and (4) monitor and evaluate travel time to Lower Granite Dam, growth from release in the Snake River to recapture at Lower Granite Dam, ATPase levels of fish recaptured at Lower Granite Dam, and survival from release in the free-flowing Snake River to the tailrace of Lower Granite Dam (Chapter 2)

  9. Hydraulic Characteristics of the Lower Snake River During Periods of Juvenile Fall Chinook Migration

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Chris B.; Dibrani, Berhon; Richmond, Marshall C.; Bleich, Matthew D.; Titzler, P. Scott; Fu, Tao

    2006-01-30

    biological importance to juvenile fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004 plus a brief one-week period in 2005 of Lower Monumental, Little Goose, and Lower Granite Reservoirs. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are sufficiently capable of matching diurnal and long term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the 3-D model Flow3-D. This model was used to better understand mixing processing and entrainment. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake discharge. Simulation results were also linked with the particle tracking model FINS to better understand alterations of integrated metrics due to alternative operation schemes. These findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir and may have a significant impact on the behavior of migrating juvenile fall Chinook salmon during periods of flow augmentation.

  10. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix L: Lower Snake River Mitigation History and Status. Appendix M: Fish and Wildlife Coordination Act Report

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  11. FITTING HELICAL SNAKE AND ROTATOR FIELD STRENGTH MEASUREMENTS IN RHIC

    International Nuclear Information System (INIS)

    RANJBAR, V.; LUCCIO, A.U.; MACKAY, W.W.; TSOUPAS, N.

    2001-01-01

    We examined recent multi-pole measurements for the helical snakes and rotators in RHIC to generate a full field map. Since multi-pole measurements yield real field values for B, field components we developed a unique technique to evaluate the full fields using a traditional finite element analysis software [1]. From these measurements we employed SNIG [2] to generate orbit and Spin plots. From orbit values we generated a transfer matrix for the first snake

  12. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Part II: Chapters 5-13

    National Research Council Canada - National Science Library

    2003-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  13. Spawning distribution of fall chinook salmon in the Snake River: Annual report 1999

    International Nuclear Information System (INIS)

    Garcia, Aaron P.

    2000-01-01

    This report is separated into 2 chapters. The chapters are (1) Progress toward determining the spawning distribution of supplemented fall chinook salmon in the Snake River in 1999; and (2) Fall chinook salmon spawning ground surveys in the Snake River, 1999

  14. Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cook, C.; Dibrani, B.; Richmond, M.; Bleich, M.; Titzler, P..; Fu, T. [Pacific Northwest National Laboratory

    2006-01-01

    fall Chinook salmon. This report describes field data collection, modeling, and analysis of hydrodynamic and temperature conditions in the Lower Granite Reservoir during the summer flow augmentation periods of 2002, 2003, and 2004. Although temperature, and hence density, differences during flow augmentation periods between the Clearwater and Snake rivers were approximately equal (7-12 C) for all four years, the discharge ratio varied which resulted in significant differences in entrainment of cooler Clearwater River water into the Lower Granite Reservoir epilimnion. However, as a direct result of system management, Lower Granite Dam tailrace temperatures were maintained near 20 C during all years. Primary differences in the other three lower Snake River reservoirs were therefore a result of meteorological conditions and dam operations, which produced variations in wind setup and surface heating. Circulation patterns in all four lower Snake River reservoirs were numerically simulated for periods of 2002, 2003, 2004, and 2005 using CE-QUAL-W2. Simulation results show that these models are capable of matching diurnal and long-term temperature and velocity changes in the reservoirs. In addition, the confluence zone of the Clearwater and Snake rivers was modeled using the three-dimensional non-hydrostatic model Flow3D. Once calibrated and validated, the reservoir models were used to investigate downstream impacts of alternative reservoir operation schemes, such as increasing or decreasing the ratio of Clearwater to Snake river discharge. Simulation results were linked with the particle tracking model FINS to develop reservoir-integrated metrics that varied due to these alternative operation schemes. Findings indicate that significant alterations in water temperature throughout the lower Snake River are possible by altering hypolimnetic discharges from Dworshak Reservoir, which may also impact the behavior of migrating juvenile fall Chinook salmon during periods of flow

  15. Snakes! Snakes! Snakes!

    Science.gov (United States)

    Nature Naturally, 1983

    1983-01-01

    Designed for students in grades 4-6, the teaching unit presents illustrations and facts about snakes. Topics include common snakes found in the United States, how snakes eat, how snakes shed their skin, poisonous snakes, the Eastern Indigo snake, and the anatomy of a snake. A student page includes a crossword puzzle and surprising snake facts. A…

  16. Monitoring the migrations of wild Snake River spring/summer chinook salmon smolts, 1995. Annual report

    International Nuclear Information System (INIS)

    Achord, S.; Eppard, M.B.; Sandford, B.P.; Matthews, G.M.

    1996-09-01

    We PIT tagged wild spring/summer chinook-salmon parr in the Snake River Basin in 1994 and subsequently monitored these fish during their smolt migration through Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Darns during spring, summer, and fall 1995. This report details our findings. The goals of this study are to (1) characterize the migration timing of different wild stocks of Snake River spring/summer chinook salmon smolts at dams on the Snake and Columbia Rivers, (2) determine if consistent patterns are apparent, and (3) determine what environmental factors influence migration timing

  17. Salmonid Gamete Preservation in the Snake River Basin : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. [Nez Perce Tribe. Dept. of Fisheries Resource Management, Lapwai, ID (US)

    2001-06-01

    a long-term archive, half of the total samples. A total of 2,420 cryopreserved samples from Snake River basin steelhead and spring and summer chinook salmon, from 1992 through 2000, are stored in two independent locations at the University of Idaho and Washington State University. Two large freezer tanks are located at each university, each of which holds approximately 25% of the cryopreserved sperm. One tank at each university is considered long-term archival storage, while the other is short-term. Fertility trials were conducted at each university to test the viability of the cryopreserved chinook salmon sperm. The experiments on the 2000 frozen and thawed sperm at both universities found a fertility rate of 60-70%. This document also summarizes 1999-2000 steelhead genetic analysis report. The results of mitochondrial, nuclear DNA and microsatellite analysis found differences and shared haplotypes between the stocks of fish sampled for cryopreservation. Recommendations for future gene banking efforts include the need for establishment of a regional genome resource bank, a greater emphasis on cryopreserving wild fish, continued fertility trials, exploring field cryopreservation and genetic analysis on all fish represented in the germplasm repository.

  18. 75 FR 6020 - Electrical Interconnection of the Lower Snake River Wind Energy Project

    Science.gov (United States)

    2010-02-05

    ... DEPARTMENT OF ENERGY Bonneville Power Administration Electrical Interconnection of the Lower Snake River Wind Energy Project AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE... (BPA) has decided to offer Puget Sound Energy Inc., a Large Generator Interconnection Agreement for...

  19. Geothermal Alteration of Basaltic Core from the Snake River Plain, Idaho

    OpenAIRE

    Sant, Christopher Joseph

    2012-01-01

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquife...

  20. The Snake River Plain Volcanic Province: Insights from Project Hotspot

    Science.gov (United States)

    Shervais, J. W.; Potter, K. E.; Hanan, B. B.; Jean, M. M.; Duncan, R. A.; Champion, D. E.; Vetter, S.; Glen, J. M. G.; Christiansen, E. H.; Miggins, D. P.; Nielson, D. L.

    2017-12-01

    The Snake River Plain (SRP) Volcanic Province is the best modern example of a time-transgressive hotspot track beneath continental crust. The SRP began 17 Ma with massive eruptions of Columbia River basalt and rhyolite. After 12 Ma volcanism progressed towards Yellowstone, with early rhyolite overlain by basalts that may exceed 2 km thick. The early rhyolites are anorogenic with dry phenocryst assemblages and eruption temperatures up to 950C. Tholeiitic basalts have major and trace element compositions similar to ocean island basalts (OIB). Project Hotspot cored three deep holes in the central and western Snake River Plain: Kimama (mostly basalt), Kimberly (mostly rhyolite), and Mountain Home (lake sediments and basaslt). The Kimberly core documents rhyolite ash flows up to 700 m thick, possibly filling a caldera or sag. Chemical stratigraphy in Kimama and other basalt cores document fractional crystallization in relatively shallow magma chambers with episodic magma recharge. Age-depth relations in the Kimama core suggest accumulation rates of roughly 305 m/Ma. Surface and subsurface basalt flows show systematic variations in Sr-Nd-Pb isotopes with distance from Yellowstone interpreted to reflect changes in the proportion of plume source and the underlying heterogeneous cratonic lithosphere, which varies in age, composition, and thickness from west to east. Sr-Nd-Pb isotopes suggest <5% lithospheric input into a system dominated by OIB-like plume-derived basalts. A major flare-up of basaltic volcanism occurred 75-780 ka throughout the entire SRP, from Yellowstone in the east to Boise in the west. The youngest western SRP basalts are transitional alkali basalts that range in age from circa 900 ka to 2 ka, with trace element and isotopic compositions similar to the plume component of Hawaiian basalts. These observations suggest that ancient SCLM was replaced by plume mantle after the North America passed over the hotspot in the western SRP, which triggered renewed

  1. Fall Chinook Salmon Survival and Supplementation Studies in the Snake River Reservoirs, 1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Williams, John G.; Bjornn (Bjomn), Theodore C.

    1998-05-01

    In 1996, the National Marine Fisheries Service, the Nez Perce Tribe, and the U.S. Fish and Wildlife Service completed the second year of cooperative research to investigate migrational characteristics of subyearling fall chinook salmon in the Snake River Basin. In spring and early summer, we captured natural subyearling fall chinook salmon by beach seine, PIT tagged them, and released them in two reaches of the Snake River. Also, subyearling fall chinook salmon reared at Lyons Ferry Hatchery were PIT tagged at the hatchery, transported, and released weekly at Pittsburg Landing on the Snake River and Big Canyon Creek on the Clearwater River to collect data on survival detection probabilities, and travel time.

  2. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix E: Existing Systems and Major System Improvements Engineering

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  3. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environmental Impact Statement. Appendix F: Hydrology/Hydraulics and Sedimentation. Appendix G: Hydroregulations. Appendix H: Fluvial Geomorphology

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  4. Lower Snake River Juvenile Salmon Migration Feasibility Report/Environment Impact Statement. Appendix N: Cultural Resources. Appendix O: Public Outreach Program. Appendix P: Air Quality

    National Research Council Canada - National Science Library

    2002-01-01

    ... (collectively called the Lower Snake River Project) and their effects on four lower Snake River salmon and steelhead stocks listed for protection under the Endangered Species Act (ESA). The U.S...

  5. Solute geochemistry of the Snake River Plain regional aquifer system, Idaho and eastern Oregon

    International Nuclear Information System (INIS)

    Wood, W.W.; Low, W.H.

    1987-01-01

    Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Reactions controlling solutes in the western Snake river basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake river Plain contains total dissolved solids similar to those in the overlying Snake River Plain aquifer system but contains higher concentrations of sodium, bicarbonate, silica, fluoride, sulfate, chloride, arsenic, boron, and lithium, and lower concentrations of calcium, magnesium, and hydrogen. 132 refs., 30 figs., 27 tabs

  6. Inter- and intraspecific variation in mercury bioaccumulation by snakes inhabiting a contaminated river floodplain.

    Science.gov (United States)

    Drewett, David V V; Willson, John D; Cristol, Daniel A; Chin, Stephanie Y; Hopkins, William A

    2013-04-01

    Although mercury (Hg) is a well-studied contaminant, knowledge about Hg accumulation in snakes is limited. The authors evaluated Hg bioaccumulation within and among four snake species (northern watersnakes, Nerodia sipedon; queen snakes, Regina septemvittata; common garter snakes, Thamnophis sirtalis; and rat snakes, Elaphe obsoleta [Pantherophis alleghaniensis]) from a contaminated site on the South River (Waynesboro, VA, USA) and two nearby reference sites. Total Hg (THg) concentrations in northern watersnake tail tissue at the contaminated site ranged from 2.25 to 13.84 mg/kg dry weight (mean: 4.85 ± 0.29), or 11 to 19 times higher than reference sites. Blood THg concentrations (0.03-7.04 mg/kg wet wt; mean: 2.24 ± 0.42) were strongly correlated with tail concentrations and were the highest yet reported in a snake species. Within watersnakes, nitrogen stable isotope values indicated ontogenetic trophic shifts that correlated with THg bioaccumulation, suggesting that diet plays a substantial role in Hg exposure. Female watersnakes had higher mean THg concentrations (5.67 ± 0.46 mg/kg) than males (4.93 ± 0.49 mg/kg), but no significant differences between sexes were observed after correcting for body size. Interspecific comparisons identified differences in THg concentrations among snake species, with more aquatic species (watersnakes and queen snakes) accumulating higher mean concentrations (5.60 ± 0.40 and 4.59 ± 0.38 mg/kg in tail tissue, respectively) than the more terrestrial species, garter snakes and rat snakes (1.28 ± 0.32 and 0.26 ± 0.09 mg/kg, respectively). The results of the present study warrant further investigation of potential adverse effects and will aid in prioritizing conservation efforts. Copyright © 2013 SETAC.

  7. Survival estimates for the passage of juvenile chinook salmon through Snake River dams and reservoirs. Annual report 1993

    International Nuclear Information System (INIS)

    Iwamoto, R.N.; Muir, W.D.; Sandford, B.P.; McIntyre, K.W.; Frost, D.A.; Williams, J.G.; Smith, S.G.; Skalski, J.R.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers

  8. Survival Estimates for the Passage of Juvenile Chinook Salmon through Snake River Dams and Reservoirs, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Robert N.; Sandford, Benjamin P.; McIntyre, Kenneth W.

    1994-04-01

    A pilot study was conducted to estimate survival of hatchery-reared yearling chinook salmon through dams and reservoirs on the Snake River. The goals of the study were to: (1) field test and evaluate the Single-Release, Modified-Single-Release, and Paired-Release Models for the estimation of survival probabilities through sections of a river and hydroelectric projects; (2) identify operational and logistical constraints to the execution of these models; and (3) determine the usefulness of the models in providing estimates of survival probabilities. Field testing indicated that the numbers of hatchery-reared yearling chinook salmon needed for accurate survival estimates could be collected at different areas with available gear and methods. For the primary evaluation, seven replicates of 830 to 1,442 hatchery-reared yearling chinook salmon were purse-seined from Lower Granite Reservoir, PIT tagged, and released near Nisqually John boat landing (River Kilometer 726). Secondary releases of PIT-tagged smolts were made at Lower Granite Dam to estimate survival of fish passing through turbines and after detection in the bypass system. Similar secondary releases were made at Little Goose Dam, but with additional releases through the spillway. Based on the success of the 1993 pilot study, the authors believe that the Single-Release and Paired-Release Models will provide accurate estimates of juvenile salmonid passage survival for individual river sections, reservoirs, and hydroelectric projects in the Columbia and Snake Rivers.

  9. Snake River Plain Play Fairway Analysis – Phase 1 Report

    Energy Technology Data Exchange (ETDEWEB)

    Shervais, John W. [Utah State Univ., Logan, UT (United States). Dept. of Geology; Glen, Jonathan M. [US Geological Survey, Menlo Park, CA (United States); Liberty, Lee M. [Boise State Univ., ID (United States). Center for Geophysical Investigation of the Shallow Subsurface; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-09-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. Our goals for this Phase 1 study are to: (1) adapt the methodology of Play Fairway Analysis for geothermal exploration to create a formal basis for its application to geothermal systems, (2) assemble relevant data for the SRP from publicly available and private sources, and (3) build a geothermal play fairway model for the SRP and identify the most promising plays, using software tools that are standard in the petroleum industry. The success of play fairway analysis in geothermal exploration depends critically on defining a systematic methodology that is grounded in theory (as developed within the petroleum industry over the last two decades) and within the geologic and hydrologic framework of real geothermal systems. Our preliminary assessment of the data suggests that important undiscovered geothermal resources may be located in several areas of the SRP, including the western SRP (associated with buried lineaments defined by gravity or magnetic anomalies, and capped by extensive deposits of lacustrine sediment), at lineament intersections in the central SRP (along the Banbury-Hagerman trend NW of Twin Falls, and along the northern margin of the Mt Bennett Hills-Camas Prairie area), and along the margins of the eastern SRP. Additional high temperature resources are likely associated with rhyolite domes and crypto-domes in the eastern SRP, but are masked by shallow groundwater flow leading to low upper crustal heat flow values. These blind resources may be exploitable with existing deep drilling technology. Groundwater modeling planned for later phases of the PFA project will address whether temperatures at viable producing depths are sufficient to support electricity production.

  10. Hotspot: the Snake River Geothermal Drilling Project--initial report

    Science.gov (United States)

    Shervais, J.W.; Nielson, D.; Lachmar, T.; Christiansen, E.H.; Morgan, L.; Shanks, Wayne C.; Delahunty, C.; Schmitt, D.R.; Liberty, L.M.; Blackwell, D.D.; Glen, J.M.; Kessler, J.A.; Potter, K.E.; Jean, M.M.; Sant, C.J.; Freeman, T.

    2012-01-01

    The Snake River volcanic province (SRP) overlies a thermal anomaly that extends deep into the mantle; it represents one of the highest heat flow provinces in North America. The primary goal of this project is to evaluate geothermal potential in three distinct settings: (1) Kimama site: inferred high sub-aquifer geothermal gradient associated with the intrusion of mafic magmas, (2) Kimberly site: a valley-margin setting where surface heat flow may be driven by the up-flow of hot fluids along buried caldera ringfault complexes, and (3) Mountain Home site: a more traditional fault-bounded basin with thick sedimentary cover. The Kimama hole, on the axial volcanic zone, penetrated 1912 m of basalt with minor intercalated sediment; no rhyolite basement was encountered. Temperatures are isothermal through the aquifer (to 960 m), then rise steeply on a super-conductive gradient to an estimated bottom hole temperature of ~98°C. The Kimberly hole is on the inferred margin of a buried rhyolite eruptive center, penetrated rhyolite with intercalated basalt and sediment to a TD of 1958 m. Temperatures are isothermal at 55-60°C below 400 m, suggesting an immense passive geothermal resource. The Mountain Home hole is located above the margin of a buried gravity high in the western SRP. It penetrates a thick section of basalt and lacustrine sediment overlying altered basalt flows, hyaloclastites, and volcanic sediments, with a TD of 1821 m. Artesian flow of geothermal water from 1745 m depth documents a power-grade resource that is now being explored in more detail. In-depth studies continue at all three sites, complemented by high-resolution gravity, magnetic, and seismic surveys, and by downhole geophysical logging.

  11. Agribusiness geothermal energy utilization potential of Klamath and Western Snake River Basins, Oregon. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.

    1978-03-01

    Resource assessment and methods of direct utilization for existing and prospective food processing plants have been determined in two geothermal resource areas in Oregon. Ore-Ida Foods, Inc. and Amalgamated Sugar Company in the Snake River Basin; Western Polymer Corporation (potato starch extraction) and three prospective industries--vegetable dehydration, alfalfa drying and greenhouses--in the Klamath Basin have been analyzed for direct utilization of geothermal fluids. Existing geologic knowledge has been integrated to indicate locations, depth, quality, and estimated productivity of the geothermal reservoirs. Energy-economic needs and balances, along with cost and energy savings associated with field development, delivery systems, in-plant applications and fluid disposal have been calculated for interested industrial representatives.

  12. The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics

    Science.gov (United States)

    Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.

    2012-01-01

    Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.

  13. Water-quality conditions near the confluence of the Snake and Boise Rivers, Canyon County, Idaho

    Science.gov (United States)

    Wood, Molly S.; Etheridge, Alexandra

    2011-01-01

    Total Maximum Daily Loads (TMDLs) have been established under authority of the Federal Clean Water Act for the Snake River-Hells Canyon reach, on the border of Idaho and Oregon, to improve water quality and preserve beneficial uses such as public consumption, recreation, and aquatic habitat. The TMDL sets targets for seasonal average and annual maximum concentrations of chlorophyll-a at 14 and 30 micrograms per liter, respectively. To attain these conditions, the maximum total phosphorus concentration at the mouth of the Boise River in Idaho, a tributary to the Snake River, has been set at 0.07 milligrams per liter. However, interactions among chlorophyll-a, nutrients, and other key water-quality parameters that may affect beneficial uses in the Snake and Boise Rivers are unknown. In addition, contributions of nutrients and chlorophyll-a loads from the Boise River to the Snake River have not been fully characterized. To evaluate seasonal trends and relations among nutrients and other water-quality parameters in the Boise and Snake Rivers, a comprehensive monitoring program was conducted near their confluence in water years (WY) 2009 and 2010. The study also provided information on the relative contribution of nutrient and sediment loads from the Boise River to the Snake River, which has an effect on water-quality conditions in downstream reservoirs. State and site-specific water-quality standards, in addition to those that relate to the Snake River-Hells Canyon TMDL, have been established to protect beneficial uses in both rivers. Measured water-quality conditions in WY2009 and WY2010 exceeded these targets at one or more sites for the following constituents: water temperature, total phosphorus concentrations, total phosphorus loads, dissolved oxygen concentration, pH, and chlorophyll-a concentrations (WY2009 only). All measured total phosphorus concentrations in the Boise River near Parma exceeded the seasonal target of 0.07 milligram per liter. Data collected

  14. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    Science.gov (United States)

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    Sedimentation is an ongoing maintenance problem for reservoirs, limiting reservoir storage capacity and navigation. Because Lower Granite Reservoir in Washington is the most upstream of the four U.S. Army Corps of Engineers reservoirs on the lower Snake River, it receives and retains the largest amount of sediment. In 2008, in cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey began a study to quantify sediment transport to Lower Granite Reservoir. Samples of suspended sediment and bedload were collected from streamgaging stations on the Snake River near Anatone, Washington, and the Clearwater River at Spalding, Idaho. Both streamgages were equipped with an acoustic Doppler velocity meter to evaluate the efficacy of acoustic backscatter for estimating suspended-sediment concentrations and transport. In 2009, sediment sampling was extended to 10 additional locations in tributary watersheds to help identify the dominant source areas for sediment delivery to Lower Granite Reservoir. Suspended-sediment samples were collected 9–15 times per year at each location to encompass a range of streamflow conditions and to capture significant hydrologic events such as peak snowmelt runoff and rain-on-snow. Bedload samples were collected at a subset of stations where the stream conditions were conducive for sampling, and when streamflow was sufficiently high for bedload transport. At most sampling locations, the concentration of suspended sediment varied by 3–5 orders of magnitude with concentrations directly correlated to streamflow. The largest median concentrations of suspended sediment (100 and 94 mg/L) were in samples collected from stations on the Palouse River at Hooper, Washington, and the Salmon River at White Bird, Idaho, respectively. The smallest median concentrations were in samples collected from the Selway River near Lowell, Idaho (11 mg/L), the Lochsa River near Lowell, Idaho (11 mg/L), the Clearwater River at Orofino, Idaho (13 mg

  15. Role of economics in endangered species act activities related to Snake River salmon

    International Nuclear Information System (INIS)

    Woodruff, E.J.; Huppert, D.D.

    1993-01-01

    The development of recovery actions for the species of Snake River Salmon listed under the Endangered Species Act (ESA) must consider a wide range of actions covering the different life-cycles of the species. This paper examines the possible role of economic analysis in assisting in selection of actions to undertake and draws heavily on similar opinions presented by others in the region

  16. Performance of Yellowstone and Snake River Cutthroat Trout Fry Fed Seven Different Diets.

    Science.gov (United States)

    Five commercial diets and two formulated feeds were fed to initial-feeding Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri fry and Snake River cutthroat trout O. clarkii spp. (currently being petitioned for classification as O. clarkii behnkei) fry for 18 weeks to evaluate fish performance...

  17. 77 FR 42327 - Proposed Supplementary Rules for the Morley Nelson Snake River Birds of Prey National...

    Science.gov (United States)

    2012-07-18

    ... a BLM-approved metal fire ring. On BLM-administered public land within the Morley Nelson Snake River... located on improved campsites within BLM-approved metal fire rings on all lands administered by the BLM... fires outside of BLM-approved fire rings would help avert human-caused wildfire which would protect...

  18. Salmonid Gamete Preservation in the Snake River Basin, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. (Nez Perce Tribe, Lapwai, ID)

    1999-03-01

    Steelhead (Oncorhynchus mykiss) and salmon (Oncorhynchus tshawytscha)populations in the Northwest are decreasing. The Nez Perce Tribe (Tribe) was funded in 1998 by the Bonneville Power Administration to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin.

  19. Regional implications of heat flow of the Snake River Plain, Northwestern United States

    Science.gov (United States)

    Blackwell, D. D.

    1989-08-01

    The Snake River Plain is a major topographic feature of the Northwestern United States. It marks the track of an upper mantle and crustal melting event that propagated across the area from southwest to northeast at a velocity of about 3.5 cm/yr. The melting event has the same energetics as a large oceanic hotspot or plume and so the area is the continental analog of an oceanic hotspot track such as the Hawaiian Island-Emperor Seamount chain. Thus, the unique features of the area reflect the response of a continental lithosphere to a very energetic hotspot. The crust is extensively modified by basalt magma emplacement into the crust and by the resulting massive rhyolite volcanism from melted crustal material, presently occurring at Yellowstone National Park. The volcanism is associated with little crustal extension. Heat flow values are high along the margins of the Eastern and Western Snake River Plains and there is abundant evidence for low-grade geothermal resources associated with regional groundwater systems. The regional heat flow pattern in the Western Snake River Plains reflects the influence of crustal-scale thermal refraction associated with the large sedimentary basin that has formed there. Heat flow values in shallow holes in the Eastern Snake River Plains are low due to the Snake River Plains aquifer, an extensive basalt aquifer where water flow rates approach 1 km/yr. Below the aquifer, conductive heat flow values are about 100 mW m -2. Deep holes in the region suggest a systematic eastward increase in heat flow in the Snake River Plains from about 75-90 mW m -2 to 90-110 mW m -2. Temperatures in the upper crust do not behave similarly because the thermal conductivity of the Plio-Pleistocene sedimentary rocks in the west is lower than that in the volcanic rocks characteristic of the Eastern Snake River Plains. Extremely high heat loss values (averaging 2500 mW m -2) and upper crustal temperatures are characteristic of the Yellowstone caldera.

  20. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; Bellgraph, Brian J. [Pacific Northwest National Laboratory

    2009-09-15

    This study was initiated to provide empirical data and analyses on the dam passage timing, travel rate, survival, and life history variation of fall Chinook salmon that are produced in the Clearwater River. The area of interest for this study focuses on the lower four miles of the Clearwater River and its confluence with the Snake River because this is an area where many fish delay their seaward migration. The goal of the project is to increase our understanding of the environmental and biological factors that affect juvenile life history of fall Chinook salmon in the Clearwater River. The following summaries are provided for each of the individual chapters in this report.

  1. Snake River Sockeye Salmon Habitat and Limnological Research : 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Doug; Kohler, Andre E.; Griswold, Robert G.; Gilliland, Kim

    2006-07-14

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2005 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee spawning in Fishhook and Alturas Lake creeks; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  2. Snake River Sockeye Salmon Habitat and Limnological Research : 2008 Annual Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E. [Shoshone-Bannock Tribes; Griswold, Robert G. [Biolines Environmental Consulting; Taki, Doug [Shoshone-Bannock Tribes

    2009-07-31

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Project was implemented. This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of Snake River sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: the immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the evolutionarily significant unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency Recovery effort. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2008 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit and Alturas lakes; (3) reduce the number of mature kokanee salmon spawning in Alturas Lake Creek; (4) monitor, enumerate, and evaluate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook and Alturas Lake creeks; (6) conduct sockeye and kokanee salmon population surveys; (7) evaluate potential competition and predation between stocked juvenile sockeye salmon and a variety of fish species in

  3. Snake River sockeye salmon Sawtooth Valley project: 1992 Juvenile and Adult Trapping Program

    International Nuclear Information System (INIS)

    1992-04-01

    Sockeye salmon (Oncorhynchus nerka) runs in the Snake River Basin have severely declined. Redfish Lake near Stanley, Idaho is the only lake in the drainage known to still support a run. In 1989, two adults were observed returning to this lake and in 1990, none returned. In the summer of 1991, only four adults returned. If no action is taken, the Snake River sockeye salmon will probably cease to exist. On November 20, 1991, the National Marine Fisheries Service (NMFS) declared the Snake River sockeye salmon ''endangered'' (effective December 20, 1991), pursuant to the Endangered Species Act (ESA) of 1973. In 1991, in response to a request from the Idaho Department of Fish and Game and the Shoshone-Bannock Tribes, the Bonneville Power Administration (BPA) funded efforts to conserve and begin rebuilding the Snake River sockeye salmon run. The initial efforts were focused on Redfish Lake in the Sawtooth Valley of southcentral Idaho. The 1991 measures involved: trapping some of the juvenile outmigrants (O. nerka) from Redfish Lake and rearing them in the Eagle Fish Health Facility (Idaho Department of Fish and Game) near Boise, Idaho; Upgrading of the Eagle Facility where the outmigrants are being reared; and trapping adult Snake River sockeye salmon returning to Redfish Lake and holding and spawning them at the Sawtooth Hatchery near Stanley, Idaho. This Environmental Assessment (EA) evaluates the potential environmental effects of the proposed actions for 1992. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) of 1969 and section 7 of the ESA of 1973

  4. Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.; Kline, Paul A.

    2008-12-17

    Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangered under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and

  5. Geochronology and Geomorphology of the Pioneer Archaeological Site (10BT676), Upper Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Keene, Joshua L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-01

    The Pioneer site in southeastern Idaho, an open-air, stratified, multi-component archaeological locality on the upper Snake River Plain, provides an ideal situation for understanding the geomorphic history of the Big Lost River drainage system. We conducted a block excavation with the goal of understanding the geochronological context of both cultural and geomorphological components at the site. The results of this study show a sequence of five soil formation episodes forming three terraces beginning prior to 7200 cal yr BP and lasting until the historic period, preserving one cultural component dated to ~3800 cal yr BP and multiple components dating to the last 800 cal yr BP. In addition, periods of deposition and stability at Pioneer indicate climate fluctuation during the middle Holocene (~7200-3800 cal yr BP), minimal deposition during the late Holocene, and a period of increased deposition potentially linked to the Little Ice Age. In addition, evidence for a high-energy erosion event dated to ~3800 cal yr BP suggest a catastrophic flood event during the middle Holocene that may correlate with volcanic activity at the Craters of the Moon lava fields to the northwest. This study provides a model for the study of alluvial terrace formations in arid environments and their potential to preserve stratified archaeological deposits.

  6. Evaluation of seepage and discharge uncertainty in the middle Snake River, southwestern Idaho

    Science.gov (United States)

    Wood, Molly S.; Williams, Marshall L.; Evetts, David M.; Vidmar, Peter J.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the State of Idaho, Idaho Power Company, and the Idaho Department of Water Resources, evaluated seasonal seepage gains and losses in selected reaches of the middle Snake River, Idaho, during November 2012 and July 2013, and uncertainty in measured and computed discharge at four Idaho Power Company streamgages. Results from this investigation will be used by resource managers in developing a protocol to calculate and report Adjusted Average Daily Flow at the Idaho Power Company streamgage on the Snake River below Swan Falls Dam, near Murphy, Idaho, which is the measurement point for distributing water to owners of hydropower and minimum flow water rights in the middle Snake River. The evaluated reaches of the Snake River were from King Hill to Murphy, Idaho, for the seepage studies and downstream of Lower Salmon Falls Dam to Murphy, Idaho, for evaluations of discharge uncertainty. Computed seepage was greater than cumulative measurement uncertainty for subreaches along the middle Snake River during November 2012, the non-irrigation season, but not during July 2013, the irrigation season. During the November 2012 seepage study, the subreach between King Hill and C J Strike Dam had a meaningful (greater than cumulative measurement uncertainty) seepage gain of 415 cubic feet per second (ft3/s), and the subreach between Loveridge Bridge and C J Strike Dam had a meaningful seepage gain of 217 ft3/s. The meaningful seepage gain measured in the November 2012 seepage study was expected on the basis of several small seeps and springs present along the subreach, regional groundwater table contour maps, and results of regional groundwater flow model simulations. Computed seepage along the subreach from C J Strike Dam to Murphy was less than cumulative measurement uncertainty during November 2012 and July 2013; therefore, seepage cannot be quantified with certainty along this subreach. For the uncertainty evaluation, average

  7. Laboratory data on Snake River steelhead - Evaluation of methods to reduce straying rates of barged juvenile steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goals of this study are to develop methods to reduce wandering and straying of steelhead (Oncorhynchus mykiss) that are collected and barged from the Snake River...

  8. Survival estimates - Survival estimates for the passage of juvenile salmonids through Snake and Columbia River dams and reservoirs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This BPA-funded study provides estimates of smolt survival and travel time through individual reaches and reaches combined in the Snake and Columbia Rivers...

  9. 75 FR 62137 - Notice of Intent To Collect Fees on Public Land in Fremont County, Idaho, Upper Snake Field...

    Science.gov (United States)

    2010-10-07

    ... Intent To Collect Fees on Public Land in Fremont County, Idaho, Upper Snake Field Office Under the.... SUMMARY: In accordance with the Federal Lands Recreation Enhancement Act (REA), the Upper Snake Field... months after the publication of this notice, the Upper Snake Field Office will initiate fee collection in...

  10. Seasonal dynamics of zooplankton in Columbia–Snake River reservoirs,with special emphasis on the invasive copepod Pseudodiaptomus forbesi

    Science.gov (United States)

    Emerson, Joshua E.; Bollens, Stephen M.; Counihan, Timothy D.

    2015-01-01

    The Asian copepod Pseudodiaptomus forbesi has recently become established in the Columbia River. However, little is known about its ecology and effects on invaded ecosystems. We undertook a 2-year (July 2009 to June 2011) field study of the mesozooplankton in four reservoirs in the Columbia and Snake Rivers, with emphasis on the relation of the seasonal variation in distribution and abundance of P. forbesi to environmental variables. Pseudodiaptomus forbesi was abundant in three reservoirs; the zooplankton community of the fourth reservoir contained no known non-indigenous taxa. The composition and seasonal succession of zooplankton were similar in the three invaded reservoirs: a bloom of rotifers occurred in spring, native cyclopoid and cladoceran species peaked in abundance in summer, and P. forbesi was most abundant in late summer and autumn. In the uninvaded reservoir, total zooplankton abundance was very low year-round. Multivariate ordination indicated that temperature and dissolved oxygen were strongly associated with zooplankton community structure, with P. forbesi appearing to exhibit a single generation per year . The broad distribution and high abundance of P. forbesi in the Columbia–Snake River System could result in ecosystem level effects in areas intensively managed to improve conditions for salmon and other commercially and culturally important fish species. 

  11. A magnetostatic calculation of fringing field for the Rogowski pole boundary with floating snake

    International Nuclear Information System (INIS)

    Yan Chen; Fan Ming-Wu

    1984-01-01

    A boundary integral method has been used to calculate the fringing field distribution of Rogowski pole boundary with floating snake for QMG2 type of QDDD magnetic spectrograph and the experimental EFB is nearly reproduced from BIM calculation. As a further criteria, a calculation for clamped Rogowski pole but without snake is also performed and the calculated EFB shows perfect identity with the experiment. For evaluating the effect of snake quantitatively, this work also predicts the EFB values for two different positions of snake

  12. Magnetostatic calculation of fringing field for the Rogowski pole boundary with floating snake

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Ming-Wu, Fan [Institute of Atomic Energy, Peking (China)

    1984-01-01

    A boundary integral method has been used to calculate the fringing field distribution of Rogowski pole boundary with floating snake for QMG2 type of QDDD magnetic spectrograph and the experimental EFB is nearly reproduced from BIM calculation. As a further criteria, a calculation for clamped Rogowski pole but without snake is also performed and the calculated EFB shows perfect identity with the experiment. For evaluating the effect of snake quantitatively, this work also predicts the EFB values for two different positions of snake.

  13. Harvest Management and Recovery of Snake River Salmon Stocks : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 7 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Lestelle, Lawrence C.; Gilbertson, Larry G.

    1993-06-01

    Management measures to regulate salmon fishing harvest have grown increasingly complex over the past decade in response to the needs for improved protection for some salmon runs and to alter harvest sharing between fisheries. The development of management plans that adequately address both needs is an immensely complicated task, one that involves a multitude of stocks, each with its own migration patterns and capacity to sustain exploitation. The fishing industry that relies on these fish populations is also highly diverse. The management task is made especially difficult because the stocks are often intermingled on the fishing grounds, creating highly mixed aggregates of stocks and species on which the fisheries operate. This situation is the one confronting harvest managers attempting to protect Snake River salmon. This report provides an overview of some of the factors that will need to be addressed in assessing the potential for using harvest management measures in the recovery of Snake River salmon stocks. The major sections of the report include the following: perspectives on harvest impacts; ocean distribution and in-river adult migration timing; description of management processes and associated fisheries of interest; and altemative harvest strategies.

  14. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and

  15. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  16. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  17. Snake River Sockeye Salmon Habitat and Limnological Research; 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2002 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake (3) conduct kokanee salmon (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation between stocked juvenile O. nerka and a

  18. Snake River Sockeye Salmon Habitat and Limnological Research; 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-06-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. Snake River sockeye salmon were officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU); The Tribe's long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through their Integrated Fish and Wildlife Program. Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2004 calendar year. Project tasks include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) conduct lake fertilization in Pettit Lake; (3) reduce the number of mature kokanee salmon spawning in Fishhook Creek; (4) monitor and enumerate sockeye salmon smolt migration from Pettit and Alturas lakes; (5) monitor spawning kokanee salmon escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (6) conduct sockeye salmon and kokanee salmon population surveys; (7) evaluate potential competition and predation

  19. Snake River Sockeye Salmon Habitat and Limnological Research; 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taki, Doug; Kohler, Andre E. (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition, the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 1991-071-00). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of sockeye salmon. The Shoshone-Bannock Tribal goal for this project is two tiered: The immediate goal is to increase the population of Snake River sockeye salmon while preserving the unique genetic characteristics of the Evolutionarily Significant Unit (ESU). The Tribes long term goal is to maintain a viable population that warrants delisting and provides Tribal harvest opportunities. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power and Conservation Council Fish and Wildlife Program (NPCCFWP). Collaborators in the recovery effort include the National Oceanic and Atmospheric Administration (NOAA), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), and the Shoshone-Bannock Tribes (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2003 calendar year. Project objectives include: (1) monitor limnological parameters of the Sawtooth Valley lakes to assess lake productivity; (2) reduce the number of mature kokanee spawning in Fishhook Creek; (3) monitor sockeye salmon smolt migration from the captive rearing program release of juveniles into Pettit and Alturas lakes; (4) monitor spawning kokanee escapement and estimate fry recruitment in Fishhook, Alturas Lake, and Stanley Lake creeks; (5) conduct sockeye and kokanee salmon population surveys; (6

  20. Geothermal alteration of basaltic core from the Snake River Plain, Idaho

    Science.gov (United States)

    Sant, Christopher J.

    The Snake River Plain is located in the southern part of the state of Idaho. The eastern plain, on which this study focuses, is a trail of volcanics from the Yellowstone hotspot. Three exploratory geothermal wells were drilled on the Snake River Plain. This project analyzes basaltic core from the first well at Kimama, north of Burley, Idaho. The objectives of this project are to establish zones of geothermal alteration and analyze the potential for geothermal power production using sub-aquifer resources on the axial volcanic zone of the Snake River Plain. Thirty samples from 1,912 m of core were sampled and analyzed for clay content and composition using X-ray diffraction. Observations from core samples and geophysical logs are also used to establish alteration zones. Mineralogical data, geophysical log data and physical characteristics of the core suggest that the base of the Snake River Plain aquifer at the axial zone is located 960 m below the surface, much deeper than previously suspected. Swelling smectite clay clogs pore spaces and reduces porosity and permeability to create a natural base to the aquifer. Increased temperatures favor the formation of smectite clay and other secondary minerals to the bottom of the hole. Below 960 m the core shows signs of alteration including color change, formation of clay, and filling of other secondary minerals in vesicles and fractured zones of the core. The smectite clay observed is Fe-rich clay that is authigenic in some places. Geothermal power generation may be feasible using a low temperature hot water geothermal system if thermal fluids can be attained near the bottom of the Kimama well.

  1. South Fork Snake River/Palisades Wildlife Mitigation Project: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    BPA proposes to fund the implementation of the South Fork Snake River Programmatic Management Plan to compensate for losses of wildlife and wildlife habitat due to hydroelectric development at Palisades Dam. The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993. This plan recommends land and conservation easement acquisition and wildlife habitat enhancement measures. These measures would be implemented on selected lands along the South Fork of the Snake River between Palisades Dam and the confluence with the Henry`s Fork, and on portions of the Henry`s Fork located in Bonneville, Madison, and Jefferson Counties, Idaho. BPA has prepared an Environmental Assessment evaluating the proposed project. The EA also incorporates by reference the analyses in the South Fork Snake River Activity/Operations Plan and EA prepared jointly in 1991 by the Bureau of Land Management and the Forest Service. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  2. Phase II Water Rental Pilot Project: Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Stacey H.

    1994-08-01

    The Idaho Water Rental Pilot Project was implemented in 1991 as part of the Non-Treaty Storage Fish and Wildlife Agreement between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to quantify resident fish and wildlife impacts resulting from salmon flow augmentation releases made from the upper Snake River Basin. Phase I summarized existing resource information and provided management recommendations to protect and enhance resident fish and wildlife habitat resulting from storage releases for the I improvement of an adromous fish migration. Phase II includes the following: (1) a summary of recent biological, legal, and political developments within the basin as they relate to water management issues, (2) a biological appraisal of the Snake River between American Falls Reservoir and the city of Blackfoot to examine the effects of flow fluctuation on fish and wildlife habitat, and (3) a preliminary accounting of 1993--1994 flow augmentation releases out of the upper Snake, Boise, and Payette river systems. Phase III will include the development of a model in which annual flow requests and resident fish and wildlife suitability information are interfaced with habitat time series analysis to provide an estimate of resident fish and wildlife resources.

  3. Monitoring and mapping selected riparian habitat along the lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  4. Snake River sockeye salmon habitat and limnological research, annual report 1998

    International Nuclear Information System (INIS)

    Lewis, Bert

    2000-01-01

    In March of 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an inter-agency effort to save the Redfish Lake stock of O. nerka from extinction. This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the calendar year of 1998. Project objectives included; (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka released from the captive rearing program into Pettit and Alturas lakes; (2) fertilize Redfish, Pettit, and Alturas lakes; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) control the number of spawning kokanee in Fishhook Creek; (6) evaluate potential competition and predation between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity. Results by objective are summarized

  5. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 in order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  6. Assessing juvenile salmon rearing habitat and associated predation risk in a lower Snake River reservoir

    Science.gov (United States)

    Tiffan, Kenneth F.; Hatten, James R.; Trachtenbarg, David A

    2015-01-01

    Subyearling fall Chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin exhibit a transient rearing strategy and depend on connected shoreline habitats during freshwater rearing. Impoundment has greatly reduced the amount of shallow-water rearing habitat that is exacerbated by the steep topography of reservoirs. Periodic dredging creates opportunities to strategically place spoils to increase the amount of shallow-water habitat for subyearlings while at the same time reducing the amount of unsuitable area that is often preferred by predators. We assessed the amount and spatial arrangement of subyearling rearing habitat in Lower Granite Reservoir on the Snake River to guide future habitat improvement efforts. A spatially explicit habitat assessment was conducted using physical habitat data, two-dimensional hydrodynamic modelling and a statistical habitat model in a geographic information system framework. We used field collections of subyearlings and a common predator [smallmouth bass (Micropterus dolomieu)] to draw inferences about predation risk within specific habitat types. Most of the high-probability rearing habitat was located in the upper half of the reservoir where gently sloping landforms created low lateral bed slopes and shallow-water habitats. Only 29% of shorelines were predicted to be suitable (probability >0.5) for subyearlings, and the occurrence of these shorelines decreased in a downstream direction. The remaining, less suitable areas were composed of low-probability habitats in unmodified (25%) and riprapped shorelines (46%). As expected, most subyearlings were found in high-probability habitat, while most smallmouth bass were found in low-probability locations. However, some subyearlings were found in low-probability habitats, such as riprap, where predation risk could be high. Given their transient rearing strategy and dependence on shoreline habitats, subyearlings could benefit from habitat creation efforts in the lower

  7. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.; Kern, J. Chris; Hughes, Michele L. (Oregon Department of Fish and Wildlife)

    2004-02-01

    We report on our progress from April 2002 through March 2003 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  8. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.; Kern, J. Chris; Hughes, Michele L.

    2003-12-01

    We report on our progress from April 2001 through March 2002 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

  9. Evaluation of Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2006 Project Completion Summary.

    Energy Technology Data Exchange (ETDEWEB)

    Faler, Michael P. [U.S. Fish and Wildlife Service; Mendel, Glen; Fulton, Carl [Washington Department of Fish and Wildlife

    2008-11-20

    The Columbia River Distinct Population Segment of bull trout (Salvelinus confluentus) was listed as threatened under the Endangered Species Act in 1998. One of the identified major threats to the species is fragmentation resulting from dams on over-wintering habitats of migratory subpopulations. A migratory subgroup in the Tucannon River appeared to utilize the Snake River reservoirs for adult rearing on a seasonal basis. As a result, a radio telemetry study was conducted on this subgroup from 2002-2006, to help meet Reasonable and Prudent Measures, and Conservation Recommendations associated with the lower Snake River dams in the FCRPS Biological Opinion, and to increase understanding of bull trout movements within the Tucannon River drainage. We sampled 1,109 bull trout in the Tucannon River; 124 of these were surgically implanted with radio tags and PIT tagged, and 681 were only PIT tagged. The remaining 304 fish were either recaptures, or released unmarked. Bull trout seasonal movements within the Tucannon River were similar to those described for other migratory bull trout populations. Bull trout migrated upstream in spring and early summer to the spawning areas in upper portions of the Tucannon River watershed. They quickly moved off the spawning areas in the fall, and either held or continued a slower migration downstream through the winter until early the following spring. During late fall and winter, bull trout were distributed in the lower half of the Tucannon River basin, down to and including the mainstem Snake River below Little Goose Dam. We were unable to adequately radio track bull trout in the Snake River and evaluate their movements or interactions with the federal hydroelectric dams for the following reasons: (1) none of our radio-tagged fish were detected attempting to pass a Snake River dam, (2) our radio tags had poor transmission capability at depths greater than 12.2 m, and (3) the sample size of fish that actually entered the Snake River

  10. Geologic map and profile of the north wall of the Snake River Canyon, Eden, Murtaugh, Milner Butte, and Milner quadrangles, Idaho

    Science.gov (United States)

    Covington, H.R.; Weaver, Jean N.

    1990-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer (water table) is typically less than 500 ft below the land surface, but us deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat lying basaltic and sedimentary rocks of the  eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon intersects the Snake River Plain aquifer, which discharges form the northern canyon wall as springs of variable size, spacing and altitude. Geologic controls on wprings are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of the several that describes the geologic occurrence of the springs along the northern wall of the Snake River canyone from Milner Dam to King Hill. 

  11. Snake River sockeye salmon habitat and limnological research, annual report 1999

    International Nuclear Information System (INIS)

    Griswold, Robert G.

    2001-01-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon (Oncorhynchus nerka) as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991 the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this inter-agency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (NPPCFWP). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 1999 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Pettit, and Alturas lakes, fertilization of Redfish Lake was suspended for this year; (3) conduct kokanee (nonanadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) examine diet of emigrating O. nerka smolts; (7) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity

  12. Ecology of nonnative Siberian prawn (Palaemon modestus) in the lower Snake River, Washington, USA

    Science.gov (United States)

    Erhardt, John M.; Tiffan, Kenneth F.

    2016-01-01

    We assessed the abundance, distribution, and ecology of the nonnative Siberian prawn Palaemon modestus in the lower Snake River, Washington, USA. Analysis of prawn passage abundance at three Snake River dams showed that populations are growing at exponential rates, especially at Little Goose Dam where over 464,000 prawns were collected in 2015. Monthly beam trawling during 2011–2013 provided information on prawn abundance and distribution in Lower Granite and Little Goose Reservoirs. Zero-inflated regression predicted that the probability of prawn presence increased with decreasing water velocity and increasing depth. Negative binomial models predicted higher catch rates of prawns in deeper water and in closer proximity to dams. Temporally, prawn densities decreased slightly in the summer, likely due to the mortality of older individuals, and then increased in autumn and winter with the emergence and recruitment of young of the year. Seasonal length frequencies showed that distinct juvenile and adult size classes exist throughout the year, suggesting prawns live from 1 to 2 years and may be able to reproduce multiple times during their life. Most juvenile prawns become reproductive adults in 1 year, and peak reproduction occurs from late July through October. Mean fecundity (189 eggs) and reproductive output (11.9 %) are similar to that in their native range. The current use of deep habitats by prawns likely makes them unavailable to most predators in the reservoirs. The distribution and role of Siberian prawns in the lower Snake River food web will probably continue to change as the population grows and warrants continued monitoring and investigation.

  13. Snake River Sockeye Salmon Habitat and Limnological Research; 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Andre E.; Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID); Griswold, Robert G. (Biolines, Stanley, ID)

    2004-08-01

    In March 1990, the Shoshone-Bannock Tribes petitioned the National Marine Fisheries Service (NMFS) to list the Snake River sockeye salmon Oncorhynchus nerka as endangered. As a result of that petition the Snake River sockeye salmon was officially listed as endangered in November 1991 under the Endangered Species Act (56 FR 58619). In 1991, the Snake River Sockeye Salmon Habitat and Limnological Research Program was implemented (Project Number 91-71, Intergovernmental Contract Number DE-BI79-91bp22548). This project is part of an interagency effort to prevent the extinction of the Redfish Lake stock of O. nerka. The Bonneville Power Administration (BPA) provides funding for this interagency recovery program through the Northwest Power Planning Council Fish and Wildlife Program (Council). Collaborators in the recovery effort include the National Marine Fisheries Service (NMFS), the Idaho Department of Fish and Game (IDFG), the University of Idaho (UI), U.S. Forest Service (USFS), and the Shoshone-Bannock Tribe (SBT). This report summarizes activities conducted by Shoshone-Bannock Tribal Fisheries Department personnel during the 2001 calendar year. Project objectives include: (1) monitor over-winter survival and emigration of juvenile anadromous O. nerka stocked from the captive rearing program; (2) fertilize Redfish Lake, fertilization of Pettit and Alturas lakes was suspended for this year; (3) conduct kokanee (non-anadromous O. nerka) population surveys; (4) monitor spawning kokanee escapement and estimate fry recruitment on Fishhook, Alturas Lake, and Stanley Lake creeks; (5) evaluate potential competition and predation interactions between stocked juvenile O. nerka and a variety of fish species in Redfish, Pettit, and Alturas lakes; (6) monitor limnological parameters of Sawtooth Valley lakes to assess lake productivity.

  14. Re-visiting RHIC snakes: OPERA fields, n0 dance

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gupta, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ranjbar, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Robert-Demolaize, G. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-09-22

    In this Tech. Note RHIC snakes and stable spin direction $\\vector{n}$0(s) are re-visited, based on OPERA-computed field maps of the former. The numerical simulations so undertaken provide various outcomes regarding RHIC optics and spin dynamics, in relation with orbital and focusing effects resulting from the use of this realistic 3-D representation of the snakes.

  15. Research and recovery of Snake River sockeye salmon. Annual report 1994

    International Nuclear Information System (INIS)

    Kline, P.; Younk, J.

    1995-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribe and the Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. In 1994, the authors estimated the total September Redfish Lake O. nerka population at 51,529 fish (95% CI, ± 33,179). The Alturas Lake O. nerka population was estimated at 5,785 fish (± 6,919). The total density and biomass of Alturas Lake was estimated at 27 fish/hectare (± 33) and 0.7 kg/hectare, respectively. The total O. nerka population estimate for Pettit Lake was 14,743 fish (± 3,683). Stanley Lake O. nerka total population size, density, and biomass was estimated at 2,695 fish (± 963), 37 fish/hectare (± 13), and 0.5 kg/hectare, respectively. Estimated numbers of O. nerka outmigrant smolts passing Redfish Lake Creek and Salmon River trapping sites increased in 1994. The authors estimated 1,820 (90% CI 1,229--2,671) and 945 (90% CI 331--13,000) smolts left Redfish and Alturas lakes, respectively. The total PIT tag detection rate at mainstem dams for Redfish Lake outmigrants was 21% in 1994. No Alturas Lake outmigrants were detected at any of the downstream facilities with detection capabilities (zero of 50 fish)

  16. Tritium concentrations in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho

    International Nuclear Information System (INIS)

    Mann, L.J.

    1989-01-01

    Concern has been expressed that some of the approximately 30,900 curies of tritium disposed to the Snake River Plain aquifer from 1952 to 1988 at the INEL (idaho National Engineering Laboratory) have migrated to springs discharging to the Snake River in the Twin Falls-Hagerman area. To document tritium concentrations in springflow, 17 springs were sampled in November 1988 and 19 springs were sampled in March 1989. Tritium concentrations were less than the minimum detectable concentration of 0.5 pCi/mL (picocuries/mL) in November 1988 and less than the minimum detectable concentration of 0.2 pCi/mL in March 1989 the minimum detectable concentration was smaller in March 1989. The maximum contaminant level of tritium in drinking water as established by the US Environmental Protection Agency is 20 pCi/mL. US Environmental Protection Agency sample analyses indicate that the tritium concentration has decreased in the Snake River near Buhl since the 1970's. In 1974-79, tritium concentrations were less than 0.3 ± 0.2 pCi/mL in 3 of 20 samples; in 1983-88, 17 of 23 samples contaminated less than 0.3 ± 0.2 pCi/mL of tritium; the minimum detectable concentration is 0.2 pCi/mL. On the basis of decreasing tritium concentrations in the Snake River, their correlation to cessation of atmospheric weapons tests tritium concentrations in springflow less than the minimum detectable concentration, and the distribution of tritium in groundwater at the INEL, aqueous disposal of tritium at the INEL has had no measurable effect on tritium concentrations in springflow from the Snake River Plain aquifer and in the Snake River near Buhl. 15 refs., 2 figs., 3 tabs

  17. Evaluate the Restoration Potential of Snake River Fall Chinook Salmon Spawning Habitat, Status Report 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.P. [Pacific Northwest National Laboratory

    2009-01-08

    The Bonneville Power Administration (BPA) Project 2003-038-00, Evaluate the restoration potential of Snake River fall Chinook salmon spawning habitat, began in FY04 (15 December 2003) and continues into FY06. This status report is intended to summarize accomplishments during FY04 and FY05. Accomplishments are summarized by Work Elements, as detailed in the Statement of Work (see BPA's project management database PISCES). This project evaluates the restoration potential of mainstem habitats for fall Chinook salmon. The studies address two research questions: 'Are there sections not currently used by spawning fall Chinook salmon within the impounded lower Snake River that possess the physical characteristics for potentially suitable fall Chinook spawning habitat?' and 'Can hydrosystem operations affecting these sections be adjusted such that the sections closely resemble the physical characteristics of current fall Chinook salmon spawning areas in similar physical settings?' Efforts are focused at two study sites: (1) the Ice Harbor Dam tailrace downstream to the Columbia River confluence, and (2) the Lower Granite Dam tailrace. Our previous studies indicated that these two areas have the highest potential for restoring Snake River fall Chinook salmon spawning habitat. The study sites will be evaluated under existing structural configurations at the dams (i.e., without partial removal of a dam structure), and alternative operational scenarios (e.g., varying forebay/tailwater elevations). The areas studied represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We are using a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats is the section extending downstream from the Wanapum Dam tailrace on the

  18. Snake River sockeye salmon (Oncorhynchus nerka) habitat/limnologic research

    International Nuclear Information System (INIS)

    Spaulding, S.

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock

  19. First Results from HOTSPOT: The Snake River Plain Scientific Drilling Project, Idaho, U.S.A.

    Directory of Open Access Journals (Sweden)

    John W. Shervais

    2013-03-01

    Full Text Available HOTSPOT is an international collaborative effort to understand the volcanic history of the Snake River Plain (SRP. The SRP overlies a thermal anomaly, the Yellowstone-Snake River hotspot, that is thought to represent a deep-seated mantle plume under North America. Theprimary goal of this project is to document the volcanic and stratigraphic history of the SRP, which represents the surface expression of this hotspot, and to understand how it affected the evolution of continental crust and mantle. An additional goal is to evaluate the geothermal potential of southern Idaho.Project HOTSPOT has completed three drill holes. (1 The Kimama site is located along the central volcanic axis of the SRP; our goal here was to sample a long-term record of basaltic volcanism in the wake of the SRP hotspot. (2 The Kimberly site is located near the margin of the plain; our goal here was to sample a record of high-temperaturerhyolite volcanism associated with the underlying plume. This site was chosen to form a nominally continuous record of volcanism when paired with the Kimama site. (3 The Mountain Home site is located in the western plain; our goal here was to sample the Pliocene-Pleistocene transition in lake sediments at this site and to sample older basalts that underlie the sediments.We report here on our initial results for each site, and on some of the geophysical logging studies carried out as part of this project.

  20. Snake River Sockeye Salmon Habitat and Limnological Research; 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, David (Shoshone-Bannock Tribes, Fort Hall, ID); Wurtsbaugh, Wayne A. (Utah State University, Department of Fisheries and Wildlife, Ecology Center and Watershed Science Unit); Taki, Doug (Shoshone-Bannock Tribes, Fort Hall, ID)

    1994-06-01

    In 1990 the Shoshone-Bannock Tribes (SBT) petitioned the National Marine Fisheries Service (NMFS) to list Snake River Sockeye salmon as endangered. As a result, Snake River Sockeye were listed and the Bonneville Power Administration (BPA) began funding efforts to enhance sockeye stocks. Recovery efforts include development of a brood stock program, genetics work, describing fish community dynamics in rearing lakes, and completing limnology studies. The SBT, in cooperation with Idaho Department of Fish and Game (IDFG), are directing fish community and limnology studies. IDFG is managing the brood stock program. The University of Idaho and NMFS are completing genetics work. Part I of this document is the SBT 1993' annual report that describes findings related to fish community research. Part II is a document completed by Utah State University (USU). The SBT subcontracted USU to complete a limnology investigation on the Sawtooth Valley Lakes. Management suggestions in Part II are those of USU and are not endorsed by the SBT and may not reflect the opinions of SBT biologists.

  1. Snake River Sockeye Salmon Sawtooth Valley Project Conservation and Rebuilding Program : Supplemental Fnal Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    This document announces Bonneville Power Administration`s (BPA) proposal to fund three separate but interrelated actions which are integral components of the overall Sawtooth Valley Project to conserve and rebuild the Snake River Sockeye salmon run in the Sawtooth Valley of south-central Idaho. The three actions are as follows: (1) removing a rough fish barrier dam on Pettit Lake Creek and constructing a weir and trapping facilities to monitor future sockeye salmon adult and smolt migration into and out of Pettit Lake; (2) artificially fertilizing Readfish Lake to enhance the food supply for Snake River sockeye salmon juveniles released into the lake; and (3) trapping kokanee fry and adults to monitor the fry population and to reduce the population of kokanee in Redfish Lake. BPA has prepared a supplemental EA (included) which builds on an EA compled in 1994 on the Sawtooth Valley Project. Based on the analysis in this Supplemental EA, BPA has determined that the proposed actions are not major Federal actions significantly affecting the quality of the human environment. Therefore an Environmental Impact Statement is not required.

  2. HOTSPOT: The Snake River Scientifi c Drilling Project— Tracking the Yellowstone Hotspot Through Space and Time

    Directory of Open Access Journals (Sweden)

    Douglas F. Williams

    2006-09-01

    Full Text Available The project “HOTSPOT: Scientifi c Drilling of the Snake River Plain” held its inaugural workshop in Twin Falls, Idaho, U.S.A. on 18–21 May 2006. This inter-disciplinary workshop, sponsored by the International Continental Scientifi c Drilling Program (ICDP, explored the major scientifi c and logistical issues central to a transect of boreholes along the hotspot track and addressing the geochemical evolution of continental lithosphere in response to interaction with deepseated mantle hotspots or plumes. A series of four to six bore holes is envisioned, each about 1.5–2.0 km deep and located along the axis of the Snake River Plain. The holes will specific ally target the origin and evolution of hotspot-related volcanism in space and time. To accomplish scientific and logistical planning, sixty scientists from six countries attended the workshop.

  3. Organochlorine compounds and trace elements in fish tissue and bed sediments in the lower Snake River basin, Idaho and Oregon

    Science.gov (United States)

    Clark, Gregory M.; Maret, Terry R.

    1998-01-01

    Fish-tissue and bed-sediment samples were collected to determine the occurrence and distribution of organochlorine compounds and trace elements in the lower Snake River Basin. Whole-body composite samples of suckers and carp from seven sites were analyzed for organochlorine compounds; liver samples were analyzed for trace elements. Fillets from selected sportfish were analyzed for organochlorine compounds and trace elements. Bed-sediment samples from three sites were analyzed for organochlorine compounds and trace elements. Twelve different organochlorine compounds were detected in 14 fish-tissue samples. All fish-tissue samples contained DDT or its metabolites. Concentrations of total DDT ranged from 11 micrograms per kilogram wet weight in fillets of yellow perch from C.J. Strike Reservoir to 3,633 micrograms per kilogram wet weight in a whole-body sample of carp from Brownlee Reservoir at Burnt River. Total DDT concentrations in whole-body samples of sucker and carp from the Snake River at C.J. Strike Reservoir, Snake River at Swan Falls, Snake River at Nyssa, and Brownlee Reservoir at Burnt River exceeded criteria established for the protection of fish-eating wildlife. Total PCB concentrations in a whole-body sample of carp from Brownlee Reservoir at Burnt River also exceeded fish-eating wildlife criteria. Concentrations of organochlorine compounds in whole-body samples, in general, were larger than concentrations in sportfish fillets. However, concentrations of dieldrin and total DDT in fillets of channel catfish from the Snake River at Nyssa and Brownlee Reservoir at Burnt River, and concentrations of total DDT in fillets of smallmouth bass and white crappie from Brownlee Reservoir at Burnt River exceeded a cancer risk screening value of 10-6 established by the U.S. Environmental Protection Agency. Concentrations of organochlorine compounds in bed sediment were smaller than concentrations in fish tissue. Concentrations of p,p'DDE, the only compound detected

  4. Mixing zone hydrodynamics in a large confluence: a case study of the Snake and Clearwater Rivers confluence

    Science.gov (United States)

    Shehata, M. M.; Petrie, J.

    2015-12-01

    Confluences are a basic component in all fluvial systems, which are often characterized by complex flow and sediment transport patterns. Addressing confluences, however, started only recently in parallel with new advances of flow measurement tools and computational techniques. A limited number of field studies exist investigating flow hydrodynamics through confluences, particularly for large confluences with central zone widths of 100 m or greater. Previous studies have indicated that the size of the confluent rivers and the post-confluence zone may impact flow and sediment transport processes in the confluence zone, which consequently could impact the biodiversity within the river network. This study presents the results of a field study conducted at the confluence of the Snake and the Clearwater rivers near the towns of Clarkston, WA and Lewiston, ID (average width of 700 m at the confluence center). This confluence supports many different and, sometimes, conflicting purposes including commercial navigation, recreation, and fish and wildlife conservation. The confluence properties are affected by dredging operations carried out periodically to maintain the minimum water depth required for safe flow conveyance and navigation purposes. Also, a levee system was constructed on the confluence banks as an extra flood control measure. In the recent field work, an Acoustic Doppler Current Profiler was used to measure water velocity profiles at cross sections in the confluence region. Fixed and moving vessel measurements were taken at selected locations to evaluate both the spatial and temporal variation in velocity throughout the confluence. The confluence bathymetry was surveyed with a multi-beam sonar to investigate existent bed morphological elements. The results identify the velocity pattern in the mixing zone between the two rivers. The present findings are compared to previous studies on small confluences to demonstrate the influence of scale on flow processes.

  5. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    Science.gov (United States)

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to

  6. Analysis of the spatial and temporal variability of mountain snowpack and terrestrial water storage in the Upper Snake River, USA

    Science.gov (United States)

    The spatial and temporal relationships of winter snowpack and terrestrial water storage (TWS) in the Upper Snake River were analyzed for water years 2001–2010 at a monthly time step. We coupled a regionally validated snow model with gravimetric measurements of the Earth’s water...

  7. Cryopreservation of Adult Male Spring and Summer Chinook Salmon Gametes in the Snake River Basin, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faurot, Dave; Kucera, Paul A.; Armstrong, Robyn D. (Nez Perce Tribe, Lapwai, ID)

    1998-06-01

    Chinook salmon populations in the Northwest are decreasing in number. The Nez Perce Tribe was funded in 1997 by the Bonneville Power Administration to coordinate and initiate gene banking of adult male gametes from Endangered Species Act (ESA) listed spring and summer chinook salmon in the Snake River basin.

  8. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2002-03-01

    In 1998 white sturgeon (Acipenser transmontanus) were captured, marked, and population data were collected in the Snake River between Lower Granite Dam and the mouth of the Salmon River. A total of 13,785 hours of setline effort and 389 hours of hook-and-line effort was employed in 1998. Of the 278 white sturgeon captured in the Snake River, 238 were marked for future identification. Three sturgeon were captured in the Salmon River and none were captured in the Clearwater River. Since 1997, 6.9% of the tagged fish have been recovered. Movement of recaptured white sturgeon ranged from 98.5 kilometers downstream to 60.7 kilometers upstream, however, less than 25% of the fish moved more than 16 kilometers (10 miles). In the Snake River, white sturgeon ranged in total length from 51.5 cm to 286 cm and averaged 118.9 cm. Differences were detected in the length frequency distributions of sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). In addition, the proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 37% since the 1970's. Analysis of the length-weight relationship indicated that white sturgeon in Lower Granite Reservoir were slightly larger than white sturgeon in the free-flowing Snake River.

  9. Static magnetic field changes the activity of venom phospholipase of Vipera Lebetina snakes

    International Nuclear Information System (INIS)

    Garibova, L.S.; Avetisyan, T.O.; Ajrapetyan, S.N.

    2000-01-01

    The effect of the static magnetic field (SMF) on the phospholipid activity of the class-A snake venom is studied. The Vipera Lebetina snake venom was subjected during 10 days to 30 minute impact of the CMF daily. It is established that increase in the phospholipase A 1 and A 2 approximately by 21 and 32 % correspondingly and in the phosphodiesterase C - by 33 % was observed. The decrease in the total protein level of the snake venom by 31.6 ± 2.2 % was noted thereby. It may be assumed that the described phospholipase and phosphoesterase changes may lead to essential shifts in the total metabolic activity of cells and organism as a whole. The activity index of these ferments may serve as an indicator of changes in the environmental magnetic field [ru

  10. Quantification of the probable effects of alternative in-river harvest regulations on recovery of Snake River fall chinook salmon. Final report

    International Nuclear Information System (INIS)

    Cramer, S.P.; Vigg, S.

    1996-03-01

    The goal of this study was to quantify the probable effects that alternative strategies for managing in-river harvest would have on recovery of Snake River fall chinook salmon. This report presents the analysis of existing data to quantify the way in which various in-river harvest strategies catch Snake River bright (SRB) fall chinook. Because there has been disagreement among experts regarding the magnitude of in-river harvest impacts on Snake River fall chinook, the authors compared the results from using the following three different methods to estimate in-river harvest rates: (1) use of run reconstruction through stock accounting of escapement and landings data to estimate harvest rate of SRB chinook in Zone 6 alone; (2) use of Coded Wire Tag (CWT) recoveries of fall chinook from Lyons Ferry Hatchery in a cohort analysis to estimate age and sex specific harvest rates for Zone 6 and for below Bonneville Dam; (3) comparison of harvest rates estimated for SRB chinook by the above methods to those estimated by the same methods for Upriver Bright (URB) fall chinook

  11. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    Science.gov (United States)

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  12. Effects of hyporheic exchange flows on egg pocket water temperature in Snake River fall Chinook salmon spawning areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geist, D. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Arntzen, E. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernethy, C. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002–2003 water year.

  13. Snake River sockeye salmon captive broodstock program: hatchery element: annual progress report, 2000.; ANNUAL

    International Nuclear Information System (INIS)

    Kline, Paul A.; Willard, Catherine

    2001-01-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 2000 and December 31, 2000 are presented in this report

  14. Willingness to pay for non angler recreation at the lower Snake River reservoirs

    Science.gov (United States)

    McKean, J.R.; Johnson, D.; Taylor, R.G.; Johnson, Richard L.

    2005-01-01

    This study applied the travel cost method to estimate demand for non angler recreation at the impounded Snake River in eastern Washington. Net value per person per recreation trip is estimated for the full non angler sample and separately for camping, boating, water-skiing, and swimming/picnicking. Certain recreation activities would be reduced or eliminated and new activities would be added if the dams were breached to protect endangered salmon and steelhead. The effect of breaching on non angling benefits was found by subtracting our benefits estimate from the projected non angling benefits with breaching. Major issues in demand model specification and definition of the price variables are discussed. The estimation method selected was truncated negative binomial regression with adjustment for self selection bias.

  15. Research and Recovery of Snake River Sockeye Salmon, 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Pravecek, Jay J.

    1997-07-01

    In 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Idaho Department of Fish and Game`s Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye conducted by the Idaho Department of Fish and Game at the Eagle Fish Hatchery during the period April 1, 1995 to April 1, 1996 are covered by this report. The performance of all captive broodstock groups held at Eagle Fish Hatchery is included in this report. No anadromous adults returned to Redfish Lake in 1995. Three adult residual males were captured in a merwin trap and used in the spawning of captive residual females held at Eagle Fish Hatchery.

  16. Rheomorphic ignimbrites of the Rogerson Formation, central Snake River plain, USA

    DEFF Research Database (Denmark)

    Knott, Thomas R.; Reichow, Marc K.; Branney, Michael J.

    2016-01-01

    Rogerson Graben, USA, is critically placed at the intersection between the Yellowstone hotspot track and the southern projection of the west Snake River rift. Eleven rhyolitic members of the re-defined, ≥420-m-thick, Rogerson Formation record voluminous high-temperature explosive eruptions....... Between 11.9 and ∼8 Ma, the average frequency of large explosive eruptions in this region was 1 per 354 ky, about twice that at Yellowstone. The chemistry and mineralogy of the early rhyolites show increasing maturity with time possibly by progressive fractional crystallisation. This was followed......-margin monocline, which developed between 10.59 and 8 Ma. The syn-volcanic basin topography contrasted significantly with the present-day elevated Yellowstone hotspot plateau. Concurrent basin-and-range extension produced the N-trending Rogerson Graben: early uplift of the Shoshone Hills (≥10.34 Ma) was followed...

  17. Snake River sockeye salmon habitat and limnological research: Annual report 1997

    International Nuclear Information System (INIS)

    Taki, D.; Lewis, B.; Griswold, B.

    1999-01-01

    Since the late 1980's, Snake River sockeye Oncorhynchus nerka adults have only returned to Redfish Lake, one of five lakes in the Sawtooth Basin which historically reared sockeye. 1997 project objectives included (1) characterization of the limnology of Sawtooth Valley lakes; (2) fertilization of Redfish, Pettit, and Alturas lakes; (3) O.nerka lake population surveys; (4) estimation of kokanee escapement and fry production in Alturas Lake Creek, Stanley Lake Creek, and Fishhook Creek; (5) reduce the number of spawning kokanee in Fishook Creek; (6) evaluate hatchery rainbow trout overwinter survival and potential competition and predation interactions with O.nerka in Pettit Lake; (7) assess predation from bull trout Salvelinus malma, brook trout S.fontinalis, and northern squawfish Ptychocheilus oregonsis on lentic O.nerka; (8) establish screw tap and weir sites to monitor smolt emigration

  18. Mineralogy and geothermometry of high-temperature rhyolites from the central and western Snake River Plain

    Science.gov (United States)

    Honjo, N.; Bonnichsen, B.; Leeman, W.P.; Stormer, J.C.

    1992-01-01

    Voluminous mid-Miocene rhyolitic ash-flow tuffs and lava flows are exposed along the northern and southern margins of the central and western Snake River Plain. These rhyolites are essentially anhydrous with the general mineral assemblage of plagioclase ??sanidine ?? quartz + augite + pigeonite ?? hypersthene ?? fayalitic olivine + Fe-Ti oxides + apatite + zircon which provides an opportunity to compare feldspar, pyroxene, and Fe-Ti oxide equilibration temperatures for the same rocks. Estimated pyroxene equilibration temperatures (based on the geothermometers of Lindsley and coworkers) range from 850 to 1000??C, and these are well correlated with whole-rock compositions. With the exception of one sample, agreement between the two-pyroxene thermometers tested is well within 50??C. Fe-Ti oxide geothermometers applied to fresh magnetite and ilmenite generally yield temperatures about 50 to 100??C lower than the pyroxene temperatures, and erratic results are obtained if these minerals exhibit effects of subsolidus oxidation and exsolution. Results of feldspar thermometry are more complicated, and reflect uncertainties in the thermometer calibrations as well as in the degree of attainment of equilibrium between plagioclase and sanidine. In general, temperatures obtained using the Ghiorso (1984) and Green and Usdansky (1986) feldspar thermometers agree with the pyroxene temperatures within the respective uncertainties. However, uncertainties in the feldspar temperatures are the larger of the two (and exceed ??60??C for many samples). The feldspar thermometer of Fuhrman and Lindsley (1988) produces systematically lower temperatures for many of the samples studied. The estimated pyroxene temperatures are considered most representative of actual magmatic temperatures for these rhyolites. This range of temperatures is significantly higher than those for rhyolites from many other suites, and is consistent with the hypothesis that the Snake River Plain rhyolitic magmas formed

  19. Fall transport - A study to compare smolt-to-adult return rates (SARs) of Snake River fall Chinook salmon under alternative transport and dam operational strategies

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This U.S. Army Corps of Engineers (USACE)-funded study that began in 2005 compares the SARs of PIT tagged juvenile hatchery Snake River fall Chinook that are split...

  20. Methods to estimate annual mean spring discharge to the Snake River between Milner Dam and King Hill, Idaho

    Science.gov (United States)

    Kjelstrom, L.C.

    1995-01-01

    Many individual springs and groups of springs discharge water from volcanic rocks that form the north canyon wall of the Snake River between Milner Dam and King Hill. Previous estimates of annual mean discharge from these springs have been used to understand the hydrology of the eastern part of the Snake River Plain. Four methods that were used in previous studies or developed to estimate annual mean discharge since 1902 were (1) water-budget analysis of the Snake River; (2) correlation of water-budget estimates with discharge from 10 index springs; (3) determination of the combined discharge from individual springs or groups of springs by using annual discharge measurements of 8 springs, gaging-station records of 4 springs and 3 sites on the Malad River, and regression equations developed from 5 of the measured springs; and (4) a single regression equation that correlates gaging-station records of 2 springs with historical water-budget estimates. Comparisons made among the four methods of estimating annual mean spring discharges from 1951 to 1959 and 1963 to 1980 indicated that differences were about equivalent to a measurement error of 2 to 3 percent. The method that best demonstrates the response of annual mean spring discharge to changes in ground-water recharge and discharge is method 3, which combines the measurements and regression estimates of discharge from individual springs.

  1. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

    2003-06-01

    We collected, radio-tagged, and PIT-tagged 41 bull trout at the Tucannon River Hatchery trap from May 17, through June 14, 2002. An additional 65 bull trout were also collected and PIT tagged by June 24, at which time we ceased PIT tagging operations because water temperatures were reaching 16.0 C or higher on a regular basis. Six radio-tags were recovered shortly after tagging, and as a result, 35 remained in the river through November 30, 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon Subbasin. We began to observe some downstream movements of radio-tagged bull trout in mid to late September and throughout October. These movements appeared to be associated with post spawning migrations. As of November 30, radio tagged bull trout were relatively stationary, and distributed from the headwaters downstream to river mile 11.3, near Pataha Creek. None of the radio-tagged bull trout left the Tucannon Subbasin and entered the federal hydropower system on the mainstem Snake River. We conducted some initial transmission tests of submerged radio tags at depths of 25, 35, 45, and 55 ft. in Lower Monumental Pool to test our capability of detection at these depths. Equipment used included Lotek model MCFT-3A transmitters, an SRX 400 receiver, a 4 element Yagi antenna, and a Lotek ''H'' antenna. Test results indicated that depth transmission of these tags was poor; only the transmitter placed at 25 ft. was audibly detectable.

  2. Seasonal use of shallow water habitat in the Lower Snake River reservoirs by juvenile fall Chinook salmon

    Science.gov (United States)

    Tiffan, Kenneth F.; Connor, William P.

    2012-01-01

    The U.S. Army Corps of Engineers (COE) is preparing a long term management plan for sediments that affect the authorized project purposes of the Lower Granite, Little Goose, Lower Monumental, and Ice Harbor reservoirs (hereafter, the lower Snake River reservoirs), and the area from the mouth of the Snake River to Ice Harbor Dam. We conducted a study from spring 2010 through winter 2011 to describe the habitat use by juvenile Chinook salmon within a selected group of shallow water habitat complexes (spoils to create shallow water habitat, (2) provide evidence for shallow water habitat use by natural subyearlings, (3) provide evidence against large-scale use of shallow water habitat by reservoir-type juveniles, (4) suggest that the depth criterion for defining shallow water habitat (i.e., food web, and intra-specific competition would help to better inform the long-term management plan.

  3. Evaluate Bull Trout Movements in the Tucannon and Lower Snake Rivers, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Faler, Michael P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID); Mendel, Glen W.; Fulton, Carl (Washington Department of Fish and Wildlife, Fish Management Division, Dayton, WA)

    2004-04-01

    We collected 279 adult bull trout (Salvelinus confluentus) in the Tucannon River during the Spring and Fall of 2003. Passive Integrated Transponder (PIT) tags were inserted in 191 of them, and we detected existing PIT tags in an additional 31bull trout. Thirty five of these were also surgically implanted with radio-tags, and we monitored the movements of these fish throughout the year. Fourteen radio-tags were recovered shortly after tagging, and as a result, 21 remained in the river through December 31, 2003. Four bull trout that were radio-tagged in spring 2002 were known to survive and carry their tags through the spring and/or summer of 2003. One of these fish spent the winter near river mile (RM) 13.0; the other 3 over-wintered in the vicinity of the Tucannon Hatchery between RM 34 and 36. Twenty-one radio tags from bull trout tagged in 2002 were recovered during the spring and summer, 2003. These tags became stationary the winter of 2002/2003, and were recovered between RM 11 and 55. We were unable to recover the remaining 15 tags from 2002. During the month of July, radio-tagged bull trout exhibited a general upstream movement into the upper reaches of the Tucannon subbasin. We observed some downstream movements of radio-tagged bull trout in mid to late September and throughout October. By late November and early December, radio tagged bull trout were relatively stationary, and were distributed from the headwaters downstream to river mile 6.4, near Lower Monumental Pool. As in 2002, we did not conduct work associated with objectives 2, 3, or 4 of this study, because we were unable to monitor migratory movement of radio-tagged bull trout into the Federal hydropower system on the mainstem Snake River. Transmission tests of submerged ATS model F1830 radio-tags in Lower Granite Pool showed that audible detection and individual tag identification was possible at depths of 20 and 30 ft. Tests were conducted using an ATS R-4000 Receiver equipped with an &apos

  4. Snake River sockeye salmon captive broodstock program hatchery element, Annual Progress Report: January 1, 1998 - December 31, 1998

    International Nuclear Information System (INIS)

    Kline A, Paul; Heindel A, Jeff

    1999-01-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and NMFS initiated efforts to conserve and rebuild populations in Idaho. Captive broodstock program activities conducted between January 1, 1998 and December 31, 1998, are presented in this report

  5. Constraints on mantle melt geometries from body wave attenuation in the Salton Trough and Snake River Plain

    Science.gov (United States)

    Byrnes, J. S.; Bezada, M.

    2017-12-01

    Melt can be retained in the mantle at triple junctions between grain boundaries, be spread in thin films along two-grain boundaries, or be organized by shear into elongate melt-rich bands. Which of these geometries is most prevalent is unknown. This ambiguity makes the interpretation of anomalous seismic velocities and quality factors difficult, since different geometries would result in different mechanical effects. Here, we compare observations of seismic attenuation beneath the Salton Trough and the Snake River Plain; two regions where the presence of melt has been inferred. The results suggest that seismic attenuation is diagnostic of melt geometry. We measure the relative attenuation of P waves from deep focus earthquakes using a time-domain method. Even though the two regions are underlain by comparably strong low-velocity anomalies, their attenuation signature is very different. The upper mantle beneath the Salton Trough is sufficiently attenuating that the presence of melt must lower Qp, while attenuation beneath the Snake River Plain is not anomalous with respect to surrounding regions. These seemingly contradictory results can be reconciled if different melt geometries characterize each region. SKS splitting from the Salton Trough suggests that melt is organized into melt-rich bands, while this is not the case for the Snake River Plain. We infer that beneath the Snake River Plain melt is retained at triple junctions between grain boundaries, a geometry that is not predicted to cause seismic attenuation. More elongate geometries beneath the Salton Trough may cause seismic attenuation via the melt-squirt mechanism. In light of these results, we conclude that prior observations of low seismic velocities with somewhat high quality factors beneath the East Pacific Rise and Southern California suggest that melt does not organize into elongate bands across much of the asthenosphere.

  6. Survival estimates for the passage of juvenile salmonids through Snake River dams and reservoirs, 1996. Annual report

    International Nuclear Information System (INIS)

    Smith, S.G.; Muir, W.D.; Hockersmith, E.E.; Achord, S.; Eppard, M.B.; Ruehle, T.E.; Williams, J.G.

    1998-02-01

    In 1996, the National Marine Fisheries Service and the University of Washington completed the fourth year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake River. Actively migrating smolts were collected near the head of Lower Granite Reservoir and at Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Individual smolts were subsequently detected at PIT-tag detection facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day and Bonneville Dams. Survival estimates were calculated using the Single-Release (SR) and Paired-Release (PR) Models. Timing of releases of tagged hatchery steelhead (O. mykiss) from the head of Lower Granite Reservoir and yearling chinook salmon (O. tshawytscha) from Lower Granite Dam in 1996 spanned the major portion of their juvenile migrations. Specific research objectives in 1996 were to (1) estimate reach and project survival in the Snake River using the Single-Release and Paired-Release Models throughout the yearling chinook salmon and steelhead migrations, (2) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions in the Snake River, and (3) synthesize results from the 4 years of the study to investigate relationships between survival probabilities, travel times, and environmental factors such as flow levels and water temperature

  7. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1996 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Steven G.

    1998-02-01

    In 1996, the National Marine Fisheries Service and the University of Washington completed the fourth year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake River. Actively migrating smolts were collected near the head of Lower Granite Reservoir and at Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Individual smolts were subsequently detected at PIT-tag detection facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day and Bonneville Dams. Survival estimates were calculated using the Single-Release (SR) and Paired-Release (PR) Models. Timing of releases of tagged hatchery steelhead (O. mykiss) from the head of Lower Granite Reservoir and yearling chinook salmon (O. tshawytscha) from Lower Granite Dam in 1996 spanned the major portion of their juvenile migrations. Specific research objectives in 1996 were to (1) estimate reach and project survival in the Snake River using the Single-Release and Paired-Release Models throughout the yearling chinook salmon and steelhead migrations, (2) evaluate the performance of the survival-estimation models under prevailing operational and environmental conditions in the Snake River, and (3) synthesize results from the 4 years of the study to investigate relationships between survival probabilities, travel times, and environmental factors such as flow levels and water temperature.

  8. Radiometric and paleomagnetic evidence for the Emperor reversed polarity event at 0.46 ± 0.05 M.Y. in basalt lava flows from the eastern Snake River Plain, Idaho

    Science.gov (United States)

    Champion, Duane E.; Dalrymple, G. Brent; Kuntz, Mel A.

    1981-01-01

    K-Ar and paleomagnetic data from cores through a sequence of basalt flows in the eastern Snake River Plain provide evidence for a brief (0.005 to 0.01 m.y.) reversal of the geomagnetic field 0.46 ± 0.05 m.y. ago. This reversed polarity event has also been found in sea-floor magnetic anomalies and in sediment cores and is probably the Emperor event of Ryan [1972].

  9. Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Tullis, J.A.

    1995-09-01

    Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a {open_quotes}floor{close_quotes} of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief.

  10. Characteristics and origin of Earth-mounds on the Eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Tullis, J.A.

    1995-09-01

    Earth-mounds are common features on the Eastern Snake River Plain, Idaho. The mounds are typically round or oval in plan view, <0.5 m in height, and from 8 to 14 m in diameter. They are found on flat and sloped surfaces, and appear less frequently in lowland areas. The mounds have formed on deposits of multiple sedimentary environments. Those studied included alluvial gravel terraces along the Big Lost River (late Pleistocene/early Holocene age), alluvial fan segments on the flanks of the Lost River Range (Bull Lake and Pinedale age equivalents), and loess/slopewash sediments overlying basalt flows. Backhoe trenches were dug to allow characterization of stratigraphy and soil development. Each mound has features unique to the depositional and pedogenic history of the site; however, there are common elements to all mounds that are linked to the history of mound formation. Each mound has a open-quotes floorclose quotes of a sediment or basement rock of significantly different hydraulic conductivity than the overlying sediment. These paleosurfaces are overlain by finer-grained sediments, typically loess or flood-overbank deposits. Mounds formed in environments where a sufficient thickness of fine-grained sediment held pore water in a system open to the migration to a freezing front. Heaving of the sediment occurred by the growth of ice lenses. Mound formation occurred at the end of the Late Pleistocene or early in the Holocene, and was followed by pedogenesis. Soils in the mounds were subsequently altered by bioturbation, buried by eolian deposition, and eroded by slopewash runoff. These secondary processes played a significant role in maintaining or increasing the mound/intermound relief

  11. Geophysical logging studies in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory: Wells 44, 45, and 46

    International Nuclear Information System (INIS)

    Morin, R.H.; Paillet, F.L.; Taylor, T.A.; Barrash, W.

    1993-01-01

    A geophysical logging program was undertaken to vertically profile changes in the hydrology and hydrochemistry of the Snake River Plain aquifer underlies the Idaho National Engineering Laboratory (INEL). Field investigations were concentrated within an area west of the Idaho Chemical Processing Plant (ICPP) in three wells that penetrated the upper 190 feet of the aquifer. The logs obtained in these wells consisted of temperature, caliper, nuclear (neutron porosity and gamma-gama density), natural gamma, borehole televiewer, gamma spectral, and thermal flowmeter (with and without pumping). The nuclear, caliper, and televiewer logs are used to delineate individual basalt flows or flow units and to recognize breaks between flows or flow units at interflow contact zones and sedimentary interbeds. The temperature logs and flowmeter measurements obtained under ambient hydraulic head conditions identified upward fluid-circulation patterns in the three wells. Gamma-spectral analyses performed at several depths in each well showed that the predominant source of gamma radiation in the formation at this site originates mainly from potassium ( 40 K). However, 137 Cesium was detected at 32 feet below land surface in well 45. An empirical investigation of the effect of source-receiver spacing on the response of the neutron-porosity logging tool was attempted in an effort to understand the conditions under which this tool might be applied to large-diameter boreholes in-unsaturated formations

  12. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Hebdon, J. Lance; Castillo, Jason (Idaho Department of Fish and Game, Boise, ID)

    2004-06-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999 when six jacks and one jill were captured at IDFG's Sawtooth Fish Hatchery. In 2002, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in August and to Pettit and Redfish lakes in October, age-1 smolts were released to Redfish Lake Creek in May, eyed-eggs were planted in Pettit Lake in December, and hatchery-produced and anadromous adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2002. Age-0, age-1, and age-2 O. nerka were captured in Redfish Lake, and population abundance was estimated at 50,204 fish. Age-0, age-1, age-2, and age-3 kokanee were captured in Alturas Lake, and population abundance was estimated at 24,374 fish. Age-2 and age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 18,328 fish. The ultimate goal of the Idaho Department of Fish and Game (IDFG) captive broodstock development and evaluation efforts is to recover sockeye salmon runs in Idaho waters. Recovery is defined as reestablishing sockeye salmon runs and providing for utilization of sockeye salmon and kokanee resources by anglers

  13. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rien, Thomas A.; Hughes, Michele L.; Kern, J. Chris (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2006-03-01

    We report on our progress from April 2004 through March 2005 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  14. White Sturgeon Mitgation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Thomas A.; Hughes, Michele L.; Kern, J. Chris (Oregon Department of Fish and Wildlife, Clackamas, OR)

    2005-08-01

    We report on our progress from April 2003 through March 2004 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  15. Radiocesium concentrations of snakes from contaminated and non-contaminated habitats of the AEC Savannah River Plant

    International Nuclear Information System (INIS)

    Brisbin, I.L. Jr.; Staton, M.A.; Pinder, J.E. III.; Geiger, R.A.

    1974-01-01

    Concentration levels of 134 Cs and 137 Cs were determined for 117 snakes of 19 species collected on the AEC Savannah River Plant near Aiken, South Carolina. Snakes collected from the vicinity of a reactor effluent stream averaged 131.5 pCi radiocesium/g live weight, with a maximum of 1032.6 pCi/g, and represented the highest level of radiocesium concentration reported in the literature for any naturally-occurring wild population of vertebrate predators. These snakes had significantly higher concentrations of radiocesium than those collected in the vicinity of a reactor cooling reservoir which averaged 27.7 pCi/g live weight, with a maximum of 139.3 pCi/g. The radiocesium contents of snakes collected from uncontaminated habitats averaged 2.6 and 2.4 pCi/g live weight, respectively, and did not differ significantly from background radiation levels. Radiocesium concentrations approximated a log-normal frequency distribution, and no significant differences in frequency-distribution patterns could be demonstrated between collection areas. (U.S.)

  16. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    Energy Technology Data Exchange (ETDEWEB)

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat

  17. Superconducting snake with the field of 75 kGs for the VEPP-2M electron-positron storage ring

    International Nuclear Information System (INIS)

    Anashin, V.V.; Vasserman, I.B.; Vlasov, A.M.

    1985-01-01

    Superconducting ''snake'' with the field of 75 kG is established in the VEPP-2M electron-positron storage ring for increase of colliding beam luminosity up to 2x10 31 cmsup(-2)sdup(-1) in the energy range from 2x200 to 2x700 MeV. The ''snake'' comprises three central magnets with the field of 75 kG and two side ones with the field of 45 kG and it is placed in one of rectilinear experimental gaps. Description of design peculiarities of the ''snake'' and its parameters are given. Parameters of beams with switched on and switched off ''snake'' as well as parameters of coils and superconducting wire are presented

  18. Wintering bats of the upper Snake River Plain: occurrence in lava-tube caves

    Energy Technology Data Exchange (ETDEWEB)

    Genter, D.L.

    1986-04-30

    Distribution and habitat selection of hibernating bats at the Idaho National Engineering Laboratory (INEL) and adjacent area are reported. Exploration of over 30 lava-tube caves revealed that two species, Myotis leibii and Plecotus townsendii, hibernate in the upper Snake River Plain. Five species, M. lucifugus, M. evotis, Eptesicus fuscus, Lasionycteris noctivagans, and Lasiurus cinereus are considered migratory. Myotis leibii and P. townsendii hibernate throughout much of the area, occasionally in mixed-species groups. Myotis leibii uses the dark and protected regions of the cave, usually wedged into tiny pockets and crevices near or at the highest portion of the ceiling. Individuals of P. townsendii may be found at any height or depth in the cave. Temperature appears to be primary limiting factor in habitat selection. Myotis leibii was found in significantly cooler air temperatures than P. townsendii. Neither species tolerated continuous temperatures below 1.5 C. Relative humidity does not seem to be a significant factor in the distribution or habitat selection of the two species in lava-tube caves. 18 references, 1 figure, 1 table.

  19. Fight and air exposure times of caught and released salmonids from the South Fork Snake River

    Science.gov (United States)

    Roth, Curtis J.; Schill, Daniel J.; Quist, Michael C.

    2018-01-01

    Catch-and-release regulations are among the most common types of fishing regulations. In recent years, concerns have arisen regarding the exposure of fish to air during catch-and-release angling. The purpose of our study was to quantify the length of time angled fish were exposed to air by anglers in a typical catch-and-release fishery and relate it to the lengths of time reported to produce negative effects. In total, 312 individual anglers were observed on the South Fork Snake River, Idaho, from May through August 2016. Fight time varied from 1.1 s to 230.0 s, and average fight time was 40.0 s (SD = 36.8). Total air exposure times varied from 0.0 s to 91.8 s and averaged 19.3 s (SD = 15.0). Though not statistically significant, a trend in reduced fight times was observed when anglers were guided and increased air exposure times when a net was used and a picture was taken. Results of the current study suggest that anglers expose fish to air for periods that are much less than those reported to cause mortality.

  20. Research and Recovery of Snake River Sockeye Salmon, 1994-1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith A.

    1996-09-01

    In 1991, the National Marine Fisheries Service (NMFS) listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Idaho Department of Fish and Game (IDFG) Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye salmon conducted by IDFG during the period of April 1994 to April 1995 are covered by this report. One female anadromous adult returned to the Redfish Lake Creek trap this year. She was spawned at Eagle Fish Hatchery on October 21, 1994. Her fecundity was 2,896. The mean fertilization rate and percent swim-up were 96% and 95%, respectively. Four hundred eighty eyed eggs were shipped to the NMFS Big Beef Creek Fish Hatchery in Washington state, leaving 2,028 fish on site at Eagle. Additionally, captive broodstock and wild residual sockeye salmon (captured at Redfish Lake) were spawned. Spawning data from 234 females spawned during this period are included in this report. Other spawning data (i.e., genetic cross and incubation temperature) are included in the Captive Broodstock Research section of this report.

  1. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashyam Neupane; Earl D. Mattson; Travis L. McLing; Carl D. Palmer; Robert W. Smith; Thomas R. Wood

    2014-02-01

    The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced geothermal potential within the state of Idaho. Of particular interest are the resources of the Eastern Snake River Plain (ESRP) which was formed by volcanic activity associated with the relative movement of the Yellowstone Hot Spot across the state of Idaho. This region is characterized by a high geothermal gradient and thermal springs occurring along the margins of the ESRP. Masking much of the deep thermal potential of the ESRP is a regionally extensive and productive cold-water aquifer. We have undertaken a study to infer the temperature of the geothermal system hidden beneath the cold-water aquifer of the ESRP. Our approach is to estimate reservoir temperatures from measured water compositions using an inverse modeling technique (RTEst) that calculates the temperature at which multiple minerals are simultaneously at equilibrium while explicitly accounting for the possible loss of volatile constituents (e.g., CO2), boiling and/or water mixing. In the initial stages of this study, we apply the RTEst model to water compositions measured from a limited number of wells and thermal springs to estimate the regionally extensive geothermal system in the ESRP.

  2. Snake River sockeye salmon habitat and limnological research. Annual report 1994

    International Nuclear Information System (INIS)

    Teuscher, D.; Taki, D.; Wurtsbaugh, W.; Luecke, C.; Budy, P.; Steinhart, G.

    1995-05-01

    Snake River sockeye salmon were listed as endangered in 1991. Since then, the Shoshone-Bannock Tribes (SBT) have been involved in a multi-agency recovery effort. The purpose of this document is to report activities completed in the rearing environments of the Sawtooth Valley Lakes, central Idaho. SBT objectives for 1995 included: continuing population monitoring and spawning habitat surveys; estimating smolt carrying capacity of the lakes, and supervising limnology and barrier modification studies. Hydroacoustic estimates of O. nerka densities in the Sawtooth Valley lakes ranged from 32 to 339 fish/ha. Densities were greatest in Stanley followed by Redfish (217 fish/ha), Pettit (95 fish/ha), and Alturas. Except for Alturas, population abundance estimates were similar to 1993 results. In Alturas Lake, O. nerka abundance declined by approximately 90%. In 1994, about 142,000 kokanee fry recruited to Redfish Lake from Fishhook Creek. O. nerka fry recruitment to Stanley and Alturas lakes was 19,000 and 2,000 fry, respectively. Egg to fry survival was 11%, 13%, and 7% in Fishhook, Alturas and Stanley Lake Creeks. Kokanee spawning in Fishhook Creek was slightly lower than 1993 estimates but similar to the mean escapement since 1991. About 9,200 kokanee entered the creek in 1994 compared to 10,800 in 1993. Escapement for Stanley Lake Creek was only 200, a 68% reduction from 1993. Conversely, O. nerka spawning densities increased to 3,200 in Alturas Lake Creek, up from 200 the previous year

  3. Cost-effective management alternatives for Snake River Chinook salmon: a biological-economic synthesis.

    Science.gov (United States)

    Halsing, David L; Moore, Michael R

    2008-04-01

    The mandate to increase endangered salmon populations in the Columbia River Basin of North America has created a complex, controversial resource-management issue. We constructed an integrated assessment model as a tool for analyzing biological-economic trade-offs in recovery of Snake River spring- and summer-run chinook salmon (Oncorhynchus tshawytscha). We merged 3 frameworks: a salmon-passage model to predict migration and survival of smolts; an age-structured matrix model to predict long-term population growth rates of salmon stocks; and a cost-effectiveness analysis to determine a set of least-cost management alternatives for achieving particular population growth rates. We assessed 6 individual salmon-management measures and 76 management alternatives composed of one or more measures. To reflect uncertainty, results were derived for different assumptions of effectiveness of smolt transport around dams. Removal of an estuarine predator, the Caspian Tern (Sterna caspia), was cost-effective and generally increased long-term population growth rates regardless of transport effectiveness. Elimination of adult salmon harvest had a similar effect over a range of its cost estimates. The specific management alternatives in the cost-effective set depended on assumptions about transport effectiveness. On the basis of recent estimates of smolt transport effectiveness, alternatives that discontinued transportation or breached dams were prevalent in the cost-effective set, whereas alternatives that maximized transportation dominated if transport effectiveness was relatively high. More generally, the analysis eliminated 80-90% of management alternatives from the cost-effective set. Application of our results to salmon management is limited by data availability and model assumptions, but these limitations can help guide research that addresses critical uncertainties and information. Our results thus demonstrate that linking biology and economics through integrated models can

  4. Juvenile Chinook Salmon mortality in a Snake River Reservoir: Smallmouth Bass predation revisited

    Science.gov (United States)

    Erhardt, John M.; Tiffan, Kenneth F.; Connor, William P.

    2018-01-01

    Predation by nonnative fishes has been identified as a contributing factor in the decline of juvenile salmonids in the Columbia River basin. We examined the diet composition of Smallmouth Bass Micropterus dolomieu and estimated the consumption and predation loss of juvenile Chinook Salmon Oncorhynchus tshawytscha in Lower Granite Reservoir on the Snake River. We examined 4,852 Smallmouth Bass stomachs collected from shoreline habitats during April–September 2013–2015. Chinook Salmon were the second most commonly consumed fish by all size‐classes of Smallmouth Bass (≥150 mm TL) throughout the study. Over the 3 years studied, we estimated that a total of 300,373 Chinook Salmon were consumed by Smallmouth Bass in our 22‐km study area, of which 97% (291,884) were subyearlings (age 0) based on length frequency data. A majority of the loss (61%) occurred during June, which coincided with the timing of hatchery releases of subyearling fall Chinook Salmon. Compared to an earlier study, mean annual predation loss increased more than 15‐fold from 2,670 Chinook Salmon during 1996–1997 to 41,145 Chinook Salmon during 2013–2015 (in reaches that could be compared), despite lower contemporary Smallmouth Bass abundances. This increase can be explained in part by increases in Smallmouth Bass consumption rates, which paralleled increases in subyearling Chinook Salmon densities—an expected functional response by an opportunistic consumer. Smallmouth Bass are currently significant predators of subyearling Chinook Salmon in Lower Granite Reservoir and could potentially be a large source of unexplained mortality.

  5. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Geist, David R.; Arntzen, Evan V.; Abernethy, Cary S.

    2004-09-24

    The development of the Snake River hydroelectric system has affected fall chinook salmon smolts by shifting their migration timing to a period when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations to improve water temperature and flow conditions during the juvenile chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by PNNL that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall chinook salmon spawning areas. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The hydrologic regime during the 2002?2003 sampling period exhibited one of the lowest, most stable daily discharge patterns of any of the previous 12 water years. The vertical hydraulic gradients (VHG) between the river and the riverbed suggested the potential for predominantly small magnitude vertical exchange. The VHG also showed little relationship to changes in river discharge at most sites. Despite the relatively small vertical hydraulic gradients at most sites, the results from the numerical modeling of riverbed pore water velocity and hyporheic zone temperatures

  6. Snake River Fall Chinook Salmon Life History Investigations, Annual Report 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F. [U.S. Geological Survey; Connor, William P. [U.S. Fish and Wildlife Service; McMichael, Geoffrey A. [Pacific Northwest National Laboratory

    2009-08-21

    higher probability of successfully passing through the confluence (P=0.0050 for radio-tagged fish; P=0.0038 for acoustic-tagged fish). Radio-tagged fish with greater weight at tagging also had a higher probability of migrating and surviving through both the lower free-flowing reach (P=0.0497) and the transition zone (P=0.0007). Downstream movement rates of radio-tagged subyearlings were highest in free-flowing reaches in every month and decreased considerably with impoundment. Movement rates were slowest in the transition zone for the June and August release groups, and in the confluence reach for the July release group. For acoustic-tagged subyearlings, the slowest movement rates through the confluence and upper reservoir reaches were observed for the September release group. Radio-tagged fish released in August showed the greatest delay in the transition zone, while acoustic-tagged fish released in September showed the greatest delay in the transition zone and confluence reaches. Across the monthly release groups from July through September, the probability of delaying in the transition zone and surviving there declined throughout the study. All monthly release groups of radio-tagged subyearlings showed evidence of mortality within the transition zone, with final estimates (across the full 45-d detection period) ranging from 0.12 (SE not available) for the May release group to 0.58 (SE = 0.06) for the June release group. The May and September release groups tended to have lower mortality in the transition zone than the June, July, and August release groups. Live fish were primarily detected away from shore in the channel, whereas all dead fish were located along shorelines with most being located in the vicinity of the Memorial Bridge and immediately upstream. During the May detection period, before the implementation of summer flow augmentation, temperatures in the Clearwater River and Snake River arms of Lower Granite Reservoir and the downstream boundary of the

  7. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1989 through 1991

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Orr, B.R.; Liszewski, M.J.; Jensen, R.G.

    1995-08-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains a continuous monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1989-91. Water in the eastern Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from irrigation water, infiltration of streamflow, and ground-water inflow from adjoining mountain drainage basins. Water levels in wells throughout the INEL generally declined during 1989-91 due to drought. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INEL decreased or remained constant during 1989-91. Decreased concentrations are attributed to reduced rates of radioactive-waste disposal, sorption processes, radioactive decay, and changes in waste-disposal practices. Detectable concentrations of chemical constituents in water from the Snake River Plain aquifer at the INEL were variable during 1989-91. Sodium and chloride concentrations in the southern part of the INEL increased slightly during 1989-91 because of increased waste-disposal rates and a lack of recharge from the Big Lost River. Plumes of 1,1,1-trichloroethane have developed near the Idaho Chemical Processing Plant and the Radioactive Waste Management Complex as a result of waste disposal practices

  8. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J,; Heindel, Jeff A.; Kline, Paul A. (Idaho Department of Fish and Game, Boise, ID)

    2005-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1999 and December 31, 1999 are presented in this report. In 1999, seven anadromous sockeye salmon returned to the Sawtooth Valley and were captured at the adult weir located on the upper Salmon River. Four anadromous adults were incorporated in the captive broodstock program spawning design for year 1999. The remaining three adults were released to Redfish Lake for natural spawning. All seven adults were adipose and left ventral fin-clipped, indicating hatchery origin. One sockeye salmon female from the anadromous group and 81 females from the captive broodstock group were spawned at the Eagle Fish Hatchery in 1999. Spawn pairings produced approximately 63,147 eyed-eggs with egg survival to eyed-stage of development averaging 38.97%. Eyed-eggs (20,311), presmolts (40,271), smolts (9,718), and adults (21) were planted or released into Sawtooth Valley waters in 1999. Supplementation strategies involved releases to Redfish Lake, Redfish Lake Creek

  9. Snake River Sockeye Salmon Captive Broodstock Program Research Elements : 2007 Annual Project Progess Report.

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Mike; Plaster, Kurtis; Redfield, Laura; Heindel, Jeff; Kline, Paul

    2008-12-17

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2007, progeny from the captive broodstock program were released using four strategies: (1) eyed-eggs were planted in Pettit Lake in November; (2) age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October; (3) age-1 smolts were released into Redfish Lake Creek and the upper Salmon River in May; and (4) hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2007. Population abundances were estimated at 73,702 fish for Redfish Lake, 124,073 fish for Alturas Lake, and 14,746 fish for Pettit Lake. Angler surveys were conducted from May 26 through August 7, 2007 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 102 anglers and estimated that 56 kokanee were harvested. The calculated kokanee catch rate was 0.03 fish/hour for each kokanee kept. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 14 to June 13, 2007. We estimated that 5,280 natural origin and 14,256 hatchery origin sockeye salmon smolts out-migrated from

  10. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A. (Nez Perce Tribe, Department of Fishereis Resource Management, Lapwai, ID)

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 2000 annual report covers the fourth year of sampling of this multi-year study. In 2000 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon rivers. The Snake River was sampled between Lower Granite Dam (rkm 174) and the mouth of the Salmon River (rkm 303), and the Salmon River was sampled from its mouth upstream to Hammer Creek (rkm 84). A total of 53,277 hours of setline effort and 630 hours of hook-and-line effort was employed in 2000. A total of 538 white sturgeon were captured and tagged in the Snake River and 25 in the Salmon River. Since 1997, 32.8 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 48 cm to 271 cm and averaged 107 cm. In the Salmon River, white sturgeon ranged in total length from 103 cm to 227 cm and averaged 163 cm. Using the Jolly-Seber open population estimator, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,725 fish, with a 95% confidence interval of 1,668-5,783. A total of 10 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 54.7 km (34 miles) downstream to 78.8 km (49 miles) upstream; however, 43.6 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of

  11. Snake River Sockeye Salmon Captive Broodstock; Research Element, 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Keith A.

    1995-12-01

    In 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. Initial steps to recover the species include the establishment of captive broodstocks at the Eagle Fish Hatchery in Eagle, Idaho. Research and recovery activities for sockeye conducted by the Idaho Department of Fish and Game during the period of April 1993 to April 1994 are covered by this report. Eight anadromous adults (two female and six male) returned to the Redfish Lake Creek trap this year and were spawned at the Sawtooth Hatchery near Stanley, Idaho. Fecundity was 3160 for each female. The mean fertilization rate was 52% for female {open_quotes}A{close_quotes} and 65% for female {open_quotes}B.{close_quotes} Captive broodstock also spawned as well as residual sockeye captured in a Merwin trap in Redfish Lake. Spawning data from 72 fish spawned during this period is included in this report. Captive broodstock also matured later than normal (winter and spring 1994). Fish were spawned and samples were taken to investigate reasons for poor fertilization rates. Twenty-four out migrants of 1991 were selected for return to Redfish Lake for volitional spawning. Releases were made in August of 1993. All fish were implanted with sonic tags and tracking of this group began soon after the release to identify spawning-related activities. A research project is being conducted on captive broodstock diets. The project will investigate the effect of diet modification on spawn timing, gamete quality, and fertilization rates. A second project used ultrasound to examine fish for sexual maturity. The goal was to obtain a group a fish to be released f or volitional spawning. A total of 44 fish were found to be mature. The performance of all captive groups held at Eagle are included in this report.

  12. Potential hydrothermal resource temperatures in the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashayam Neupane; Earl D. Mattson; Cody J. Cannon; Trevor A. Atkinson; Travis L. McLing; Thomas R. Wood; Patrick F. Dobson; Mark E. Conrad

    2016-02-01

    The Eastern Snake River Plain (ESRP) in southern Idaho is a region of high heat flow. Sustained volcanic activities in the wake of the passage of the Yellowstone Hotspot have turned this region into an area with great potential for geothermal resources as evidenced by numerous hot springs scattered along the margins of the plain and several hot-water producing wells and hot springs within the plain. Despite these thermal expressions, it is hypothesized that the pervasive presence of an overlying groundwater aquifer in the region effectively masks thermal signatures of deep-seated geothermal resources. The dilution of deeper thermal water and re-equilibration at lower temperature are significant challenges for the evaluation of potential resource areas in the ESRP. Over the past several years, we collected approximately 100 water samples from springs/wells for chemical analysis as well as assembled existing water chemistry data from literature. We applied several geothermometric and geochemical modeling tools to these chemical compositions of ESRP water samples. Geothermometric calculations based on principles of multicomponent equilibrium geothermometry with inverse geochemical modeling capability (e.g., Reservoir Temperature Estimator, RTEst) have been useful for the evaluation of reservoir temperatures. RTEst geothermometric calculations of ESRP thermal water samples indicated numerous potential geothermal areas with elevated reservoir temperatures. Specifically, areas around southern/southwestern side of the Bennett Hills and within the Camas Prairies in the western-northwestern regions of the ESRP and its margins suggest temperatures in the range of 140-200°C. In the northeastern portions of the ESRP, Lidy Hot Springs, Ashton, Newdale, and areas east of Idaho Falls have expected reservoir temperature =140 °C. In the southern ERSP, areas near Buhl and Twin Falls are found to have elevated temperatures as high as 160 °C. These areas are likely to host

  13. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kline, Paul A.; Heindel, Jeff A.; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

    2003-08-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Marine Fisheries Service at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Marine Fisheries Service are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported under separate cover. Captive broodstock program activities conducted between January 1, 1997 and December 31, 1997 are presented in this report. One hundred twenty-six female sockeye salmon from one captive broodstock group were spawned at the Eagle Fish Hatchery in 1997. Successful spawn pairings produced approximately 148,781 eyed-eggs with a cumulative mean survival to eyed-egg rate of 57.3%. Approximately 361,600 sockeye salmon were released to Sawtooth basin waters in 1997. Reintroduction strategies included eyed-eggs (brood year 1997), presmolts (brood year 1996), and prespawn adults for volitional spawning (brood year 1994). Release locations included Redfish Lake, Alturas Lake, and Pettit Lake. During this reporting period, four broodstocks and two unique production groups were in culture at the Eagle Fish Hatchery. Two of the four broodstocks were incorporated into the 1997 spawning design, and one broodstock was terminated following

  14. Snake River Sockeye salmon habitat and limnological research. Annual report 1993

    International Nuclear Information System (INIS)

    Teuscher, D.; Taki, D.; Wurtsbaugh, W.A.; Luecke, C.; Budy, P.; Gross, H.P.; Steinhart, G.

    1994-06-01

    In 1993 we completed research directed at characterizing the 0. nerka populations and their interactions with other fish species in five Sawtooth Valley Lakes. Historically, Redfish, Alturas, Pettit, Stanley, and Yellow Belly Lakes provided Snake River sockeye (Oncorhynchus nerka) spawning and rearing habitat (Evermann 1896; Bjornn 1968). All of these lakes, with exception to Yellow Belly, still support 0. nerka populations. In chapter 1 of this report we describe 0. nerka spawning locations and densities, tributary fry recruitment, and results from a habitat survey completed in Redfish Lake. In chapter 2 we review foraging habits of fish that may compete with, or prey on 0. nerka populations. Kokanee fry emergence from Fishhook Creek in 1993 was 160,000. Fry emergence increased nearly five fold over that reported in 1992. Interestingly, spawning densities in 1991 and 1992 were somewhat similar (7,200 and 9,600, respectively). Discharge from Fishhook Creek was markedly higher in 1992 and may have caused the better egg to fry survival. 0. nerka spawning on sockeye beach appeared limited (< 100 fish). Additionally, sockeye beach was the only area that wild or residual sockeye were located. Of 24 adult sockeye released into Redfish Lake, from the brood stock program, two were found spawning in the south end of the lake. Results from the habitat survey indicated that substrate composition on sockeye beach is poor. 0. nerka diet patterns shifted from chironomid prey in June zooplankton prey in September. Rainbow trout consumed a broadrange of prey, with few instances of significant diet overlap with 0. nerka. Northern squawfish, bull char, and lake trout preyed on 0. nerka. Utilization of 0. nerka by predators was greatest in September

  15. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hebdon, J. Lance; Castillo, Jason; Willard, Catherine (Idaho Department of Fish and Game, Boise, ID)

    2003-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes and Idaho Department of Fish and Game initiated the Snake River Sockeye Salmon Sawtooth Valley Project to conserve and rebuild populations in Idaho. Restoration efforts are focusing on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced juvenile sockeye salmon from the captive broodstock program occurred in 1994. The first anadromous adult returns from the captive broodstock program were recorded in 1999, when six jacks and one jill were captured at Idaho Department of Fish and Game's Sawtooth Fish Hatchery. In 2001, progeny from the captive broodstock program were released using four strategies: age-0 presmolts were released to all three lakes in October and to Pettit and Alturas lakes in July; age-1 smolts were released to Redfish Lake Creek, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September along with anadromous adult sockeye salmon that returned to the Sawtooth basin and were not incorporated into the captive broodstock program. Kokanee population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September. Only age-0 and age-1 kokanee were captured on Redfish Lake, resulting in a population estimate of 12,980 kokanee. This was the second lowest kokanee abundance estimated since 1990. On Alturas Lake age-0, age-1, and age-2 kokanee were captured, and the kokanee population was estimated at 70,159. This is a mid range kokanee population estimate for Alturas Lake, which has been sampled yearly since 1990. On Pettit Lake only age-1 kokanee were captured, and the kokanee population estimate was 16,931. This estimate is in the midrange of estimates of the kokanee population in Pettit Lake, which has been sampled

  16. Snake River Sockeye Salmon Captive Broodstock Program; Research Element, 2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Plaster, Kurtis; Castillo, Jason (Idaho Department of Fish and Game, Boise, ID)

    2005-01-01

    On November 20, 1991, the National Oceanic Atmospheric Administration listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Shoshone-Bannock Tribes (SBT) and Idaho Department of Fish and Game (IDFG) initiated the Snake River Sockeye Salmon Captive Broodstock Program to conserve and rebuild populations in Idaho. Restoration efforts are focused on Redfish, Pettit, and Alturas lakes within the Sawtooth Valley. The first release of hatchery-produced adults occurred in 1993. The first release of juvenile sockeye salmon from the captive broodstock program occurred in 1994. In 1999, the first anadromous adult returns from the captive broodstock program were recorded when six jacks and one jill were captured at the IDFG Sawtooth Fish Hatchery. In 2003, progeny from the captive broodstock program were released using three strategies: eyed-eggs were planted in Pettit and Alturas lakes in November and December, age-0 presmolts were released to Alturas, Pettit, and Redfish lakes in October, and hatchery-produced adult sockeye salmon were released to Redfish Lake for volitional spawning in September. Oncorhynchus nerka population monitoring was conducted on Redfish, Alturas, and Pettit lakes using a midwater trawl in September 2003. Age-0 through age-4 O. nerka were captured in Redfish Lake, and population abundance was estimated at 81,727 fish. Age-0 through age-3 O. nerka were captured in Alturas Lake, and population abundance was estimated at 46,234 fish. Age-0 through age-3 O. nerka were captured in Pettit Lake, and population abundance was estimated at 11,961 fish. Angler surveys were conducted from May 25 through August 7, 2003 on Redfish Lake to estimate kokanee harvest. On Redfish Lake, we interviewed 179 anglers and estimated that 424 kokanee were harvested. The calculated kokanee catch rate was 0.09 fish/hour. The juvenile out-migrant trap on Redfish Lake Creek was operated from April 15 to May 29

  17. Chlorine-36 in the Snake River Plain aquifer at the Idaho National Engineering Laboratory: Origin and implications

    International Nuclear Information System (INIS)

    Beasley, T.M.; Cecil, L.D.; Mann, L.J.; Sharma, P.; Fehn, U.; Gove, H.E.; Kubik, P.W.

    1993-01-01

    Between 1952 and 1984, low-level radioactive waste was introduced directly into the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These wastes were generated, principally, at the nuclear fuel reprocessing facility on the site. The measurements of 36 Cl in monitoring and production well waters, downgradient from disposal wells and seepage ponds, found easily detectable, nonhazardous concentrations of this radionuclide from the point of injection to the INEL southern site boundary. Comparisons are made between 3 H and 36 Cl concentrations in aquifer water and the advantages of 36 Cl as a tracer of subsurface-water dynamics at the site are discussed

  18. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1994 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Muir, William D.

    1995-02-01

    In 1994, the National Marine Fisheries Service and the University of Washington completed the second year of a multi-year study to estimate survival of juvenile salmonids (Oncorhynchus spp.) passing through the dams and reservoirs of the Snake River. Actively migrating smolts were collected at selected locations above, at, and below Lower Granite Dam, tagged with passive integrated transponder (PIT) tags, and released to continue their downstream migration. Survival estimates were calculated using the Single-Release, Modified Single-Release, and Paired-Release Models.

  19. Chlorine-36 in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory; origin and implications

    Science.gov (United States)

    Beasley, T.M.; Cecil, L.D.; Sharma, P.; Kubik, P.W.; Fehn, U.; Mann, L.J.; Gove, H.E.

    1993-01-01

    Between 1952 and 1984, low-level radioactive waste was introduced directly into the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These wastes were generated, principally, at the nuclear fuel reprocessing facility on the site. Our measurements of 36C1 in monitoring and production well waters, downgradient from disposal wells and seepage ponds, found easily detectable, nonhazardous concentrations of this radionuclide from the point of injection to the INEL southern site boundary. Comparisons are made between 3H and 36Cl concentrations in aquifer water and the advantages of 36C1 as a tracer of subsurface-water dynamics at the site are discussed.

  20. Hydrologic conditions and distribution of selected radiochemical and chemical constituents in water, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho, 1992 through 1995

    International Nuclear Information System (INIS)

    Bartholomay, R.C.; Tucker, B.J.; Ackerman, D.J.; Liszewski, M.J.

    1997-04-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds and disposal wells at the Idaho National Engineering Laboratory (INEL) has affected water quality in the Snake River Plain aquifer. The US Geological Survey, in cooperation with the US Department of Energy, maintains a monitoring network at the INEL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from the Snake River Plain aquifer during 1992--95

  1. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Willard, Catherine; Baker, Dan J.; Heindel, Jeff A. (Idaho Department of Fish and Game, Boise, ID)

    2003-12-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2002 and December 31, 2002 for the hatchery element of the program are presented in this report. n 2002, 22 anadromous sockeye salmon returned to the Sawtooth Valley. Fifteen of these adults were captured at adult weirs located on the upper Salmon River and on Redfish Lake Creek. Seven of the anadromous sockeye salmon that returned were observed below the Sawtooth Fish Hatchery weir and allowed to migrate upstream volitionally (following the dismantling of the weir on September 30, 2002). All adult returns were released to Redfish Lake for natural spawning. Based on their marks, returning adult sockeye salmon originated from a variety of release options. Sixty-six females from brood year 1999 and 28 females from brood year 2000 captive broodstock groups were spawned at the Eagle Hatchery in 2002. Spawn pairings produced approximately 65

  2. Evaluation of Delisting Criteria and Rebuilding Schedules for Snake River Spring/Summer Chinook, Fall Chinook and Sockeye Salmon : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 10 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, Steven P.; Neeley, Doug

    1993-06-01

    We develop a framework for distinguishing healthy and threatened populations, and we analyze specific criteria by which these terms can be measured for threatened populations of salmon in the Snake River. We review reports and analyze existing data on listed populations of salmon in the Snake River to establish a framework for two stages of the recovery process: (1) defining de-listing criteria, and (2) estimating the percentage increase in survival that will be necessary for recovery of the population within specified time frames, given the de-listing criteria that must be achieved. We develop and apply a simplified population model to estimate the percentage improvement in survival that will be necessary to achieve different rates of recovery. We considered five main concepts identifying de-listing criteria: (1) minimum population size, (2) rates of population change, (3) number of population subunits, (4) survival rates, and (5) driving variables. In considering minimum population size, we conclude that high variation in survival rates poses a substantially greater probability of causing extinction than does loss of genetic variation. Distinct population subunits exist and affect both the genetic variability of the population and the dynamics of population decline and growth. We distinguish between two types of population subunits, (1) genetic and (2) geographic, and we give examples of their effects on population recovery.

  3. Determining Columbia and Snake River Project Tailrace and Forebay Zones of Hydraulic Influence using MASS2 Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

    2010-12-01

    Although fisheries biology studies are frequently performed at US Army Corps of Engineers (USACE) projects along the Columbia and Snake Rivers, there is currently no consistent definition of the ``forebay'' and ``tailrace'' regions for these studies. At this time, each study may use somewhat arbitrary lines (e.g., the Boat Restriction Zone) to define the upstream and downstream limits of the study, which may be significantly different at each project. Fisheries researchers are interested in establishing a consistent definition of project forebay and tailrace regions for the hydroelectric projects on the lower Columbia and Snake rivers. The Hydraulic Extent of a project was defined by USACE (Brad Eppard, USACE-CENWP) as follows: The river reach directly upstream (forebay) and downstream (tailrace) of a project that is influenced by the normal range of dam operations. Outside this reach, for a particular river discharge, changes in dam operations cannot be detected by hydraulic measurement. The purpose of this study was to, in consultation with USACE and regional representatives, develop and apply a consistent set of criteria for determining the hydraulic extent of each of the projects in the lower Columbia and Snake rivers. A 2D depth-averaged river model, MASS2, was applied to the Snake and Columbia Rivers. New computational meshes were developed most reaches and the underlying bathymetric data updated to the most current survey data. The computational meshes resolved each spillway bay and turbine unit at each project and extended from project to project. MASS2 was run for a range of total river flows and each flow for a range of project operations at each project. The modeled flow was analyzed to determine the range of velocity magnitude differences and the range of flow direction differences at each location in the computational mesh for each total river flow. Maps of the differences in flow direction and velocity magnitude were created. USACE

  4. Petrophysical characteristics of basalt in the vadose zone, Idaho National Engineering Laboratory, Eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Knutson, C.F.; Harrison, W.E.; Smith, R.P.

    1989-01-01

    We have used a core characterization system to measure bulk densities, porosities, and permeabilities of basalt lavas from the vadose zone at the Idaho National Engineering Laboratory (INEL). At the INEL, basalt lava flows with intercalated alluvial, aeolian, and lacustrine sediments extend to depths of one kilometer or more. Individual lava flows are generally less than 15 meters thick and commonly have vesicular tops and bottoms with massive basalt in their interiors. Petrophysical characterization is essential to an understanding of fluid movement in the vadose zone and in the saturated zone. Many hundreds of closely spaced permeability/porosity/bulk density measurements have defined the variability of these parameters within and between individual basalt flows. Based on geological logging and porosity/permeability measurements made on many hundred feet of core, we feel that a rather sophisticated and rigorous logging program is necessary to characterize these complex and highly variable basaltic flow units. This paper endeavors to provide a petrophysical/geological conceptual model of the Snake River Plain basalts from the vadose zone under the Radioactive Waste Management Complex area at the INEL. We hope that this model will aid in subsequent geotechnical logging in this portion of the Eastern Snake River Plain. 8 refs., 14 figs., 2 tabs

  5. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    International Nuclear Information System (INIS)

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal

  6. Snake River Sockeye Salmon Captive Broodstock Program; Hatchery Element, 2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Dan J.; Heindel, Jeff A.; Redding, Jeremy (Idaho Department of Fish and Game, Boise, ID)

    2006-05-01

    On November 20, 1991, the National Marine Fisheries Service listed Snake River sockeye salmon Oncorhynchus nerka as endangered under the Endangered Species Act of 1973. In 1991, the Idaho Department of Fish and Game, the Shoshone-Bannock Tribes, and the National Marine Fisheries Service initiated efforts to conserve and rebuild populations in Idaho. Initial steps to recover sockeye salmon included the establishment of a captive broodstock program at the Idaho Department of Fish and Game Eagle Fish Hatchery. Sockeye salmon broodstock and culture responsibilities are shared with the National Oceanic and Atmospheric Administration at two locations adjacent to Puget Sound in Washington State. Activities conducted by the Shoshone-Bannock Tribes and the National Oceanic and Atmospheric Administration are reported under separate cover. Idaho Department of Fish and Game monitoring and evaluation activities of captive broodstock program fish releases (annual report to the Bonneville Power Administration for the research element of the program) are also reported separately. Captive broodstock program activities conducted between January 1, 2004 and December 31, 2004 for the hatchery element of the program are presented in this report. In 2004, twenty-seven anadromous sockeye salmon returned to the Sawtooth Valley. Traps on Redfish Lake Creek and the upper Salmon River at the Sawtooth Fish Hatchery intercepted one and four adults, respectively. Additionally, one adult sockeye salmon was collected at the East Fork Salmon River weir, 18 were seined from below the Sawtooth Fish Hatchery weir, one adult sockeye salmon was observed below the Sawtooth Fish Hatchery weir but not captured, and two adult sockeye salmon were observed in Little Redfish Lake but not captured. Fish were captured/collected between July 24 and September 14, 2004. The captured/collected adult sockeye salmon (12 females and 12 males) originated from a variety of release strategies and were transferred to

  7. Factors affecting route selection and survival of steelhead kelts at Snake River dams in 2012 and 2013

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison H. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xinya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fu, Tao [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Green, Ethan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-03-31

    In 2012 and 2013, Pacific Northwest National Laboratory (PNNL) conducted a study that summarized the passage route proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged kelts. Kelts were also tagged with passive integrated transponder tags to monitor passage through juvenile bypass systems (JBS) and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify environmental, temporal, operational, individual, and behavioral variables that were related to forebay residence time, route of passage, and survival of steelhead kelts at FCRPS dams on the Snake River. Multiple approaches, including 3-D tracking, bivariate and multivariable regression modeling, and decision tree analyses were used to identify the environmental, temporal, operational, individual, and behavioral variables that had the greatest effect on forebay residence time, route of passage, and route-specific and overall dam passage survival probabilities for tagged kelts at Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams. In general, kelt behavior and discharge appeared to work independently to affect forebay residence times. Kelt behavior, primarily approach location, migration depth, and “searching” activities in the forebay, was found to have the greatest influence on their route of passage. The condition of kelts was the single most important factor affecting their survival. The information gathered in this study may be used by dam operators and fisheries managers to identify potential management actions to improve in-river survival of kelts or collection methods for kelt reconditioning programs to aid

  8. GIS methodology for geothermal play fairway analysis: Example from the Snake River Plain volcanic province

    Science.gov (United States)

    DeAngelo, Jacob; Shervais, John W.; Glen, Jonathan; Nielson, Dennis L.; Garg, Sabodh; Dobson, Patrick; Gasperikova, Erika; Sonnenthal, Eric; Visser, Charles; Liberty, Lee M.; Siler, Drew; Evans, James P.; Santellanes, Sean

    2016-01-01

    Play fairway analysis in geothermal exploration derives from a systematic methodology originally developed within the petroleum industry and is based on a geologic and hydrologic framework of identified geothermal systems. We are tailoring this methodology to study the geothermal resource potential of the Snake River Plain and surrounding region. This project has contributed to the success of this approach by cataloging the critical elements controlling exploitable hydrothermal systems, establishing risk matrices that evaluate these elements in terms of both probability of success and level of knowledge, and building automated tools to process results. ArcGIS was used to compile a range of different data types, which we refer to as ‘elements’ (e.g., faults, vents, heatflow…), with distinct characteristics and confidence values. Raw data for each element were transformed into data layers with a common format. Because different data types have different uncertainties, each evidence layer had an accompanying confidence layer, which reflects spatial variations in these uncertainties. Risk maps represent the product of evidence and confidence layers, and are the basic building blocks used to construct Common Risk Segment (CRS) maps for heat, permeability, and seal. CRS maps quantify the variable risk associated with each of these critical components. In a final step, the three CRS maps were combined into a Composite Common Risk Segment (CCRS) map for analysis that reveals favorable areas for geothermal exploration. Python scripts were developed to automate data processing and to enhance the flexibility of the data analysis. Python scripting provided the structure that makes a custom workflow possible. Nearly every tool available in the ArcGIS ArcToolbox can be executed using commands in the Python programming language. This enabled the construction of a group of tools that could automate most of the processing for the project. Currently, our tools are repeatable

  9. Evaluate Potenial Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Everett, Scott R.; Tuell, Michael A.; Hesse, Jay A. (Nez Perce Tribe, Department of Fisheries Management, Lapwai, ID)

    2004-02-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This report presents a summary of results from the 1997-2002 Phase II data collection and represents the end of phase II. From 1997 to 2001 white sturgeon were captured, marked, and population data were collected in the Snake and Salmon. A total of 1,785 white sturgeon were captured and tagged in the Snake River and 77 in the Salmon River. Since 1997, 25.8 percent of the tagged white sturgeon have been recaptured. Relative density of white sturgeon was highest in the free-flowing segment of the Snake River, with reduced densities of fish in Lower Granite Reservoir, and low densities the Salmon River. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir, the free-flowing Snake River and the Salmon River (Chi-Square test, P<0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River has shown an increase of 30 percent since the 1970's. Using the Jolly-Seber model, the abundance of white sturgeon <60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 2,483 fish, with a 95% confidence interval of 1,208-7,477. Total annual mortality rate was estimated to be 0.14 (95% confidence interval of 0.12 to 0.17). A total of 35 white sturgeon were fitted with radio-tags during 1999-2002. The movement of these fish ranged from 53 km (33 miles) downstream to 77 km (48 miles) upstream; however, 38.8 percent of the detected movement was less than 0.8 km (0.5 mile). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No

  10. Do cheatgrass, snake river wheatgrass, and crested wheatgrass sense different availabilities of N and P in soils conditioned by a cheatgrass invasion?

    Science.gov (United States)

    Long-term invasion by cheatgrass often increases availability of soil N and P thereby fostering increased competitive ability. We designed an experiment to test if cheatgrass (exotic annual), Snake River wheatgrass (native perennial), and crested wheatgrass (exotic perennial) all benefit from this e...

  11. Significance of selective predation and development of prey protection measures for juvenile salmonids in the Columbia and Snake River reservoirs. Annual progress report, February 1993--February 1994

    International Nuclear Information System (INIS)

    Poe, T.P.

    1994-01-01

    This report addresses the problem of predator-prey interactions of juvenile salmonids in the Columbia and Snake River. Six papers are included on selective predation and prey protection. Attention is focused on monitoring the movements, the distribution, and the behavior of juvenile chinook salmon and northern squawfish

  12. Upstream passage, spawning, and stock identification of fall chinook in the Snake River, 1992 and 1993. Final report

    International Nuclear Information System (INIS)

    Blankenship, H.L.; Mendel, G.W.

    1997-05-01

    This final report of the 3-year study summarizes activities and results for 1993. Study objectives were to: (1) determine the source of losses (or accounting errors) for adult chinook salmon between Ice Harbor Dam (IHR) and Lower Granite Dam (LGR), and upstream of LGR in the Snake River; (2) identify spawning locations upstream of LGR for calibration of aerial redd surveys, redd habitat mapping, carcass recovery for genetic stock profile analysis, and correction of estimated adult/redd ratios; and (3) estimate passage and migration times at Snake River. 200 fall chinook salmon were radio tagged and tracked with aerial, fixed-site, and ground mobile tracking. Fish were released upstream of IHR at Charbonneau Park (CHAR). 190 of the fish were tracked or relocated away from CHAR. 59 fish descended to below IHR without crossing Lower Monumental Dam (LMO). Another 128 salmon passed upstream of LMO without falling back at IHR. Only 80 salmon passed Little Goose Dam (LGO) without falling back at a downstream dam; 66 of these fish passed LGR. Many fish that fell back reascended the dams. A total of 72 salmon released at CHAR passed upstream of LGR, including fish that had fallen back and reascended a dam. Over 80 percent of the salmon that entered Lyons Ferry Hatchery each year had reached LGO before descending to the hatchery. Extensive wandering was documented between LMO and upstream of LGR before salmon entered Lyons Ferry Hatchery or the Tucannon River. In 1993, 41 salmon were found to be of hatchery origin when recovered. These fish entered Lyons Ferry Hatchery with similar movements to unmarked salmon. Each year a few salmon have remained near the hatchery without entering, which suggests the hatchery may have inadequate attraction flows. Fall chinook passed lower Snake River dams in 2-5 days each on average. Median travel times through LMO and LGO were 1.0-1.3 days each, which was slower than for spring chinook or steelhead in 1993. 5 refs., 21 figs., 20 tabs

  13. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; McNatt, Regan A.; Hockersmith, Eric E. (National Marine Fisheries Service, Northwest Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2004-04-01

    Prior to 1992, decisions on dam operations and use of stored water relied on recoveries of branded hatchery fish, index counts at traps and dams, and flow patterns at the dams. The advent of PIT-tag technology provided the opportunity to precisely track the smolt migrations of many wild stocks as they pass through the hydroelectric complex and other monitoring sites on their way to the ocean. With the availability of the PIT tag, a more complete approach to these decisions was undertaken starting in 1992 with the addition of PIT-tag detections of several wild spring and summer chinook salmon stocks at Lower Granite Dam. Using data from these detections, we initiated development of a database on wild fish, addressing several goals of the Columbia River Basin Fish and Wildlife Program of the Pacific Northwest Electric Power Planning Council and Conservation Act (NPPC 1980). Section 304(d) of the program states, ''The monitoring program will provide information on the migrational characteristics of the various stocks of salmon and steelhead within the Columbia Basin.'' Further, Section 201(b) urges conservation of genetic diversity, which will be possible only if wild stocks are preserved. Section 5.9A.1 of the 1994 Fish and Wildlife Program states that field monitoring of smolt movement will be used to determine the best timing for water storage releases and Section 5.8A.8 states that continued research is needed on survival of juvenile wild fish before they reach the first dam with special attention to water quantity, quality, and several other factors. The goals of this ongoing study are as follows (1) Characterize the migration timing and estimate parr-to-smolt survival of different stocks of wild Snake River spring/summer chinook salmon smolts at Lower Granite Dam. (2) Determine whether consistent migration patterns are apparent. (3) Determine what environmental factors influence these patterns. (4) Characterize the migrational behavior and

  14. Geochemistry of groundwater in the eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, eastern Idaho

    Science.gov (United States)

    Rattray, Gordon W.

    2018-05-30

    Nuclear research activities at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) in eastern Idaho produced radiochemical and chemical wastes that were discharged to the subsurface, resulting in detectable concentrations of some waste constituents in the eastern Snake River Plain (ESRP) aquifer. These waste constituents may pose risks to the water quality of the aquifer. In order to understand these risks to water quality the U.S. Geological Survey, in cooperation with the DOE, conducted a study of groundwater geochemistry to improve the understanding of hydrologic and chemical processes in the ESRP aquifer at and near the INL and to understand how these processes affect waste constituents in the aquifer.Geochemistry data were used to identify sources of recharge, mixing of water, and directions of groundwater flow in the ESRP aquifer at the INL. The geochemistry data were analyzed from 167 sample sites at and near the INL. The sites included 150 groundwater, 13 surface-water, and 4 geothermal-water sites. The data were collected between 1952 and 2012, although most data collected at the INL were collected from 1989 to 1996. Water samples were analyzed for all or most of the following: field parameters, dissolved gases, major ions, dissolved metals, isotope ratios, and environmental tracers.Sources of recharge identified at the INL were regional groundwater, groundwater from the Little Lost River (LLR) and Birch Creek (BC) valleys, groundwater from the Lost River Range, geothermal water, and surface water from the Big Lost River (BLR), LLR, and BC. Recharge from the BLR that may have occurred during the last glacial epoch, or paleorecharge, may be present at several wells in the southwestern part of the INL. Mixing of water at the INL primarily included mixing of surface water with groundwater from the tributary valleys and mixing of geothermal water with regional groundwater. Additionally, a zone of mixing between tributary valley water and

  15. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Tuell, Michael A.; Everett, Scott R. (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2003-03-01

    The specific research goal of this project is to identify means to restore and rebuild the Snake River white sturgeon (Acipenser transmontanus) population to support a sustainable annual subsistence harvest equivalent to 5 kg/ha/yr (CBFWA 1997). Based on data collected, a white sturgeon adaptive management plan will be developed. This 1999 annual report covers the third year of sampling of this multi-year study. In 1999 white sturgeon were captured, marked and population data were collected in the Snake and Salmon rivers. A total of 33,943 hours of setline effort and 2,112 hours of hook-and-line effort was employed in 1999. A total of 289 white sturgeon were captured and tagged in the Snake River and 29 in the Salmon River. Since 1997, 11.1 percent of the tagged white sturgeon have been recaptured. In the Snake River, white sturgeon ranged in total length from 27 cm to 261 cm and averaged 110 cm. In the Salmon River, white sturgeon ranged in total length from 98 cm to 244 cm and averaged 183.5 cm. Using the Jolly-Seber model, the abundance of white sturgeon < 60 cm, between Lower Granite Dam and the mouth of the Salmon River, was estimated at 1,823 fish, with a 95% confidence interval of 1,052-4,221. A total of 15 white sturgeon were fitted with radio-tags. The movement of these fish ranged from 6.4 km (4 miles) downstream to 13.7 km (8.5 miles) upstream; however, 83.6 percent of the detected movement was less than 0.8 kilometers (0.5 miles). Both radio-tagged fish and recaptured white sturgeon in Lower Granite Reservoir appear to move more than fish in the free-flowing segment of the Snake River. No seasonal movement pattern was detected, and no movement pattern was detected for different size fish. Differences were detected in the length frequency distributions of white sturgeon in Lower Granite Reservoir and the free-flowing Snake River (Chi-Square test, P < 0.05). The proportion of white sturgeon greater than 92 cm (total length) in the free-flowing Snake River

  16. Quantum tunneling of electron snake states in an inhomogeneous magnetic field

    Science.gov (United States)

    Hoodbhoy, Pervez

    2018-05-01

    In a two dimensional free electron gas subjected to a perpendicular spatially varying magnetic field, the classical paths of electrons are snake-like trajectories that weave along the line where the field crosses zero. But quantum mechanically this system is described by a symmetric double well potential which, for low excitations, leads to very different electron behavior. We compute the spectrum, as well as the wavefunctions, for states of definite parity in the limit of nearly degenerate states, i.e. for electrons sufficiently far from the B z   =  0 line. Transitions between the states are shown to give rise to a tunneling current. If the well is made asymmetrical by a time-dependent parity breaking perturbation then Rabi-like oscillations between parity states occur. Resonances can be excited and used to stimulate the transfer of electrons from one side of the potential barrier to the other through quantum tunneling.

  17. Quantum tunneling of electron snake states in an inhomogeneous magnetic field.

    Science.gov (United States)

    Hoodbhoy, Pervez

    2018-05-10

    In a two dimensional free electron gas subjected to a perpendicular spatially varying magnetic field, the classical paths of electrons are snake-like trajectories that weave along the line where the field crosses zero. But quantum mechanically this system is described by a symmetric double well potential which, for low excitations, leads to very different electron behavior. We compute the spectrum, as well as the wavefunctions, for states of definite parity in the limit of nearly degenerate states, i.e. for electrons sufficiently far from the B z   =  0 line. Transitions between the states are shown to give rise to a tunneling current. If the well is made asymmetrical by a time-dependent parity breaking perturbation then Rabi-like oscillations between parity states occur. Resonances can be excited and used to stimulate the transfer of electrons from one side of the potential barrier to the other through quantum tunneling.

  18. Population genetic structure and life history variability in Oncorhynchus nerka from the Snake River basin. Final report

    International Nuclear Information System (INIS)

    Waples, R.S.; Aebersold, P.B.; Winans, G.A.

    1997-05-01

    The authors used protein electrophoresis to examine genetic relationships among samples of sockeye salmon and kokanee (Oncorhynchus nerka) from the Snake River basin. A few collections from elsewhere in the Pacific Northwest were also included to add perspective to the analysis. After combining temporal samples that did not differ statistically within and between years, 32 different populations were examined for variation at 64 gene loci scored in all populations. Thirty-five (55%) of these gene loci surveyed were polymorphic in at least one population. Average heterozygosities were relatively low (0.006--0.041), but genetic differentiation among populations was pronounced: the value of Wright's F ST of 0.244 is higher than has been reported in any other study of Pacific salmon

  19. Survival Estimates for the Passage of Juvenile Salmonids through Snake River Dams and Reservoirs, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hockersmith, Eric E.

    1999-03-01

    This report consists of two parts describing research activities completed during 1997 under Bonneville Power Administration Project Number 93-29. Part 1 provides reach survival and travel time estimates for 1997 for PIT-tagged hatchery steelhead and yearling chinook salmon in the Snake and Columbia Rivers. The results are reported primarily in the form of tables and figures with a minimum of text. More detailed information on methodology and the statistical models used in the analysis are provided in previous annual reports cited in the text. Analysis of the relationships among travel time, survival, and environmental factors for 1997 and previous years of the study will be reported elsewhere. Part 2 of this report describes research to determine areas of loss and delay for juvenile hatchery salmonids above Lower Granite Reservoir.

  20. Contaminant transport in the Snake River Plain Aquifer: Phase 1, Part 1: Simple analytical model of individual plumes

    International Nuclear Information System (INIS)

    Rood, A.S.; Arnett, R.C.; Barraclough, J.T.

    1989-05-01

    A preliminary, semi-quantitative assessment of the migration of INEL effluents in the Snake River Plain Aquifer (SRPA) was performed. This study focused on past tritium, 129 I, and 90 Sr effluents from the Idaho Chemical Processing Plant (ICPP) and Test Reactor Area (TRA) and carbon tetrachloride from the Radioactive Waste Management Complex (RWMC). The disposal ponds at TRA and the ICPP injection well were the primary means of liquid radioactive waste discharge from the ICPP and TRA. Drums containing solidified chlorinated solvents disposed of at the RWMC were the primary source of carbon tetrachloride. Water samples taken from wells located in the SRPA show detectable quantities of the four contaminants. The predicted radionuclide concentrations exceed drinking water limits in limited areas within the INEL boundaries. Without planned remedial action, carbon tetrachloride is predicted to exceed drinking water limits beyond the site boundaries near the middle of the next century. 16 refs., 23 figs., 3 tabs

  1. Groundwater-quality data from the eastern Snake River Plain Aquifer, Jerome and Gooding Counties, south-central Idaho, 2017

    Science.gov (United States)

    Skinner, Kenneth D.

    2018-05-11

    Groundwater-quality samples and water-level data were collected from 36 wells in the Jerome/Gooding County area of the eastern Snake River Plain aquifer during June 2017. The wells included 30 wells sampled for the U.S. Geological Survey’s National Water-Quality Assessment project, plus an additional 6 wells were selected to increase spatial distribution. The data provide water managers with the ability for an improved understanding of groundwater quality and flow directions in the area. Groundwater-quality samples were analyzed for nutrients, major ions, trace elements, and stable isotopes of water. Quality-assurance and quality-control measures consisted of multiple blank samples and a sequential replicate sample. All data are available online at the USGS National Water Information System.

  2. Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Smolts, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Achord, Stephen; Axel, Gordon A.; Hockersmith, Eric E.

    2002-07-01

    This report details the 2001 results from an ongoing project to monitor the migration behavior of wild spring/summer chinook salmon smolts in the Snake River Basin. The report also discusses trends in the cumulative data collected for this project from Oregon and Idaho streams since 1989. The project was initiated after detection data from passive-integrated-transponder tags (PIT tags) had shown distinct differences in migration patterns between wild and hatchery fish for three consecutive years. National Marine Fisheries Service (NMFS) investigators first observed these data in 1989. The data originated from tagging and interrogation operations begun in 1988 to evaluate smolt transportation for the U.S. Army Corps of Engineers.

  3. Evaluate Potential Means of Rebuilding Sturgeon Populations in the Snake River between Lower Granite and Hells Canyon Dams, 1997 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoefs, Nancy (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2004-02-01

    During 1997 the first phase of the Nez Perce Tribe White Sturgeon Project was completed and the second phase was initiated. During Phase I the ''Upper Snake River White Sturgeon Biological Assessment'' was completed, successfully: (1) compiling regional white sturgeon management objectives, and (2) identifying potential mitigation actions needed to rebuild the white sturgeon population in the Snake River between Hells Canyon and Lower Granite dams. Risks and uncertainties associated with implementation of these potential mitigative actions could not be fully assessed because critical information concerning the status of the population and their habitat requirements were unknown. The biological risk assessment identified the fundamental information concerning the white sturgeon population that is needed to fully evaluate the effectiveness of alternative mitigative strategies. Accordingly, a multi-year research plan was developed to collect specific biological and environmental data needed to assess the health and status of the population and characterize habitat used for spawning and rearing. In addition, in 1997 Phase II of the project was initiated. White sturgeon were captured, marked, and population data were collected between Lower Granite Dam and the mouth of the Salmon River. During 1997, 316 white sturgeon were captured in the Snake River. Of these, 298 were marked. Differences in the fork length frequency distributions of the white sturgeon were not affected by collection method. No significant differences in length frequency distributions of sturgeon captured in Lower Granite Reservoir and the mid- and upper free-flowing reaches of the Snake River were detected. The length frequency distribution indicated that white sturgeon between 92 and 183 cm are prevalent in the reaches of the Snake River that were sampled. However, white sturgeon >183 have not changed markedly since 1970. I would speculate that some factor other than past over

  4. Straddle-packer aquifer test analyses of the Snake River Plain aquifer at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Johnson, G.S.; Frederick, D.B.

    1997-01-01

    The State of Idaho INEL Oversight Program, with the University of Idaho, Idaho State University, Boise State University, and the Idaho Geologic Survey, used a straddle-packer system to investigate vertical variations in characteristics of the Snake River Plain aquifer at the Idaho National Engineering Laboratory in southeast Idaho. Sixteen single-well aquifer tests were conducted on.isolated intervals in three observation wells. Each of these wells has approximately 200 feet of open borehole below the water table, penetrating the E through G and I basalt flow groups and interbedded sediments of the Snake River Plain aquifer. The success of the aquifer tests was limited by the inability to induce measurable drawdown in several zones. Time-drawdown data from aquifer tests were matched to type curves for 8 of the 16 zones tested. A single aquifer test at the water table exhibited greater curvature than those at depth. The increased degree of curvature suggests an unconfined response and resulted in an estimate of specific yield of 0.03. Aquifer tests below the water table generally yielded time-drawdown graphs with a rapid initial response followed by constant drawdown throughout the duration of the tests; up to several hours in length. The rapid initial response implies that the aquifer responds as a confined system during brief pumping periods. The nearly constant drawdown suggests a secondary source of water, probably vertical flow from overlying and underlying aquifer layers. Three analytical models were applied for comparison to the conceptual model and to provide estimates of aquifer properties. This, Hantush-Jacob leaky aquifer, and the Moench double-porosity fractured rock models were fit to time-drawdown data. The leaky aquifer type curves of Hantush and Jacob generally provided the best match to observed drawdown. A specific capacity regression equation was also used to estimate hydraulic conductivity

  5. Comparative evaluation of molecular diagnostic tests for Nucleospora salmonis and prevalence in migrating juvenile salmonids from the Snake River, USA

    Science.gov (United States)

    Badil, Samantha; Elliott, Diane G.; Kurobe, Tomofumi; Hedrick, Ronald P.; Clemens, Kathy; Blair, Marilyn; Purcell, Maureen K.

    2011-01-01

    Nucleospora salmonis is an intranuclear microsporidian that primarily infects lymphoblast cells and contributes to chronic lymphoblastosis and a leukemia-like condition in a range of salmonid species. The primary goal of this study was to evaluate the prevalence of N. salmonis in out-migrating juvenile hatchery and wild Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss from the Snake River in the U.S. Pacific Northwest. To achieve this goal, we first addressed the following concerns about current molecular diagnostic tests for N. salmonis: (1) nonspecific amplification patterns by the published nested polymerase chain reaction (nPCR) test, (2) incomplete validation of the published quantitative PCR (qPCR) test, and (3) whether N. salmonis can be detected reliably from nonlethal samples. Here, we present an optimized nPCR protocol that eliminates nonspecific amplification. During validation of the published qPCR test, our laboratory developed a second qPCR test that targeted a different gene sequence and used different probe chemistry for comparison purposes. We simultaneously evaluated the two different qPCR tests for N. salmonis and found that both assays were highly specific, sensitive, and repeatable. The nPCR and qPCR tests had good overall concordance when DNA samples derived from both apparently healthy and clinically diseased hatchery rainbow trout were tested. Finally, we demonstrated that gill snips were a suitable tissue for nonlethal detection of N. salmonis DNA in juvenile salmonids. Monitoring of juvenile salmonid fish in the Snake River over a 3-year period revealed low prevalence of N. salmonis in hatchery and wild Chinook salmon and wild steelhead but significantly higher prevalence in hatchery-derived steelhead. Routine monitoring of N. salmonis is not performed for all hatchery steelhead populations. At present, the possible contribution of this pathogen to delayed mortality of steelhead has not been determined.

  6. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Kern, J. Chris; Ward, David L.; Farr, Ruth A. (Oregon Department of Fish and Wildlife)

    2002-02-01

    We report on our progress from April 2000 through March 2001 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), the U.S. Fish and Wildlife Service (USFWS; Report E), and Oregon State University (OSU; Report F). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 2000 through March 2001 are listed.

  7. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam, 1999-2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L. (Oregon Department of Fish and Wildlife, Portland, OR)

    2001-04-01

    We report on our progress from April 1999 through March 2000 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), Columbia River Inter-Tribal Fish Commission (CRITFC; Report D), and the U.S. Fish and Wildlife Service (USFWS; Report E). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 1999 through March 2000 are given.

  8. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 1998-1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L.

    2000-12-01

    The authors report on their progress from April 1998 through March 1999 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), U.S. Fish and Wildlife Service (USFWS; Report D), Columbia River Inter-Tribal Fish Commission (CRITFC; Report E), and the University of Idaho (UI; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 1998 through March 1999 are given.

  9. Snakes and spin rotators

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    The generalized snake configuration offers advantages of either shorter total snake length and smaller orbit displacement in the compact configuration or the multi-functions in the split configuration. We found that the compact configuration can save about 10% of the total length of a snake. On other hand, the spilt snake configuration can be used both as a snake and as a spin rotator for the helicity state. Using the orbit compensation dipoles, the spilt snake configuration can be located at any distance on both sides of the interaction point of a collider provided that there is no net dipole rotation between two halves of the snake. The generalized configuration is then applied to the partial snake excitation. Simple formula have been obtained to understand the behavior of the partial snake. Similar principle can also be applied to the spin rotators. We also estimate the possible snake imperfections are due to various construction errors of the dipole magnets. Accuracy of field error of better than 10 -4 will be significant. 2 refs., 5 figs

  10. Monitoring and evaluation of smolt migration in the Columbia River Basin; Volume 1; Evaluation of the 1995 predictions of the run-timing of wild migrant subyearling chinook in the Snake River Basin using Program RealTime

    International Nuclear Information System (INIS)

    Skalski, John R.; Townsend, Richard L.; Yasuda, Dean

    1997-01-01

    This project was initiated in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of the project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and to help identify future research and analysis needs; (2)to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to assist in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; and (3)to design better analysis tools for evaluation programs; and (4)to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community

  11. Assessment of the Flow-Survival Relationship Obtained by Sims and Ossiander (1981) for Snake River Spring/Summer Chinook Salmon Smolts, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Steward, C.R. (Cleveland R.)

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic`s chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts.

  12. Assessment of the flow-survival relationship obtained by Sims and Ossiander (1981) for Snake River spring/summer chinook salmon smolts. Final report

    International Nuclear Information System (INIS)

    Steward, C.R.

    1994-04-01

    There has been much debate recently among fisheries professionals over the data and functional relationships used by Sims and Ossiander to describe the effects of flow in the Snake River on the survival and travel time of chinook salmon and steelhead smolts. The relationships were based on mark and recovery experiments conducted at various Snake and Columbia River sites between 1964 and 1979 to evaluate the effects of dams and flow regulation on the migratory characteristic's chinook sa mon and steelhead trout smolts. The reliability of this information is crucial because it forms the logical basis for many of the flow management options being considered today to protect,upriver populations of chinook salmon and steelhead trout. In this paper I evaluate the primary data, assumptions, and calculations that underlie the flow-survival relationship derived by Sims and Ossiander (1981) for chinook salmon smolts

  13. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River : Annual Report 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.

    2001-01-01

    This report summarizes results of research activities conducted in 1999 and years previous. In an effort to provide this information to a wider audience, the individual chapters in this report have been submitted as manuscripts to peer-reviewed journals. These chapters communicate significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin. Abundance and timing of seaward migration of Snake River fall chinook salmon was indexed using passage data collected at Lower Granite Dam for five years. We used genetic analyses to determine the lineage of fish recaptured at Lower Granite Dam that had been previously PIT tagged. We then used discriminant analysis to determine run membership of PIT-tagged smolts that were not recaptured to enable us to calculate annual run composition and to compared early life history attributes of wild subyearling fall and spring chinook salmon. Because spring chinook salmon made up from 15.1 to 44.4% of the tagged subyearling smolts that were detected passing Lower Granite Dam, subyearling passage data at Lower Granite Dam can only be used to index fall chinook salmon smolt abundance and passage timing if genetic samples are taken to identify run membership of smolts. Otherwise, fall chinook salmon smolt abundance would be overestimated and timing of fall chinook salmon smolt passage would appear to be earlier and more protracted than is the case.

  14. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2011-13

    Science.gov (United States)

    Twining, Brian V.; Fisher, Jason C.

    2015-01-01

    From 2011 to 2013, the U.S. Geological Survey’s Idaho National Laboratory (INL) Project Office, in cooperation with the U.S. Department of Energy, collected depth-discrete measurements of fluid pressure and temperature in 11 boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system (MLMS) consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers.

  15. Iodine-129 in the Snake River Plain Aquifer at and Near the Idaho National Laboratory, Idaho, 2003 and 2007

    Science.gov (United States)

    Bartholomay, Roy C.

    2009-01-01

    From 1953 to 1988, wastewater containing approximately 0.94 curies of iodine-129 (129I) was generated at the Idaho National Laboratory (INL) in southeastern Idaho. Almost all of this wastewater was discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC) on the INL site. Most of the wastewater was discharged directly into the eastern Snake River Plain aquifer through a deep disposal well until 1984; however, some wastewater also was discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. In 2003, the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, collected samples for 129I from 36 wells used to monitor the Snake River Plain aquifer, and from one well used to monitor a perched zone at the INTEC. Concentrations of 129I in the aquifer ranged from 0.0000066 +- 0.0000002 to 0.72 +- 0.051 picocuries per liter (pCi/L). Many wells within a 3-mile radius of the INTEC showed decreases of as much as one order of magnitude in concentration from samples collected during 1990-91, and all of the samples had concentrations less than the Environmental Protection Agency's Maximum Contaminant Level (MCL) of 1 pCi/L. The average concentration of 129I in 19 wells sampled during both collection periods decreased from 0.975 pCi/L in 1990-91 to 0.249 pCi/L in 2003. These decreases are attributed to the discontinuation of disposal of 129I in wastewater after 1988 and to dilution and dispersion in the aquifer. Although water from wells sampled in 2003 near the INTEC showed decreases in concentrations of 129I compared with data collected in 1990-91, some wells south and east of the Central Facilities Area, near the site boundary, and south of the INL showed slight increases. These slight increases may be related to variable discharge rates of wastewater that eventually moved to these well locations as a mass of water from a particular disposal period. In 2007, the USGS collected samples for

  16. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2014 - 12/31/2014

    Science.gov (United States)

    Connor, William P.; Mullins, Frank L.; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2015-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  17. Factors Affecting the Survival of Upstream Migrant Adult Salmonids in the Columbia River Basin : Recovery Issues for Threatened and Endangered Snake River Salmon : Technical Report 9 of 11.

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, Dennis D.; Mueller, Robert P.

    1993-06-01

    The Bonneville Power Administration (BPA) is developing conservation planning documentation to support the National Marine Fisheries Service`s (NMFS) recovery plan for Columbia Basin salmonid stocks that are currently listed under the Endangered Species Act (ESA). Information from the conservation planning documentation will be used as a partial scientific basis for identifying alternative conservation strategies and to make recommendations toward conserving, rebuilding, and ultimately removing these salmon stocks from the list of endangered species. This report describes the adult upstream survival study, a synthesis of biological analyses related to conditions affecting the survival of adult upstream migrant salmonids in the Columbia River system. The objective of the adult upstream survival study was to analyze existing data related to increasing the survival of adult migrant salmonids returning to the Snake River system. The fate and accountability of each stock during its upstream migration period and the uncertainties associated with measurements of escapement and survival were evaluated. Operational measures that affected the survival of adult salmon were evaluated including existing conditions, augmented flows from upstream storage release, and drawdown of mainstem reservoirs. The potential impacts and benefits of these measures to each ESA stock were, also described based on considerations of species behavior and run timing.

  18. The 1988 INEL [Idaho National Engineering Laboratory] microearthquake survey near the western edge of the eastern Snake River Plain

    International Nuclear Information System (INIS)

    Jackson, S.M.; Anderson, D.M.; Carpenter, G.S.; Gilbert, H.K.; Martin, S.M.; Permann, P.J.

    1989-08-01

    A network of seventeen analog recording seismograph, spaced approximately 2 km apart, were operated from May to November, 1988 near the western edge of the eastern Snake River Plain (ESRP) to record small magnitude microearthquakes. Two three-component digital seismographs were also installed to record the microearthquake activity for analysis of earthquake source parameters and any regional earthquakes for possible analysis of the localized site and crustal effects of the ESRP on earthquake ground motions. We determined near-surface crustal velocities for this area that were slightly lower than the near-surface crustal velocities presently used in routine locations of events recorded by the INEL Seismic Network from five 100 lb surface blasts. During the survey period, only two earthquakes were located near the network area. One of the events occurred in May and was recorded by four of the portable seismic stations and two of the permanent INEL Seismic Network stations. It had a coda magnitude (M c ) of approximately 0.3. The other event was recorded by seventeen portable analog stations and three of the permanent INEL Seismic Network stations. We located this microearthquake, M c =0.5, about 2 km west of Howe, Idaho, off of the ESRP. We determined an unconstrained focal mechanism for this event, which could be interpreted as normal faulting striking N 44 degree W or strike-slip faulting on a plane striking either N 44 degree W or N 47 degree E. 26 refs., 10 figs., 3 tabs

  19. Trend Detection for the Extent of Irrigated Agriculture in Idaho’s Snake River Plain, 1984–2016

    Directory of Open Access Journals (Sweden)

    Eric W. Chance

    2018-01-01

    Full Text Available Understanding irrigator responses to changes in water availability is critical for building strategies to support effective management of water resources. Using remote sensing data, we examine farmer responses to seasonal changes in water availability in Idaho’s Snake River Plain for the time series 1984–2016. We apply a binary threshold based on the seasonal maximum of the Normalized Difference Moisture Index (NDMI using Landsat 5–8 images to distinguish irrigated from non-irrigated lands. We find that the NDMI of irrigated lands increased over time, consistent with trends in irrigation technology adoption and increased crop productivity. By combining remote sensing data with geospatial data describing water rights for irrigation, we show that the trend in NDMI is not universal, but differs by farm size and water source. Farmers with small farms that rely on surface water are more likely than average to have a large contraction (over −25% in irrigated area over the 33-year period of record. In contrast, those with large farms and access to groundwater are more likely than average to have a large expansion (over +25% in irrigated area over the same period.

  20. A comparative evaluation of conceptual models for the Snake River Plain aquifer at the Idaho Chemical Processing Plant, INEL

    International Nuclear Information System (INIS)

    Prahl, C.J.

    1992-01-01

    Geologic and hydrologic data collected by the United States Geological Survey (USGS) are used to evaluate the existing ground water monitoring well network completed in the upper portion of the Snake River Plain aquifer (SRPA) beneath the Idaho Chemical Processing Plant (ICPP). The USGS data analyzed and compared in this study include: (a) lithologic, geophysical, and stratigraphic information, including the conceptual geologic models intrawell, ground water flow measurement (Tracejector tests) and (c) dedicated, submersible, sampling group elevations. Qualitative evaluation of these data indicate that the upper portion of the SRPA is both heterogeneous and anisotropic at the scale of the ICPP monitoring well network. Tracejector test results indicate that the hydraulic interconnection and spatial configuration of water-producing zones is extremely complex within the upper portion of the SRPA. The majority of ICPP monitoring wells currently are equipped to sample ground water only the upper lithostratigraphic intervals of the SRPA, primarily basalt flow groups E, EF, and F. Depth-specific hydrogeochemical sampling and analysis are necessary to determine if ground water quality varies significantly between the various lithostratigraphic units adjacent to individual sampling pumps

  1. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, D.

    1996-05-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout.

  2. Review of potential interactions between stocked rainbow trout and listed Snake River sockeye salmon in Pettit Lake Idaho

    International Nuclear Information System (INIS)

    Teuscher, D.

    1996-01-01

    The objective of this study was to determine if hatchery rainbow trout compete with or prey on juvenile Snake River sockeye salmon Oncorhynchus nerka in Pettit Lake, Idaho. In 1995, a total of 8,570 age-0 sockeye and 4,000 hatchery rainbow trout were released in Pettit Lake. After releasing the fish, gillnets were set in the pelagic and littoral zones to collected diet and spatial distribution data. Interactions were assessed monthly from June 1995 through March 1996. Competition for food was discounted based on extremely low diet overlap results observed throughout the sample period. Conversely, predation interactions were more significant. A total of 119 rainbow trout stomachs were analyzed, two contained O. nerka. The predation was limited to one sample period, but when extrapolated to the whole rainbow trout populations results in significant losses. Total consumption of O. nerka by rainbow trout ranged from an estimated 10 to 23% of initial stocking numbers. Predation results contradict earlier findings that stocked rainbow trout do not prey on wild kokanee or sockeye in the Sawtooth Lakes. The contradiction may be explained by a combination of poorly adapted hatchery sockeye and a littoral release site that forced spatial overlap that was not occurring in the wild populations. Releasing sockeye in the pelagic zone may have reduced or eliminated predation losses to rainbow trout

  3. Snake resonances

    International Nuclear Information System (INIS)

    Tepikian, S.

    1988-01-01

    Siberian Snakes provide a practical means of obtaining polarized proton beams in large accelerators. The effect of snakes can be understood by studying the dynamics of spin precession in an accelerator with snakes and a single spin resonance. This leads to a new class of energy independent spin depolarizing resonances, called snake resonances. In designing a large accelerator with snakes to preserve the spin polarization, there is an added constraint on the choice of the vertical betatron tune due to the snake resonances. 11 refs., 4 figs

  4. Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Cegelski, Christine C.; Campbell, Matthew R.

    2006-05-30

    Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

  5. Survival Estimates for the Passage of Spring-Migrating Juvenile Salmonids through Snake and Columbia River Dams and Reservoirs, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zabel, Richard; Williams, John G.; Smith, Steven G. (Northwest and Alaska Fisheries Science Center, Fish Ecology Division, Seattle, WA)

    2002-06-01

    In 2001, the National Marine Fisheries Service and the University of Washington completed the ninth year of a study to estimate survival and travel time of juvenile salmonids (Oncorhynchus spp.) passing through dams and reservoirs on the Snake and Columbia Rivers. All estimates were derived from passive integrated transponder (PIT)-tagged fish. We PIT tagged and released at Lower Granite Dam a total of 17,028 hatchery and 3,550 wild steelhead. In addition, we utilized fish PIT tagged by other agencies at traps and hatcheries upstream of the hydropower system and sites within the hydropower system. PIT-tagged smolts were detected at interrogation facilities at Lower Granite, Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams and in the PIT-tag detector trawl operated in the Columbia River estuary. Survival estimates were calculated using the Single-Release Model. Primary research objectives in 2001 were to: (1) estimate reach and project survival and travel time in the Snake and Columbia Rivers throughout the yearling chinook salmon and steelhead migrations; (2) evaluate relationships between survival estimates and migration conditions; and (3) evaluate the survival-estimation models under prevailing conditions. This report provides reach survival and travel time estimates for 2001 for PIT-tagged yearling chinook salmon and steelhead (hatchery and wild) in the Snake and Columbia Rivers. Results are reported primarily in the form of tables and figures with a minimum of text. More details on methodology and statistical models used are provided in previous reports cited in the text. Results for summer-migrating chinook salmon will be reported separately.

  6. Snake River Sockeye salmon habitat and limnological research. Annual report 1995

    International Nuclear Information System (INIS)

    Teuscher, D.; Taki, D.

    1996-05-01

    This report contains studies which are part of the Bonneville Power Administration's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Attention is focused on population monitoring studies in the Sawtooth Valley Lakes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  7. Genetic diversity of riperian populations of glycyrrhiza lepidota along the salmon and snake rivers

    Science.gov (United States)

    Glycyrrhiza lepidota Pursh (Fabaceae; American wild licorice), is a nitrogen-fixing, perennial, facultative riparian species present along many dryland rivers in western North America, including the U.S., southern Canada and northern Mexico. Like Glycyrrhiza glabra, common licorice native to Europe,...

  8. Effects of Hydroelectric Dam Operations on the Restoration Potential of Snake River Fall Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat Final Report, October 2005 - September 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Timothy P.; Richmond, Marshall C.; Arntzen, Evan V. [Pacific Northwest National Laboratory

    2007-11-13

    This report describes research conducted by the Pacific Northwest National Laboratory for the Bonneville Power Administration (BPA) as part of the Fish and Wildlife Program directed by the Northwest Power and Conservation Council. The study evaluated the restoration potential of Snake River fall Chinook salmon spawning habitat within the impounded lower Snake River. The objective of the research was to determine if hydroelectric dam operations could be modified, within existing system constraints (e.g., minimum to normal pool levels; without partial removal of a dam structure), to increase the amount of available fall Chinook salmon spawning habitat in the lower Snake River. Empirical and modeled physical habitat data were used to compare potential fall Chinook salmon spawning habitat in the Snake River, under current and modified dam operations, with the analogous physical characteristics of an existing fall Chinook salmon spawning area in the Columbia River. The two Snake River study areas included the Ice Harbor Dam tailrace downstream to the Highway 12 bridge and the Lower Granite Dam tailrace downstream approximately 12 river kilometers. These areas represent tailwater habitat (i.e., riverine segments extending from a dam downstream to the backwater influence from the next dam downstream). We used a reference site, indicative of current fall Chinook salmon spawning areas in tailwater habitat, against which to compare the physical characteristics of each study site. The reference site for tailwater habitats was the section extending downstream from the Wanapum Dam tailrace on the Columbia River. Fall Chinook salmon spawning habitat use data, including water depth, velocity, substrate size and channelbed slope, from the Wanapum reference area were used to define spawning habitat suitability based on these variables. Fall Chinook salmon spawning habitat suitability of the Snake River study areas was estimated by applying the Wanapum reference reach habitat

  9. Snake River Sockeye Salmon Habitat and Limnological Research; 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Teuscher, David; Taki, Doug [Shoshone-Bannock Tribes, Fort Hall, ID

    1996-05-01

    This report contains studies which are part of the Bonneville Power Administration`s program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. Attention is focused on population monitoring studies in the Sawtooth Valley Lakes. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  10. Controversy, Conflict and Compromise: A History of the Lower Snake River Development

    Science.gov (United States)

    1994-01-01

    river, farmers cultivated the loess-covered hills, and ranchers grazed sheep and cattle in the Channeled Scablands. Towns grew up to serve the...North America, the Nez Perce and Palouse practiced selective breeding. They castrated poorer stallions and traded inferior stock to neighboring...rains," making it impossible for "some kinds of grain [to] flourish," he noted that cattle and horses grew fat on the rich bunchgrass, and, like Lewis

  11. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; Annual Progress Report, April 2007 - March 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Mallette, Christine [Oregon Department of Fish and Wildlife

    2009-07-28

    We report on our progress from April 2007 through March 2008 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), Columbia River Inter-Tribal Fish Commission (CRITFC; Report C), and Montana State University (MSU; Report D). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  12. Tritium, stable istopes, and nitrogen in flow from selected springs that discharge to the Snake River, Twin Falls-Hagerman area, Idaho, 1990-93

    International Nuclear Information System (INIS)

    Mann, L.J.; Low, W.H.

    1994-01-01

    In 1990-93, tritium concentrations in water from 19 springs along the north side of the Snake River near Twin Falls and Hagerman ranged from 9.2±0.6 to 78.4±5.1 picocuries per liter (pCi/L). The springs were placed into three categories on the basis of their locations and tritium concentrations: Category I springs are the farthest upstream and contained from 52.8±3.2 to 78.4±5.1 pCi/L of tritium; Category II springs are downstream from those in Category I and contained from 9.2±0.6 to 18.5±1.2 pCi/L; and Category III springs are the farthest downstream and contained from 28.3±1.9 to 47.7±3.2 pCi/L. Differences in tritium concentrations in Category I, II, and III springs are a function of the ground-water flow regimes and land uses in and hydraulically upgradient from each category of springs. A comparatively large part of the water from the Category I springs is from excess applied-irrigation water which has been diverted from the Snake River. A large part of the recharge for Category II springs originates as many as 140 miles upgradient from the springs. Tritium concentrations in Category III springs indicate that the proportion of recharge from excess applied-irrigation water is intermediate to proportions for Category I and II springs. Tritium concentrations in precipitation and in the Snake River were relatively large in the 1950's and 1960's owing to atmospheric testing of nuclear weapons. Conversely, tritium concentrations in ground water with a residence time of several tens to a few hundred years, as occurs in the Snake River Plain aquifer hydraulically upgradient from the Category II springs, are comparatively small because of the 12.4-year half-life of tritium. The conclusion that recharge from excess applied-irrigation water from the Snake River has affected tritium in the Snake River Plain aquifer is supported by differences in the deuterium ( 2 H) and oxygen-18 ( 18 O) ratios of water. These ratios indicate that water discharged by the springs

  13. Monitoring recharge in areas of seasonally frozen ground in the Columbia Plateau and Snake River Plain, Idaho, Oregon, and Washington

    Science.gov (United States)

    Mastin, Mark; Josberger, Edward

    2014-01-01

    Seasonally frozen ground occurs over approximately one‑third of the contiguous United States, causing increased winter runoff. Frozen ground generally rejects potential groundwater recharge. Nearly all recharge from precipitation in semi-arid regions such as the Columbia Plateau and the Snake River Plain in Idaho, Oregon, and Washington, occurs between October and March, when precipitation is most abundant and seasonally frozen ground is commonplace. The temporal and spatial distribution of frozen ground is expected to change as the climate warms. It is difficult to predict the distribution of frozen ground, however, because of the complex ways ground freezes and the way that snow cover thermally insulates soil, by keeping it frozen longer than it would be if it was not snow covered or, more commonly, keeping the soil thawed during freezing weather. A combination of satellite remote sensing and ground truth measurements was used with some success to investigate seasonally frozen ground at local to regional scales. The frozen-ground/snow-cover algorithm from the National Snow and Ice Data Center, combined with the 21-year record of passive microwave observations from the Special Sensor Microwave Imager onboard a Defense Meteorological Satellite Program satellite, provided a unique time series of frozen ground. Periodically repeating this methodology and analyzing for trends can be a means to monitor possible regional changes to frozen ground that could occur with a warming climate. The Precipitation-Runoff Modeling System watershed model constructed for the upper Crab Creek Basin in the Columbia Plateau and Reynolds Creek basin on the eastern side of the Snake River Plain simulated recharge and frozen ground for several future climate scenarios. Frozen ground was simulated with the Continuous Frozen Ground Index, which is influenced by air temperature and snow cover. Model simulation results showed a decreased occurrence of frozen ground that coincided with

  14. Parabolic distribution of circumeastern Snake River Plain seismicity and latest Quaternary faulting: Migratory pattern and association with the Yellowstone hotspot

    Science.gov (United States)

    Anders, Mark H.; Geissman, John Wm.; Piety, Lucille A.; Sullivan, J. Timothy

    1989-02-01

    The Intermountain and Idaho seismic belts within Idaho, Wyoming, and Montana form an unusual parabolic pattern about the axis of the aseismic eastern Snake River Plain (SRP). This pattern is also reflected in the distribution of latest Quaternary normal faults. Several late Cenozoic normal faults that trend perpendicular to the axis of the eastern SRP extend from the aseismic region to the region of latest Quaternary faulting and seismicity. A study of the late Miocene to Holocene displacement history of one of these, the Grand Valley fault system in southeastern Idaho and western Wyoming, indicates that a locus of high displacement rates has migrated away from the eastern SRP to its present location in southern Star Valley in western Wyoming. In Swan Valley the studied area closest to the eastern SRP, isotopic ages, and paleomagnetic data for over 300 samples from 47 sites on well-exposed late Cenozoic volcanic rocks (the tuff of Spring Creek, the tuff of Heise, the Huckleberry Ridge tuff, the Pine Creek Basalt, and an older tuff thought to be the tuff of Cosgrove Road) are used to demonstrate differences in the displacement rate on the Grand Valley fault over the last ˜10 m.y. Tectonic tilts for these volcanic rocks are estimated by comparing the results of paleomagnetic analyses in Swan Valley to similar analyses of samples from undeformed volcanic rocks outside of Swan Valley. Basin geometry and tilt axes are established using seismic reflection profiles and field mapping. Combining these data with the tilt data makes it possible to calculate displacement rates during discrete temporal intervals. An average displacement rate of ˜1.8 mm/yr is calculated for the Grand Valley fault in Swan Valley between 4.4 and 2.0 Ma. In the subsequent 2.0-m.y. interval the rate dropped 2 orders of magnitude to ˜0.014 mm/yr; during the preceding 5.5-m.y. interval the displacement rate is ˜0.15 mm/yr, or about 1 order of magnitude less than the rate between 4.4 and 2.0 Ma

  15. Synthesis of juvenile lamprey migration and passage research and monitoring at Columbia and Snake River Dams

    Science.gov (United States)

    Mesa, Matthew G.; Weiland, Lisa K.; Christiansen, Helena E.

    2016-01-01

    We compiled and summarized previous sources of data and research results related to the presence, numbers, and migration timing characteristics of juvenile (eyed macropthalmia) and larval (ammocoetes) Pacific lamprey Entosphenus tridentatus, in the Columbia River basin (CRB). Included were data from various screw trap collections, data from historic fyke net studies, catch records of lampreys at JBS facilities, turbine cooling water strainer collections, and information on the occurrence of lampreys in the diets of avian and piscine predators. We identified key data gaps and uncertainties that should be addressed in a juvenile lamprey passage research program. The goal of this work was to summarize information from disparate sources so that managers can use it to prioritize and guide future research and monitoring efforts related to the downstream migration of juvenile Pacific lamprey within the CRB. A common finding in all datasets was the high level of variation observed for CRB lamprey in numbers present, timing and spatial distribution. This will make developing monitoring programs to accurately characterize lamprey migrations and passage more challenging. Primary data gaps centered around our uncertainty on the numbers of juvenile and larval present in the system which affects the ability to assign risk to passage conditions and prioritize management actions. Recommendations include developing standardized monitoring methods, such as at juvenile bypass systems (JBS’s), to better document numbers and timing of lamprey migrations at dams, and use biotelemetry tracking techniques to estimate survival potentials for different migration histories.

  16. Snake River Sockeye Salmon (Oncorhynchus Nerka) Habitat/Limnologic Research : Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Spaulding, Scott

    1993-05-01

    This report outlines long-term planning and monitoring activities that occurred in 1991 and 1992 in the Stanley Basin Lakes of the upper Salmon River, Idaho for the purpose of sockeye salmon nerka) recovery. Limnological monitoring and experimental sampling protocol, designed to establish a limnological baseline and to evaluate sockeye salmon production capability of the lakes, are presented. Also presented are recommended passage improvements for current fish passage barriers/impediments on migratory routes to the lakes. We initiated O. nerka population evaluations for Redfish and Alturas lakes; this included population estimates of emerging kokanee fry entering each lake in the spring and adult kokanee spawning surveys in tributary streams during the fall. Gill net evaluations of Alturas, Pettit, and Stanley lakes were done in September, 1992 to assess the relative abundance of fish species among the Stanley Basin lakes. Fish population data will be used to predict sockeye salmon production potential within a lake, as well as a baseline to monitor long-term fish community changes as a result of sockeye salmon recovery activities. Also included is a paper that reviews sockeye salmon enhancement activities in British Columbia and Alaska and recommends strategies for the release of age-0 sockeye salmon that will be produced from the current captive broodstock.

  17. Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer

    International Nuclear Information System (INIS)

    McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M.

    1995-03-01

    This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model was developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study

  18. Estimation of hydraulic properties and development of a layered conceptual model for the Snake River plain aquifer at the Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Frederick, D.B.; Johnson, G.S.

    1996-02-01

    The Idaho INEL Oversight Program, in association with the University of Idaho, Idaho Geological Survey, Boise State University, and Idaho State University, developed a research program to determine the hydraulic properties of the Snake River Plain aquifer and characterize the vertical distribution of contaminants. A straddle-packer was deployed in four observation wells near the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Pressure transducers mounted in the straddle-packer assembly were used to monitor the response of the Snake River Plain aquifer to pumping at the ICPP production wells, located 2600 to 4200 feet from the observation wells. The time-drawdown data from these tests were used to evaluate various conceptual models of the aquifer. Aquifer properties were estimated by matching time-drawdown data to type curves for partially penetrating wells in an unconfined aquifer. This approach assumes a homogeneous and isotropic aquifer. The hydraulic properties of the aquifer obtained from the type curve analyses were: (1) Storativity = 3 x 10 -5 , (2) Specific Yield = 0.01, (3) Transmissivity = 740 ft 2 /min, (4) Anisotropy (Kv:Kh)= 1:360

  19. In Situ Production of Chlorine-36 in the Eastern Snake River Plain Aquifer, Idaho: Implications for Describing Ground-Water Contamination Near a Nuclear Facility

    International Nuclear Information System (INIS)

    Cecil, L. D.; Knobel, L. L.; Green, J. R.; Frape, S. K.

    2000-01-01

    The purpose of this report is to describe the calculated contribution to ground water of natural, in situ produced 36Cl in the eastern Snake River Plain aquifer and to compare these concentrations in ground water with measured concentrations near a nuclear facility in southeastern Idaho. The scope focused on isotopic and chemical analyses and associated 36Cl in situ production calculations on 25 whole-rock samples from 6 major water-bearing rock types present in the eastern Snake River Plain. The rock types investigated were basalt, rhyolite, limestone, dolomite, shale, and quartzite. Determining the contribution of in situ production to 36Cl inventories in ground water facilitated the identification of the source for this radionuclide in environmental samples. On the basis of calculations reported here, in situ production of 36Cl was determined to be insignificant compared to concentrations measured in ground water near buried and injected nuclear waste at the INEEL. Maximum estimated 36Cl concentrations in ground water from in situ production are on the same order of magnitude as natural concentrations in meteoric water

  20. Ecology of the Opossum Shrimp (Neomysis mercedis) in a Lower Snake River Reservoir, Washington

    Science.gov (United States)

    Tiffan, Kenneth F.; Erhardt, John M.; Bickford, Brad

    2017-01-01

    The opossum shrimp Neomysis mercedis has expanded its range from the lower Columbia River upstream 695 kilometers into Lower Granite Reservoir where it is now very abundant. We studied Neomysis ecology in the reservoir during 2011–2015 to better understand the physical and biological factors that shape their distribution as well as their potential role in the food web. Benthic densities in offshore habitats ranged from 19 to 145 mysids m-2 in shallow (2–12 m) water and from 3 to 48 mysids m-2 in deep (> 12 m) water. Water velocity, depth, substrate, and seasonal interactions were important variables for explaining variation in Neomysis densities in offshore habitats. During spring, daytime densities in shoreline habitats (reproduction and as temperatures approached 23 °C. Neomysis were mainly collected from the water column during nighttime vertical tows in the downstream end of the reservoir when water velocities were low during summer and autumn. Reproduction occurred mainly in spring and early summer, but a second, smaller reproductive event was observed during autumn. The diet of Neomysis consisted primarily of detritus, rotifers, and copepods, but cladocerans were more prominent during summer and autumn. Physical factors like water velocity may have limited vertical migrations of Neomysis to feed in the water column and influenced use of different habitats in the reservoir. Neomysis are prey for a number of species, including juvenile salmon, but their relations are still largely unknown, and continued monitoring and research is warranted.

  1. Factors Affecting Route Selection and Survival of Steelhead Kelts at Snake River Dams in 2012 and 2013

    Energy Technology Data Exchange (ETDEWEB)

    Harnish, Ryan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colotelo, Alison HA [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xinya [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ham, Kenneth D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Zhiqun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    turbines. The side of the river in which kelts approached the dam and dam operations also affected route of passage. Dam operations and the size and condition of kelts were found to have the greatest effect on route-specific survival probabilities for fish that passed via the spillway at LGS. That is, longer kelts and those in fair condition had a lower probability of survival for fish that passed via the spillway weir. The survival of spillway weir- and deep-spill passed kelts was positively correlated with the percent of the total discharge that passed through turbine unit 4. Too few kelts passed through the traditional spill, JBS, and turbine units to evaluate survival through these routes. The information gathered in this study describes Snake River steelhead kelt passage behavior, rates, and distributions through the FCRPS as well as provide information to biologists and engineers about the dam operations and abiotic conditions that are related to passage and survival of steelhead kelts.

  2. Energy - Water Nexus -- Meeting the Energy and Water Needs of the Snake/Columbia River Basin in the 21st CenturyScience and Technology SummitConference Results

    Energy Technology Data Exchange (ETDEWEB)

    Paul L. Wichlacz; Gerald Sehlke

    2008-02-01

    In June 2007, representatives from federal, state, and academic institutions met to discuss the role of innovative science, technology, and policy in meeting future energy and water demands in the Snake-Columbia River Basin. Conference members assessed the state-of-the-science, technology, and associated research to develop cost-effective and environmentally sound methodologies and technologies to maximize the production of energy and availability of water and to minimize the consumption of both water and energy in the Snake-Columbia River system. Information on all phases of science and technology development, theoretical analysis, laboratory experiments, pilot tests, and field applications were relevant topics for discussion. An overview of current management needs was presented the first day. On the second day, five focus groups were created: ? Energy Generation and Use ? Water Allocation and Use ? Energy/Water Storage ? Environmental Considerations ? Social, Economic, Political, and Regulatory Considerations. Each group started with a list of status items and trends, and discussed the future challenges and research needed to reach four goals: ? Balance energy production and resource consumption ? Balance water availability and competing needs ? Balance water consumption/energy production and competing needs ? Balance environmental impacts and water use/energy production ? Balance costs and benefits of water use. The resulting initiatives were further broken down into three categories of importance: critical, important, and nice to do but could be delayed. Each initiative was assigned a number of dots to show a more refined ranking. The results of each focus group are given in the pages that follow. These results are intended to help local and regional researchers 1. Develop a technical strategy for developing cost-effective science and technology to predict, measure, monitor, purify, conserve, and store water and to maximize power generation, storage, and

  3. Effects of Hyporheic Exchange Flows on Egg Pocket Water Temperature in Snake River Fall Chinook Salmon Spawning Areas, 2002-2003 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, T.; Geist, D.; Arntzen, C. (Pacific Northwest National Laboratory)

    2004-09-01

    The development of the Snake River hydroelectric system has affected fall Chinook salmon smolts by shifting their migration timing to a period (mid- to late-summer) when downstream reservoir conditions are unfavorable for survival. Subsequent to the Snake River Chinook salmon fall-run Evolutionary Significant Unit being listed as Threatened under the Endangered Species Act, recovery planning has included changes in hydrosystem operations (e.g., summer flow augmentation) to improve water temperature and flow conditions during the juvenile Chinook salmon summer migration period. In light of the limited water supplies from the Dworshak reservoir for summer flow augmentation, and the associated uncertainties regarding benefits to migrating fall Chinook salmon smolts, additional approaches for improved smolt survival need to be evaluated. This report describes research conducted by the Pacific Northwest National Laboratory (PNNL) that evaluated relationships among river discharge, hyporheic zone characteristics, and egg pocket water temperature in Snake River fall Chinook salmon spawning areas. This was a pilot-scale study to evaluate these relationships under existing operations of Hells Canyon Dam (i.e., without any prescribed manipulations of river discharge) during the 2002-2003 water year. The project was initiated in the context of examining the potential for improving juvenile Snake River fall Chinook salmon survival by modifying the discharge operations of Hells Canyon Dam. The potential for improved survival would be gained by increasing the rate at which early life history events proceed (i.e., incubation and emergence), thereby allowing smolts to migrate through downstream reservoirs during early- to mid-summer when river conditions are more favorable for survival. PNNL implemented this research project at index sites throughout 160 km of the Hells Canyon Reach (HCR) of the Snake River. The HCR extends from Hells Canyon Dam (river kilometer [rkm] 399

  4. Mixing effects on geothermometric calculations of the Newdale geothermal area in the Eastern Snake River Plain, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Ghanashayam Neupane; Earl D. Mattson; Travis L. McLing; Cody J. Cannon; Thomas R. Wood; Trevor A. Atkinson; Patrick F. Dobson; Mark E. Conrad

    2016-02-01

    The Newdale geothermal area in Madison and Fremont Counties in Idaho is a known geothermal resource area whose thermal anomaly is expressed by high thermal gradients and numerous wells producing warm water (up to 51 °C). Geologically, the Newdale geothermal area is located within the Eastern Snake River Plain (ESRP) that has a time-transgressive history of sustained volcanic activities associated with the passage of Yellowstone Hotspot from the southwestern part of Idaho to its current position underneath Yellowstone National Park in Wyoming. Locally, the Newdale geothermal area is located within an area that was subjected to several overlapping and nested caldera complexes. The Tertiary caldera forming volcanic activities and associated rocks have been buried underneath Quaternary flood basalts and felsic volcanic rocks. Two southeast dipping young faults (Teton dam fault and an unnamed fault) in the area provide the structural control for this localized thermal anomaly zone. Geochemically, water samples from numerous wells in the area can be divided into two broad groups – Na-HCO3 and Ca-(Mg)-HCO3 type waters and are considered to be the product of water-rhyolite and water-basalt interactions, respectively. Each type of water can further be subdivided into two groups depending on their degree of mixing with other water types or interaction with other rocks. For example, some bivariate plots indicate that some Ca-(Mg)-HCO3 water samples have interacted only with basalts whereas some samples of this water type also show limited interaction with rhyolite or mixing with Na-HCO3 type water. Traditional geothermometers [e.g., silica variants, Na-K-Ca (Mg-corrected)] indicate lower temperatures for this area; however, a traditional silica-enthalpy mixing model results in higher reservoir temperatures. We applied a new multicomponent equilibrium geothermometry tool (e.g., Reservoir Temperature Estimator, RTEst) that is based on inverse geochemical modeling which

  5. Monitoring and evaluation of smolt migration in the Columbia Basin, Volume II: Evaluation of the 1996 predictions of the run-timing of wild migrant subyearling chinook in the Snake River Basin using Program RealTime.; TOPICAL

    International Nuclear Information System (INIS)

    Skalski, John R.; Townsend, Richard L.; Yasuda, Dean

    1998-01-01

    This project was initiated in 1991 in response to the Endangered Species Act (ESA) listings in the Snake River Basin of the Columbia River Basin. Primary objectives and management implications of this project include: (1)to address the need for further synthesis of historical tagging and other biological information to improve understanding and identify future research and analysis needs; (2)to assist in the development of improved monitoring capabilities, statistical methodologies and software tools to aid management in optimizing operational and fish passage strategies to maximize the protection and survival of listed threatened and endangered Snake River salmon populations and other listed and nonlisted stocks in the Columbia River Basin; (3)to design better analysis tools for evaluation programs; and (4)to provide statistical support to the Bonneville Power Administration and the Northwest fisheries community

  6. Effect of Multiple Turbine Passage on Juvenile Snake River Salmonid Survival

    International Nuclear Information System (INIS)

    Ham, Kenneth D.; Anderson, James J.; Vucelick, Jessica A.

    2005-01-01

    This report describes a study conducted by Pacific Northwest National Laboratory to identify populations of migrating juvenile salmonids with a potential to be impacted by repeated exposure to turbine passage conditions. This study is part of a research program supported by the U.S. Department of Energy Wind/Hydropower Program. The program's goal is to increase hydropower generation and capacity while enhancing environmental performance. Our study objective is to determine whether the incremental effects of turbine passage during downstream migration impact populations of salmonids. When such a potential is found to exist, a secondary objective is to determine what level of effect of passing multiple turbines is required to decrease the number of successful migrants by 10%. This information will help identify whether future laboratory or field studies are feasible and design those studies to address conditions that present the greatest potential to improve dam survival and thus benefit fish and power generation

  7. Iodine-129 in the eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho, 2010-12

    Science.gov (United States)

    Bartholomay, Roy C.

    2013-01-01

    From 1953 to 1988, approximately 0.941 curies of iodine-129 (129I) were contained in wastewater generated at the Idaho National Laboratory (INL) with almost all of this wastewater discharged at or near the Idaho Nuclear Technology and Engineering Center (INTEC). Most of the wastewater containing 129I was discharged directly into the eastern Snake River Plain (ESRP) aquifer through a deep disposal well until 1984; lesser quantities also were discharged into unlined infiltration ponds or leaked from distribution systems below the INTEC. During 2010–12, the U.S. Geological Survey in cooperation with the U.S. Department of Energy collected groundwater samples for 129I from 62 wells in the ESRP aquifer to track concentration trends and changes for the carcinogenic radionuclide that has a 15.7 million-year half-life. Concentrations of 129I in the aquifer ranged from 0.0000013±0.0000005 to 1.02±0.04 picocuries per liter (pCi/L), and generally decreased in wells near the INTEC, relative to previous sampling events. The average concentration of 129I in groundwater from 15 wells sampled during four different sample periods decreased from 1.15 pCi/L in 1990–91 to 0.173 pCi/L in 2011–12. All but two wells within a 3-mile radius of the INTEC showed decreases in concentration, and all but one sample had concentrations less than the U.S. Environmental Protection Agency maximum contaminant level of 1 pCi/L. These decreases are attributed to the discontinuation of disposal of 129I in wastewater and to dilution and dispersion in the aquifer. The decreases in 129I concentrations, in areas around INTEC where concentrations increased between 2003 and 2007, were attributed to less recharge near INTEC either from less flow in the Big Lost River or from less local snowmelt and anthropogenic sources. Although wells near INTEC sampled in 2011–12 showed decreases in 129I concentrations compared with previously collected data, some wells south and east of the Central Facilities Area

  8. Constraining the dynamics of the water budget at high spatial resolution in the world's water towers using models and remote sensing data; Snake River Basin, USA

    Science.gov (United States)

    Watson, K. A.; Masarik, M. T.; Flores, A. N.

    2016-12-01

    Mountainous, snow-dominated basins are often referred to as the water towers of the world because they store precipitation in seasonal snowpacks, which gradually melt and provide water supplies to downstream communities. Yet significant uncertainties remain in terms of quantifying the stores and fluxes of water in these regions as well as the associated energy exchanges. Constraining these stores and fluxes is crucial for advancing process understanding and managing these water resources in a changing climate. Remote sensing data are particularly important to these efforts due to the remoteness of these landscapes and high spatial variability in water budget components. We have developed a high resolution regional climate dataset extending from 1986 to the present for the Snake River Basin in the northwestern USA. The Snake River Basin is the largest tributary of the Columbia River by volume and a critically important basin for regional economies and communities. The core of the dataset was developed using a regional climate model, forced by reanalysis data. Specifically the Weather Research and Forecasting (WRF) model was used to dynamically downscale the North American Regional Reanalysis (NARR) over the region at 3 km horizontal resolution for the period of interest. A suite of satellite remote sensing products provide independent, albeit uncertain, constraint on a number of components of the water and energy budgets for the region across a range of spatial and temporal scales. For example, GRACE data are used to constrain basinwide terrestrial water storage and MODIS products are used to constrain the spatial and temporal evolution of evapotranspiration and snow cover. The joint use of both models and remote sensing products allows for both better understanding of water cycle dynamics and associated hydrometeorologic processes, and identification of limitations in both the remote sensing products and regional climate simulations.

  9. Fate and transport of trace metals and rare earth elements in the Snake River, an AMD/ARD-impacted watershed. Montezuma, Colorado USA.

    Science.gov (United States)

    McKnight, D. M.; Rue, G.

    2017-12-01

    Recent research in Snake River Watershed, located near the historic boomtown of Montezuma and adjacent the Continental Divide in the Colorado Rocky Mountains, has revealed the distinctive occurrence of rare earth elements (REE) at high concentrations. Here the weathering of the mineralized lithology naturally generates acid rock drainage (ARD) in addition to drainage recieved from abandoned mine adits throughout the area, results in aqueous REE concentrations three orders of magnitude higher than in most major rivers. The dominant mechanism responsible for this enrichment; their dissolution from secondary and accessory mineral stocks, abundant in REEs, promoted by the low pH waters generated from geochemical weathering of disseminated sulfide minerals. While REEs behave conservatively in acidic conditions, as well as in the presence of stabilizing ligands such as sulfate, downstream circumneutral inputs from pristine streams and a rising pH are resulting in observed fractional losses of heavy rare earth elements as well as partitioning towards colloidal and solid phases. These finding in combination with the established role of dissolved organic matter (DOM) in binding with both trace metals and REEs, suggest that competitive interactions, complexation, and scavenging are likely contributing to these proportional losses. However, outstanding questions yet remain regarding the effects of an increasing flux of trace metals as well as REEs from the Snake River Watershed into Dillon Reservoir, a major drinking water supply for the City of Denver, in part due to hydroclimatological drivers that are enhancing geochemical weathering and reducing groundwater recharge in alpine areas across the Colorado Rockies. Based on these findings also we seek to broaden this body of work to further investigate the behavior of rare earth elements (REE) in other aquatic environment as well the influence of trace metals, DOM, and pH in altering their reactivity and subsequent watershed

  10. Siberian snakes for the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Anferov, V.A.; Baiod, R.; Courant, E.D.

    1993-01-01

    Appropriate Siberian snakes were designed to maintain the proton beam polarization during acceleration in the Fermilab Main Injector from 8 to 150 GeV. Various snake designs were investigated to find one fitting into the 14 m straight section spaces with the required spin rotation axis and the minimum orbit excursion. The authors studied both cold and warm discrete magnet snakes as well as warm snakes with helical magnets. For the warm discrete magnet snake, obtaining small orbit excursions required a nearly longitudinal snake axis, while axes near ±45 degrees are needed when using two snakes in a ring. The authors found acceptable snakes either by using superconducting magnets or by using warm magnets with a helical dipole field

  11. Use of field-portable ultrasonography reveals differences in developmental phenology and maternal egg provisioning in two sympatric viviparous snakes.

    Science.gov (United States)

    Sparkman, Amanda M; Chism, Kenneth R; Bronikowski, Anne M; Brummett, Lilly J; Combrink, Lucia L; Davis, Courtney L; Holden, Kaitlyn G; Kabey, Nicole M; Miller, David A W

    2018-03-01

    A thorough understanding of the life cycles underlying the demography of wild species is limited by the difficulty of observing hidden life-history traits, such as embryonic development. Major aspects of embryonic development, such as the rate and timing of development, and maternal-fetal interactions can be critical features of early-life fitness and may impact population trends via effects on individual survival. While information on development in wild snakes and lizards is particularly limited, the repeated evolution of viviparity and diversity of reproductive mode in this clade make it a valuable subject of study. We used field-portable ultrasonography to investigate embryonic development in two sympatric garter snake species, Thamnophis sirtalis and Thamnophis elegans in the Sierra Nevada mountains of California. This approach allowed us to examine previously hidden reproductive traits including the timing and annual variation in development and differences in parental investment in young. Both species are viviparous, occupy similar ecological niches, and experience the same annual environmental conditions. We found that T. sirtalis embryos were more developmentally advanced than T. elegans embryos during June of three consecutive years. We also found that eggs increased in volume more substantially across developmental stages in T. elegans than in T. sirtalis , indicating differences in maternal provisioning of embryos via placental transfer of water. These findings shed light on interspecific differences in parental investment and timing of development within the same environmental context and demonstrate the value of field ultrasonography for pursuing questions relating to the evolution of reproductive modes, and the ecology of development.

  12. The Roles of the Yellowstone Hotspot and Crustal Assimilation in Generating Pleistocene-Holocene Basalts on the Eastern Snake River Plain

    Science.gov (United States)

    Mintz, H.; Chadwick, J.

    2017-12-01

    The southwest motion of the North American plate across the Yellowstone hotspot created a chain of age-progressive rhyolitic calderas over the past 16 myr. in southern Idaho, U.S. The focus of Yellowstone activity now resides in northwest Wyoming, but basaltic volcanism has continued in its wake in southern Idaho on the eastern Snake River Plain (ESRP). These younger basaltic lavas are not age progressive and have buried the Yellowstone rhyolites on the ESRP. The ultimate source of the basalts is commonly ascribed to the passage or presence of the hotspot. However, the mechanisms involved, and the relative roles of the hotspot, other mantle sources, and the North American crust in generating the ESRP basalts remain unclear and have been the subject of recent geochemical and isotopic studies. In this study, the role of crustal assimilation is addressed by analyzing the chemical and isotopic characteristics of some of the youngest Pleistocene-Holocene tholeiitic volcanic fields on the ESRP, which were erupted through varying thicknesses of continental crust. Samples were analyzed from the Hell's Half Acre flow (5,200 years old; all dates Kuntz et al., 1986, 1994), Cerro Grande flow (13,380 years), and Black Butte Crater (a.k.a. Shoshone) flow (10,130 years), which were erupted at distances from between about 200 to 300 km from the current location of the hotspot. The crust of the ESRP thins from northeast to southwest, from about 47 km at the Hells Half Acre flow to 40 km at the Black Butte Crater flow, a thickness difference of about 15%. The apparently similar tectonic and magmatic environments of the three sampled flows suggest the crustal thickness variation may be a primary influence on the magnitude of assimilation and therefore the isotopic characteristics of the lavas. The goal of this work is to constrain the relative role of assimilation and to understand the source(s) of the magmas and the Yellowstone hotspot contribution. Major elements, trace elements

  13. Hydrostratigraphy of the Snake River Plain aquifer beneath the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory: A preliminary report

    International Nuclear Information System (INIS)

    Hegmann, M.J.; Wood, S.H.

    1994-01-01

    Geophysical logs for 6 wells which penetrate the Snake River Plain aquifer at the Radioactive Waste Management Complex (RWMC) were analyzed for preliminary information on the hydrostratigraphy. Using stratigraphic correlation of flow groups worked out by Anderson and Lewis (1989), and by Anderson, as well as gamma signatures of flows within these flow groups, correlation of individual flows is attempted. Within these flows, probable permeable zones, suggested by density and caliper logs, are identified, and zones of hydraulic connection are tentatively correlated. In order to understand the response of density and neutron logs in basalt, the geological characteristics are quantified for the 150-ft section of the well C1A core, from depth 550 to 710 ft. 9 refs., 4 figs

  14. Hydrologic influences on water-level changes in the Eastern Snake River Plain aquifer at and near the Idaho National Laboratory, Idaho, 1949-2014

    Science.gov (United States)

    Bartholomay, Roy C.; Twining, Brian V.

    2015-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, has maintained a water-level monitoring program at the Idaho National Laboratory (INL) since 1949 to systematically measure water levels to provide long-term information on groundwater recharge, discharge, movement, and storage in the eastern Snake River Plain (ESRP) aquifer. During 2014, water levels in the ESRP aquifer reached all-time lows for the period of record, prompting this study to assess the effect that future water-level declines may have on pumps and wells. Water-level data were compared with pump-setting depth to determine the hydraulic head above the current pump setting. Additionally, geophysical logs were examined to address changes in well productivity with water-level declines. Furthermore, hydrologic factors that affect water levels in different areas of the INL were evaluated to help understand why water-level changes occur.

  15. Feeding ecology of non-native Siberian prawns, Palaemon modestus (Heller, 1862) (Decapoda, Palaemonidae), in the lower Snake River, Washington, U.S.A.

    Science.gov (United States)

    Tiffan, Kenneth F.; Hurst, William

    2016-01-01

    We used both stomach content and stable isotope analyses to describe the feeding ecology of Siberian prawns Palaemon modestus (Heller, 1862), a non-native caridean shrimp that is a relatively recent invader of the lower Snake River. Based on identifiable prey in stomachs, the opossum shrimp Neomysis mercedis Holmes, 1896 comprised up to 34-55% (by weight) of diets of juvenile to adult P. modestus, which showed little seasonal variation. Other predominant items/taxa consumed included detritus, amphipods, dipteran larvae, and oligochaetes. Stable isotope analysis supported diet results and also suggested that much of the food consumed by P. modestus that was not identifiable came from benthic sources — predominantly invertebrates of lower trophic levels and detritus. Palaemon modestus consumption of N. mercedis may pose a competitive threat to juvenile salmon and resident fishes which also rely heavily on that prey.

  16. Evaluation of the 1996 predictions of the run-timing of wild migrant spring/summer yearling chinook in the Snake River Basin using Program RealTime

    International Nuclear Information System (INIS)

    Townsend, R.L.; Yasuda, D.; Skalski, J.R.

    1997-03-01

    This report is a post-season analysis of the accuracy of the 1996 predictions from the program RealTime. Observed 1996 migration data collected at Lower Granite Dam were compared to the predictions made by RealTime for the spring outmigration of wild spring/summer chinook. Appendix A displays the graphical reports of the RealTime program that were interactively accessible via the World Wide Web during the 1996 migration season. Final reports are available at address http://www.cqs.washington.edu/crisprt/. The CRISP model incorporated the predictions of the run status to move the timing forecasts further down the Snake River to Little Goose, Lower Monumental and McNary Dams. An analysis of the dams below Lower Granite Dam is available separately

  17. An evaluation of the effectiveness of flow augmentation in the Snake River, 1991-1995. Phase 1: Final report

    International Nuclear Information System (INIS)

    Giorgi, A.E.; Schlecte, J.W.

    1997-07-01

    The purpose of this evaluation was to estimate the volume and shape of flow augmentation water delivered in the Snake Basin during the years 1991 through 1995, and to assess the biological consequences to ESA-listed salmon stocks in that drainage. HDR Engineering, Inc. calculated flow augmentation estimates and compared their values to those reported by agencies in the Northwest. BioAnalysts, Inc. conducted the biological evaluation

  18. Hydrogeology and water quality in the Snake River alluvial aquifer at Jackson Hole Airport, Jackson, Wyoming, water years 2011 and 2012

    Science.gov (United States)

    Wright, Peter R.

    2013-01-01

    The hydrogeology and water quality of the Snake River alluvial aquifer at the Jackson Hole Airport in northwest Wyoming was studied by the U.S. Geological Survey, in cooperation with the Jackson Hole Airport Board, during water years 2011 and 2012 as part of a followup to a previous baseline study during September 2008 through June 2009. Hydrogeologic conditions were characterized using data collected from 19 Jackson Hole Airport wells. Groundwater levels are summarized in this report and the direction of groundwater flow, hydraulic gradients, and estimated groundwater velocity rates in the Snake River alluvial aquifer underlying the study area are presented. Analytical results of groundwater samples collected from 10 wells during water years 2011 and 2012 are presented and summarized. The water table at Jackson Hole Airport was lowest in early spring and reached its peak in July or August, with an increase of 12.5 to 15.5 feet between April and July 2011. Groundwater flow was predominantly horizontal but generally had the hydraulic potential for downward flow. Groundwater flow within the Snake River alluvial aquifer at the airport was from the northeast to the west-southwest, with horizontal velocities estimated to be about 25 to 68 feet per day. This range of velocities slightly is broader than the range determined in the previous study and likely is due to variability in the local climate. The travel time from the farthest upgradient well to the farthest downgradient well was approximately 52 to 142 days. This estimate only describes the average movement of groundwater, and some solutes may move at a different rate than groundwater through the aquifer. The quality of the water in the alluvial aquifer generally was considered good. Water from the alluvial aquifer was fresh, hard to very hard, and dominated by calcium carbonate. No constituents were detected at concentrations exceeding U.S. Environmental Protection Agency maximum contaminant levels or health

  19. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer, Idaho National Laboratory, Idaho, Emphasis 1999-2001

    Science.gov (United States)

    Davis, Linda C.

    2006-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer. This report presents an analysis of water-level and water-quality data collected from wells in the USGS ground-water monitoring networks during 1999-2001. Water in the Snake River Plain aquifer moves principally through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged principally from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. Water levels in wells rose in the northern and west-central parts of the INL by 1 to 3 feet, and declined in the southwestern parts of the INL by up to 4 feet during 1999-2001. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 1999-2001. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge. Tritium concentrations in water samples decreased as much as 8.3 picocuries per milliliter (pCi/mL) during 1999-2001, ranging from 0.43?0.14 to 13.6?0.6 pCi/mL in October 2001. Tritium concentrations in five wells near the Idaho Nuclear Technology and Engineering Center (INTEC) increased a few picocuries per milliliter from October 2000 to October 2001. Strontium-90 concentrations decreased or remained

  20. Snake bites

    Science.gov (United States)

    ... number if someone has been bitten by a snake. If possible, call ahead to the emergency room so that antivenom can be ready when the person arrives. Your local poison center can be reached directly by calling the ...

  1. Field observations of mating behavior in the neck-banded snake Scaphiodontophis annulatus (Serpentes: Colubridae

    Directory of Open Access Journals (Sweden)

    Mahmood Sasa

    2006-06-01

    Full Text Available We observed the mating behavior of the neck-banded snake Scaphiodontophis annulatus (a common species of colubrid in the South Pacific of Costa Rica in the pre-montane wet forest of Las Cruces Biological Station (San Vito de Java, Costa Rica. Three S. annulatus were observed during courtship between 10-12 AM in a patch of primary forest. The two males were observed to interact with the female, but not signs of male-male agonistic interactions were observed. Their behavior includes grabbing and holding the female, copula, and biting during the copula. Rev. Biol. Trop. 54(2: 647-650. Epub 2006 Jun 01.El comportamiento de apareamiento es descrito para la serpiente Scaphiodontophis annulatus, una especie de colúbrido común en el Pacífico sur de Costa Rica. El comportamiento incluye capturar y sujetar a la hembra, mordiscos durante la cópula y coito. Dos machos fueron observados al interactuar con una sola hembra, pero no se detectó señales de interacciones antagónicas macho-macho.

  2. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam Report C, Annual Progress Report April 2003 - March 2004

    Science.gov (United States)

    Parsley, Michael J.; Gadomski, Dena M.; Kofoot, Pete

    2005-01-01

    River discharge and water temperatures that occurred during April through July 2003 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Although optimal spawning temperatures in the four tailraces occurred for less than two weeks, they coincided with a period of relatively high river discharge. Bottom-trawl sampling in Bonneville and The Dalles Reservoirs revealed the presence of young-of-the-year (YOY) white sturgeon in Bonneville Reservoir, but none were captured in The Dalles Reservoir. A comparison of five years of indices of abundance of YOY sturgeon from sampling done by ODFW with gillnets and the USGS with bottom trawls was completed. Despite obvious differences in gear sampling characteristics (e.g. one gear is actively fished, one passively fished), it appears that either gear can be used to assess relative trends in YOY white sturgeon abundance. The analyses suffered due to poor catches of YOY fish, as YOY were only captured in The Dalles Reservoir during three of the five years of comparison sampling, and during only one of four years in John Day Reservoir. However, both gears detected the presence or absence of YOY white sturgeon within a reservoir equally. That is, if any YOY white sturgeon were captured in any year in a reservoir, both gears captured at least one fish, and if one gear failed to collect any YOY white sturgeon, both gears failed. Concerns have been raised that the Wang et al. (1985) egg development relationships for Sacramento River white sturgeon may not be applicable to Columbia Basin stocks. However, using laboratory experiments with white sturgeon eggs incubated at 10, 12, 15, and 18o C, we found no significant differences in development rates of eggs of Columbia, Kootenai, Snake, and Sacramento river fish.

  3. Initial field measurements on the Chalk River superconducting cyclotron

    International Nuclear Information System (INIS)

    Ormrod, J.H.; Chan, K.C.; Hill, J.H.

    1980-12-01

    The midplane magnetic field of the Chalk River superconducting cyclotron has been mapped in detail over the full operating range of 2.5 to 5 tesla. The field measuring apparatus is described and results given include measurements of the field stability, reproducibility and harmonic content. (author)

  4. Snake Robots Modelling, Mechatronics, and Control

    CERN Document Server

    Liljebäck, Pål; Stavdahl, Øyvind; Gravdahl, Jan Tommy

    2013-01-01

    Snake Robots is a novel treatment of theoretical and practical topics related to snake robots: robotic mechanisms designed to move like biological snakes and able to operate in challenging environments in which human presence is either undesirable or impossible. Future applications of such robots include search and rescue, inspection and maintenance, and subsea operations. Locomotion in unstructured environments is a focus for this book. The text targets the disparate muddle of approaches to modelling, development and control of snake robots in current literature, giving a unified presentation of recent research results on snake robot locomotion to increase the reader’s basic understanding of these mechanisms and their motion dynamics and clarify the state of the art in the field. The book is a complete treatment of snake robotics, with topics ranging from mathematical modelling techniques, through mechatronic design and implementation, to control design strategies. The development of two snake robots is de...

  5. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River; 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connor, William P. (US Fish and Wildlife Service, Idaho Fishery Resource Office, Ahsahka, ID)

    2003-02-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001.

  6. Post-release attributes and survival of hatchery and natural fall chinook salmon in the Snake River : annual report 2000-2001

    International Nuclear Information System (INIS)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.

    2003-01-01

    This report summarizes results of research activities conducted in 2000, 2001, and years previous to aid in the management and recovery of fall chinook salmon in the Columbia River basin. The report is divided into sections and self-standing chapters. For detailed summaries, we refer the reader to the abstracts given on the second page of each chapter. The Annual Reporting section includes information provided to fishery managers in-season and post-season, and it contains a detailed summary of life history and survival statistics on wild Snake River fall chinook salmon juveniles for the years 1992-2001. The Journal Manuscripts section includes complete copies of papers submitted or published during 2000 and 2001 that were not included in previous annual reports. Publication is a high priority for this project because it provides our results to a wide audience, it ensures that our work meets high scientific standards, and we believe that it is a necessary obligation of a research project. The Bibliography of Published Journal Articles section provides citations for peer-reviewed papers co-authored by personnel of project 199102900 that were published from 1998 to 2001

  7. An update of hydrologic conditions and distribution of selected constituents in water, Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2006-08

    Science.gov (United States)

    Davis, Linda C.

    2010-01-01

    Since 1952, radiochemical and chemical wastewater discharged to infiltration ponds (also called percolation ponds), evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched groundwater wells in the USGS groundwater monitoring networks during 2006-08. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2005 to March-May 2008, water levels in wells generally remained constant or rose slightly in the southwestern corner of the INL. Water levels declined in the central and northern parts of the INL. The declines ranged from about 1 to 3 feet in the central part of the INL, to as much as 9 feet in the northern part of the INL. Water levels in perched groundwater wells around the Advanced Test Reactor Complex (ATRC) also declined. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2006-08. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal, radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In April

  8. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rien, Thomas A.; Beiningen, Kirk T. (Oregon Department of Fish and Wildlife, Portland, OR)

    1997-07-01

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  9. Snake instability of dark solitons across the BEC-BCS crossover: An effective-field-theory perspective

    Science.gov (United States)

    Lombardi, G.; Van Alphen, W.; Klimin, S. N.; Tempere, J.

    2017-09-01

    In the present article the snake instability mechanism for dark solitons in superfluid Fermi gases is studied in the context of a recently developed effective field theory [S. N. Klimin et al., Eur. Phys. J. B 88, 122 (2015), 10.1140/epjb/e2015-60213-4]. This theoretical treatment has proven to be suitable to study stable dark solitons in quasi-one-dimensional setups across the BEC-BCS crossover. In this paper the nodal plane of the stable soliton solution is perturbed by adding a transverse modulation. The numerical solution of the system of coupled nonlinear differential equations describing the amplitude of the perturbation leads to an estimate of the growth rate and characteristic length scale of the instability, which are calculated for a wide range of interaction regimes and compared to other theoretical predictions. The behavior of the maximum transverse size that the atomic cloud can have in order to preserve the stability is described across the BEC-BCS crossover. The analysis of the effects of spin imbalance on this critical length reveals a stabilization of the soliton with increasing imbalance and therefore provides the experimental community with a method to achieve the realization of stable solitons in real three-dimensional configurations, without reducing the system dimensionality.

  10. White Sturgeon Management Plan in the Snake River between Lower Granite and Hells Canyon Dams; Nez Perce Tribe, 1997-2005 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Nez Perce Tribe Resources Management Staff, (Nez Perce Tribe, Department of Fisheries Resource Management, Lapwai, ID)

    2005-09-01

    White sturgeon in the Hells Canyon reach (HCR) of the Snake River are of cultural importance to the Nez Perce Tribe. However, subsistence and ceremonial fishing opportunities have been severely limited as a result of low numbers of white sturgeon in the HCR. Hydrosystem development in the Columbia River Basin has depressed numbers and productivity of white sturgeon in the HCR by isolating fish in impounded reaches of the basin, restricting access to optimal rearing habitats, reducing the anadromous forage base, and modifying early life-history habitats. Consequently, a proactive management plan is needed to mitigate for the loss of white sturgeon production in the HCR, and to identify and implement feasible measures that will restore and rebuild the white sturgeon population to a level that sustains viability and can support an annual harvest. This comprehensive and adaptive management plan describes the goals, objectives, strategies, actions, and expected evaluative timeframes for restoring the white sturgeon population in the HCR. The goal of this plan, which is to maintain a viable, persistent population that can support a sustainable fishery, is supported by the following objectives: (1) a natural, stable age structure comprising both juveniles and a broad spectrum of spawning age-classes; (2) stable or increasing numbers of both juveniles and adults; (3) consistent levels of average recruitment to ensure future contribution to reproductive potential; (4) stable genetic diversity comparable to current levels; (5) a minimum level of abundance of 2,500 adults to minimize extinction risk; and (6) provision of an annual sustainable harvest of 5 kg/ha. To achieve management objectives, potential mitigative actions were developed by a Biological Risk Assessment Team (BRAT). Identified strategies and actions included enhancing growth and survival rates by restoring anadromous fish runs and increasing passage opportunities for white sturgeon, reducing mortality rates

  11. Variation of the fractal dimension anisotropy of two major Cenozoic normal fault systems over space and time around the Snake River Plain, Idaho and SW Montana

    Science.gov (United States)

    Davarpanah, A.; Babaie, H. A.

    2012-12-01

    The interaction of the thermally induced stress field of the Yellowstone hotspot (YHS) with existing Basin and Range (BR) fault blocks, over the past 17 m.y., has produced a new, spatially and temporally variable system of normal faults around the Snake River Plain (SRP) in Idaho and Wyoming-Montana area. Data about the trace of these new cross faults (CF) and older BR normal faults were acquired from a combination of satellite imageries, DEM, and USGS geological maps and databases at scales of 1:24,000, 1:100,000, 1:250,000, 1:1000, 000, and 1:2,500, 000, and classified based on their azimuth in ArcGIS 10. The box-counting fractal dimension (Db) of the BR fault traces, determined applying the Benoit software, and the anisotropy intensity (ellipticity) of the fractal dimensions, measured with the modified Cantor dust method applying the AMOCADO software, were measured in two large spatial domains (I and II). The Db and anisotropy of the cross faults were studied in five temporal domains (T1-T5) classified based on the geologic age of successive eruptive centers (12 Ma to recent) of the YHS along the eastern SRP. The fractal anisotropy of the CF system in each temporal domain was also spatially determined in the southern part (domain S1), central part (domain S2), and northern part (domain S3) of the SRP. Line (fault trace) density maps for the BR and CF polylines reveal a higher linear density (trace length per unit area) for the BR traces in the spatial domain I, and a higher linear density of the CF traces around the present Yellowstone National Park (S1T5) where most of the seismically active faults are located. Our spatio-temporal analysis reveals that the fractal dimension of the BR system in domain I (Db=1.423) is greater than that in domain II (Db=1.307). It also shows that the anisotropy of the fractal dimension in domain I is less eccentric (axial ratio: 1.242) than that in domain II (1.355), probably reflecting the greater variation in the trend of the BR

  12. Origins and evolution of rhyolitic magmas in the central Snake River Plain: insights from coupled high-precision geochronology, oxygen isotope, and hafnium isotope analyses of zircon

    Science.gov (United States)

    Colón, Dylan P.; Bindeman, Ilya N.; Wotzlaw, Jörn-Frederik; Christiansen, Eric H.; Stern, Richard A.

    2018-02-01

    We present new high-precision CA-ID-TIMS and in situ U-Pb ages together with Hf and O isotopic analyses (analyses performed all on the same grains) from four tuffs from the 15-10 Ma Bruneau-Jarbidge center of the Snake River Plain and from three rhyolitic units from the Kimberly borehole in the neighboring 10-6 Ma Twin Falls volcanic center. We find significant intrasample diversity in zircon ages (ranges of up to 3 Myr) and in δ18O (ranges of up to 6‰) and ɛHf (ranges of up to 24 ɛ units) values. Zircon rims are also more homogeneous than the associated cores, and we show that zircon rim growth occurs faster than the resolution of in situ dating techniques. CA-ID-TIMS dating of a subset of zircon grains from the Twin Falls samples reveals complex crystallization histories spanning 104-106 years prior to some eruptions, suggesting that magma genesis was characterized by the cyclic remelting of buried volcanic rocks and intrusions associated with previous magmatic episodes. Age-dependent trends in zircon isotopic compositions show that rhyolite production in the Yellowstone hotspot track is driven by the mixing of mantle-derived melts (normal δ18O and ɛHf) and a combination of Precambrian basement rock (normal δ18O and ɛHf down to - 60) and shallow Mesozoic and Cenozoic age rocks, some of which are hydrothermally altered (to low δ18O values) by earlier stages of Snake River Plain magmatism. These crustal melts hybridize with juvenile basalts and rhyolites to produce the erupted rhyolites. We also observe that the Precambrian basement rock is only an important component in the erupted magmas in the first eruption at each caldera center, suggesting that the accumulation of new intrusions quickly builds an upper crustal intrusive body which is isolated from the Precambrian basement and evolves towards more isotopically juvenile and lower-δ18O compositions over time.

  13. Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River fall Chinook salmon ESU, 1/1/2012 – 12/31/2013: Annual report, 1991-029-00

    Science.gov (United States)

    Connor, William P.; Mullins, Frank; Tiffan, Kenneth F.; Perry, Russell W.; Erhardt, John M.; St. John, Scott J.; Bickford, Brad; Rhodes, Tobyn N.

    2014-01-01

    The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2014 in association with U.S. Endangered Species Act recovery efforts and other Federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2014, consumption of subyearlings by Smallmouth Bass was highest in the upper reach which had the highest abundance of Bass. With a few exceptions, predation tended to decrease seasonally from April through early July. A release of hatchery fish in mid-May significantly increased subyearling consumption by the following day. We estimated that over 600,000 subyearling fall Chinook Salmon were lost to Smallmouth Bass predation along the free-flowing Snake River in 2014. More information on predation is presented in Appendix A.3 (page 51). These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was

  14. Helical Siberian snakes using dipole magnets

    International Nuclear Information System (INIS)

    Wienands, U.

    1990-09-01

    A family of multi-twist transverse-field spin rotators using discrete bending magnets is described that can be used as Siberian snakes. By varying the number of twists, snakes with quite small excursions can be constructed at only a small penalty in the overall field integral. Examples for a 1/4-twist snake and a 3-twist snake are presented, the first suitable for a very high energy machine and the second for use in the proposed TRIUMF Kaon Factory. (Author) (3 refs.)

  15. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    Science.gov (United States)

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  16. Post-Release Attributes and Survival of Hatchery and Natural Fall Chinook Salmon in the Snake River, Annual Report 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Tiffan, Kenneth F.; Rondorf, Dennis W.; Connor, William P.; Burge, Howard L.

    1999-12-01

    This report summarizes results of research activities conducted primarily in 1997 and 1998. This report communicates significant findings that will aid in the management and recovery of fall chinook salmon in the Columbia River Basin.

  17. Depth to water in the western Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    Science.gov (United States)

    Maupin, Molly A.

    1991-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the ISHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Protection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability of ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantham, Idaho Department of Health and Welfare, written commun., 1989). Digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a soils data set developed by the SCS (Soul Conservation Service) and the IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) has developed digital depth-to-water values for eleven 1:100,00-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  18. Depth to water in the eastern Snake River Plain and surrounding tributary valleys, southwestern Idaho and eastern Oregon, calculated using water levels from 1980 to 1988

    Science.gov (United States)

    Maupin, Molly A.

    1992-01-01

    The vulnerability of ground water to contamination in Idaho is being assessed by the IDHW/DEQ (Idaho Department of Health and Welfare, Division of Environmental Quality), using a modified version of the Environmental Orotection Agency DRASTIC methods (Allers and others, 1985). The project was designed as a technique to: (1) Assign priorities for development of ground-water management and monitoring programs; (2) build support for, and public awareness of, vulnerability or ground water to contamination; (3) assist in the development of regulatory programs; and (4) provide access to technical data through the use of a GIS (geographic information system) (C. Grantha,, Idaho Department of Health and Welfare, written commun., 1989). A digital representation of first-encountered water below land surface is an important element in evaluating vulnerability of ground water to contamination. Depth-to-water values were developed using existing data and computer software to construct a GIS data set to be combined with a sols data set developed by the SCS (Soil Conservation Service) and IDHW/WQB (Idaho Department of Health and Welfare/Water Quality Bureau), and a recharge data set developed by the IDWR/RSF (Idaho Department of Water Resources/Remote Sensing Facility). The USGS (U.S. Geological Survey) developed digital depth-to-water values for eleven 1:100,000-scale quadrangles on the eastern Snake River Plain and surrounding tributary valleys.

  19. The Savannah River environmental technology field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The Savannah River technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies are tested in actual field scenarios to determine their appropriate applications in environmental characterization and monitoring activities. The field tests provide regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs. This program has resulted in the successful implementation of several new technologies

  20. Age dating ground water by use of chlorofluorocarbons (CCl3F and CCl2F2), and distribution of chlorofluorocarbons in the unsaturated zone, Snake River Plain aquifer, Idaho National Engineering Laboratory, Idaho

    International Nuclear Information System (INIS)

    Busenberg, E.; Weeks, E.P.; Plummer, L.N.; Bartholomay, R.C.

    1993-04-01

    Detectable concentrations of chlorofluorocarbons (CFC's) were observed in ground water and unsaturated-zone air at the Idaho National Engineering Laboratory (INEL) and vicinity. The recharge ages of waters were determined to be from 4 to more than 50 years on the basis of CFC concentrations and other environmental data; most ground waters have ages of 14 to 30 years. These results indicate that young ground water was added at various locations to the older regional ground water (greater than 50 years) within and outside the INEL boundaries. The wells drilled into the Snake River Plain aquifer at INEL sampled mainly this local recharge. The Big Lost River, Birch Creek, the Little Lost River, and the Mud Lake-Terreton area appear to be major sources of recharge of the Snake River Plain aquifer at INEL. An average recharge temperature of 9.7±1.3 degrees C (degrees Celsius) was calculated from dissolved nitrogen and argon concentrations in the ground waters, a temperature that is similar to the mean annual soil temperature of 9 degrees C measured at INEL. This similarity indicates that the aquifer was recharged at INEL and not at higher elevations that would have cooler soil temperatures than INEL. Soil-gas concentrations at Test Area North (TAN) are explained by diffusion theory

  1. Radio telemetry data - Characterizing migration and survival for juvenile Snake River sockeye salmon between the upper Salmon River basin and Lower Granite Dam

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This project estimates survival and characterizes the migration of juvenile sockeye salmon between the upper Salmon River basin in central Idaho and Lower Granite...

  2. Runaway snakes in TEXTOR-94

    International Nuclear Information System (INIS)

    Entrop, I.; Jaspers, R.; Lopes Cardozo, N.J.; Finken, K.H.

    1999-01-01

    Observations of a runaway beam confined in an island-like structure, a so-called runaway snake, are reported. The observations are made in TEXTOR-94 by measurement of synchrotron radiation emitted by these runaways. A full poloidal view allows for the study of the synchrotron pattern of the snake to estimate runaway energy, pitch angle and the radius, shift and safety factor of the drift surface q D at which the runaway beam has developed. The runaway snake parameters are investigated under different current and magnetic field strength conditions. Examples are found of a runaway snake at the q D =1 and the q D =2 drift surface. The radial diffusion coefficient of runaways inside a snake is D r approx. 0.01m 2 s -1 . The rapid runaway losses in regions of (macroscopic) magnetic perturbations outside a snake and the good confinement inside an island assumed to consist of perfect nested surfaces are consistent with magnetic turbulence as the main cause for runaway transport. (author)

  3. INEEL Subregional Conceptual Model Report; Volume 1 - Summary of Existing Knowledge of Natural and Anthropogenic Influences Governing Subsurface Contaminant Transport in the INEEL Subregion of the Eastern Snake River Plain

    Energy Technology Data Exchange (ETDEWEB)

    Wichlacz, Paul Louis; Orr, Brennan

    2002-08-01

    The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual models of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of

  4. System-Wide Significance of Predation on Juvenile Salmonids in Columbia and Snake River Reservoirs : Annual Report 1992.

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, James H.; Poe, Thomas P.

    1993-12-01

    Northern squawfish (Ptychocheilus oregonensis) predation on juvenile salmonids was characterized during 1992 at ten locations in the Columbia River below Bonneville Dam and at three locations in John Day Reservoir. During the spring and summer, 1,487 northern squawfish were collected in the lower Columbia River and 202 squawfish were sampled in John Day Reservoir. Gut content data, predator weight, and water temperature were used to compute a consumption index (CI) for northern squawfish, and overall diet was also described. In the Columbia River below Bonneville Dam, northern squawfish diet was primarily fish (spring 69%; summer 53%), most of which were salmonids. Salmonids were also the primary diet component in the Bonneville Dam tailrace, John Day Dam forebay, and the McNary Dam tailrace. Crustaceans were the dominant diet item at the John Day mid-reservoir location, although sample sizes were small. About half of the non-salmonid preyfish were sculpins. The consumption index (CI) of northern squawfish was generally higher during summer than during spring. The highest CI`s were observed during summer in the tailrace boat restricted zones of Bonneville Dam (CI = 7.8) and McNary Dam (CI = 4.6). At locations below Bonneville Dam, CI`s were relatively low near Covert`s Landing and Rooster Rock, higher at four locations between Blue Lake and St. Helens, and low again at three downriver sites (Kalama, Ranier, and Jones Beach). Northern squawfish catches and CI`s were noticeably higher throughout the lower Columbia compared to mid-reservoir sites further upriver sampled during 1990--92. Predation may be especially intense in the free-flowing section of the Columbia River below Bonneville Dam. Smallmouth bass (Micropterus dolomieui; N = 198) ate mostly fish -- 25% salmonids, 29% sculpins, and 46% other fish. Highest catches of smallmouth bass were in the John Day Dam forebay.

  5. Field-trip guide to Columbia River flood basalts, associated rhyolites, and diverse post-plume volcanism in eastern Oregon

    Science.gov (United States)

    Ferns, Mark L.; Streck, Martin J.; McClaughry, Jason D.

    2017-08-09

    The Miocene Columbia River Basalt Group (CRBG) is the youngest and best preserved continental flood basalt province on Earth, linked in space and time with a compositionally diverse succession of volcanic rocks that partially record the apparent emergence and passage of the Yellowstone plume head through eastern Oregon during the late Cenozoic. This compositionally diverse suite of volcanic rocks are considered part of the La Grande-Owyhee eruptive axis (LOEA), an approximately 300-kilometer-long (185 mile), north-northwest-trending, middle Miocene to Pliocene volcanic belt located along the eastern margin of the Columbia River flood basalt province. Volcanic rocks erupted from and preserved within the LOEA form an important regional stratigraphic link between the (1) flood basalt-dominated Columbia Plateau on the north, (2) bimodal basalt-rhyolite vent complexes of the Owyhee Plateau on the south, (3) bimodal basalt-rhyolite and time-transgressive rhyolitic volcanic fields of the Snake River Plain-Yellowstone Plateau, and (4) the High Lava Plains of central Oregon.This field-trip guide describes a 4-day geologic excursion that will explore the stratigraphic and geochemical relationships among mafic rocks of the Columbia River Basalt Group and coeval and compositionally diverse volcanic rocks associated with the early “Yellowstone track” and High Lava Plains in eastern Oregon. Beginning in Portland, the Day 1 log traverses the Columbia River gorge eastward to Baker City, focusing on prominent outcrops that reveal a distal succession of laterally extensive, large-volume tholeiitic flood lavas of the Grande Ronde, Wanapum, and Saddle Mountains Basalt formations of the CRBG. These “great flows” are typical of the well-studied flood basalt-dominated Columbia Plateau, where interbedded silicic and calc-alkaline lavas are conspicuously absent. The latter part of Day 1 will highlight exposures of middle to late Miocene silicic ash-flow tuffs, rhyolite domes, and

  6. Straddle-packer determination of the vertical distribution of hydraulic properties in the Snake River Plain Aquifer at well USGS-44, Idaho Chemical Processing Plant, INEL

    International Nuclear Information System (INIS)

    Monks, J.I.

    1994-01-01

    Many of the monitor wells that penetrate the upper portion of the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL) are open over large intervals that include multiple water-bearing zones. Most of these wells are equipped with dedicated submersible pumps. Water of varying quality from different water-bearing zones is mixed within the wells. The hydrologic properties of individual water bearing zones are difficult to determine. Water quality and water-level data on organic, heavy metal, and radioactive contaminants have been collected, reported, and interpreted from these monitor wells for more than forty years. The problems associated with well completions over large intervals through multiple water-bearing zones raise significant questions about the data. A straddle-packer system was developed and applied at the INEL site to investigate the monitor well network. The straddle-packer system, hydraulic testing methods, data analysis procedures, and testing results are described in this report. The straddle-packer system and the straddle-packer testing and data evaluation procedures can be improved for future testing at the INEL site. Recommended improvements to the straddle-packer system are: (1) improved transducer pressure sensing systems, (2) faster opening riser valve, and (3) an in-line flowmeter in the riser pipe. Testing and data evaluation recommended improvements are: (1) simultaneous valve opening during slug tests, (2) analysis of the ratio of the times for head change and recovery to occur, (3) constant-drawdown tests of high transmissivity intervals, (4) multiple-well aquifer tests, and (5) long term head monitoring

  7. Vertical variation in groundwater chemistry inferred from fluid specific-conductance well logging of the Snake River Plain Basalt aquifer, Idaho National Engineering Laboratory, southeastern Idaho

    International Nuclear Information System (INIS)

    Wood, S.H.; Bennecke, W.

    1994-01-01

    Well logging of electrical fluid specific conductance (C s ) shows that permeable zones yielding ground water to intrawell flows and the water columns in some wells at INEL have highly different chemistry, with as much as a two-fold variation in C s . This suggests that dedicated-pump sampling of ground water in the aquifer may not be representative of the chemistry of the waste plumes migrating southwest of the nuclear facilities. Natural background C s in basalt-aquifer ground water of this part of the Snake River Plain aquifer is less than 325μS/cm (microSiemans/cm), and total dissolved solids in mg/L units, (TDS) ∼ 0.6C s . This relationship underestimates TDS for waters with chemical waste, when C s is above 800 μS/cm. At well 59 near the ICPP water of 1115 μS/cm (∼6570+ mg/L TDS) enters the well from a permeable zone between 521 and 537 ft depth; the zone being 60 ft below the water level and water of 550 μS/cm. At the time of logging (9/14/93) the 1115/μS/cm water was flowing down the well, mixing with less concentrated waters and exciting at 600 or 624-ft depth. Waste water disposed of down the injection well at ICPP until 1984 was estimated to have a C 5 of 1140 μS/cm, identical to the water detected in logging. 29 refs., 8 figs., 1 tab

  8. Determination of Background Uranium Concentration in the Snake River Plain Aquifer under the Idaho National Engineering and Environmental Laboratory's Radioactive Waste Management Complex

    International Nuclear Information System (INIS)

    Molly K. Leecaster; L. Don Koeppen; Gail L. Olson

    2003-01-01

    Uranium occurs naturally in the environment and is also a contaminant that is disposed of at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory. To determine whether uranium concentrations in the Snake River Plain Aquifer, which underlies the laboratory, are elevated as a result of migration of anthropogenic uranium from the Subsurface Disposal Area in the RWMC, uranium background concentrations are necessary. Guideline values are calculated for total uranium, 234U, 235U, and 238U from analytical results from up to five datasets. Three of the datasets include results of samples analyzed using isotope dilution thermal ionization mass spectrometry (ID-TIMS) and two of the datasets include results obtained using alpha spectrometry. All samples included in the statistical testing were collected from aquifer monitoring wells located within 10 miles of the RWMC. Results from ID-TIMS and alpha spectrometry are combined when the data are not statistically different. Guideline values for total uranium were calculated using four of the datasets, while guideline values for 234U were calculated using only the alpha spectrometry results (2 datasets). Data from all five datasets were used to calculate 238U guideline values. No limit is calculated for 235U because the ID-TIMS results are not useful for comparison with routine monitoring data, and the alpha spectrometry results are too close to the detection limit to be deemed accurate or reliable for calculating a 235U guideline value. All guideline values presented represent the upper 95% coverage 95% confidence tolerance limits for background concentration. If a future monitoring result is above this guideline, then the exceedance will be noted in the quarterly monitoring report and assessed with respect to other aquifer information. The guidelines (tolerance limits) for total U, 234U, and 238U are 2.75 pCi/L, 1.92 pCi/L, and 0.90 pCi/L, respectively

  9. Size dimorphism, molt status, and body mass variation of Prairie Falcons nesting in the Snake River Birds of Prey National Conservation Area

    Science.gov (United States)

    Steenhof, Karen; McKinley, James O.

    2006-01-01

    Birds face challenges in how they allocate energy during the reproductive season. Most temperate zone species do not breed and molt at the same time, presumably because of the high energy demands of these two activities (Espie et al. 1996 and citations therein). However, representatives of at least four raptor genera are known to molt during the nesting season (Schmutz and Schmutz 1975, Newton and Marquiss 1982, Schmutz 1992, Espie et al. 1996). Molt strategies vary among raptor species depending on prey abundance, migration strategies, and the relative costs of reproduction. Sexually-dimorphic raptors typically have different roles in parenting, which result in different strategies for energy allocation. Male and female Eurasian Kestrels (Falco tinnunculus), for example, exhibit different molt patterns and mass changes during the breeding season (Village 1990). Prairie Falcons (Falco mexicanus) are similar to Eurasian Kestrels in that males provide most of the prey to females and young during the first part of the nesting season (Holthuijzen 1990), but no published data exist on molt patterns or mass changes in Prairie Falcons. Reliable information about raptor molt and morphometrics has important implications for modeling energetics and for understanding the role of sexes in raising young. Such knowledge also has practical application for distinguishing sexes of raptors and for determining appropriate size limits of transmitters used for telemetry studies. In this paper, we report on morphometric characteristics useful in distinguishing sexes of Prairie Falcons captured during several breeding seasons in the Snake River Birds of Prey National Conservation Area (NCA), and we assess changes in mass and molt status through the nesting season.

  10. Mercury concentrations in water, and mercury and selenium concentrations in fish from Brownlee Reservoir and selected sites in Boise and Snake Rivers, Idaho and Oregon, 2013

    Science.gov (United States)

    MacCoy, Dorene E.

    2014-01-01

    Mercury (Hg) analyses were conducted on samples of sport fish and water collected from six sampling sites in the Boise and Snake Rivers, and Brownlee Reservoir to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho. A water sample was collected from each site during October and November 2013 by the City of Boise personnel and was analyzed by the Boise City Public Works Water Quality Laboratory. Total Hg concentrations in unfiltered water samples ranged from 0.73 to 1.21 nanograms per liter (ng/L) at five river sites; total Hg concentration was highest (8.78 ng/L) in a water sample from Brownlee Reservoir. All Hg concentrations in water samples were less than the EPA Hg chronic aquatic life criterion in Idaho (12 ng/L). The EPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). MeHg residue in fish tissue is considered to be equivalent to total Hg in fish muscle tissue and is referred to as Hg in this report. The Idaho Department of Environmental Quality adopted the EPA’s fish-tissue criterion and a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg wet weight Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to

  11. Stabilising the Integrity of Snake Venom mRNA Stored under Tropical Field Conditions Expands Research Horizons.

    Directory of Open Access Journals (Sweden)

    Gareth Whiteley

    2016-06-01

    Full Text Available Snake venoms contain many proteinaceous toxins that can cause severe pathology and mortality in snakebite victims. Interestingly, mRNA encoding such toxins can be recovered directly from venom, although yields are low and quality is unknown. It also remains unclear whether such RNA contains information about toxin isoforms and whether it is representative of mRNA recovered from conventional sources, such as the venom gland. Answering these questions will address the feasibility of using venom-derived RNA for future research relevant to biomedical and antivenom applications.Venom was extracted from several species of snake, including both members of the Viperidae and Elapidae, and either lyophilized or immediately added to TRIzol reagent. TRIzol-treated venom was incubated at a range of temperatures (4-37°C for a range of durations (0-48 hours, followed by subsequent RNA isolation and assessments of RNA quantity and quality. Subsequently, full-length toxin transcripts were targeted for PCR amplification and Sanger sequencing. TRIzol-treated venom yielded total RNA of greater quantity and quality than lyophilized venom, and with quality comparable to venom gland-derived RNA. Full-length sequences from multiple Viperidae and Elapidae toxin families were successfully PCR amplified from TRIzol-treated venom RNA. We demonstrated that venom can be stored in TRIzol for 48 hours at 4-19°C, and 8 hours at 37°C, at minimal cost to RNA quality, and found that venom RNA encoded multiple toxin isoforms that seemed homologous (98-99% identity to those found in the venom gland.The non-invasive experimental modifications we propose will facilitate the future investigation of venom composition by using venom as an alternative source to venom gland tissue for RNA-based studies, thus obviating the undesirable need to sacrifice snakes for such research purposes. In addition, they expand research horizons to rare, endangered or protected snake species and provide

  12. The design and analysis of salmonid tagging studies in the Columbia River. Volume 7: Monte-Carlo comparison of confidence internal procedures for estimating survival in a release-recapture study, with applications to Snake River salmonids

    International Nuclear Information System (INIS)

    Lowther, A.B.; Skalski, J.

    1996-06-01

    Confidence intervals for survival probabilities between hydroelectric facilities of migrating juvenile salmonids can be computed from the output of the SURPH software developed at the Center for Quantitative Science at the University of Washington. These intervals have been constructed using the estimate of the survival probability, its associated standard error, and assuming the estimate is normally distributed. In order to test the validity and performance of this procedure, two additional confidence interval procedures for estimating survival probabilities were tested and compared using simulated mark-recapture data. Intervals were constructed using normal probability theory, using a percentile-based empirical bootstrap algorithm, and using the profile likelihood concept. Performance of each method was assessed for a variety of initial conditions (release sizes, survival probabilities, detection probabilities). These initial conditions were chosen to encompass the range of parameter values seen in the 1993 and 1994 Snake River juvenile salmonid survival studies. The comparisons among the three estimation methods included average interval width, interval symmetry, and interval coverage

  13. Dictionary Snakes

    DEFF Research Database (Denmark)

    Dahl, Anders Bjorholm; Dahl, Vedrana Andersen

    2014-01-01

    for image segmentation that operates without training data. Our method is based on a probabilistic dictionary of image patches coupled with a deformable model inspired by snakes and active contours without edges. We separate the image into two classes based on the information provided by the evolving curve......, which moves according to the probabilistic information obtained from the dictionary. Initially, the image patches are assigned to the nearest dictionary element, where the image is sampled at each pixel such that patches overlap. The curve divides the image into an inside and an outside region allowing...... us to estimate the pixel-wise probability of the dictionary elements. In each iteration we evolve the curve and update the probabilities, which merges similar texture patterns and pulls dissimilar patterns apart. We experimentally evaluate our approach, and show how textured objects are precisely...

  14. Groundwater quality in the Columbia Plateau, Snake River Plain, and Oahu basaltic-rock and basin-fill aquifers in the Northwestern United States and Hawaii, 1992-2010

    Science.gov (United States)

    Frans, Lonna M.; Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.

    2012-01-01

    This assessment of groundwater-quality conditions of the Columbia Plateau, Snake River Plain, and Oahu for the period 1992–2010 is part of the U.S. Geological Survey’s National Water Quality Assessment (NAWQA) program. It shows where, when, why, and how specific water-quality conditions occur in groundwater of the three study areas and yields science-based implications for assessing and managing the quality of these water resources. The primary aquifers in the Columbia Plateau, Snake River Plain, and Oahu are mostly composed of fractured basalt, which makes their hydrology and geochemistry similar. In spite of the hydrogeologic similarities, there are climatic differences that affect the agricultural practices overlying the aquifers, which in turn affect the groundwater quality. Understanding groundwater-quality conditions and the natural and human factors that control groundwater quality is important because of the implications to human health, the sustainability of rural agricultural economies, and the substantial costs associated with land and water management, conservation, and regulation.

  15. The design and analysis of salmonid tagging studies in the Columbia basin. Volume 8: A new model for estimating survival probabilities and residualization from a release-recapture study of fall chinook salmon (Oncorhynchus tschawytscha) smolts in the Snake River

    International Nuclear Information System (INIS)

    Lowther, A.B.; Skalski, J.

    1997-09-01

    Standard release-recapture analysis using Cormack-Jolly-Seber (CJS) models to estimate survival probabilities between hydroelectric facilities for Snake river fall chinook salmon (Oncorhynchus tschawytscha) ignore the possibility of individual fish residualizing and completing their migration in the year following tagging. These models do not utilize available capture history data from this second year and, thus, produce negatively biased estimates of survival probabilities. A new multinomial likelihood model was developed that results in biologically relevant, unbiased estimates of survival probabilities using the full two years of capture history data. This model was applied to 1995 Snake River fall chinook hatchery releases to estimate the true survival probability from one of three upstream release points (Asotin, Billy Creek, and Pittsburgh Landing) to Lower Granite Dam. In the data analyzed here, residualization is not a common physiological response and thus the use of CJS models did not result in appreciably different results than the true survival probability obtained using the new multinomial likelihood model

  16. Mineralogy and depositional sources of sedimentary interbeds beneath the Idaho National Engineering Laboratory; eastern Snake River Plain, Idaho

    International Nuclear Information System (INIS)

    Reed, M.F.

    1994-01-01

    Idaho State University, in cooperation with the U.S. Geological Survey, and the U.S. Department of Energy, collected 57 samples of sedimentary interbeds at 19 sites at the Idaho National Engineering Laboratory (INEL) for mineralogical analysis. Previous work by the U.S. Geological Survey on surficial sediments showed that ratios detrital of quartz, total feldspars, and calcite can be used to distinguish the sedimentary mineralogy of specific stream drainages at the INEL. Semi-quantitative x-ray diffraction analyses were used to determine mineral abundances in the sedimentary interbeds. Samples were collected from wells at the New Production Reactor (NPR) area, Idaho Chemical Processing Plant (ICPP), Test Reactor Area (TRA), miscellaneous sites, Radioactive Waste Management Complex (RWMC), Naval Reactors Facility (NRF), and Test Area North (TAN). Normalized mean percentages of quartz, feldspar, and carbonate were calculated from sample data sets at each site. Percentages for quartz, feldspar, and carbonate from the NPR, ICPP, TRA, miscellaneous sites, RWMC, and NRF ranged from 37 to 59, 26 to 40, and 5 to 25, respectively. Percentages for quartz, feldspar, and carbonate from wells at Test Area North (TAN) were 24, 10, and 66, respectively. Mineralogical data indicate that sedimentary interbed samples collected from the NPR, ICPP, TRA, miscellaneous sites, RWMC, and NRF correlate with surficial sediment samples from the present day Big Lost River. Sedimentary interbeds from TAN sites correlate with surficial sediment samples from Birch Creek. These correlations suggest that the sources for the sediments at and near the INEL have remained relatively consistent for the last 580,000 years. 12 refs., 4 figs., 3 tabs

  17. snake and staff symbolism and healing 1. introduction 2. the snake

    African Journals Online (AJOL)

    Since time immemorial the snake has been venerated as an enigmatic creature with supernatural ... ticular reference to their significance in the field of health care. 2. THE SNAKE IN ... as an aid in walking and as a weapon, it was also used by rulers in .... always included an abaton (open porch with roof) where patients un-.

  18. Numerical representation of rainfall field in the Yarmouk River Basin

    Science.gov (United States)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic

  19. The Savannah River environmental technology field test platform: Phase II

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; May, C.P.; Pemberton, B.E.; Jarosch, T.R.; Eddy-Dilek, C.A.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs), and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. The Savannah River Technology Center (SRTC) has been developing a program to rigorously field test promising environmental technologies that have not undergone EPA equivalency testing. The infrastructure and staff expertise developed as part of the activities of the Savannah River Integrated Demonstration Program (i.e., wells, available power, conventional baseline characterization and monitoring equipment, shelter structures) allows field testing of technologies without the difficulties of providing remote field support. By providing a well-characterized site and a well-developed infrastructure, technologies can be tested for long periods of time to determine their appropriate applications in environmental characterization and monitoring activities. Situation specific evaluations of the technology following stringent test plans can be made in comparison with simultaneous baseline methods and historical data. This program is designed to help expedite regulatory approval and technology transfer to manufacturers and the user community

  20. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  1. Reproductive Disorders in Snakes.

    Science.gov (United States)

    Di Girolamo, Nicola; Selleri, Paolo

    2017-05-01

    Reproduction of snakes is one of the challenging aspects of herpetology medicine. Due to the complexity of reproduction, several disorders may present before, during, or after this process. This article describes the physical examination, and radiographic, ultrasonographic, and endoscopic findings associated with reproductive disorders in snakes. Surgical techniques used to resolve reproductive disorders in snakes are described. Finally, common reproductive disorders in snakes are individually discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The complexity of snake

    NARCIS (Netherlands)

    De Biasi, M.; Ophelders, T.

    2016-01-01

    Snake and Nibbler are two well-known video games in which a snake slithers through a maze and grows as it collects food. During this process, the snake must avoid any collision with its tail. Various goals can be associated with these video games, such as avoiding the tail as long as possible, or

  3. Even order snake resonances

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1993-01-01

    We found that the perturbed spin tune due to the imperfection resonance plays an important role in beam depolarization at snake resonances. We also found that even order snake resonances exist in the overlapping intrinsic and imperfection resonances. Due to the perturbed spin tune shift of imperfection resonances, each snake resonance splits into two

  4. The Savannah River Technology Center environmental monitoring field test platform

    International Nuclear Information System (INIS)

    Rossabi, J.

    1993-01-01

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy's Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques

  5. Field studies of radionuclide transport at the Chalk River Laboratories

    International Nuclear Information System (INIS)

    Champ, D.R.; Killey, R.W.D.; Moltyaner, G.L.

    1991-01-01

    In this paper the authors summarize the results of: in situ field column experiments to study the transport behaviour of several long-lived radionuclides, 4 natural gradient non-reactive radiotracer injection experiments at the Chalk River Laboratories (CRL) Twin Lake Tracer Test Site, and a model validation study that used data for 90 Sr from two well-defined contaminated groundwater flow systems at CRL. The paper also describes a current re-evaluation of radionuclide release and transport from a 1960 experimental burial (in a CRL sand aquifer) of glass blocks containing fission and activation products. (J.P.N.)

  6. Evidence for Cyclical Fractional Crystallization, Recharge, and Assimilation in Basalts of the Kimama Core, Central Snake River Plain, Idaho: A 5.5-million-year Highlight Reel of Petrogenetic processes in a Mid-Crustal Sill Complex

    Science.gov (United States)

    Potter, Katherine E.; Shervais, John W.; Christiansen, Eric H.; Vetter, Scott K.

    2018-02-01

    Basalts erupted in the Snake River Plain of central Idaho and sampled in the Kimama drill core link eruptive processes to the construction of mafic intrusions over 5.5 Ma. Cyclic variations in basalt composition reveal temporal chemical heterogeneity related to fractional crystallization and the assimilation of previously-intruded mafic sills. A range of compositional types are identified within 1912 m of continuous drill core: Snake River olivine tholeiite (SROT), low K SROT, high Fe-Ti, and evolved and high K-Fe lavas similar to those erupted at Craters of the Moon National Monument. Detailed lithologic and geophysical logs document 432 flow units comprising 183 distinct lava flows and 78 flow groups. Each lava flow represents a single eruptive episode, while flow groups document chemically and temporally related flows that formed over extended periods of time. Temporal chemical variation demonstrates the importance of source heterogeneity and magma processing in basalt petrogenesis. Low-K SROT and high Fe-Ti basalts are genetically related to SROT as, respectively, hydrothermally-altered and fractionated daughters. Cyclic variations in the chemical composition of Kimama flow groups are apparent as 21 upward fractionation cycles, six recharge cycles, eight recharge-fractionation cycles, and five fractionation-recharge cycles. We propose that most Kimama basalt flows represent typical fractionation and recharge patterns, consistent with the repeated influx of primitive SROT parental magmas and extensive fractional crystallization coupled with varying degrees of assimilation of gabbroic to ferrodioritic sills at shallow to intermediate depths over short durations. Trace element models show that parental SROT basalts were generated by 5-10% partial melting of enriched mantle at shallow depths above the garnet-spinel lherzolite transition. The distinctive evolved and high K-Fe lavas are rare. Found at four depths, 319 m, 1045 m, 1078 m, and 1189 m, evolved and high K

  7. Multilevel groundwater monitoring of hydraulic head and temperature in the eastern Snake River Plain aquifer, Idaho National Laboratory, Idaho, 2009–10

    Science.gov (United States)

    Twining, Brian V.; Fisher, Jason C.

    2012-01-01

    During 2009 and 2010, the U.S. Geological Survey’s Idaho National Laboratory Project Office, in cooperation with the U.S. Department of Energy, collected quarterly, depth-discrete measurements of fluid pressure and temperature in nine boreholes located in the eastern Snake River Plain aquifer. Each borehole was instrumented with a multilevel monitoring system consisting of a series of valved measurement ports, packer bladders, casing segments, and couplers. Multilevel monitoring at the Idaho National Laboratory has been ongoing since 2006. This report summarizes data collected from three multilevel monitoring wells installed during 2009 and 2010 and presents updates to six multilevel monitoring wells. Hydraulic heads (heads) and groundwater temperatures were monitored from 9 multilevel monitoring wells, including 120 hydraulically isolated depth intervals from 448.0 to 1,377.6 feet below land surface. Quarterly head and temperature profiles reveal unique patterns for vertical examination of the aquifer’s complex basalt and sediment stratigraphy, proximity to aquifer recharge and discharge, and groundwater flow. These features contribute to some of the localized variability even though the general profile shape remained consistent over the period of record. Major inflections in the head profiles almost always coincided with low-permeability sediment layers and occasionally thick sequences of dense basalt. However, the presence of a sediment layer or dense basalt layer was insufficient for identifying the location of a major head change within a borehole without knowing the true areal extent and relative transmissivity of the lithologic unit. Temperature profiles for boreholes completed within the Big Lost Trough indicate linear conductive trends; whereas, temperature profiles for boreholes completed within the axial volcanic high indicate mostly convective heat transfer resulting from the vertical movement of groundwater. Additionally, temperature profiles

  8. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2012-15

    Science.gov (United States)

    Bartholomay, Roy C.; Maimer, Neil V.; Rattray, Gordon W.; Fisher, Jason C.

    2017-04-10

    Since 1952, wastewater discharged to in ltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater-monitoring networks at the INL to determine hydrologic trends and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from the ESRP aquifer, multilevel monitoring system (MLMS) wells in the ESRP aquifer, and perched groundwater wells in the USGS groundwater monitoring networks during 2012-15.

  9. A test of reproductive power in snakes.

    Science.gov (United States)

    Boback, Scott M; Guyer, Craig

    2008-05-01

    Reproductive power is a contentious concept among ecologists, and the model has been criticized on theoretical and empirical grounds. Despite these criticisms, the model has successfully predicted the modal (optimal) size in three large taxonomic groups and the shape of the body size distribution in two of these groups. We tested the reproductive power model on snakes, a group that differs markedly in physiology, foraging ecology, and body shape from the endothermic groups upon which the model was derived. Using detailed field data from the published literature, snake-specific constants associated with reproductive power were determined using allometric relationships of energy invested annually in egg production and population productivity. The resultant model accurately predicted the mode and left side of the size distribution for snakes but failed to predict the right side of that distribution. If the model correctly describes what is possible in snakes, observed size diversity is limited, especially in the largest size classes.

  10. Snake evolution and prospecting of snake venom

    OpenAIRE

    Vonk, Freek Jacobus

    2012-01-01

    in this thesis I have shown that snakes have undergone multiple changes in their genome and embryonic development that has provided them with the variation to which natural selection could act. This thesis provides evidence for the variable mechanisms of venom gene evolution, which presumably is much more flexible than previously thought. But it also underscores the potential use of the many different types of snake venom toxins that could be screened for use against human disorders. And most...

  11. The Complexity of Snake

    OpenAIRE

    De Biasi, Marzio; Ophelders, Tim

    2016-01-01

    Snake and Nibbler are two well-known video games in which a snake slithers through a maze and grows as it collects food. During this process, the snake must avoid any collision with its tail. Various goals can be associated with these video games, such as avoiding the tail as long as possible, or collecting a certain amount of food, or reaching some target location. Unfortunately, like many other motion-planning problems, even very restricted variants are computationally intractable. In parti...

  12. Resonant depolarization in electron storage rings equipped with ''siberia snakes''

    International Nuclear Information System (INIS)

    Buon, J.

    1984-11-01

    Resonant depolarization induced by field errors and quantum emissions in an electron ring equipped with two ''siberian snakes'' is investigated with a first order perturbation calculation. It is shown that this depolarization is not reduced by the snakes when the operating energy is set out of the depolarization resonances [fr

  13. An Update of Hydrologic Conditions and Distribution of Selected Constituents in Water, Snake River Plain Aquifer and Perched-Water Zones, Idaho National Laboratory, Idaho, Emphasis 2002-05

    Science.gov (United States)

    Davis, Linda C.

    2008-01-01

    Radiochemical and chemical wastewater discharged since 1952 to infiltration ponds, evaporation ponds, and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the Snake River Plain aquifer and perched-water zones underlying the INL. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, maintains ground-water monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched-water zones. This report presents an analysis of water-level and water-quality data collected from aquifer and perched-water wells in the USGS ground-water monitoring networks during 2002-05. Water in the Snake River Plain aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer is recharged primarily from infiltration of irrigation water, infiltration of streamflow, ground-water inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March-May 2001 to March-May 2005, water levels in wells declined throughout the INL area. The declines ranged from about 3 to 8 feet in the southwestern part of the INL, about 10 to 15 feet in the west central part of the INL, and about 6 to 11 feet in the northern part of the INL. Water levels in perched water wells declined also, with the water level dropping below the bottom of the pump in many wells during 2002-05. For radionuclides, concentrations that equal 3s, wheres s is the sample standard deviation, represent a measurement at the minimum detectable concentration, or 'reporting level'. Detectable concentrations of radiochemical constituents in water samples from wells in the Snake River Plain aquifer at the INL generally decreased or remained constant during 2002-05. Decreases in concentrations were attributed to decreased rates of radioactive-waste disposal

  14. A survey of snake-inspired robot designs

    International Nuclear Information System (INIS)

    Hopkins, James K; Spranklin, Brent W; Gupta, Satyandra K

    2009-01-01

    Body undulation used by snakes and the physical architecture of a snake body may offer significant benefits over typical legged or wheeled locomotion designs in certain types of scenarios. A large number of research groups have developed snake-inspired robots to exploit these benefits. The purpose of this review is to report different types of snake-inspired robot designs and categorize them based on their main characteristics. For each category, we discuss their relative advantages and disadvantages. This review will assist in familiarizing a newcomer to the field with the existing designs and their distinguishing features. We hope that by studying existing robots, future designers will be able to create new designs by adopting features from successful robots. The review also summarizes the design challenges associated with the further advancement of the field and deploying snake-inspired robots in practice. (topical review)

  15. 76 FR 64100 - Notice of Availability of Record of Decision for the Little Snake Resource Management Plan...

    Science.gov (United States)

    2011-10-17

    ... Availability of Record of Decision for the Little Snake Resource Management Plan/Environmental Impact Statement... (RMP) for the Little Snake Field Office located in northwest Colorado. The Colorado State Director... the Little Snake Field Office, Bureau of Land Management, 455 Emerson St., Craig, Colorado 81625 or at...

  16. Snake evolution and prospecting of snake venom

    NARCIS (Netherlands)

    Vonk, Freek Jacobus

    2012-01-01

    in this thesis I have shown that snakes have undergone multiple changes in their genome and embryonic development that has provided them with the variation to which natural selection could act. This thesis provides evidence for the variable mechanisms of venom gene evolution, which presumably is

  17. Savannah River Site Experiences in In Situ Field Measurements of Radioactive Materials

    International Nuclear Information System (INIS)

    Moore, F.S.

    1999-01-01

    This paper discusses some of the field gamma-ray measurements made at the Savannah River Site, the equipment used for the measurements, and lessons learned during in situ identification and characterization of radioactive materials

  18. White sturgeon mitigation and restoration in the Columbia and Snake rivers upstream from Bonneville Dam, Annual Progress Report April 2006 - March 2007. Report C

    Science.gov (United States)

    Parsley, M.J.; Kofoot, P.

    2008-01-01

    Describe reproduction and early life history characteristics of white sturgeon populations in the Columbia River between Bonneville and Priest Rapids dams. Define habitat requirements for spawning and rearing white sturgeon and quantify the extent of habitat available in the Columbia River between Bonneville and Priest Rapids dams. Progress updates on young-of-the-year recruitment in Bonneville Reservoir and indices of white sturgeon spawning habitat for 2006 for McNary, John Day, The Dalles, and Bonneville dam tailrace spawning areas.

  19. Pharmacokinetics of Snake Venom

    OpenAIRE

    Suchaya Sanhajariya; Stephen B. Duffull; Geoffrey K. Isbister

    2018-01-01

    Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present) and Medline (1946–present). For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, ...

  20. Reproductive strategies in snakes.

    OpenAIRE

    Shine, Richard

    2003-01-01

    Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoreg...

  1. Mercury concentrations in water and mercury and selenium concentrations in fish from Brownlee Reservoir and selected sites in the Boise and Snake Rivers, Idaho and Oregon, 2013–15

    Science.gov (United States)

    Williams, Marshall L.; MacCoy, Dorene E.

    2016-06-30

    Mercury (Hg) analyses were conducted on samples of sport fish and water collected from selected sampling sites in Brownlee Reservoir and the Boise and Snake Rivers to meet National Pollution Discharge and Elimination System (NPDES) permit requirements for the City of Boise, Idaho, between 2013 and 2015. City of Boise personnel collected water samples from six sites between October and November 2013 and 2015, with one site sampled in 2014. Total Hg concentrations in unfiltered water samples ranged from 0.48 to 8.8 nanograms per liter (ng/L), with the highest value in Brownlee Reservoir in 2013. All Hg concentrations in water samples were less than the U.S. Environmental Protection Agency (USEPA) Hg chronic aquatic life criterion of 12 ng/L.The USEPA recommended a water-quality criterion of 0.30 milligrams per kilogram (mg/kg) methylmercury (MeHg) expressed as a fish-tissue residue value (wet-weight MeHg in fish tissue). The Idaho Department of Environmental Quality adopted the USEPA’s fish-tissue criterion and established a reasonable potential to exceed (RPTE) threshold 20 percent lower than the criterion or greater than 0.24 mg/kg Hg based on an average concentration of 10 fish from a receiving waterbody. NPDES permitted discharge to waters with fish having Hg concentrations exceeding 0.24 mg/kg are said to have a reasonable potential to exceed the water-quality criterion and thus are subject to additional permit obligations, such as requirements for increased monitoring and the development of a Hg minimization plan. The Idaho Fish Consumption Advisory Program (IFCAP) issues fish advisories to protect general and sensitive populations of fish consumers and has developed an action level of 0.22 mg/kg Hg in fish tissue. Fish consumption advisories are water body- and species-specific and are used to advise allowable fish consumption from specific water bodies. The geometric mean Hg concentration of 10 fish of a single species collected from a single water body

  2. SUPERCONDUCTING HELICAL SNAKE MAGNETS: CONSTRUCTION AND MEASUREMENTS

    International Nuclear Information System (INIS)

    Mackay, W.W.; Anerella, M.; Courant, E.

    1999-01-01

    In order to collide polarized protons, the RHIC project will have two snakes in each ring and four rotators around each of two interaction regions. Two snakes on opposite sides of each ring can minimize depolarization during acceleration by keeping the spin tune at a half. Since the spin direction is normally along the vertical direction in a flat ring, spin rotators must be used around an interaction point to have longitudinal polarization in a collider experiment. Each snake or rotator will be composed of four helical dipoles to provide the required rotation of spin with minimal transverse orbit excursions in a compact length of 10m. The basic helical dipole is a superconducting magnet producing a transverse dipole field which is twisted about the magnet axis through 360 o in a length of 2.4 m. The design and construction of the magnets is described in this paper

  3. Diversity of Snakes in Rajegwesi Tourism Area, Meru Betiri National Park

    Directory of Open Access Journals (Sweden)

    Aji Dharma Raharjo

    2015-02-01

    Full Text Available Rajegwesi tourism area is one of the significant tourism areas in Meru Betiri National Park, East Java, Indonesia. The area rich in term of biodiversity which are potential for developed as natural tourism attraction.  The aim of this study is to identify snakes species diversity and its distribution in Rajegwesi tourism area. Field survey was done in Rajegwesi area, namely swamps forest, residential area, rice fields, agriculture area (babatan, resort area, and Plengkang cliff. This study found some snakes, encompasses Colubridae (10 species, Elapidae (four species, and Phytonidae (one species. There are Burmese Python (Python reticulatus, Red-necked Keelback (Rhabdophis subminiatus, Painted Bronzeback Snake (Dendrelaphis Pictus, Black Copper Rat Snake (Coelognathus flavolineatus, Radiated Rat Snake (C. radiatus, Striped Keelback (Xenochrophis vittatus, Checkered Keelback (X. piscator, Spotted Ground Snake (Gongyosoma balioderius, Gold-ringed Cat Snake (Boiga dendrophila, Common Wolf Snake (Lycodon capucinus, Banded Wolf snake (L. subcinctus, Cobra (Naja sputatrix, King Cobra (Ophiophagus hannah, Malayan Krait (Bungarus candidus, and Banded Krait (B. fasciatus was found. These snake habitats distributes at 21 coordinate points. Keywords: conservation, ecotourism, snakes.

  4. An update of hydrologic conditions and distribution of selected constituents in water, eastern Snake River Plain aquifer and perched groundwater zones, Idaho National Laboratory, Idaho, emphasis 2009–11

    Science.gov (United States)

    Davis, Linda C.; Bartholomay, Roy C.; Rattray, Gordon W.

    2013-01-01

    Since 1952, wastewater discharged to infiltration ponds (also called percolation ponds) and disposal wells at the Idaho National Laboratory (INL) has affected water quality in the eastern Snake River Plain (ESRP) aquifer and perched groundwater zones underlying the INL. The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, maintains groundwater monitoring networks at the INL to determine hydrologic trends, and to delineate the movement of radiochemical and chemical wastes in the aquifer and in perched groundwater zones. This report presents an analysis of water-level and water-quality data collected from aquifer, multilevel monitoring system (MLMS), and perched groundwater wells in the USGS groundwater monitoring networks during 2009–11. Water in the ESRP aquifer primarily moves through fractures and interflow zones in basalt, generally flows southwestward, and eventually discharges at springs along the Snake River. The aquifer primarily is recharged from infiltration of irrigation water, infiltration of streamflow, groundwater inflow from adjoining mountain drainage basins, and infiltration of precipitation. From March–May 2009 to March–May 2011, water levels in wells generally declined in the northern part of the INL. Water levels generally rose in the central and eastern parts of the INL. Detectable concentrations of radiochemical constituents in water samples from aquifer wells or MLMS equipped wells in the ESRP aquifer at the INL generally decreased or remained constant during 2009–11. Decreases in concentrations were attributed to radioactive decay, changes in waste-disposal methods, and dilution from recharge and underflow. In 2011, concentrations of tritium in groundwater from 50 of 127 aquifer wells were greater than or equal to the reporting level and ranged from 200±60 to 7,000±260 picocuries per liter. Tritium concentrations from one or more discrete zones from four wells equipped with MLMS were greater than or

  5. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam: Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1997-1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, David L. (Oregon Department of Fish and Wildlife, Portland, OR)

    1999-02-01

    The authors report on their progress from April 1997 through March 1998 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), National Marine Fisheries Service (NMFS; Report D), U.S. Fish and Wildlife Service (USFWS; Report E), and Columbia River Inter-Tribal Fish Commission (CRITFC; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of the work from April 1997 through March 1998 listed.

  6. Seasonal transport - A study to determine the seasonal effects of transporting fish from the Snake River to optimize a transportation strategy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of this U.S. Army Corps of Engineers (USACE) - funded study that began in 2004 is to determine if the smolt-to-adult return rates (SARs), transport/in-river...

  7. Smolt migration characteristics and mainstem Snake and Columbia River detection rates of pit-tagged Grande Ronde and Imnaha River naturally produced spring chinook salmon. 1993, 1994 and 1995 annual reports

    International Nuclear Information System (INIS)

    Walters, T.R.; Carmichael, R.W.; Keefe, M.L.; Sankovich, P.

    1997-01-01

    This reports on the second, third, and fourth years of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally produced spring chinook salmon (Oncorhynchus tshawytscha) from Northeast Oregon streams. The goal of this project is to develop an understanding of interpopulational and interannual variation in several early life history parameters of naturally produced spring and summer chinook salmon in the Grande Ronde and Imnaha River subbasins. This project will provide information to assist chinook salmon population recovery efforts. Specific populations included in the study are: (1) Catherine Creek; (2) Upper Grande Ronde River; (3) Lostine River; (4) Imnaha River; (5) Wenaha River; and (6) Minam River. In this document, the authors present findings and activities from research completed in 1993, 1994, and 1995

  8. Optimization of AGS Polarized Proton Operation with the Warm Helical Snake

    CERN Document Server

    Takano, Junpei; Bai, Mei; Brown, Kevin A; Gardner, Chris J; Glenn, Joseph; Hattori, Toshiyuki; Huang, Haixin; Luccio, Alfredo U; MacKay, William W; Okamura, Masahiro; Roser, Thomas; Tepikian, Steven; Tsoupas, Nicholaos

    2005-01-01

    A normal conducting helical dipole partial Siberian snake (Warm Snake) has been installed in the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL) for overcoming all of imperfection depolarizing resonances and reducing the transverse coupling resonances caused by the solenoidal Siberian snake which had been operated in AGS before the last polarized run. The polarized proton beam has been accelerated successfully with the warm snake and the polarization at extraction of the AGS was increased to 50% as opposed to 40% with the solenoidal snake. The magnetic field and beam trajectory in the warm snake was calculated by using the OPERA-3D/TOSCA software. We present optimization of the warm snake with beam during RUN5.

  9. Snakes: An Integrated Unit Plan.

    Science.gov (United States)

    Lawrence, Lisa

    This document presents an integrated unit plan on snakes targeting second grade students. Objectives of the unit include developing concepts of living things, understanding the contribution and importance of snakes to the environment, and making connections between different disciplines. The unit integrates the topic of snakes into the areas of…

  10. Interaction of Aquifer and River-Canal Network near Well Field.

    Science.gov (United States)

    Ghosh, Narayan C; Mishra, Govinda C; Sandhu, Cornelius S S; Grischek, Thomas; Singh, Vikrant V

    2015-01-01

    The article presents semi-analytical mathematical models to asses (1) enhancements of seepage from a canal and (2) induced flow from a partially penetrating river in an unconfined aquifer consequent to groundwater withdrawal in a well field in the vicinity of the river and canal. The nonlinear exponential relation between seepage from a canal reach and hydraulic head in the aquifer beneath the canal reach is used for quantifying seepage from the canal reach. Hantush's (1967) basic solution for water table rise due to recharge from a rectangular spreading basin in absence of pumping well is used for generating unit pulse response function coefficients for water table rise in the aquifer. Duhamel's convolution theory and method of superposition are applied to obtain water table position due to pumping and recharge from different canal reaches. Hunt's (1999) basic solution for river depletion due to constant pumping from a well in the vicinity of a partially penetrating river is used to generate unit pulse response function coefficients. Applying convolution technique and superposition, treating the recharge from canal reaches as recharge through conceptual injection wells, river depletion consequent to variable pumping and recharge is quantified. The integrated model is applied to a case study in Haridwar (India). The well field consists of 22 pumping wells located in the vicinity of a perennial river and a canal network. The river bank filtrate portion consequent to pumping is quantified. © 2014, National GroundWater Association.

  11. Contributions of arsenic and chloride from the Kawerau geothermal field to the Tarawera River, New Zealand

    International Nuclear Information System (INIS)

    Mroczek, E.K.

    2005-01-01

    The Tarawera River flows through the Kawerau geothermal field. Natural geothermal drainage as well as geothermal production fluid effluent (0.193 m 3 /s) discharge to the river. The concentrations and fluxes of arsenic and chloride were measured upstream and downstream of the field to quantify the proportion of natural inflows of geothermal fluid compared to the discharge of effluent. Upstream of the geothermal effluent outfalls, the arsenic and chloride concentrations in the river are about 0.021 mg/l and 39 mg/l, respectively. The discharge of effluent increases the concentrations in the river to 0.029 mg/l and 48 mg/l, respectively. Calculated concentrations, given the known discharge of effluent, are 0.038 mg/l for arsenic and 50 mg/l for chloride. The differences between the measured and calculated concentrations are within the gauging and analytical errors. At minimum and maximum mean river flows (1984-1992), the concentrations would increase and decrease by 23% and 46%, respectively. Arsenic appears to be soluble and not associated with suspended solids. However, increased transport of arsenic by suspended solids may be a factor at higher river flows. The input of natural geothermal fluid upstream of the effluent outfalls (estimated < 0.170 m3/s) could not be detected (within the errors) by an increase in river chloride concentrations. (author)

  12. Clinical safety of a polyvalent F(ab')2 equine antivenom in 223 African snake envenomations : a field trial in Cameroon

    OpenAIRE

    Chippaux, Jean-Philippe; Lang, J.; Amadi Eddine, S; Fagot, P.; Rage, V.; Peyrieux, J.C.; Le Mener, V.

    1998-01-01

    A large-scale clinical trial was conducted, according to World Health Organization Good Clinical Practice guidelines, in 7 centres in North Cameroon to determine the safety and efficacy of a polyvalent antivenom composed of purified F(ab')2. This study included 223 patients presenting clinically with an obvious snake bite, predominantly due to #Echis ocellatus$ (viper), the most abundant species in this savannah region. Clinical surveillance was maintained for 5 d in all patients and until th...

  13. Field manual for ground water reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1977-01-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, groundwater sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  14. Field manual for stream sediment reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1976-07-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, stream sediment sample collection, water sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  15. Addiction to Snake Venom.

    Science.gov (United States)

    Das, Saibal; Barnwal, Preeti; Maiti, Tanay; Ramasamy, Anand; Mondal, Somnath; Babu, Dinesh

    2017-07-03

    The nature of addiction depends on various factors. The tendency to have already used several addictive substances and to seek high sensation experiences as a result of specific personality traits may lead to extreme and peculiar forms of addictions. Even belonging to specific social and cultural background may lead to such forms of addiction such as intentional snake bite and willful envenomation. In this article, we have discussed the peculiarities and practical insight of such addiction to snake venom. The possible molecular mechanism behind such venom-mediated reinforcement has also been highlighted. Finally, we have stressed upon the treatment and de-addiction measures.

  16. Pulmonoscopy of Snakes.

    Science.gov (United States)

    Knotek, Zdenek; Jekl, Vladimir

    2015-09-01

    Pulmonoscopy is a practical diagnostic tool for investigating respiratory diseases in snakes. Two different approaches exist for pulmonoscopy, tracheal and transcutaneous. The access to the proximal or distal lung is limited by the length and diameter of the endoscope when using the tracheal approach. The transcutaneous approach allows direct evaluation of the lung and distal trachea through the air sac. Both of the methods are safe, and specific contraindications for pulmonoscopy in snakes are not known except for any anesthesia contraindication. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Depth and temporal variations in water quality of the Snake River Plain aquifer in well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory

    International Nuclear Information System (INIS)

    Frederick, D.B.; Johnson, G.S.

    1997-03-01

    In-situ measurements of the specific conductance and temperature of ground water in the Snake River Plain aquifer were collected in observation well USGS-59 near the Idaho Chemical Processing Plant at the Idaho National Engineering and Environmental Laboratory. These parameters were monitored at various depths in the aquifer from October 1994 to August 1995. The specific conductance of ground water in well USGS-59, as measured in the borehole, ranged from about 450 to 900 microS/cm at standard temperature (25 C). The pumping cycle of the production wells at the Idaho Chemical Processing Plant causes changes in borehole circulation patterns, and as a result the specific conductance of ground water at some depths in the well varies by up to 50% over a period of about 14 hours. However, these variations were not observed at all depths, or during each pumping cycle. The temperature of ground water in the well was typically between 12.8 and 13.8 C. The results of this study indicate that temporal variations in specific conductance of the ground water at this location are caused by an external stress on the aquifer--pumping of a production well approximately 4,000 feet away. These variations are believed to result from vertical stratification of water quality in the aquifer and a subsequent change in intrawell flow related to pumping. When sampling techniques that do not induce a stress on the aquifer (i.e., thief sampling) are used, knowledge of external stresses on the system at the time of sampling may aid in the interpretation of geochemical data

  18. Runoff and degradation of aerially applied dinotefuran in paddy fields and river.

    Science.gov (United States)

    Yokoyama, Sayako; Ito, Masataka; Nagasawa, Shunsuke; Morohashi, Masayuki; Ohno, Masaki; Todate, Yukitaka; Kose, Tomohiro; Kawata, Kuniaki

    2015-06-01

    Variation, run-off and degradation characteristics of the insecticide dinotefuran, (EZ)-(RS)-1-methyl-2-nitro-3-(tetrahydro-3-furyl-methyl)guanidine, in water and soil from two paddy fields after aerial application was investigated as well as in river water. Maximum concentrations of dinotefuran were 290 and 720 µg/L in the two paddy waters, 25 and 28 µg/kg dry in the two paddy soils, and 10 µg/L in the river water. Runoff ratios of dinotefuran from the paddy fields were calculated as 14%-41%. Mean half-lives of dinotefuran were 5.4 days in the paddy water and 12 days in the paddy soil. Results obtained in this study are important for the evaluation of the actual behavior of dinotefuran in paddy fields and rivers.

  19. System-wide significance of predation on juvenile salmonids in Columbia and Snake River reservoirs and evaluation of predation control measures. Annual report 1993

    International Nuclear Information System (INIS)

    Gadomski, D.M.; Poe, T.P.

    1994-01-01

    This project had three major goals. The first was to assist the Oregon Department of Fish and Wildlife with predation indexing as part of an effort to estimate the relative magnitude of juvenile salmonid losses to northern squawfish Ptychocheilus oregonensis in reservoirs throughout the Columbia River Basin. The second goal was to evaluate the northern squawfish control program and test critical assumptions about mid-reservoir predation processes. The final goal was to determine mechanisms underlying northern squawfish recruitment and factors affecting year-class strength

  20. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    Science.gov (United States)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported

  1. Snow snake performance monitoring.

    Science.gov (United States)

    2008-12-01

    A recent study, Three-Dimensional Roughness Elements for Snow Retention (FHWA-WY-06/04F) (Tabler 2006), demonstrated : positive evidence for the effectiveness of Snow Snakes, a new type of snow fence suitable for use within the highway right-of...

  2. Where Galactic Snakes Live

    Science.gov (United States)

    2006-01-01

    This infrared image from NASA's Spitzer Space Telescope shows what astronomers are referring to as a 'snake' (upper left) and its surrounding stormy environment. The sinuous object is actually the core of a thick, sooty cloud large enough to swallow dozens of solar systems. In fact, astronomers say the 'snake's belly' may be harboring beastly stars in the process of forming. The galactic creepy crawler to the right of the snake is another thick cloud core, in which additional burgeoning massive stars might be lurking. The colorful regions below the two cloud cores are less dense cloud material, in which dust has been heated by starlight and glows with infrared light. Yellow and orange dots throughout the image are monstrous developing stars; the red star on the 'belly' of the snake is 20 to 50 times as massive as our sun. The blue dots are foreground stars. The red ball at the bottom left is a 'supernova remnant,' the remains of massive star that died in a fiery blast. Astronomers speculate that radiation and winds from the star before it died, in addition to a shock wave created when it exploded, might have played a role in creating the snake. Spitzer was able to spot the two black cloud cores using its heat-seeking infrared vision. The objects are hiding in the dusty plane of our Milky Way galaxy, invisible to optical telescopes. Because their heat, or infrared light, can sneak through the dust, they first showed up in infrared images from past missions. The cloud cores are so thick with dust that if you were to somehow transport yourself into the middle of them, you would see nothing but black, not even a star in the sky. Now, that's spooky! Spitzer's new view of the region provides the best look yet at the massive embryonic stars hiding inside the snake. Astronomers say these observations will ultimately help them better understand how massive stars form. By studying the clustering and range of masses of the stellar embryos, they hope to determine if the stars

  3. Snake antivenom for snake venom induced consumption coagulopathy

    OpenAIRE

    Maduwage, Kalana; Buckley, Nick A.; Janaka de Silva, H.; Lalloo, David; Isbister, Geoffrey K.

    2015-01-01

    Background\\ud \\ud Snake venom induced consumption coagulopathy is a major systemic effect of envenoming. Observational studies suggest that antivenom improves outcomes for venom induced consumption coagulopathy in some snakebites and not others. However, the effectiveness of snake antivenom in all cases of venom induced consumption coagulopathy is controversial.\\ud \\ud Objectives\\ud \\ud To assess the effect of snake antivenom as a treatment for venom induced consumption coagulopathy in people...

  4. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and

  5. Field guide for the identification of snags and logs in the interior Columbia River basin.

    Science.gov (United States)

    Catherine G. Parks; Evelyn L. Bull; Torolf R. Torgersen

    1997-01-01

    This field guide contains descriptions and color photographs of snags and logs of 10 coniferous and 3 deciduous tree species found in the interior Columbia River basin. Methods arc described to distinguish among the different species when various amounts of branches, cones, and bark arc missing. Wildlife use of the different species of snags and logs are listed. Snags...

  6. About temporal evolution of the geomagnetic field in the River Plate region

    International Nuclear Information System (INIS)

    Gianibelli, J.; Quaglino, L.

    2010-01-01

    Permanent Observatories network allows to study the total intensity of the magnetic field of the Earth surface to assess its annual change and inductive effects on networks of large pipes and pipelines. This paper is about the results of the significant decline in the River Plate region. The effects observed in this surface anomaly continue amplified and reaching minimum values

  7. Responses by king snakes (Lampropeltis getulus) to chemicals from colubrid and crotaline snakes.

    Science.gov (United States)

    Weldon, P J; Schell, F M

    1984-10-01

    Four litters of king snakes (Lampropeltis getulus), a snake-eating species, were tested for responses to chemicals from colubrid and crotaline snakes. King snakes presented with swabs rubbed against the dorsal skin of living snakes and with swabs treated with methylene chloride extracts of shed snake skins tongue-flicked more to swabs from a northern copperhead (Agkistrodon contortrix), a crotaline, than to swabs from some colubrid snakes or to blank swabs. Six out of 10 king snakes in one litter attacked and attempted to ingest swabs treated with snake skin chemicals, implicating these chemicals as feeding stimuli for these ophiophagous snakes. Ingestively naive king snakes presented with plain air and snake odors in an olfactometer tongue-flicked more to snake odors. This study and others suggest that crotaline and colubrid snakes can be distinguished by chemical cues.

  8. Magnetic field related mechanical tolerances for the proposed Chalk River superconducting heavy-ion cyclotron

    International Nuclear Information System (INIS)

    Heighway, E.A.; Chaplin, K.R.

    1977-11-01

    A four sector azimuthally varying field cyclotron with superconducting main coils has been proposed as a heavy-ion post-accelerator for the Chalk River MP Tandem van de Graaff. The radial profile of the average axial field will be variable using movable steel trim rods. The field errors due to coil, trim rod and flutter pole imperfections are calculated. Those considered are errors in the axial field, first and second azimuthal harmonic axial fields, transverse field and first azimuthal harmonic transverse field. Such fields induce phase slip, axial or radial coherent oscillations and can result in axial or radial beam instability. The allowed imperfections (tolerances) required to retain stability and maintain acceptably small coherent oscillation amplitudes are calculated. (author)

  9. Snake studies on Tore Supra

    International Nuclear Information System (INIS)

    Cristofani, P.; Desgranges, C.; Garbet, X.; Geraud, A.; Gil, C.; Hoang, G.T.; Joffrin, E.; Pecquet, A.L.

    1995-01-01

    Snakes have been achieved after pellet injection in Tore Supra during ohmic as well as ICRH discharges as it has already been observed in other machines. On Tore Supra, high speed H 2 pellets were injected into D 2 plasmas under the specified experimental conditions, the matter is deposited in the centre and snakes are produced in 50% of the cases, but they are created on a second much more internal q=1 surface leading probably to a non monotonic current profile. The properties of the snake, induced current modification and the important role of the bootstrap current in the snake formation are described. (K.A.) 5 refs.; 7 figs

  10. Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes.

    Science.gov (United States)

    Van Le, Quan; Isbell, Lynne A; Matsumoto, Jumpei; Nguyen, Minh; Hori, Etsuro; Maior, Rafael S; Tomaz, Carlos; Tran, Anh Hai; Ono, Taketoshi; Nishijo, Hisao

    2013-11-19

    Snakes and their relationships with humans and other primates have attracted broad attention from multiple fields of study, but not, surprisingly, from neuroscience, despite the involvement of the visual system and strong behavioral and physiological evidence that humans and other primates can detect snakes faster than innocuous objects. Here, we report the existence of neurons in the primate medial and dorsolateral pulvinar that respond selectively to visual images of snakes. Compared with three other categories of stimuli (monkey faces, monkey hands, and geometrical shapes), snakes elicited the strongest, fastest responses, and the responses were not reduced by low spatial filtering. These findings integrate neuroscience with evolutionary biology, anthropology, psychology, herpetology, and primatology by identifying a neurobiological basis for primates' heightened visual sensitivity to snakes, and adding a crucial component to the growing evolutionary perspective that snakes have long shaped our primate lineage.

  11. Snake Venom Metalloproteinases

    Directory of Open Access Journals (Sweden)

    Gâz Florea Şerban Andrei

    2016-03-01

    Full Text Available As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III classes were separated in subclasses based on distinctive post-translational modifications. SVMPs are synthesized in a latent form, being activated through a Cys-switch mechanism similar to matrix metalloproteinases. Most of the metalloproteinases of the snake venom are responsible for the hemorrhagic events but also have fibrinogenolytic activity, poses apoptotic activity, activate blood coagulation factor II and X, inhibit platelet aggregation, demonstrating that SVMPs have multiple functions in addition to well-known hemorrhagic function.

  12. Pharmacokinetics of Snake Venom

    Directory of Open Access Journals (Sweden)

    Suchaya Sanhajariya

    2018-02-01

    Full Text Available Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present and Medline (1946–present. For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, the disposition of snake venom was described by a two-compartment model consisting of a rapid distribution phase and a slow elimination phase, with half-lives of 5 to 48 min and 0.8 to 28 h, respectively, following rapid intravenous injection of the venoms or toxins. When the venoms or toxins were administered intramuscularly or subcutaneously, an initial absorption phase and slow elimination phase were observed. The bioavailability of venoms or toxins ranged from 4 to 81.5% following intramuscular administration and 60% following subcutaneous administration. The volume of distribution and the clearance varied between snake species. For humans, 24 out of 666 initially identified publications contained sufficient information and timed venom concentrations in the absence of antivenom therapy for data extraction. The data were extracted and modelled in NONMEM. A one-compartment model provided the best fit, with an elimination half-life of 9.71 ± 1.29 h. It is intended that the quantitative information provided in this review will provide a useful basis for future studies that address the pharmacokinetics of snakebite in humans.

  13. Snake Venom Metalloproteinases

    OpenAIRE

    Gâz Florea Şerban Andrei; Gâz Florea Adriana; Kelemen Hajnal; Muntean Daniela-Lucia

    2016-01-01

    As more data are generated from proteome and transcriptome analysis revealing that metalloproteinases represent most of the Viperid and Colubrid venom components authors decided to describe in a short review a classification and some of the multiple activities of snake venom metalloproteinases. SVMPs are classified in three major classes (P-I, P-II and P-III classes) based on the presence of various domain structures and according to their domain organization. Furthermore, P-II and P-III clas...

  14. Orbital parameters of proton and deuteron beams in the NICA collider with solenoid Siberian snakes

    International Nuclear Information System (INIS)

    Kovalenko, A D; Butenko, A V; Kekelidze, V D; Mikhaylov, V A; Kondratenko, M A; Filatov, Yu N; Kondratenko, A M

    2016-01-01

    Two solenoid Siberian snakes are required to obtain ion polarization in the “spin transparency” mode of the NICA collider. The field integrals of the solenoid snakes for protons and deuterons at maximum momentum of 13.5 GeV/c are equal to 2×50 T·m and 2×160 T·m respectively. The snakes introduce strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in NICA collider with solenoid snakes are presented. (paper)

  15. Spin Transparency Mode in the NICA Collider with Solenoid Siberian Snakes for Proton and Deuteron Beam

    Science.gov (United States)

    Kovalenko, A. D.; Butenko, A. V.; Mikhaylov, V. A.; Kondratenko, M. A.; Kondratenko, A. M.; Filatov, Yu N.

    2017-12-01

    Two solenoid Siberian Snakes are required to obtain ion polarization in spin transparency mode of the NICA collider. The snake solenoids with a total field integral of 2×50 T·m are placed into the straight sections of the NICA collider. It allows one to control polarization of protons and deuterons up to 13.5 GeV/c and 4 GeV/c respectively. The snakes introduce a strong betatron oscillation coupling. The calculations of orbital parameters of proton and deuteron beams in the NICA collider with solenoid Snakes are presented.

  16. Reproductive strategies in snakes.

    Science.gov (United States)

    Shine, Richard

    2003-05-22

    Snakes of both sexes display remarkable flexibility and diversity in their reproductive tactics. Many features of reproduction in female snakes (such as reproductive mode and frequency, seasonality and multiple mating) allow flexible maternal control. For example, females can manipulate not only the genotypes of their offspring (through mate choice or enhanced sperm competition) but also the phenotypes of their offspring (through allocation 'decisions', behavioural and physiological thermoregulation, and nest-site selection). Reliance on stored energy ('capital') to fuel breeding results in low frequencies of female reproduction and, in extreme cases, semelparity. A sophisticated vomeronasal system not only allows male snakes to locate reproductive females by following scent trails, but also facilitates pheromonally mediated mate choice by males. Male-male rivalry takes diverse forms, including female mimicry and mate guarding; combat bouts impose strong selection for large body size in males of some species. Intraspecific (geographical) variation and phenotypic plasticity in a wide array of reproductive traits (offspring size and number; reproductive frequency; incidence of multiple mating; male tactics such as mate guarding and combat; mate choice criteria) provide exceptional opportunities for future studies.

  17. Snakes Have Feelings, Too: Elements of a Camp Snake Program.

    Science.gov (United States)

    Allen, Robert Ross

    2001-01-01

    A camp snake program can help campers overcome their fear of snakes, and people cannot truly enjoy nature when they carry a phobia about any one part of it. It can also help overcome prejudice by teaching truth and respect, instilling compassion, and helping campers develop empathy. Advice on catching, handling, identifying, keeping, and feeding…

  18. \\'The snake will swallow you': supernatural snakes and the creation ...

    African Journals Online (AJOL)

    \\'The snake will swallow you': supernatural snakes and the creation of the Khotso legend. Felicity Wood. Abstract. No Abstract. Indilinga: African Journal of Indigenous Knowledge Systems (IAJIKS) Vol. 4(1) 2005: 347-359. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  19. The Savannah River Environmental Technology Field Test Platform: Phase 2

    International Nuclear Information System (INIS)

    Rossabi, J.; Riha, B.D.; Eddy-Dilek, C.A.; Pemberton, B.E.; May, C.P.; Jarosch, T.R.; Looney, B.B.; Raymond, R.

    1995-01-01

    The principal goal in the development of new technologies for environmental monitoring and characterization is transferring them to organizations and individuals for use in site assessment and compliance monitoring. The DOE complex has devised several strategies to facilitate this transfer including joint research projects between private industries and government laboratories or universities (CRADAs) and streamlined licensing procedures. One strategy that has been under-utilized is a planned sequence gradually moving from laboratory development and field demonstration to long term evaluation and onsite use. Industrial partnership and commercial production can be initiated at any step based on the performance, market, user needs, and costs associated with the technology. This approach allows use of the technology by onsite groups for compliance monitoring tasks (e.g. Environmental Restoration and Waste Management), while following parallel research and development organizations the opportunity to evaluate the long term performance and to make modifications or improvements to the technology. This probationary period also provides regulatory organizations, potential industrial partners, and potential users with the opportunity to evaluate the technology's performance and its utility for implementation in environmental characterization and monitoring programs

  20. Diadophis Puntatus Puntatus (Southern Ring-neck Snake) Predation

    Science.gov (United States)

    Gotte, Steve W.

    2016-01-01

    DIADOPHIS PUNCTATUS PUNCTATUS (Southern Ring-necked Snake). PREDATION. Here I present the first record of Buteo lineatus (Red-shouldered Hawk) predator on a Diadophis p. punctatus. At ca. 1100h on l2 February2 013,I observed a B. lineatus eating a katydid in Corkscrew Swamp Sanctuary (26.2730'N, 81.6079"W;WGS 84), Collier Co., Florida, USA. The hawk was in a Pond Cypress tree on the edge of a small prairie bordered on one side by a cypress swamp and by pine woodland on the other. Immediately upon consuming the katydid, the hawk flew to the ground ca. 1.5 m from an elevated boardwalk to grab an adult D. punctatus. It then flew with the snake in its talons to a branch 3 m high ca. l0 m from the boardwalk. The hawk stretched and otherwise manipulated the struggling snake (Fig.1) before consuming the still moving snake. Although snakes are a well-known component of B. lineatus diet (Clark1 987A. Field Guide to the Hawks of North America. Houghton Mifflin Co. Boston, Massachusetts 198 pp.), I found only one literature reference to Red-shouldered Hawks eating Ring-neck Snakes (Fisher 1893.Hawks and Owls of the United States in their Relation to Agriculture. U.S. Dept. Agric., Div Ornith. Mamm. Bull. 3). That specimen was from Canton, New York (taken 26 Oct IBBB) and would be a D. p. edwardisii (Northern Ring-necked Snake), while the snake reported on here is a Diadophis p. punctatus (USNM Herp Image 2847a -c). Based on evidence presented by Fontanella et al. (2008. Mol. Phylogenet Evol.46:1049-1070), D. p. edwardisii and D. p. punctatus are likely different species.

  1. Snake Venom: From Deadly Toxins to Life-saving Therapeutics.

    Science.gov (United States)

    Waheed, Humera; Moin, Syed F; Choudhary, M I

    2017-01-01

    Snakes are fascinating creatures and have been residents of this planet well before ancient humans dwelled the earth. Venomous snakes have been a figure of fear, and cause notable mortality throughout the world. The venom constitutes families of proteins and peptides with various isoforms that make it a cocktail of diverse molecules. These biomolecules are responsible for the disturbance in fundamental physiological systems of the envenomed victim, leading to morbidity which can lead to death if left untreated. Researchers have turned these life-threatening toxins into life-saving therapeutics via technological advancements. Since the development of captopril, the first drug that was derived from bradykininpotentiating peptide of Bothrops jararaca, to the disintegrins that have potent activity against certain types of cancers, snake venom components have shown great potential for the development of lead compounds for new drugs. There is a continuous development of new drugs from snake venom for coagulopathy and hemostasis to anti-cancer agents. In this review, we have focused on different snake venom proteins / peptides derived drugs that are in clinical use or in developmental stages till to date. Also, some commonly used snake venom derived diagnostic tools along with the recent updates in this exciting field are discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Spectroscopy of snake states using a graphene Hall bar

    Energy Technology Data Exchange (ETDEWEB)

    Milovanović, S. P., E-mail: slavisa.milovanovic@gmail.com; Ramezani Masir, M., E-mail: mrmphys@gmail.com; Peeters, F. M., E-mail: francois.peeters@ua.ac.be [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2013-12-02

    An approach to observe snake states in a graphene Hall bar containing a pn-junction is proposed. The magnetic field dependence of the bend resistance in a ballistic graphene Hall bar structure containing a tilted pn-junction oscillates as a function of applied magnetic field. We show that each oscillation is due to a specific snake state that moves along the pn-interface. Furthermore, depending on the value of the magnetic field and applied potential, we can control the lead in which the electrons will end up and hence control the response of the system.

  3. Model based estimation of sediment erosion in groyne fields along the River Elbe

    International Nuclear Information System (INIS)

    Prohaska, Sandra; Jancke, Thomas; Westrich, Bernhard

    2008-01-01

    River water quality is still a vital environmental issue, even though ongoing emissions of contaminants are being reduced in several European rivers. The mobility of historically contaminated deposits is key issue in sediment management strategy and remediation planning. Resuspension of contaminated sediments impacts the water quality and thus, it is important for river engineering and ecological rehabilitation. The erodibility of the sediments and associated contaminants is difficult to predict due to complex time depended physical, chemical, and biological processes, as well as due to the lack of information. Therefore, in engineering practice the values for erosion parameters are usually assumed to be constant despite their high spatial and temporal variability, which leads to a large uncertainty of the erosion parameters. The goal of presented study is to compare the deterministic approach assuming constant critical erosion shear stress and an innovative approach which takes the critical erosion shear stress as a random variable. Furthermore, quantification of the effective value of the critical erosion shear stress, its applicability in numerical models, and erosion probability will be estimated. The results presented here are based on field measurements and numerical modelling of the River Elbe groyne fields.

  4. Runaway snakes in TEXTOR-94

    NARCIS (Netherlands)

    Entrop, I.; R. Jaspers,; Cardozo, N. J. L.; Finken, K.H.

    1999-01-01

    Observations of a runaway beam confined in an island-like structure, a so-called runaway snake, are reported. The observations are made in TEXTOR-94 by measurement of synchrotron radiation emitted by these runaways. A full poloidal View allows for the study of the synchrotron pattern of the snake to

  5. Veterinary management of snake reproduction.

    Science.gov (United States)

    Stahl, Scott J

    2002-09-01

    The reptile veterinarian should approach the breeder with a comprehensive plan involving a review of proper husbandry, nutrition, record keeping, and a thorough prebreeding evaluation of the snakes. In addition, an evaluation of the reproductive strategy, assistance with confirming and monitoring gestation, and a review of potential reproductive complications will help to prepare the snake owner for a successful breeding season.

  6. An inspection of pipe by snake robot

    Directory of Open Access Journals (Sweden)

    František Trebuňa

    2016-10-01

    Full Text Available The article deals with development and application of snake robot for inspection pipes. The first step involves the introduction of a design of mechanical and electrical parts of the snake robot. Next, the analysis of the robot locomotion is introduced. For the curved pipe, potential field method is used. By this method, the system is able to generate path for the head and rear robot, linking the environment with obstacles, which are represented by the walls of the pipe. Subsequently, the solution of potential field method is used in inverse kinematic model, which respects tasks as obstacle avoidance, joint limit avoidance, and singularity avoidance. Mentioned approach is then tested on snake robot in provisional pipe with rectangular cross section. For this research, software Matlab (2013b is used as the control system in cooperation with the control system of robot, which is based on microcontrollers. By experiments, it is shown that designed robot is able to pass through straight and also curved pipe.

  7. Numerical studies of Siberian snakes and spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.

    1995-01-01

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180 degrees apart and with their axis of spin precession at 90 degrees to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis

  8. Quantum snake walk on graphs

    International Nuclear Information System (INIS)

    Rosmanis, Ansis

    2011-01-01

    I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.

  9. Nanofibrous Snake Venom Hemostat

    OpenAIRE

    Kumar, Vivek A.; Wickremasinghe, Navindee C.; Shi, Siyu; Hartgerink, Jeffrey D.

    2015-01-01

    Controlling perioperative bleeding is of critical importance to minimize hemorrhaging and fatality. Patients on anticoagulant therapy such as heparin have diminished clotting potential and are at risk for hemorrhaging. Here we describe a self-assembling nanofibrous peptide hydrogel (termed SLac) that on its own can act as a physical barrier to blood loss. SLac was loaded with snake-venom derived Batroxobin (50 μg/mL) yielding a drug-loaded hydrogel (SB50). SB50 was potentiated to enhance clot...

  10. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Alicia [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain)], E-mail: anoqam@iiqab.csic.es; Endo, Satoshi; Gocht, Tilman [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Barth, Johannes A.C. [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Lehrstuhl fuer Angewandte Geologie, GeoZentrum Nordbayern, Universitaet Erlangen-Nuernberg, Schlossgarten 5, 91054 Erlangen (Germany); Lacorte, Silvia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Barcelo, Damia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Institut Catala de Recerca de l' Aigua (ICRA), Parc Cientific i Tecnologic de la Universitat de Girona, Pic de Peguera, 15, 17003 Girona (Spain); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany)

    2009-02-15

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f{sub OC}) ranging from 0.0035 to 0.082 g{sub OC} g{sup -1}. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements.

  11. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    International Nuclear Information System (INIS)

    Navarro, Alicia; Endo, Satoshi; Gocht, Tilman; Barth, Johannes A.C.; Lacorte, Silvia; Barcelo, Damia; Grathwohl, Peter

    2009-01-01

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f OC ) ranging from 0.0035 to 0.082 g OC g -1 . All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements

  12. JESS: Java extensible snakes system

    Science.gov (United States)

    McInerney, Tim; Akhavan Sharif, M. Reza; Pashotanizadeh, Nasrin

    2005-04-01

    Snakes (Active Contour Models) are powerful model-based image segmentation tools. Although researchers have proven them especially useful in medical image analysis over the past decade, Snakes have remained primarily in the academic world and they have not become widely used in clinical practice or widely available in commercial packages. A number of confusing and specialized variants exist and there has been no standard open-source implementation available. To address this problem, we present a Java Extensible Snakes System (JESS) that is general, portable, and extensible. The system uses Java Swing classes to allow for the rapid development of custom graphical user interfaces (GUI's). It also incorporates the Java Advanced Imaging(JAI) class library, which provide custom image preprocessing, image display and general image I/O. The Snakes algorithm itself is written in a hierarchical fashion, consisting of a general Snake class and several subclasses that span the main variants of Snakes including a new, powerful, robust subdivision-curve Snake. These subclasses can be easily and quickly extended and customized for any specific segmentation and analysis task. We demonstrate the utility of these classes for segmenting various anatomical structures from 2D medical images. We also demonstrate the effectiveness of JESS by using it to rapidly build a prototype semi-automatic sperm analysis system. The JESS software will be made publicly available in early 2005.

  13. Natural History of Pseudoboine Snakes

    Directory of Open Access Journals (Sweden)

    Marília P. Gaiarsa

    2013-01-01

    Full Text Available Even though natural history information is crucial for answering key ecological, evolutionary, and conservation questions, basic studies are still lacking for Neotropical snakes. This study aims at contributing to the knowledge of the Neotropical tribe Pseudoboini, based on literature data, analysis of museum specimens and unpublished data. The tribe is mainly composed of moderate-sized snakes, although small and large-sized snakes also occur in the clade. Mean fecundity ranged from two (Rodriguesophis iglesiasi to 29 eggs (Clelia plumbea and the species are predominantly terrestrial and nocturnal. Most species are diet specialists and lizards are the most commonly consumed prey (found in the diet of 29 species, followed by small mammals (consumed by 20 species and snakes (consumed by 18 species. Although the tribe Pseudoboini appears to be well studied, for 15 species (32% only a small amount of information or none was available. We hope that our study can motivate research on the least known species.

  14. Recombinant snake venom prothrombin activators

    OpenAIRE

    L?vgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  15. Cutaneous Chromatophoromas in Captive Snakes.

    Science.gov (United States)

    Muñoz-Gutiérrez, J F; Garner, M M; Kiupel, M

    2016-11-01

    Chromatophoromas are neoplasms arising from pigment-bearing cells (chromatophores) of the dermis. While isolated cases have been reported in the literature, the prevalence and biological behavior of chromatophoromas in snakes are unknown. Forty-two chromatophoromas were identified among 4663 submissions (0.9%) to a private diagnostic laboratory in a 16-year period. The most commonly affected snakes were colubrids (23 cases, 55%) and vipers (8 cases, 19%). The San Francisco garter snake was the most commonly affected species (6 cases; 14% of all affected snake species and 3.7% of all garter snake submissions). No sex predilection was found. The age of 28 snakes ranged from 5 to 27 years. Single cutaneous chromatophoromas were most commonly observed and presented as pigmented cutaneous masses or plaques along any body segment. Euthanasia or death due to progressive neoplastic disease or metastasis was reported in 8 (19%) and 4 (10%) cases, respectively. The survival time of 4 animals ranged from 4 to 36 months. Microscopically, xanthophoromas, iridophoromas, melanocytic neoplasms, and mixed chromatophoromas were identified, with melanocytic neoplasms being most common. Microscopic examination alone was generally sufficient for the diagnosis of chromatophoroma, but immunohistochemistry for S-100 and PNL-2 may be helpful for diagnosing poorly pigmented cases. Moderate to marked nuclear atypia appears to be consistently present in cutaneous chromatophoromas with a high risk of metastasis, while mitotic count, lymphatic invasion, the level of infiltration, and the degree of pigmentation or ulceration were not reliable predictors of metastasis. © The Author(s) 2016.

  16. Impact of first aid training in management of snake bite victims in Madi valley.

    Science.gov (United States)

    Pandey, D P; Thapa, C L; Hamal, P K

    2010-04-01

    Tropical lowland on Nepal is at full of risk to snake bite. The snake bite mortality is due to lack of awareness about proper management of victims. The study aims to assess the change in the pattern of management of snake bite victims after first aid training. A retrospective study was done from October 2007 to October 2008 among 43 snake bite victims in rural Madi valley comprising of 4 village development committees where first aid training was conducted one year before. Only 26% of the snake bite victims approached traditional healer before arriving at the heath facility. The case fatality rate dropped to 22% after venomous snake bite. Pressure Immobilization bandaging and local compression pad immobilization technique was used by 56% who went to the health facility. Mean duration for reaching health facility was 61.51±33.55 minutes. Common places of bite were field 16 (37.2%), Indoor 6 (14%), while sleeping 6 (14%), and yard 6 (14%). Lower extremity bites were 32 (74.4%), upper extremity 8 (18.6%) and head 3 (7%). Bicycle was the commonest mode of transport 22 (51%) followed by ambulance 9(27.9%) and Motorcycle 6 (11%). First aid training changes the attitude of the people in management of snake bite victims and is one of the effective ways in decreasing mortality. Nationwide campaigning should be done especially at snake bite prone area about the proper first aid technique to improve the awareness level of the general population.

  17. [Application of rapid PCR to authenticate medicinal snakes].

    Science.gov (United States)

    Chen, Kang; Jiang, Chao; Yuan, Yuan; Huang, Lu-Qi; Li, Man

    2014-10-01

    To obtained an accurate, rapid and efficient method for authenticate medicinal snakes listed in Chinese Pharmacopoeia (Zaocysd humnades, Bungarus multicinctus, Agkistrodon acutus), a rapid PCR method for authenticate snakes and its adulterants was established based on the classic molecular authentication methods. DNA was extracted by alkaline lysis and the specific primers were amplified by two-steps PCR amplification method. The denatured and annealing temperature and cycle numbers were optimized. When 100 x SYBR Green I was added in the PCR product, strong green fluorescence was visualized under 365 nm UV whereas adulterants without. The whole process can complete in 30-45 minutes. The established method provides the technical support for authentication of the snakes on field.

  18. Australia´s Dangerous Snakes Identification, Biology and Envenoming

    DEFF Research Database (Denmark)

    Mirtschin, Peter; Redsted Rasmussen, Arne; Weinstein, Scott A

    2017-01-01

    , the environmental roles of these snakes and the threats that are causing the decline of many of these reptiles are discussed. Drawing on the authors’ experience in the fields of herpetology, toxinology and clinical medicine, this book stimulates respect and admiration and dispels fear of Australia’s fascinating...

  19. Field Dependence-Field Independence Cognitive Style, Gender, Career Choice and Academic Achievement of Secondary School Students in Emohua Local Government Area of Rivers State

    Science.gov (United States)

    Onyekuru, Bruno Uchenna

    2015-01-01

    This is a descriptive study that investigated the relationships among field dependence-field independence cognitive style and gender, career choice and academic achievement of secondary school students in Emohua Local Government Area of Rivers State, Nigeria. From the initial sample of 320 senior secondary school one (SS1) students drawn from the…

  20. The oldest known snakes from the Middle Jurassic-Lower Cretaceous provide insights on snake evolution.

    Science.gov (United States)

    Caldwell, Michael W; Nydam, Randall L; Palci, Alessandro; Apesteguía, Sebastián

    2015-01-27

    The previous oldest known fossil snakes date from ~100 million year old sediments (Upper Cretaceous) and are both morphologically and phylogenetically diverse, indicating that snakes underwent a much earlier origin and adaptive radiation. We report here on snake fossils that extend the record backwards in time by an additional ~70 million years (Middle Jurassic-Lower Cretaceous). These ancient snakes share features with fossil and modern snakes (for example, recurved teeth with labial and lingual carinae, long toothed suborbital ramus of maxillae) and with lizards (for example, pronounced subdental shelf/gutter). The paleobiogeography of these early snakes is diverse and complex, suggesting that snakes had undergone habitat differentiation and geographic radiation by the mid-Jurassic. Phylogenetic analysis of squamates recovers these early snakes in a basal polytomy with other fossil and modern snakes, where Najash rionegrina is sister to this clade. Ingroup analysis finds them in a basal position to all other snakes including Najash.

  1. Analysis, reconstruction and manipulation using arterial snakes

    KAUST Repository

    Li, Guo; Liu, Ligang; Zheng, Hanlin; Mitra, Niloy J.

    2010-01-01

    , and manipulating such arterial surfaces. The core of the algorithm is a novel deformable model, called arterial snake, that simultaneously captures the topology and geometry of the arterial objects. The recovered snakes produce a natural decomposition of the raw

  2. Savannah River Site management response plan for chemical safety vulnerability field assessment. Revision 1

    International Nuclear Information System (INIS)

    Kahal, E.J.; Murphy, S.L.; Salaymeh, S.R.

    1994-09-01

    As part of the U.S. Department of Energy's (DOE) initiative to identify potential chemical safety vulnerabilities in the DOE complex, the Chemical Safety Vulnerability Core Working Group issued a field verification assessment report. While the report concluded that Savannah River Site (SRS) is moving in a positive direction, the report also identified five chemical safety vulnerabilities with broad programmatic impact that are not easily nor quickly remedied. The May 1994 SRS Management Response Plan addressed the five SRS vulnerabilities identified in the field assessment report. The SRS response plan listed observations supporting the vulnerabilities and any actions taken or planned toward resolution. Many of the observations were resolved by simple explanations, such as the existence of implementation plans for Safety Analysis Report updates. Recognizing that correcting individual observations does not suffice in remedying the vulnerabilities, a task team was assembled to address the broader programmatic issues and to recommend corrective actions

  3. Managing induced riverbank filtration (IRF) at the Serchio River well field, Tuscany, Italy (Italy)

    Science.gov (United States)

    Rossetto, Rudy; Ansiati, Alberto; Barbagli, Alessio; Borsi, Iacopo; Costabile, Gennarino; Dietrich, Peter; Mazzanti, Giorgio; Picciaia, Daniele; Bonari, Enrico

    2014-05-01

    Along the Serchio River (Tuscany -Italy) a series of well fields is set for an overall amount of about 1 m3/s pumped groundwater providing drinking water for about 300000 people of the coastal Tuscany (mainly to the town of Lucca, Pisa and Livorno). Water is pumped enhancing riverbank filtration into a high yield (10-2 m2/s transmissivity) sand and gravel aquifer by artificially rising river head and setting pumping well fields along the river reach. However, being it unmanaged aquifer recharge, concerns arise both for quality and quantity of the abstracted groundwater. It happens in dry climate extremes (i.e. 2002/2003 or 2011/2012) that Serchio River flow falls below minimum environmental flow (MEF). Long term contamination of river water had been causing contamination of groundwater, as in 2002/2006, when pesticide contaminated surface water was polluting the well fields causing several problems to water supply. Such problems were overcome by setting in place derogatory regulations and then through dissemination and stakeholder activities reducing pesticide presence in surface water (EU LIFE SERIAL WELLFIR project). Although widely adopted, IRF is also not well stated from a regulatory point of view, eventually leading to concerns by a legal point of view. Within the framework of the MARSOL FPVII-ENV-2013 project an experimental site at a well field will be set to demonstrate the feasibility (by a technical, social and market point of view) and the benefits of managing IRF versus the unmanaged option. The Serchio experimental site will involve merging existing and proved technologies to produce a Decision Support System (DSS) based on remote data acquisition and transmission and GIS physically-based fully distributed numerical modeling to continuously monitor and manage well fields, reducing also human operated activities. The DSS along with the installed sensors, data transmission and storage tools will constitute a prototype whose potential market exploitation

  4. Computational Studies of Snake Venom Toxins

    OpenAIRE

    Paola G. Ojeda; David Ramírez; Jans Alzate-Morales; Julio Caballero; Quentin Kaas; Wendy González

    2017-01-01

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics t...

  5. Return to the river: strategies for salmon restoration in the Columbia River Basin.

    Science.gov (United States)

    Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell

    2006-01-01

    The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remain—for example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia River—the Columbia and Snake River mainstems are dominated...

  6. 33 CFR 117.331 - Snake Creek.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek...

  7. Coyotes Are Afraid of Little Snakes.

    Science.gov (United States)

    Weewish Tree, 1979

    1979-01-01

    Wichita tale of a contest between Coyote and Small Snake to see whose teeth are strongest. They bite each other, and soon big, strong Coyote is dead from the poisoned bite of the tiny snake. Explains why, from that time onward, coyotes have been afraid of little snakes. (DS)

  8. Building Exposure Maps Of Urban Infrastructure And Crop Fields In The Mekong River Basin

    Science.gov (United States)

    Haas, E.; Weichselbaum, J.; Gangkofner, U.; Miltzer, J.; Wali, A.

    2013-12-01

    In the frame of the Integrated Water Resources Management (IWRM) initiative for the Mekong river basin World Bank is collaborating with the Mekong River Commission and governmental organizations in Cambodia, Lao PDR, Thailand and Vietnam to build national and regional capacities for managing the risks associated with natural disasters, such as floods, flash floods and droughts. Within ‘eoworld', a joint initiative set up by ESA and World Bank to foster the use of Earth Observation (EO) for sustainable development work, a comprehensive database of elements at risk in the Lower Mekong river basin has been established by GeoVille, including urban infrastructure and crops (primarily rice paddies). In the long term, this exposure information shall be fed into an open-source multi- hazard modeling tool for risk assessment along the Mekong River, which then shall be used by national stakeholders as well as insurance and financial institutions for planning, disaster preparedness and emergency management. Earth Observation techniques can provide objective, synoptic and repetitive observations of elements at risk including buildings, infrastructure and crops. Through the fusion of satellite-based with in-situ data from field surveys and local knowledge (e.g. on building materials) features at risk can be characterised and mapped with high accuracy. Earth Observation data utilised comprise bi-weekly Envisat ASAR imagery programmed for a period of 9 months in 2011 to map the development of the rice cultivation area, identify predominant cropping systems (wet-season vs. dry season cultivation), crop cycles (single /double / triple crop per year), date of emergence/harvest and the distinction between rice planted under intensive (SRI) vs. regular rice cultivation techniques. Very High Resolution (VHR) optical data from SPOT, KOMPSAT and QuickBird were used for mapping of buildings and infrastructure, such as building footprints, residential / commercial areas, industrial

  9. New practicable Siberian Snake schemes

    International Nuclear Information System (INIS)

    Steffen, K.

    1983-07-01

    Siberian Snake schemes can be inserted in ring accelerators for making the spin tune almost independent of energy. Two such schemes are here suggested which lend particularly well to practical application over a wide energy range. Being composed of horizontal and vertical bending magnets, the proposed snakes are designed to have a small maximum beam excursion in one plane. By applying in this plane a bending correction that varies with energy, they can be operated at fixed geometry in the other plane where most of the bending occurs, thus avoiding complicated magnet motion or excessively large magnet apertures that would otherwise be needed for large energy variations. The first of the proposed schemes employs a pair of standard-type Siberian Snakes, i.e. of the usual 1st and 2nd kind which rotate the spin about the longitudinal and the transverse horizontal axis, respectively. The second scheme employs a pair of novel-type snakes which rotate the spin about either one of the horizontal axes that are at 45 0 to the beam direction. In obvious reference to these axes, they are called left-pointed and right-pointed snakes. (orig.)

  10. Molecular Identification of Cryptosporidium Species from Pet Snakes in Thailand

    OpenAIRE

    Yimming, Benjarat; Pattanatanang, Khampee; Sanyathitiseree, Pornchai; Inpankaew, Tawin; Kamyingkird, Ketsarin; Pinyopanuwat, Nongnuch; Chimnoi, Wissanuwat; Phasuk, Jumnongjit

    2016-01-01

    Cryptosporidium is an important pathogen causing gastrointestinal disease in snakes and is distributed worldwide. The main objectives of this study were to detect and identify Cryptosporidium species in captive snakes from exotic pet shops and snake farms in Thailand. In total, 165 fecal samples were examined from 8 snake species, boa constrictor (Boa constrictor constrictor), corn snake (Elaphe guttata), ball python (Python regius), milk snake (Lampropeltis triangulum), king snake (Lampropel...

  11. Superconducting Helical Snake Magnet for the AGS

    CERN Document Server

    Willen, Erich; Escallier, John; Ganetis, George; Ghosh, Arup; Gupta, Ramesh C; Harrison, Michael; Jain, Animesh K; Luccio, Alfredo U; MacKay, William W; Marone, Andrew; Muratore, Joseph F; Okamura, Masahiro; Plate, Stephen R; Roser, Thomas; Tsoupas, Nicholaos; Wanderer, Peter

    2005-01-01

    A superconducting helical magnet has been built for polarized proton acceleration in the Brookhaven AGS. This "partial Snake" magnet will help to reduce the loss of polarization of the beam due to machine resonances. It is a 3 T magnet some 1940 mm in magnetic length in which the dipole field rotates with a pitch of 0.2053 degrees/mm for 1154 mm in the center and a pitch of 0.3920 degrees/mm for 393 mm in each end. The coil cross-section is made of two slotted cylinders containing superconductor. In order to minimize residual offsets and deflections of the beam on its orbit through the Snake, a careful balancing of the coil parameters was necessary. In addition to the main helical coils, a solenoid winding was built on the cold bore tube inside the main coils to compensate for the axial component of the field that is experienced by the beam when it is off-axis in this helical magnet. Also, two dipole corrector magnets were placed on the same tube with the solenoid. A low heat leak cryostat was built so that t...

  12. Siberian Snakes in high-energy accelerators

    International Nuclear Information System (INIS)

    Mane, S R; Shatunov, Yu M; Yokoya, K

    2005-01-01

    We review modern techniques to accelerate spin-polarized beams to high energy and to preserve their polarization in storage rings. Crucial to the success of such work is the use of so-called Siberian Snakes. We explain these devices and the reason for their necessity. Closely related to Snakes is the concept of 'spin rotators'. The designs and merits of several types of Snakes and spin rotators are examined. Theoretical work with Snakes and spin rotators, and experimental results from several storage rings, are reviewed, including the so-called Snake resonances. (topical review)

  13. First test of the Siberian Snake concept

    International Nuclear Information System (INIS)

    Krisch, A.D.

    1990-01-01

    Test results of the Siberian Snake concept at the Indiana University Cooler Ring are presented. The Siberian Snake is a clever and interesting concept for accelerating polarized protons to high energy. Thus it would be especially useful at TeV energies where there are thousands of depolarizing resonances. The Snake is the device which job is to rotate the proton's spin by 180 deg. every time the proton goes around the ring. The Snake's main element is the superconducting solenoid magnet. Examples of the Siberian Snake overcoming depolarizing resonances are presented. 6 refs.; 24 figs

  14. Toxin synergism in snake venoms

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2016-01-01

    Synergism between venom toxins exists for a range of snake species. Synergism can be derived from both intermolecular interactions and supramolecular interactions between venom components, and can be the result of toxins targeting the same protein, biochemical pathway or physiological process. Few...... simple systematic tools and methods for determining the presence of synergism exist, but include co-administration of venom components and assessment of Accumulated Toxicity Scores. A better understanding of how to investigate synergism in snake venoms may help unravel strategies for developing novel...

  15. [Bites of venomous snakes in Switzerland].

    Science.gov (United States)

    Plate, Andreas; Kupferschmidt, Hugo; Schneemann, Markus

    2016-06-08

    Although snake bites are rare in Europe, there are a constant number of snake bites in Switzerland. There are two domestic venomous snakes in Switzerland: the aspic viper (Vipera aspis) and the common European adder (Vipera berus). Bites from venomous snakes are caused either by one of the two domestic venomous snakes or by an exotic venomous snake kept in a terrarium. Snake- bites can cause both a local and/or a systemic envenoming. Potentially fatal systemic complications are related to disturbances of the hemostatic- and cardiovascular system as well as the central or peripheral nervous system. Beside a symptomatic therapy the administration of antivenom is the only causal therapy to neutralize the venomous toxins.

  16. A description of parasites from Iranian snakes.

    Science.gov (United States)

    Nasiri, Vahid; Mobedi, Iraj; Dalimi, Abdolhossein; Mirakabadi, Abbas Zare; Ghaffarifar, Fatemeh; Teymurzadeh, Shohreh; Karimi, Gholamreza; Abdoli, Amir; Paykari, Habibollah

    2014-12-01

    Little is known of the parasitic fauna of terrestrial snakes in Iran. This study aimed to evaluate the parasitic infection rates of snakes in Iran. A total of 87 snakes belonging to eight different species, that were collected between May 2012 and September 2012 and died after the hold in captivity, under which they were kept for taking poisons, were examined for the presence of gastrointestinal and blood parasites. According to our study 12 different genera of endoparasites in 64 (73.56%) of 87 examined snakes were determined. Forty one snakes (47.12%) had gastrointestinal parasites. In prepared blood smears, it was found that in 23 (26.43%) of 87 examined snakes there are at least one hemoparasite. To our knowledge, these are the first data on the internal parasitic fauna of Iranian terrestrial snakes and our findings show a higher prevalence of these organisms among them. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Snake fungal disease: an emerging threat to wild snakes.

    Science.gov (United States)

    Lorch, Jeffrey M; Knowles, Susan; Lankton, Julia S; Michell, Kathy; Edwards, Jaime L; Kapfer, Joshua M; Staffen, Richard A; Wild, Erik R; Schmidt, Katie Z; Ballmann, Anne E; Blodgett, Doug; Farrell, Terence M; Glorioso, Brad M; Last, Lisa A; Price, Steven J; Schuler, Krysten L; Smith, Christopher E; Wellehan, James F X; Blehert, David S

    2016-12-05

    Since 2006, there has been a marked increase in the number of reports of severe and often fatal fungal skin infections in wild snakes in the eastern USA. The emerging condition, referred to as snake fungal disease (SFD), was initially documented in rattlesnakes, where the infections were believed to pose a risk to the viability of affected populations. The disease is caused by Ophidiomyces ophiodiicola, a fungus recently split from a complex of fungi long referred to as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). Here we review the current state of knowledge about O. ophiodiicola and SFD. In addition, we provide original findings which demonstrate that O. ophiodiicola is widely distributed in eastern North America, has a broad host range, is the predominant cause of fungal skin infections in wild snakes and often causes mild infections in snakes emerging from hibernation. This new information, together with what is already available in the scientific literature, advances our knowledge of the cause, pathogenesis and ecology of SFD. However, additional research is necessary to elucidate the factors driving the emergence of this disease and develop strategies to mitigate its impacts.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  18. Snake fungal disease: An emerging threat to wild snakes

    Science.gov (United States)

    Lorch, Jeffrey M.; Knowles, Susan N.; Lankton, Julia S.; Michell, Kathy; Edwards, Jaime L.; Kapfer, Joshua M.; Staffen, Richard A.; Wild, Erik R.; Schmidt, Katie Z.; Ballmann, Anne; Blodgett, Doug; Farrell, Terence M.; Glorioso, Brad M.; Last, Lisa A.; Price, Steven J.; Schuler, Krysten L.; Smith, Christopher; Wellehan, James F. X.; Blehert, David S.

    2016-01-01

    Since 2006, there has been a marked increase in the number of reports of severe and often fatal fungal skin infections in wild snakes in the eastern USA. The emerging condition, referred to as snake fungal disease (SFD), was initially documented in rattlesnakes, where the infections were believed to pose a risk to the viability of affected populations. The disease is caused byOphidiomyces ophiodiicola, a fungus recently split from a complex of fungi long referred to as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). Here we review the current state of knowledge about O. ophiodiicola and SFD. In addition, we provide original findings which demonstrate that O. ophiodiicola is widely distributed in eastern North America, has a broad host range, is the predominant cause of fungal skin infections in wild snakes and often causes mild infections in snakes emerging from hibernation. This new information, together with what is already available in the scientific literature, advances our knowledge of the cause, pathogenesis and ecology of SFD. However, additional research is necessary to elucidate the factors driving the emergence of this disease and develop strategies to mitigate its impacts.

  19. Analysis of stream quality in the Yampa River Basin, Colorado and Wyoming

    Science.gov (United States)

    Wentz, Dennis A.; Steele, Timothy Doak

    1980-01-01

    Historic data show no significant water-temperature changes since 1951 for the Little Snake or Yampa Rivers, the two major streams of the Yampa River basin in Colorado and Wyoming. Regional analyses indicate that harmonic-mean temperature is negatively correlated with altitude. No change in specific conductance since 1951 was noted for the Little Snake River; however, specific conductance in the Yampa River has increaed 14 % since that time and is attributed to increased agricultural and municipal use of water. Site-specific relationships between major inorganic constituents and specific conductance for the Little Snake and Yampa Rivers were similar to regional relationships developed from both historic and recent (1975) data. These relationships provide a means for estimating concentrations of major inorganic constituents from specific conductance, which is easily measured. Trace-element and nutrient data collected from August 1975 through September 1976 at 92 sites in the Yampa River basin indicate that water-quality degradation occurred upstream from 3 sites. The degradation resulted from underground drainage from pyritic materials that probably are associated with coal at one site, discharge from powerplant cooling-tower blowdown water at a second site, and runoff from a small watershed containing a gas field at the third site. Ambient concentrations of dissolved and total iron and manganese frequently exceeded proposed Colorado water-quality standards. The concentrations of many dissolved and total trace elements and nutrients were greatest during March 1976. These were associated with larger suspended-sediment concentrations and smaller pH values than at other times of the year. (USGS)

  20. Venomous Snake Bite Injuries at Kitui District Hospital | Kihiko ...

    African Journals Online (AJOL)

    Background Snake bites are a neglected public health issue in poor rural communities, and the true burden of snake bites is not known. Kitui County has a high incidence of snake bites and no functional snake bite control programs exists. Diagnostic tests for snake species identification are not available and management ...

  1. Tolerance of Snakes to Hypergravity

    Science.gov (United States)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1994-01-01

    Sensitivity of carotid blood flow to +Gz (head-to-tail) acceleration was studied in six species of snakes hypothesized to show varied adaptive cardiovascular responses to gravity. Blood flow in the proximal carotid artery was measured in 15 snakes before, during and following stepwise increments of +0.25Gz force produced on a 2.4 m diameter centrifuge. During centrifugation each snake was confined to a straight position within an individually- fitted acrylic tube with the head facing the center of rotation. We measured the centrifugal force at the tail of the snake in order to quantify the maximum intensity of force gradient promoting antero-posterior pooling of blood. Tolerance to increased gravity was quantified as the acceleration force at which carotid blood flow ceased. This parameter varied according to the gravitational adaptation of species defined by their ecology and behavior. At the extremes, carotid blood flow decreased in response to increasing gravity and approached zero near +1Gz in aquatic and ground-dwelling species, whereas in climbing species carotid flow was maintained at forces in excess of +2Gz. Surprisingly, tolerant (arboreal) species withstood hypergravic forces of +2 to +3 G. for periods up to 1 h without cessation of carotid blood flow or apparent loss of consciousness. Data suggest that relatively tight skin of the tolerant species provides a natural antigravity suit which is of prime importance in counteracting Gz stress on blood circulation.

  2. Regina rigida (glossy crayfish snake)

    Science.gov (United States)

    David A. Steen; James A. Stiles; Sierra H. Stiles; Craig Guyer; Josh B. Pierce; D. Craig Rudolph; Lora L. Smith

    2011-01-01

    The overland movements and upland habitat use of wetland-associated reptiles has important conservation implications (Semlitsch and Bodie 2003. Conserv. BioI. 17:1219-1228). However, for many species, particularly snakes, we lack a basic understanding of spatial ecology and habitat use. Regina rigida is a poorly known species for which "observations of any kind...

  3. Snakes of the Guianan region

    NARCIS (Netherlands)

    Hoogmoed, M.S.

    1982-01-01

    The study of snaks from the Guianan region got an early start in 1705 when several species were pictured by Merian. As relatively large proportion of the snakes described by Linnaeus originated from Surinam. Interest for and knowledge of this group of animals steadily increased in the 18th and 19th

  4. Practice of Field learning and its effect by using Hiikawa river distributed over Shimane prefecture, southwest Japan

    Science.gov (United States)

    Tomoyuki, U.; Matsumoto, I.

    2013-12-01

    The importance of field learning about geological feature has been increasing from a elementary to a undergraduate (university) student. Especially the field learning for elementary and junior high school student is important in it. However, the implementation rate of the field learning in an elementary and a junior high school is a low very much. The trend for a school with such a situation nearer to a large city to be stronger is recognized. They learn the erosion, transportation, and sedimentation by river water as science unite of grade 5 "Function of running water" of elementary school in Japan. As for Hii river, the granitoids is widely distributed over most of the basin from the upper stream to the down stream. Therefore, the most is the granitoids origin and we can look upon the clastic grains observed to the river floor and bank as a series of rocks and minerals from the upper stream to the lower stream. That is, since a student can make observation learning of the function of a river through grain size change of a granitoids and the mineral which constitutes it, Hii river is very good teaching material in this unit. Moreover, in this study, we carried out the questionnaire of the free description format including the general impression against a this field learning. The result of these questionnaires showed that student not only having studying the function of running water 'weathering', 'transportation' and 'sedimentation' with actual feelings, but also the actions of the river having spent tremendous time and having studied dominating the Space.

  5. Snake River fall Chinook reproductive success - Juvenile life history changes in Snake River fall Chinook salmon

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This population historically migrated as subyearling smolts, but in recent years, the yearling life history has become more common. Environmental conditions...

  6. Video-Based Electroshocking Platform to Identify Lamprey Ammocoete Habitats: Field Validation and New Discoveries in the Columbia River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Arntzen, Evan V.; Mueller, Robert P.

    2017-05-04

    A deep water electroshocking platform (DEP), developed to characterize larval lampreys (ammocoetes) and associated habitat in depths up to 15 m, was recently tested in the field. The DEP samples 0.55 m2∙min-1 without requiring ammocoete transport to the surface. Searches were conducted at a known rearing location (mouth of the Wind River, WA) and at locations on the Cowlitz River, WA, where ammocoetes had not previously been found. At the mouth of the Wind River, video imaged ammocoetes ranged from 50 to 150 mm in water depths between 1.5 m and 4.5 m and were more common in sediments containing organic silt. Ammocoetes (n=137) were detected at 61% of locations sampled (summer) and 50% of the locations sampled (winter). Following the field verification, the DEP was used on the lower 11.7 km of the Cowlitz River, WA. Ammocoetes (n=41) were found with a detection rate of 26% at specific search locations. Cowlitz River sediment containing ammocoetes was also dominated by silt with organic material, often downstream of alluvial bars in water depths from 0.8 to 1.7 m. Test results indicated a high sampling efficiency, favorable detection rates, and little or no impact to ammocoetes and their surrounding benthic environments.

  7. Rapid River Hatchery - Spring Chinook, Final Report

    International Nuclear Information System (INIS)

    Watson, M.

    1996-05-01

    This report presents the findings of the independent audit of the Rapid River Hatchery (Spring Chinook). The hatchery is located in the lower Snake River basin near Riggins Idaho. The hatchery is used for adult collection, egg incubation, and rearing of spring chinook. The audit was conducted in April 1996 as part of a two-year effort that will include 67 hatcheries and satellite facilities located on the Columbia and Snake River system in Idaho, Oregon, and Washington. The hatchery operating agencies include the US Fish and Wildlife Service, Idaho Department of Fish and Game, Oregon Department of Fish and Wildlife, and Washington Department of Fish and Wildlife

  8. Simulation of the Impacts of Urbanization on Winter Meteorological Fields over the Pearl River Delta Region

    Directory of Open Access Journals (Sweden)

    Naixing Luo

    2017-01-01

    Full Text Available The influences of urbanization on weather in Guangdong Province, China, were studied using the Weather Research and Forecasting model from 31 December 2009 through 3 January 2010. Model outputs were compared with extensive monitoring of meteorological data to examine the simulation ability. Model results between tests (with and without land-use change show that the urbanization had major effects on meteorological fields across nearly the entire Pearl River Delta region and particularly in urban areas. Studied fields (wind speed, temperature, precipitation, and sensible and latent heat fluxes were affected by the urbanization of the PRD region. The major influences occurred in urban areas, where wind speeds decreased greatly, while the daytime surface upward sensible heat flux clearly increased. Unlike the sensible heat flux, the latent heat flux had a nonmonotonic increase or decrease. As a consequence of the two heat fluxes, 2-m temperature varied with location and time. Change of precipitation was complex. The main rain band became more concentrated, while precipitation decreased upwind of the urban area and increased downwind.

  9. Investigation of well redevelopment techniques for the MWD Well Field, Savannah River Site, South Carolina

    International Nuclear Information System (INIS)

    Kroening, D.E.; Snipes, D.S.; Falta, R.W.; Benson, S.M.

    1994-01-01

    Clemson University, in cooperation with the Savannah River Site (SRS) is investigating well treatment techniques at the Mixed Waste Disposal (MWD) Well Field at SRS. This well field consists of fifteen wells screened in three aquifers with a downward trending head gradient. Based on aquifer performance tests of the MWD wells, it has been determined that many of the wells exhibit low well efficiencies and high skin factors, indicative of damaged wells. Bacterial investigations show that the biological activity in these wells is low, probably due to a high pH environment. Evaluation of the Calcite Saturation Index for each well indicates that nearly all of the MWD wells have the potential for precipitating calcite and calcite deposits have been observed on downhole equipment. The calcite deposits may occur due to the dissolution of the grout mixtures by waters infiltrating down the well annulus driven by the downward head gradient with subsequent precipitation of calcite in the higher pH sand pack. Well rehabilitation techniques currently under investigation include acidification, hydraulic fracturing and traditional physical methods. In addition to treating the wells at MWD, the authors plan to perform aquifer performance tests and evaluate post-treatment skin factors. Further research into the long term effects of well treatment will be conducted, focusing on long term chemical changes brought about by the treatments

  10. Observations of Snake Resonance in RHIC

    CERN Document Server

    Bai, Mei; Lee, Shyh-Yuan; Lin, Fanglei; MacKay, William; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven

    2005-01-01

    Siberian snakes now become essential in the polarized proton acceleration. With proper configuration of Siberian snakes, the spin precession tune of the beam becomes $\\frac{1}{2}$ which avoids all the spin depolarizing resonance. However, the enhancement of the perturbations on the spin motion can still occur when the betatron tune is near some low order fractional numbers, called snake resonances, and the beam can be depolarized when passing through the resonance. The snake resonances have been confirmed in the spin tracking calculations, and observed in RHIC with polarized proton beam. Equipped with two full Siberian snakes in each ring, RHIC provides us a perfect facility for snake resonance studies. This paper presents latest experimental results. New insights are also discussed.

  11. The Study on the Snake by TOXICON

    Directory of Open Access Journals (Sweden)

    Sung-wook Kim

    2003-06-01

    Full Text Available The study was carried out to investigate the researches of Snake which was published papers in the TOXICON(1990-2.000, one of the most famous Journal of toxicology. And the results were as follows: 1. The number related with Snake is 195papers. 2. There were great papers related wih Cobra, and next is Tigris, Viper, etc. 3. There were great papers related wih protein in the composition of snake venom. 4. There were great papers related wih neurotoxin in the research of poisonous character. 5. There were great papers related wih Viper according to the anticoagulation. 6. Eight papers were published to study the immune response of snake venom. 7. The papers of molecular study of snake venom were seven. 8. The papers of anti-snake venom study were three.

  12. Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study

    Science.gov (United States)

    Van Strien, Jan W.; Isbell, Lynne A.

    2017-01-01

    Studies of event-related potentials in humans have established larger early posterior negativity (EPN) in response to pictures depicting snakes than to pictures depicting other creatures. Ethological research has recently shown that macaques and wild vervet monkeys respond strongly to partially exposed snake models and scale patterns on the snake skin. Here, we examined whether snake skin patterns and partially exposed snakes elicit a larger EPN in humans. In Task 1, we employed pictures with close-ups of snake skins, lizard skins, and bird plumage. In task 2, we employed pictures of partially exposed snakes, lizards, and birds. Participants watched a random rapid serial visual presentation of these pictures. The EPN was scored as the mean activity (225–300 ms after picture onset) at occipital and parieto-occipital electrodes. Consistent with previous studies, and with the Snake Detection Theory, the EPN was significantly larger for snake skin pictures than for lizard skin and bird plumage pictures, and for lizard skin pictures than for bird plumage pictures. Likewise, the EPN was larger for partially exposed snakes than for partially exposed lizards and birds. The results suggest that the EPN snake effect is partly driven by snake skin scale patterns which are otherwise rare in nature. PMID:28387376

  13. Effects of Mitigation Measures on Productivity of the White Sturgeon Populations in the Columbia River Downstream from McNary Dam, and Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1992-1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Beamesdorfer, Raymond C.; Nigro, Anthony A. (Oregon Department of Fish and Wildlife, Portland, OR)

    1993-12-01

    We report on our progress from April 1992-March 1993 in research on white sturgeon in the lower Columbia River. The study began in July 1986 and progress through 1992 was summarized in a comprehensive report in 2 volumes (Beamesderfer and Nigro 1993a, 1993b). This report details activities during the first year of Phase II of this sturgeon research. In Phase I, we assessed the status and habitat requirements of the white sturgeon populations in the Columbia River downstream from McNary Dam. Phase II will examine the effects on white sturgeon productivity of mitigative measures recommended in Phase I. The status and habitat requirements of white sturgeon populations upstream from McNary Dam will also be examined in Phase II. The study is a cooperative effort by the Oregon Department of Fish and Wildlife, Washington Department of Fisheries, U.S. Fish and Wildlife Service, and National Marine Fisheries Service. Work during the past year has focused on: (1) analysis of results of limited sampling conducted in 1992, (2) submission of Phase I results to the peer-review literature to ensure widespread dissemination, clarity of presentation, and credibility of findings, and (3) preparations for additional field work in 1993. In report sections A to D, each agency reports 1992 results if applicable and the current status of manuscripts. Results of field work conducted in 1993 will be reported in the 1994 annual report.

  14. Skeleton extraction based on the topology and Snakes model

    Directory of Open Access Journals (Sweden)

    Yuanxue Cai

    Full Text Available A new skeleton line extraction method based on topology and flux is proposed by analyzing the distribution characteristics of the gradient vector field in the Snakes model. The distribution characteristics of the skeleton line are accurately obtained by calculating the eigenvalues of the critical points and the flux of the gradient vector field. Then the skeleton lines can be effectively extracted. The results also show that there is no need for the pretreatment or binarization of the target image. The skeleton lines of complex gray images such as optical interference patterns can be effectively extracted by using this method. Compared to traditional methods, this method has many advantages, such as high extraction accuracy and fast processing speed. Keywords: Skeleton, Snakes model, Topology, Photoelasticity image

  15. Heat, sight and scent: multiple cues influence foraging site selection by an ambush-foraging snake Hoplocephalus bungaroides (Elapidae

    Directory of Open Access Journals (Sweden)

    Weiguo DU, Jonathan K. WEBB, Richard SHINE

    2009-08-01

    Full Text Available Most mobile organisms respond to multiple cues when selecting habitat types, and laboratory experiments that manipulate only single cues may fail to reveal the true complexity of habitat-selection behaviour. In south-eastern Australia, broad-headed snakes Hoplocephalus bungaroides (Elapidae lie in wait under sun-warmed rocks to ambush velvet geckos Oedura leseuerii (Gekkonidae. Previous laboratory work has shown that both the geckos and the snakes actively select hotter rather than colder rocks, and that the snakes actively select rocks scented by geckos. We manipulated rock temperature and the presence of two types of cues from geckos (chemical and visual information to clarify the causal basis for foraging site selection by the juveniles of this snake. When given a choice between cold lizard-scented rocks and hot unscented rocks, our captive snakes gave a higher priority to lizard scent than to temperature. The snakes also selected shelter-sites that provided visual as well as scent cues from lizards, rather than shelter-sites with scent cues alone. Thus, although broad-headed snakes show a direct preference for hotter rather than colder rocks in the laboratory, their choice of foraging site in the field may also be influenced by the presence of scent cues from prey. Our laboratory results suggest that habitat selection by broad-headed snakes may be more complex than has been suggested by previous single-factor laboratory trials[Current Zoology 55(4: 266–271, 2009].

  16. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent S [ORNL; Gunawan, Budi [Oak Ridge National Laboratory (ORNL)

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  17. Indiana: Siberian Snake saves spin

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-01-15

    A team working at the Indiana University Cooler Ring has used a 'Siberian Snake' system to accelerate a spin-polarized proton beam through two depolarizing resonances with no loss of spin. The Michigan/lndiana/Brookhaven team under Alan Krisch overcame their first imperfection resonance hurdle at 108 MeV, and in a subsequent run vanquished a further resonance at 177 MeV.

  18. Indiana: Siberian Snake saves spin

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    A team working at the Indiana University Cooler Ring has used a 'Siberian Snake' system to accelerate a spin-polarized proton beam through two depolarizing resonances with no loss of spin. The Michigan/lndiana/Brookhaven team under Alan Krisch overcame their first imperfection resonance hurdle at 108 MeV, and in a subsequent run vanquished a further resonance at 177 MeV

  19. Experimental research of specificity of fear of snake: coral snake pattern

    OpenAIRE

    Průšová, Lucie

    2013-01-01

    Due to shared coevolutionary history of snakes and primates with snakes acting as their main predators, snakes elicit fear in most of the primates, humans included. Humans are able to notice a stimulus that elicits fear, e.g., a snake, much faster. Such ability might have surely positively affected their survival in the past. In the nature, aposematic coloration acts as a warning of a dangerous prey to its predators not to devour it. The highly poisonous American coral snakes have this colora...

  20. THE FLOOD RISK IN THE LOWER GIANH RIVER: MODELLING AND FIELD VERIFICATION

    Directory of Open Access Journals (Sweden)

    NGUYEN H. D.

    2016-03-01

    Full Text Available Problems associated with flood risk definitely represent a highly topical issue in Vietnam. The case of the lower Gianh River in the central area of Vietnam, with a watershed area of 353 km2, is particularly interesting. In this area, periodically subject to flood risk, the scientific question is strongly linked to risk management. In addition, flood risk is the consequence of the hydrological hazard of an event and the damages related to this event. For this reason, our approach is based on hydrodynamic modelling using Mike Flood to simulate the runoff during a flood event. Unfortunately the data in the studied area are quite limited. Our computation of the flood risk is based on a three-step modelling process, using rainfall data coming from 8 stations, cross sections, the topographic map and the land-use map. The first step consists of creating a 1-D model using Mike 11, in order to simulate the runoff in the minor river bed. In the second step, we use Mike 21 to create a 2-D model to simulate the runoff in the flood plain. The last step allows us to couple the two models in order to precisely describe the variables for the hazard analysis in the flood plain (the water level, the speed, the extent of the flooding. Moreover the model is calibrated and verified using observational data of the water level at hydrologic stations and field control data (on the one hand flood height measurements, on the other hand interviews with the community and with the local councillors. We then generate GIS maps in order to improve flood hazard management, which allows us to create flood hazard maps by coupling the flood plain map and the runoff speed map. Our results show that: the flood peak, caused by typhoon Nari, reached more than 6 m on October 16th 2013 at 4 p.m. (its area was extended by 149 km². End that the typhoon constitutes an extreme flood hazard for 11.39%, very high for 10.60%, high for 30.79%, medium for 31.91% and a light flood hazard for 15

  1. Breaking Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions.

    Science.gov (United States)

    Kawai, Nobuyuki; He, Hongshen

    2016-01-01

    Humans and non-human primates are extremely sensitive to snakes as exemplified by their ability to detect pictures of snakes more quickly than those of other animals. These findings are consistent with the Snake Detection Theory, which hypothesizes that as predators, snakes were a major source of evolutionary selection that favored expansion of the visual system of primates for rapid snake detection. Many snakes use camouflage to conceal themselves from both prey and their own predators, making it very challenging to detect them. If snakes have acted as a selective pressure on primate visual systems, they should be more easily detected than other animals under difficult visual conditions. Here we tested whether humans discerned images of snakes more accurately than those of non-threatening animals (e.g., birds, cats, or fish) under conditions of less perceptual information by presenting a series of degraded images with the Random Image Structure Evolution technique (interpolation of random noise). We find that participants recognize mosaic images of snakes, which were regarded as functionally equivalent to camouflage, more accurately than those of other animals under dissolved conditions. The present study supports the Snake Detection Theory by showing that humans have a visual system that accurately recognizes snakes under less discernible visual conditions.

  2. Breaking Snake Camouflage: Humans Detect Snakes More Accurately than Other Animals under Less Discernible Visual Conditions.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Kawai

    Full Text Available Humans and non-human primates are extremely sensitive to snakes as exemplified by their ability to detect pictures of snakes more quickly than those of other animals. These findings are consistent with the Snake Detection Theory, which hypothesizes that as predators, snakes were a major source of evolutionary selection that favored expansion of the visual system of primates for rapid snake detection. Many snakes use camouflage to conceal themselves from both prey and their own predators, making it very challenging to detect them. If snakes have acted as a selective pressure on primate visual systems, they should be more easily detected than other animals under difficult visual conditions. Here we tested whether humans discerned images of snakes more accurately than those of non-threatening animals (e.g., birds, cats, or fish under conditions of less perceptual information by presenting a series of degraded images with the Random Image Structure Evolution technique (interpolation of random noise. We find that participants recognize mosaic images of snakes, which were regarded as functionally equivalent to camouflage, more accurately than those of other animals under dissolved conditions. The present study supports the Snake Detection Theory by showing that humans have a visual system that accurately recognizes snakes under less discernible visual conditions.

  3. 4-twist helix snake to maintain polarization in multi-GeV proton rings

    Directory of Open Access Journals (Sweden)

    F. Antoulinakis

    2017-09-01

    Full Text Available Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven’s 255 GeV Relativistic Heavy Ion Collider (RHIC, use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab’s 120  GeV/c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9–120  GeV/c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. This snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

  4. 4-twist helix snake to maintain polarization in multi-GeV proton rings

    Science.gov (United States)

    Antoulinakis, F.; Chen, Y.; Dutton, A.; Rossi De La Fuente, E.; Haupert, S.; Ljungman, E. A.; Myers, P. D.; Thompson, J. K.; Tai, A.; Aidala, C. A.; Courant, E. D.; Krisch, A. D.; Leonova, M. A.; Lorenzon, W.; Raymond, R. S.; Sivers, D. W.; Wong, V. K.; Yang, T.; Derbenev, Y. S.; Morozov, V. S.; Kondratenko, A. M.

    2017-09-01

    Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven's 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab's 120 GeV /c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9 - 120 GeV /c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. This snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

  5. 4-twist helix snake to maintain polarization in multi-GeV proton rings

    International Nuclear Information System (INIS)

    Antoulinakis, F.; Chen, Y.; Dutton, A.; Rossi De La Fuente, E.; Haupert, S.

    2017-01-01

    Solenoid Siberian snakes have successfully maintained polarization in particle rings below 1 GeV, but never in multi-GeV rings, because the spin rotation by a solenoid is inversely proportional to the beam momentum. High energy rings, such as Brookhaven’s 255 GeV Relativistic Heavy Ion Collider (RHIC), use only odd multiples of pairs of transverse B-field Siberian snakes directly opposite each other. When it became impractical to use a pair of Siberian Snakes in Fermilab’s 120 GeV/c Main Injector, we searched for a new type of single Siberian snake that could overcome all depolarizing resonances in the 8.9–120 GeV/c range. We found that a snake made of one 4-twist helix and 2 dipoles could maintain the polarization. Here, this snake design could solve the long-standing problem of significant polarization loss during acceleration of polarized protons from a few GeV to tens of GeV, such as in the AGS, before injecting them into multi-hundred GeV rings, such as RHIC.

  6. An unusual complication of snake bite

    Directory of Open Access Journals (Sweden)

    Mary Grace

    2014-01-01

    Full Text Available Anterior pituitary hypofunction is a well-known complication following snake bite. However, central diabetes insipidus as a complication of snake bite is only rarely reported in the literature. We are reporting a case of central diabetes insipidus, which developed as sequelae to viper bite.

  7. On a collection of Snakes from Dehli

    NARCIS (Netherlands)

    Lidth de Jeude, van Th.W.

    1890-01-01

    During his stay in Laboean (Delili, East-Sumatra) Dr. B. Hagen, to whom the Leyden Museum is indebted for large series of mammals, birds and insects, also collected a large number of snakes, the greater part of which were sent to our Museum. Dr. Hagen took a lively interest in snakes, and being

  8. Evolutionary stability of sex chromosomes in snakes.

    Science.gov (United States)

    Rovatsos, Michail; Vukić, Jasna; Lymberakis, Petros; Kratochvíl, Lukáš

    2015-12-22

    Amniote vertebrates possess various mechanisms of sex determination, but their variability is not equally distributed. The large evolutionary stability of sex chromosomes in viviparous mammals and birds was believed to be connected with their endothermy. However, some ectotherm lineages seem to be comparably conserved in sex determination, but previously there was a lack of molecular evidence to confirm this. Here, we document a stability of sex chromosomes in advanced snakes based on the testing of Z-specificity of genes using quantitative PCR (qPCR) across 37 snake species (our qPCR technique is suitable for molecular sexing in potentially all advanced snakes). We discovered that at least part of sex chromosomes is homologous across all families of caenophidian snakes (Acrochordidae, Xenodermatidae, Pareatidae, Viperidae, Homalopsidae, Colubridae, Elapidae and Lamprophiidae). The emergence of differentiated sex chromosomes can be dated back to about 60 Ma and preceded the extensive diversification of advanced snakes, the group with more than 3000 species. The Z-specific genes of caenophidian snakes are (pseudo)autosomal in the members of the snake families Pythonidae, Xenopeltidae, Boidae, Erycidae and Sanziniidae, as well as in outgroups with differentiated sex chromosomes such as monitor lizards, iguanas and chameleons. Along with iguanas, advanced snakes are therefore another example of ectothermic amniotes with a long-term stability of sex chromosomes comparable with endotherms. © 2015 The Author(s).

  9. Snake venom instability | Willemse | African Zoology

    African Journals Online (AJOL)

    Egyptian cobra Naja haje haje) and puffadder (Bills arietans). Considerable differences in electrophoretic characteristics were found between fresh venom and commercial venom samples from the same species of snake. These differences could be attributed partly to the instability of snake venom under conditions of drying ...

  10. Spin Flipping in the Presence of a Full Siberian Snake

    International Nuclear Information System (INIS)

    Blinov, B.B.; Anferov, V.A.; Derbenev, Y.S.; Kageya, T.; Krisch, A.D.; Lorenzon, W.; Ratner, L.G.; Sivers, D.W.; Sourkont, K.V.; Wong, V.K.; Chu, C.M.; Lee, S.Y.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Przewoski, B. von; Sato, H.

    1998-01-01

    We have demonstrated for the first time spin flipping of a polarized proton beam stored in a ring containing a nearly 100% Siberian snake; we did this using a 'snake' depolarizing resonance induced by an rf solenoid magnet. By varying the rf solenoid close-quote s ramp time, frequency range, and voltage, we reached a spin-flip efficiency of about 91% . This spin-flip efficiency was probably reduced because the horizontal stable spin direction was not perpendicular to the longitudinal field of the rf solenoid, and was possibly reduced by nearby synchrotron sideband resonances. The planned use of a vertical rf dipole may improve the spin-flip efficiency. copyright 1998 The American Physical Society

  11. Design study of a normal conducting helical snake for AGS

    CERN Document Server

    Takano, Junpei; Okamura, Masahiro; Roser, Thomas; MacKay, William W; Luccio, Alfredo U; Takano, Koji

    2004-01-01

    A new normal conducting snake magnet is being fabricated for the Alternate Gradient Synchrotron (AGS) at Brookhaven National Laboratory (BNL). In the Relativistic Heavy Ion Collider (RHIC) project, a superconducting type helical dipole magnets had been developed and it performed successfully in high-energy polarized proton acceleration. The new AGS helical snake has the same basic magnetic structure but is more complicated. To achieve no beam shift and no beam deflection in one magnetic device, helical pitches and rotating angles were carefully calculated. Compared to a superconducting magnet, a normal warm magnet must have a large cross- sectional area of conductors which make it difficult to design a magnet with large helical pitch. We developed a modified window frame structure to accommodate the large number of conductors. Its three dimensional magnetic field was simulated by using OPERA3D/TOSCA. 3 Refs.

  12. Snake states and their symmetries in graphene

    Science.gov (United States)

    Tiwari, Rakesh; Liu, Yang; Brada, Matej; Bruder, C.; Kusmartsev, F. V.; Mele, E. J.

    Snake states are open trajectories for charged particles moving in two dimensions under the influence of a spatially varying perpendicular magnetic field. They can also occur in a constant perpendicular magnetic field when the particle density is made nonuniform as realized at a pn junction in a semiconductor, or in graphene. We examine the correspondence of such trajectories in monolayer graphene in the quantum limit for two families of domain walls: (a) a uniform doped carrier density in an antisymmetric perpendicular magnetic field and (b) antisymmetric carrier density distribution in a uniform perpendicular magnetic field. Although, these families support different internal symmetries, the pattern of the boundary and interface currents is the same in both cases. We demonstrate that these two physically different situations are gauge equivalent when rewritten in a Nambu doubled formulation of the two limiting problems. Using gauge transformations in particle-hole space to connect these two problems, we map the protected interfacial modes to the Bogoliubov quasiparticles of an interfacial one-dimensional p-wave paired state.

  13. Snake Genome Sequencing: Results and Future Prospects.

    Science.gov (United States)

    Kerkkamp, Harald M I; Kini, R Manjunatha; Pospelov, Alexey S; Vonk, Freek J; Henkel, Christiaan V; Richardson, Michael K

    2016-12-01

    Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.

  14. Snake Genome Sequencing: Results and Future Prospects

    Directory of Open Access Journals (Sweden)

    Harald M. I. Kerkkamp

    2016-12-01

    Full Text Available Snake genome sequencing is in its infancy—very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.

  15. 77 FR 10960 - Drawbridge Operation Regulation; Snake Creek, Islamorada, FL

    Science.gov (United States)

    2012-02-24

    ... Operation Regulation; Snake Creek, Islamorada, FL AGENCY: Coast Guard, DHS. ACTION: Notice of temporary... deviation from the regulation governing the operation of Snake Creek Bridge, mile 0.5, across Snake Creek... schedule of Snake Creek Bridge in Islamorada, Florida. This deviation will result in the bridge opening...

  16. Epidemiology of Snake Bites among Selected Communities in the ...

    African Journals Online (AJOL)

    Snake is one of the major group of games feared by people in many localities because of their venoms, yet snakes are equally afraid of human beings. This balance of terror apart from affecting both man and snakes has also led to their deaths. Epidemiology of snake bites among selected communities in the enclave of ...

  17. Diversity, natural history, and geographic distribution of snakes in the Caatinga, Northeastern Brazil.

    Science.gov (United States)

    Guedes, Thaís B; Nogueira, Cristiano; Marques, Otavio A V

    2014-09-19

    The present study is a synthesis on snake diversity and distribution in the Caatinga region of northeastern Brazil, providing an updated species list and data on natural history and geographic distribution. Our study is based on the careful revision of 7,102 voucher specimens, housed in 17 herpetological collections, complemented by data on taxonomic literature. We recorded a total of 112 snake species in the Caatinga, belonging to nine families: Anomalepididae, Leptotyphlopidae, Typhlopidae, Aniliidae, Boidae, Viperidae, Elapidae, Colubridae, and Dipsadidae. Our list includes at least 13 never recorded species for this region, as well as distribution records for all species known from the Caatinga (including expansion and new records of distribution). The snake assemblage of the Caatinga is complex, sharing species with other continental open areas (38.4%), forested areas (27.7%), and both open and forested areas (32.1%). The richest areas were isolated plateaus, followed by contact areas, semi-arid caatinga, and sandy dunes of the São Franscisco River. We identified 22 Caatinga endemic species with the sandy dunes of São Franscico River showing the highest endemism level (12 species, with six endemic species restricted to the area) followed by semi-arid caatinga, and isolated plateaus (eight endemic species each, and six and three endemic species with restricted distribution to each area, respectively). Most species show relatively restricted ranges in parts of the Caatinga. The snake assemblage in Caatinga includes mainly terrestrial species (38.4%), followed by fossorial/cryptozoic (26.8%), arboreal/semi-arboreal (26.8%), and aquatic/semi-aquatic (7.1%) species. Vertebrates are the most important dietary item (80.4%), with 56.6% of species being generalist consumers of this kind of prey; 24.4% are frog-eaters, 7.8% prey on caecilians/amphisbaenians, 6.7% lizard-eaters, 3.3% mammal-eaters, and 1.1% are fish-eaters. Only 18.7% of the snakes eat invertebrate

  18. Sea Snake Harvest in the Gulf of Thailand

    DEFF Research Database (Denmark)

    Van Cao, Nguyen; Thien Tao, Nguyen; Moore, Amelia

    2014-01-01

    Abstract: Conservation of sea snakes is virtually nonexistent in Asia, and its role in human–snake interactions in terms of catch, trade, and snakebites as an occupational hazard is mostly unexplored. We collected data on sea snake landings from the Gulf of Thailand, a hotspot for sea snake harvest...... years), and the treatment of sea snake bites with rhinoceros horn. Emerging markets in Southeast Asia drive the harvest of venomous sea snakes in the Gulf of Thailand and sea snake bites present a potentially lethal occupational hazard. We call for implementation of monitoring programs to further...... address the conservation implications of this large-scale marine reptile exploitation....

  19. Radiating sterilization of the venom of snake

    International Nuclear Information System (INIS)

    Abiyev, H.A.; Topchiyeva, Sh.A.; Rustamov, V.R.

    2006-01-01

    Full text: Water solutions of venoms are unstable and they lose toxicity in some day. Snake venoms inactivate under action of some physical factors: the UV-irradiation, x-rays beams. The purpose of the present work was sterilization of venom Vipera lebetina obtusa under influence of small dozes γ-radiations. Object of research was integral venom of adult individuals. Transcaucasian viper, and also the water solutions of venom irradiated with small dozes scale of radiation. An irradiation of venom carried out to radioisotope installation 60NI. For experiment tests of dry venom, and also their water solutions have been taken. Water solutions of venom have been subjected -radiation up to dozes 1.35, 2.7, 4.05, 5.4 kGr simultaneously dry venom of vipers was exposed -radiation before absorption of a doze 5.4 kGr. In comparative aspect action scale of radiation on ultra-violet spectra of absorption of venom was studied. Ultra-violet spectra venom have been taken off on device Specord UV-VIS. In 12 months after an irradiation spectra of absorption of venom have been repeatedly taken off. In spectra irradiated dry and solutions of venom new maxima of absorption have been revealed in the field of 285 nm and 800 nm describing change of toxicity. It is shown, that the increase in absorption of a doze of radiation occurs decrease of intensity of strips of absorption reduction of intensity of absorption.It is revealed at 260 and 300 nm testifying to course of biochemical reactions of separate enzymes zootoxins. It is necessary to note, that at comparison of intensity of absorption of control samples of poison with irradiated up to dozes 1.35 kGr it has not been revealed essential changes. The subsequent increase in a doze scale of radiation up to 2.7, 4.05, 5.4 kGr promotes proportional reduction of intensity of the absorption, describing toxicity of snake venom. At repeated (later 12 months) measurement of the irradiated water solutions of venom are not revealed changes in

  20. Exponential asymptotics of homoclinic snaking

    International Nuclear Information System (INIS)

    Dean, A D; Matthews, P C; Cox, S M; King, J R

    2011-01-01

    We study homoclinic snaking in the cubic-quintic Swift–Hohenberg equation (SHE) close to the onset of a subcritical pattern-forming instability. Application of the usual multiple-scales method produces a leading-order stationary front solution, connecting the trivial solution to the patterned state. A localized pattern may therefore be constructed by matching between two distant fronts placed back-to-back. However, the asymptotic expansion of the front is divergent, and hence should be truncated. By truncating optimally, such that the resultant remainder is exponentially small, an exponentially small parameter range is derived within which stationary fronts exist. This is shown to be a direct result of the 'locking' between the phase of the underlying pattern and its slowly varying envelope. The locking mechanism remains unobservable at any algebraic order, and can only be derived by explicitly considering beyond-all-orders effects in the tail of the asymptotic expansion, following the method of Kozyreff and Chapman as applied to the quadratic-cubic SHE (Chapman and Kozyreff 2009 Physica D 238 319–54, Kozyreff and Chapman 2006 Phys. Rev. Lett. 97 44502). Exponentially small, but exponentially growing, contributions appear in the tail of the expansion, which must be included when constructing localized patterns in order to reproduce the full snaking diagram. Implicit within the bifurcation equations is an analytical formula for the width of the snaking region. Due to the linear nature of the beyond-all-orders calculation, the bifurcation equations contain an analytically indeterminable constant, estimated in the previous work by Chapman and Kozyreff using a best fit approximation. A more accurate estimate of the equivalent constant in the cubic-quintic case is calculated from the iteration of a recurrence relation, and the subsequent analytical bifurcation diagram compared with numerical simulations, with good agreement

  1. An ozone episode in the Pearl River Delta: Field observation and model simulation

    Science.gov (United States)

    Jiang, F.; Guo, H.; Wang, T. J.; Cheng, H. R.; Wang, X. M.; Simpson, I. J.; Ding, A. J.; Saunders, S. M.; Lam, S. H. M.; Blake, D. R.

    2010-11-01

    In the fall of 2007 concurrent air sampling field measurements were conducted for the first time in Guangzhou (at Wan Qing Sha (WQS)) and Hong Kong (at Tung Chung (TC)), two cities in the rapidly developing Pearl River Delta region of China that are only 62 km apart. This region is known to suffer from poor air quality, especially during the autumn and winter months, when the prevailing meteorological conditions bring an outflow of continental air to the region. An interesting multiday O3 pollution event (daily maximum O3 > 122 ppbv) was captured during 9-17 November at WQS, while only one O3 episode day (10 November) was observed at TC during this time. The mean O3 mixing ratios at TC and WQS during the episode were 38 ± 3 (mean ± 95% confidence interval) and 51 ± 7 ppbv, respectively, with a mean difference of 13 ppbv and a maximum hourly difference of 150 ppbv. We further divided this event into two periods: 9-11 November as Period 1 and 12-17 November as Period 2. The mixing ratios of O3 and its precursors (NOx and CO) showed significant differences between the two periods at TC. By contrast, no obvious difference was found at WQS, indicating that different air masses arrived at TC for the two periods, as opposed to similar air masses at WQS for both periods. The analysis of VOC ratios and their relationship with O3 revealed strong O3 production at WQS during Period 2, in contrast to relatively weak photochemical O3 formation at TC. The weather conditions implied regional transport of O3 pollution during Period 1 at both sites. Furthermore, a comprehensive air quality model system (Weather Research and Forecasting-Community Multiscale Air Quality model (WRF-CMAQ)) was used to simulate this O3 pollution event. The model system generally reproduced the variations of weather conditions, simulated well the continuous high O3 episode event at WQS, and captured fairly well the elevated O3 mixing ratios in Period 1 and low O3 levels in Period 2 at TC. The modeled

  2. A COMPREHENSIVE NONPOINT SOURCE FIELD STUDY FOR SEDIMENT, NUTRIENTS, AND PATHOGENS IN THE SOUTH FORK BROAD RIVER WATERSHED IN NORTHEAST GEORGIA

    Science.gov (United States)

    This technical report provides a description of the field project design, quality control, the sampling protocols and analysis methodology used, and standard operating procedures for the South Fork Broad River Watershed (SFBR) Total Maximum Daily Load (TMDL) project. This watersh...

  3. Structure from Motion vs. the Kinect: Comparisons of River Field Measurements at the 10-2 to 102 meter Scales

    Science.gov (United States)

    Fonstad, M. A.; Dietrich, J. T.

    2014-12-01

    At the very smallest spatial scales of fluvial field analysis, measurements made historically in situ are often now supplemented, or even replaced by, remote sensing methods. This is particularly true in the case of topographic and particle size measurement. In the field, the scales of in situ observation usually range from millimeters up to hundreds of meters. Two recent approaches for remote mapping of river environments at the scales of historical in situ observations are (1) camera-based structure from motion (SfM), and (2) active patterned-light measurement with devices such as the Kinect. Even if only carried by hand, these two approaches can produce topographic datasets over three to four orders of magnitude of spatial scale. Which approach is most useful? Previous studies have demonstrated that both SfM and the Kinect are precise and accurate over in situ field measurement scales; we instead turn to alternate comparative metrics to help determine which tools might be best for our river measurement tasks. These metrics might include (1) the ease of field use, (2) which general environments are or are not amenable to measurement, (3) robustness to changing environmental conditions, (4) ease of data processing, and (5) cost. We test these metrics in a variety of bar-scale fluvial field environments, including a large-river cobble bar, a sand-bedded river point bar, and a complex mountain stream bar. The structure from motion approach is field-equipment inexpensive, is viable over a wide range of environmental conditions, and is highly spatially scalable. The approach requires some type of spatial referencing to make the data useful. The Kinect has the advantages of an almost real-time display of collected data, so problems can be detected quickly, being fast and easy to use, and the data are collected with arbitrary but metric coordinates, so absolute referencing isn't needed to use the data for many problems. It has the disadvantages of its light field

  4. Effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and status and habitat requirements of white sturgeon populations in the Columbia and Snake Rivers upstream from McNary Dam

    International Nuclear Information System (INIS)

    Beamesderfer, R.C.; Nigro, A.A.

    1993-12-01

    This report details activities during the first year of Phase II of this sturgeon research. In Phase I, the authors assessed the status and habitat requirements of the white sturgeon populations in the Columbia River downstream from McNary Dam. Phase II will examine the effects on white sturgeon productivity of mitigative measures recommended in Phase I. The status and habitat requirements of white sturgeon populations upstream from McNary Dam will also be examined in Phase II. The study is a cooperative effort by the Oregon Department of Fish and Wildlife, Washington Department of Fisheries, US Fish and Wildlife Service, and National Marine Fisheries Service. Work during the past year has focused on: (1) analysis of results of limited sampling conducted in 1992, (2) submission of Phase I results to the peer-review literature to ensure widespread dissemination, clarity of presentation, and credibility of findings, and (3) preparation for additional field work in 1993. In report sections A to D, each agency reports 1992 results if applicable and the current status of manuscripts. Results of field work conducted in 1993 will be reported in the 1994 annual report

  5. Efficiency of snake sampling methods in the Brazilian semiarid region.

    Science.gov (United States)

    Mesquita, Paula C M D; Passos, Daniel C; Cechin, Sonia Z

    2013-09-01

    The choice of sampling methods is a crucial step in every field survey in herpetology. In countries where time and financial support are limited, the choice of the methods is critical. The methods used to sample snakes often lack objective criteria, and the traditional methods have apparently been more important when making the choice. Consequently researches using not-standardized methods are frequently found in the literature. We have compared four commonly used methods for sampling snake assemblages in a semiarid area in Brazil. We compared the efficacy of each method based on the cost-benefit regarding the number of individuals and species captured, time, and financial investment. We found that pitfall traps were the less effective method in all aspects that were evaluated and it was not complementary to the other methods in terms of abundance of species and assemblage structure. We conclude that methods can only be considered complementary if they are standardized to the objectives of the study. The use of pitfall traps in short-term surveys of the snake fauna in areas with shrubby vegetation and stony soil is not recommended.

  6. Computational Studies of Snake Venom Toxins.

    Science.gov (United States)

    Ojeda, Paola G; Ramírez, David; Alzate-Morales, Jans; Caballero, Julio; Kaas, Quentin; González, Wendy

    2017-12-22

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  7. Computational Studies of Snake Venom Toxins

    Directory of Open Access Journals (Sweden)

    Paola G. Ojeda

    2017-12-01

    Full Text Available Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  8. Mechanisms of vegetation-induced channel narrowing of an unregulated canyon river: Results from a natural field-scale experiment

    Science.gov (United States)

    Manners, Rebecca B.; Schmidt, John C.; Scott, Michael L.

    2014-04-01

    The lower Yampa River in Yampa Canyon, western Colorado serves as a natural, field-scale experiment, initiated when the invasive riparian plant, tamarisk (Tamarix spp.), colonized an unregulated river. In response to tamarisk's rapid invasion, the channel narrowed by 6% in the widest reaches since 1961. Taking advantage of this unique setting, we reconstructed the geomorphic and vegetation history in order to identify the key mechanisms for which, in the absence of other environmental perturbations, vegetation alters fluvial processes that result in a narrower channel. From our reconstruction, we identified a distinct similarity in the timing and magnitude of tamarisk encroachment and channel change, albeit with a lag in the channel response, thus suggesting tamarisk as the driving force. Within a decade of establishment, tamarisk effectively trapped sediment and, as a result, increased floodplain construction rates. Increasing tamarisk coverage over time also reduced the occurrence of floodplain stripping. Tamarisk recruitment was driven by both hydrologic and hydraulic variables, and the majority of tamarisk plants (84%) established below the stage of the 2-year flood. Thus, upon establishment nearly all plants regularly interact with the flow and sediment transport field. Our analyses were predicated on the hypothesis that the flow regime of the Yampa River was stationary, and that only the riparian vegetation community had changed. While not heavily impacted by water development, we determined that some aspects of the flow regime have shifted. However, this shift, which involved the clustering in time of extremely wet and dry years, did not influence fluvial processes directly. Instead these changes directly impacted riparian vegetation and changes in vegetation cover, in turn, altered fluvial processes. Today, the rate of channel change and new tamarisk recruitment is small. We believe that the rapid expansion of tamarisk and related floodplain construction

  9. Field Operations For The "Intelligent River" Observation System: A Basin-wide Water Quality Observation System In The Savannah River Basin And Platform Supporting Related Diverse Initiatives.

    Science.gov (United States)

    Sutton, A.; Koons, M.; O'Brien-Gayes, P.; Moorer, R.; Hallstrom, J.; Post, C.; Gayes, P. T.

    2017-12-01

    The Intelligent River (IR) initiative is an NSF sponsored study developing new data management technology for a range of basin-scale applications. The technology developed by Florida Atlantic and Clemson University established a network of real-time reporting water quality sondes; from the mountains to the estuary of the Savannah River basin. Coastal Carolina University led the field operations campaign. Ancillary studies, student projects and initiatives benefitted from the associated instrumentation, infrastructure and operational support of the IR program. This provided a vehicle for students to participate in fieldwork across the watershed and pursue individual interests. Student projects included: 1) a Multibeam sonar survey investigating channel morphology in the area of an IR sensor station and 2) field tests of developing techniques for acquiring and assimilating flood velocity data into model systems associated with a separate NSF Rapid award. The multibeam survey within the lower Savannah basin exhibited a range of complexity in bathymetry, bedforms and bottom habitat in the vicinity of one of the water quality stations. The complex morphology and bottom habitat reflect complex flow patterns, localized areas of depositional and erosive tendencies providing a valuable context for considering point-source water quality time series. Micro- Lagrangian drifters developed by ISENSE at Florida Atlantic University, a sled mounted ADCP, and particle tracking from imagery collected by a photogrammetric drone were tested and used to develop methodology for establishing velocity, direction and discharge levels to validate, initialize and assimilate data into advance models systems during future flood events. The prospect of expanding wide scale observing systems can serve as a platform to integrate small and large-scale cooperative studies across disciplines as well as basic and applied research interests. Such initiatives provide opportunities for embedded education

  10. Spin motion at and near orbital resonance in storage rings with Siberian snakes I. At orbital resonance

    International Nuclear Information System (INIS)

    Barber, D.P.; Vogt, M.

    2006-12-01

    Here, and in a sequel, we invoke the invariant spin field to provide an in-depth study of spin motion at and near low order orbital resonances in a simple model for the effects of vertical betatron motion in a storage ring with Siberian Snakes. This leads to a clear understanding, within the model, of the behaviour of the beam polarization at and near so-called snake resonances in proton storage rings. (orig.)

  11. North American snake and scorpion envenomations.

    Science.gov (United States)

    Wilbeck, Jennifer; Gresham, Chip

    2013-06-01

    Envenomations by snakes and scorpions in North America, although uncommon, do occur, and the victims may seek medical treatment. Combined, snake and scorpion encounters result in more than 25,000 calls a year to poison centers. Although some similarities exist with respect to general signs of envenomation and treatment, specific nuances distinguish the medical care to be anticipated and therapies available. Regardless of geographic practice area, exposures will occur that may result in a significant envenomation. This article provides critical care nurses with fundamental knowledge of varied snake and scorpion envenomation presentations and treatments to assist in optimizing patient outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Using sediment transport and river restoration to link research and education, and promote K-12 female involvement in STEM fields

    Science.gov (United States)

    Yager, E. M.; Bradley-Eitel, K.

    2011-12-01

    The focus of this CAREER award is to better understand and predict the mechanics of sediment transport, to link research and education through courses and shared field sites, and to increase female interest in STEM fields. To accomplish the education component of this proposal we have focused on the following three activities: 1) a Keystone course on the scientific method, 2) a Women Outside with Science (WOWS) camp and 3) a permanent field site for research and education on river processes. In the Keystone Course, students investigated the impact of roughness addition, in sediment-starved river reaches (e.g. downstream of dams), on the retention of gravel used for spawning. They developed research questions and hypotheses, designed and conducted a set of scaled laboratory flume experiments, analyzed their data and wrote a draft manuscript of their results. Student feedback was overwhelmingly positive on the merits of this course, which included hands-on learning of the following: basic sediment transport and fluvial geomorphology, applied statistics, laboratory methods, and scientific writing skills. Students sometimes struggled when flume experiments did not progress as planned, and in the analysis and interpretation of complex data. Some of the students in the course have reanalyzed data, conducted additional experiments and are currently rewriting the manuscript for submission to a peer-reviewed journal. Such a course fundamentally links research and teaching, and provides an introduction to research for advanced undergraduates or beginning graduate students. We have also run one summer WOWS camp, which was a ten day camping and inquiry based research experience for 20 female junior-high and high-school students. The girls studied climate change and water related issues, worked on a restoration project on the Little Salmon River, met with a fish biologist and did fish habitat surveys and studied water quality along the North Fork of the Payette River while on a

  13. The Hidden Snake in the Grass: Superior Detection of Snakes in Challenging Attentional Conditions.

    Directory of Open Access Journals (Sweden)

    Sandra C Soares

    Full Text Available Snakes have provided a serious threat to primates throughout evolution. Furthermore, bites by venomous snakes still cause significant morbidity and mortality in tropical regions of the world. According to the Snake Detection Theory (SDT Isbell, 2006; 2009, the vital need to detect camouflaged snakes provided strong evolutionary pressure to develop astute perceptual capacity in animals that were potential targets for snake attacks. We performed a series of behavioral tests that assessed snake detection under conditions that may have been critical for survival. We used spiders as the control stimulus because they are also a common object of phobias and rated negatively by the general population, thus commonly lumped together with snakes as "evolutionary fear-relevant". Across four experiments (N = 205 we demonstrate an advantage in snake detection, which was particularly obvious under visual conditions known to impede detection of a wide array of common stimuli, for example brief stimulus exposures, stimuli presentation in the visual periphery, and stimuli camouflaged in a cluttered environment. Our results demonstrate a striking independence of snake detection from ecological factors that impede the detection of other stimuli, which suggests that, consistent with the SDT, they reflect a specific biological adaptation. Nonetheless, the empirical tests we report are limited to only one aspect of this rich theory, which integrates findings across a wide array of scientific disciplines.

  14. The Hidden Snake in the Grass: Superior Detection of Snakes in Challenging Attentional Conditions.

    Science.gov (United States)

    Soares, Sandra C; Lindström, Björn; Esteves, Francisco; Ohman, Arne

    2014-01-01

    Snakes have provided a serious threat to primates throughout evolution. Furthermore, bites by venomous snakes still cause significant morbidity and mortality in tropical regions of the world. According to the Snake Detection Theory (SDT Isbell, 2006; 2009), the vital need to detect camouflaged snakes provided strong evolutionary pressure to develop astute perceptual capacity in animals that were potential targets for snake attacks. We performed a series of behavioral tests that assessed snake detection under conditions that may have been critical for survival. We used spiders as the control stimulus because they are also a common object of phobias and rated negatively by the general population, thus commonly lumped together with snakes as "evolutionary fear-relevant". Across four experiments (N = 205) we demonstrate an advantage in snake detection, which was particularly obvious under visual conditions known to impede detection of a wide array of common stimuli, for example brief stimulus exposures, stimuli presentation in the visual periphery, and stimuli camouflaged in a cluttered environment. Our results demonstrate a striking independence of snake detection from ecological factors that impede the detection of other stimuli, which suggests that, consistent with the SDT, they reflect a specific biological adaptation. Nonetheless, the empirical tests we report are limited to only one aspect of this rich theory, which integrates findings across a wide array of scientific disciplines.

  15. On some labelings of triangular snake and central graph of triangular snake graph

    Science.gov (United States)

    Agasthi, P.; Parvathi, N.

    2018-04-01

    A Triangular snake Tn is obtained from a path u 1 u 2 … u n by joining ui and u i+1 to a new vertex wi for 1≤i≤n‑1. A Central graph of Triangular snake C(T n ) is obtained by subdividing each edge of Tn exactly once and joining all the non adjacent vertices of Tn . In this paper the ways to construct square sum, square difference, Root Mean square, strongly Multiplicative, Even Mean and Odd Mean labeling for Triangular Snake and Central graph of Triangular Snake graphs are reported.

  16. First documented case of snake fungal disease in a free-ranging wild snake in Louisiana

    Science.gov (United States)

    Glorioso, Brad M.; Waddle, J. Hardin; Green, David E.; Lorch, Jeffrey M.

    2016-01-01

    Snake fungal disease (SFD) is a recently documented mycotic disease characterized by scabs or crusty scales, subcutaneous nodules, abnormal molting, cloudiness of the eyes (not associated with molting), and localized thickening or crusting of the skin. SFD has been documented in many species in the Eastern and Midwestern United States within the last decade. SFD has proven lethal in many snakes, and the disease is recognized as an emerging threat to wild snake populations. Here, we describe the first documented case of SFD in Louisiana in a free-ranging wild snake.

  17. Application of a methodological advance to calculate 3D flow fields in river channel junctions

    NARCIS (Netherlands)

    Moradi, Gelare; Vermeulen, Bart; Rennie, Colin; Cardot, Romain; Lane, Stuart

    2018-01-01

    Acoustic Doppler current profiler (aDcp) vessel-mounted flow measurements are now commonly used to quantify discharge and velocity in shallow water fluvial environments. Here, we consider the benefits of improving secondary circulation estimates in river confluences through the manner in which

  18. Transformation of organic micropollutants during river bank filtration : Laboratory versus field data

    NARCIS (Netherlands)

    Bertelkamp, C.; Reungoat, J.; Botton, S.; Cornelissen, E.; Ghadiri, E.; De Jonge, M.; Singhal, N.; Van der Hoek, J.P.; Verliefde, A.R.D.

    2012-01-01

    This paper investigates the degradation behavior of 14 organic micropoliutants (OMPs), selected for their different physico-chemical properties (e.g., molecular weight, hydrophobicity and charge). In soil columns simulating the conditions prevailing in the first meter of river bank filtration (RBF)

  19. Snakes, rotators, serpents and the octahedral group

    International Nuclear Information System (INIS)

    Fieguth, T.

    1986-04-01

    Specific configurations of horizontal and vertical bending magnets are given that, when acting on the spin polarization vector of a particle beam, generate a group of 24 operators isomorphic to the group of rotational symmetries of a cube, known as the octahedral group. Some of these configurations have the feature of converting transversely polarized beams to longitudinally polarized beams (or vice versa) at the midpoint of the configuration for, in principle, all beam energies. Since the first order optical transfer matrix for each half of these configurations is nearly that of a drift region, the external geometry remains unchanged and midpoint dispersion is not introduced. Changing field strengths and/or polarities allows a configuration to serve as either a Snake(1/sup st/ or 2/sup nd/ kind) or a Rotator, where in both cases the spin polarization is longitudinal at the midpoint. In this conceptualization, emphasis has been placed on electron beams and, indeed, for these beams some practical applications can be envisioned. However, due to the relatively high integrated field strengths required, application of these concepts to proton beams may be more promising

  20. Decline of a common reptile: case study of the viperine snake Natrix maura in a Mediterranean wetland

    Directory of Open Access Journals (Sweden)

    Xavier Santos

    2009-12-01

    Full Text Available The Ebro Delta is a wetland area in which natural ecosystems have been partially replaced by rice fields. This mixed and productive landscape has allowed the establishment of a rich community of organisms. The viperine snake Natrix maura has traditionally been a common and abundant predator because the habitat is favorable and prey availability is high. In June 1995, we conducted a demographic study to evaluate relative densities of snakes in the rice fields. Thirteen years later, we repeated the same study in the same area and season. The field work consisted of 29 censuses of one hectare each, and snakes and their potential prey (green frogs and fish were counted. In 1995, we found 27 snakes (0.93 animals/ha, these occupying 48% of the sites. Frogs and fish were observed in 23 of the 29 censuses (79%. In 2008, no snakes were found and frogs and fish appeared in only 11 of the samples (38%. In 2008, we also prospected 20 sites in rice fields located next to the natural lagoons. At these sites, we detected a greater number of snakes (25% of the stations. Several factors can explain the clear decline of the N. maura population in the Ebro Delta rice fields: 1 the transformation and degradation of the habitat; 2 the increase in population densities of natural predators such as herons; 3 the decrease in prey availability; 4 the massive use of pollutants in the rice fields; and 5 snake death on local roads and directly by human persecution. We propose that a combined effect of these factors has caused the alarming decline of this predator. The observation of water snakes in rice fields near natural lagoons indicates that protected natural areas act as natural refuges for fauna with reduced mobility, such as viperine snakes. The recovery of the N. maura population in the rice fields of the Ebro Delta depends on an integral change in agricultural management, including the reduced use of pollutants, the recovery of snake prey, and the maintenance of

  1. Safe Handling of Snakes in an ED Setting.

    Science.gov (United States)

    Cockrell, Melanie; Swanson, Kristofer; Sanders, April; Prater, Samuel; von Wenckstern, Toni; Mick, JoAnn

    2017-01-01

    Efforts to improve consistency in management of snakes and venomous snake bites in the emergency department (ED) can improve patient and staff safety and outcomes, as well as improve surveillance data accuracy. The emergency department at a large academic medical center identified an opportunity to implement a standardized process for snake disposal and identification to reduce staff risk exposure to snake venom from snakes patients brought with them to the ED. A local snake consultation vendor and zoo Herpetologist assisted with development of a process for snake identification and disposal. All snakes have been identified and securely disposed of using the newly implemented process and no safety incidents have been reported. Other emergency department settings may consider developing a standardized process for snake disposal using listed specialized consultants combined with local resources and suppliers to promote employee and patient safety. Copyright © 2017 Emergency Nurses Association. Published by Elsevier Inc. All rights reserved.

  2. Some aspects of radiocesium retention in naturally contaminated captive snakes

    International Nuclear Information System (INIS)

    Staton, M.A.; Brisbin, I.L. Jr.; Geiger, R.A.

    1974-01-01

    Thirty-two captive snakes from contaminated natural habitats on or near the Savannah River Plant showed single-phase 137 Cs bioelimination curves suggesting that, in the wild state, they were near equilibrium with respect to this radionuclide at the time of capture. Radiocesium biological half-lives in the snakes averaged 131.3 +- 15.7 (SE) days with extreme values of 430.0 and 23.7 days. There was no correlation between radiocesium loss rate and initial body burden. Radiocesium loss rate showed a positive linear correlation with caloric intake and a negative exponential correlation with body weight. Less than 1 percent of radiocesium excretion could be accounted for in shed skins, the remainder being lost mainly through the feces. Two females which laid eggs in captivity transferred 6.37 and 6.43 percent of their total body burden to their eggs. Radiocesium showed a greater concentration in skeletal muscle than in kidney or liver, while fat bodies contained the lowest concentrations. Radiocesium concentrations of feces and stomach contents were generally low and were not correlated with total body burdens. (U.S.)

  3. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

    Science.gov (United States)

    Vye-Brown, C.; Self, S.; Barry, T. L.

    2013-03-01

    The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ˜190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

  4. New progress in snake mitochondrial gene rearrangement.

    Science.gov (United States)

    Chen, Nian; Zhao, Shujin

    2009-08-01

    To further understand the evolution of snake mitochondrial genomes, the complete mitochondrial DNA (mtDNA) sequences were determined for representative species from two snake families: the Many-banded krait, the Banded krait, the Chinese cobra, the King cobra, the Hundred-pace viper, the Short-tailed mamushi, and the Chain viper. Thirteen protein-coding genes, 22-23 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNAPro gene were two notable features of the snake mtDNAs. These results from the gene rearrangement comparisons confirm the correctness of traditional classification schemes and validate the utility of comparing complete mtDNA sequences for snake phylogeny reconstruction.

  5. First Observation of a Snake Depolarizing Resonance

    International Nuclear Information System (INIS)

    Phelps, R.; Anferov, V.; Blinov, B.; Crandell, D.; Koutin, S.; Krisch, A.; Liu, T.; Ratner, L.; Wong, V.; Chu, C.; Lee, S.; Rinckel, T.; Schwandt, P.; Sperisen, F.; Stephenson, E.; von Przewoski, B.; Sato, H.

    1997-01-01

    Using a 104MeV stored polarized proton beam and a full Siberian snake, we recently found evidence for a so-called open-quotes snakeclose quotes depolarizing resonance. A full Siberian snake forces the spin tune ν s to be a half integer. Thus, if the vertical betatron tune ν y is set near a quarter integer, then the ν s =n±2ν y second-order snake resonance can depolarize the beam. Indeed, with a full Siberian snake, we found a deep depolarization dip when ν y was equal to 4.756; moreover, when ν y was changed to 4.781, the deep dip disappeared and the polarization was preserved. copyright 1997 The American Physical Society

  6. Friction enhancement in concertina locomotion of snakes

    Science.gov (United States)

    Marvi, Hamidreza; Hu, David L.

    2012-01-01

    Narrow crevices are challenging terrain for most organisms and biomimetic robots. Snakes move through crevices using sequential folding and unfolding of their bodies in the manner of an accordion or concertina. In this combined experimental and theoretical investigation, we elucidate this effective means of moving through channels. We measure the frictional properties of corn snakes, their body kinematics and the transverse forces they apply to channels of varying width and inclination. To climb channels inclined at 60°, we find snakes use a combination of ingenious friction-enhancing techniques, including digging their ventral scales to double their frictional coefficient and pushing channel walls transversely with up to nine times body weight. Theoretical modelling of a one-dimensional n-linked crawler is used to calculate the transverse force factor of safety: we find snakes push up to four times more than required to prevent sliding backwards, presumably trading metabolic energy for an assurance of wall stability. PMID:22728386

  7. Experimental Infection of Snakes with Ophidiomyces ophiodiicola Causes Pathological Changes That Typify Snake Fungal Disease.

    Science.gov (United States)

    Lorch, Jeffrey M; Lankton, Julia; Werner, Katrien; Falendysz, Elizabeth A; McCurley, Kevin; Blehert, David S

    2015-11-17

    Snake fungal disease (SFD) is an emerging skin infection of wild snakes in eastern North America. The fungus Ophidiomyces ophiodiicola is frequently associated with the skin lesions that are characteristic of SFD, but a causal relationship between the fungus and the disease has not been established. We experimentally infected captive-bred corn snakes (Pantherophis guttatus) in the laboratory with pure cultures of O. ophiodiicola. All snakes in the infected group (n = 8) developed gross and microscopic lesions identical to those observed in wild snakes with SFD; snakes in the control group (n = 7) did not develop skin infections. Furthermore, the same strain of O. ophiodiicola used to inoculate snakes was recovered from lesions of all animals in the infected group, but no fungi were isolated from individuals in the control group. Monitoring progression of lesions throughout the experiment captured a range of presentations of SFD that have been described in wild snakes. The host response to the infection included marked recruitment of granulocytes to sites of fungal invasion, increased frequency of molting, and abnormal behaviors, such as anorexia and resting in conspicuous areas of enclosures. While these responses may help snakes to fight infection, they could also impact host fitness and may contribute to mortality in wild snakes with chronic O. ophiodiicola infection. This work provides a basis for understanding the pathogenicity of O. ophiodiicola and the ecology of SFD by using a model system that incorporates a host species that is easy to procure and maintain in the laboratory. Skin infections in snakes, referred to as snake fungal disease (SFD), have been reported with increasing frequency in wild snakes in the eastern United States. While most of these infections are associated with the fungus Ophidiomyces ophiodiicola, there has been no conclusive evidence to implicate this fungus as a primary pathogen. Furthermore, it is not understood why the

  8. Prey handling and diet of Louisiana pine snakes (Pituophis ruthveni) and black pine snakes (P. melanoleucus lodingi), with comparisons to other selected colubrid snakes

    Science.gov (United States)

    D. Craig Rudolph; Shirley J. Burgdorf; Richard N. Conner; Christopher S. Collins; Daniel Saenz; Richard R. Schaefer; Toni Trees; C. Michael Duran; Marc Ealy; John G. Himes

    2002-01-01

    Diet and prey handling behavior were determined for Louisiana pine snakes (Pituophis ruthveni) and black pine snakes (P. melanoleucus lodingi). Louisiana pine snakes prey heavily on Baird's pocket gophers (Geomys breviceps), with which they are sympatric, and exhibit specialized behaviors that facilitate...

  9. Evaluation of Snake Bites with Bedside Ultrasonography

    Directory of Open Access Journals (Sweden)

    Josef E Jolissaint

    2018-04-01

    Full Text Available History of present illness: While watering his lawn, a 36-year-old man felt two sharp bites to his bilateral ankles. He reports that he then saw a light brown, 2-foot snake slither away from him. He came to the emergency department because of pain and swelling in his ankles and inability to bear weight. Physical examination revealed bilateral ankle swelling and puncture marks on his left lateral heel and medial right ankle. Palpation, passive flexion and extension elicited severe pain bilaterally. Blood work including prothrombin time (PT, partial thromboplastin time (PTT, international normalized ratio (INR, and fibrinogen were within normal limits. Consultation with Poison Control indicated the snake was likely a copperhead, which is a venomous snake whose bites rarely require antivenin. Significant findings: In this case, ultrasonography of the lateral surface of the left foot revealed soft tissue edema (red arrow and fluid collection (white asterisk adjacent to the extensor tendon (white arrow. The edematous area resembles cobblestones, with hypoechoic areas of fluid spanning relatively hyperechoic fat lobules. The tendon is surrounded by anechoic fluid, expanding the potential space in the sheath. No hyperechoic foreign objects were noted. Discussion: The patient was diagnosed with soft tissue injury and extensor tenosynovitis after a snake envenomation. Snake venom contains metalloproteinases and other enzymatic proteins that cause local tissue edema and necrosis.1 After a snake bite, ultrasound can be used to assess for retained fangs, soft tissue edema, tendon sheath fluid, muscle fasciculation, and injury to deeper musculature that may not be readily apparent on physical exam.2,3 Most patients with tenosynovitis will recover with immobilization of the joint and non-steroidal anti-inflammatory medications.4 Rarely, the tendon may become infected requiring antibiotics and surgical intervention.4 Topics: Ultrasound, snake envenomation

  10. A partial snake for the AGS

    International Nuclear Information System (INIS)

    Ratner, L.G.

    1990-01-01

    Based on snake experiments at the Indian University Cyclotron Facility and computer simulations at Brookhaven National Laboratory, as well as the conclusions of a BNL mini-workshop, we feel that a partial Siberian snake is a practical device for the AGS. It is anticipated that such a device could reduce the polarized beam tune-up time from 2--3 weeks to 2--3 days

  11. Cardiovascular responses of snakes to hypergravity

    Science.gov (United States)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Rosenberg, H. I.

    1997-01-01

    Snakes have provided useful vertebrate models for understanding circulatory adaptation to gravity, attributable to their elongate body shape and evolutionary diversificaton in terms of ecology and behavior. Recently we have studied cardiovascular responses of snakes to hypergravic acceleration forces produced acutely in the head-to-tail direction (+Gz) on a short-arm centrifuge. Snakes were held in a nearly straight position within a horizontal plastic tube and subjected to a linear force gradient during acceleration. Carotid blood flow provided an integrated measure of cardiovascular performance. Thus, cardiovascular tolerance of snakes to stepwise increments of Gz was measured as the caudal Gz force at which carotid blood flow ceased. Tolerance to increasing Gz varies according to adaptive evolutionary history inferred from the ecology and behavior of species. With respect to data for six species we investigated, multiple regression analysis demonstrates that Gz tolerance correlates with gravitational habitat, independently of body length. Relative to aquatic and non-climbing species, carotid blood flow is better maintained in arboreal or scansorial species, which tolerate hypergravic forces of +2 to +3.5 Gz. Additionally, semi-arboreal rat snakes (Elaphe obsoleta) exhibit plasticity of responses to long-term, intermittent +1.5 Gz stress. Compared to non-acclimated controls, acclimated snakes show greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of prostaglandin ratios favorable to maintenance of arterial blood pressure, and medial hypertrophy in major arteries and veins. As in other vertebrates, Gz tolerance of snakes is enhanced by acclimation, high arterial pressure, comparatively large blood volume, and body movements. Vascular studies of snakes suggest the importance to acclimation of local responses involving vascular tissue, in addition to

  12. Are snake populations in widespread decline?

    OpenAIRE

    Reading, C. J.; Luiselli, L. M.; Akani, G. C.; Bonnet, X.; Amori, G.; Ballouard, J. M.; Filippi, E.; Naulleau, G.; Pearson, D.; Rugiero, L.

    2010-01-01

    Long-term studies have revealed population declines in fishes, amphibians, reptiles, birds and mammals. In birds, and particularly amphibians, these declines are a global phenomenon whose causes are often unclear. Among reptiles, snakes are top predators and therefore a decline in their numbers may have serious consequences for the functioning of many ecosystems. Our results show that, of 17 snake populations (eight species) from the UK, France, Italy, Nigeria and Australia, 11 have declined ...

  13. Negative snakes in JET: evidence for negative shear

    Energy Technology Data Exchange (ETDEWEB)

    Gill, R D; Alper, B; Edwards, A W [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking; Pearson, D [Reading Univ. (United Kingdom)

    1994-07-01

    The signature of the negative snakes from the soft X-ray cameras is very similar to the more usual snakes except that the localised region of the snake has, compared with its surroundings, decreased rather than increased emission. Circumstances where negative snakes have been seen are reviewed. The negative snake appears as a region of increased resistance and of increased impurity density. The relationship between the shear and the current perturbation is shown, and it seem probable that the magnetic shear is reversed at the point of the negative snake, i.e. that q is decreasing with radius. 6 refs., 6 figs.

  14. Negative snakes in JET: evidence for negative shear

    International Nuclear Information System (INIS)

    Gill, R.D.; Alper, B.; Edwards, A.W.

    1994-01-01

    The signature of the negative snakes from the soft X-ray cameras is very similar to the more usual snakes except that the localised region of the snake has, compared with its surroundings, decreased rather than increased emission. Circumstances where negative snakes have been seen are reviewed. The negative snake appears as a region of increased resistance and of increased impurity density. The relationship between the shear and the current perturbation is shown, and it seem probable that the magnetic shear is reversed at the point of the negative snake, i.e. that q is decreasing with radius. 6 refs., 6 figs

  15. Beam polarization during a Siberian snake turn-on

    International Nuclear Information System (INIS)

    Anferov, Vladimir A.

    1999-01-01

    Installing Siberian snakes in a circular proton accelerator allows one to overcome all spin depolarizing resonances even at very high energies. However, Siberian snake application at low energies is technically rather difficult. Turning snake on at some energy during acceleration would allow using Siberian snakes even in rings with low injection energies. It is shown that the beam polarization would be preserved during the snake ramp, provided that the snake is turned on in more than ten turns, and the energy is set near a half-integer Gγ

  16. Local perceptions, RUSLEFAC mapping, and field results: the sediment budget of cocagne river, new brunswick, Canada.

    Science.gov (United States)

    Fortin, Guillaume; LeBlanc, Mélanie; Schiavone, Sophie; Chouinard, Omer; Utzschneider, Anouk

    2015-01-01

    Erosion and sedimentation in water courses represent a major and costly problem everywhere on the planet. Perception of local actors of the state of the river can be a useful source of information to document the river's changes. The main objective of this study consists of understanding how multiple data sources can be used for identifying the most sensitive areas subject to erosion and sedimentation in a watershed. To achieve our objective we combined three complementary methods: conducting interviews, estimating the most sensitive soil loss areas using the Revised Universal Soil Loss Equation for Application in Canada (RUSLEFAC) and taking measurements of environmental variables (turbidity, deposition rate, particle size, water quality, rainfall). The information gathered from the interviews allowed us to determine which areas were the most affected (e.g., either erosion or deposition). However, we observed that there were some differences between the areas identified by the participants and those obtained from the RUSLEFAC and in situ measurements. Among these differences, participants identified sites which were the results of misuse or bad practices (e.g., ATV). By contrast sensitive sites for erosion, as identified using RUSLEFAC, are instead areas of steep slopes, located near the river without forest cover. The in situ measurements were very helpful in establishing background values for turbidity but also for comparing quantitative information (e.g., particle size) with what was reported in the interviews.

  17. Snake studies on TORE-SUPRA

    International Nuclear Information System (INIS)

    Cristofani, P.; Desgranges, C.; Garbet, X.; Geraud, A.; Gil, C.; Hoang, G.T.; Joffrin, E.; Pecquet, A.L.

    1994-01-01

    Snakes have been achieved after pellet injection in TORE-SUPRA during ohmic as well as ICRH discharges as it has already been observed in other machines. They are usually localized on a region around the q=1 surface, and correspond mainly to a perturbation of the density profile. The formation of the snake depends on the penetration depth L p of the pellet: the maximum of ablation must be well inside the q=1 surface, this condition is necessary but not sufficient to produce snakes. For example on TORE-SUPRA high speed H 2 pellets (1500 m/s and approximately 10 21 atoms) were injected into D 2 plasmas with following parameters: I p =1.4 MA, B Φ =3 T, T e =1.7 KeV, e >=2-3 10 19 m -3 , a=0.78 m, R=2.4 m, and q a =3.3. In such experimental conditions, the matter is deposited in the centre and snakes are produced in 50% of the cases, but they are created on a second much more internal q=1 surface leading probably to a non monotonic current profile. The first two paragraphs describe the properties of the snake and the induced current modification. The latter paragraph discusses the important role of the bootstrap current in the snake formation. (author) 5 refs., 7 figs

  18. Biochemical parameters in the blood of grass snakes (Natrix natrix in ecosystems under varying degrees of anthropogenic influence

    Directory of Open Access Journals (Sweden)

    V. Y. Gasso

    2016-09-01

    Full Text Available The grass snake Natrix natrix (Linnaeus, 1758 is a partly hygrophilous species, distributed throughoutUkraine. This snake may be considered as a test object for environmental biomonitoring. Modern biochemical methods make it possible to obtain new scientific data on the effects of anthropogenic pressure on reptiles. Blood is a sensitive and informative indicator of the condition of an organism as it responds quickly to most changes in exogenous and endogenous factors, and reflects negative influences on both individual and, indirectly, populations. Changes in biochemical parameters may be used as biomarkers of the state of health of reptiles in ecosystems under varying degrees of anthropogenic pressure. Due the increase in anthropogenic influence the development and introduction of new methods of perceptual research, collection of up-to-date information and development of a database of reptile biochemical parameters have become an urgent priority. We collected mature individuals of the grass snake in floodplain ecosystems on the right bank of the Dnieper River in Dnipropetrovsk city. Grass snakes from floodplain habitats on the left bank of theSamaraRiver (O.L. Belgard Prysamarskii International Biosphere Station, Novomoskovsk district, Dnipropetrovsk province were studied as the control specimens. Our study demonstrated statistically significant differences between snakes from the study sites in the amount of albumin, urea and urea nitrogen, and inorganic phosphorus, as well as in alanine aminotransferase (ALT and alkaline phosphatise (AP activity. The amount of albumin in the blood serum of specimens from the anthropogenically transformed areas was significantly lower (by 25% than in that of the snakes caught in the control habitats. Decrease of the albumin concentration usually indicates abnormal processes in the kidneys and liver. According to the changes observed in the concentration of albumin, a corresponding increase in the albumin to

  19. Federally-Recognized Tribes of the Columbia-Snake Basin.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration

    1997-11-01

    This is an omnibus publication about the federally-recognized Indian tribes of the Columbia-Snake river basin, as presented by themselves. It showcases several figurative and literal snapshots of each tribe, bits and pieces of each tribe`s story. Each individual tribe or tribal confederation either submitted its own section to this publication, or developed its own section with the assistance of the writer-editor. A federally-recognized tribe is an individual Indian group, or confederation of Indian groups, officially acknowledged by the US government for purposes of legislation, consultation and benefits. This publication is designed to be used both as a resource and as an introduction to the tribes. Taken together, the sections present a rich picture of regional indian culture and history, as told by the tribes.

  20. MICHIGAN/INDIANA: Siberian Snakes strike again

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: Siberian snakes are showing themselves to be even more deadly than expected in killing their prey, the depolarizing resonances which would make it very difficult to accelerate polarized protons to TeV energies at accelerators such as the Tevatron, UNK, LHC, and SSC. The snake concept was proposed in the mid-1970s by Siberians Yaroslav Derbenev and Anatoly Kondratenko at Novosibirsk, but the snakes lay almost dormant until Owen Chamberlain, Ernest Courant, Alan Krisch, and the late Kent Terwilliger organized the 1985 Superconducting Supercollider (SSC) polarized beam workshop in Ann Arbor, which highlighted the need to test the concept. The idea is to rotate the spin through 180° on each turn in the ring. With such successive spin flips, the depolarizing effects seen in one turn should be cancelled by an equal and opposite perturbation on the subsequent turn. The new Cooler Ring at the Indiana University Cyclotron Facility then seemed an excellent test site for these eager but untested serpents. The Michigan/lndiana/Brookhaven team led by Krisch constructed the world's first snake and found that it could easily overcome its initial enemy, the imperfection depolarizing resonances caused by ring magnet imperfections (January/February 1990, page 20). In the next few years the growing team of ''herpetologists'' showed that Siberian snakes could overcome all kinds of depolarizing resonances, including the intrinsic kind (caused by the vertical betatron oscillations which keep the beam focused) and the synchrotron resonances (caused by synchrotron oscillations in energy). The team also discovered a new type of snake that was inadvertently built into the cooling section. This socalled type-3 snake rotates the spin around the vertical direction. A full type-1 snake (such as the team's superconducting solenoid magnet) rotates the spin by 180° around the beam direction; a type-2 snake rotates the spin around the radial direction

  1. Anti-snake venom: use and adverse reaction in a snake bite study clinic in Bangladesh

    Directory of Open Access Journals (Sweden)

    MR Amin

    2008-01-01

    Full Text Available Snakebites can present local or systemic envenomation, while neurotoxicity and respiratory paralysis are the main cause of death. The mainstay of management is anti-snake venom (ASV, which is highly effective, but liable to cause severe adverse reactions including anaphylaxis. The types of adverse reaction to polyvalent anti-snake venom have not been previously studied in Bangladesh. In this prospective observational study carried out between 1999 and 2001, in the Snake Bite Study Clinic of Chittagong Medical College Hospital, 35 neurotoxic-snake-bite patients who had received polyvalent anti-snake venom were included while the ones sensitized to different antitoxins and suffering from atopy were excluded. The common neurotoxic features were ptosis (100%, external ophthalmoplegia (94.2%, dysphagia (77.1%, dysphonia (68.5% and broken neck sign (80%. The percentage of anti-snake venom reaction cases was 88.57%; pyrogenic reaction was 80.64%; and anaphylaxis was 64.51%. The common features of anaphylaxis were urticaria (80%; vomiting and wheezing (40%; and angioedema (10%. The anti-snake venom reaction was treated mainly with adrenaline for anaphylaxis and paracetamol suppository in pyrogenic reactions. The average recovery time was 4.5 hours. Due to the danger of reactions the anti-snake venom should not be withheld from a snakebite victim when indicated and appropriate guidelines should be followed for its administration.

  2. Selected water-quality data from the Cedar River and Cedar Rapids well fields, Cedar Rapids, Iowa, 2006-10

    Science.gov (United States)

    Littin, Gregory R.

    2012-01-01

    The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa area. Municipal wells are completed in the alluvial aquifer approximately 40 to 80 feet below land surface. The City of Cedar Rapids and the U.S. Geological Survey have been conducting a cooperative study of the groundwater-flow system and water quality of the aquifer since 1992. Cooperative reports between the City of Cedar Rapids and the U.S. Geological Survey have documented hydrologic and water-quality data, geochemistry, and groundwater models. Water-quality samples were collected for studies involving well field monitoring, trends, source-water protection, groundwater geochemistry, surface-water-groundwater interaction, and pesticides in groundwater and surface water. Water-quality analyses were conducted for major ions (boron, bromide, calcium, chloride, fluoride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides including two degradates of the herbicide atrazine. Physical characteristics (alkalinity, dissolved oxygen, pH, specific conductance and water temperature) were measured in the field and recorded for each water sample collected. This report presents the results of routine water-quality data-collection activities from January 2006 through December 2010. Methods of data collection, quality-assurance, and water-quality analyses are presented. Data include the results of water-quality analyses from quarterly sampling from monitoring wells, municipal wells, and the Cedar River.

  3. Snake venom L-amino acid oxidases: an overview on their antitumor effects

    Science.gov (United States)

    2014-01-01

    The L-amino acid oxidases (LAAOs) constitute a major component of snake venoms and have been widely studied due to their widespread presence and various effects, such as apoptosis induction, cytotoxicity, induction and/or inhibition of platelet aggregation, hemorrhage, hemolysis, edema, as well as antimicrobial, antiparasitic and anti-HIV activities. The isolated and characterized snake venom LAAOs have become important research targets due to their potential biotechnological applications in pursuit for new drugs of interest in the scientific and medical fields. The current study discusses the antitumor effects of snake venom LAAOs described in the literature to date, highlighting the mechanisms of apoptosis induction proposed for this class of proteins. PMID:24940304

  4. Selected Water-Quality Data from the Cedar River and Cedar Rapids Well Fields, Cedar Rapids, Iowa, 1999-2005

    Science.gov (United States)

    Littin, Gregory R.; Schnoebelen, Douglas J.

    2010-01-01

    The Cedar River alluvial aquifer is the primary source of municipal water in the Cedar Rapids, Iowa area. Municipal wells are completed in the alluvial aquifer at approximately 40 to 80 feet deep. The City of Cedar Rapids and the U.S. Geological Survey have been conducting a cooperative study of the groundwater-flow system and water quality near the well fields since 1992. Previous cooperative studies between the City of Cedar Rapids and the U.S. Geological Survey have documented hydrologic and water-quality data, geochemistry, and groundwater models. Water-quality samples were collected for studies involving well field monitoring, trends, source-water protection, groundwater geochemistry, evaluation of surface and ground-water interaction, assessment of pesticides in groundwater and surface water, and to evaluate water quality near a wetland area in the Seminole well field. Typical water-quality analyses included major ions (boron, bromide, calcium, chloride, fluoride, iron, magnesium, manganese, potassium, silica, sodium, and sulfate), nutrients (ammonia as nitrogen, nitrite as nitrogen, nitrite plus nitrate as nitrogen, and orthophosphate as phosphorus), dissolved organic carbon, and selected pesticides including two degradates of the herbicide atrazine. In addition, two synoptic samplings included analyses of additional pesticide degradates in water samples. Physical field parameters (alkalinity, dissolved oxygen, pH, specific conductance and water temperature) were recorded with each water sample collected. This report presents the results of water quality data-collection activities from January 1999 through December 2005. Methods of data collection, quality-assurance samples, water-quality analyses, and statistical summaries are presented. Data include the results of water-quality analyses from quarterly and synoptic sampling from monitoring wells, municipal wells, and the Cedar River.

  5. Experimental infection of snakes with Ophidiomyces ophiodiicola causes pathological changes that typify snake fungal disease

    Science.gov (United States)

    Lorch, Jeffrey M.; Lankton, Julia S.; Werner, Katrien; Falendysz, Elizabeth A.; McCurley, Kevin; Blehert, David S.

    2015-01-01

    Snake fungal disease (SFD) is an emerging skin infection of wild snakes in eastern North America. The fungus Ophidiomyces ophiodiicola is frequently associated with the skin lesions that are characteristic of SFD, but a causal relationship between the fungus and the disease has not been established. We experimentally infected captive-bred corn snakes (Pantherophis guttatus) in the laboratory with pure cultures of O. ophiodiicola. All snakes in the infected group (n = 8) developed gross and microscopic lesions identical to those observed in wild snakes with SFD; snakes in the control group (n = 7) did not develop skin infections. Furthermore, the same strain of O. ophiodiicola used to inoculate snakes was recovered from lesions of all animals in the infected group, but no fungi were isolated from individuals in the control group. Monitoring progression of lesions throughout the experiment captured a range of presentations of SFD that have been described in wild snakes. The host response to the infection included marked recruitment of granulocytes to sites of fungal invasion, increased frequency of molting, and abnormal behaviors, such as anorexia and resting in conspicuous areas of enclosures. While these responses may help snakes to fight infection, they could also impact host fitness and may contribute to mortality in wild snakes with chronic O. ophiodiicola infection. This work provides a basis for understanding the pathogenicity of O. ophiodiicola and the ecology of SFD by using a model system that incorporates a host species that is easy to procure and maintain in the laboratory.

  6. A thermal impact assessment model with measured field data applied to the tidal river Weser

    International Nuclear Information System (INIS)

    Haeuser, J.; Eppel, D.; Mueller, A.; Nehlsen, A.; Tanzer, F.

    1981-01-01

    This paper presents the fundamental principles, the general outline, and a specific application of the model UTRANS (unified transport system) with emphasis on the results of application. The model simulates the temperature distribution, generated by the nuclear power plant KKU (1300 MWsub(e)), in the lower Weser river (within tidal cycle) for october 3, 1979. The model was run for a period of 24 hours. The solution area of some 15 kilometers (km 44 to km 59) consists of about 1100 discrete elements (DE) of variable size and irregular shape. (orig.) [de

  7. Field burial results and SIMS analysis of the Chalk River glass blocks

    International Nuclear Information System (INIS)

    Tait, J.C.; Hocking, W.H.; Betteridge, J.S.; Bart, G.

    1986-01-01

    In 1959, 25 2-kg hemispherical blocks of aluminosilicate glass, each containing ∼90 MBq/g of mixed fission products, were buried in a sandy soil aquifer in the waste management area at the Chalk River Nuclear Laboratories. A second set of blocks, containing ∼260 MBq/g mixed fission products, was buried in 1960. One block from each test was retrieved in 1978 to undergo chemical and surface analysis. This report reviews the migration of the 90 Sr and 137 Cs plume in the soil and presents the results of SIMS depth profiling of the surface of a glass block. (author)

  8. Metal levels in blood, muscle and liver of water snakes (Nerodia spp.) from New Jersey, Tennessee and South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Joanna [Division of Life Sciences, Nelson Biological Lab., Rutgers Univ., 604 Allison Road, Piscataway, New Jersey (United States)]|[Consortium for Risk Evaluation with Stakeholder Participation and Environmental and Occupational Health Sciences Inst., Piscataway, New Jersey (United States)]. E-mail: burger@biology.rutgers.edu; Campbell, Kym Rouse [Consortium for Risk Evaluation with Stakeholder Participation, and Environmental and Occupational Health Sciences Inst., Piscataway, New Jersey (United States)]|[Biological Research Associates, 3910 U.S. Highway 301 North, Suite 180, Tampa, Florida 33619 (United States); Murray, Stephanie; Jeitner, Christian; Burke, Sean [Div. of Life Sciences, Nelson Biological Lab., Rutgers Univ., 604 Allison Road, Piscataway, New Jersey (United States)]|[Consortium for Risk Evaluation with Stakeholder Participation, and Environmental and Occupational Health Sciences Inst., Piscataway, New Jersey (United States); Campbell, Todd S. [Consortium for Risk Evaluation with Stakeholder Participation, and Environmental and Occupational Health Sciences Inst., Piscataway, New Jersey (United States)]|[Dept. of Biology, Box 3F, Univ. of Tampa, 401 West Kennedy Boulevard, Tampa, Florida 33606-1490 (United States); Gaines, Karen F. [Consortium for Risk Evaluation with Stakeholder Participation, and Environmental and Occupational Health Sciences Inst., Piscataway, New Jersey (United States)]|[Savannah River Ecology Lab., Univ. of Georgia, P.A. Drawer E, Aiken, South Carolina 29802 (United States)]|[Dept. of Biology, Univ. of South Dakota, 414 E. Clark St., Vermillion, South Dakota 57069 (United States); Shukla, Tara; Gochfeld, Michael [Consortium for Risk Evaluation with Stakeholder Participation, and Environmental and Occupational Health Sciences Inst., Piscataway, New Jersey (United States)]|[Environmental and Occupational Medicine, UMDNJ Robert Wood Johnson Medical School, Piscataway, New Jersey (United States)

    2007-02-15

    Reptiles, particularly snakes, could serve as bioindicators of contamination because some are comparatively long-lived, exhibit different trophic levels, and are at the top of their food chains. We test the null hypothesis that there are no differences in the concentrations of heavy metals in the blood, muscle and liver of water snakes (Nerodia spp.) from rivers in New Jersey, Tennessee and South Carolina. While the former site is in an urban/suburban area, the latter two sites are relatively rural and are located on Department of Energy sites. For the snakes from New Jersey, there were significant differences in metal concentrations among tissues for all metals, the highest levels for arsenic and selenium were in liver and kidney, for cadmium were in the liver, for chromium and lead were in skin, and for mercury and manganese were in the muscle. Body length was not correlated with metal levels, and there were more significant correlations for skin with internal tissues than for blood with other tissues. There were more significant correlations for mercury than for other metals. In comparing metal levels among states, levels were generally higher for snakes collected from South Carolina. These data indicate that, since water snakes accumulate contaminants differentially as a function of location, they can be useful bioindicators of environmental exposure to contaminants. Moreover, because of their wide geographical distribution and use of varying trophic compartments, this genus can be useful for cross-site comparisons.

  9. Water-Quality Changes Caused by Riverbank Filtration Between the Missouri River and Three Pumping Wells of the Independence, Missouri, Well Field 2003-05

    Science.gov (United States)

    Kelly, Brian P.; Rydlund, Jr., Paul H.

    2006-01-01

    Riverbank filtration substantially improves the source-water quality of the Independence, Missouri well field. Coliform bacteria, Cryptosporidium, Giardia, viruses and selected constituents were analyzed in water samples from the Missouri River, two vertical wells, and a collector well. Total coliform bacteria, Cryptosporidium, Giardia, and total culturable viruses were detected in the Missouri River, but were undetected in samples from wells. Using minimum reporting levels for non-detections in well samples, minimum log removals were 4.57 for total coliform bacteria, 1.67 for Cryptosporidium, 1.67 for Giardia, and 1.15 for total culturable virus. Ground-water flow rates between the Missouri River and wells were calculated from water temperature profiles and ranged between 1.2 and 6.7 feet per day. Log removals based on sample pairs separated by the traveltime between the Missouri River and wells were infinite for total coliform bacteria (minimum detection level equal to zero), between 0.8 and 3.5 for turbidity, between 1.5 and 2.1 for Giardia, and between 0.4 and 2.6 for total culturable viruses. Cryptosporidium was detected once in the Missouri River but no corresponding well samples were available. No clear relation was evident between changes in water quality in the Missouri River and in wells for almost all constituents. Results of analyses for organic wastewater compounds and the distribution of dissolved oxygen, specific conductance, and temperature in the Missouri River indicate water quality on the south side of the river was moderately influenced by the south bank inflows to the river upstream from the Independence well field.

  10. Development of a Novel Locomotion Algorithm for Snake Robot

    International Nuclear Information System (INIS)

    Khan, Raisuddin; Billah, Md Masum; Watanabe, Mitsuru; Shafie, A A

    2013-01-01

    A novel algorithm for snake robot locomotion is developed and analyzed in this paper. Serpentine is one of the renowned locomotion for snake robot in disaster recovery mission to overcome narrow space navigation. Several locomotion for snake navigation, such as concertina or rectilinear may be suitable for narrow spaces, but is highly inefficient if the same type of locomotion is used even in open spaces resulting friction reduction which make difficulties for snake movement. A novel locomotion algorithm has been proposed based on the modification of the multi-link snake robot, the modifications include alterations to the snake segments as well elements that mimic scales on the underside of the snake body. Snake robot can be able to navigate in the narrow space using this developed locomotion algorithm. The developed algorithm surmount the others locomotion limitation in narrow space navigation

  11. Cardiovascular Responses of Snakes to Gravitational Gradients

    Science.gov (United States)

    Hsieh, Shi-Tong T.; Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.; Holton, Emily M. (Technical Monitor)

    1998-01-01

    Snakes are useful vertebrates for studies of gravitational adaptation, owing to their elongate body and behavioral diversification. Scansorial species have evolved specializations for regulating hemodynamics during exposure to gravitational stress, whereas, such adaptations are less well developed in aquatic and non-climbing species. We examined responses of the amphibious snake,\\italicize (Nerodia rhombifera), to increments of Gz (head-to-tail) acceleration force on both a short- and long-arm centrifuge (1.5 vs. 3.7 m radius, from the hub to tail end of snake). We recorded heart rate, dorsal aortic pressure, and carotid arterial blood flow during stepwise 0.25 G increments of Gz force (referenced at the tail) in conscious animals. The Benz tolerance of a snake was determined as the Gz level at which carotid blood flow ceased and was found to be significantly greater at the short- than long-arm centrifuge radius (1.57 Gz vs. 2.0 Gz, respectively; P=0.016). A similar pattern of response was demonstrated in semi-arboreal rat snakes,\\italicize{Elaphe obsoleta}, which are generally more tolerant of Gz force (2.6 Gz at 1.5m radius) than are water snakes. The tolerance differences of the two species reflected cardiovascular responses, which differed quantitatively but not qualitatively: heart rates increased while arterial pressure and blood flow decreased in response to increasing levels of Gz. Thus, in both species of snakes, a reduced gradient of Gz force (associated with greater centrifuge radius) significantly decreases the Gz level that can be tolerated.

  12. Pine snake (Pituophis ruthveni and Pituophis mellanoleucus lodingi) hibernacula

    Science.gov (United States)

    D.C. Rudolph; R.R. Schaefer; S.J. Burgdorf; M. Duran; R.N. Conner

    2007-01-01

    Snakes are often highly selective in the choice of sites for hibernation, and suitable sites can potentially be a limiting resource. Hibernating Louisiana Pine Snakes (Pituopllis ruthveni; N = 7) in eastern Texas and Black Pine Snakes (Pituophis melanoleucus lodingi; N = 5) in Mississippi were excavated to characterize their...

  13. Snakes in the Grass: Weaving Success for Everyone.

    Science.gov (United States)

    Ide, Janet L.

    2000-01-01

    Describes "Snakes in the Grass," a weaving project used with special needs students. Discusses the preliminary skill-building activities used, the process for creating the students' individual snakes, and the preparation and process for how the students wove the snakes. (CMK)

  14. Snake and staff symbolism in healing | Retief | Acta Theologica

    African Journals Online (AJOL)

    Since time immemorial the snake has been venerated as an enigmatic creature with supernatural powers. As a snake and staff symbol it is also traditionally associated with the healing arts, either as the single-snake attribute of Asclepius, or as the doublesnake attribute of Hermes. In this article the mythological basis for this ...

  15. Management of Poisonous Snake Bites in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Kao-Ping Chang

    2007-10-01

    Full Text Available Snake bite envenomation is not uncommon in Taiwan. This study focuses on the pattern of poisonous snake bites and their management in southern Taiwan over a 5-year period. The case histories of 37 patients with poisonous snake bites admitted to the Kaohsiung Medical University Hospital between June 2001 and July 2005 were analyzed retrospectively. Three patients, bitten by unknown species of venomous snakes, were excluded from this study. The frequency of snake bites from each species of snake, the local and systemic manifestations of snake bite, treatment of complications and final outcomes were analyzed. Of the remaining 34 patients, 11 (32.4% were bitten by bamboo vipers, 10 (29.4% by Russell's pit vipers, 8 (23.5% by Taiwan cobras and 5 (14.7% by Taiwan Habu. The majority of snake bites (28 occurred between May and November. Those affected were mainly outdoor hikers (14 and workers (9. The antivenin requirements for treatment in the emergency room were in accordance with standard procedures. No mortality was noted among those envenomed by poisonous snakes. Although poisonous snake bite is not a common life-threatening emergency in the study area, we observed both an environmental risk and a seasonal incidence of snake bite. Keeping the varied clinical manifestations of snake bite in mind is important for effective management. Ready availability and appropriate use of antivenin, close monitoring of patients, institution of ventilatory support and early referral to a larger hospital when required, all help reduce mortality.

  16. Molecular detection of Toxoplasma gondii in snakes.

    Science.gov (United States)

    Nasiri, Vahid; Teymurzadeh, Shohreh; Karimi, Gholamreza; Nasiri, Mehdi

    2016-10-01

    Toxoplasma gondii, an obligate intracellular protozoan parasite, is responsible for one of the most common zoonotic parasitic diseases in almost all warm-blooded vertebrates worldwide, and it is estimated that about one-third of the world human population is chronically infected with this parasite. Little is known about the circulation of T. gondii in snakes and this study for the first time aimed to evaluate the infection rates of snakes by this parasite by PCR methods. The brain of 68 Snakes, that were collected between May 2012 and September 2015 and died after the hold in captivity, under which they were kept for taking poisons, were examined for the presence of this parasite. DNA was extracted and Nested-PCR method was carried out with two of pairs of primers to detect the 344 bp fragment of T. gondii GRA6 gene. Five positive nested-PCR products were directly sequenced in the forward and reverse directions by Sequetech Company (Mountain View, CA). T. gondii GRA6 gene were detected from 55 (80.88%) of 68 snakes brains. Sequencing of the GRA6 gene revealed 98-100% of similarity with T. gondii sequences deposited in GenBank. To our knowledge, this is the first study of molecular detection of T. gondii in snakes and our findings show a higher frequency of this organism among them. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Oral microbiota of Brazilian captive snakes

    Directory of Open Access Journals (Sweden)

    MG Fonseca

    2009-01-01

    Full Text Available The present work aimed to determine the oral microbiotic composition of snakes from São José do Rio Preto city, São Paulo State, Brazil. Ten snake species, comprising the families Boidae, Colubridae, Elapidae and Viperidae, were submitted to microbiological examination of their oral cavity, which indicated positivity for all buccal samples. Gram-negative bacilli, gram-negative cocci bacilli, gram-positive bacilli and gram-positive cocci were isolated from the snakes. Among isolated bacterium species, the occurrence of coagulase-negative staphylococci in the buccal cavity of Crotalus durissus (Viperiade, Eunectes murinus (Boidae, Mastigodryas bifossatus (Colubridae and Bacillus subtilis, common to oral cavity of Bothrops alternatus (Viperidae and Phalotris mertensi (Colubridae, was detected. It was observed higher diversity of isolated bacteria from the oral cavity of Micrurus frontalis (Elapidae and Philodryas nattereri (Colubridae, as well as the prevalence of gram-positive baccillus and gram-positive cocci. The composition of the oral microbiota of the studied snakes, with or without inoculating fangs, is diverse and also related to the formation of abscesses at the bite site in the victims of the ophidian accidents, and to pathogenic processes in the snakes that host these microorganisms.

  18. Function of snake mobbing in spectral tarsiers.

    Science.gov (United States)

    Gursky, Sharon

    2006-04-01

    Numerous species are known for their tendency to approach and confront their predators as a group. This behavior is known as mobbing. Snakes seem to be one of the more consistent recipients of this type of predator-directed behavior. This paper explores individual differences (sex and age) in the mobbing behavior of the spectral tarsier toward live and model snakes. This study was conducted at Tangkoko Nature Reserve (Sulawesi, Indonesia) during 2003-2004. During this research, 11 natural mobbing events and 31 artificially induced mobbing events were observed. The mean number of individuals at a mobbing was 5.7. The duration of mobbing events was strongly correlated with the number of assembled mobbers. Adults were more likely than other age classes to participate in mobbings. Males were more likely than females to participate in mobbings. Mobbing groups often contained more than one adult male, despite the fact that no spectral tarsier group contains more than one adult male. No difference in body size between extragroup males and resident males was observed, refuting the "attract the mightier" hypothesis. The number of mobbers did not affect whether the tarsier or the snake retreated first, countering the "move-on" hypothesis. The "perception advertisement" hypothesis was tentatively supported, in that live snakes were rarely seen in the area following mobbing calls, in comparison to when tarsiers either ignored the snake or alarm call. Copyright 2006 Wiley-Liss, Inc.

  19. Field-trip guide to the vents, dikes, stratigraphy, and structure of the Columbia River Basalt Group, eastern Oregon and southeastern Washington

    Science.gov (United States)

    Camp, Victor E; Reidel, Stephen P.; Ross, Martin E.; Brown, Richard J.; Self, Stephen

    2017-06-22

    The Columbia River Basalt Group covers an area of more than 210,000 km2 with an estimated volume of 210,000 km3. As the youngest continental flood-basalt province on Earth (16.7–5.5 Ma), it is well preserved, with a coherent and detailed stratigraphy exposed in the deep canyonlands of eastern Oregon and southeastern Washington. The Columbia River flood-basalt province is often cited as a model for the study of similar provinces worldwide.This field-trip guide explores the main source region of the Columbia River Basalt Group and is written for trip participants attending the 2017 International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly in Portland, Oregon, USA. The first part of the guide provides an overview of the geologic features common in the Columbia River flood-basalt province and the stratigraphic terminology used in the Columbia River Basalt Group. The accompanying road log examines the stratigraphic evolution, eruption history, and structure of the province through a field examination of the lavas, dikes, and pyroclastic rocks of the Columbia River Basalt Group.

  20. Field studies of estuarine turbidity under different freshwater flow conditions, Kaipara River, New Zealand

    Science.gov (United States)

    Mitchell, Steven B.; Green, Malcolm O.; MacDonald, Iain T.; Pritchard, Mark

    2017-11-01

    We present a first interpretation of three days of measurements made in 2013 from the tidal reaches of the Kaipara River (New Zealand) under both low and high freshwater inputs and a neap tidal cycle. During the first day, we occupied two stations that were approximately 6 km apart in a tidal reach that runs for 25 km from the river mouth to the upstream limit of tidal influence. During the second day, longitudinal surveys were conducted over a distance of 6 km centred on the upstream station. The data reveal a turbidity maximum in the form of a high-concentration 'plug' of suspended mud that was advected downstream on the ebbing tide past the upper (HB) measurement station and which exchanged sediment with the seabed by settling at low slack water and by resuspension in the early flooding tide. The data suggest that fine sediment is transported landwards and trapped in the upper part of the tidal reach under these low-flow conditions. On the third day of measurements we repeated the experiments of the first day but later in the year, for a much higher freshwater flow. This interpretation of our data set highlights the potential contribution of a range of processes to the generation of the observed suspended-sediment signals, including resuspension of local bed sediment, advection by the tidal current, settling of suspended sediment over a long timescale compared to the advection timescale, advection of longitudinal gradients in suspended sediment, and suppression of vertical mixing by density stratification of the water column. The level of temporal and spatial detail afforded by these measurements allows a much clearer understanding of the timing and importance of vertical stratification on the transport of suspended particulate matter than is generally possible using fixed-point sensors.

  1. Barged/In-river steelhead migrant data - Evaluation of methods to reduce straying rates of barged juvenile steelhead

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goals of this study are to develop methods to reduce wandering and straying of steelhead (Oncorhynchus mykiss) that are collected and barged from the Snake River...

  2. Tolerance of snakes to hypergravity

    Science.gov (United States)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1996-01-01

    Sensitivity of carotid blood flow to increased gravitational force acting in the head-to-tail direction(+Gz) was studied in diverse species of snakes hypothesized to show adaptive variation of response. Tolerance to increased gravity was measured red as the maximum graded acceleration force at which carotid blood flow ceased and was shown to vary according to gravitational adaptation of species defined by their ecology and behavior. Multiple regression analysis showed that gravitational habitat, but not body length, had a significant effect on Gz tolerance. At the extremes, carotid blood flow decreased in response to increasing G force and approached zero near +1 Gz in aquatic and ground-dwelling species, whereas in climbing species carotid flow was maintained at forces in excess of +2 Gz. Tolerant (arboreal) species were able to withstand hypergravic forces of +2 to +3 Gz for periods up to 1 h without cessation of carotid blood flow or loss of body movement and tongue flicking. Data suggest that the relatively tight skin characteristic of tolerant species provides a natural antigravity suit and is of prime importance in counteracting Gz stress on blood circulation.

  3. Snake Envenomation Causing Distant Tracheal Myonecrosis

    Directory of Open Access Journals (Sweden)

    Amina Khimani

    2013-01-01

    Full Text Available Snakebites are often believed to be poisonous. However, this is not always the case. In fact, each bite differs from snake to snake, depending on if the snake is poisonous and if there is envenomation. Venom in pit viper snakebites is often associated with local necrosis. The abundant literature selections and research articles justify local myonecrosis due to envenomation, but there is not much in the literature regarding myonecrosis at a site distant from the snakebite. We hereby present a case of a 42-year-old man who was transferred to our emergency department after a rattlesnake bit him twice. The patient, besides developing local myonecrosis at the site of the snakebite, developed necrosis of the scrotum as well as tracheal pressure myonecrosis at the site of the endotracheal tube balloon. In this review, we will attempt to discuss the myonecrosis pathophysiology and management related to the rattle snakebite.

  4. Helical spin rotators and snakes for RHIC

    International Nuclear Information System (INIS)

    Ptitsin, V.I.; Shatunov, Yu.M.; Peggs, S.

    1995-01-01

    The RHIC collider, now under construction at BNL, will have the possibility of polarized proton-proton collisions up to a beam energy of 250 Gev. Polarized proton beams of such high energy can be only obtained with the use of siberian snakes, a special kind of spin rotator that rotates the particle spin by 180 degree around an axis lying in the horizontal plane. Siberian snakes help to preserve the beam polarization while numerous spin depolarizing resonances are crossed, during acceleration. In order to collide longitudinally polarized beams, it is also planned to install spin rotators around two interaction regions. This paper discusses snake and spin rotator designs based on sequences of four helical magnets. The schemes that were chosen to be applied at RHIC are presented

  5. PROVENANCE SNAKES OF GENUS Bothrops AND Crotalus (VIPERIDAE) CATALOGED IN SERPENTARIUM ZOO UNIVERSITY OF CAXIAS DO SUL (UCS)

    OpenAIRE

    Ezequiel Capeletti; Michel Mendes; Diezza Biondo; Marcia Maria Dosciatti de Oliveira

    2016-01-01

    Snakes are reptiles that have large environmental adaptations, which favored it's distribution among the various ecosystems. In Brazil, there are found 392 species of snakes, while in Rio Grande do Sul (RS), this research field, 79 species have been described, of which there is the Viperidae family. The objective of this work is to verify the origin of snakes of genus Bothrops and Crotalus, according to the records of the last 15 years of the serpentarium the University of Caxias do Sul, repr...

  6. The Irrigation Effect: How River Regulation Can Promote Some Riparian Vegetation

    Science.gov (United States)

    Gill, Karen M.; Goater, Lori A.; Braatne, Jeffrey H.; Rood, Stewart B.

    2018-04-01

    River regulation impacts riparian ecosystems by altering the hydrogeomorphic conditions that support streamside vegetation. Obligate riparian plants are often negatively impacted since they are ecological specialists with particular instream flow requirements. Conversely, facultative riparian plants are generalists and may be less vulnerable to river regulation, and could benefit from augmented flows that reduce drought stress during hot and dry periods. To consider this `irrigation effect' we studied the facultative shrub, netleaf hackberry ( Celtis reticulata), the predominant riparian plant along the Hells Canyon corridor of the Snake River, Idaho, USA, where dams produce hydropeaking, diurnal flow variation. Inventories of 235 cross-sectional transects revealed that hackberry was uncommon upstream from the reservoirs, sparse along the reservoir with seasonal draw-down and common along two reservoirs with stabilized water levels. Along the Snake River downstream, hackberry occurred in fairly continuous, dense bands along the high water line. In contrast, hackberry was sparsely scattered along the free-flowing Salmon River, where sandbar willow ( Salix exigua), an obligate riparian shrub, was abundant. Below the confluence of the Snake and Salmon rivers, the abundance and distribution of hackberry were intermediate between the two upstream reaches. Thus, river regulation apparently benefited hackberry along the Snake River through Hells Canyon, probably due to diurnal pulsing that wets the riparian margin. We predict similar benefits for some other facultative riparian plants along other regulated rivers with hydropeaking during warm and dry intervals. To analyze the ecological impacts of hydropeaking we recommend assessing daily maxima, as well as daily mean river flows.

  7. Runoff of pesticides from rice fields in the Ile de Camargue (Rhone river delta, France): Field study and modeling

    International Nuclear Information System (INIS)

    Comoretto, Laetitia; Arfib, Bruno; Talva, Romain; Chauvelon, Philippe; Pichaud, Marc; Chiron, Serge; Hoehener, Patrick

    2008-01-01

    A field study on the runoff of pesticides was conducted during the cultivation period in 2004 on a hydraulically isolated rice farm of 120 ha surface with one central water outlet. Four pesticides were studied: Alphamethrin, MCPA, Oxadiazon, and Pretilachlor. Alphamethrin concentrations in runoff never exceeded 0.001 μg L -1 . The three other pesticides were found in concentrations between 5.2 and 28.2 μg L -1 in the runoff water shortly after the application and decreased thereafter. The data for MCPA compared reasonably well with predictions by an analytical runoff model, accounting for volatilization, degradation, leaching to groundwater, and sorption to soil. The runoff model estimated that runoff accounted for as much as 18-42% of mass loss for MCPA. Less runoff is observed and predicted for Oxadiazon and Pretilachlor. It was concluded that runoff from rice paddies carries important loads of dissolved pesticides to the wetlands in the Ile de Camargue, and that the model can be used to predict this runoff. - Runoff of dissolved pesticides was measured on a rice farm in the Camargue (France) and modeled with an analytical model

  8. Phylogeny, ecology, and heart position in snakes.

    Science.gov (United States)

    Gartner, Gabriel E A; Hicks, James W; Manzani, Paulo R; Andrade, Denis V; Abe, Augusto S; Wang, Tobias; Secor, Stephen M; Garland, Theodore

    2010-01-01

    The cardiovascular system of all animals is affected by gravitational pressure gradients, the intensity of which varies according to organismic features, behavior, and habitat occupied. A previous nonphylogenetic analysis of heart position in snakes-which often assume vertical postures-found the heart located 15%-25% of total body length from the head in terrestrial and arboreal species but 25%-45% in aquatic species. It was hypothesized that a more anterior heart in arboreal species served to reduce the hydrostatic blood pressure when these animals adopt vertical postures during climbing, whereas an anterior heart position would not be needed in aquatic habitats, where the effects of gravity are less pronounced. We analyzed a new data set of 155 species from five major families of Alethinophidia (one of the two major branches of snakes, the other being blind snakes, Scolecophidia) using both conventional and phylogenetically based statistical methods. General linear models regressing log(10) snout-heart position on log(10) snout-vent length (SVL), as well as dummy variables coding for habitat and/or clade, were compared using likelihood ratio tests and the Akaike Information Criterion. Heart distance to the tip of the snout scaled isometrically with SVL. In all instances, phylogenetic models that incorporated transformation of the branch lengths under an Ornstein-Uhlenbeck model of evolution (to mimic stabilizing selection) better fit the data as compared with their nonphylogenetic counterparts. The best-fit model predicting snake heart position included aspects of both habitat and clade and indicated that arboreal snakes in our study tend to have hearts placed more posteriorly, opposite the trend identified in previous studies. Phylogenetic signal in relative heart position was apparent both within and among clades. Our results suggest that overcoming gravitational pressure gradients in snakes most likely involves the combined action of several cardiovascular and

  9. In situ bioremediation: Cost effectiveness of a remediation technology field tested at the Savannah River

    International Nuclear Information System (INIS)

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-01-01

    In Situ Bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the SRID is the volatile organic compound (VOC), tricloroetylene(TCE). A 384 day test run at Savannah River, sponsored by the US Department of Energy, Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In Situ Bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biolgoical process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted air stream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given this data, the cost effectiveness of this new technology can be evaluated

  10. Hierarchical structure and mechanical properties of snake (Naja atra) and turtle (Ocadia sinensis) eggshells.

    Science.gov (United States)

    Chang, Yin; Chen, Po-Yu

    2016-02-01

    After hundreds of million years of evolution, natural armors have evolved in various organisms, and has manifested in diverse forms such as eggshells, abalone shells, alligator osteoderms, turtle shells, and fish scales. Eggshells serve as multifunctional shields for successful embryogenesis, such as protection, moisture control and thermal regulation. Unlike calcareous avian eggshells which are brittle and hard, reptilians have leathery eggshells that are tough and flexible. Reptilian eggshells can withstand collision damages when laid in holes and dropped onto each other, and reduce abrasion caused by buried sand. In this study, we investigate structure and mechanical properties of eggshells of Taiwan cobra snake (Naja atra) and Chinese striped-neck turtle (Ocadia sinensis). From Acid Fuchsin Orange G (AFOG) staining and ATR-FTIR examination, we found that both eggshells are mainly composed of keratin. The mechanical properties of demineralized snake and turtle eggshells were evaluated by tensile and fracture tests and show distinctly difference. Turtle eggshells are relatively stiff and rigid, while snake eggshells behave as elastomers, which are highly extensible and reversible. The exceptional deformability (110-230% tensile strain) and toughness of snake eggshells are contributed by the wavy and random arrangement of keratin fibers as well as collagen layers. Multi-scale toughening mechanisms of snake eggshells were observed and elucidated, including crack deflection and twisting, fibers reorientation, sliding and bridging, inter-laminar shear effect, as well as the α-β phase transition of keratin. Inspirations from the structural and mechanical designs of reptilian eggshells may lead to the synthesis of tough, extensible, lightweight composites which could be further applied in the flexible devices, packaging and bio-medical fields. Amniotic eggshells serve as multifunctional shields for successful embryogenesis. The avian eggshells have been extensively

  11. Study of spin resonances in the accelerators with snakes

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1989-01-01

    Spin resonances in the circular accelerators with snakes are studied to understand the nature of snake resonances. We analyze the effect of snake configuration, and the snake superperiod on the resonance. Defining the critical resonance strength ε c as the maximum tolerable resonance strength without losing the beam polarization after passing through the resonance, we found that ε c is a sensitive function of the snake configuration, the snake superperiod at the first order snake resonance, the higher order snake resonance conditions and the spin matching condition. Under properly designed snake configuration, the critical resonance strength ε c is found to vary linearly with N S as left-angle ε c right-angle=(1/π)sin -1 (cos πν z | 1/2 )N S , where ν| z and N S are the betatron tune and the number of snakes respectively. We also study the effect of overlapping intrinsic and imperfection resonances. The imperfection resonance should be corrected to a magnitude of insignificance (e.g., ε≤0.1 for two snakes case) to maintain proper polarization

  12. The status of taxonomy and venom in sea snakes

    DEFF Research Database (Denmark)

    Redsted Rasmussen, Arne; Sanders, Kate L.

    2017-01-01

    The status of taxonomy and venom in sea snakesArne R Rasmussen1, Kate L Sanders21 The Royal Danish Academy of Fine Arts, School of Architecture, Design & Conservation, Copenhagen, Denmark2 School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5000, AustraliaSea...... snakes form two aquatic groups of snakes with a flat vertically paddle-form tail (sea kraits and viviparous sea snakes). Sea snakes belong to the same family Elapidae, which also includes the terrestrial mambas, cobra, kraits, taipan and brown snake. All elapids are characterized by the anterior position...... of the poison-fangs on the maxillary bone (proteroglyphous). Globally there are some 70 species of sea snake found in the tropical and subtropical waters of the Indian Ocean and the Pacific Ocean. Most species are found in the Indo-Malayan Archipelago, the China Sea, Indonesia, and the Australian region...

  13. Diversity of Snakes in Rajegwesi Tourism Area, Meru Betiri National Park

    OpenAIRE

    Hakim, Luchman; Raharjo, Aji Dharma

    2015-01-01

    Rajegwesi tourism area is one of the significant tourism areas in Meru Betiri National Park, East Java, Indonesia. The area rich in term of biodiversity which are potential for developed as natural tourism attraction.  The aim of this study is to identify snakes species diversity and its distribution in Rajegwesi tourism area. Field survey was done in Rajegwesi area, namely swamps forest, residential area, rice fields, agriculture area (babatan), resort area, and Plengkang cliff. This study f...

  14. Born Knowing: Tentacled Snakes Innately Predict Future Prey Behavior

    Science.gov (United States)

    Catania, Kenneth C.

    2010-01-01

    Background Aquatic tentacled