WorldWideScience

Sample records for smooth model substrates

  1. Panel Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    González, Andrés; Terasvirta, Timo; Dijk, Dick van

    We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...

  2. Smooth random change point models.

    Science.gov (United States)

    van den Hout, Ardo; Muniz-Terrera, Graciela; Matthews, Fiona E

    2011-03-15

    Change point models are used to describe processes over time that show a change in direction. An example of such a process is cognitive ability, where a decline a few years before death is sometimes observed. A broken-stick model consists of two linear parts and a breakpoint where the two lines intersect. Alternatively, models can be formulated that imply a smooth change between the two linear parts. Change point models can be extended by adding random effects to account for variability between subjects. A new smooth change point model is introduced and examples are presented that show how change point models can be estimated using functions in R for mixed-effects models. The Bayesian inference using WinBUGS is also discussed. The methods are illustrated using data from a population-based longitudinal study of ageing, the Cambridge City over 75 Cohort Study. The aim is to identify how many years before death individuals experience a change in the rate of decline of their cognitive ability. Copyright © 2010 John Wiley & Sons, Ltd.

  3. Interval Forecast for Smooth Transition Autoregressive Model ...

    African Journals Online (AJOL)

    In this paper, we propose a simple method for constructing interval forecast for smooth transition autoregressive (STAR) model. This interval forecast is based on bootstrapping the residual error of the estimated STAR model for each forecast horizon and computing various Akaike information criterion (AIC) function. This new ...

  4. Electron beam irradiating process for rendering rough or topographically irregular surface substrates smooth; and coated substrates produced thereby

    International Nuclear Information System (INIS)

    Nablo, S.V.

    1979-01-01

    This disclosure involves a novel process for instantaneous electron-beam curing of very thin low viscosity, solventless coating upon rough, irregular or textured surfaces of a substrate such as paper or the like. Through rather critical timing and energy adjustment procedures, the coating firmly adheres to the surface before the coating can conform to the roughness or texture contour or substantially penetrate into the surface. By this method a solidified very smooth outer surface is provided for the substrate that is particularly used for metalization and other finished layerings. (author)

  5. Viscoplastic augmentation of the smooth cap model

    International Nuclear Information System (INIS)

    Schwer, Leonard E.

    1994-01-01

    The most common numerical viscoplastic implementations are formulations attributed to Perzyna. Although Perzyna-type algorithms are popular, they have several disadvantages relating to the lack of enforcement of the consistency condition in plasticity. The present work adapts a relatively unknown viscoplastic formulation attributed to Duvaut and Lions and generalized to multi-surface plasticity by Simo et al. The attraction of the Duvaut-Lions formulation is its ease of numerical implementation in existing elastoplastic algorithms. The present work provides a motivation for the Duvaut-Lions viscoplastic formulation, derivation of the algorithm and comparison with the Perzyna algorithm. A simple uniaxial strain numerical simulation is used to compare the results of the Duvaut-Lions algorithm, as adapted to the ppercase[dyna3d] smooth cap model with results from a Perzyna algorithm adapted by Katona and Muleret to an implicit code. ((orig.))

  6. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump.

    Science.gov (United States)

    Vargiu, Attilio Vittorio; Ramaswamy, Venkata Krishnan; Malvacio, Ivana; Malloci, Giuliano; Kleinekathöfer, Ulrich; Ruggerone, Paolo

    2018-04-01

    Efflux pumps of the Resistance-Nodulation-cell Division superfamily confer multi-drug resistance to Gram-negative bacteria. The most-studied polyspecific transporter belonging to this class is the inner-membrane trimeric antiporter AcrB of Escherichia coli. In previous studies, a functional rotation mechanism was proposed for its functioning, according to which the three monomers undergo concerted conformational changes facilitating the extrusion of substrates. However, the molecular determinants and the energetics of this mechanism still remain unknown, so its feasibility must be proven mechanistically. A computational protocol able to mimic the functional rotation mechanism in AcrB was developed. By using multi-bias molecular dynamics simulations we characterized the translocation of the substrate doxorubicin driven by conformational changes of the protein. In addition, we estimated for the first time the free energy profile associated to this process. We provided a molecular view of the process in agreement with experimental data. Moreover, we showed that the conformational changes occurring in AcrB enable the formation of a layer of structured waters on the internal surface of the transport channel. This water layer, in turn, allows for a fairly constant hydration of the substrate, facilitating its diffusion over a smooth free energy profile. Our findings reveal a new molecular mechanism of polyspecific transport whereby water contributes by screening potentially strong substrate-protein interactions. We provided a mechanistic understanding of a fundamental process related to multi-drug transport. Our results can help rationalizing the behavior of other polyspecific transporters and designing compounds avoiding extrusion or inhibitors of efflux pumps. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Modeling the dispersion effects of contractile fibers in smooth muscles

    Science.gov (United States)

    Murtada, Sae-Il; Kroon, Martin; Holzapfel, Gerhard A.

    2010-12-01

    Micro-structurally based models for smooth muscle contraction are crucial for a better understanding of pathological conditions such as atherosclerosis, incontinence and asthma. It is meaningful that models consider the underlying mechanical structure and the biochemical activation. Hence, a simple mechanochemical model is proposed that includes the dispersion of the orientation of smooth muscle myofilaments and that is capable to capture available experimental data on smooth muscle contraction. This allows a refined study of the effects of myofilament dispersion on the smooth muscle contraction. A classical biochemical model is used to describe the cross-bridge interactions with the thin filament in smooth muscles in which calcium-dependent myosin phosphorylation is the only regulatory mechanism. A novel mechanical model considers the dispersion of the contractile fiber orientations in smooth muscle cells by means of a strain-energy function in terms of one dispersion parameter. All model parameters have a biophysical meaning and may be estimated through comparisons with experimental data. The contraction of the middle layer of a carotid artery is studied numerically. Using a tube the relationships between the internal pressure and the stretches are investigated as functions of the dispersion parameter, which implies a strong influence of the orientation of smooth muscle myofilaments on the contraction response. It is straightforward to implement this model in a finite element code to better analyze more complex boundary-value problems.

  8. EXCHANGE-RATES FORECASTING: EXPONENTIAL SMOOTHING TECHNIQUES AND ARIMA MODELS

    Directory of Open Access Journals (Sweden)

    Dezsi Eva

    2011-07-01

    Full Text Available Exchange rates forecasting is, and has been a challenging task in finance. Statistical and econometrical models are widely used in analysis and forecasting of foreign exchange rates. This paper investigates the behavior of daily exchange rates of the Romanian Leu against the Euro, United States Dollar, British Pound, Japanese Yen, Chinese Renminbi and the Russian Ruble. Smoothing techniques are generated and compared with each other. These models include the Simple Exponential Smoothing technique, as the Double Exponential Smoothing technique, the Simple Holt-Winters, the Additive Holt-Winters, namely the Autoregressive Integrated Moving Average model.

  9. Thresholds and Smooth Transitions in Vector Autoregressive Models

    DEFF Research Database (Denmark)

    Hubrich, Kirstin; Teräsvirta, Timo

    This survey focuses on two families of nonlinear vector time series models, the family of Vector Threshold Regression models and that of Vector Smooth Transition Regression models. These two model classes contain incomplete models in the sense that strongly exogeneous variables are allowed in the...

  10. Smooth solutions for the dyadic model

    International Nuclear Information System (INIS)

    Barbato, David; Morandin, Francesco; Romito, Marco

    2011-01-01

    We consider the dyadic model, which is a toy model to test issues of well-posedness and blow-up for the Navier–Stokes and Euler equations. We prove well-posedness of positive solutions of the viscous problem in the relevant scaling range which corresponds to Navier–Stokes. Likewise we prove well-posedness for the inviscid problem (in a suitable regularity class) when the parameter corresponds to the strongest transport effect of the nonlinearity

  11. Linearity and Misspecification Tests for Vector Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    Teräsvirta, Timo; Yang, Yukai

    The purpose of the paper is to derive Lagrange multiplier and Lagrange multiplier type specification and misspecification tests for vector smooth transition regression models. We report results from simulation studies in which the size and power properties of the proposed asymptotic tests in small...

  12. Modelling conditional correlations of asset returns: A smooth transition approach

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM-test is d......In this paper we propose a new multivariate GARCH model with time-varying conditional correlation structure. The time-varying conditional correlations change smoothly between two extreme states of constant correlations according to a predetermined or exogenous transition variable. An LM......-test is derived to test the constancy of correlations and LM- and Wald tests to test the hypothesis of partially constant correlations. Analytical expressions for the test statistics and the required derivatives are provided to make computations feasible. An empirical example based on daily return series of ve...

  13. Experimental model of human corpus cavernosum smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Rommel P. Regadas

    2010-08-01

    Full Text Available PURPOSE: To describe a technique for en bloc harvesting of the corpus cavernosum, cavernous artery and urethra from transplant organ donors and contraction-relaxation experiments with corpus cavernosum smooth muscle. MATERIALS AND METHODS: The corpus cavernosum was dissected to the point of attachment with the crus penis. A 3 cm segment (corpus cavernosum and urethra was isolated and placed in ice-cold sterile transportation buffer. Under magnification, the cavernous artery was dissected. Thus, 2 cm fragments of cavernous artery and corpus cavernosum were obtained. Strips measuring 3 x 3 x 8 mm3 were then mounted vertically in an isolated organ bath device. Contractions were measured isometrically with a Narco-Biosystems force displacement transducer (model F-60, Narco-Biosystems, Houston, TX, USA and recorded on a 4-channel Narco-Biosystems desk model polygraph. RESULTS: Phenylephrine (1µM was used to induce tonic contractions in the corpus cavernosum (3 - 5 g tension and cavernous artery (0.5 - 1g tension until reaching a plateau. After precontraction, smooth muscle relaxants were used to produce relaxation-response curves (10-12M to 10-4 M. Sodium nitroprusside was used as a relaxation control. CONCLUSION: The harvesting technique and the smooth muscle contraction-relaxation model described in this study were shown to be useful instruments in the search for new drugs for the treatment of human erectile dysfunction.

  14. Mechanical Coupling of Smooth Muscle Cells Using Microengineered Substrates and Local Stimulation

    Science.gov (United States)

    Copeland, Craig; Hunter, David; Tung, Leslie; Chen, Christopher; Reich, Daniel

    2013-03-01

    Mechanical stresses directly affect many cellular processes, including signal transduction, growth, differentiation, and survival. Cells can themselves generate such stresses by activating myosin to contract the actin cytoskeleton, which in turn can regulate both cell-substrate and cell-cell interactions. We are studying mechanical forces at cell-cell and cell-substrate interactions using arrays of selectively patterned flexible PDMS microposts combined with the ability to apply local chemical stimulation. Micropipette ``spritzing'', a laminar flow technique, uses glass micropipettes mounted on a microscope stage to deliver drugs to controlled regions within a cellular construct while cell traction forces are recorded via the micropost array. The pipettes are controlled by micromanipulators allowing for rapid and precise movement across the array and the ability to treat multiple constructs within a sample. This technique allows for observing the propagation of a chemically induced mechanical stimulus through cell-cell and cell-substrate interactions. We have used this system to administer the acto-myosin inhibitors Blebbistatin and Y-27632 to single cells and observed the subsequent decrease in cell traction forces. Experiments using trypsin-EDTA have shown this system to be capable of single cell manipulation through removal of one cell within a pair configuration while leaving the other cell unaffected. This project is supported in part by NIH grant HL090747

  15. A smooth mixture of Tobits model for healthcare expenditure.

    Science.gov (United States)

    Keane, Michael; Stavrunova, Olena

    2011-09-01

    This paper develops a smooth mixture of Tobits (SMTobit) model for healthcare expenditure. The model is a generalization of the smoothly mixing regressions framework of Geweke and Keane (J Econometrics 2007; 138: 257-290) to the case of a Tobit-type limited dependent variable. A Markov chain Monte Carlo algorithm with data augmentation is developed to obtain the posterior distribution of model parameters. The model is applied to the US Medicare Current Beneficiary Survey data on total medical expenditure. The results suggest that the model can capture the overall shape of the expenditure distribution very well, and also provide a good fit to a number of characteristics of the conditional (on covariates) distribution of expenditure, such as the conditional mean, variance and probability of extreme outcomes, as well as the 50th, 90th, and 95th, percentiles. We find that healthier individuals face an expenditure distribution with lower mean, variance and probability of extreme outcomes, compared with their counterparts in a worse state of health. Males have an expenditure distribution with higher mean, variance and probability of an extreme outcome, compared with their female counterparts. The results also suggest that heart and cardiovascular diseases affect the expenditure of males more than that of females. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Effects of slope smoothing in river channel modeling

    Science.gov (United States)

    Kim, Kyungmin; Liu, Frank; Hodges, Ben R.

    2017-04-01

    In extending dynamic river modeling with the 1D Saint-Venant equations from a single reach to a large watershed there are critical questions as to how much bathymetric knowledge is necessary and how it should be represented parsimoniously. The ideal model will include the detail necessary to provide realism, but not include extraneous detail that should not exert a control on a 1D (cross-section averaged) solution. In a Saint-Venant model, the overall complexity of the river channel morphometry is typically abstracted into metrics for the channel slope, cross-sectional area, hydraulic radius, and roughness. In stream segments where cross-section surveys are closely spaced, it is not uncommon to have sharp changes in slope or even negative values (where a positive slope is the downstream direction). However, solving river flow with the Saint-Venant equations requires a degree of smoothness in the equation parameters or the equation set with the directly measured channel slopes may not be Lipschitz continuous. The results of non-smoothness are typically extended computational time to converge solutions (or complete failure to converge) and/or numerical instabilities under transient conditions. We have investigated using cubic splines to smooth the bottom slope and ensure always positive reference slopes within a 1D model. This method has been implemented in the Simulation Program for River Networks (SPRNT) and is compared to the standard HEC-RAS river solver. It is shown that the reformulation of the reference slope is both in keeping with the underlying derivation of the Saint-Venant equations and provides practical numerical stability without altering the realism of the simulation. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  17. Arima model and exponential smoothing method: A comparison

    Science.gov (United States)

    Wan Ahmad, Wan Kamarul Ariffin; Ahmad, Sabri

    2013-04-01

    This study shows the comparison between Autoregressive Moving Average (ARIMA) model and Exponential Smoothing Method in making a prediction. The comparison is focused on the ability of both methods in making the forecasts with the different number of data sources and the different length of forecasting period. For this purpose, the data from The Price of Crude Palm Oil (RM/tonne), Exchange Rates of Ringgit Malaysia (RM) in comparison to Great Britain Pound (GBP) and also The Price of SMR 20 Rubber Type (cents/kg) with three different time series are used in the comparison process. Then, forecasting accuracy of each model is measured by examinethe prediction error that producedby using Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute deviation (MAD). The study shows that the ARIMA model can produce a better prediction for the long-term forecasting with limited data sources, butcannot produce a better prediction for time series with a narrow range of one point to another as in the time series for Exchange Rates. On the contrary, Exponential Smoothing Method can produce a better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while itcannot produce a better prediction for a longer forecasting period.

  18. Smooth extrapolation of unknown anatomy via statistical shape models

    Science.gov (United States)

    Grupp, R. B.; Chiang, H.; Otake, Y.; Murphy, R. J.; Gordon, C. R.; Armand, M.; Taylor, R. H.

    2015-03-01

    Several methods to perform extrapolation of unknown anatomy were evaluated. The primary application is to enhance surgical procedures that may use partial medical images or medical images of incomplete anatomy. Le Fort-based, face-jaw-teeth transplant is one such procedure. From CT data of 36 skulls and 21 mandibles separate Statistical Shape Models of the anatomical surfaces were created. Using the Statistical Shape Models, incomplete surfaces were projected to obtain complete surface estimates. The surface estimates exhibit non-zero error in regions where the true surface is known; it is desirable to keep the true surface and seamlessly merge the estimated unknown surface. Existing extrapolation techniques produce non-smooth transitions from the true surface to the estimated surface, resulting in additional error and a less aesthetically pleasing result. The three extrapolation techniques evaluated were: copying and pasting of the surface estimate (non-smooth baseline), a feathering between the patient surface and surface estimate, and an estimate generated via a Thin Plate Spline trained from displacements between the surface estimate and corresponding vertices of the known patient surface. Feathering and Thin Plate Spline approaches both yielded smooth transitions. However, feathering corrupted known vertex values. Leave-one-out analyses were conducted, with 5% to 50% of known anatomy removed from the left-out patient and estimated via the proposed approaches. The Thin Plate Spline approach yielded smaller errors than the other two approaches, with an average vertex error improvement of 1.46 mm and 1.38 mm for the skull and mandible respectively, over the baseline approach.

  19. Hysteresis of Contact Angle of Sessile Droplets on Smooth Homogeneous Solid Substrates via Disjoining/Conjoining Pressure.

    Science.gov (United States)

    Kuchin, I; Starov, V

    2015-05-19

    A theory of contact angle hysteresis of liquid droplets on smooth, homogeneous solid substrates is developed in terms of the shape of the disjoining/conjoining pressure isotherm and quasi-equilibrium phenomena. It is shown that all contact angles, θ, in the range θr contact angle θ ≠ θe, correspond to the state of slow "microscopic" advancing or receding motion of the liquid if θe contact angle reaches the critical values θa or θr, correspondingly. The values of the static receding, θr, and static advancing, θa, contact angles in cylindrical capillaries were calculated earlier, based on the shape of disjoining/conjoining pressure isotherm. It is shown now that (i) both advancing and receding contact angles of a droplet on a on smooth, homogeneous solid substrate can be calculated based on shape of disjoining/conjoining pressure isotherm, and (ii) both advancing and receding contact angles depend on the drop volume and are not unique characteristics of the liquid-solid system. The latter is different from advancing/receding contact angles in thin capillaries. It is shown also that the receding contact angle is much closer to the equilibrium contact angle than the advancing contact angle. The latter conclusion is unexpected and is in a contradiction with the commonly accepted view that the advancing contact angle can be taken as the first approximation for the equilibrium contact angle. The dependency of hysteresis contact angles on the drop volume has a direct experimental confirmation.

  20. Exotic smoothness and physics differential topology and spacetime models

    CERN Document Server

    Asselmeyer-Maluga, T

    2007-01-01

    The recent revolution in differential topology related to the discovery of non-standard ("exotic") smoothness structures on topologically trivial manifolds such as R4 suggests many exciting opportunities for applications of potentially deep importance for the spacetime models of theoretical physics, especially general relativity. This rich panoply of new differentiable structures lies in the previously unexplored region between topology and geometry. Just as physical geometry was thought to be trivial before Einstein, physicists have continued to work under the tacit - but now shown to be incorrect - assumption that differentiability is uniquely determined by topology for simple four-manifolds. Since diffeomorphisms are the mathematical models for physical coordinate transformations, Einstein's relativity principle requires that these models be physically inequivalent. This book provides an introductory survey of some of the relevant mathematics and presents preliminary results and suggestions for further app...

  1. Numerical modelling of extreme waves by Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    M. H. Dao

    2011-02-01

    Full Text Available The impact of extreme/rogue waves can lead to serious damage of vessels as well as marine and coastal structures. Such extreme waves in deep water are characterized by steep wave fronts and an energetic wave crest. The process of wave breaking is highly complex and, apart from the general knowledge that impact loadings are highly impulsive, the dynamics of the breaking and impact are still poorly understood. Using an advanced numerical method, the Smoothed Particle Hydrodynamics enhanced with parallel computing is able to reproduce well the extreme waves and their breaking process. Once the waves and their breaking process are modelled successfully, the dynamics of the breaking and the characteristics of their impact on offshore structures could be studied. The computational methodology and numerical results are presented in this paper.

  2. Adaptive Smoothed Finite Elements (ASFEM) for history dependent material models

    International Nuclear Information System (INIS)

    Quak, W.; Boogaard, A. H. van den

    2011-01-01

    A successful simulation of a bulk forming process with finite elements can be difficult due to distortion of the finite elements. Nodal smoothed Finite Elements (NSFEM) are an interesting option for such a process since they show good distortion insensitivity and moreover have locking-free behavior and good computational efficiency. In this paper a method is proposed which takes advantage of the nodally smoothed field. This method, named adaptive smoothed finite elements (ASFEM), revises the mesh for every step of a simulation without mapping the history dependent material parameters. In this paper an updated-Lagrangian implementation is presented. Several examples are given to illustrate the method and to show its properties.

  3. Efficient Estimation of Non-Linear Dynamic Panel Data Models with Application to Smooth Transition Models

    DEFF Research Database (Denmark)

    Gørgens, Tue; Skeels, Christopher L.; Wurtz, Allan

    This paper explores estimation of a class of non-linear dynamic panel data models with additive unobserved individual-specific effects. The models are specified by moment restrictions. The class includes the panel data AR(p) model and panel smooth transition models. We derive an efficient set...... of moment restrictions for estimation and apply the results to estimation of panel smooth transition models with fixed effects, where the transition may be determined endogenously. The performance of the GMM estimator, both in terms of estimation precision and forecasting performance, is examined in a Monte...

  4. Modelling Multivariate Autoregressive Conditional Heteroskedasticity with the Double Smooth Transition Conditional Correlation GARCH Model

    DEFF Research Database (Denmark)

    Silvennoinen, Annastiina; Teräsvirta, Timo

    In this paper we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new Double Smooth Transition Conditional Correlation GARCH model extends the Smooth Transition Conditional Correlation GARCH model of Silvennoinen and Ter¨asvirta (2005) by including...... another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition......, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. The model is applied to a selection of world stock indices, and it is found that time is an important factor affecting...

  5. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle.

    Science.gov (United States)

    West, Adrian R; Zaman, Nishat; Cole, Darren J; Walker, Matthew J; Legant, Wesley R; Boudou, Thomas; Chen, Christopher S; Favreau, John T; Gaudette, Glenn R; Cowley, Elizabeth A; Maksym, Geoffrey N

    2013-01-01

    Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell "microtissues" capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma.

  6. Smooth particle hydrodynamic modeling and validation for impact bird substitution

    Science.gov (United States)

    Babu, Arun; Prasad, Ganesh

    2018-04-01

    Bird strike events incidentally occur and can at times be fatal for air frame structures. Federal Aviation Regulations (FAR) and such other ones mandates aircrafts to be modeled to withstand various levels of bird hit damages. The subject matter of this paper is numerical modeling of a soft body geometry for realistically substituting an actual bird for carrying out simulations of bird hit on target structures. Evolution of such a numerical code to effect an actual bird behavior through impact is much desired for making use of the state of the art computational facilities in simulating bird strike events. Validity, of simulations depicting bird hits, is largely dependent on the correctness of the bird model. In an impact, a set of complex and coupled dynamic interaction exists between the target and the impactor. To simplify this problem, impactor response needs to be decoupled from that of the target. This can be done by assuming and modeling the target as noncompliant. Bird is assumed as fluidic in a impact. Generated stresses in the bird body are significant than its yield stresses. Hydrodynamic theory is most ideal for describing this problem. Impactor literally flows steadily over the target for most part of this problem. The impact starts with an initial shock and falls into a radial release shock regime. Subsequently a steady flow is established in the bird body and this phase continues till the whole length of the bird body is turned around. Initial shock pressure and steady state pressure are ideal variables for comparing and validating the bird model. Spatial discretization of the bird is done using Smooth Particle Hydrodynamic (SPH) approach. This Discrete Element Model (DEM) offers significant advantages over other contemporary approaches. Thermodynamic state variable relations are established using Polynomial Equation of State (EOS). ANSYS AUTODYN is used to perform the explicit dynamic simulation of the impact event. Validation of the shock and steady

  7. A Smooth Transition Logit Model of the Effects of Deregulation in the Electricity Market

    DEFF Research Database (Denmark)

    Hurn, A.S.; Silvennoinen, Annastiina; Teräsvirta, Timo

    We consider a nonlinear vector model called the logistic vector smooth transition autoregressive model. The bivariate single-transition vector smooth transition regression model of Camacho (2004) is generalised to a multivariate and multitransition one. A modelling strategy consisting of specific......We consider a nonlinear vector model called the logistic vector smooth transition autoregressive model. The bivariate single-transition vector smooth transition regression model of Camacho (2004) is generalised to a multivariate and multitransition one. A modelling strategy consisting...... of specification, including testing linearity, estimation and evaluation of these models is constructed. Nonlinear least squares estimation of the parameters of the model is discussed. Evaluation by misspecification tests is carried out using tests derived in a companion paper. The use of the modelling strategy...

  8. Ultra smooth NiO thin films on flexible plastic (PET) substrate at room temperature by RF magnetron sputtering and effect of oxygen partial pressure on their properties

    International Nuclear Information System (INIS)

    Nandy, S.; Goswami, S.; Chattopadhyay, K.K.

    2010-01-01

    Transparent p-type nickel oxide thin films were grown on polyethylene terephthalate (PET) and glass substrates by RF magnetron sputtering technique in argon + oxygen atmosphere with different oxygen partial pressures at room temperature. The morphology of the NiO thin films grown on PET and glass substrates was studied by atomic force microscope. The rms surface roughnesses of the films were in the range 0.63-0.65 nm. These ultra smooth nanocrystalline NiO thin films are useful for many applications. High resolution transmission electron microscopic studies revealed that the grains of NiO films on the highly flexible PET substrate were purely crystalline and spherical in shape with diameters 8-10 nm. XRD analysis also supported these results. NiO films grown on the PET substrates were found to have better crystalline quality with fewer defects than those on the glass substrates. The sheet resistances of the NiO films deposited on PET and glass substrates were not much different; having values 5.1 and 5.3 kΩ/□ and decreased to 3.05, 3.1 kΩ/□ respectively with increasing oxygen partial pressure. The thicknesses of the films on both substrates were ∼700 nm. It was also noted that further increase in oxygen partial pressure caused increase in resistivity due to formation of defects in NiO.

  9. Modelling free surface flows with smoothed particle hydrodynamics

    Directory of Open Access Journals (Sweden)

    L.Di G.Sigalotti

    2006-01-01

    Full Text Available In this paper the method of Smoothed Particle Hydrodynamics (SPH is extended to include an adaptive density kernel estimation (ADKE procedure. It is shown that for a van der Waals (vdW fluid, this method can be used to deal with free-surface phenomena without difficulties. In particular, arbitrary moving boundaries can be easily handled because surface tension is effectively simulated by the cohesive pressure forces. Moreover, the ADKE method is seen to increase both the accuracy and stability of SPH since it allows the width of the kernel interpolant to vary locally in a way that only the minimum necessary smoothing is applied at and near free surfaces and sharp fluid-fluid interfaces. The method is robust and easy to implement. Examples of its resolving power are given for both the formation of a circular liquid drop under surface tension and the nonlinear oscillation of excited drops.

  10. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  11. Smooth Adaptive Internal Model Control Based on U Model for Nonlinear Systems with Dynamic Uncertainties

    Directory of Open Access Journals (Sweden)

    Li Zhao

    2016-01-01

    Full Text Available An improved smooth adaptive internal model control based on U model control method is presented to simplify modeling structure and parameter identification for a class of uncertain dynamic systems with unknown model parameters and bounded external disturbances. Differing from traditional adaptive methods, the proposed controller can simplify the identification of time-varying parameters in presence of bounded external disturbances. Combining the small gain theorem and the virtual equivalent system theory, learning rate of smooth adaptive internal model controller has been analyzed and the closed-loop virtual equivalent system based on discrete U model has been constructed as well. The convergence of this virtual equivalent system is proved, which further shows the convergence of the complex closed-loop discrete U model system. Finally, simulation and experimental results on a typical nonlinear dynamic system verified the feasibility of the proposed algorithm. The proposed method is shown to have lighter identification burden and higher control accuracy than the traditional adaptive controller.

  12. A theoretical model of ultrasonic examination of smooth flat cracks

    International Nuclear Information System (INIS)

    Chapman, R.K.; Coffey, J.M.

    1984-01-01

    This chapter proposes a mathematical model which combines approximate descriptions of the defect, the defect-sound interaction, and the transmission and reception of the sound by the probes, all in a framework of the component geometry. Topics considered include scattering from cracks, a model of the probe beam, the geometry of the inspection, and extensions of the model using generalized ray theory. The objective is to devise a practical, yet accurate and reliable model for the overall inspection process which can be readily adapted to different inspection geometries and conditions, and which does not involve an inordinate amount of computing time

  13. Offset, tilted dipole models of Uranian smooth high-frequency radio emission

    International Nuclear Information System (INIS)

    Schweitzer, A.E.; Romig, J.H.; Evans, D.R.; Sawyer, C.B.; Warwick, J.W.

    1990-01-01

    During the Voyager 2 encounter with Uranus in January 1986, the Planetary Radio Astronomy (PRA) experiment detected a complex pattern of radio emissions. Two types of emissions were seen: smooth and bursty. The smooth emission has been divided into smooth high-frequency (SHF) and smooth low-frequency (SLF) components which are presumed to come from different sources because of their distinctly different characteristics. The SHF component is considered in this paper. The SHF emission has been modeled by many authors on OTD (offset, tilted dipole (Ness et al., 1986)) L shells ranging from 5 to 40. However, the bursts have been modeled at much higher L shells. The authors complete an OTD investigation of the SHF emission at high L shells within the range of the bursty source locations, and present a viable high L shell model. This model has fundamentally the same longitudinally symmetric net emission pattern in space as the L shell 5 model presented in Romig et al. (1987) and Barbosa (1988). However, they were unable to produce an acceptable model on intermediate L shells without restricting source longitude. They discuss the similarities and distinctions between their two models and the models of other authors. They believe that the high L shell model (and others similar to it) cannot account for the observed smoothness and periodicity of the SHF emissions because it has open field lines containing untrapped particles, which should produce more variable emission than that seen in the SHF data. Therefore, the authors prefer models at L shells less than 18, the boundary for closed field lines (Ness et al., 1986). They then discuss and contrast two models within this boundary: the L = 5 model and an L ∼ 12 model by Kaiser et al. (1987) and Farrell and Calvert (1989b). The main distinction between these two models is the longitudinal extent of the source location

  14. The optical smoothing for high power laser chain. Fundamental concepts and analytical modeling, computerized simulations, experiments on smoothing by multimode optical fiber

    International Nuclear Information System (INIS)

    Videau, Laurent

    1998-01-01

    Laser-plasma interaction experiments require a focal spot whose spatial width is imposed and whose energy distribution is uniform. Optical smoothing techniques have been developed for high power laser chains in order to reach the required uniformity level. We present theoretical principles for optical smoothing and we develop a statistical approach which allows a precise study of smoothing techniques. This study deals with the contrast of the time-integrated pattern and with the hot spot motion and their life time. We give more details about the technique of Smoothing by Optical Fiber (SOF). A broadband pulse is injected into a multimode optical fiber. At the output of the fiber, the spatial modes, correlated to a propagation angle in the core of the fiber, are statistically independent and produce a speckle pattern. The speckles move because of the temporal incoherence and the time-integrated pattern is smoothed. The smoothing is characterized by the spectral correlation width defined as the width of the spectral correlation function. We show a smoothing difference between the fiber image plane and the convergence one which is the Fourier plane. Furthermore, we analyze the mode coupling into the core of the fiber which allows an explanation of experimental results compared to theoretical ones. A second study presents experimental results of Smoothing by Optical Fiber on a high power laser chain. In fact, SOF implies amplitude modulations in spatial and temporal domains which induce nonlinear effects. We show that the amplification efficiency decreases and we compare experimental results with an analytic model which takes into account spatial and temporal incoherencies. Finally, we propose a different setup using the cascading effect which creates spatially and/or temporally incoherent pulses. (author) [fr

  15. Coupled incompressible Smoothed Particle Hydrodynamics model for continuum-based modelling sediment transport

    Science.gov (United States)

    Pahar, Gourabananda; Dhar, Anirban

    2017-04-01

    A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.

  16. Influence of smoothing of X-ray spectra on parameters of calibration model

    International Nuclear Information System (INIS)

    Antoniak, W.; Urbanski, P.; Kowalska, E.

    1998-01-01

    Parameters of the calibration model before and after smoothing of X-ray spectra have been investigated. The calibration model was calculated using multivariate procedure - namely the partial least square regression (PLS). Investigations have been performed on an example of six sets of various standards used for calibration of some instruments based on X-ray fluorescence principle. The smoothing methods were compared: regression splines, Savitzky-Golay and Discrete Fourier Transform. The calculations were performed using a software package MATLAB and some home-made programs. (author)

  17. On splice site prediction using weight array models: a comparison of smoothing techniques

    International Nuclear Information System (INIS)

    Taher, Leila; Meinicke, Peter; Morgenstern, Burkhard

    2007-01-01

    In most eukaryotic genes, protein-coding exons are separated by non-coding introns which are removed from the primary transcript by a process called 'splicing'. The positions where introns are cut and exons are spliced together are called 'splice sites'. Thus, computational prediction of splice sites is crucial for gene finding in eukaryotes. Weight array models are a powerful probabilistic approach to splice site detection. Parameters for these models are usually derived from m-tuple frequencies in trusted training data and subsequently smoothed to avoid zero probabilities. In this study we compare three different ways of parameter estimation for m-tuple frequencies, namely (a) non-smoothed probability estimation, (b) standard pseudo counts and (c) a Gaussian smoothing procedure that we recently developed

  18. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    International Nuclear Information System (INIS)

    He, Y.Y.; Zhang, G.F.; Zhao, Y.; Liu, D.D.; Cong, Y.; Buck, V.

    2015-01-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect

  19. Diamond-like carbon films deposited on three-dimensional shape substrate model by liquid electrochemical technique

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.Y. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Zhang, G.F. [School of Materials Science and Engineering, Dalian University of Technology, 116024, Dalian China (China); Zhao, Y.; Liu, D.D. [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Cong, Y., E-mail: congyan@ciomp.ac.cn [Institute of Nano-photonics, School of Physics and Materials Engineering, Dalian Nationalities University, 116600 Dalian (China); Buck, V. [Thin Film Technology Group, Faculty of Physics, University Duisburg-Essen and CeNIDE, 47057 Duisburg (Germany)

    2015-09-01

    Diamond-like carbon (DLC) films were deposited on three-dimensional (3D) shape substrate model by electrolysis of 2-propanol solution at low temperature (60 °C). This 3D shape model was composed of a horizontally aligned stainless steel wafer and vertically aligned stainless steel rods. Morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and Raman spectroscopy, respectively. The results suggested there were only differences in film uniformity and thickness for two kinds of samples. The hydrogenated amorphous carbon films deposited on horizontally aligned substrate were smooth and homogeneous. And the film thickness of DLC films gained on the vertical substrates decreased along vertical direction. It is believed that bubble formation could enhance nucleation on the wetted capillary area. This experiment shows that deposition of DLC films by liquid phase deposition on 3D shape conductive substrates is possible. - Highlights: • DLC film is expected to be deposited on complex surface/shape substrate. • DLC film is deposited on 3D shape substrate by liquid electrochemical method. • Horizontal substrate is covered by smooth and homogeneous DLC films. • Film thickness decreases along vertical direction due to boiling effect.

  20. An adaptive spatio-temporal smoothing model for estimating trends and step changes in disease risk

    OpenAIRE

    Rushworth, Alastair; Lee, Duncan; Sarran, Christophe

    2014-01-01

    Statistical models used to estimate the spatio-temporal pattern in disease\\ud risk from areal unit data represent the risk surface for each time period with known\\ud covariates and a set of spatially smooth random effects. The latter act as a proxy\\ud for unmeasured spatial confounding, whose spatial structure is often characterised by\\ud a spatially smooth evolution between some pairs of adjacent areal units while other\\ud pairs exhibit large step changes. This spatial heterogeneity is not c...

  1. Modeling and control of three phase rectifier with electronic smoothing inductor

    DEFF Research Database (Denmark)

    Singh, Yash Veer; Rasmussen, Peter Omand; Andersen, Torben Ole

    2011-01-01

    This paper presents a simple, direct method for deriving the approximate, small-signal, average model and control strategy for three-phase diode bridge rectifier operating with electronic smoothing technique. Electronic smoothing inductor (ESI) performs the function of an inductor that has...... controlled variable impedance. This increases power factor (PF) and reduces total harmonic distortions (THDs) in mains current. The ESI based rectifier enables compact and cost effective design of three phase electric drive as size of passive components is reduced significantly. In order to carry out...

  2. A Smoothed Finite Element-Based Elasticity Model for Soft Bodies

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    2017-01-01

    Full Text Available One of the major challenges in mesh-based deformation simulation in computer graphics is to deal with mesh distortion. In this paper, we present a novel mesh-insensitive and softer method for simulating deformable solid bodies under the assumptions of linear elastic mechanics. A face-based strain smoothing method is adopted to alleviate mesh distortion instead of the traditional spatial adaptive smoothing method. Then, we propose a way to combine the strain smoothing method and the corotational method. With this approach, the amplitude and frequency of transient displacements are slightly affected by the distorted mesh. Realistic simulation results are generated under large rotation using a linear elasticity model without adding significant complexity or computational cost to the standard corotational FEM. Meanwhile, softening effect is a by-product of our method.

  3. A Model of the Smooth Pursuit Eye Movement with Prediction and Learning

    Directory of Open Access Journals (Sweden)

    Davide Zambrano

    2010-01-01

    Full Text Available Smooth pursuit is one of the five main eye movements in humans, consisting of tracking a steadily moving visual target. Smooth pursuit is a good example of a sensory-motor task that is deeply based on prediction: tracking a visual target is not possible by correcting the error between the eye and the target position or velocity with a feedback loop, but it is only possible by predicting the trajectory of the target. This paper presents a model of smooth pursuit based on prediction and learning. It starts from amodel of the neuro-physiological system proposed by Shibata and Schaal (Shibata et al., Neural Networks, vol. 18, pp. 213-224, 2005. The learning component added here decreases the prediction time in the case of target dynamics already experienced by the system. In the implementation described here, the convergence time is, after the learning phase, 0.8 s.

  4. Forecasting performance of smooth transition autoregressive (STAR model on travel and leisure stock index

    Directory of Open Access Journals (Sweden)

    Usman M. Umer

    2018-06-01

    Full Text Available Travel and leisure recorded a consecutive robust growth and become among the fastest economic sectors in the world. Various forecasting models are proposed by researchers that serve as an early recommendation for investors and policy makers. Numerous studies proposed distinct forecasting models to predict the dynamics of this sector and provide early recommendation for investors and policy makers. In this paper, we compare the performance of smooth transition autoregressive (STAR and linear autoregressive (AR models using monthly returns of Turkey and FTSE travel and leisure index from April 1997 to August 2016. MSCI world index used as a proxy of the overall market. The result shows that nonlinear LSTAR model cannot improve the out-of-sample forecast of linear AR model. This finding demonstrates little to be gained from using LSTAR model in the prediction of travel and leisure stock index. Keywords: Nonlinear time-series, Out-of-sample forecasting, Smooth transition autoregressive, Travel and leisure

  5. Improving surface smoothness and photoluminescence of CdTe(1 1 1)A on Si(1 1 1) substrates grown by molecular beam epitaxy using Mn atoms

    International Nuclear Information System (INIS)

    Wang, Jyh-Shyang; Tsai, Yu-Hsuan; Chen, Chang-Wei; Dai, Zi-Yuan; Tong, Shih-Chang; Yang, Chu-Shou; Wu, Chih-Hung; Yuan, Chi-Tsu; Shen, Ji-Lin

    2014-01-01

    Highlights: • CdTe(1 1 1)A epilayers were grown on Si(1 1 1) substrates by molecular beam epitaxy. • We report an enhanced growth using Mn atoms. • The significant improvements in surface quality and optical properties were found. - Abstract: This work demonstrates an improvement of the molecular beam epitaxial growth of CdTe(1 1 1)A epilayer on Si(1 1 1) substrates using Mn atoms. The reflection high-energy electron diffraction patterns show that the involvement of some Mn atoms in the growth of CdTe(1 1 1)A is even more effective than the use of a buffer layer with a smooth surface for forming good CdTe(1 1 1)A epilayers. 10 K Photoluminescence spectra show that the incorporation of only 2% Mn significantly reduced the intensity of defect-related emissions and considerably increased the integral intensity of exciton-related emissions by a large factor of about 400

  6. Low Temperature (180°C Growth of Smooth Surface Germanium Epilayers on Silicon Substrates Using Electron Cyclotron Resonance Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Teng-Hsiang Chang

    2014-01-01

    Full Text Available This paper describes a new method to grow thin germanium (Ge epilayers (40 nm on c-Si substrates at a low growth temperature of 180°C using electron cyclotron resonance chemical vapor deposition (ECR-CVD process. The full width at half maximum (FWHM of the Ge (004 in X-ray diffraction pattern and the compressive stain in a Ge epilayer of 683 arcsec and 0.12% can be achieved. Moreover, the Ge/Si interface is observed by transmission electron microscopy to demonstrate the epitaxial growth of Ge on Si and the surface roughness is 0.342 nm. The thin-thickness and smooth surface of Ge epilayer grown on Si in this study is suitable to be a virtual substrate for developing the low cost and high efficiency III-V/Si tandem solar cells in our opinion. Furthermore, the low temperature process can not only decrease costs but can also reduce the restriction of high temperature processes on device manufacturing.

  7. Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure

    DEFF Research Database (Denmark)

    Amado, Christina; Teräsvirta, Timo

    multiplier type misspecification tests. Finite-sample properties of these procedures and tests are examined by simulation. An empirical application to daily stock returns and another one to daily exchange rate returns illustrate the functioning and properties of our modelling strategy in practice......In this paper, we propose two parametric alternatives to the standard GARCH model. They allow the conditional variance to have a smooth time-varying structure of either ad- ditive or multiplicative type. The suggested parameterizations describe both nonlinearity and structural change...... in the conditional and unconditional variances where the transition between regimes over time is smooth. A modelling strategy for these new time-varying parameter GARCH models is developed. It relies on a sequence of Lagrange multiplier tests, and the adequacy of the estimated models is investigated by Lagrange...

  8. An Analytical Model for Spectral Peak Frequency Prediction of Substrate Noise in CMOS Substrates

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.

    2013-01-01

    This paper proposes an analytical model describing the generation of switching current noise in CMOS substrates. The model eliminates the need for SPICE simulations in existing methods by conducting a transient analysis on a generic CMOS inverter and approximating the switching current waveform us...

  9. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    Science.gov (United States)

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  10. Establishment of artery smooth muscle cell proliferation model after subarachnoid hemorrhage in rats

    Directory of Open Access Journals (Sweden)

    Yu-jie CHEN

    2011-12-01

    Full Text Available Objective The current paper aims to simulate the effects of hemolytic products on intracranial vascular smooth muscle cell after subarachnoid hemorrhage(SAH,and probe into the molecular mechanism and strategy for the prevention and cure of vascular proliferation after SAH.Methods Thirty Sprague-Dawley rats were randomly divided into three groups,including sham-operated,24 h after SAH,and 72 h after SAH groups.The artificial hemorrhage model around the common carotid artery was established for the latter two groups.The animals were put to death after 24 h and 72 h to take the common carotid artery,and to measure the expression level of PCNA,SM-α-actin protein,and mRNA in the smooth muscle cell.Results The PCNA mRNA expression was significantly up-regulated in the 24-h group(P < 0.01.The expression in the 72-h group was lower than that of the 24-h group(P < 0.01,whereas it was still remarkably higher than that of the sham group(P < 0.01.The SM-α-actin mRNA expression in the smooth muscle cell in the 24-h and 72-h groups decreased compared with that of the Sham group(P < 0.05,whereas the 72-h group was significantly lower than that of the 24-h group(P < 0.05.The protein expression of PCNA and SM-α-actin showed a similar trend.Conclusion The current experiment simulates better effects of the hemolytic products on vascular smooth muscle cell after SAH.It also shows that artificial hemorrhage around the common carotid artery could stimulate vascular smooth muscle cell to change from contractile phenotype into synthetic phenotype,and improve it to proliferate.

  11. Optimal HRF and smoothing parameters for fMRI time series within an autoregressive modeling framework.

    Science.gov (United States)

    Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru

    2010-12-01

    The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.

  12. Modeling of anaerobic digestion of complex substrates

    International Nuclear Information System (INIS)

    Keshtkar, A. R.; Abolhamd, G.; Meyssami, B.; Ghaforian, H.

    2003-01-01

    A structured mathematical model of anaerobic conversion of complex organic materials in non-ideally cyclic-batch reactors for biogas production has been developed. The model is based on multiple-reaction stoichiometry (enzymatic hydrolysis, acidogenesis, aceto genesis and methano genesis), microbial growth kinetics, conventional material balances in the liquid and gas phases for a cyclic-batch reactor, liquid-gas interactions, liquid-phase equilibrium reactions and a simple mixing model which considers the reactor volume in two separate sections: the flow-through and the retention regions. The dynamic model describes the effects of reactant's distribution resulting from the mixing conditions, time interval of feeding, hydraulic retention time and mixing parameters on the process performance. The model is applied in the simulation of anaerobic digestion of cattle manure under different operating conditions. The model is compared with experimental data and good correlations are obtained

  13. Modelling of Substrate Noise and Mitigation Schemes for UWB Systems

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.; Larsen, Torben

    2012-01-01

    tuned elements in the signal paths. However, for UWB designs this is not a viable option and other means are therefore required. Moreover, owing to the ultra-wideband nature and low power spectral density of the signal, UWB mixed-signal integrated circuits are more sensitive to substrate noise compared...... with narrow-band circuits. This chapter presents a study on the modeling and mitigation of substrate noise in mixed-signal integrated circuits (ICs), focusing on UWB system/circuit designs. Experimental impact evaluation of substrate noise on UWB circuits is presented. It shows how a wide-band circuit can......The last chapter of this first part of the book, chapter seven, is devoted to Modeling of Substrate Noise and Mitigation Schemes for Ultrawideband (UWB) systems, and is written by Ming Shen, Jan H. Mikkelsen, and Torben Larsen from Aalborg University, Denmark. In highly integrated mixed...

  14. Design and modeling of Faraday cages for substrate noise isolation

    Science.gov (United States)

    Wu, Joyce H.; del Alamo, Jesús A.

    2013-07-01

    A Faraday cage structure using through-substrate vias is an effective strategy to suppress substrate crosstalk, particularly at high frequencies. Faraday cages can reduce substrate noise by 32 dB at 10 GHz, and 26 dB at 50 GHz. We have developed lumped-element, equivalent circuit models of the Faraday cages and test structures to better understand the performance of the Faraday cages. These models compare well to measured results and show that the vias of the Faraday cage act as an RLC shunt to ground that draws substrate current. Designing a Faraday cage to achieve optimum isolation requires low via impedance and mitigation of via sidewall capacitance. The Faraday cage inductance is correlated to the number of vias and via spacing of the cage and can be optimized for the frequency of operation.

  15. Assessment of finite element and smoothed particles hydrodynamics methods for modeling serrated chip formation in hardened steel

    Directory of Open Access Journals (Sweden)

    Usama Umer

    2016-05-01

    Full Text Available This study aims to perform comparative analyses in modeling serrated chip morphologies using traditional finite element and smoothed particles hydrodynamics methods. Although finite element models are being employed in predicting machining performance variables for the last two decades, many drawbacks and limitations exist with the current finite element models. The problems like excessive mesh distortions, high numerical cost of adaptive meshing techniques, and need of geometric chip separation criteria hinder its practical implementation in metal cutting industries. In this study, a mesh free method, namely, smoothed particles hydrodynamics, is implemented for modeling serrated chip morphology while machining AISI H13 hardened tool steel. The smoothed particles hydrodynamics models are compared with the traditional finite element models, and it has been found that the smoothed particles hydrodynamics models have good capabilities in handling large distortions and do not need any geometric or mesh-based chip separation criterion.

  16. The selection pressures induced non-smooth infectious disease model and bifurcation analysis

    International Nuclear Information System (INIS)

    Qin, Wenjie; Tang, Sanyi

    2014-01-01

    Highlights: • A non-smooth infectious disease model to describe selection pressure is developed. • The effect of selection pressure on infectious disease transmission is addressed. • The key factors which are related to the threshold value are determined. • The stabilities and bifurcations of model have been revealed in more detail. • Strategies for the prevention of emerging infectious disease are proposed. - Abstract: Mathematical models can assist in the design strategies to control emerging infectious disease. This paper deduces a non-smooth infectious disease model induced by selection pressures. Analysis of this model reveals rich dynamics including local, global stability of equilibria and local sliding bifurcations. Model solutions ultimately stabilize at either one real equilibrium or the pseudo-equilibrium on the switching surface of the present model, depending on the threshold value determined by some related parameters. Our main results show that reducing the threshold value to a appropriate level could contribute to the efficacy on prevention and treatment of emerging infectious disease, which indicates that the selection pressures can be beneficial to prevent the emerging infectious disease under medical resource limitation

  17. Kalman filtering and smoothing for linear wave equations with model error

    International Nuclear Information System (INIS)

    Lee, Wonjung; McDougall, D; Stuart, A M

    2011-01-01

    Filtering is a widely used methodology for the incorporation of observed data into time-evolving systems. It provides an online approach to state estimation inverse problems when data are acquired sequentially. The Kalman filter plays a central role in many applications because it is exact for linear systems subject to Gaussian noise, and because it forms the basis for many approximate filters which are used in high-dimensional systems. The aim of this paper is to study the effect of model error on the Kalman filter, in the context of linear wave propagation problems. A consistency result is proved when no model error is present, showing recovery of the true signal in the large data limit. This result, however, is not robust: it is also proved that arbitrarily small model error can lead to inconsistent recovery of the signal in the large data limit. If the model error is in the form of a constant shift to the velocity, the filtering and smoothing distributions only recover a partial Fourier expansion, a phenomenon related to aliasing. On the other hand, for a class of wave velocity model errors which are time dependent, it is possible to recover the filtering distribution exactly, but not the smoothing distribution. Numerical results are presented which corroborate the theory, and also propose a computational approach which overcomes the inconsistency in the presence of model error, by relaxing the model

  18. A multiscale active structural model of the arterial wall accounting for smooth muscle dynamics.

    Science.gov (United States)

    Coccarelli, Alberto; Edwards, David Hughes; Aggarwal, Ankush; Nithiarasu, Perumal; Parthimos, Dimitris

    2018-02-01

    Arterial wall dynamics arise from the synergy of passive mechano-elastic properties of the vascular tissue and the active contractile behaviour of smooth muscle cells (SMCs) that form the media layer of vessels. We have developed a computational framework that incorporates both these components to account for vascular responses to mechanical and pharmacological stimuli. To validate the proposed framework and demonstrate its potential for testing hypotheses on the pathogenesis of vascular disease, we have employed a number of pharmacological probes that modulate the arterial wall contractile machinery by selectively inhibiting a range of intracellular signalling pathways. Experimental probes used on ring segments from the rabbit central ear artery are: phenylephrine, a selective α 1-adrenergic receptor agonist that induces vasoconstriction; cyclopiazonic acid (CPA), a specific inhibitor of sarcoplasmic/endoplasmic reticulum Ca 2+ -ATPase; and ryanodine, a diterpenoid that modulates Ca 2+ release from the sarcoplasmic reticulum. These interventions were able to delineate the role of membrane versus intracellular signalling, previously identified as main factors in smooth muscle contraction and the generation of vessel tone. Each SMC was modelled by a system of nonlinear differential equations that account for intracellular ionic signalling, and in particular Ca 2+ dynamics. Cytosolic Ca 2+ concentrations formed the catalytic input to a cross-bridge kinetics model. Contractile output from these cellular components forms the input to the finite-element model of the arterial rings under isometric conditions that reproduces the experimental conditions. The model does not account for the role of the endothelium, as the nitric oxide production was suppressed by the action of L-NAME, and also due to the absence of shear stress on the arterial ring, as the experimental set-up did not involve flow. Simulations generated by the integrated model closely matched experimental

  19. Multiscale Modeling of Blood Flow: Coupling Finite Elements with Smoothed Dissipative Particle Dynamics

    KAUST Repository

    Moreno Chaparro, Nicolas; Vignal, Philippe; Li, Jun; Calo, Victor M.

    2013-01-01

    A variational multi scale approach to model blood flow through arteries is proposed. A finite element discretization to represent the coarse scales (macro size), is coupled to smoothed dissipative particle dynamics that captures the fine scale features (micro scale). Blood is assumed to be incompressible, and flow is described through the Navier Stokes equation. The proposed cou- pling is tested with two benchmark problems, in fully coupled systems. Further refinements of the model can be incorporated in order to explicitly include blood constituents and non-Newtonian behavior. The suggested algorithm can be used with any particle-based method able to solve the Navier-Stokes equation.

  20. Multiscale Modeling of Blood Flow: Coupling Finite Elements with Smoothed Dissipative Particle Dynamics

    KAUST Repository

    Moreno Chaparro, Nicolas

    2013-06-01

    A variational multi scale approach to model blood flow through arteries is proposed. A finite element discretization to represent the coarse scales (macro size), is coupled to smoothed dissipative particle dynamics that captures the fine scale features (micro scale). Blood is assumed to be incompressible, and flow is described through the Navier Stokes equation. The proposed cou- pling is tested with two benchmark problems, in fully coupled systems. Further refinements of the model can be incorporated in order to explicitly include blood constituents and non-Newtonian behavior. The suggested algorithm can be used with any particle-based method able to solve the Navier-Stokes equation.

  1. Numerical evaluation of ABS parts fabricated by fused deposition modeling and vapor smoothing

    Directory of Open Access Journals (Sweden)

    Sung-Uk Zhang

    2017-12-01

    Full Text Available The automotive industry has focused to use polymer materials in order to increase energy efficiency. So, the industry pays attention to use 3D printing technologies using several polymers. Among several 3D printer technologies, fused deposition modeling (FDM is one of the popular 3D printing technologies due to an inexpensive extrusion machine and multi-material printing. FDM could use thermoplastics such as ABS, PLA, ULTEM so on. However, it has a problem related to the post-processing because FDM has relatively poor layer resolution. In this study, the mechanical properties of ABS parts fabricated by FDM were measured. The ABS parts were divided into one with vapor smoothing process and the other without the vapor smoothing process which is one of the post-processing methods. Using dynamic mechanical analysis (DMA and dilatometer, temperature-dependent storage modulus and CTE for ABS specimens were measured. Based on the measured thermo-mechanical properties of ABS parts, finite element analysis was performed for an automotive bumper made of ABS. Moreover, response surface methodology was applied to study relationships among design parameters of thickness of the bumper, ambient temperature, and application of the vapor smoothing process. In result, a design guideline for a ABS product could be provided without time-consuming experiments

  2. Smoothed Particle Inference: A Kilo-Parametric Method for X-ray Galaxy Cluster Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, John R.; Marshall, P.J.; /KIPAC, Menlo Park; Andersson, K.; /Stockholm U. /SLAC

    2005-08-05

    We propose an ambitious new method that models the intracluster medium in clusters of galaxies as a set of X-ray emitting smoothed particles of plasma. Each smoothed particle is described by a handful of parameters including temperature, location, size, and elemental abundances. Hundreds to thousands of these particles are used to construct a model cluster of galaxies, with the appropriate complexity estimated from the data quality. This model is then compared iteratively with X-ray data in the form of adaptively binned photon lists via a two-sample likelihood statistic and iterated via Markov Chain Monte Carlo. The complex cluster model is propagated through the X-ray instrument response using direct sampling Monte Carlo methods. Using this approach the method can reproduce many of the features observed in the X-ray emission in a less assumption-dependent way that traditional analyses, and it allows for a more detailed characterization of the density, temperature, and metal abundance structure of clusters. Multi-instrument X-ray analyses and simultaneous X-ray, Sunyaev-Zeldovich (SZ), and lensing analyses are a straight-forward extension of this methodology. Significant challenges still exist in understanding the degeneracy in these models and the statistical noise induced by the complexity of the models.

  3. Kinetic models of cell growth, substrate utilization and bio ...

    African Journals Online (AJOL)

    Bio-decolorization kinetic studies of distillery effluent in a batch culture were conducted using Aspergillus fumigatus. A simple model was proposed using the Logistic Equation for the growth, Leudeking-Piret kinetics for bio-decolorization, and also for substrate utilization. The proposed models appeared to provide a suitable ...

  4. Comparison of different turbulence models in open channels with smooth-rough bedforms

    International Nuclear Information System (INIS)

    Ghani, U.

    2013-01-01

    The turbulence models play an important role in all types of computational fluid dynamics based numerical modelling. There is no universal turbulence model which can be applied in all the scenarios. Therefore, if a suitable closure model is used in a simulation work, only then the successful numerical modelling will be achieved. This paper presents the evaluation of three turbulence models in numerical modelling of open channel flows having beds comprising of two parallel strips, one being smooth and the other one being rough. The roughness on the rough side of the channel was created with the help of gravels. The turbulence models tested for their suitability in this case were Reynolds stress model, k-model and RNG based k-model. A structured mesh was used in this simulation work. Grid independence test was also conducted in the simulation. The evaluation of the turbulence models was made through the primary velocity contours and secondary velocity vectors over the cross section of the channel. It was revealed that Reynolds stress model simulated the flow behaviour successfully and results obtained through this model matched very closely to that of the experimental data whereas k-model and RNG based k-model failed to reproduce the flow field successfully. These results will be helpful for CFD (Computational Fluid Dynamics) modellers in correct selection of the turbulence model in these types of channels. (author)

  5. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    Science.gov (United States)

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  6. Smoothed particle hydrodynamics modelling in continuum mechanics: fluid-structure interaction

    Directory of Open Access Journals (Sweden)

    Groenenboom P. H. L.

    2009-06-01

    Full Text Available Within this study, the implementation of the smoothed particle hydrodynamics (SPH method solving the complex problem of interaction between a quasi-incompressible fluid involving a free surface and an elastic structure is outlined. A brief description of the SPH model for both the quasi-incompressible fluid and the isotropic elastic solid is presented. The interaction between the fluid and the elastic structure is realised through the contact algorithm. The results of numerical computations are confronted with the experimental as well as computational data published in the literature.

  7. Evaluating the effect of neighbourhood weight matrices on smoothing properties of Conditional Autoregressive (CAR models

    Directory of Open Access Journals (Sweden)

    Ryan Louise

    2007-11-01

    Full Text Available Abstract Background The Conditional Autoregressive (CAR model is widely used in many small-area ecological studies to analyse outcomes measured at an areal level. There has been little evaluation of the influence of different neighbourhood weight matrix structures on the amount of smoothing performed by the CAR model. We examined this issue in detail. Methods We created several neighbourhood weight matrices and applied them to a large dataset of births and birth defects in New South Wales (NSW, Australia within 198 Statistical Local Areas. Between the years 1995–2003, there were 17,595 geocoded birth defects and 770,638 geocoded birth records with available data. Spatio-temporal models were developed with data from 1995–2000 and their fit evaluated within the following time period: 2001–2003. Results We were able to create four adjacency-based weight matrices, seven distance-based weight matrices and one matrix based on similarity in terms of a key covariate (i.e. maternal age. In terms of agreement between observed and predicted relative risks, categorised in epidemiologically relevant groups, generally the distance-based matrices performed better than the adjacency-based neighbourhoods. In terms of recovering the underlying risk structure, the weight-7 model (smoothing by maternal-age 'Covariate model' was able to correctly classify 35/47 high-risk areas (sensitivity 74% with a specificity of 47%, and the 'Gravity' model had sensitivity and specificity values of 74% and 39% respectively. Conclusion We found considerable differences in the smoothing properties of the CAR model, depending on the type of neighbours specified. This in turn had an effect on the models' ability to recover the observed risk in an area. Prior to risk mapping or ecological modelling, an exploratory analysis of the neighbourhood weight matrix to guide the choice of a suitable weight matrix is recommended. Alternatively, the weight matrix can be chosen a priori

  8. Modelling of Amperometric Biosensor Used for Synergistic Substrates Determination

    Directory of Open Access Journals (Sweden)

    Dainius Simelevicius

    2012-04-01

    Full Text Available In this paper the operation of an amperometric biosensor producing a chemically amplified signal is modelled numerically. The chemical amplification is achieved by using synergistic substrates. The model is based on non-stationary reaction-diffusion equations. The model involves three layers (compartments: a layer of enzyme solution entrapped on the electrode surface, a dialysis membrane covering the enzyme layer and an outer diffusion layer which is modelled by the Nernst approach. The equation system is solved numerically by using the finite difference technique. The biosensor response and sensitivity are investigated by altering the model parameters influencing the enzyme kinetics as well as the mass transport by diffusion. The biosensor action was analyzed with a special emphasis to the effect of the chemical amplification. The simulation results qualitatively explain and confirm the experimentally observed effect of the synergistic substrates conversion on the biosensor response.

  9. Metabolic modeling of mixed substrate uptake for polyhydroxyalkanoate (PHA) production

    NARCIS (Netherlands)

    Jiang, Y.; Hebly, M.; Kleerebezem, R.; Muyzer, G.; van Loosdrecht, M.C.M.

    2011-01-01

    Polyhydroxyalkanoate (PHA) production by mixed microbial communities can be established in a two-stage process, consisting of a microbial enrichment step and a PHA accumulation step. In this study, a mathematical model was constructed for evaluating the influence of the carbon substrate composition

  10. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, T. D. [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Schnieders, M. J. [Department of Chemistry, Stanford, California (United States); Brunger, A. T., E-mail: brunger@stanford.edu [Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford, California (United States); Departments of Neurology and Neurological Sciences, Structural Biology and Photon Science, Stanford, California (United States)

    2010-09-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R{sub free} and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography.

  11. A smooth and differentiable bulk-solvent model for macromolecular diffraction

    International Nuclear Information System (INIS)

    Fenn, T. D.; Schnieders, M. J.; Brunger, A. T.

    2010-01-01

    A new method for modeling the bulk solvent in macromolecular diffraction data based on Babinet’s principle is presented. The proposed models offer the advantage of differentiability with respect to atomic coordinates. Inclusion of low-resolution data in macromolecular crystallography requires a model for the bulk solvent. Previous methods have used a binary mask to accomplish this, which has proven to be very effective, but the mask is discontinuous at the solute–solvent boundary (i.e. the mask value jumps from zero to one) and is not differentiable with respect to atomic parameters. Here, two algorithms are introduced for computing bulk-solvent models using either a polynomial switch or a smoothly thresholded product of Gaussians, and both models are shown to be efficient and differentiable with respect to atomic coordinates. These alternative bulk-solvent models offer algorithmic improvements, while showing similar agreement of the model with the observed amplitudes relative to the binary model as monitored using R, R free and differences between experimental and model phases. As with the standard solvent models, the alternative models improve the agreement primarily with lower resolution (>6 Å) data versus no bulk solvent. The models are easily implemented into crystallographic software packages and can be used as a general method for bulk-solvent correction in macromolecular crystallography

  12. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    Science.gov (United States)

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-07

    Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Modeling the Substrate Skin Effects in Mutual RL Characteristics.,

    Directory of Open Access Journals (Sweden)

    D. de Roest

    2003-12-01

    Full Text Available The goal of this work was to model the influence of the substrateskin effects on the distributed mutual impedance per unit lengthparameters of multiple coupled on-chip interconnects. The proposedanalytic model is based on the frequency-dependent distribution of thecurrent in the silicon substrate and the closed form integrationapproach. It is shown that the calculated frequency-dependentdistributed mutual inductance and the associated mutual resistance arein good agreement with the results obtained from CAD-oriented circuitmodeling technique.

  14. Smooth Solutions to Optimal Investment Models with Stochastic Volatilities and Portfolio Constraints

    International Nuclear Information System (INIS)

    Pham, H.

    2002-01-01

    This paper deals with an extension of Merton's optimal investment problem to a multidimensional model with stochastic volatility and portfolio constraints. The classical dynamic programming approach leads to a characterization of the value function as a viscosity solution of the highly nonlinear associated Bellman equation. A logarithmic transformation expresses the value function in terms of the solution to a semilinear parabolic equation with quadratic growth on the derivative term. Using a stochastic control representation and some approximations, we prove the existence of a smooth solution to this semilinear equation. An optimal portfolio is shown to exist, and is expressed in terms of the classical solution to this semilinear equation. This reduction is useful for studying numerical schemes for both the value function and the optimal portfolio. We illustrate our results with several examples of stochastic volatility models popular in the financial literature

  15. Modeling universal dynamics of cell spreading on elastic substrates.

    Science.gov (United States)

    Fan, Houfu; Li, Shaofan

    2015-11-01

    A three-dimensional (3D) multiscale moving contact line model is combined with a soft matter cell model to study the universal dynamics of cell spreading over elastic substrates. We have studied both the early stage and the late stage cell spreading by taking into account the actin tension effect. In this work, the cell is modeled as an active nematic droplet, and the substrate is modeled as a St. Venant Kirchhoff elastic medium. A complete 3D simulation of cell spreading has been carried out. The simulation results show that the spreading area versus spreading time at different stages obeys specific power laws, which is in good agreement with experimental data and theoretical prediction reported in the literature. Moreover, the simulation results show that the substrate elasticity may affect force dipole distribution inside the cell. The advantage of this approach is that it combines the hydrodynamics of actin retrograde flow with moving contact line model so that it can naturally include actin tension effect resulting from actin polymerization and actomyosin contraction, and thus it might be capable of simulating complex cellular scale phenomenon, such as cell spreading or even crawling.

  16. State Space Models and the Kalman-Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing

    Directory of Open Access Journals (Sweden)

    Nataliya Chukhrova

    2017-05-01

    Full Text Available This paper gives a detailed overview of the current state of research in relation to the use of state space models and the Kalman-filter in the field of stochastic claims reserving. Most of these state space representations are matrix-based, which complicates their applications. Therefore, to facilitate the implementation of state space models in practice, we present a scalar state space model for cumulative payments, which is an extension of the well-known chain ladder (CL method. The presented model is distribution-free, forms a basis for determining the entire unobservable lower and upper run-off triangles and can easily be applied in practice using the Kalman-filter for prediction, filtering and smoothing of cumulative payments. In addition, the model provides an easy way to find outliers in the data and to determine outlier effects. Finally, an empirical comparison of the scalar state space model, promising prior state space models and some popular stochastic claims reserving methods is performed.

  17. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing.

    Science.gov (United States)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2017-02-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture-for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments-as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series-daily Poaceae pollen concentrations over the period 2006-2014-was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  18. Smoothed-particle-hydrodynamics modeling of dissipation mechanisms in gravity waves.

    Science.gov (United States)

    Colagrossi, Andrea; Souto-Iglesias, Antonio; Antuono, Matteo; Marrone, Salvatore

    2013-02-01

    The smoothed-particle-hydrodynamics (SPH) method has been used to study the evolution of free-surface Newtonian viscous flows specifically focusing on dissipation mechanisms in gravity waves. The numerical results have been compared with an analytical solution of the linearized Navier-Stokes equations for Reynolds numbers in the range 50-5000. We found that a correct choice of the number of neighboring particles is of fundamental importance in order to obtain convergence towards the analytical solution. This number has to increase with higher Reynolds numbers in order to prevent the onset of spurious vorticity inside the bulk of the fluid, leading to an unphysical overdamping of the wave amplitude. This generation of spurious vorticity strongly depends on the specific kernel function used in the SPH model.

  19. Bayesian Exponential Smoothing.

    OpenAIRE

    Forbes, C.S.; Snyder, R.D.; Shami, R.S.

    2000-01-01

    In this paper, a Bayesian version of the exponential smoothing method of forecasting is proposed. The approach is based on a state space model containing only a single source of error for each time interval. This model allows us to improve current practices surrounding exponential smoothing by providing both point predictions and measures of the uncertainty surrounding them.

  20. A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells.

    Science.gov (United States)

    Cao, Pengxing; Tan, Xiahui; Donovan, Graham; Sanderson, Michael J; Sneyd, James

    2014-08-01

    The inositol trisphosphate receptor ([Formula: see text]) is one of the most important cellular components responsible for oscillations in the cytoplasmic calcium concentration. Over the past decade, two major questions about the [Formula: see text] have arisen. Firstly, how best should the [Formula: see text] be modeled? In other words, what fundamental properties of the [Formula: see text] allow it to perform its function, and what are their quantitative properties? Secondly, although calcium oscillations are caused by the stochastic opening and closing of small numbers of [Formula: see text], is it possible for a deterministic model to be a reliable predictor of calcium behavior? Here, we answer these two questions, using airway smooth muscle cells (ASMC) as a specific example. Firstly, we show that periodic calcium waves in ASMC, as well as the statistics of calcium puffs in other cell types, can be quantitatively reproduced by a two-state model of the [Formula: see text], and thus the behavior of the [Formula: see text] is essentially determined by its modal structure. The structure within each mode is irrelevant for function. Secondly, we show that, although calcium waves in ASMC are generated by a stochastic mechanism, [Formula: see text] stochasticity is not essential for a qualitative prediction of how oscillation frequency depends on model parameters, and thus deterministic [Formula: see text] models demonstrate the same level of predictive capability as do stochastic models. We conclude that, firstly, calcium dynamics can be accurately modeled using simplified [Formula: see text] models, and, secondly, to obtain qualitative predictions of how oscillation frequency depends on parameters it is sufficient to use a deterministic model.

  1. Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2017-06-01

    Full Text Available Foam has emerged as an efficient drilling fluid for the drilling of low pressure, fractured and matured reservoirs because of its the ability to reduce formation damage, fluid loss, differential sticking etc. However the compressible nature along with its complicated rheology has made its implementation a multifaceted task. Knowledge of the hydrodynamic behavior of drilling fluid within the borehole is the key behind successful implementation of drilling job. However, little effort has been made to develop the hydrodynamic models for the foam flowing with cuttings through pipes of variable diameter. In the present study, hydrodynamics of the foam fluid was investigated through the vertical smooth pipes of different pipe diameters, with variable foam properties in a flow loop system. Effect of cutting loading on pressure drop was also studied. Thus, the present investigation estimates the differential pressure loss across the pipe. The flow loop permits foam flow through 25.4 mm, 38.1 mm and 50.8 mm diameter pipes. The smaller diameter pipes are used to replicate the annular spaces between the drill string and wellbore. The developed model determines the pressure loss along the pipe and the results are compared with a number of existing models. The developed model is able to predict the experimental results more accurately.

  2. Calculating the Contribution Rate of Intelligent Transportation System in Improving Urban Traffic Smooth Based on Advanced DID Model

    Directory of Open Access Journals (Sweden)

    Ming-wei Li

    2015-01-01

    Full Text Available Recent years have witnessed the rapid development of intelligent transportation system around the world, which helps to relieve urban traffic congestion problems. For instance, many mega-cities in China have devoted a large amount of money and resources to the development of intelligent transportation system. This poses an intriguing and important issue: how to measure and quantify the contribution of intelligent transportation system to the urban city, which is still a puzzle. This paper proposes a matching difference-in-difference model to calculate the contribution rate of intelligent transportation system on traffic smoothness. Within the model, the main effect indicators of traffic smoothness are first identified, and then the evaluation index system is built, and finally the ideas of the matching pool are introduced. The proposed model is illustrated in Guangzhou, China (capital city of Guangdong province. The results show that introduction of ITS contributes 9.25% to the improvement of traffic smooth in Guangzhou. Also, the research explains the working mechanism of how ITS improves urban traffic smooth. Eventually, some strategy recommendations are put forward to improve urban traffic smooth.

  3. Functional Modeling of the Shift in Cellular Calcium Dynamics at the Onset of Synchronization in Smooth Muscle Cells

    DEFF Research Database (Denmark)

    Postnov, D E; Brings Jacobsen, J C; von Holstein-Rathlou, Niels-Henrik

    2011-01-01

    In the present paper we address the nature of synchronization properties found in populations of mesenteric artery smooth muscle cells. We present a minimal model of the onset of synchronization in the individual smooth muscle cell that is manifested as a transition from calcium waves to whole......-cell calcium oscillations. We discuss how different types of ion currents may influence both amplitude and frequency in the regime of whole-cell oscillations. The model may also explain the occurrence of mixed-mode oscillations and chaotic oscillations frequently observed in the experimental system....

  4. A One-Step-Ahead Smoothing-Based Joint Ensemble Kalman Filter for State-Parameter Estimation of Hydrological Models

    KAUST Repository

    El Gharamti, Mohamad

    2015-11-26

    The ensemble Kalman filter (EnKF) recursively integrates field data into simulation models to obtain a better characterization of the model’s state and parameters. These are generally estimated following a state-parameters joint augmentation strategy. In this study, we introduce a new smoothing-based joint EnKF scheme, in which we introduce a one-step-ahead smoothing of the state before updating the parameters. Numerical experiments are performed with a two-dimensional synthetic subsurface contaminant transport model. The improved performance of the proposed joint EnKF scheme compared to the standard joint EnKF compensates for the modest increase in the computational cost.

  5. VR-SCOSMO: A smooth conductor-like screening model with charge-dependent radii for modeling chemical reactions.

    Science.gov (United States)

    Kuechler, Erich R; Giese, Timothy J; York, Darrin M

    2016-04-28

    To better represent the solvation effects observed along reaction pathways, and of ionic species in general, a charge-dependent variable-radii smooth conductor-like screening model (VR-SCOSMO) is developed. This model is implemented and parameterized with a third order density-functional tight binding quantum model, DFTB3/3OB-OPhyd, a quantum method which was developed for organic and biological compounds, utilizing a specific parameterization for phosphate hydrolysis reactions. Unlike most other applications with the DFTB3/3OB model, an auxiliary set of atomic multipoles is constructed from the underlying DFTB3 density matrix which is used to interact the solute with the solvent response surface. The resulting method is variational, produces smooth energies, and has analytic gradients. As a baseline, a conventional SCOSMO model with fixed radii is also parameterized. The SCOSMO and VR-SCOSMO models shown have comparable accuracy in reproducing neutral-molecule absolute solvation free energies; however, the VR-SCOSMO model is shown to reduce the mean unsigned errors (MUEs) of ionic compounds by half (about 2-3 kcal/mol). The VR-SCOSMO model presents similar accuracy as a charge-dependent Poisson-Boltzmann model introduced by Hou et al. [J. Chem. Theory Comput. 6, 2303 (2010)]. VR-SCOSMO is then used to examine the hydrolysis of trimethylphosphate and seven other phosphoryl transesterification reactions with different leaving groups. Two-dimensional energy landscapes are constructed for these reactions and calculated barriers are compared to those obtained from ab initio polarizable continuum calculations and experiment. Results of the VR-SCOSMO model are in good agreement in both cases, capturing the rate-limiting reaction barrier and the nature of the transition state.

  6. ANIMATION STRATEGIES FOR SMOOTH TRANSFORMATIONS BETWEEN DISCRETE LODS OF 3D BUILDING MODELS

    Directory of Open Access Journals (Sweden)

    M. Kada

    2016-06-01

    Full Text Available The cartographic 3D visualization of urban areas has experienced tremendous progress over the last years. An increasing number of applications operate interactively in real-time and thus require advanced techniques to improve the quality and time response of dynamic scenes. The main focus of this article concentrates on the discussion of strategies for smooth transformation between two discrete levels of detail (LOD of 3D building models that are represented as restricted triangle meshes. Because the operation order determines the geometrical and topological properties of the transformation process as well as its visual perception by a human viewer, three different strategies are proposed and subsequently analyzed. The simplest one orders transformation operations by the length of the edges to be collapsed, while the other two strategies introduce a general transformation direction in the form of a moving plane. This plane either pushes the nodes that need to be removed, e.g. during the transformation of a detailed LOD model to a coarser one, towards the main building body, or triggers the edge collapse operations used as transformation paths for the cartographic generalization.

  7. Animation Strategies for Smooth Transformations Between Discrete Lods of 3d Building Models

    Science.gov (United States)

    Kada, Martin; Wichmann, Andreas; Filippovska, Yevgeniya; Hermes, Tobias

    2016-06-01

    The cartographic 3D visualization of urban areas has experienced tremendous progress over the last years. An increasing number of applications operate interactively in real-time and thus require advanced techniques to improve the quality and time response of dynamic scenes. The main focus of this article concentrates on the discussion of strategies for smooth transformation between two discrete levels of detail (LOD) of 3D building models that are represented as restricted triangle meshes. Because the operation order determines the geometrical and topological properties of the transformation process as well as its visual perception by a human viewer, three different strategies are proposed and subsequently analyzed. The simplest one orders transformation operations by the length of the edges to be collapsed, while the other two strategies introduce a general transformation direction in the form of a moving plane. This plane either pushes the nodes that need to be removed, e.g. during the transformation of a detailed LOD model to a coarser one, towards the main building body, or triggers the edge collapse operations used as transformation paths for the cartographic generalization.

  8. A Study of Using Technology Acceptance Model and Its Effect on Improving Road Pavement Smoothness in Taiwan

    Science.gov (United States)

    Huang, Long-Sheng; Huang, Chung-Fah

    2017-01-01

    Using the technology acceptance model (TAM) as its theoretical foundation, this study intends to explore the use of Travelling Beam devices in road engineerings in Taiwan and offer suggestions based on its findings to encourage industry willingness for device deployment resulting in improving road pavement smoothness in Taiwan. The study subjects…

  9. Animal model for angiotensin II effects in the internal anal sphincter smooth muscle: mechanism of action.

    Science.gov (United States)

    Fan, Ya-Ping; Puri, Rajinder N; Rattan, Satish

    2002-03-01

    Effect of ANG II was investigated in in vitro smooth muscle strips and in isolated smooth muscle cells (SMC). Among different species, rat internal and sphincter (IAS) smooth muscle showed significant and reproducible contraction that remained unmodified by different neurohumoral inhibitors. The AT(1) antagonist losartan but not AT(2) antagonist PD-123319 antagonized ANG II-induced contraction of the IAS smooth muscle and SMC. ANG II-induced contraction of rat IAS smooth muscle and SMC was attenuated by tyrosine kinase inhibitors genistein and tyrphostin, protein kinase C (PKC) inhibitor H-7, Ca(2+) channel blocker nicardipine, Rho kinase inhibitor Y-27632 or p(44/42) mitogen-activating protein kinase (MAPK(44/42)) inhibitor PD-98059. Combinations of nicardipine and H-7, Y-27632, and PD-98059 caused further attenuation of the ANG II effects. Western blot analyses revealed the presence of both AT(1) and AT(2) receptors. We conclude that ANG II causes contraction of rat IAS smooth muscle by the activation of AT(1) receptors at the SMC and involves multiple intracellular pathways, influx of Ca(2+), and activation of PKC, Rho kinase, and MAPK(44/42).

  10. Smooth manifolds

    CERN Document Server

    Sinha, Rajnikant

    2014-01-01

    This book offers an introduction to the theory of smooth manifolds, helping students to familiarize themselves with the tools they will need for mathematical research on smooth manifolds and differential geometry. The book primarily focuses on topics concerning differential manifolds, tangent spaces, multivariable differential calculus, topological properties of smooth manifolds, embedded submanifolds, Sard’s theorem and Whitney embedding theorem. It is clearly structured, amply illustrated and includes solved examples for all concepts discussed. Several difficult theorems have been broken into many lemmas and notes (equivalent to sub-lemmas) to enhance the readability of the book. Further, once a concept has been introduced, it reoccurs throughout the book to ensure comprehension. Rank theorem, a vital aspect of smooth manifolds theory, occurs in many manifestations, including rank theorem for Euclidean space and global rank theorem. Though primarily intended for graduate students of mathematics, the book ...

  11. THE BOSS EMISSION-LINE LENS SURVEY. IV. SMOOTH LENS MODELS FOR THE BELLS GALLERY SAMPLE

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Yiping [National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012 (China); Bolton, Adam S.; Montero-Dorta, Antonio D.; Cornachione, Matthew A.; Zheng, Zheng; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, UT 84112 (United States); Mao, Shude [Physics Department and Tsinghua Centre for Astrophysics, Tsinghua University, Beijing 100084 (China); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Pérez-Fournon, Ismael; Marques-Chaves, Rui [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 San Cristóbal de La Laguna, Tenerife (Spain); Oguri, Masamune [Research Center for the Early Universe, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Ménard, Brice, E-mail: yiping.shu@nao.cas.cn [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States)

    2016-12-20

    We present Hubble Space Telescope F606W-band imaging observations of 21 galaxy-Ly α emitter lens candidates in the Baryon Oscillation Spectroscopic Survey Emission-Line Lens Survey (BELLS) for the GALaxy-Ly α EmitteR sYstems (BELLS GALLERY) survey. Seventeen systems are confirmed to be definite lenses with unambiguous evidence of multiple imaging. The lenses are primarily massive early-type galaxies (ETGs) at redshifts of approximately 0.55, while the lensed sources are Ly α emitters (LAEs) at redshifts from two to three. Although most of the lens systems are well fit by smooth lens models consisting of singular isothermal ellipsoids in an external shear field, a thorough exploration of dark substructures in the lens galaxies is required. The Einstein radii of the BELLS GALLERY lenses are, on average, 60% larger than those of the BELLS lenses because of the much higher source redshifts. This will allow for a detailed investigation of the radius evolution of the mass profile in ETGs. With the aid of the average ∼13× lensing magnification, the LAEs are frequently resolved into individual star-forming knots with a wide range of properties. They have characteristic sizes from less than 100 pc to several kiloparsecs, rest-frame far-UV apparent AB magnitudes from 29.6 to 24.2, and typical projected separations of 500 pc to 2 kpc.

  12. Mixed linear-nonlinear fault slip inversion: Bayesian inference of model, weighting, and smoothing parameters

    Science.gov (United States)

    Fukuda, J.; Johnson, K. M.

    2009-12-01

    Studies utilizing inversions of geodetic data for the spatial distribution of coseismic slip on faults typically present the result as a single fault plane and slip distribution. Commonly the geometry of the fault plane is assumed to be known a priori and the data are inverted for slip. However, sometimes there is not strong a priori information on the geometry of the fault that produced the earthquake and the data is not always strong enough to completely resolve the fault geometry. We develop a method to solve for the full posterior probability distribution of fault slip and fault geometry parameters in a Bayesian framework using Monte Carlo methods. The slip inversion problem is particularly challenging because it often involves multiple data sets with unknown relative weights (e.g. InSAR, GPS), model parameters that are related linearly (slip) and nonlinearly (fault geometry) through the theoretical model to surface observations, prior information on model parameters, and a regularization prior to stabilize the inversion. We present the theoretical framework and solution method for a Bayesian inversion that can handle all of these aspects of the problem. The method handles the mixed linear/nonlinear nature of the problem through combination of both analytical least-squares solutions and Monte Carlo methods. We first illustrate and validate the inversion scheme using synthetic data sets. We then apply the method to inversion of geodetic data from the 2003 M6.6 San Simeon, California earthquake. We show that the uncertainty in strike and dip of the fault plane is over 20 degrees. We characterize the uncertainty in the slip estimate with a volume around the mean fault solution in which the slip most likely occurred. Slip likely occurred somewhere in a volume that extends 5-10 km in either direction normal to the fault plane. We implement slip inversions with both traditional, kinematic smoothing constraints on slip and a simple physical condition of uniform stress

  13. Sleep deprivation as an experimental model system for psychosis: Effects on smooth pursuit, prosaccades, and antisaccades.

    Science.gov (United States)

    Meyhöfer, Inga; Kumari, Veena; Hill, Antje; Petrovsky, Nadine; Ettinger, Ulrich

    2017-04-01

    Current antipsychotic medications fail to satisfactorily reduce negative and cognitive symptoms and produce many unwanted side effects, necessitating the development of new compounds. Cross-species, experimental behavioural model systems can be valuable to inform the development of such drugs. The aim of the current study was to further test the hypothesis that controlled sleep deprivation is a safe and effective model system for psychosis when combined with oculomotor biomarkers of schizophrenia. Using a randomized counterbalanced within-subjects design, we investigated the effects of 1 night of total sleep deprivation in 32 healthy participants on smooth pursuit eye movements (SPEM), prosaccades (PS), antisaccades (AS), and self-ratings of psychosis-like states. Compared with a normal sleep control night, sleep deprivation was associated with reduced SPEM velocity gain, higher saccadic frequency at 0.2 Hz, elevated PS spatial error, and an increase in AS direction errors. Sleep deprivation also increased intra-individual variability of SPEM, PS, and AS measures. In addition, sleep deprivation induced psychosis-like experiences mimicking hallucinations, cognitive disorganization, and negative symptoms, which in turn had moderate associations with AS direction errors. Taken together, sleep deprivation resulted in psychosis-like impairments in SPEM and AS performance. However, diverging somewhat from the schizophrenia literature, sleep deprivation additionally disrupted PS control. Sleep deprivation thus represents a promising but possibly unspecific experimental model that may be helpful to further improve our understanding of the underlying mechanisms in the pathophysiology of psychosis and aid the development of antipsychotic and pro-cognitive drugs.

  14. Comparison of microfacet BRDF model to modified Beckmann-Kirchhoff BRDF model for rough and smooth surfaces.

    Science.gov (United States)

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-11-02

    A popular class of BRDF models is the microfacet models, where geometric optics is assumed. In contrast, more complex physical optics models may more accurately predict the BRDF, but the calculation is more resource intensive. These seemingly disparate approaches are compared in detail for the rough and smooth surface approximations of the modified Beckmann-Kirchhoff BRDF model, assuming Gaussian surface statistics. An approximation relating standard Fresnel reflection with the semi-rough surface polarization term, Q, is presented for unpolarized light. For rough surfaces, the angular dependence of direction cosine space is shown to be identical to the angular dependence in the microfacet distribution function. For polished surfaces, the same comparison shows a breakdown in the microfacet models. Similarities and differences between microfacet BRDF models and the modified Beckmann-Kirchhoff model are identified. The rationale for the original Beckmann-Kirchhoff F(bk)(2) geometric term relative to both microfacet models and generalized Harvey-Shack model is presented. A modification to the geometric F(bk)(2) term in original Beckmann-Kirchhoff BRDF theory is proposed.

  15. Smoothed particle hydrodynamics model for Landau-Lifshitz-Navier-Stokes and advection-diffusion equations.

    Science.gov (United States)

    Kordilla, Jannes; Pan, Wenxiao; Tartakovsky, Alexandre

    2014-12-14

    We propose a novel smoothed particle hydrodynamics (SPH) discretization of the fully coupled Landau-Lifshitz-Navier-Stokes (LLNS) and stochastic advection-diffusion equations. The accuracy of the SPH solution of the LLNS equations is demonstrated by comparing the scaling of velocity variance and the self-diffusion coefficient with kinetic temperature and particle mass obtained from the SPH simulations and analytical solutions. The spatial covariance of pressure and velocity fluctuations is found to be in a good agreement with theoretical models. To validate the accuracy of the SPH method for coupled LLNS and advection-diffusion equations, we simulate the interface between two miscible fluids. We study formation of the so-called "giant fluctuations" of the front between light and heavy fluids with and without gravity, where the light fluid lies on the top of the heavy fluid. We find that the power spectra of the simulated concentration field are in good agreement with the experiments and analytical solutions. In the absence of gravity, the power spectra decay as the power -4 of the wavenumber-except for small wavenumbers that diverge from this power law behavior due to the effect of finite domain size. Gravity suppresses the fluctuations, resulting in much weaker dependence of the power spectra on the wavenumber. Finally, the model is used to study the effect of thermal fluctuation on the Rayleigh-Taylor instability, an unstable dynamics of the front between a heavy fluid overlaying a light fluid. The front dynamics is shown to agree well with the analytical solutions.

  16. A three-level support method for smooth switching of the micro-grid operation model

    Science.gov (United States)

    Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun

    2018-01-01

    Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.

  17. IRT Item Parameter Recovery with Marginal Maximum Likelihood Estimation Using Loglinear Smoothing Models

    Science.gov (United States)

    Casabianca, Jodi M.; Lewis, Charles

    2015-01-01

    Loglinear smoothing (LLS) estimates the latent trait distribution while making fewer assumptions about its form and maintaining parsimony, thus leading to more precise item response theory (IRT) item parameter estimates than standard marginal maximum likelihood (MML). This article provides the expectation-maximization algorithm for MML estimation…

  18. BeWo cells stimulate smooth muscle cell apoptosis and elastin breakdown in a model of spiral artery transformation

    OpenAIRE

    Harris, L. K.; Keogh, R. J.; Wareing, M.; Baker, P. N.; Cartwright, J. E.; Whitley, G. S.; Aplin, J. D.

    2007-01-01

    BACKGROUND: During pregnancy, extravillous trophoblast invades the uterine wall and enters the spiral arteries. Remodelling ensues, with loss of vascular smooth muscle cells (SMCs) to create high flow, low resistance vessels. Pregnancies complicated by pre-eclampsia are characterized by incomplete arterial remodelling. Endovascular trophoblast is not easily accessible for studies to establish the pathogenesis of pre-eclampsia, so we have developed a model appropriate to carry out mechanistic ...

  19. Enhancement of Markov chain model by integrating exponential smoothing: A case study on Muslims marriage and divorce

    Science.gov (United States)

    Jamaluddin, Fadhilah; Rahim, Rahela Abdul

    2015-12-01

    Markov Chain has been introduced since the 1913 for the purpose of studying the flow of data for a consecutive number of years of the data and also forecasting. The important feature in Markov Chain is obtaining the accurate Transition Probability Matrix (TPM). However to obtain the suitable TPM is hard especially in involving long-term modeling due to unavailability of data. This paper aims to enhance the classical Markov Chain by introducing Exponential Smoothing technique in developing the appropriate TPM.

  20. Surface smoothness

    DEFF Research Database (Denmark)

    Tummala, Sudhakar; Dam, Erik B.

    2010-01-01

    accuracy, such novel markers must therefore be validated against clinically meaningful end-goals such as the ability to allow correct diagnosis. We present a method for automatic cartilage surface smoothness quantification in the knee joint. The quantification is based on a curvature flow method used....... We demonstrate that the fully automatic markers eliminate the time required for radiologist annotations, and in addition provide a diagnostic marker superior to the evaluated semi-manual markers....

  1. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents

    Directory of Open Access Journals (Sweden)

    Arghya Chakravorty

    2018-03-01

    Full Text Available Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant from the solvent phase (high dielectric constant. Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.

  2. Forecasting Inflow and Outflow of Money Currency in East Java Using a Hybrid Exponential Smoothing and Calendar Variation Model

    Science.gov (United States)

    Susanti, Ana; Suhartono; Jati Setyadi, Hario; Taruk, Medi; Haviluddin; Pamilih Widagdo, Putut

    2018-03-01

    Money currency availability in Bank Indonesia can be examined by inflow and outflow of money currency. The objective of this research is to forecast the inflow and outflow of money currency in each Representative Office (RO) of BI in East Java by using a hybrid exponential smoothing based on state space approach and calendar variation model. Hybrid model is expected to generate more accurate forecast. There are two studies that will be discussed in this research. The first studies about hybrid model using simulation data that contain pattern of trends, seasonal and calendar variation. The second studies about the application of a hybrid model for forecasting the inflow and outflow of money currency in each RO of BI in East Java. The first of results indicate that exponential smoothing model can not capture the pattern calendar variation. It results RMSE values 10 times standard deviation of error. The second of results indicate that hybrid model can capture the pattern of trends, seasonal and calendar variation. It results RMSE values approaching the standard deviation of error. In the applied study, the hybrid model give more accurate forecast for five variables : the inflow of money currency in Surabaya, Malang, Jember and outflow of money currency in Surabaya and Kediri. Otherwise, the time series regression model yields better for three variables : outflow of money currency in Malang, Jember and inflow of money currency in Kediri.

  3. A generalized Fellner-Schall method for smoothing parameter optimization with application to Tweedie location, scale and shape models.

    Science.gov (United States)

    Wood, Simon N; Fasiolo, Matteo

    2017-12-01

    We consider the optimization of smoothing parameters and variance components in models with a regular log likelihood subject to quadratic penalization of the model coefficients, via a generalization of the method of Fellner (1986) and Schall (1991). In particular: (i) we generalize the original method to the case of penalties that are linear in several smoothing parameters, thereby covering the important cases of tensor product and adaptive smoothers; (ii) we show why the method's steps increase the restricted marginal likelihood of the model, that it tends to converge faster than the EM algorithm, or obvious accelerations of this, and investigate its relation to Newton optimization; (iii) we generalize the method to any Fisher regular likelihood. The method represents a considerable simplification over existing methods of estimating smoothing parameters in the context of regular likelihoods, without sacrificing generality: for example, it is only necessary to compute with the same first and second derivatives of the log-likelihood required for coefficient estimation, and not with the third or fourth order derivatives required by alternative approaches. Examples are provided which would have been impossible or impractical with pre-existing Fellner-Schall methods, along with an example of a Tweedie location, scale and shape model which would be a challenge for alternative methods, and a sparse additive modeling example where the method facilitates computational efficiency gains of several orders of magnitude. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2017, The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.

  4. Modeling Cerebrovascular Pathophysiology in Amyloid-β Metabolism using Neural-Crest-Derived Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Christine Cheung

    2014-10-01

    Full Text Available Summary: There is growing recognition of cerebrovascular contributions to neurodegenerative diseases. In the walls of cerebral arteries, amyloid-beta (Aβ accumulation is evident in a majority of aged people and patients with cerebral amyloid angiopathy. Here, we leverage human pluripotent stem cells to generate vascular smooth muscle cells (SMCs from neural crest progenitors, recapitulating brain-vasculature-specific attributes of Aβ metabolism. We confirm that the lipoprotein receptor, LRP1, functions in our neural-crest-derived SMCs to mediate Aβ uptake and intracellular lysosomal degradation. Hypoxia significantly compromises the contribution of SMCs to Aβ clearance by suppressing LRP1 expression. This enabled us to develop an assay of Aβ uptake by using the neural crest-derived SMCs with hypoxia as a stress paradigm. We then tested several vascular protective compounds in a high-throughput format, demonstrating the value of stem-cell-based phenotypic screening for novel therapeutics and drug repurposing, aimed at alleviating amyloid burden. : The contribution of blood vessel pathologies to neurodegenerative disorders is relatively neglected, partly due to inadequate human tissues for research. By using human stem cells, Cheung et al. establish a method of generating vascular smooth muscle cells (SMCs from neural crest progenitors, the primary precursors that give rise to brain blood vessels. These stem-cell-derived SMCs display defective amyloid processing under chronic hypoxia, a phenomenon well documented in the cerebral vasculatures of aged people and patients with Alzheimer’s disease.

  5. Mathematical model of organic substrate degradation in solid waste windrow composting.

    Science.gov (United States)

    Seng, Bunrith; Kristanti, Risky Ayu; Hadibarata, Tony; Hirayama, Kimiaki; Katayama-Hirayama, Keiko; Kaneko, Hidehiro

    2016-01-01

    Organic solid waste composting is a complex process that involves many coupled physical, chemical and biological mechanisms. To understand this complexity and to ease in planning, design and management of the composting plant, mathematical model for simulation is usually applied. The aim of this paper is to develop a mathematical model of organic substrate degradation and its performance evaluation in solid waste windrow composting system. The present model is a biomass-dependent model, considering biological growth processes under the limitation of moisture, oxygen and substrate contents, and temperature. The main output of this model is substrate content which was divided into two categories: slowly and rapidly degradable substrates. To validate the model, it was applied to a laboratory scale windrow composting of a mixture of wood chips and dog food. The wastes were filled into a cylindrical reactor of 6 cm diameter and 1 m height. The simulation program was run for 3 weeks with 1 s stepwise. The simulated results were in reasonably good agreement with the experimental results. The MC and temperature of model simulation were found to be matched with those of experiment, but limited for rapidly degradable substrates. Under anaerobic zone, the degradation of rapidly degradable substrate needs to be incorporated into the model to achieve full simulation of a long period static pile composting. This model is a useful tool to estimate the changes of substrate content during composting period, and acts as a basic model for further development of a sophisticated model.

  6. An Iterative Ensemble Kalman Filter with One-Step-Ahead Smoothing for State-Parameters Estimation of Contaminant Transport Models

    KAUST Repository

    Gharamti, M. E.

    2015-05-11

    The ensemble Kalman filter (EnKF) is a popular method for state-parameters estimation of subsurface flow and transport models based on field measurements. The common filtering procedure is to directly update the state and parameters as one single vector, which is known as the Joint-EnKF. In this study, we follow the one-step-ahead smoothing formulation of the filtering problem, to derive a new joint-based EnKF which involves a smoothing step of the state between two successive analysis steps. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. This new algorithm bears strong resemblance with the Dual-EnKF, but unlike the latter which first propagates the state with the model then updates it with the new observation, the proposed scheme starts by an update step, followed by a model integration step. We exploit this new formulation of the joint filtering problem and propose an efficient model-integration-free iterative procedure on the update step of the parameters only for further improved performances. Numerical experiments are conducted with a two-dimensional synthetic subsurface transport model simulating the migration of a contaminant plume in a heterogenous aquifer domain. Contaminant concentration data are assimilated to estimate both the contaminant state and the hydraulic conductivity field. Assimilation runs are performed under imperfect modeling conditions and various observational scenarios. Simulation results suggest that the proposed scheme efficiently recovers both the contaminant state and the aquifer conductivity, providing more accurate estimates than the standard Joint and Dual EnKFs in all tested scenarios. Iterating on the update step of the new scheme further enhances the proposed filter’s behavior. In term of computational cost, the new Joint-EnKF is almost equivalent to that of the Dual-EnKF, but requires twice more model

  7. A Smoothing Algorithm for a New Two-Stage Stochastic Model of Supply Chain Based on Sample Average Approximation

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2017-01-01

    Full Text Available We construct a new two-stage stochastic model of supply chain with multiple factories and distributors for perishable product. By introducing a second-order stochastic dominance (SSD constraint, we can describe the preference consistency of the risk taker while minimizing the expected cost of company. To solve this problem, we convert it into a one-stage stochastic model equivalently; then we use sample average approximation (SAA method to approximate the expected values of the underlying random functions. A smoothing approach is proposed with which we can get the global solution and avoid introducing new variables and constraints. Meanwhile, we investigate the convergence of an optimal value from solving the transformed model and show that, with probability approaching one at exponential rate, the optimal value converges to its counterpart as the sample size increases. Numerical results show the effectiveness of the proposed algorithm and analysis.

  8. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate.

    Science.gov (United States)

    Wang, Xiaoling; Wang, Guoqing; Hao, Mudong

    2015-01-01

    Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick's first law, and Monod's kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates.

  9. Numerical Model to Quantify the Influence of the Cellulosic Substrate on the Ignition Propensity Tests

    Directory of Open Access Journals (Sweden)

    Guindos Pablo

    2016-07-01

    Full Text Available A numerical model based on the finite element method has been constructed to simulate the ignition propensity (IP tests. The objective of this mathematical model was to quantify the influence of different characteristics of the cellulosic substrate on the results of the IP-tests. The creation and validation of the model included the following steps: (I formulation of the model based on experimental thermodynamic characteristics of the cellulosic substrate; (ii calibration of the model according to cone calorimeter tests; (iii validation of the model through mass loss and temperature profiling during IP-testing. Once the model was validated, the influence of each isolated parameter of the cellulosic substrate was quantified via a parametric study. The results revealed that the substrate heat capacity, the cigarette temperature and the pyrolysis activation energy are the most influencing parameters on the thermodynamic response of the substrates, while other parameters like heat of the pyrolysis reaction, density and roughness of the substrate showed little influence. Also the results indicated that the thermodynamic mechanisms involved in the pyrolysis and combustion of the cellulosic substrate are complex and show low repeatability which might impair the reliability of the IP-tests.

  10. Experimental Results and Integrated Modeling of Bacterial Growth on an Insoluble Hydrophobic Substrate (Phenanthrene)

    DEFF Research Database (Denmark)

    Adam, Iris K. U.; Rein, Arno; Miltner, Anja

    2014-01-01

    Metabolism of a low-solubility substrate is limited by dissolution and availability and can hardly be determined. We developed a numerical model for simultaneously calculating dissolution kinetics of such substrates and their metabolism and microbial growth (Monod kinetics with decay) and tested ...

  11. A Mathematical and Numerically Integrable Modeling of 3D Object Grasping under Rolling Contacts between Smooth Surfaces

    Directory of Open Access Journals (Sweden)

    Suguru Arimoto

    2011-01-01

    Full Text Available A computable model of grasping and manipulation of a 3D rigid object with arbitrary smooth surfaces by multiple robot fingers with smooth fingertip surfaces is derived under rolling contact constraints between surfaces. Geometrical conditions of pure rolling contacts are described through the moving-frame coordinates at each rolling contact point under the postulates: (1 two surfaces share a common single contact point without any mutual penetration and a common tangent plane at the contact point and (2 each path length of running of the contact point on the robot fingertip surface and the object surface is equal. It is shown that a set of Euler-Lagrange equations of motion of the fingers-object system can be derived by introducing Lagrange multipliers corresponding to geometric conditions of contacts. A set of 1st-order differential equations governing rotational motions of each fingertip and the object and updating arc-length parameters should be accompanied with the Euler-Lagrange equations. Further more, nonholonomic constraints arising from twisting between the two normal axes to each tangent plane are rewritten into a set of Frenet-Serre equations with a geometrically given normal curvature and a motion-induced geodesic curvature.

  12. Development of stress boundary conditions in smoothed particle hydrodynamics (SPH) for the modeling of solids deformation

    Science.gov (United States)

    Douillet-Grellier, Thomas; Pramanik, Ranjan; Pan, Kai; Albaiz, Abdulaziz; Jones, Bruce D.; Williams, John R.

    2017-10-01

    This paper develops a method for imposing stress boundary conditions in smoothed particle hydrodynamics (SPH) with and without the need for dummy particles. SPH has been used for simulating phenomena in a number of fields, such as astrophysics and fluid mechanics. More recently, the method has gained traction as a technique for simulation of deformation and fracture in solids, where the meshless property of SPH can be leveraged to represent arbitrary crack paths. Despite this interest, application of boundary conditions within the SPH framework is typically limited to imposed velocity or displacement using fictitious dummy particles to compensate for the lack of particles beyond the boundary interface. While this is enough for a large variety of problems, especially in the case of fluid flow, for problems in solid mechanics there is a clear need to impose stresses upon boundaries. In addition to this, the use of dummy particles to impose a boundary condition is not always suitable or even feasibly, especially for those problems which include internal boundaries. In order to overcome these difficulties, this paper first presents an improved method for applying stress boundary conditions in SPH with dummy particles. This is then followed by a proposal of a formulation which does not require dummy particles. These techniques are then validated against analytical solutions to two common problems in rock mechanics, the Brazilian test and the penny-shaped crack problem both in 2D and 3D. This study highlights the fact that SPH offers a good level of accuracy to solve these problems and that results are reliable. This validation work serves as a foundation for addressing more complex problems involving plasticity and fracture propagation.

  13. Endobronchial Ultrasound Reliably Quantifies Airway Smooth Muscle Remodeling in an Equine Asthma Model.

    Directory of Open Access Journals (Sweden)

    Michela Bullone

    Full Text Available Endobronchial ultrasonography (EBUS revealed differences in the thickness of the layer representing subepithelial tissues (L2 between human asthmatics and controls, but whether this measurement correlates with airway smooth muscle (ASM remodeling in asthma is unknown. In this study, we sought to determine the ability of EBUS to predict histological ASM remodeling in normal and equine asthmatic airways. We studied 109 isolated bronchi from the lungs of 13 horses. They underwent EBUS examination using a 30 MHz radial probe before being processed for histology. ASM remodeling parameters were evaluated in EBUS images (L2 thickness, L2 area, L2 area/internal perimeter [Pi] and L2 area/Pi2 and histological cuts (ASM area/Pi2, and compared. EBUS was then performed ex vivo on the lungs of 4 horses with heaves, an asthma-like condition of horses, and 7 controls to determine whether central bronchial remodeling could be detected with this technique. An optimized approach was developed based on data variability within airways, subjects, and groups, and then validated in 7 horses (3 controls, 4 with heaves that underwent EBUS in vivo. L2 area was significantly associated to ASM area in isolated lungs (p<0.0001, in the absence of significant bias related to the airway size. Bronchial size significantly affected EBUS ASM-related parameters, except for L2 area/Pi2. L2 area/Pi2 was increased in the airways of asthmatic horses compared to controls, both ex vivo and in vivo (p<0.05. Bronchial histology confirmed our findings (AASM/Pi2 was increased in asthmatic horses compared to controls, p<0.05. In both horses with heaves and controls, L2 was composed of ASM for the outer 75% of its thickness and by ECM for the remaining inner 25%. In conclusion, EBUS reliably allows assessment of asthma-associated ASM remodeling of central airways in a non-invasive way.

  14. Generalizing smooth transition autoregressions

    DEFF Research Database (Denmark)

    Chini, Emilio Zanetti

    We introduce a variant of the smooth transition autoregression - the GSTAR model - capable to parametrize the asymmetry in the tails of the transition equation by using a particular generalization of the logistic function. A General-to-Specific modelling strategy is discussed in detail, with part......We introduce a variant of the smooth transition autoregression - the GSTAR model - capable to parametrize the asymmetry in the tails of the transition equation by using a particular generalization of the logistic function. A General-to-Specific modelling strategy is discussed in detail......, with particular emphasis on two different LM-type tests for the null of symmetric adjustment towards a new regime and three diagnostic tests, whose power properties are explored via Monte Carlo experiments. Four classical real datasets illustrate the empirical properties of the GSTAR, jointly to a rolling...

  15. Driven, underdamped Frenkel-Kontorova model on a quasiperiodic substrate

    International Nuclear Information System (INIS)

    Vanossi, A.; Ro''der, J.; Bishop, A. R.; Bortolani, V.

    2001-01-01

    We consider the underdamped dynamics of a chain of atoms subject to a dc driving force and a quasiperiodic substrate potential. The system has three inherent length scales which we take to be mutually incommensurate. We find that when the length scales are related by the spiral mean (a cubic irrational) there exists a value of the interparticle interaction strength above which the static friction is zero. When the length scales are related by the golden mean (a quadratic irrational) the static friction is always nonzero. >From considerations based on the connection of this problem to standard map theory, we postulate that zero static friction is generally possible for incommensurate ratios of the length scales involved. However, when the length scales are quadratic irrationals, or have some commensurability with each other, the static friction will be nonzero for all choices of interaction parameters. We also comment on the nature of the depinning mechanisms and the steady states achieved by the moving chain

  16. A Modeling Comparison of Methanogenesis from Noncompetitive vs Competitive Substrates in a Simulated Hypersaline Microbial Mat

    Science.gov (United States)

    Decker, K. L.; Potter, C.; Hoehler, T.

    2005-12-01

    The well-documented assumption about methanogens that co-occur in hypersaline mat communities with sulfate-reducing bacteria (SRB) is that they rely entirely on non-competitive substrates for methanogenesis. The reason for this is that during sulfate reduction, sulfur-reducing bacteria efficiently utilize H2, leaving a concentration too low for methanogenesis. Early results from recent work on a hypersaline microbial mat from salt evaporation ponds of Guerrero Negro, Baja, Mexico cast doubt that methanogenesis only occurs via non-competitive substrates, because it shows an excess of H2 in the mat rather than a paucity. We explore the use of our simulation model of the microbial biogeochemistry of a hypersaline mat (named MBGC) to compare methane production rates in a 1 cm thick mat when the methanogens use competitive substrates versus noncompetitive substrates. In the `non-competitive substrate' version of the model, methanogens rely exclusively on methylated amines that are accumulated as compatible solutes in cyanobacteria and released after lysis. In contrast, the `competitive substrate' models examine methanogen use of substrates (such as H2 + acetate) with different SRB population sizes (from absent to low). The comparison of these models of methane and sulfide biogeochemistry of a hypersaline mat has both ecological and geobiological significance, as one hypothesis of Archean microbial mats is that they existed in a low sulfate environment.

  17. Logistic growth models of China pinks, cultivated on seven substrates, as a function of degree days

    Directory of Open Access Journals (Sweden)

    Marília Milani

    Full Text Available ABSTRACT: The objective of this study was to characterize the height (H and leaf number (LN of China pinks, grown in seven substrates, as a function of degree days, using the logistic growth model. H and LN were measured from 56 plants per substrate, for 392 plants in total. Plants that were grown on substrates formed of 50% soil with 50% rice husk ash (50% S + 50% RH and 80% rice husk ash with 20% worm castings (80% RH + 20% W had the longest vegetative growth period (74d, corresponding to 1317.9ºCd. The logistic growth model, adjusted for H, showed differences in the estimation of maximum expected height (α between the substrates, with values between 10.47cm for 50% S + 50% RH and 35.75cm for Mecplant(r. When α was estimated as LN, variation was also observed between the different substrates, from approximately 30 leaves on plants growing on 50% S + 50% RH to 34 leaves on the plants growing on the substrate formed of 80% RH + 20% W. Growth of China pinks can be characterized using H or LN in the logistic growth model as a function of degree days, being the provided plants adequately fertilized. The best substrates in terms of maximum height and leaf number were 80% soil + 20% worm castings and Mecplant(r. However, users must recalibrate the model with the estimated parameters before applying it to different growing conditions.

  18. A phenomenological model of coating/substrate adhesion and interfacial bimetallic peeling stress in composite mirrors

    Science.gov (United States)

    Mcelroy, Paul M.; Lawson, Daniel D.

    1990-01-01

    Adhesion and interfacial stress between metal films and structural composite material substrates is discussed. A theoretical and conceptual basis for selecting coating materials for composite mirror substrates is described. A phenomenological model that interrelates cohesive tensile strength of thin film coatings and interfacial peeling stresses is presented. The model serves as a basis in determining gradiated materials response and compatibility of composite substrate and coating combinations. Parametric evaluation of material properties and geometrical factors such as coating thickness are used to determine the threshold stress levels for maintaining adhesion at the different interfaces.

  19. Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations

    NARCIS (Netherlands)

    Thieulot, C; Janssen, LPBM; Espanol, P

    We present a thermodynamically consistent discrete fluid particle model for the simulation of a recently proposed set of hydrodynamic equations for a phase separating van der Waals fluid mixture [P. Espanol and C.A.P. Thieulot, J. Chem. Phys. 118, 9109 (2003)]. The discrete model is formulated by

  20. 4D RECONSTRUCTIONS FROM LOW-COUNT SPECT DATA USING DEFORMABLE MODELS WITH SMOOTH INTERIOR INTENSITY VARIATIONS

    International Nuclear Information System (INIS)

    Cunningham, G. S.; Lehovich, A.

    2000-01-01

    The Bayes Inference Engine (BIE) has been used to perform a 4D reconstruction of a first-pass radiotracer bolus distribution inside a CardioWest Total Artificial Heart, imaged with the University of Arizona's FastSPECT system. The BIE estimates parameter values that define the 3D model of the radiotracer distribution at each of 41 times spanning about two seconds. The 3D models have two components: a closed surface, composed of hi-quadratic Bezier triangular surface patches, that defines the interface between the part of the blood pool that contains radiotracer and the part that contains no radiotracer, and smooth voxel-to-voxel variations in intensity within the closed surface. Ideally, the surface estimates the ventricular wall location where the bolus is infused throughout the part of the blood pool contained by the right ventricle. The voxel-to-voxel variations are needed to model an inhomogeneously-mixed bolus. Maximum a posterior (MAP) estimates of the Bezier control points and voxel values are obtained for each time frame. We show new reconstructions using the Bezier surface models, and discuss estimates of ventricular volume as a function of time, ejection fraction, and wall motion. The computation time for our reconstruction process, which directly estimates complex 3D model parameters from the raw data, is performed in a time that is competitive with more traditional voxel-based methods (ML-EM, e.g.)

  1. (MS)SM-like models on smooth Calabi-Yau manifolds from all three heterotic string theories

    International Nuclear Information System (INIS)

    Groot Nibbelink, Stefan

    2015-09-01

    We perform model searches on smooth Calabi-Yau compactifications for both the supersymmetric E 8 x E 8 and SO(32) as well as for the non-supersymmetric SO(16) x SO(16) heterotic strings simultaneously. We consider line bundle backgrounds on both favorable CICYs with relatively small h 11 and the Schoen manifold. Using Gram matrices we systematically analyze the combined consequences of the Bianchi identities and the tree-level Donaldson-Uhlenbeck-Yau equations inside the Kaehler cone. In order to evaluate the model building potential of the three heterotic theories on the various geometries, we perform computer-aided scans. We have generated a large number of GUT-like models (up to over a few hundred thousand on the various geometries for the three heterotic theories) which become (MS)SM-like upon using a freely acting Wilson line. For all three heterotic theories we present tables and figures summarizing the potentially phenomenologically interesting models which were obtained during our model scans.

  2. Optimal Substrate Preheating Model for Thermal Spray Deposition of Thermosets onto Polymer Matrix Composites

    Science.gov (United States)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Tsurikov, A.; Sutter, J. K.

    2003-01-01

    High velocity oxy-fuel (HVOF) sprayed, functionally graded polyimide/WC-Co composite coatings on polymer matrix composites (PMC's) are being investigated for applications in turbine engine technologies. This requires that the polyimide, used as the matrix material, be fully crosslinked during deposition in order to maximize its engineering properties. The rapid heating and cooling nature of the HVOF spray process and the high heat flux through the coating into the substrate typically do not allow sufficient time at temperature for curing of the thermoset. It was hypothesized that external substrate preheating might enhance the deposition behavior and curing reaction during the thermal spraying of polyimide thermosets. A simple analytical process model for the deposition of thermosetting polyimide onto polymer matrix composites by HVOF thermal spray technology has been developed. The model incorporates various heat transfer mechanisms and enables surface temperature profiles of the coating to be simulated, primarily as a function of substrate preheating temperature. Four cases were modeled: (i) no substrate preheating; (ii) substrates electrically preheated from the rear; (iii) substrates preheated by hot air from the front face; and (iv) substrates electrically preheated from the rear and by hot air from the front.

  3. A smooth transition logit model of the effects of deregulation in the electricity market

    DEFF Research Database (Denmark)

    Hurn, A. Stan; Silvennoinen, Annastiina; Teräsvirta, Timo

    2016-01-01

    of the model are derived along with their asymptotic properties, together with a Lagrange multiplier test of the null hypothesis of linearity in the underlying latent index. The development of the STL model is motivated by the desire to assess the impact of deregulation in the Queensland electricity market...... and ascertain whether increased competition has resulted in significant changes in the behaviour of the spot price of electricity, specifically with respect to the occurrence of periodic abnormally high prices. The model allows the timing of any change to be endogenously determined and also market participants...

  4. Kinetic models of cell growth, substrate utilization and bio ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-02

    May 2, 2008 ... Aspergillus fumigatus. A simple model was proposed using the Logistic Equation for the growth, ... costs and also involved in less sophisticated fermentation ... apply and they are accurately proved that the model can express ...

  5. Lake Area Analysis Using Exponential Smoothing Model and Long Time-Series Landsat Images in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Gonghao Duan

    2018-01-01

    Full Text Available The loss of lake area significantly influences the climate change in a region, and this loss represents a serious and unavoidable challenge to maintaining ecological sustainability under the circumstances of lakes that are being filled. Therefore, mapping and forecasting changes in the lake is critical for protecting the environment and mitigating ecological problems in the urban district. We created an accessible map displaying area changes for 82 lakes in the Wuhan city using remote sensing data in conjunction with visual interpretation by combining field data with Landsat 2/5/7/8 Thematic Mapper (TM time-series images for the period 1987–2013. In addition, we applied a quadratic exponential smoothing model to forecast lake area changes in Wuhan city. The map provides, for the first time, estimates of lake development in Wuhan using data required for local-scale studies. The model predicted a lake area reduction of 18.494 km2 in 2015. The average error reached 0.23 with a correlation coefficient of 0.98, indicating that the model is reliable. The paper provided a numerical analysis and forecasting method to provide a better understanding of lake area changes. The modeling and mapping results can help assess aquatic habitat suitability and property planning for Wuhan lakes.

  6. Bayesian hierarchical models for smoothing in two-phase studies, with application to small area estimation.

    Science.gov (United States)

    Ross, Michelle; Wakefield, Jon

    2015-10-01

    Two-phase study designs are appealing since they allow for the oversampling of rare sub-populations which improves efficiency. In this paper we describe a Bayesian hierarchical model for the analysis of two-phase data. Such a model is particularly appealing in a spatial setting in which random effects are introduced to model between-area variability. In such a situation, one may be interested in estimating regression coefficients or, in the context of small area estimation, in reconstructing the population totals by strata. The efficiency gains of the two-phase sampling scheme are compared to standard approaches using 2011 birth data from the research triangle area of North Carolina. We show that the proposed method can overcome small sample difficulties and improve on existing techniques. We conclude that the two-phase design is an attractive approach for small area estimation.

  7. Filtering and smoothing of stae vector for diffuse state space models

    NARCIS (Netherlands)

    Koopman, S.J.; Durbin, J.

    2003-01-01

    This paper presents exact recursions for calculating the mean and mean square error matrix of the state vector given the observations for the multi-variate linear Gaussian state-space model in the case where the initial state vector is (partially) diffuse.

  8. Specification, Estimation and Evaluation of Vector Smooth Transition Autoregressive Models with Applications

    DEFF Research Database (Denmark)

    Teräsvirta, Timo; Yang, Yukai

    is illustrated by two applications. In the first one, the dynamic relationship between the US gasoline price and consumption is studied and possible asymmetries in it considered. The second application consists of modelling two well known Icelandic riverflow series, previously considered by many hydrologists...

  9. Modeling the hemodynamic response in fMRI using smooth FIR filters

    DEFF Research Database (Denmark)

    Goutte, Cyril; Nielsen, Finn Årup; Hansen, Lars Kai

    2000-01-01

    Modeling the hemodynamic response in functional magnetic resonance (fMRI) experiments is an important aspect of the analysis of functional neuroimages. This has been done in the past using parametric response function, from a limited family. In this contribution, the authors adopt a semi...

  10. Integration of statistical modeling and high-content microscopy to systematically investigate cell-substrate interactions.

    Science.gov (United States)

    Chen, Wen Li Kelly; Likhitpanichkul, Morakot; Ho, Anthony; Simmons, Craig A

    2010-03-01

    Cell-substrate interactions are multifaceted, involving the integration of various physical and biochemical signals. The interactions among these microenvironmental factors cannot be facilely elucidated and quantified by conventional experimentation, and necessitate multifactorial strategies. Here we describe an approach that integrates statistical design and analysis of experiments with automated microscopy to systematically investigate the combinatorial effects of substrate-derived stimuli (substrate stiffness and matrix protein concentration) on mesenchymal stem cell (MSC) spreading, proliferation and osteogenic differentiation. C3H10T1/2 cells were grown on type I collagen- or fibronectin-coated polyacrylamide hydrogels with tunable mechanical properties. Experimental conditions, which were defined according to central composite design, consisted of specific permutations of substrate stiffness (3-144 kPa) and adhesion protein concentration (7-520 microg/mL). Spreading area, BrdU incorporation and Runx2 nuclear translocation were quantified using high-content microscopy and modeled as mathematical functions of substrate stiffness and protein concentration. The resulting response surfaces revealed distinct patterns of protein-specific, substrate stiffness-dependent modulation of MSC proliferation and differentiation, demonstrating the advantage of statistical modeling in the detection and description of higher-order cellular responses. In a broader context, this approach can be adapted to study other types of cell-material interactions and can facilitate the efficient screening and optimization of substrate properties for applications involving cell-material interfaces. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Surface structures of equilibrium restricted curvature model on two fractal substrates

    International Nuclear Information System (INIS)

    Song Li-Jian; Tang Gang; Zhang Yong-Wei; Han Kui; Xun Zhi-Peng; Xia Hui; Hao Da-Peng; Li Yan

    2014-01-01

    With the aim to probe the effects of the microscopic details of fractal substrates on the scaling of discrete growth models, the surface structures of the equilibrium restricted curvature (ERC) model on Sierpinski arrowhead and crab substrates are analyzed by means of Monte Carlo simulations. These two fractal substrates have the same fractal dimension d f , but possess different dynamic exponents of random walk z rw . The results show that the surface structure of the ERC model on fractal substrates are related to not only the fractal dimension d f , but also to the microscopic structures of the substrates expressed by the dynamic exponent of random walk z rw . The ERC model growing on the two substrates follows the well-known Family—Vicsek scaling law and satisfies the scaling relations 2α + d f ≍ z ≍ 2z rw . In addition, the values of the scaling exponents are in good agreement with the analytical prediction of the fractional Mullins—Herring equation. (general)

  12. Smooth model surfaces from lignin derivatives. II. Adsorption of polyelectrolytes and PECs monitored by QCM-D.

    Science.gov (United States)

    Norgren, Magnus; Gärdlund, Linda; Notley, Shannon M; Htun, Myat; Wågberg, Lars

    2007-03-27

    For the first time to the knowledge of the authors, well-defined and stable lignin model surfaces have been utilized as substrates in polyelectrolyte adsorption studies. The adsorption of polyallylamine (PAH), poly(acrylic acid) (PAA), and polyelectrolyte complexes (PECs) was monitored using quartz crystal microgravimetry with dissipation (QCM-D). The PECs were prepared by mixing PAH and PAA at different ratios and sequences, creating both cationic and anionic PECs with different charge levels. The adsorption experiments were performed in 1 and 10 mM sodium chloride solutions at pH 5 and 7.5. The highest adsorption of PAH and cationic PECs was found at pH 7.5, where the slightly negatively charged nature of the lignin substrate is more pronounced, governing electrostatic attraction of oppositely charged polymeric substances. An increase in the adsorption was further found when the electrolyte concentration was increased. In comparison, both PAA and the anionic PEC showed remarkably high adsorption to the lignin model film. The adsorption of PAA was further studied on silica and was found to be relatively low even at high electrolyte concentrations. This indicated that the high PAA adsorption on the lignin films was not induced by a decreased solubility of the anionic polyelectrolyte. The high levels of adsorption on lignin model surfaces found both for PAA and the anionic PAA-PAH polyelectrolyte complex points to the presence of strong nonionic interactions in these systems.

  13. Model-Based Photoacoustic Image Reconstruction using Compressed Sensing and Smoothed L0 Norm

    OpenAIRE

    Mozaffarzadeh, Moein; Mahloojifar, Ali; Nasiriavanaki, Mohammadreza; Orooji, Mahdi

    2018-01-01

    Photoacoustic imaging (PAI) is a novel medical imaging modality that uses the advantages of the spatial resolution of ultrasound imaging and the high contrast of pure optical imaging. Analytical algorithms are usually employed to reconstruct the photoacoustic (PA) images as a result of their simple implementation. However, they provide a low accurate image. Model-based (MB) algorithms are used to improve the image quality and accuracy while a large number of transducers and data acquisition a...

  14. A comprehensive model of anaerobic bioconversion of complex substrates to biogas

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, Lars; Ahring, Birgitte Kiær

    1999-01-01

    A dynamic model describing the anaerobic degradation of complex material, and codigestion of different types of wastes, was developed based on a model previously described (Angelidaki et al., 1993). in the model, the substrate is described by its composition of basic organic components, i.e., car...

  15. Multi-scale and multi-physics model of the uterine smooth muscle with mechanotransduction.

    Science.gov (United States)

    Yochum, Maxime; Laforêt, Jérémy; Marque, Catherine

    2018-02-01

    Preterm labor is an important public health problem. However, the efficiency of the uterine muscle during labor is complex and still poorly understood. This work is a first step towards a model of the uterine muscle, including its electrical and mechanical components, to reach a better understanding of the uterus synchronization. This model is proposed to investigate, by simulation, the possible role of mechanotransduction for the global synchronization of the uterus. The electrical diffusion indeed explains the local propagation of contractile activity, while the tissue stretching may play a role in the synchronization of distant parts of the uterine muscle. This work proposes a multi-physics (electrical, mechanical) and multi-scales (cell, tissue, whole uterus) model, which is applied to a realistic uterus 3D mesh. This model includes electrical components at different scales: generation of action potentials at the cell level, electrical diffusion at the tissue level. It then links these electrical events to the mechanical behavior, at the cellular level (via the intracellular calcium concentration), by simulating the force generated by each active cell. It thus computes an estimation of the intra uterine pressure (IUP) by integrating the forces generated by each active cell at the whole uterine level, as well as the stretching of the tissue (by using a viscoelastic law for the behavior of the tissue). It finally includes at the cellular level stretch activated channels (SACs) that permit to create a loop between the mechanical and the electrical behavior (mechanotransduction). The simulation of different activated regions of the uterus, which in this first "proof of concept" case are electrically isolated, permits the activation of inactive regions through the stretching (induced by the electrically active regions) computed at the whole organ scale. This permits us to evidence the role of the mechanotransduction in the global synchronization of the uterus. The

  16. Causal Mediation Analysis for the Cox Proportional Hazards Model with a Smooth Baseline Hazard Estimator.

    Science.gov (United States)

    Wang, Wei; Albert, Jeffrey M

    2017-08-01

    An important problem within the social, behavioral, and health sciences is how to partition an exposure effect (e.g. treatment or risk factor) among specific pathway effects and to quantify the importance of each pathway. Mediation analysis based on the potential outcomes framework is an important tool to address this problem and we consider the estimation of mediation effects for the proportional hazards model in this paper. We give precise definitions of the total effect, natural indirect effect, and natural direct effect in terms of the survival probability, hazard function, and restricted mean survival time within the standard two-stage mediation framework. To estimate the mediation effects on different scales, we propose a mediation formula approach in which simple parametric models (fractional polynomials or restricted cubic splines) are utilized to approximate the baseline log cumulative hazard function. Simulation study results demonstrate low bias of the mediation effect estimators and close-to-nominal coverage probability of the confidence intervals for a wide range of complex hazard shapes. We apply this method to the Jackson Heart Study data and conduct sensitivity analysis to assess the impact on the mediation effects inference when the no unmeasured mediator-outcome confounding assumption is violated.

  17. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    Science.gov (United States)

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-04-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  18. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    Science.gov (United States)

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-01-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  19. A model of smooth muscle cell synchronization in the arterial wall

    DEFF Research Database (Denmark)

    Jacobsen, Jens Christian; Aalkjær, Christian; Nilsson, Holger

    2007-01-01

    Vasomotion is a rhythmic variation in microvascular diameter. Although known for more than 150 years, the cellular processes underlying initiation of vasomotion are not fully understood. In the present study a model of a single cell is extended by coupling a number of cells into a tube. The simul......Vasomotion is a rhythmic variation in microvascular diameter. Although known for more than 150 years, the cellular processes underlying initiation of vasomotion are not fully understood. In the present study a model of a single cell is extended by coupling a number of cells into a tube...... reticulum (SR) calcium, membrane depolarization and influx of extra-cellular calcium. Low [cGMP] is associated only with unsynchronized waves. At intermediate concentrations, cells display either waves or whole-cell oscillations, but these remain unsynchronized between cells. Whole-cell oscillations...... are associated with rhythmic variation in membrane potential and flow of current through gap junctions. The amplitude of these oscillations in potential grows with increasing [cGMP], and, past a certain threshold, they become strong enough to entrain all cells in the vascular wall, thereby initiating sustained...

  20. The role of inflammation resolution speed in airway smooth muscle mass accumulation in asthma: insight from a theoretical model.

    Directory of Open Access Journals (Sweden)

    Igor L Chernyavsky

    Full Text Available Despite a large amount of in vitro data, the dynamics of airway smooth muscle (ASM mass increase in the airways of patients with asthma is not well understood. Here, we present a novel mathematical model that describes qualitatively the growth dynamics of ASM cells over short and long terms in the normal and inflammatory environments typically observed in asthma. The degree of ASM accumulation can be explained by an increase in the rate at which ASM cells switch between non-proliferative and proliferative states, driven by episodic inflammatory events. Our model explores the idea that remodelling due to ASM hyperplasia increases with the frequency and magnitude of these inflammatory events, relative to certain sensitivity thresholds. It highlights the importance of inflammation resolution speed by showing that when resolution is slow, even a series of small exacerbation events can result in significant remodelling, which persists after the inflammatory episodes. In addition, we demonstrate how the uncertainty in long-term outcome may be quantified and used to design an optimal low-risk individual anti-proliferative treatment strategy. The model shows that the rate of clearance of ASM proliferation and recruitment factors after an acute inflammatory event is a potentially important, and hitherto unrecognised, target for anti-remodelling therapy in asthma. It also suggests new ways of quantifying inflammation severity that could improve prediction of the extent of ASM accumulation. This ASM growth model should prove useful for designing new experiments or as a building block of more detailed multi-cellular tissue-level models.

  1. A SAS IML Macro for Loglinear Smoothing

    Science.gov (United States)

    Moses, Tim; von Davier, Alina

    2011-01-01

    Polynomial loglinear models for one-, two-, and higher-way contingency tables have important applications to measurement and assessment. They are essentially regarded as a smoothing technique, which is commonly referred to as loglinear smoothing. A SAS IML (SAS Institute, 2002a) macro was created to implement loglinear smoothing according to…

  2. Modeling of the Bacillus subtilis Bacterial Biofilm Growing on an Agar Substrate

    Directory of Open Access Journals (Sweden)

    Xiaoling Wang

    2015-01-01

    Full Text Available Bacterial biofilms are organized communities composed of millions of microorganisms that accumulate on almost any kinds of surfaces. In this paper, a biofilm growth model on an agar substrate is developed based on mass conservation principles, Fick’s first law, and Monod’s kinetic reaction, by considering nutrient diffusion between biofilm and agar substrate. Our results show biofilm growth evolution characteristics such as biofilm thickness, active biomass, and nutrient concentration in the agar substrate. We quantitatively obtain biofilm growth dependence on different parameters. We provide an alternative mathematical method to describe other kinds of biofilm growth such as multiple bacterial species biofilm and also biofilm growth on various complex substrates.

  3. The Integrin-blocking Peptide RGDS Inhibits Airway Smooth Muscle Remodeling in a Guinea Pig Model of Allergic Asthma

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Bos, I. Sophie T.; Gosens, Reinoud; Halayko, Andrew J.; Zaagsma, Johan; Meurs, Herman

    2010-01-01

    Rationale: Airway remodeling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyper-responsiveness in asthma. The mechanisms driving these changes are, however, incompletely understood. Recently, an important role for extracellular matrix proteins in

  4. The Kinetics of Myosin Light Chain Kinase Activation of Smooth Muscle Myosin in an In Vitro Model System

    OpenAIRE

    Hong, Feng; Facemyer, Kevin C.; Carter, Michael S.; Jackson, Del R.; Haldeman, Brian D.; Ruana, Nick; Sutherland, Cindy; Walsh, Michael P.; Cremo, Christine R.; Baker, Josh E.

    2013-01-01

    During activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca2+-CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vi...

  5. Impaired Bronchoprotection Is Not Induced by Increased Smooth Muscle Mass in Chronic Treatment In Vivo with Formoterol in Asthmatic Mouse Model

    Directory of Open Access Journals (Sweden)

    W Luo

    2014-09-01

    Full Text Available Objective: Inhaling β2-adrenoceptor agonist is first-line asthma treatment, which is used for both acute relief and prevention of bronchoconstriction. However, chronic use of β-agonists results in impaired bronchoprotection and increasing occurrences of severe asthma exacerbation, even death in clinical practice. The mechanism of β-adrenoceptor hyposensitivity has not been thoroughly elucidated thus far. Bronchial smooth muscle contraction induces airway narrowing and also mediates airway inflammation. Moreover, bronchial smooth muscle mass significantly increases in asthmatics. We aimed to establish an asthmatic model that demonstrated that formoterol induced impaired bronchoprotection and to see whether increased smooth muscle mass played a role in it. Methods: We combined routine allergen challenging (seven weeks with repeated application of formoterol, formoterol plus budesonide or physiological saline in allergen-sensitized BALB/c mouse. The bronchoprotection mediated by β-agonist was measured in five consecutive weeks. Smooth muscle mass was shown by morphometric analysis, and α-actin expression was detected by western blot. Results: The trend of bronchoprotection was wavy in drug interventional groups, which initially increased and then decreased. Chronic treatment with formoterol significantly impaired bronchoprotection. According to the morphometric analysis and α-actin expression, no significant difference was detected in smooth muscle mass in all groups. Conclusion: This experiment successfully established that a chronic asthmatic mouse model, which manifested typical features of asthmatic patients, with chronic use of formoterol, results in a loss of bronchoprotection. No significant difference was detected in smooth muscle mass in all groups, which implied some subcellular signalling changes may be the key points.

  6. Attenuation of chondrogenic transformation in vascular smooth muscle by dietary quercetin in the MGP-deficient mouse model.

    Directory of Open Access Journals (Sweden)

    Kelly E Beazley

    Full Text Available Cartilaginous metaplasia of vascular smooth muscle (VSM is characteristic for arterial calcification in diabetes and uremia and in the background of genetic alterations in matrix Gla protein (MGP. A better understanding of the molecular details of this process is critical for the development of novel therapeutic approaches to VSM transformation and arterial calcification.This study aimed to identify the effects of bioflavonoid quercetin on chondrogenic transformation and calcification of VSM in the MGP-null mouse model and upon TGF-β3 stimulation in vitro, and to characterize the associated alterations in cell signaling.Molecular analysis revealed activation of β-catenin signaling in cartilaginous metaplasia in Mgp-/- aortae in vivo and during chondrogenic transformation of VSMCs in vitro. Quercetin intercepted chondrogenic transformation of VSM and blocked activation of β-catenin both in vivo and in vitro. Although dietary quercetin drastically attenuated calcifying cartilaginous metaplasia in Mgp-/- animals, approximately one-half of total vascular calcium mineral remained as depositions along elastic lamellae.Quercetin is potent in preventing VSM chondrogenic transformation caused by diverse stimuli. Combined with the demonstrated efficiency of dietary quercetin in preventing ectopic chondrogenesis in the MGP-null vasculature, these findings indicate a potentially broad therapeutic applicability of this safe for human consumption bioflavonoid in the therapy of cardiovascular conditions linked to cartilaginous metaplasia of VSM. Elastocalcinosis is a major component of MGP-null vascular disease and is controlled by a mechanism different from chondrogenic transformation of VSM and not sensitive to quercetin.

  7. Economic growth and CO2 emissions: an investigation with smooth transition autoregressive distributed lag models for the 1800-2014 period in the USA.

    Science.gov (United States)

    Bildirici, Melike; Ersin, Özgür Ömer

    2018-01-01

    The study aims to combine the autoregressive distributed lag (ARDL) cointegration framework with smooth transition autoregressive (STAR)-type nonlinear econometric models for causal inference. Further, the proposed STAR distributed lag (STARDL) models offer new insights in terms of modeling nonlinearity in the long- and short-run relations between analyzed variables. The STARDL method allows modeling and testing nonlinearity in the short-run and long-run parameters or both in the short- and long-run relations. To this aim, the relation between CO 2 emissions and economic growth rates in the USA is investigated for the 1800-2014 period, which is one of the largest data sets available. The proposed hybrid models are the logistic, exponential, and second-order logistic smooth transition autoregressive distributed lag (LSTARDL, ESTARDL, and LSTAR2DL) models combine the STAR framework with nonlinear ARDL-type cointegration to augment the linear ARDL approach with smooth transitional nonlinearity. The proposed models provide a new approach to the relevant econometrics and environmental economics literature. Our results indicated the presence of asymmetric long-run and short-run relations between the analyzed variables that are from the GDP towards CO 2 emissions. By the use of newly proposed STARDL models, the results are in favor of important differences in terms of the response of CO 2 emissions in regimes 1 and 2 for the estimated LSTAR2DL and LSTARDL models.

  8. Modeling, analysis and comparison of TSR and OTC methods for MPPT and power smoothing in permanent magnet synchronous generator-based wind turbines

    International Nuclear Information System (INIS)

    Nasiri, M.; Milimonfared, J.; Fathi, S.H.

    2014-01-01

    Highlights: • Small signal modeling of PMSG wind turbine with two controllers are introduced. • Poles and zeroes analyzing of OTC and TSR methods is performed. • Generator output power with varying wind speed in PMSG wind turbine is studied. • MPPT capability of OTC and TSR methods to wind speed variations are compared. • Power smoothing capability and reducing mechanical stress of both methods are studied. - Abstract: This paper presents a small signal modeling of a direct-driven permanent magnet synchronous generator (PMSG) based on wind turbine which is connected to the grid via back-to-back converters. The proposed small signal model includes two maximum power point tracking (MPPT) controllers: tip speed ratio (TSR) control and optimal torque control (OTC). These methods are analytically compared to illustrate MPPT and power smoothing capability. Then, to compare the MPPT and power smoothing operation of the mentioned methods, simulations are performed in MATLAB/Simulink software. From the simulation results, OTC is highly efficient in power smoothing enhancement and has clearly good performance to extract maximum power from wind; however, TSR control has definitely fast responses to wind speed variations with the expense of higher fluctuations due to its non-minimum phase characteristic

  9. Advantage of make-to-stock strategy based on linear mixed-effect model: a comparison with regression, autoregressive, times series, and exponential smoothing models

    Directory of Open Access Journals (Sweden)

    Yu-Pin Liao

    2017-11-01

    Full Text Available In the past few decades, demand forecasting has become relatively difficult due to rapid changes in the global environment. This research illustrates the use of the make-to-stock (MTS production strategy in order to explain how forecasting plays an essential role in business management. The linear mixed-effect (LME model has been extensively developed and is widely applied in various fields. However, no study has used the LME model for business forecasting. We suggest that the LME model be used as a tool for prediction and to overcome environment complexity. The data analysis is based on real data in an international display company, where the company needs accurate demand forecasting before adopting a MTS strategy. The forecasting result from the LME model is compared to the commonly used approaches, including the regression model, autoregressive model, times series model, and exponential smoothing model, with the results revealing that prediction performance provided by the LME model is more stable than using the other methods. Furthermore, product types in the data are regarded as a random effect in the LME model, hence demands of all types can be predicted simultaneously using a single LME model. However, some approaches require splitting the data into different type categories, and then predicting the type demand by establishing a model for each type. This feature also demonstrates the practicability of the LME model in real business operations.

  10. Modeling the electrical resistance of gold film conductors on uniaxially stretched elastomeric substrates

    Science.gov (United States)

    Cao, Wenzhe; Görrn, Patrick; Wagner, Sigurd

    2011-05-01

    The electrical resistance of gold film conductors on polydimethyl siloxane substrates at stages of uniaxial stretching is measured and modeled. The surface area of a gold conductor is assumed constant during stretching so that the exposed substrate takes up all strain. Sheet resistances are calculated from frames of scanning electron micrographs by numerically solving for the electrical potentials of all pixels in a frame. These sheet resistances agree sufficiently well with values measured on the same conductors to give credence to the model of a stretchable network of gold links defined by microcracks.

  11. A discrete model on Sierpinski gasket substrate for a conserved current equation with a conservative noise

    Science.gov (United States)

    Kim, Dae Ho; Kim, Jin Min

    2012-09-01

    A conserved discrete model on the Sierpinski gasket substrate is studied. The interface width W in the model follows the Family-Vicsek dynamic scaling form with growth exponent β ≈ 0.0542, roughness exponent α ≈ 0.240 and dynamic exponent z ≈ 4.42. They satisfy a scaling relation α + z = 2zrw, where zrw is the random walk exponent of the fractal substrate. Also, they are in a good agreement with the predicted values of a fractional Langevin equation \\frac{\\partial h}{\\partial t}={\

  12. A discrete model on Sierpinski gasket substrate for a conserved current equation with a conservative noise

    International Nuclear Information System (INIS)

    Kim, Dae Ho; Kim, Jin Min

    2012-01-01

    A conserved discrete model on the Sierpinski gasket substrate is studied. The interface width W in the model follows the Family–Vicsek dynamic scaling form with growth exponent β ≈ 0.0542, roughness exponent α ≈ 0.240 and dynamic exponent z ≈ 4.42. They satisfy a scaling relation α + z = 2z rw , where z rw is the random walk exponent of the fractal substrate. Also, they are in a good agreement with the predicted values of a fractional Langevin equation where η c is a conservative noise. (paper)

  13. Probing cellular mechanoadaptation using cell-substrate de-adhesion dynamics: experiments and model.

    Science.gov (United States)

    S S, Soumya; Sthanam, Lakshmi Kavitha; Padinhateeri, Ranjith; Inamdar, Mandar M; Sen, Shamik

    2014-01-01

    Physical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types. Trypsin de-adhesion represents a simple experimental framework for probing the contractile mechanics of adherent cells, with de-adhesion timescales shown to scale inversely with cortical stiffness values. In this study, we combine experiments and computation in deciphering the influence of substrate properties in regulating de-adhesion dynamics of adherent cells. We first show that NIH 3T3 fibroblasts cultured on collagen-coated polyacrylamide hydrogels de-adhere faster on stiffer substrates. Using a simple computational model, we qualitatively show how substrate stiffness and cell-substrate bond breakage rate collectively influence de-adhesion timescales, and also obtain analytical expressions of de-adhesion timescales in certain regimes of the parameter space. Finally, by comparing stiffness-dependent experimental and computational de-adhesion responses, we show that faster de-adhesion on stiffer substrates arises due to force-dependent breakage of cell-matrix adhesions. In addition to illustrating the utility of employing trypsin de-adhesion as a biophysical tool for probing mechanoadaptation, our computational results highlight the collective interplay of substrate properties and bond breakage rate in setting de-adhesion timescales.

  14. Modeling of the rough spherical nanoparticles manipulation on a substrate based on the AFM nanorobot

    Science.gov (United States)

    Zakeri, M.; Faraji, J.

    2014-12-01

    In this paper, dynamic behavior of the rough spherical micro/nanoparticles during pulling/pushing on the flat substrate has been investigated and analyzed. For this purpose, at first, two hexagonal roughness models (George and Cooper) were studied and then evaluations for adhesion force were determined for rough particle manipulation on flat substrate. These two models were then changed by using of the Rabinovich theory. Evaluations were determined for contact adhesion force between rough particle and flat substrate; depth of penetration evaluations were determined by the Johnson-Kendall-Roberts contact mechanic theory and the Schwartz method and according to Cooper and George roughness models. Then, the novel contact theory was used to determine a dynamic model for rough micro/nanoparticle manipulation on flat substrate. Finally, simulation of particle dynamic behavior was implemented during pushing of rough spherical gold particles with radii of 50, 150, 400, 600, and 1,000 nm. Results derived from simulations of particles with several rates of roughness on flat substrate indicated that compared to results for flat particles, inherent roughness on particles might reduce the rate of critical force needed for sliding and rolling given particles. Given a fixed radius for roughness value and increased roughness height, evaluations for sliding and rolling critical forces showed greater reduction. Alternately, the rate of critical force was shown to reduce relative to an increased roughness radius. With respect to both models, based on the George roughness model, the predicted rate of adhesion force was greater than that determined in the Cooper roughness model, and as a result, the predicted rate of critical force based on the George roughness model was closer to the critical force value of flat particle.

  15. Two-dimensional modeling of water and heat fluxes in green roof substrates

    Science.gov (United States)

    Suarez, F. I.; Sandoval, V. P.

    2016-12-01

    Due to public concern towards sustainable development, greenhouse gas emissions and energy efficiency, green roofs have become popular in the last years. Green roofs integrate vegetation into infrastructures to reach additional benefits that minimize negative impacts of the urbanization. A properly designed green roof can reduce environmental pollution, noise levels, energetic requirements or surface runoff. The correct performance of green roofs depends on site-specific conditions and on each component of the roof. The substrate and the vegetation layers strongly influence water and heat fluxes on a green roof. The substrate is an artificial media that has an improved performance compared to natural soils as it provides critical resources for vegetation survival: water, nutrients, and a growing media. Hence, it is important to study the effects of substrate properties on green roof performance. The objective of this work is to investigate how the thermal and hydraulic properties affect the behavior of a green roof through numerical modeling. The substrates that were investigated are composed by: crushed bricks and organic soil (S1); peat with perlite (S2); crushed bricks (S3); mineral soil with tree leaves (S4); and a mixture of topsoil and mineral soil (S5). The numerical model utilizes summer-arid meteorological information to evaluate the performance of each substrate. Results show that the area below the water retention curve helps to define the substrate that retains more water. In addition, the non-linearity of the water retention curve can increment the water needed to irrigate the roof. The heat propagation through the roof depends strongly on the hydraulic behavior, meaning that a combination of a substrate with low thermal conductivity and more porosity can reduce the heat fluxes across the roof. Therefore, it can minimize the energy consumed of an air-conditioner system.

  16. A computational model of the ionic currents, Ca2+ dynamics and action potentials underlying contraction of isolated uterine smooth muscle.

    Directory of Open Access Journals (Sweden)

    Wing-Chiu Tong

    2011-04-01

    Full Text Available Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C coupling of uterine smooth muscle cells (USMC. Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: Ca2+ currents (L- and T-type, Na+ current, an hyperpolarization-activated current, three voltage-gated K+ currents, two Ca2+-activated K+ current, Ca2+-activated Cl current, non-specific cation current, Na+-Ca2+ exchanger, Na+-K+ pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area:volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular Ca2+ computed from known Ca2+ fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing [Ca2+]i. This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes, the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, [Ca2+]i and phasic force. In summary, our advanced mathematical model provides a powerful tool to

  17. Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm

    KAUST Repository

    Dreano, Denis; Tandeo, P.; Pulido, M.; Ait-El-Fquih, Boujemaa; Chonavel, T.; Hoteit, Ibrahim

    2017-01-01

    Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended

  18. Effects of electroacupuncture at BL33 on detrusor smooth muscle activity in a rat model of urinary retention.

    Science.gov (United States)

    Liu, Xiaoxu; Liu, Kun; Zhi, Mujun; Mo, Qian; Gao, Xinyan; Liu, Zhishun

    2017-12-01

    Detrusor smooth muscle (DSM) underactivity may lead to urinary retention (UR). Electroacupuncture (EA) at BL33 may be effective in improving DSM contractions. This study aimed to investigate: (1) the effect of EA at BL33; and (2) the effect of different manipulation methods at BL33 on the modulation of DSM contractions in UR rats. 30 male Sprague-Dawley rats were anaesthetised with urethane and modelled by urethral outlet obstruction. First, 2 Hz EA at BL33, SP6 and LI4 wasrandomly applied to the UR rats for 5 min to observe the immediate effects (n=10); second, manual acupuncture (MA) (n=10) and 100 Hz EA (n=10) were applied with the same programme. DSM electromyography (EMG) and cystometrogram data were evaluated. (1) 2 Hz EA at BL33 and SP6 significantly increased DSM discharging frequency (0.80±0.10 Hz, P0.05). Compared with SP6, EA at BL33 had greater positive effects on DSM discharging frequency, duration of discharging, and duration of voiding (all P<0.05). (2) No statistically significant differences were shown between MA, 2 Hz EA and 100 Hz EA interventions when stimulating at BL33, SP6 or LI4. EA at BL33 improved DSM contractions to a greater degree than EA at SP6 or LI4. There were no differences in effect when stimulating using 2 Hz EA, 100 Hz EA and MA. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Intraarterial beta irradiation induces smooth muscle cell apoptosis and reduces medial cellularity in a hypercholesterolemic rabbit restenosis model

    International Nuclear Information System (INIS)

    Verin, Vitali; Popowski, Youri; Bochaton-Piallat, Marie-Luce; Belenger, Jacques; Urban, Philip; Neuville, Pascal; Redard, Mireille; Costa, Manuel; Celetta, Giuseppe; Gabbiani, Giulio

    2000-01-01

    Purpose: Ionizing radiation has been shown to be a powerful inhibitor of neointimal hyperplasia following arterial injury in several animal models of post-percutaneous transluminal coronary angioplasty (post-PTCA) restenosis. This was previously shown to be associated with a reduction in smooth muscle cell (SMC) mitotic activity. This study evaluated the effect of intraarterial beta irradiation on the arterial wall SMC density and apoptosis. Methods and Materials: Twenty-five carotid and 7 iliac arteries of hypercholesterolemic New Zealand white rabbits were injured using the Baumgartner technique. The impact of an 18 Gy beta radiation dose administered after balloon injury was studied and compared to a nonirradiated injured control group. The medial SMC density as well as the percentage of apoptotic cells were determined at 8 days, 21 days, and 6 weeks after injury using an automated computer-based software. Apoptotic cells were identified using in situ end-labeling of fragmented DNA. Results: The values for medial apoptosis in control vs. irradiated arteries were: 0.014 ± 0.023 vs. 0.23 ± 0.28%, p = NS, at 8 days; 0.012 ± 0.018 vs. 0.07 ± 0.07%, p = 0.05, at 21 days; and 0 ± 0 vs. 0.16 ± 0.11%, p = 0.03, at 6 weeks. The overall incidence of medial apoptotic cells at all time points was 0.01 ± 0.017 vs. 0.13 ± 0.14% in controls and irradiated arteries respectively, p = 0.004. Medial SMC density was significantly decreased in irradiated arteries in comparison with controls (p < 0.01 at all time-points). Conclusions: Intraarterial beta irradiation stimulates medial SMC apoptosis in balloon-injured arteries. This, together with a decrease in SMC mitotic activity, contributes to a decrease in the arterial wall cellularity

  20. Growth and substrate consumption of Nitrobacter agilis cells immobilized in carrageenan: part 1. Dynamic modeling.

    Science.gov (United States)

    de Gooijer, C D; Wijffels, R H; Tramper, J

    1991-07-01

    The modeling of the growth of Nitrobacter agilis cell immobilized in kappa-carrageenan is presented. A detailed description is given of the modeling of internal diffusion and growth of cells in the support matrix in addition to external mass transfer resistance. The model predicts the substrate and biomass profiles in the support as well as the macroscopic oxygen consumption rate of the immobilized biocatalyst in time. The model is tested by experiments with continuously operated airlift loop reactors containing cells immobilized in kappa-carrageenan. The model describes experimental data very well. It is clearly shown that external mass transfer may not be neglected. Furthermore, a sensitivity analysis of the parameters at their values during the experiments revealed that apart from the radius of the spheres and the substrate bulk concentration, the external mass transfer resistance coefficient is the most sensitive parameter for our case.

  1. Small- and large-signal modeling of InP HBTs in transferred-substrate technology

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rudolph, Matthias; Jensen, Thomas

    2014-01-01

    In this paper, the small- and large-signal modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. The small-signal equivalent circuit parameters for TS-HBTs in two-terminal and three-terminal configurations are determined by employing...

  2. Modeling of InP HBTs in Transferred-Substrate Technology for Millimeter-Wave Applications

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Rudolph, Matthias; Jensen, Thomas

    2013-01-01

    In this paper, the modeling of InP heterojunction bipolar transistors (HBTs) in transferred substrate (TS) technology is investigated. At first, a direct parameter extraction methodology dedicated to III-V based HBTs is employed to determine the small-signal equivalent circuit parameters from...

  3. EM simulation assisted parameter extraction for the modeling of transferred-substrate InP HBTs

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Weimann, Nils; Doerner, Ralf

    2017-01-01

    In this paper an electromagnetic (EM) simulation assisted parameters extraction procedure is demonstrated for accurate modeling of down-scaled transferred-substrate InP HBTs. The external parasitic network associated with via transitions and device electrodes is carefully extracted from calibrate...

  4. How can cells sense the elasticity of a substrate? An analysis using a cell tensegrity model

    Directory of Open Access Journals (Sweden)

    G De Santis

    2011-10-01

    Full Text Available A eukaryotic cell attaches and spreads on substrates, whether it is the extracellular matrix naturally produced by the cell itself, or artificial materials, such as tissue-engineered scaffolds. Attachment and spreading require the cell to apply forces in the nN range to the substrate via adhesion sites, and these forces are balanced by the elastic response of the substrate. This mechanical interaction is one determinant of cell morphology and, ultimately, cell phenotype. In this paper we use a finite element model of a cell, with a tensegrity structure to model the cytoskeleton of actin filaments and microtubules, to explore the way cells sense the stiffness of the substrate and thereby adapt to it. To support the computational results, an analytical 1D model is developed for comparison. We find that (i the tensegrity hypothesis of the cytoskeleton is sufficient to explain the matrix-elasticity sensing, (ii cell sensitivity is not constant but has a bell-shaped distribution over the physiological matrix-elasticity range, and (iii the position of the sensitivity peak over the matrix-elasticity range depends on the cytoskeletal structure and in particular on the F-actin organisation. Our model suggests that F-actin reorganisation observed in mesenchymal stem cells (MSCs in response to change of matrix elasticity is a structural-remodelling process that shifts the sensitivity peak towards the new value of matrix elasticity. This finding discloses a potential regulatory role of scaffold stiffness for cell differentiation.

  5. Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm

    KAUST Repository

    Dreano, Denis

    2017-04-05

    Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an open-source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.

  6. Modeling Substrate Utilization, Metabolite Production, and Uranium Immobilization in Shewanella oneidensis Biofilms

    Directory of Open Access Journals (Sweden)

    Ryan S. Renslow

    2017-06-01

    Full Text Available In this study, we developed a two-dimensional mathematical model to predict substrate utilization and metabolite production rates in Shewanella oneidensis MR-1 biofilm in the presence and absence of uranium (U. In our model, lactate and fumarate are used as the electron donor and the electron acceptor, respectively. The model includes the production of extracellular polymeric substances (EPS. The EPS bound to the cell surface and distributed in the biofilm were considered bound EPS (bEPS and loosely associated EPS (laEPS, respectively. COMSOL® Multiphysics finite element analysis software was used to solve the model numerically (model file provided in the Supplementary Material. The input variables of the model were the lactate, fumarate, cell, and EPS concentrations, half saturation constant for fumarate, and diffusion coefficients of the substrates and metabolites. To estimate unknown parameters and calibrate the model, we used a custom designed biofilm reactor placed inside a nuclear magnetic resonance (NMR microimaging and spectroscopy system and measured substrate utilization and metabolite production rates. From these data we estimated the yield coefficients, maximum substrate utilization rate, half saturation constant for lactate, stoichiometric ratio of fumarate and acetate to lactate and stoichiometric ratio of succinate to fumarate. These parameters are critical to predicting the activity of biofilms and are not available in the literature. Lastly, the model was used to predict uranium immobilization in S. oneidensis MR-1 biofilms by considering reduction and adsorption processes in the cells and in the EPS. We found that the majority of immobilization was due to cells, and that EPS was less efficient at immobilizing U. Furthermore, most of the immobilization occurred within the top 10 μm of the biofilm. To the best of our knowledge, this research is one of the first biofilm immobilization mathematical models based on experimental

  7. Molecular Modeling of Peroxidase and Polyphenol Oxidase: Substrate Specificity and Active Site Comparison

    Directory of Open Access Journals (Sweden)

    Lalida Shank

    2010-09-01

    Full Text Available Peroxidases (POD and polyphenol oxidase (PPO are enzymes that are well known to be involved in the enzymatic browning reaction of fruits and vegetables with different catalytic mechanisms. Both enzymes have some common substrates, but each also has its specific substrates. In our computational study, the amino acid sequence of grape peroxidase (ABX was used for the construction of models employing homology modeling method based on the X-ray structure of cytosolic ascorbate peroxidase from pea (PDB ID:1APX, whereas the model of grape polyphenol oxidase was obtained directly from the available X-ray structure (PDB ID:2P3X. Molecular docking of common substrates of these two enzymes was subsequently studied. It was found that epicatechin and catechin exhibited high affinity with both enzymes, even though POD and PPO have different binding pockets regarding the size and the key amino acids involved in binding. Predicted binding modes of substrates with both enzymes were also compared. The calculated docking interaction energy of trihydroxybenzoic acid related compounds shows high affinity, suggesting specificity and potential use as common inhibitor to grape ascorbate peroxidase and polyphenol oxidase.

  8. Smoothing of X-ray diffraction data and K (alpha)2 elimination using penalized likelihood and the composite link model

    NARCIS (Netherlands)

    De Rooi, J.J.; Van der Pers, N.M.; Hendrikx, R.W.A.; Delhez, R.; Bottger, A.J.; Eilers, P.H.C.

    2014-01-01

    X-ray diffraction scans consist of series of counts; these numbers obey Poisson distributions with varying expected values. These scans are often smoothed and the K2 component is removed. This article proposes a framework in which both issues are treated. Penalized likelihood estimation is used to

  9. The Effect of Substrate-Bulk Interaction on Hydrolysis Modeling in Anaerobic Digestion Process

    Directory of Open Access Journals (Sweden)

    Antonio Panico

    2014-11-01

    Full Text Available In an Anaerobic Digestion (AD process treating particulate substrates, the size of solids is expected to negatively affect the rate of hydrolysis step and consequently influence the performance of the whole process. To avoid any disadvantage due to size of solids, expensive pre-treatments aimed at disintegrating and solubilizing substrates are commonly conducted prior to AD. This practice is doubtlessly successful, but not always necessary, since some organic substrates, although particulate, once immersed in water, tend to solubilize immediately. This aspect, if properly considered, could result in saving money and time in the AD process, as well as refining the development and calibration of AD mathematical models. The present study is actually aimed at demonstrating, through experiments and mathematical simulations, different results deriving from the AD process performed, under the same operating conditions, on two different substrates, i.e. homemade pasta and carrot batons, having the same particle size, but different chemical composition and texture. Experimental outcomes highlighted the effect of particles size on bio-methane production only from the bio-methanation potential tests (BMP conducted on carrot batons. Similar results were obtained by mathematical model calibration, i.e., different kinetic constants for differently-sized carrot batons and same kinetic constant for differently-sized homemade pasta solids.

  10. Development of Conformation Independent Computational Models for the Early Recognition of Breast Cancer Resistance Protein Substrates

    Directory of Open Access Journals (Sweden)

    Melisa Edith Gantner

    2013-01-01

    Full Text Available ABC efflux transporters are polyspecific members of the ABC superfamily that, acting as drug and metabolite carriers, provide a biochemical barrier against drug penetration and contribute to detoxification. Their overexpression is linked to multidrug resistance issues in a diversity of diseases. Breast cancer resistance protein (BCRP is the most expressed ABC efflux transporter throughout the intestine and the blood-brain barrier, limiting oral absorption and brain bioavailability of its substrates. Early recognition of BCRP substrates is thus essential to optimize oral drug absorption, design of novel therapeutics for central nervous system conditions, and overcome BCRP-mediated cross-resistance issues. We present the development of an ensemble of ligand-based machine learning algorithms for the early recognition of BCRP substrates, from a database of 262 substrates and nonsubstrates compiled from the literature. Such dataset was rationally partitioned into training and test sets by application of a 2-step clustering procedure. The models were developed through application of linear discriminant analysis to random subsamples of Dragon molecular descriptors. Simple data fusion and statistical comparison of partial areas under the curve of ROC curves were applied to obtain the best 2-model combination, which presented 82% and 74.5% of overall accuracy in the training and test set, respectively.

  11. Deterministic three-half-order kinetic model for microbial degradation of added carbon substrates in soil

    International Nuclear Information System (INIS)

    Brunner, W.; Focht, D.D.

    1984-01-01

    The kinetics of mineralization of carbonaceous substrates has been explained by a deterministic model which is applicable to either growth or nongrowth conditions in soils. The mixed-order nature of the model does not require a priori decisions about reaction order, discontinuity period of lag or stationary phase, or correction for endogenous mineralization rates. The integrated equation is simpler than the integrated form of the Monod equation because of the following: (i) only two, rather than four, interdependent constants have to be determined by nonlinear regression analysis, (ii) substrate or product formation can be expressed explicitly as a function of time, (iii) biomass concentration does not have to be known, and (iv) the required initial estimate for the nonlinear regression analysis can be easily obtained from a linearized form rather than from an interval estimate of a differential equation. 14 CO 2 evolution data from soil have been fitted to the model equation. All data except those from irradiated soil gave us better fits by residual sum of squares (RSS) by assuming growth in soil was linear (RSS =0.71) as opposed to exponential (RSS = 2.87). The underlying reasons for growth (exponential versus linear), no growth, and relative degradation rates of substrates are consistent with the basic mechanisms from which the model is derived. 21 references

  12. Electromagnetic Modelling of Raman Enhancement from Nanoscale Structures as a Means to Predict the Efficacy of SERS Substrates

    Directory of Open Access Journals (Sweden)

    Richard J. C. Brown

    2007-01-01

    Full Text Available The requirement to optimise the balance between signal enhancement and reproducibility in surface enhanced Raman spectroscopy (SERS is stimulating the development of novel substrates for enhancing Raman signals. This paper describes the application of finite element electromagnetic modelling to predict the Raman enhancement produced from a variety of SERS substrates with differently sized, spaced and shaped morphologies with nanometre dimensions. For the first time, a theoretical comparison between four major generic types of SERS substrate (including metal nanoparticles, structured surfaces, and sharp tips has been performed and the results are presented and discussed. The results of the modelling are consistent with published experimental data from similar substrates.

  13. On the geometry of a smooth model of a fibre product of families of K3 surfaces

    International Nuclear Information System (INIS)

    Nikol'skaya, O V

    2014-01-01

    The Hodge conjecture on algebraic cycles is proved for a smooth projective model X of a fibre product X 1 × C X 2 of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) X k →C (k=1,2) over a smooth projective curve C under the assumption that, for generic geometric fibres X 1s and X 2s , the ring End Hg(X 1s ) NS Q (X 1s ) ⊥ is an imaginary quadratic field, rankNS(X 1s )≠18, and End Hg(X 2s ) NS Q (X 2s ) ⊥ is a totally real field or else rankNS(X 1s )

  14. Modeling cell-substrate de-adhesion dynamics under fluid shear

    Science.gov (United States)

    Maan, Renu; Rani, Garima; Menon, Gautam I.; Pullarkat, Pramod A.

    2018-07-01

    Changes in cell-substrate adhesion are believed to signal the onset of cancer metastasis, but such changes must be quantified against background levels of intrinsic heterogeneity between cells. Variations in cell-substrate adhesion strengths can be probed through biophysical measurements of cell detachment from substrates upon the application of an external force. Here, we investigate, theoretically and experimentally, the detachment of cells adhered to substrates when these cells are subjected to fluid shear. We present a theoretical framework within which we calculate the fraction of detached cells as a function of shear stress for fast ramps as well as the decay in this fraction at fixed shear stress as a function of time. Using HEK and 3T3 fibroblast cells as experimental model systems, we extract characteristic force scales for cell adhesion as well as characteristic detachment times. We estimate force-scales of  ∼500 pN associated to a single focal contact, and characteristic time-scales of s representing cell-spread-area dependent mean first passage times to the detached state at intermediate values of the shear stress. Variations in adhesion across cell types are especially prominent when cell detachment is probed by applying a time-varying shear stress. These methods can be applied to characterizing changes in cell adhesion in a variety of contexts, including metastasis.

  15. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  16. Low-order modelling of a drop on a highly-hydrophobic substrate: statics and dynamics

    Science.gov (United States)

    Wray, Alexander W.; Matar, Omar K.; Davis, Stephen H.

    2017-11-01

    We analyse the behaviour of droplets resting on highly-hydrophobic substrates. This problem is of practical interest due to its appearance in many physical contexts involving the spreading, wetting, and dewetting of fluids on solid substrates. In mathematical terms, it exhibits an interesting challenge as the interface is multi-valued as a function of the natural Cartesian co-ordinates, presenting a stumbling block to typical low-order modelling techniques. Nonetheless, we show that in the static case, the interfacial shape is governed by the Young-Laplace equation, which may be solved explicitly in terms of elliptic functions. We present simple low-order expressions that faithfully reproduce the shapes. We then consider the dynamic case, showing that the predictions of our low-order model compare favourably with those obtained from direct numerical simulations. We also examine the characteristic flow regimes of interest. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  17. Computational Modelling of Catalytic Properties and Modified Substrates of Fungal B-N-Acetylhexosaminidases

    Czech Academy of Sciences Publication Activity Database

    Kulik, Natallia; Slámová, Kristýna

    2011-01-01

    Roč. 8, č. 3 (2011), s. 270-280 ISSN 1570-193X R&D Projects: GA ČR(CZ) GAP207/11/0629; GA ČR GD305/09/H008; GA MŠk(CZ) LC06010 Institutional research plan: CEZ:AV0Z50200510; CEZ:AV0Z60870520 Keywords : beta-N-Acetylhexosaminidase * computer modelling * modified substrate Subject RIV: CE - Biochemistry Impact factor: 2.406, year: 2011

  18. Global conservation model for a mushy region over a moving substrate

    Science.gov (United States)

    Kyselica, J.; Šimkanin, J.

    2018-03-01

    We study solidification over a cool substrate moving with a relative velocity with respect to the rest of the fluid. A mathematical model based on global conservation of solute is presented. The explicit solutions of the governing equations are found and analysed via the asymptotic methods. The assessment of how the boundary-layer flow influences the physical characteristics of the mushy region is given, together with the discussion of a possible connection with the solidification at the inner core boundary.

  19. Modeling and Design Guidelines for P⁺ Guard Rings in Lightly Doped CMOS Substrates

    DEFF Research Database (Denmark)

    Shen, Ming; Mikkelsen, Jan H.; Zhang, Ke

    2013-01-01

    of ${rm P}^{+}$ guard rings in terms of S-parameters, which is useful for substrate noise mitigation in mixed-signal system-on-chips. Validation of the model has been done by both electromagnetic simulation and experimental results from guard rings implemented using a standard 0.18-$mu{rm m}$ CMOS process....... In addition, design guidelines have been drawn for minimizing the guard ring size while maintaining the noise suppression performance....

  20. Model-based confirmation of alternative substrates of mitochondrial electron transport chain.

    Science.gov (United States)

    Kleessen, Sabrina; Araújo, Wagner L; Fernie, Alisdair R; Nikoloski, Zoran

    2012-03-30

    Discrimination of metabolic models based on high throughput metabolomics data, reflecting various internal and external perturbations, is essential for identifying the components that contribute to the emerging behavior of metabolic processes. Here, we investigate 12 different models of the mitochondrial electron transport chain (ETC) in Arabidopsis thaliana during dark-induced senescence in order to elucidate the alternative substrates to this metabolic pathway. Our findings demonstrate that the coupling of the proposed computational approach, based on dynamic flux balance analysis, with time-resolved metabolomics data results in model-based confirmations of the hypotheses that, during dark-induced senescence in Arabidopsis, (i) under conditions where the main substrate for the ETC are not fully available, isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase are able to donate electrons to the ETC, (ii) phytanoyl-CoA does not act even as an indirect substrate of the electron transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex, and (iii) the mitochondrial γ-aminobutyric acid transporter has functional significance in maintaining mitochondrial metabolism. Our study provides a basic framework for future in silico studies of alternative pathways in mitochondrial metabolism under extended darkness whereby the role of its components can be computationally discriminated based on available molecular profile data.

  1. Considerations in the selection of model substrates for microbiological effects research

    International Nuclear Information System (INIS)

    Francis, A.J.; Rose, A.W.

    1984-01-01

    The physical and chemical characteristics of several energy residues have been briefly reviewed in order to select a model or representative substrate of basic research to determine the significance of anaerobic microbial dissolution and mobilization or immobilization of toxic trace elements under subsurface environmental conditions. The major factors which influence the dissolution and mobilization of trace metals have been critically examined, e.g., (i) effects on pH of leachates (pyrite oxidation), soluble acid, and basic compounds; (ii) effects on oxidation state of leachates (oxidation state of Fe, presence of organics); (iii) concentration of toxic inorganic species, and chemical form; (iv) surface area of waste particles; and (v) physical strength and particle size, with resulting effects on permeability of the substrate. Several major physical and chemical characteristics are common to energy-related residues yet each of these materials has a unique set of physical and chemical properties. The pros and cons of selecting a single model substrate for microbiological research were discussed at the Geochemical and Biochemical Working Group Meeting and use of the end-member concept was suggested. From the abundance, distribution, forms of trace metals present, and volume of these metal-containing residues disposed of in the subsurface environments, microbiological studies can be performed with coal beneficiation and coal gasification residues under a variety of subsurface environmental conditions, and results can be validated in the field. The basic scientific information obtained from this research can be applied to other materials of similar composition. 18 references, 3 figures, 7 tables

  2. Swimming near the substrate: a simple robotic model of stingray locomotion

    International Nuclear Information System (INIS)

    Blevins, Erin; Lauder, George V

    2013-01-01

    Studies of aquatic locomotion typically assume that organisms move through unbounded fluid. However, benthic fishes swim close to the substrate and will experience significant ground effects, which will be greatest for fishes with wide spans such as benthic batoids and flatfishes. Ground effects on fixed-wing flight are well understood, but these models are insufficient to describe the dynamic interactions between substrates and undulating, oscillating fish. Live fish alter their swimming behavior in ground effect, complicating comparisons of near-ground and freestream swimming performance. In this study, a simple, stingray-inspired physical model offers insights into ground effects on undulatory swimmers, contrasting the self-propelled swimming speed, power requirements, and hydrodynamics of fins swimming with fixed kinematics near and far from a solid boundary. Contrary to findings for gliding birds and other fixed-wing fliers, ground effect does not necessarily enhance the performance of undulating fins. Under most kinematic conditions, fins do not swim faster in ground effect, power requirements increase, and the cost of transport can increase by up to 10%. The influence of ground effect varies with kinematics, suggesting that benthic fish might modulate their swimming behavior to minimize locomotor penalties and incur benefits from swimming near a substrate. (paper)

  3. Dynamic Modelling Reveals 'Hotspots' on the Pathway to Enzyme-Substrate Complex Formation.

    Directory of Open Access Journals (Sweden)

    Shane E Gordon

    2016-03-01

    Full Text Available Dihydrodipicolinate synthase (DHDPS catalyzes the first committed step in the diaminopimelate pathway of bacteria, yielding amino acids required for cell wall and protein biosyntheses. The essentiality of the enzyme to bacteria, coupled with its absence in humans, validates DHDPS as an antibacterial drug target. Conventional drug design efforts have thus far been unsuccessful in identifying potent DHDPS inhibitors. Here, we make use of contemporary molecular dynamics simulation and Markov state models to explore the interactions between DHDPS from the human pathogen Staphylococcus aureus and its cognate substrate, pyruvate. Our simulations recover the crystallographic DHDPS-pyruvate complex without a priori knowledge of the final bound structure. The highly conserved residue Arg140 was found to have a pivotal role in coordinating the entry of pyruvate into the active site from bulk solvent, consistent with previous kinetic reports, indicating an indirect role for the residue in DHDPS catalysis. A metastable binding intermediate characterized by multiple points of intermolecular interaction between pyruvate and key DHDPS residue Arg140 was found to be a highly conserved feature of the binding trajectory when comparing alternative binding pathways. By means of umbrella sampling we show that these binding intermediates are thermodynamically metastable, consistent with both the available experimental data and the substrate binding model presented in this study. Our results provide insight into an important enzyme-substrate interaction in atomistic detail that offers the potential to be exploited for the discovery of more effective DHDPS inhibitors and, in a broader sense, dynamic protein-drug interactions.

  4. Predictive modelling of the dielectric response of plasmonic substrates: application to the interpretation of ellipsometric spectra

    Science.gov (United States)

    Pugliara, A.; Bayle, M.; Bonafos, C.; Carles, R.; Respaud, M.; Makasheva, K.

    2018-03-01

    A predictive modelling of plasmonic substrates appropriate to read ellipsometric spectra is presented in this work. We focus on plasmonic substrates containing a single layer of silver nanoparticles (AgNPs) embedded in silica matrices. The model uses the Abeles matrix formalism and is based on the quasistatic approximation of the classical Maxwell-Garnett mixing rule, however accounting for the electronic confinement effect through the damping parameter. It is applied on samples elaborated by: (i) RF-diode sputtering followed by Plasma Enhanced Chemical Vapor Deposition (PECVD) and (ii) Low Energy Ion Beam Synthesis (LE-IBS), and represents situations with increasing degree of complexity that can be accounted for by the model. It allows extraction of the main characteristics of the AgNPs population: average size, volume fraction and distance of the AgNPs layer from the matrix free surface. Model validation is achieved through comparison with results obtained from transmission electron microscopy approving for its applicability. The advantages and limitations of the proposed model are discussed after eccentricity-based statistical analysis along with further developments related to the quality of comparison between the model-generated spectra and the experimentally-recorded ellipsometric spectra.

  5. Modeling gravity effects on water retention and gas transport characteristics in plant growth substrates

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Jones, Scott B.; Tuller, Markus

    2014-01-01

    utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions....... Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air...... that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using...

  6. Two-dimensional discrete dislocation models of deformation in polycrystalline thin metal films on substrates

    International Nuclear Information System (INIS)

    Hartmaier, Alexander; Buehler, Markus J.; Gao, Huajian

    2005-01-01

    The time-dependent irreversible deformation of polycrystalline thin metal films on substrates is investigated using two-dimensional discrete dislocation dynamics models incorporating essential parameters determined from atomistic studies. The work is focused on the mechanical properties of uncapped films, where diffusive processes play an important role. The simulations incorporate dislocation climb along the grain boundary as well as conservative glide. Despite of severe limitations of the two-dimensional dislocation models, the simulation results are found to largely corroborate experimental findings on different dominant deformation mechanisms at different film thicknesses

  7. Computational modelling of multi-cell migration in a multi-signalling substrate

    International Nuclear Information System (INIS)

    Mousavi, Seyed Jamaleddin; Doblaré, Manuel; Doweidar, Mohamed Hamdy

    2014-01-01

    Cell migration is a vital process in many biological phenomena ranging from wound healing to tissue regeneration. Over the past few years, it has been proven that in addition to cell–cell and cell-substrate mechanical interactions (mechanotaxis), cells can be driven by thermal, chemical and/or electrical stimuli. A numerical model was recently presented by the authors to analyse single cell migration in a multi-signalling substrate. That work is here extended to include multi-cell migration due to cell–cell interaction in a multi-signalling substrate under different conditions. This model is based on balancing the forces that act on the cell population in the presence of different guiding cues. Several numerical experiments are presented to illustrate the effect of different stimuli on the trajectory and final location of the cell population within a 3D heterogeneous multi-signalling substrate. Our findings indicate that although multi-cell migration is relatively similar to single cell migration in some aspects, the associated behaviour is very different. For instance, cell–cell interaction may delay single cell migration towards effective cues while increasing the magnitude of the average net cell traction force as well as the local velocity. Besides, the random movement of a cell within a cell population is slightly greater than that of single cell migration. Moreover, higher electrical field strength causes the cell slug to flatten near the cathode. On the other hand, as with single cell migration, the existence of electrotaxis dominates mechanotaxis, moving the cells to the cathode or anode pole located at the free surface. The numerical results here obtained are qualitatively consistent with related experimental works. (paper)

  8. Smooth polyhedral surfaces

    KAUST Repository

    Gü nther, Felix; Jiang, Caigui; Pottmann, Helmut

    2017-01-01

    Polyhedral surfaces are fundamental objects in architectural geometry and industrial design. Whereas closeness of a given mesh to a smooth reference surface and its suitability for numerical simulations were already studied extensively, the aim of our work is to find and to discuss suitable assessments of smoothness of polyhedral surfaces that only take the geometry of the polyhedral surface itself into account. Motivated by analogies to classical differential geometry, we propose a theory of smoothness of polyhedral surfaces including suitable notions of normal vectors, tangent planes, asymptotic directions, and parabolic curves that are invariant under projective transformations. It is remarkable that seemingly mild conditions significantly limit the shapes of faces of a smooth polyhedral surface. Besides being of theoretical interest, we believe that smoothness of polyhedral surfaces is of interest in the architectural context, where vertices and edges of polyhedral surfaces are highly visible.

  9. Smooth polyhedral surfaces

    KAUST Repository

    Günther, Felix

    2017-03-15

    Polyhedral surfaces are fundamental objects in architectural geometry and industrial design. Whereas closeness of a given mesh to a smooth reference surface and its suitability for numerical simulations were already studied extensively, the aim of our work is to find and to discuss suitable assessments of smoothness of polyhedral surfaces that only take the geometry of the polyhedral surface itself into account. Motivated by analogies to classical differential geometry, we propose a theory of smoothness of polyhedral surfaces including suitable notions of normal vectors, tangent planes, asymptotic directions, and parabolic curves that are invariant under projective transformations. It is remarkable that seemingly mild conditions significantly limit the shapes of faces of a smooth polyhedral surface. Besides being of theoretical interest, we believe that smoothness of polyhedral surfaces is of interest in the architectural context, where vertices and edges of polyhedral surfaces are highly visible.

  10. Accessory enzymes influence cellulase hydrolysis of the model substrate and the realistic lignocellulosic biomass.

    Science.gov (United States)

    Sun, Fubao Fuebiol; Hong, Jiapeng; Hu, Jinguang; Saddler, Jack N; Fang, Xu; Zhang, Zhenyu; Shen, Song

    2015-11-01

    The potential of cellulase enzymes in the developing and ongoing "biorefinery" industry has provided a great motivation to develop an efficient cellulase mixture. Recent work has shown how important the role that the so-called accessory enzymes can play in an effective enzymatic hydrolysis. In this study, three newest Novozymes Cellic CTec cellulase preparations (CTec 1/2/3) were compared to hydrolyze steam pretreated lignocellulosic substrates and model substances at an identical FPA loading. These cellulase preparations were found to display significantly different hydrolytic performances irrelevant with the FPA. And this difference was even observed on the filter paper itself when the FPA based assay was revisited. The analysis of specific enzyme activity in cellulase preparations demonstrated that different accessory enzymes were mainly responsible for the discrepancy of enzymatic hydrolysis between diversified substrates and various cellulases. Such the active role of accessory enzymes present in cellulase preparations was finally verified by supplementation with β-glucosidase, xylanase and lytic polysaccharide monooxygenases AA9. This paper provides new insights into the role of accessory enzymes, which can further provide a useful reference for the rational customization of cellulase cocktails in order to realize an efficient conversion of natural lignocellulosic substrates. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Modified kinetic-hydraulic UASB reactor model for treatment of wastewater containing biodegradable organic substrates.

    Science.gov (United States)

    El-Seddik, Mostafa M; Galal, Mona M; Radwan, A G; Abdel-Halim, Hisham S

    2016-01-01

    This paper addresses a modified kinetic-hydraulic model for up-flow anaerobic sludge blanket (UASB) reactor aimed to treat wastewater of biodegradable organic substrates as acetic acid based on Van der Meer model incorporated with biological granules inclusion. This dynamic model illustrates the biomass kinetic reaction rate for both direct and indirect growth of microorganisms coupled with the amount of biogas produced by methanogenic bacteria in bed and blanket zones of reactor. Moreover, the pH value required for substrate degradation at the peak specific growth rate of bacteria is discussed for Andrews' kinetics. The sensitivity analyses of biomass concentration with respect to fraction of volume of reactor occupied by granules and up-flow velocity are also demonstrated. Furthermore, the modified mass balance equations of reactor are applied during steady state using Newton Raphson technique to obtain a suitable degree of freedom for the modified model matching with the measured results of UASB Sanhour wastewater treatment plant in Fayoum, Egypt.

  12. AN X-RAY SPECTRAL MODEL OF REPROCESSING BY SMOOTH AND CLUMPY MOLECULAR TORI IN ACTIVE GALACTIC NUCLEI WITH THE MONACO FRAMEWORK

    Energy Technology Data Exchange (ETDEWEB)

    Furui, Shun’ya; Fukazawa, Yasushi; Ohno, Masanori; Hayashi, Kazuma [Department of Physical Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Odaka, Hirokazu [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Kawaguchi, Toshihiro, E-mail: fukazawa@hep01.hepl.hiroshima-u.ac.jp [Department of Liberal Arts and Sciences, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556 (Japan)

    2016-02-20

    We construct an X-ray spectral model of reprocessing by a torus in an active galactic nucleus (AGN) with the Monte Carlo simulation framework MONACO. Two torus geometries of smooth and clumpy cases are considered and compared. In order to reproduce a Compton shoulder accurately, MONACO includes not only free electron scattering but also bound electron scattering. Raman and Rayleigh scattering are also treated, and scattering cross sections dependent on chemical states of hydrogen and helium are included. Doppler broadening by turbulence velocity can be implemented. Our model gives results consistent with other available models, such as MYTorus, except for differences due to different physical parameters and assumptions. We studied the dependence on torus parameters for a Compton shoulder, and found that a intensity ratio of a Compton shoulder to the line core mainly depends on column density, inclination angle, and metal abundance. For instance, an increase of metal abundance makes a Compton shoulder relatively weak. Also, the shape of a Compton shoulder depends on the column density. Furthermore, these dependences become different between smooth and clumpy cases. Then, we discuss the possibility of ASTRO-H/SXS spectroscopy of Compton shoulders in AGN reflection spectra.

  13. Towards a modeling synthesis of two or three-dimensional circuits through substrate coupling and interconnections

    CERN Document Server

    Gontrand, Christian

    2014-01-01

    The number of transistors in integrated circuits doubles every two years, as stipulated by Moore's law, and this has been the driving force for the huge development of the microelectronics industry in the past 50 years - currently advanced to the nanometric scale.This e-book is dedicated to electronic noises and parasites, accounting for issues involving substrate coupling and interconnections, in the perspective of the 3D integration: a second track for enhancing integration, also compatible with Moore's law. This reference explains the modeling of 3D circuits without delving into the latest

  14. Smoothing of geoelectrical resistivity profiles in order to build a 3D model: A case study from an outcropping limestone block

    Science.gov (United States)

    Tóth, Krisztina; Kovács, Gábor

    2014-05-01

    Geoelectrical imaging is one of the most common survey methods in the field of shallow geophysics. In order to get information from the subsurface electric current is induced into the ground. In our summer camp organized by the Department of Geophysics and Space Sciences, Eötvös Loránd University we have carried out resistivity surveys to get more accurate information about the lithology of the Dorog basin located in the Transdanubian range, Middle Hungary. This study focused on the outcropping limestone block located next to the village Leányvár in the Dorog basin. The main aim of the research is the impoundment of the subsurface continuation of the limestone outcrop. Cable problems occurred during field survey therefore the dataset obtained by the measurement have become very noisy thus we had to gain smoothed data with the appropriate editing steps. The goal was to produce an optimized model to demonstrate the reality beneath the subsurface. In order to achieve better results from the noisy dataset we changed some parameters based on the description of the program. Whereas cable problems occurred we exterminated the bad datum points visually and statistically as well. Because of the noisiness we increased the value of the so called damping factor which is a variable parameter in the equation used by the inversion routine responsible for smoothing the data. The limitation of the range of model resistivity values based on our knowledge about geological environment was also necessary in order to avoid physically unrealistic results. The purpose of the modification was to obtain smoothed and more interpretable geoelectric profiles. The geological background combined with the explanation of the profiles gave us the approximate location of the block. In the final step of the research we created a 3D model with proper location and smoothed resistivity data included. This study was supported by the Hungarian Scientific Research Fund (OTKA NK83400) and was realized

  15. Electrospun gelatin biopapers as substrate for in vitro bilayer models of blood-brain barrier tissue.

    Science.gov (United States)

    Bischel, Lauren L; Coneski, Peter N; Lundin, Jeffrey G; Wu, Peter K; Giller, Carl B; Wynne, James; Ringeisen, Brad R; Pirlo, Russell K

    2016-04-01

    Gaining a greater understanding of the blood-brain barrier (BBB) is critical for improvement in drug delivery, understanding pathologies that compromise the BBB, and developing therapies to protect the BBB. In vitro human tissue models are valuable tools for studying these issues. The standard in vitro BBB models use commercially available cell culture inserts to generate bilayer co-cultures of astrocytes and endothelial cells (EC). Electrospinning can be used to produce customized cell culture substrates with optimized material composition and mechanical properties with advantages over off-the-shelf materials. Electrospun gelatin is an ideal cell culture substrate because it is a natural polymer that can aid cell attachment and be modified and degraded by cells. Here, we have developed a method to produce cell culture inserts with electrospun gelatin "biopaper" membranes. The electrospun fiber diameter and cross-linking method were optimized for the growth of primary human endothelial cell and primary human astrocyte bilayer co-cultures to model human BBB tissue. BBB co-cultures on biopaper were characterized via cell morphology, trans-endothelial electrical resistance (TEER), and permeability to FITC-labeled dextran and compared to BBB co-cultures on standard cell culture inserts. Over longer culture periods (up to 21 days), cultures on the optimized electrospun gelatin biopapers were found to have improved TEER, decreased permeability, and permitted a smaller separation between co-cultured cells when compared to standard PET inserts. © 2016 Wiley Periodicals, Inc.

  16. A lattice Boltzmann model for substrates with regularly structured surface roughness

    Science.gov (United States)

    Yagub, A.; Farhat, H.; Kondaraju, S.; Singh, T.

    2015-11-01

    Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able to replicate the CA on rough surfaces because it lacks a real representation of the physics at work under these conditions. By using a correction factor to influence the interfacial tension within the asperities, the physical forces acting on the droplet at its contact lines were mimicked. This approach allowed the model to replicate some experimentally confirmed Wenzel and Cassie wetting cases. Regular roughness structures with different spacing were used to validate the study using the classical Wenzel and Cassie equations. The present work highlights the strength and weakness of the SC model and attempts to qualitatively conform it to the fundamental physics, which causes a change in the droplet apparent contact angle, when placed on nano/micro structured surfaces.

  17. Dynamic modelling of substrate degradation for urban wastewater treatment by sequencing batch reactor

    International Nuclear Information System (INIS)

    Dere, T.; Demirci, Y.; Cekim, M.

    2014-01-01

    This paper presents the dynamic modelling of substrate degradation for urban wastewater treatment by a pilot-scaled sequencing batch reactor including experimental data of a long-term experimental work performed at different operation conditions. During the study, pH, chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were measured to investigate SBR treatment performance. Optimum operation times were determined and kinetic constant (k) was calculated (0.60 h-1) with using experimental results for urban wastewater. The Model Simulation estimates were very good fit with the experimental data under organic loading degradation conditions model simulation predictions well match with the experimental results under disturbed organic loading conditions. (author)

  18. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes

    DEFF Research Database (Denmark)

    Terp, G E; Christensen, I T; Jørgensen, Flemming Steen

    2000-01-01

    Matrix metalloproteinases are extracellular enzymes taking part in the remodeling of extracellular matrix. The structures of the catalytic domain of MMP1, MMP3, MMP7 and MMP8 are known, but structures of enzymes belonging to this family still remain to be determined. A general approach...... to the homology modeling of matrix metalloproteinases, exemplified by the modeling of MMP2, MMP9, MMP12 and MMP14 is described. The models were refined using an energy minimization procedure developed for matrix metalloproteinases. This procedure includes incorporation of parameters for zinc and calcium ions...... in the AMBER 4.1 force field, applying a non-bonded approach and a full ion charge representation. Energy minimization of the apoenzymes yielded structures with distorted active sites, while reliable three-dimensional structures of the enzymes containing a substrate in active site were obtained. The structural...

  19. Mathematical modelling for the drying method and smoothing drying rate using cubic spline for seaweed Kappaphycus Striatum variety Durian in a solar dryer

    Energy Technology Data Exchange (ETDEWEB)

    M Ali, M. K., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com; Ruslan, M. H., E-mail: majidkhankhan@ymail.com, E-mail: eutoco@gmail.com [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Muthuvalu, M. S., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my; Wong, J., E-mail: sudaram-@yahoo.com, E-mail: jumat@ums.edu.my [Unit Penyelidikan Rumpai Laut (UPRL), Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia); Sulaiman, J., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my; Yasir, S. Md., E-mail: ysuhaimi@ums.edu.my, E-mail: hafidzruslan@eng.ukm.my [Program Matematik dengan Ekonomi, Sekolah Sains dan Teknologi, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah (Malaysia)

    2014-06-19

    The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m{sup 2} and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R{sup 2}), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.

  20. Mathematical modelling for the drying method and smoothing drying rate using cubic spline for seaweed Kappaphycus Striatum variety Durian in a solar dryer

    International Nuclear Information System (INIS)

    M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.

    2014-01-01

    The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m 2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R 2 ), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested

  1. Mathematical modelling for the drying method and smoothing drying rate using cubic spline for seaweed Kappaphycus Striatum variety Durian in a solar dryer

    Science.gov (United States)

    M Ali, M. K.; Ruslan, M. H.; Muthuvalu, M. S.; Wong, J.; Sulaiman, J.; Yasir, S. Md.

    2014-06-01

    The solar drying experiment of seaweed using Green V-Roof Hybrid Solar Drier (GVRHSD) was conducted in Semporna, Sabah under the metrological condition in Malaysia. Drying of sample seaweed in GVRHSD reduced the moisture content from about 93.4% to 8.2% in 4 days at average solar radiation of about 600W/m2 and mass flow rate about 0.5 kg/s. Generally the plots of drying rate need more smoothing compared moisture content data. Special cares is needed at low drying rates and moisture contents. It is shown the cubic spline (CS) have been found to be effective for moisture-time curves. The idea of this method consists of an approximation of data by a CS regression having first and second derivatives. The analytical differentiation of the spline regression permits the determination of instantaneous rate. The method of minimization of the functional of average risk was used successfully to solve the problem. This method permits to obtain the instantaneous rate to be obtained directly from the experimental data. The drying kinetics was fitted with six published exponential thin layer drying models. The models were fitted using the coefficient of determination (R2), and root mean square error (RMSE). The modeling of models using raw data tested with the possible of exponential drying method. The result showed that the model from Two Term was found to be the best models describe the drying behavior. Besides that, the drying rate smoothed using CS shows to be effective method for moisture-time curves good estimators as well as for the missing moisture content data of seaweed Kappaphycus Striatum Variety Durian in Solar Dryer under the condition tested.

  2. Smoothness of limit functors

    Indian Academy of Sciences (India)

    Abstract. Let S be a scheme. Assume that we are given an action of the one dimen- sional split torus Gm,S on a smooth affine S-scheme X. We consider the limit (also called attractor) subfunctor Xλ consisting of points whose orbit under the given action. 'admits a limit at 0'. We show that Xλ is representable by a smooth ...

  3. An Immunosensing System Using Stilbene Glycoside as a Fluorogenic Substrate for an Enzymatic Reaction Model

    Directory of Open Access Journals (Sweden)

    Ya-Fei Tan

    2008-09-01

    Full Text Available A natural product, stilbene glycoside (2,3,5,4’-tetrahydroxydiphenylethylene-2-O-glucoside, TBG, has been evaluated for the first time as a potential substrate for horseradish peroxidase (HRP-catalyzed fluorogenic reactions. The properties of TBG as a fluorogenic substrate for HRP and its application in a fluorometric enzyme-linked immunosensing system were compared with commercially available substrates such as p-hydroxyphenylpropionic acid (pHPPA, chavicol and Amplex red using Brucella melitensis antibody (BrAb as a model analyte. The immunosensing body based on HRP-BrAb was constructed by dispersing graphite, BrAg and paraffin wax at room temperature. In a competitive immunoassay procedure, the BrAb competed with HRP-BrAb to react with the immobilized BrAg. In the enzymatic reaction, the binding HRP-BrAb on the sensing body surface can catalyze the polymerization reaction of TBG by H2O2 forming fluorescent dimers and causing an increase in fluorescence intensity. TBG showed comparable ability for HRP detection and its enzyme-linked immunosensing reaction system, in a linear detection ranging of 3.5´10-8~7.6´10-6g/L and with a detection limit of 1.7´10-9 g/L. The immobilized biocomposite surface could be regenerated with excellent reproducibility (RSD=3.8% by simply polishing with an alumina paper. The proposed immunosensing system has been used to determine the BrAb in rabbit serum samples with satisfactory results.

  4. Numerical modelling of adsorption of metallic particles on graphite substrate via molecular dynamics simulation

    International Nuclear Information System (INIS)

    Rafii-Tabar, H.

    1998-01-01

    A computer-based numerical modelling of the adsorption process of gas phase metallic particles on the surface of a graphite substrate has been performed via the application of molecular dynamics simulation method. The simulation related to an extensive STM-based experiment performed in this field, and reproduces part of the experimental results. Both two-body and many-body inter-atomic potentials have been employed. A Morse-type potential describing the metal-carbon interactions at the interface was specially formulated for this modelling. Intercalation of silver in graphite has been observed as well as the correct alignments of monomers, dimers and two-dimensional islands on the surface. (author)

  5. Component characterization and predictive modeling for green roof substrates optimized to adsorb P and improve runoff quality: A review.

    Science.gov (United States)

    Jennett, Tyson S; Zheng, Youbin

    2018-06-01

    This review is a synthesis of the current knowledge regarding the effects of green roof substrate components and their retentive capacity for nutrients, particularly phosphorus (P). Substrates may behave as either sources or sinks of P depending on the components they are formulated from, and to date, the total P-adsorbing capacity of a substrate has not been quantified as the sum of the contributions of its components. Few direct links have been established among substrate components and their physicochemical characteristics that would affect P-retention. A survey of recent literature presented herein highlights the trends within individual component selection (clays and clay-like material, organics, conventional soil and sands, lightweight inorganics, and industrial wastes and synthetics) for those most common during substrate formulation internationally. Component selection will vary with respect to ease of sourcing component materials, cost of components, nutrient-retention capacity, and environmental sustainability. However, the number of distinct components considered for inclusion in green roof substrates continues to expand, as the desires of growers, material suppliers, researchers and industry stakeholders are incorporated into decision-making. Furthermore, current attempts to characterize the most often used substrate components are also presented whereby runoff quality is correlated to entire substrate performance. With the use of well-described characterization (constant capacitance model) and modeling techniques (the soil assemblage model), it is proposed that substrates optimized for P adsorption may be developed through careful selection of components with prior knowledge of their chemical properties, that may increase retention of P in plant-available forms, thereby reducing green roof fertilizer requirements and P losses in roof runoff. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Exchange rate smoothing in Hungary

    OpenAIRE

    Karádi, Péter

    2005-01-01

    The paper proposes a structural empirical model capable of examining exchange rate smoothing in the small, open economy of Hungary. The framework assumes the existence of an unobserved and changing implicit exchange rate target. The central bank is assumed to use interest rate policy to obtain this preferred rate in the medium term, while market participants are assumed to form rational expectations about this target and influence exchange rates accordingly. The paper applies unobserved varia...

  7. Applying multibeam sonar and mathematical modeling for mapping seabed substrate and biota of offshore shallows

    Science.gov (United States)

    Herkül, Kristjan; Peterson, Anneliis; Paekivi, Sander

    2017-06-01

    Both basic science and marine spatial planning are in a need of high resolution spatially continuous data on seabed habitats and biota. As conventional point-wise sampling is unable to cover large spatial extents in high detail, it must be supplemented with remote sensing and modeling in order to fulfill the scientific and management needs. The combined use of in situ sampling, sonar scanning, and mathematical modeling is becoming the main method for mapping both abiotic and biotic seabed features. Further development and testing of the methods in varying locations and environmental settings is essential for moving towards unified and generally accepted methodology. To fill the relevant research gap in the Baltic Sea, we used multibeam sonar and mathematical modeling methods - generalized additive models (GAM) and random forest (RF) - together with underwater video to map seabed substrate and epibenthos of offshore shallows. In addition to testing the general applicability of the proposed complex of techniques, the predictive power of different sonar-based variables and modeling algorithms were tested. Mean depth, followed by mean backscatter, were the most influential variables in most of the models. Generally, mean values of sonar-based variables had higher predictive power than their standard deviations. The predictive accuracy of RF was higher than that of GAM. To conclude, we found the method to be feasible and with predictive accuracy similar to previous studies of sonar-based mapping.

  8. Assessment of smoothed spectra using autocorrelation function

    International Nuclear Information System (INIS)

    Urbanski, P.; Kowalska, E.

    2006-01-01

    Recently, data and signal smoothing became almost standard procedures in the spectrometric and chromatographic methods. In radiometry, the main purpose to apply smoothing is minimisation of the statistical fluctuation and avoid distortion. The aim of the work was to find a qualitative parameter, which could be used, as a figure of merit for detecting distortion of the smoothed spectra, based on the linear model. It is assumed that as long as the part of the raw spectrum removed by the smoothing procedure (v s ) will be of random nature, the smoothed spectrum can be considered as undistorted. Thanks to this feature of the autocorrelation function, drifts of the mean value in the removed noise vs as well as its periodicity can be more easily detected from the autocorrelogram than from the original data

  9. Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoothing and Artificial Intelligence Models (ANN, SVM: The Case of Greek Electricity Market

    Directory of Open Access Journals (Sweden)

    George P. Papaioannou

    2016-08-01

    Full Text Available In this work we propose a new hybrid model, a combination of the manifold learning Principal Components (PC technique and the traditional multiple regression (PC-regression, for short and medium-term forecasting of daily, aggregated, day-ahead, electricity system-wide load in the Greek Electricity Market for the period 2004–2014. PC-regression is shown to effectively capture the intraday, intraweek and annual patterns of load. We compare our model with a number of classical statistical approaches (Holt-Winters exponential smoothing of its generalizations Error-Trend-Seasonal, ETS models, the Seasonal Autoregressive Moving Average with exogenous variables, Seasonal Autoregressive Integrated Moving Average with eXogenous (SARIMAX model as well as with the more sophisticated artificial intelligence models, Artificial Neural Networks (ANN and Support Vector Machines (SVM. Using a number of criteria for measuring the quality of the generated in-and out-of-sample forecasts, we have concluded that the forecasts of our hybrid model outperforms the ones generated by the other model, with the SARMAX model being the next best performing approach, giving comparable results. Our approach contributes to studies aimed at providing more accurate and reliable load forecasting, prerequisites for an efficient management of modern power systems.

  10. Modeling Individual Damped Linear Oscillator Processes with Differential Equations: Using Surrogate Data Analysis to Estimate the Smoothing Parameter

    Science.gov (United States)

    Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.

    2008-01-01

    Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…

  11. Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model

    DEFF Research Database (Denmark)

    Silvennoinen, Annestiina; Terasvirta, Timo

    A new multivariate volatility model that belongs to the family of conditional correlation GARCH models is introduced. The GARCH equations of this model contain a multiplicative deterministic component to describe long-run movements in volatility and, in addition, the correlations...

  12. Substrate turnover at low carbon concentrations in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    concentrations of carbon allowed for a close monitoring of the kinetics of substrate turnover (less than 10 μg C/L 14C-benzoic acid was added). The mineralisation of benzoic acid was rapid and could be modelled by a no-growth Monod expression using a maximum degradation rate of 0.59 μg C/L/h and a half......-saturation constant of 2.6 μg C/L. Only 2–4% of the carbon being degraded was incorporated into the biofilm. The results from our study suggest that the cellspecific respiration of biofilm was much higher than for suspended bacteria, and that the growth rate of the bulk phase bacteria was approximately 10 times...

  13. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    Science.gov (United States)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  14. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: filter paper cellulose.

    Science.gov (United States)

    Luterbacher, Jeremy S; Moran-Mirabal, Jose M; Burkholder, Eric W; Walker, Larry P

    2015-01-01

    Enzymatic hydrolysis is one of the critical steps in depolymerizing lignocellulosic biomass into fermentable sugars for further upgrading into fuels and/or chemicals. However, many studies still rely on empirical trends to optimize enzymatic reactions. An improved understanding of enzymatic hydrolysis could allow research efforts to follow a rational design guided by an appropriate theoretical framework. In this study, we present a method to image cellulosic substrates with complex three-dimensional structure, such as filter paper, undergoing hydrolysis under conditions relevant to industrial saccharification processes (i.e., temperature of 50°C, using commercial cellulolytic cocktails). Fluorescence intensities resulting from confocal images were used to estimate parameters for a diffusion and reaction model. Furthermore, the observation of a relatively constant bound enzyme fluorescence signal throughout hydrolysis supported our modeling assumption regarding the structure of biomass during hydrolysis. The observed behavior suggests that pore evolution can be modeled as widening of infinitely long slits. The resulting model accurately predicts the concentrations of soluble carbohydrates obtained from independent saccharification experiments conducted in bulk, demonstrating its relevance to biomass conversion work. © 2014 Wiley Periodicals, Inc.

  15. Heterogeneous nucleation on convex spherical substrate surfaces: A rigorous thermodynamic formulation of Fletcher's classical model and the new perspectives derived.

    Science.gov (United States)

    Qian, Ma; Ma, Jie

    2009-06-07

    Fletcher's spherical substrate model [J. Chem. Phys. 29, 572 (1958)] is a basic model for understanding the heterogeneous nucleation phenomena in nature. However, a rigorous thermodynamic formulation of the model has been missing due to the significant complexities involved. This has not only left the classical model deficient but also likely obscured its other important features, which would otherwise have helped to better understand and control heterogeneous nucleation on spherical substrates. This work presents a rigorous thermodynamic formulation of Fletcher's model using a novel analytical approach and discusses the new perspectives derived. In particular, it is shown that the use of an intermediate variable, a selected geometrical angle or pseudocontact angle between the embryo and spherical substrate, revealed extraordinary similarities between the first derivatives of the free energy change with respect to embryo radius for nucleation on spherical and flat substrates. Enlightened by the discovery, it was found that there exists a local maximum in the difference between the equivalent contact angles for nucleation on spherical and flat substrates due to the existence of a local maximum in the difference between the shape factors for nucleation on spherical and flat substrate surfaces. This helps to understand the complexity of the heterogeneous nucleation phenomena in a practical system. Also, it was found that the unfavorable size effect occurs primarily when R<5r( *) (R: radius of substrate and r( *): critical embryo radius) and diminishes rapidly with increasing value of R/r( *) beyond R/r( *)=5. This finding provides a baseline for controlling the size effects in heterogeneous nucleation.

  16. Non-Linear Relationship between Economic Growth and CO₂ Emissions in China: An Empirical Study Based on Panel Smooth Transition Regression Models.

    Science.gov (United States)

    Wang, Zheng-Xin; Hao, Peng; Yao, Pei-Yi

    2017-12-13

    The non-linear relationship between provincial economic growth and carbon emissions is investigated by using panel smooth transition regression (PSTR) models. The research indicates that, on the condition of separately taking Gross Domestic Product per capita (GDPpc), energy structure (Es), and urbanisation level (Ul) as transition variables, three models all reject the null hypothesis of a linear relationship, i.e., a non-linear relationship exists. The results show that the three models all contain only one transition function but different numbers of location parameters. The model taking GDPpc as the transition variable has two location parameters, while the other two models separately considering Es and Ul as the transition variables both contain one location parameter. The three models applied in the study all favourably describe the non-linear relationship between economic growth and CO₂ emissions in China. It also can be seen that the conversion rate of the influence of Ul on per capita CO₂ emissions is significantly higher than those of GDPpc and Es on per capita CO₂ emissions.

  17. Uranium sorption to natural substrates-insights provided by isotope exchange, selective extraction and surface complexation modelling approaches

    International Nuclear Information System (INIS)

    Waite, T.D.; Payne T.E.; Davis, J.A.

    1993-01-01

    An extensive experimental program has been conducted over the last three years into the interaction of U(VI) with both single oxides and clays and complex natural substrates from the weathered zone in the vicinity of a uranium ore body in northern Australia. While iron oxides have frequently been considered to account for much of the uptake on such natural substrates, the results of laboratory open-quotes pH edgeclose quotes studies and of isotope exchange and selective extraction studies suggest that other phases must also play a significant role in controlling the partitioning of U(VI) between solid and solution phases. Supporting studies on kaolinite, the dominant clay in this system, provide insight into the most appropriate method of modelling the interaction of U(VI) with these natural substrates. The problems still remaining in adequately describing sorption of radionuclides and trace elements to complex natural substrates are discussed

  18. Substrate reduction augments the efficacy of enzyme therapy in a mouse model of Fabry disease.

    Directory of Open Access Journals (Sweden)

    John Marshall

    Full Text Available Fabry disease is an X-linked glycosphingolipid storage disorder caused by a deficiency in the activity of the lysosomal hydrolase α-galactosidase A (α-gal. This deficiency results in accumulation of the glycosphingolipid globotriaosylceramide (GL-3 in lysosomes. Endothelial cell storage of GL-3 frequently leads to kidney dysfunction, cardiac and cerebrovascular disease. The current treatment for Fabry disease is through infusions of recombinant α-gal (enzyme-replacement therapy; ERT. Although ERT can markedly reduce the lysosomal burden of GL-3 in endothelial cells, variability is seen in the clearance from several other cell types. This suggests that alternative and adjuvant therapies may be desirable. Use of glucosylceramide synthase inhibitors to abate the biosynthesis of glycosphingolipids (substrate reduction therapy, SRT has been shown to be effective at reducing substrate levels in the related glycosphingolipidosis, Gaucher disease. Here, we show that such an inhibitor (eliglustat tartrate, Genz-112638 was effective at lowering GL-3 accumulation in a mouse model of Fabry disease. Relative efficacy of SRT and ERT at reducing GL-3 levels in Fabry mouse tissues differed with SRT being more effective in the kidney, and ERT more efficacious in the heart and liver. Combination therapy with ERT and SRT provided the most complete clearance of GL-3 from all the tissues. Furthermore, treatment normalized urine volume and uromodulin levels and significantly delayed the loss of a nociceptive response. The differential efficacies of SRT and ERT in the different tissues indicate that the combination approach is both additive and complementary suggesting the possibility of an improved therapeutic paradigm in the management of Fabry disease.

  19. Nonlinear Modelling of Start-Up Phase Pressure Spectra from Optically Smoothed Induced Spatial Incoherence Laser Imprint

    National Research Council Canada - National Science Library

    Keskinen, M. J; Schmitt, A. J

    2005-01-01

    ...) laser imprint, is computed for a planar target using a forced, dissipative model. The time-dependent ISI laser deposition is computed using a time-dependent electromagnetic full wave Maxwell code...

  20. A One-Step-Ahead Smoothing-Based Joint Ensemble Kalman Filter for State-Parameter Estimation of Hydrological Models

    KAUST Repository

    El Gharamti, Mohamad; Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2015-01-01

    The ensemble Kalman filter (EnKF) recursively integrates field data into simulation models to obtain a better characterization of the model’s state and parameters. These are generally estimated following a state-parameters joint augmentation

  1. A Smoothing Algorithm for a New Two-Stage Stochastic Model of Supply Chain Based on Sample Average Approximation

    OpenAIRE

    Liu Yang; Yao Xiong; Xiao-jiao Tong

    2017-01-01

    We construct a new two-stage stochastic model of supply chain with multiple factories and distributors for perishable product. By introducing a second-order stochastic dominance (SSD) constraint, we can describe the preference consistency of the risk taker while minimizing the expected cost of company. To solve this problem, we convert it into a one-stage stochastic model equivalently; then we use sample average approximation (SAA) method to approximate the expected values of the underlying r...

  2. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  3. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  4. An Iterative Ensemble Kalman Filter with One-Step-Ahead Smoothing for State-Parameters Estimation of Contaminant Transport Models

    KAUST Repository

    Gharamti, M. E.; Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2015-01-01

    Numerical experiments are conducted with a two-dimensional synthetic subsurface transport model simulating the migration of a contaminant plume in a heterogenous aquifer domain. Contaminant concentration data are assimilated to estimate both the contaminant state and the hydraulic conductivity field. Assimilation runs are performed under imperfect modeling conditions and various observational scenarios. Simulation results suggest that the proposed scheme efficiently recovers both the contaminant state and the aquifer conductivity, providing more accurate estimates than the standard Joint and Dual EnKFs in all tested scenarios. Iterating on the update step of the new scheme further enhances the proposed filter’s behavior. In term of computational cost, the new Joint-EnKF is almost equivalent to that of the Dual-EnKF, but requires twice more model integrations than the standard Joint-EnKF.

  5. Optimal Smooth Consumption and Annuity Design

    DEFF Research Database (Denmark)

    Bruhn, Kenneth; Steffensen, Mogens

    2013-01-01

    We propose an optimization criterion that yields extraordinary consumption smoothing compared to the well known results of the life-cycle model. Under this criterion we solve the related consumption and investment optimization problem faced by individuals with preferences for intertemporal stabil...... stability in consumption. We find that the consumption and investment patterns demanded under the optimization criterion is in general offered as annuity benefits from products in the class of ‘Formula Based Smoothed Investment-Linked Annuities’....

  6. Homology modeling of Homo sapiens lipoic acid synthase: Substrate docking and insights on its binding mode.

    Science.gov (United States)

    Krishnamoorthy, Ezhilarasi; Hassan, Sameer; Hanna, Luke Elizabeth; Padmalayam, Indira; Rajaram, Rama; Viswanathan, Vijay

    2017-05-07

    Lipoic acid synthase (LIAS) is an iron-sulfur cluster mitochondrial enzyme which catalyzes the final step in the de novo pathway for the biosynthesis of lipoic acid, a potent antioxidant. Recently there has been significant interest in its role in metabolic diseases and its deficiency in LIAS expression has been linked to conditions such as diabetes, atherosclerosis and neonatal-onset epilepsy, suggesting a strong inverse correlation between LIAS reduction and disease status. In this study we use a bioinformatics approach to predict its structure, which would be helpful to understanding its role. A homology model for LIAS protein was generated using X-ray crystallographic structure of Thermosynechococcus elongatus BP-1 (PDB ID: 4U0P). The predicted structure has 93% of the residues in the most favour region of Ramachandran plot. The active site of LIAS protein was mapped and docked with S-Adenosyl Methionine (SAM) using GOLD software. The LIAS-SAM complex was further refined using molecular dynamics simulation within the subsite 1 and subsite 3 of the active site. To the best of our knowledge, this is the first study to report a reliable homology model of LIAS protein. This study will facilitate a better understanding mode of action of the enzyme-substrate complex for future studies in designing drugs that can target LIAS protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Development of a procedure to model high-resolution wind profiles from smoothed or low-frequency data

    Science.gov (United States)

    Camp, D. W.

    1977-01-01

    The derivation of simulated Jimsphere wind profiles from low-frequency rawinsonde data and a generated set of white noise data are presented. A computer program is developed to model high-resolution wind profiles based on the statistical properties of data from the Kennedy Space Center, Florida. Comparison of the measured Jimsphere data, rawinsonde data, and the simulated profiles shows excellent agreement.

  8. Three-Dimensional Smoothed Particle Hydrodynamics Modeling of Preferential Flow Dynamics at Fracture Intersections on a High-Performance Computing Platform

    Science.gov (United States)

    Kordilla, J.; Bresinsky, L. T.

    2017-12-01

    The physical mechanisms that govern preferential flow dynamics in unsaturated fractured rock formations are complex and not well understood. Fracture intersections may act as an integrator of unsaturated flow, leading to temporal delay, intermittent flow and partitioning dynamics. In this work, a three-dimensional Pairwise-Force Smoothed Particle Hydrodynamics (PF-SPH) model is being applied in order to simulate gravity-driven multiphase flow at synthetic fracture intersections. SPH, as a meshless Lagrangian method, is particularly suitable for modeling deformable interfaces, such as three-phase contact dynamics of droplets, rivulets and free-surface films. The static and dynamic contact angle can be recognized as the most important parameter of gravity-driven free-surface flow. In SPH, surface tension and adhesion naturally emerges from the implemented pairwise fluid-fluid (sff) and solid-fluid (ssf) interaction force. The model was calibrated to a contact angle of 65°, which corresponds to the wetting properties of water on Poly(methyl methacrylate). The accuracy of the SPH simulations were validated against an analytical solution of Poiseuille flow between two parallel plates and against laboratory experiments. Using the SPH model, the complex flow mode transitions from droplet to rivulet flow of an experimental study were reproduced. Additionally, laboratory dimensionless scaling experiments of water droplets were successfully replicated in SPH. Finally, SPH simulations were used to investigate the partitioning dynamics of single droplets into synthetic horizontal fractures with various apertures (Δdf = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 mm) and offsets (Δdoff = -1.5, -1.0, -0.5, 0, 1.0, 2.0, 3.0 mm). Fluid masses were measured in the domains R1, R2 and R3. The perfect conditions of ideally smooth surfaces and the SPH inherent advantage of particle tracking allow the recognition of small scale partitioning mechanisms and its importance for bulk flow

  9. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

    Science.gov (United States)

    Wu, Hulin; Xue, Hongqi; Kumar, Arun

    2012-06-01

    Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.

  10. Modeling photosynthesis of Spartina alterniflora (smooth cordgrass) impacted by the Deepwater Horizon oil spill using Bayesian inference

    International Nuclear Information System (INIS)

    Wu Wei; Biber, Patrick D; Peterson, Mark S; Gong Chongfeng

    2012-01-01

    To study the impact of the Deepwater Horizon oil spill on photosynthesis of coastal salt marsh plants in Mississippi, we developed a hierarchical Bayesian (HB) model based on field measurements collected from July 2010 to November 2011. We sampled three locations in Davis Bayou, Mississippi (30.375°N, 88.790°W) representative of a range of oil spill impacts. Measured photosynthesis was negative (respiration only) at the heavily oiled location in July 2010 only, and rates started to increase by August 2010. Photosynthesis at the medium oiling location was lower than at the control location in July 2010 and it continued to decrease in September 2010. During winter 2010–2011, the contrast between the control and the two impacted locations was not as obvious as in the growing season of 2010. Photosynthesis increased through spring 2011 at the three locations and decreased starting with October at the control location and a month earlier (September) at the impacted locations. Using the field data, we developed an HB model. The model simulations agreed well with the measured photosynthesis, capturing most of the variability of the measured data. On the basis of the posteriors of the parameters, we found that air temperature and photosynthetic active radiation positively influenced photosynthesis whereas the leaf stress level negatively affected photosynthesis. The photosynthesis rates at the heavily impacted location had recovered to the status of the control location about 140 days after the initial impact, while the impact at the medium impact location was never severe enough to make photosynthesis significantly lower than that at the control location over the study period. The uncertainty in modeling photosynthesis rates mainly came from the individual and micro-site scales, and to a lesser extent from the leaf scale. (letter)

  11. Evidence from Business Strategy of Mutual Fund Managers after the Financial Crisis - Panel Smooth Transition Regression Model

    OpenAIRE

    Joe-Ming Lee

    2013-01-01

    This study applies by the panel transition regression (PSTR) model to investigate the nonlinear dynamic relationship between equity fund flow and investment volatility in Taiwan. Our empirical results show that the equity fund managers will be different business strategy under the volatility threshold value and the control variables of asset of funds, management fee and Turnover indicator. After the financial crisis, the threshold of volatility will be an important index to different business...

  12. An integral wall model for Large Eddy Simulation (iWMLES) and applications to developing boundary layers over smooth and rough plates

    Science.gov (United States)

    Yang, Xiang; Sadique, Jasim; Mittal, Rajat; Meneveau, Charles

    2014-11-01

    A new wall model for Large-Eddy-Simulations is proposed. It is based on an integral boundary layer method that assumes a functional form for the local mean velocity profile. The method, iWMLES, evaluates required unsteady and advective terms in the vertically integrated boundary layer equations analytically. The assumed profile contains a viscous or roughness sublayer, and a logarithmic layer with an additional linear term accounting for inertial and pressure gradient effects. The iWMLES method is tested in the context of a finite difference LES code. Test cases include developing turbulent boundary layers on a smooth flat plate at various Reynolds numbers, over flat plates with unresolved roughness, and a sample application to boundary layer flow over a plate that includes resolved roughness elements. The elements are truncated cones acting as idealized barnacle-like roughness elements that often occur in biofouling of marine surfaces. Comparisons with data show that iWMLES provides accurate predictions of near-wall velocity profiles in LES while, similarly to equilibrium wall models, its cost remains independent of Reynolds number and is thus significantly lower compared to standard zonal or hybrid wall models. This work is funded by ONR Grant N00014-12-1-0582 (Dr. R. Joslin, program manager).

  13. Predictive Abuse Detection for a PLC Smart Lighting Network Based on Automatically Created Models of Exponential Smoothing

    Directory of Open Access Journals (Sweden)

    Tomasz Andrysiak

    2017-01-01

    Full Text Available One of the basic elements of a Smart City is the urban infrastructure management system, in particular, systems of intelligent street lighting control. However, for their reliable operation, they require special care for the safety of their critical communication infrastructure. This article presents solutions for the detection of different kinds of abuses in network traffic of Smart Lighting infrastructure, realized by Power Line Communication technology. Both the structure of the examined Smart Lighting network and its elements are described. The article discusses the key security problems which have a direct impact on the correct performance of the Smart Lighting critical infrastructure. In order to detect an anomaly/attack, we proposed the usage of a statistical model to obtain forecasting intervals. Then, we calculated the value of the differences between the forecast in the estimated traffic model and its real variability so as to detect abnormal behavior (which may be symptomatic of an abuse attempt. Due to the possibility of appearance of significant fluctuations in the real network traffic, we proposed a procedure of statistical models update which is based on the criterion of interquartile spacing. The results obtained during the experiments confirmed the effectiveness of the presented misuse detection method.

  14. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    Science.gov (United States)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  15. Size Matters: Observed and Modeled Camouflage Response of European Cuttlefish (Sepia officinalis) to Different Substrate Patch Sizes during Movement.

    Science.gov (United States)

    Josef, Noam; Berenshtein, Igal; Rousseau, Meghan; Scata, Gabriella; Fiorito, Graziano; Shashar, Nadav

    2016-01-01

    Camouflage is common throughout the phylogenetic tree and is largely used to minimize detection by predator or prey. Cephalopods, and in particular Sepia officinalis cuttlefish, are common models for camouflage studies. Predator avoidance behavior is particularly important in this group of soft-bodied animals that lack significant physical defenses. While previous studies have suggested that immobile cephalopods selectively camouflage to objects in their immediate surroundings, the camouflage characteristics of cuttlefish during movement are largely unknown. In a heterogenic environment, the visual background and substrate feature changes quickly as the animal swim across it, wherein substrate patch is a distinctive and high contrast patch of substrate in the animal's trajectory. In the current study, we examine the effect of substrate patch size on cuttlefish camouflage, and specifically the minimal size of an object for eliciting intensity matching response while moving. Our results indicated that substrate patch size has a positive effect on animal's reflectance change, and that the threshold patch size resulting in camouflage response falls between 10 and 19 cm (width). These observations suggest that the animal's length (7.2-12.3 cm mantle length in our case) serves as a possible threshold filter below which objects are considered irrelevant for camouflage, reducing the frequency of reflectance changes-which may lead to detection. Accordingly, we have constructed a computational model capturing the main features of the observed camouflaging behavior, provided for cephalopod camouflage during movement.

  16. Revealed smooth nontransitive preferences

    DEFF Research Database (Denmark)

    Keiding, Hans; Tvede, Mich

    2013-01-01

    In the present paper, we are concerned with the behavioural consequences of consumers having nontransitive preference relations. Data sets consist of finitely many observations of price vectors and consumption bundles. A preference relation rationalizes a data set provided that for every observed...... consumption bundle, all strictly preferred bundles are more expensive than the observed bundle. Our main result is that data sets can be rationalized by a smooth nontransitive preference relation if and only if prices can normalized such that the law of demand is satisfied. Market data sets consist of finitely...... many observations of price vectors, lists of individual incomes and aggregate demands. We apply our main result to characterize market data sets consistent with equilibrium behaviour of pure-exchange economies with smooth nontransitive consumers....

  17. A preliminary study of the relation between adsorption and CP-MAS-NMR characteristics of fused silica model substrates

    NARCIS (Netherlands)

    Scholten, A.B.; Janssen, J.G.M.; Haan, de J.W.; Cramers, C.A.M.G.; Sandra, P.J.F.; Devos, G.; Sandra, P.

    1993-01-01

    The fumed silica model substrate Aerosil was trimethylsilylated to different extents and studied by the combination of IGC and 29Si CP-MAS-NMR. Dihydroxydisiloxane groups were shown to be chemically more reactive than monohydroxytrisiloxane groups. Chromatographic experiments showed that these

  18. Enteric Neuronal Damage, Intramuscular Denervation and Smooth Muscle Phenotype Changes as Mechanisms of Chagasic Megacolon: Evidence from a Long-Term Murine Model of Trypanosoma cruzi Infection.

    Directory of Open Access Journals (Sweden)

    Camila França Campos

    Full Text Available We developed a novel murine model of long-term infection with Trypanosoma cruzi with the aim to elucidate the pathogenesis of megacolon and the associated adaptive and neuromuscular intestinal disorders. Our intent was to produce a chronic stage of the disease since the early treatment should avoid 100% mortality of untreated animals at acute phase. Treatment allowed animals to be kept infected and alive in order to develop the chronic phase of infection with low parasitism as in human disease. A group of Swiss mice was infected with the Y strain of T. cruzi. At the 11th day after infection, a sub-group was euthanized (acute-phase group and another sub-group was treated with benznidazole and euthanized 15 months after infection (chronic-phase group. Whole colon samples were harvested and used for studying the histopathology of the intestinal smooth muscle and the plasticity of the enteric nerves. In the acute phase, all animals presented inflammatory lesions associated with intense and diffuse parasitism of the muscular and submucosa layers, which were enlarged when compared with the controls. The occurrence of intense degenerative inflammatory changes and increased reticular fibers suggests inflammatory-induced necrosis of muscle cells. In the chronic phase, parasitism was insignificant; however, the architecture of Aüerbach plexuses was focally affected in the inflamed areas, and a significant decrease in the number of neurons and in the density of intramuscular nerve bundles was detected. Other changes observed included increased thickness of the colon wall, diffuse muscle cell hypertrophy, and increased collagen deposition, indicating early fibrosis in the damaged areas. Mast cell count significantly increased in the muscular layers. We propose a model for studying the long-term (15 months pathogenesis of Chagasic megacolon in mice that mimics the human disease, which persists for several years and has not been fully elucidated. We

  19. Electrochemically replicated smooth aluminum foils for anodic alumina nanochannel arrays

    International Nuclear Information System (INIS)

    Biring, Sajal; Tsai, K-T; Sur, Ujjal Kumar; Wang, Y-L

    2008-01-01

    A fast electrochemical replication technique has been developed to fabricate large-scale ultra-smooth aluminum foils by exploiting readily available large-scale smooth silicon wafers as the masters. Since the adhesion of aluminum on silicon depends on the time of surface pretreatment in water, it is possible to either detach the replicated aluminum from the silicon master without damaging the replicated aluminum and master or integrate the aluminum film to the silicon substrate. Replicated ultra-smooth aluminum foils are used for the growth of both self-organized and lithographically guided long-range ordered arrays of anodic alumina nanochannels without any polishing pretreatment

  20. Smooth Phase Interpolated Keying

    Science.gov (United States)

    Borah, Deva K.

    2007-01-01

    Smooth phase interpolated keying (SPIK) is an improved method of computing smooth phase-modulation waveforms for radio communication systems that convey digital information. SPIK is applicable to a variety of phase-shift-keying (PSK) modulation schemes, including quaternary PSK (QPSK), octonary PSK (8PSK), and 16PSK. In comparison with a related prior method, SPIK offers advantages of better performance and less complexity of implementation. In a PSK scheme, the underlying information waveform that one seeks to convey consists of discrete rectangular steps, but the spectral width of such a waveform is excessive for practical radio communication. Therefore, the problem is to smooth the step phase waveform in such a manner as to maintain power and bandwidth efficiency without incurring an unacceptably large error rate and without introducing undesired variations in the amplitude of the affected radio signal. Although the ideal constellation of PSK phasor points does not cause amplitude variations, filtering of the modulation waveform (in which, typically, a rectangular pulse is converted to a square-root raised cosine pulse) causes amplitude fluctuations. If a power-efficient nonlinear amplifier is used in the radio communication system, the fluctuating-amplitude signal can undergo significant spectral regrowth, thus compromising the bandwidth efficiency of the system. In the related prior method, one seeks to solve the problem in a procedure that comprises two major steps: phase-value generation and phase interpolation. SPIK follows the two-step approach of the related prior method, but the details of the steps are different. In the phase-value-generation step, the phase values of symbols in the PSK constellation are determined by a phase function that is said to be maximally smooth and that is chosen to minimize the spectral spread of the modulated signal. In this step, the constellation is divided into two groups by assigning, to information symbols, phase values

  1. Smoothing a Piecewise-Smooth: An Example from Plankton Population Dynamics

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena

    2016-01-01

    In this work we discuss a piecewise-smooth dynamical system inspired by plankton observations and constructed for one predator switching its diet between two different types of prey. We then discuss two smooth formulations of the piecewise-smooth model obtained by using a hyperbolic tangent funct...... function and adding a dimension to the system. We compare model behaviour of the three systems and show an example case where the steepness of the switch is determined from a comparison with data on freshwater plankton....

  2. Anti-smooth muscle antibody

    Science.gov (United States)

    ... gov/ency/article/003531.htm Anti-smooth muscle antibody To use the sharing features on this page, please enable JavaScript. Anti-smooth muscle antibody is a blood test that detects the presence ...

  3. Multiple predictor smoothing methods for sensitivity analysis

    International Nuclear Information System (INIS)

    Helton, Jon Craig; Storlie, Curtis B.

    2006-01-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present

  4. Multiple predictor smoothing methods for sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Helton, Jon Craig; Storlie, Curtis B.

    2006-08-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (1) locally weighted regression (LOESS), (2) additive models, (3) projection pursuit regression, and (4) recursive partitioning regression. The indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present.

  5. Smooth-Water Landing Stability and Rough-Water Landing and Take-Off Behavior of a 1/13-Scale Model of the Consolidated Vultee Skate 7 Seaplane, TED No. NACA DE 338

    Science.gov (United States)

    McKann, Robert F.; Coffee, Claude W.; Arabian, Donald D.

    1949-01-01

    A model of the Consolidated Vultee Aircraft Corporation Skate 7 seaplane was tested in Langley tank no. 2. Presented without discussion in this paper are landing stability in smooth water, maximum normal accelerations occurring during rough-water landings, and take-off behavior in waves.

  6. Smooth functors vs. differential forms

    NARCIS (Netherlands)

    Schreiber, U.; Waldorf, K.

    2011-01-01

    We establish a relation between smooth 2-functors defined on the path 2-groupoid of a smooth manifold and differential forms on this manifold. This relation can be understood as a part of a dictionary between fundamental notions from category theory and differential geometry. We show that smooth

  7. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model.

    Directory of Open Access Journals (Sweden)

    Darren Paul Burke

    Full Text Available Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.

  8. Stiffness of a wobbling mass models analysed by a smooth orthogonal decomposition of the skin movement relative to the underlying bone.

    Science.gov (United States)

    Dumas, Raphaël; Jacquelin, Eric

    2017-09-06

    The so-called soft tissue artefacts and wobbling masses have both been widely studied in biomechanics, however most of the time separately, from either a kinematics or a dynamics point of view. As such, the estimation of the stiffness of the springs connecting the wobbling masses to the rigid-body model of the lower limb, based on the in vivo displacements of the skin relative to the underling bone, has not been performed yet. For this estimation, the displacements of the skin markers in the bone-embedded coordinate systems are viewed as a proxy for the wobbling mass movement. The present study applied a structural vibration analysis method called smooth orthogonal decomposition to estimate this stiffness from retrospective simultaneous measurements of skin and intra-cortical pin markers during running, walking, cutting and hopping. For the translations about the three axes of the bone-embedded coordinate systems, the estimated stiffness coefficients (i.e. between 2.3kN/m and 55.5kN/m) as well as the corresponding forces representing the connection between bone and skin (i.e. up to 400N) and corresponding frequencies (i.e. in the band 10-30Hz) were in agreement with the literature. Consistently with the STA descriptions, the estimated stiffness coefficients were found subject- and task-specific. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Epothilones Suppress Neointimal Thickening in the Rat Carotid Balloon-Injury Model by Inducing Vascular Smooth Muscle Cell Apoptosis through p53-Dependent Signaling Pathway.

    Science.gov (United States)

    Son, Dong Ju; Jung, Jae Chul; Hong, Jin Tae

    2016-01-01

    Microtubule stabilizing agents (MTSA) are known to inhibit vascular smooth muscle cell (VSMC) proliferation and migration, and effectively reduce neointimal hyperplasia and restenosis. Epothilones (EPOs), non-taxane MTSA, have been found to be effective in the inhibition of VSMC proliferation and neointimal formation by cell cycle arrest. However, effect of EPOs on apoptosis in hyper-proliferated VSMCs as a possible way to reduce neointimal formation and its action mechanism related to VSMC viability has not been suited yet. Thus, the purposes of the present study was to investigate whether EPOs are able to inhibit neointimal formation by inducing apoptosis within the region of neointimal hyperplasia in balloon-injured rat carotid artery, as well as underlying action mechanism. Treatment of EPO-B and EPO-D significantly induced apoptotic cell death and mitotic catastrophe in hyper-proliferated VSMCs, resulting in cell growth inhibition. Further, EPOs significantly suppressed VSMC proliferation and induced apoptosis by activation of p53-dependent apoptotic signaling pathway, Bax/cytochrome c/caspase-3. We further demonstrated that the local treatment of carotid arteries with EPOs potently inhibited neointimal lesion formation by induction of apoptosis in rat carotid injury model. Our findings demonstrate a potent anti-neointimal hyperplasia property of EPOs by inducing p53-depedent apoptosis in hyper-proliferated VSMCs.

  10. Molecular and neurochemical substrates of the audiogenic seizure strains: The GASH:Sal model.

    Science.gov (United States)

    Prieto-Martín, Ana I; Aroca-Aguilar, J Daniel; Sánchez-Sánchez, Francisco; Muñoz, Luis J; López, Dolores E; Escribano, Julio; de Cabo, Carlos

    2017-06-01

    Animal models of audiogenic epilepsy are useful tools to understand the mechanisms underlying human reflex epilepsies. There is accumulating evidence regarding behavioral, anatomical, electrophysiological, and genetic substrates of audiogenic seizure strains, but there are still aspects concerning their neurochemical basis that remain to be elucidated. Previous studies have shown the involved of γ-amino butyric acid (GABA) in audiogenic seizures. The aim of our research was to clarify the role of the GABAergic system in the generation of epileptic seizures in the genetic audiogenic seizure-prone hamster (GASH:Sal) strain. We studied the K + /Cl - cotransporter KCC2 and β2-GABAA-type receptor (GABAAR) and β3-GABAAR subunit expressions in the GASH:Sal both at rest and after repeated sound-induced seizures in different brain regions using the Western blot technique. We also sequenced the coding region for the KCC2 gene both in wild- type and GASH:Sal hamsters. Lower expression of KCC2 protein was found in GASH:Sal when compared with controls at rest in several brain areas: hippocampus, cortex, cerebellum, hypothalamus, pons-medulla, and mesencephalon. Repeated induction of seizures caused a decrease in KCC2 protein content in the inferior colliculus and hippocampus and an increase in the pons-medulla. When compared to controls, the basal β 2 -GABA A R subunit in the GASH:Sal was overexpressed in the inferior colliculus, rest of the mesencephalon, and cerebellum, whereas basal β 3 subunit levels were lower in the inferior colliculus and rest of the mesencephalon. Repeated seizures increased β2 both in the inferior colliculus and in the hypothalamus and β 3 in the hypothalamus. No differences in the KCC2 gene-coding region were found between GASH:Sal and wild-type hamsters. These data indicate that GABAergic system functioning is impaired in the GASH:Sal strain, and repeated seizures seem to aggravate this dysfunction. These results have potential clinical

  11. Mechanism of the Quorum-Quenching Lactonase (AiiA) from Bacillus thuringiensis. 2. Substrate Modeling and Active Site Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Momb, Jessica; Wang, Canhui; Liu, Dali; Thomas, Pei W.; Petsko, Gregory A.; Guo, Hua; Ringe, Dagmar; Fast, Walter (UNM); (Brandeis); (Texas)

    2008-12-02

    The N-acyl-l-homoserine lactone hydrolases (AHL lactonases) have attracted considerable attention because of their ability to quench AHL-mediated quorum-sensing pathways in Gram-negative bacteria and because of their relation to other enzymes in the metallo-{beta}-lactamase superfamily. To elucidate the detailed catalytic mechanism of AHL lactonase, mutations are made on residues that presumably contribute to substrate binding and catalysis. Steady-state kinetic studies are carried out on both the wild-type and mutant enzymes using a spectrum of substrates. Two mutations, Y194F and D108N, present significant effects on the overall catalysis. On the basis of a high-resolution structural model of the enzyme-product complex, a hybrid quantum mechanical/molecular mechanical method is used to model the substrate binding orientation and to probe the effect of the Y194F mutation. Combining all experimental and computational results, we propose a detailed mechanism for the ring-opening hydrolysis of AHL substrates as catalyzed by the AHL lactonase from Bacillus thuringiensis. Several features of the mechanism that are also found in related enzymes are discussed and may help to define an evolutionary thread that connects the hydrolytic enzymes of this mechanistically diverse superfamily.

  12. Surface morphology modelling for the resistivity analysis of low temperature sputtered indium tin oxide thin films on polymer substrates

    International Nuclear Information System (INIS)

    Yin Xuesong; Tang Wu; Weng Xiaolong; Deng Longjiang

    2009-01-01

    Amorphous or weakly crystalline indium tin oxide (ITO) thin film samples have been prepared on polymethylmethacrylate and polyethylene terephthalate substrates by RF-magnetron sputtering at a low substrate temperature. The surface morphological and electrical properties of the ITO layers were measured by atomic force microscopy (AFM) and a standard four-point probe measurement. The effect of surface morphology on the resistivity of ITO thin films was studied, which presented some different variations from crystalline films. Then, a simplified film system model, including the substrate, continuous ITO layer and ITO surface grain, was proposed to deal with these correlations. Based on this thin film model and the AFM images, a quadratic potential was introduced to simulate the characteristics of the ITO surface morphology, and the classical Kronig-Penney model, the semiconductor electrical theory and the modified Neugebauer-Webb model were used to expound the detailed experimental results. The modelling equation was highly in accord with the experimental variations of the resistivity on the characteristics of the surface morphology.

  13. Phase-field model for deposition process of platinum nanoparticles on carbon substrate

    International Nuclear Information System (INIS)

    Yamakawa, S; Hyodo, S; Okazaki-Maeda, K; Kohyama, M

    2008-01-01

    Platinum supported on a carbon carrier is widely used as a catalyst for polymer electrolyte membrane fuel cells. The catalytic activity is significantly affected by the size distribution and morphologies of the platinum particles. The objective of this study is to extend the phase-field approach to describe the formation process of platinum particles onto the substrate. The microstructural evolution of a nanoparticle was represented by the temporal evolution of the field variables related to the platinum concentration, long-range crystallographic ordering and phase transition. First-principles calculations were performed in order to estimate the interaction energies between several different types of platinum clusters and a graphene sheet. The platinum density profile concentrated over the substrate surface led to the formation of three-dimensional islands in accordance with the Volmer-Weber mode of growth. The size distributions of the platinum particles were sensitive to the heterogeneity of the substrate surface and to the competitive nucleation and growth processes

  14. Exponential smoothing weighted correlations

    Science.gov (United States)

    Pozzi, F.; Di Matteo, T.; Aste, T.

    2012-06-01

    In many practical applications, correlation matrices might be affected by the "curse of dimensionality" and by an excessive sensitiveness to outliers and remote observations. These shortcomings can cause problems of statistical robustness especially accentuated when a system of dynamic correlations over a running window is concerned. These drawbacks can be partially mitigated by assigning a structure of weights to observational events. In this paper, we discuss Pearson's ρ and Kendall's τ correlation matrices, weighted with an exponential smoothing, computed on moving windows using a data-set of daily returns for 300 NYSE highly capitalized companies in the period between 2001 and 2003. Criteria for jointly determining optimal weights together with the optimal length of the running window are proposed. We find that the exponential smoothing can provide more robust and reliable dynamic measures and we discuss that a careful choice of the parameters can reduce the autocorrelation of dynamic correlations whilst keeping significance and robustness of the measure. Weighted correlations are found to be smoother and recovering faster from market turbulence than their unweighted counterparts, helping also to discriminate more effectively genuine from spurious correlations.

  15. Numerical modeling of the destruction of steel plates with a gradient substrate

    Science.gov (United States)

    Orlov, M. Yu.; Glazyrin, V. P.; Orlov, Yu. N.

    2017-10-01

    The paper presents the results of numerical simulation of the shock loading process of steel barriers with a gradient substrate. In an elastic plastic axisymmetric statement, a shock is simulated along the normal in the range of initial velocities up to 300 m / s. A range of initial velocities was revealed, in which the presence of a substrate "saved" the obstacle from spallation. New tasks were announced to deepen scientific knowledge about the behavior of unidirectional gradient barriers at impact. The results of calculations are obtained in the form of graphs, calculated configurations of the "impact - barrier" and tables.

  16. Smooth massless limit of field theories

    International Nuclear Information System (INIS)

    Fronsdal, C.

    1980-01-01

    The massless limit of Fierz-Pauli field theories, describing fields with fixed mass and spin interacting with external sources, is examined. Results are obtained for spins, 1, 3/2, 2 and 3 using conventional models, and then for all half-integral spins in a relatively model-independent manner. It is found that the massless limit is smooth provided that the sources satisfy certain conditions. In the massless limit these conditions reduce to the conservation laws required by internal consistency of massless field theory. Smoothness simply requires that quantities that vanish in the massless case approach zero in a certain well-defined manner. (orig.)

  17. Modelling of passive heating for replication of sub-micron patterns in optical disk substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngmin; Bae, Jaecheol; Kim, Hongmin; Kang, Shinill [School of Mechanical Engineering, Yonsei University, 134 Shinchon-dong, Seodaemoon-ku, Seoul (Korea, Republic of)

    2004-05-07

    The transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer generated during the polymer filling worsens transcribability because the solidified layer prevents the polymer melt from filling the sub-micron patterns. Therefore, the development of the solidified layer during the filling stage of injection moulding must be delayed. For this delay, passive heating through an insulation layer has been used. In the present study, to examine the development of the solidified layer, delayed by passive heating, the flow of the polymer melt with passive heating was analysed. Passive heating delayed markedly the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micron patterns. As a result, we predict that passive heating can improve the transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mould and measured the transcribability of an optical disk substrate.

  18. Modelling of passive heating for replication of sub-micron patterns in optical disk substrates

    International Nuclear Information System (INIS)

    Kim, Youngmin; Bae, Jaecheol; Kim, Hongmin; Kang, Shinill

    2004-01-01

    The transcribability of pit or land groove structures in replicating an optical disk substrate greatly affects the performance of a high-density optical disk. However, a solidified layer generated during the polymer filling worsens transcribability because the solidified layer prevents the polymer melt from filling the sub-micron patterns. Therefore, the development of the solidified layer during the filling stage of injection moulding must be delayed. For this delay, passive heating through an insulation layer has been used. In the present study, to examine the development of the solidified layer, delayed by passive heating, the flow of the polymer melt with passive heating was analysed. Passive heating delayed markedly the development of the solidified layer, reduced the viscosity of the polymer melt, and increased the fluidity of the polymer melt in the vicinity of the stamper surface with the sub-micron patterns. As a result, we predict that passive heating can improve the transcribability of an optical disk substrate. To verify our prediction, we fabricated an optical disk substrate by using passive heating of a mould and measured the transcribability of an optical disk substrate

  19. Modeling osmotic salinity effects on yield characteristics of substrate-grown greenhouse crops

    NARCIS (Netherlands)

    Sonneveld, C.; Bos, van den A.L.; Voogt, W.

    2004-01-01

    In a series of experiments with different osmotic potentials in the root environment, various vegetables, and ornamentals were grown in a substrate system. The osmotic potential was varied by addition of nutrients. Yield characteristics of the crop were related to the osmotic potential of the

  20. The effect of the physical properties of the substrate on the kinetics of cell adhesion and crawling studied by an axisymmetric diffusion-energy balance coupled model.

    Science.gov (United States)

    Samadi-Dooki, Aref; Shodja, Hossein M; Malekmotiei, Leila

    2015-05-14

    In this paper an analytical approach to study the effect of the substrate physical properties on the kinetics of adhesion and motility behavior of cells is presented. Cell adhesion is mediated by the binding of cell wall receptors and substrate's complementary ligands, and tight adhesion is accomplished by the recruitment of the cell wall binders to the adhesion zone. The binders' movement is modeled as their axisymmetric diffusion in the fluid-like cell membrane. In order to preserve the thermodynamic consistency, the energy balance for the cell-substrate interaction is imposed on the diffusion equation. Solving the axisymmetric diffusion-energy balance coupled equations, it turns out that the physical properties of the substrate (substrate's ligand spacing and stiffness) have considerable effects on the cell adhesion and motility kinetics. For a rigid substrate with uniform distribution of immobile ligands, the maximum ligand spacing which does not interrupt adhesion growth is found to be about 57 nm. It is also found that as a consequence of the reduction in the energy dissipation in the isolated adhesion system, cell adhesion is facilitated by increasing substrate's stiffness. Moreover, the directional movement of cells on a substrate with gradients in mechanical compliance is explored with an extension of the adhesion formulation. It is shown that cells tend to move from soft to stiff regions of the substrate, but their movement is decelerated as the stiffness of the substrate increases. These findings based on the proposed theoretical model are in excellent agreement with the previous experimental observations.

  1. Smooth functions statistics

    International Nuclear Information System (INIS)

    Arnold, V.I.

    2006-03-01

    To describe the topological structure of a real smooth function one associates to it the graph, formed by the topological variety, whose points are the connected components of the level hypersurface of the function. For a Morse function, such a graph is a tree. Generically, it has T triple vertices, T + 2 endpoints, 2T + 2 vertices and 2T + 1 arrows. The main goal of the present paper is to study the statistics of the graphs, corresponding to T triple points: what is the growth rate of the number φ(T) of different graphs? Which part of these graphs is representable by the polynomial functions of corresponding degree? A generic polynomial of degree n has at most (n - 1) 2 critical points on R 2 , corresponding to 2T + 2 = (n - 1) 2 + 1, that is to T = 2k(k - 1) saddle-points for degree n = 2k

  2. Development and initial validation of a novel smoothed-particle hydrodynamics-based simulation model of trabecular bone penetration by metallic implants.

    Science.gov (United States)

    Kulper, Sloan A; Fang, Christian X; Ren, Xiaodan; Guo, Margaret; Sze, Kam Y; Leung, Frankie K L; Lu, William W

    2018-04-01

    A novel computational model of implant migration in trabecular bone was developed using smoothed-particle hydrodynamics (SPH), and an initial validation was performed via correlation with experimental data. Six fresh-frozen human cadaveric specimens measuring 10 × 10 × 20 mm were extracted from the proximal femurs of female donors (mean age of 82 years, range 75-90, BV/TV ratios between 17.88% and 30.49%). These specimens were then penetrated under axial loading to a depth of 10 mm with 5 mm diameter cylindrical indenters bearing either flat or sharp/conical tip designs similar to blunt and self-tapping cancellous screws, assigned in a random manner. SPH models were constructed based on microCT scans (17.33 µm) of the cadaveric specimens. Two initial specimens were used for calibration of material model parameters. The remaining four specimens were then simulated in silico using identical material model parameters. Peak forces varied between 92.0 and 365.0 N in the experiments, and 115.5-352.2 N in the SPH simulations. The concordance correlation coefficient between experimental and simulated pairs was 0.888, with a 95%CI of 0.8832-0.8926, a Pearson ρ (precision) value of 0.9396, and a bias correction factor Cb (accuracy) value of 0.945. Patterns of bone compaction were qualitatively similar; both experimental and simulated flat-tipped indenters produced dense regions of compacted material adjacent to the advancing face of the indenter, while sharp-tipped indenters deposited compacted material along their peripheries. Simulations based on SPH can produce accurate predictions of trabecular bone penetration that are useful for characterizing implant performance under high-strain loading conditions. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1114-1123, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Classification of smooth Fano polytopes

    DEFF Research Database (Denmark)

    Øbro, Mikkel

    A simplicial lattice polytope containing the origin in the interior is called a smooth Fano polytope, if the vertices of every facet is a basis of the lattice. The study of smooth Fano polytopes is motivated by their connection to toric varieties. The thesis concerns the classification of smooth...... Fano polytopes up to isomorphism. A smooth Fano -polytope can have at most vertices. In case of vertices an explicit classification is known. The thesis contains the classification in case of vertices. Classifications of smooth Fano -polytopes for fixed exist only for . In the thesis an algorithm...... for the classification of smooth Fano -polytopes for any given is presented. The algorithm has been implemented and used to obtain the complete classification for ....

  4. Nanostructure Formation by controlled dewetting on patterned substrates: A combined theoretical, modeling and experimental study.

    Science.gov (United States)

    Lu, Liang-Xing; Wang, Ying-Min; Srinivasan, Bharathi Madurai; Asbahi, Mohamed; Yang, Joel K W; Zhang, Yong-Wei

    2016-09-01

    We perform systematic two-dimensional energetic analysis to study the stability of various nanostructures formed by dewetting solid films deposited on patterned substrates. Our analytical results show that by controlling system parameters such as the substrate surface pattern, film thickness and wetting angle, a variety of equilibrium nanostructures can be obtained. Phase diagrams are presented to show the complex relations between these system parameters and various nanostructure morphologies. We further carry out both phase field simulations and dewetting experiments to validate the analytically derived phase diagrams. Good agreements between the results from our energetic analyses and those from our phase field simulations and experiments verify our analysis. Hence, the phase diagrams presented here provide guidelines for using solid-state dewetting as a tool to achieve various nanostructures.

  5. The laminin beta 1-competing peptide YIGSR induces a hypercontractile, hypoproliferative airway smooth muscle phenotype in an animal model of allergic asthma

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Bos, I. Sophie T.; Halayko, Andrew J.; Zaagsma, Johan; Meurs, Herman

    2010-01-01

    Background: Fibroproliferative airway remodelling, including increased airway smooth muscle (ASM) mass and contractility, contributes to airway hyperresponsiveness in asthma. In vitro studies have shown that maturation of ASM cells to a (hyper)contractile phenotype is dependent on laminin, which can

  6. Isotropic Growth of Graphene toward Smoothing Stitching.

    Science.gov (United States)

    Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei

    2016-07-26

    The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.

  7. SmoothMoves : Smooth pursuits head movements for augmented reality

    NARCIS (Netherlands)

    Esteves, Augusto; Verweij, David; Suraiya, Liza; Islam, Rasel; Lee, Youryang; Oakley, Ian

    2017-01-01

    SmoothMoves is an interaction technique for augmented reality (AR) based on smooth pursuits head movements. It works by computing correlations between the movements of on-screen targets and the user's head while tracking those targets. The paper presents three studies. The first suggests that head

  8. Substrate and metabolite diffusion within model medium for soft cheese in relation to growth of Penicillium camembertii.

    Science.gov (United States)

    Aldarf, Mazen; Fourcade, Florence; Amrane, Abdeltif; Prigent, Yves

    2006-08-01

    Penicillium camembertii was cultivated on a jellified peptone-lactate based medium to simulate the composition of Camembert cheese. Diffusional limitations due to substrate consumption were not involved in the linear growth recorded during culture, while nitrogen (peptone) limitation accounted for growth cessation. Examination of gradients confirmed that medium neutralization was the consequence of lactate consumption and ammonium production. The diffusion of the lactate assimilated from the core to the rind and that of the ammonium produced from the rind to the core was described by means of a diffusion/reaction model involving a partial linking of consumption or production to growth. The model matched experimental data throughout growth.

  9. A model framework to describe growth-linked biodegradation of trace-level pesticides in the presence of coincidental carbon substrates and microbes

    DEFF Research Database (Denmark)

    Liu, Li; Helbling, Damian E.; Kohler, Hans-Peter E.

    2014-01-01

    described were: the growth-linked biodegradation of micropollutant at environmentally relevant concentrations; the effect of coincidental assimilable organic carbon substrates; and the effect of coincidental microbes that compete for assimilable organic carbon substrates. We used Monod kinetic models...... to describe substrate utilization and microbial growth rates for specific pesticide and degrader pairs. We then extended the model to include terms for utilization of assimilable organic carbon substrates by the specific degrader and coincidental microbes, growth on assimilable organic carbon substrates......, challenges remain in developing engineered remediation strategies for pesticide-contaminated environments because the fundamental processes that regulate growth-linked biodegradation of pesticides in natural environments remain poorly understood. In this research, we developed a model framework to describe...

  10. Catalytic Cycle of Haloalkane Dehalogenases Toward Unnatural Substrates Explored by Computational Modeling.

    Science.gov (United States)

    Marques, Sérgio M; Dunajova, Zuzana; Prokop, Zbynek; Chaloupkova, Radka; Brezovsky, Jan; Damborsky, Jiri

    2017-08-28

    The anthropogenic toxic compound 1,2,3-trichloropropane is poorly degradable by natural enzymes. We have previously constructed the haloalkane dehalogenase DhaA31 by focused directed evolution ( Pavlova, M. et al. Nat. Chem. Biol. 2009 , 5 , 727 - 733 ), which is 32 times more active than the wild-type enzyme and is currently the most active variant known against that substrate. Recent evidence has shown that the structural basis responsible for the higher activity of DhaA31 was poorly understood. Here we have undertaken a comprehensive computational study of the main steps involved in the biocatalytic hydrolysis of 1,2,3-trichloropropane to decipher the structural basis for such enhancements. Using molecular dynamics and quantum mechanics approaches we have surveyed (i) the substrate binding, (ii) the formation of the reactive complex, (iii) the chemical step, and (iv) the release of the products. We showed that the binding of the substrate and its transport through the molecular tunnel to the active site is a relatively fast process. The cleavage of the carbon-halogen bond was previously identified as the rate-limiting step in the wild-type. Here we demonstrate that this step was enhanced in DhaA31 due to a significantly higher number of reactive configurations of the substrate and a decrease of the energy barrier to the S N 2 reaction. C176Y and V245F were identified as the key mutations responsible for most of those improvements. The release of the alcohol product was found to be the rate-limiting step in DhaA31 primarily due to the C176Y mutation. Mutational dissection of DhaA31 and kinetic analysis of the intermediate mutants confirmed the theoretical observations. Overall, our comprehensive computational approach has unveiled mechanistic details of the catalytic cycle which will enable a balanced design of more efficient enzymes. This approach is applicable to deepen the biochemical knowledge of a large number of other systems and may contribute to robust

  11. Modeling of the substrate and product transfer coefficients for ethanol fermentation

    International Nuclear Information System (INIS)

    Zerajic, S.; Grbavcic, Z.; Savkovic-Stevanovic, J.

    2008-01-01

    The transfer phenomena of the substrate and product for ethanol fermentation with immobilized biocatalyst were investigated. Fermentation was carried out with a biocatalyst consisting of Ca-alginate gel in the form of two-layer spherical beads in anaerobic conditions. The determination of kinetic parameters was achieved by fitting bioreaction progress curves to the experimental data. The calculation of the diffusion coefficients was performed by numerical methods for experimental conditions. Finally, the glucose and ethanol transfer coefficients are defined and determined, using the effective diffusion coefficients. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  12. Smoothness in Binomial Edge Ideals

    Directory of Open Access Journals (Sweden)

    Hamid Damadi

    2016-06-01

    Full Text Available In this paper we study some geometric properties of the algebraic set associated to the binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and some of them are reducible. If every irreducible component of the algebraic set is smooth we call the graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular. In addition, it is proved that complete bipartite graphs are edge smooth.

  13. Droplet evaporation on a horizontal substrate under gravity field by mesoscopic modeling.

    Science.gov (United States)

    Xie, Chiyu; Zhang, Jianying; Bertola, Volfango; Wang, Moran

    2016-02-01

    The evaporation of water drop deposited on a horizontal substrate is investigated using a lattice Boltzmann method (LBM) for multiphase flows with a large-density ratio. To account for the variation of evaporation flux distribution along the drop interface, a novel evaporation scheme is introduced into the LBM framework, and validated by comparison with experimental data. We aim at discovering the effect of gravity on the evaporating drop in detail, and various evaporation conditions are considered as well as different wetting properties of the substrates. An effective diameter is introduced as an indicator of the critical drop size under which gravity is negligible. Our results show that such critical diameter is much smaller than the capillary length, which has been widely accepted as the critical size in previous and current works. The critical diameter is found to be almost independent of the evaporation conditions and the surface wettability. A correlation between this critical diameter and the capillary length is also proposed for easy use in applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The modeling of ethanol production by Kluyveromyces marxianus using whey as substrate in continuous A-Stat bioreactors.

    Science.gov (United States)

    Gabardo, Sabrina; Pereira, Gabriela Feix; Rech, Rosane; Ayub, Marco Antônio Záchia

    2015-09-01

    We investigated the kinetics of whey bioconversion into ethanol by Kluyveromyces marxianus in continuous bioreactors using the "accelerostat technique" (A-stat). Cultivations using free and Ca-alginate immobilized cells were evaluated using two different acceleration rates (a). The kinetic profiles of these systems were modeled using four different unstructured models, differing in the expressions for the specific growth (μ) and substrate consumption rates (r s), taking into account substrate limitation and product inhibition. Experimental data showed that the dilution rate (D) directly affected cell physiology and metabolism. The specific growth rate followed the dilution rate (μ≈D) for the lowest acceleration rate (a = 0.0015 h(-2)), condition in which the highest ethanol yield (0.52 g g(-1)) was obtained. The highest acceleration rate (a = 0.00667 h(-2)) led to a lower ethanol yield (0.40 g g(-1)) in the system where free cells were used, whereas with immobilized cells ethanol yields increased by 23 % (0.49 g g(-1)). Among the evaluated models, Monod and Levenspiel combined with Ghose and Tyagi models were found to be more appropriate for describing the kinetics of whey bioconversion into ethanol. These results may be useful in scaling up the process for ethanol production from whey.

  15. Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images.

    Science.gov (United States)

    Chung, Moo K; Qiu, Anqi; Seo, Seongho; Vorperian, Houri K

    2015-05-01

    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Smooth quantile normalization.

    Science.gov (United States)

    Hicks, Stephanie C; Okrah, Kwame; Paulson, Joseph N; Quackenbush, John; Irizarry, Rafael A; Bravo, Héctor Corrada

    2018-04-01

    Between-sample normalization is a critical step in genomic data analysis to remove systematic bias and unwanted technical variation in high-throughput data. Global normalization methods are based on the assumption that observed variability in global properties is due to technical reasons and are unrelated to the biology of interest. For example, some methods correct for differences in sequencing read counts by scaling features to have similar median values across samples, but these fail to reduce other forms of unwanted technical variation. Methods such as quantile normalization transform the statistical distributions across samples to be the same and assume global differences in the distribution are induced by only technical variation. However, it remains unclear how to proceed with normalization if these assumptions are violated, for example, if there are global differences in the statistical distributions between biological conditions or groups, and external information, such as negative or control features, is not available. Here, we introduce a generalization of quantile normalization, referred to as smooth quantile normalization (qsmooth), which is based on the assumption that the statistical distribution of each sample should be the same (or have the same distributional shape) within biological groups or conditions, but allowing that they may differ between groups. We illustrate the advantages of our method on several high-throughput datasets with global differences in distributions corresponding to different biological conditions. We also perform a Monte Carlo simulation study to illustrate the bias-variance tradeoff and root mean squared error of qsmooth compared to other global normalization methods. A software implementation is available from https://github.com/stephaniehicks/qsmooth.

  17. Some asymptotic theory for variance function smoothing | Kibua ...

    African Journals Online (AJOL)

    Simple selection of the smoothing parameter is suggested. Both homoscedastic and heteroscedastic regression models are considered. Keywords: Asymptotic, Smoothing, Kernel, Bandwidth, Bias, Variance, Mean squared error, Homoscedastic, Heteroscedastic. > East African Journal of Statistics Vol. 1 (1) 2005: pp. 9-22 ...

  18. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.; Choi, Yun Seok; Alkhalifah, Tariq Ali; Li, Z.

    2017-01-01

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  19. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.

    2017-05-26

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  20. Optimization of the selection process of the co-substrates for chicken manure fermentation using neural modeling

    Directory of Open Access Journals (Sweden)

    Lewicki Andrzej

    2016-01-01

    Full Text Available Intense development of research equipment leads directly to increasing cognitive abilities. However, along with the raising amount of data generated, the development of the techniques allowing the analysis is also essential. Currently, one of the most dynamically developing branch of computer science and mathematics are the Artificial Neural Networks (ANN. Their main advantage is very high ability to solve the regression and approximation issues. This paper presents the possibility of application of artificial intelligence methods to optimize the selection of co-substrates intended for methane fermentation of chicken manure. 4-layer MLP network has proven to be the optimal structure modeling the obtained empirical data.

  1. Systemic Delivery of a Glucosylceramide Synthase Inhibitor Reduces CNS Substrates and Increases Lifespan in a Mouse Model of Type 2 Gaucher Disease

    OpenAIRE

    Cabrera-Salazar, Mario A.; DeRiso, Matthew; Bercury, Scott D.; Li, Lingyun; Lydon, John T.; Weber, William; Pande, Nilesh; Cromwell, Mandy A.; Copeland, Diane; Leonard, John; Cheng, Seng H.; Scheule, Ronald K.

    2012-01-01

    Neuropathic Gaucher disease (nGD), also known as type 2 or type 3 Gaucher disease, is caused by a deficiency of the enzyme glucocerebrosidase (GC). This deficiency impairs the degradation of glucosylceramide (GluCer) and glucosylsphingosine (GluSph), leading to their accumulation in the brains of patients and mouse models of the disease. These accumulated substrates have been thought to cause the severe neuropathology and early death observed in patients with nGD and mouse models. Substrate a...

  2. Smooth germanium nanowires prepared by a hydrothermal deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.Z., E-mail: lzpei1977@163.com [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhao, H.S. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Tan, W. [Henkel Huawei Electronics Co. Ltd., Lian' yungang, Jiangsu 222006 (China); Yu, H.Y. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Chen, Y.W. [Department of Materials Science, Fudan University, Shanghai 200433 (China); Fan, C.G. [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China); Zhang, Qian-Feng, E-mail: zhangqf@ahut.edu.cn [School of Materials Science and Engineering, Institute of Molecular Engineering and Applied Chemistry, Key Laboratory of Materials Science and Processing of Anhui Province, Anhui University of Technology, Ma' anshan, Anhui 243002 (China)

    2009-11-15

    Smooth germanium nanowires were prepared using Ge and GeO{sub 2} as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  3. Smooth germanium nanowires prepared by a hydrothermal deposition process

    International Nuclear Information System (INIS)

    Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Fan, C.G.; Zhang, Qian-Feng

    2009-01-01

    Smooth germanium nanowires were prepared using Ge and GeO 2 as the starting materials and Cu sheet as the substrate by a simple hydrothermal deposition process. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations show that the germanium nanowires are smooth and straight with uniform diameter of about 150 nm in average and tens of micrometers in length. X-ray diffraction (XRD) and Raman spectrum of the germanium nanowires display that the germanium nanowires are mainly composed of cubic diamond phase. PL spectrum shows a strong blue light emission at 441 nm. The growth mechanism is also discussed.

  4. Multi-scale modeling for prediction of distributed cellular properties in response to substrate spatial gradients in a continuously run microreactor

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Krühne, Ulrich; Nopens, Ingmar

    2012-01-01

    microbioreactor is simulated. A multiscale model consisting of the coupling of a population balance model, a kinetic model and a flow model was developed in order to predict simultaneously local concentrations of substrate (glucose), product (ethanol) and biomass, as well as the local cell size distributions....

  5. Bulk substrate porosity verification by applying Monte Carlo modeling and Castaing's formula using energy-dispersive x-rays

    Science.gov (United States)

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Jit Singh; Amin, Nowshad; Lai, Khin Wee

    2015-11-01

    The leadframe fabrication process normally involves additional thin-metal layer plating on the bulk copper substrate surface for wire bonding purposes. Silver, tin, and copper flakes are commonly adopted as plating materials. It is critical to assess the density of the plated metal layer, and in particular to look for porosity or voids underneath the layer, which may reduce the reliability during high-temperature stress. A fast, reliable inspection technique is needed to assess the porosity or void weakness. To this end, the characteristics of x-rays generated from bulk samples were examined using an energy-dispersive x-ray (EDX) detector to examine the porosity percentage. Monte Carlo modeling was integrated with Castaing's formula to verify the integrity of the experimental data. Samples with different porosity percentages were considered to test the correlation between the intensity of the collected x-ray signal and the material density. To further verify the integrity of the model, conventional cross-sectional samples were also taken to observe the porosity percentage using Image J software measurement. A breakthrough in bulk substrate assessment was achieved by applying EDX for the first time to nonelemental analysis. The experimental data showed that the EDX features were not only useful for elemental analysis, but also applicable to thin-film metal layer thickness measurement and bulk material density determination. A detailed experiment was conducted using EDX to assess the plating metal layer and bulk material porosity.

  6. A simple, single-substrate model to interpret intra-annual stable isotope signals in tree-ring cellulose

    Science.gov (United States)

    Ogée, J.; Barbour, M. M.; Wingate, L.; Bert, D.; Bosc, A.; Stievenard, M.; Lambrot, C.; Pierre, M.; Bariac, T.; Dewar, R. C.

    2009-04-01

    High-resolution intra-annual measurements of the carbon and oxygen stable isotope composition of cellulose in annual tree rings (δ13Ccellulose and δ18Ocellulose, respectively) reveal well-defined seasonal patterns that could contain valuable records of past climate and tree function. Interpreting these signals is nonetheless complex because they not only record the signature of current assimilates, but also depend on carbon allocation dynamics within the trees. Here, we present a simple, single-substrate model for wood growth containing only 12 main parameters. The model is used to interpret an isotopic intra-annual chronology collected in an even-aged maritime pine plantation growing in the South-West of France, where climate, soil and flux variables were also monitored. The empirical δ13Ccellulose and δ18Ocellulose exhibit dynamic seasonal patterns, with clear differences between years and individuals, that are mostly captured by the model. In particular, the amplitude of both signals is reproduced satisfactorily as well as the sharp 18O enrichment at the beginning of 1997 and the less pronounced 13C and 18O depletion observed at the end of the latewood. Our results suggest that the single-substrate hypothesis is a good approximation for tree ring studies on Pinus pinaster, at least for the environmental conditions covered by this study. A sensitivity analysis revealed that, in the early wood, the model was particularly sensitive to the date when cell wall thickening begins (twt). We therefore propose to use the model to reconstruct time series of twt and explore how climate influences this key parameter of xylogenesis.

  7. Offshore Substrate

    Data.gov (United States)

    California Natural Resource Agency — This shapefile displays the distribution of substrate types from Pt. Arena to Pt. Sal in central/northern California. Originally this data consisted of seven paper...

  8. The copper spoil heap Knappenberg, Austria, as a model for metal habitats – Vegetation, substrate and contamination

    Energy Technology Data Exchange (ETDEWEB)

    Adlassnig, Wolfram; Weiss, Yasmin S. [University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstraße 14, A-1090 Vienna (Austria); Sassmann, Stefan [University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstraße 14, A-1090 Vienna (Austria); University of Exeter, College of Life and Environmental Sciences, Biosciences, Stocker Road, Exeter EX4 4QD (United Kingdom); Steinhauser, Georg [Leibniz University Hannover, Institute of Radioecology and Radiation Protection, Herrenhäuser Straße 2, D30419 Hannover (Germany); Hofhansl, Florian [University of Vienna, Department of Microbiology and Ecosystem Science, Althanstraße 14, A-1090 Vienna (Austria); Instituto Nacional de Pesquisas da Amazônia, Coordenação de Dinâmica Ambiental, Manaus (Brazil); Baumann, Nils [Helmholtz-Zentrum Dresden-Rossendorf, Division of Biogeochemistry, Bautzner Landstraße 400, D-01328 Dresden (Germany); Lichtscheidl, Irene K. [University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstraße 14, A-1090 Vienna (Austria); Lang, Ingeborg, E-mail: ingeborg.lang@univie.ac.at [University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Althanstraße 14, A-1090 Vienna (Austria)

    2016-09-01

    Historic mining in the Eastern Alps has left us with a legacy of numerous spoil heaps hosting specific, metal tolerant vegetation. Such habitats are characterized by elevated concentrations of toxic elements but also by high irradiation, a poorly developed substrate or extreme pH of the soil. This study investigates the distribution of vascular plants, mosses and lichens on a copper spoil heap on the ore bearing Knappenberg formed by Prebichl Layers and Werfener Schist in Lower Austria. It serves as a model for discriminating between various ecological traits and their effects on vegetation. Five distinct clusters were distinguished: (1) The bare, metal rich Central Spoil Heap was only colonised by highly resistant specialists. (2) The Northern and (3) Southern Peripheries contained less copper; the contrasting vegetation was best explained by the different microclimate. (4) A forest over acidic bedrock hosted a vegetation overlapping with the periphery of the spoil heap. (5) A forest over calcareous bedrock was similar to the spoil heap with regard to pH and humus content but hosted a vegetation differing strongly to all other habitats. Among the multiple toxic elements at the spoil heap, only Cu seems to exert a crucial influence on the vegetation pattern. Besides metal concentrations, irradiation, humidity, humus, pH and grain size distribution are important for the establishment of a metal tolerant vegetation. The difference between the species poor Northern and the diverse Southern Periphery can be explained by the microclimate rather than by the substrate. All plant species penetrating from the forest into the periphery of the spoil heap originate from the acidic but not from the calcareous bedrock. - Highlights: • Strong impact on plant diversity by isolation and extreme abiotic conditions • Both, microclimate and substrate explain species distribution. • Increased cellular metal tolerance of plants from the Central Spoil Heap • Among toxic elements

  9. Role of Smooth Muscle in Intestinal Inflammation

    Directory of Open Access Journals (Sweden)

    Stephen M Collins

    1996-01-01

    Full Text Available The notion that smooth muscle function is altered in inflammation is prompted by clinical observations of altered motility in patients with inflammatory bowel disease (IBD. While altered motility may reflect inflammation-induced changes in intrinsic or extrinsic nerves to the gut, changes in gut hormone release and changes in muscle function, recent studies have provided in vitro evidence of altered muscle contractility in muscle resected from patients with ulcerative colitis or Crohn’s disease. In addition, the observation that smooth muscle cells are more numerous and prominent in the strictured bowel of IBD patients compared with controls suggests that inflammation may alter the growth of intestinal smooth muscle. Thus, inflammation is associated with changes in smooth muscle growth and contractility that, in turn, contribute to important symptoms of IBD including diarrhea (from altered motility and pain (via either altered motility or stricture formation. The involvement of smooth muscle in this context may be as an innocent bystander, where cells and products of the inflammatory process induce alterations in muscle contractility and growth. However, it is likely that intestinal muscle cells play a more active role in the inflammatory process via the elaboration of mediators and trophic factors, including cytokines, and via the production of collagen. The concept of muscle cells as active participants in the intestinal inflammatory process is a new concept that is under intense study. This report summarizes current knowledge as it relates to these two aspects of altered muscle function (growth and contractility in the inflamed intestine, and will focus on mechanisms underlying these changes, based on data obtained from animal models of intestinal inflammation.

  10. The identification of new substrates of human DHRS7 by molecular modeling and in vitro testing

    Czech Academy of Sciences Publication Activity Database

    Zemanová, L.; Palani, Kirubakaran; Pato, I. H.; Štambergová, H.; Vondrášek, Jiří

    2017-01-01

    Roč. 105, č. 1 (2017), s. 171-182 ISSN 0141-8130 R&D Projects: GA MŠk(CZ) LM2015047 Institutional support: RVO:61388963 Keywords : DHRS7 * SDR superfamily * SDR34C1 * homology modeling * molecular modeling Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.671, year: 2016

  11. A Mathematical Model for Dynamic Simulation of Anaerobic Digestion of Complex Substrates

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.; Ahring, Birgitte Kiær

    1993-01-01

    of pH and temperature characteristics in order to accurately simulate free ammonia concentration. Free ammonia and acetate constitute the primary modulating factors in the model. The model has been applied for the simulation of digestion of cattle manure in continuously stirred tank reactors (CSTRs...

  12. A whole-body model for glycogen regulation reveals a critical role for substrate cycling in maintaining blood glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2011-12-01

    Full Text Available Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into "whole-body" contextual models that mimic in vivo conditions.

  13. MOLECULAR MODELLING OF HUMAN ALDEHYDE OXIDASE AND IDENTIFICATION OF THE KEY INTERACTIONS IN THE ENZYME-SUBSTRATE COMPLEX

    Directory of Open Access Journals (Sweden)

    Siavoush Dastmalchi

    2005-05-01

    Full Text Available Aldehyde oxidase (EC 1.2.3.1, a cytosolic enzyme containing FAD, molybdenum and iron-sulphur cluster, is a member of non-cytochrome P-450 enzymes called molybdenum hydroxylases which is involved in the metabolism of a wide range of endogenous compounds and many drug substances. Drug metabolism is one of the important characteristics which influences many aspects of a therapeutic agent such as routes of administration, drug interaction and toxicity and therefore, characterisation of the key interactions between enzymes and substrates is very important from drug development point of view. The aim of this study was to generate a three-dimensional model of human aldehyde oxidase (AO in order to assist us to identify the mode of interaction between enzyme and a set of phethalazine/quinazoline derivatives. Both sequence-based (BLAST and inverse protein fold recognition methods (THREADER were used to identify the crystal structure of bovine xanthine dehydrogenase (pdb code of 1FO4 as the suitable template for comparative modelling of human AO. Model structure was generated by aligning and then threading the sequence of human AO onto the template structure, incorporating the associated cofactors, and molecular dynamics simulations and energy minimization using GROMACS program. Different criteria which were measured by the PROCHECK, QPACK, VERIFY-3D were indicative of a proper fold for the predicted structural model of human AO. For example, 97.9 percentages of phi and psi angles were in the favoured and most favoured regions in the ramachandran plot, and all residues in the model are assigned environmentally positive compatibility scores. Further evaluation on the model quality was performed by investigation of AO-mediated oxidation of a set of phthalazine/quinazoline derivatives to develop QSAR model capable of describing the extent of the oxidation. Substrates were aligned by docking onto the active site of the enzyme using GOLD technology and then

  14. Modeling the transport of chemical warfare agents and simulants in polymeric substrates for reactive decontamination

    Science.gov (United States)

    Pearl, Thomas; Mantooth, Brent; Varady, Mark; Willis, Matthew

    2014-03-01

    Chemical warfare agent simulants are often used for environmental testing in place of highly toxic agents. This work sets the foundation for modeling decontamination of absorbing polymeric materials with the focus on determining relationships between agents and simulants. The correlations of agents to simulants must consider the three way interactions in the chemical-material-decontaminant system where transport and reaction occur in polymer materials. To this end, diffusion modeling of the subsurface transport of simulants and live chemical warfare agents was conducted for various polymer systems (e.g., paint coatings) with and without reaction pathways with applied decontamination. The models utilized 1D and 2D finite difference diffusion and reaction models to simulate absorption and reaction in the polymers, and subsequent flux of the chemicals out of the polymers. Experimental data including vapor flux measurements and dynamic contact angle measurements were used to determine model input parameters. Through modeling, an understanding of the relationship of simulant to live chemical warfare agent was established, focusing on vapor emission of agents and simulants from materials.

  15. Application of Thermal Network Model to Transient Thermal Analysis of Power Electronic Package Substrate

    Directory of Open Access Journals (Sweden)

    Masaru Ishizuka

    2011-01-01

    Full Text Available In recent years, there is a growing demand to have smaller and lighter electronic circuits which have greater complexity, multifunctionality, and reliability. High-density multichip packaging technology has been used in order to meet these requirements. The higher the density scale is, the larger the power dissipation per unit area becomes. Therefore, in the designing process, it has become very important to carry out the thermal analysis. However, the heat transport model in multichip modules is very complex, and its treatment is tedious and time consuming. This paper describes an application of the thermal network method to the transient thermal analysis of multichip modules and proposes a simple model for the thermal analysis of multichip modules as a preliminary thermal design tool. On the basis of the result of transient thermal analysis, the validity of the thermal network method and the simple thermal analysis model is confirmed.

  16. Growth and lipid production of Umbelopsis isabellina on a solid substrate - Mechanistic modeling and validation

    NARCIS (Netherlands)

    Meeuwse, P.; Klok, A.J.; Haemers, S.; Tramper, J.; Rinzema, A.

    2012-01-01

    Microbial lipids are an interesting feedstock for biodiesel. Their production from agricultural waste streams by fungi cultivated in solid-state fermentation may be attractive, but the yield of this process is still quite low. In this article, a mechanistic model is presented that describes growth,

  17. Heat and mass transfer models to understand the drying mechanisms of a porous substrate.

    Science.gov (United States)

    Songok, Joel; Bousfield, Douglas W; Gane, Patrick A C; Toivakka, Martti

    2016-02-01

    While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.

  18. Translational rodent models of Korsakoff syndrome reveal the critical neuroanatomical substrates of memory dysfunction and recovery.

    Science.gov (United States)

    Savage, Lisa M; Hall, Joseph M; Resende, Leticia S

    2012-06-01

    Investigation of the amnesic disorder Korsakoff Syndrome (KS) has been vital in elucidating the critical brain regions involved in learning and memory. Although the thalamus and mammillary bodies are the primary sites of neuropathology in KS, functional deactivation of the hippocampus and certain cortical regions also contributes to the chronic cognitive dysfunction reported in KS. The rodent pyrithiamine-induced thiamine deficiency (PTD) model has been used to study the extent of hippocampal and cortical neuroadaptations in KS. In the PTD model, the hippocampus, frontal and retrosplenial cortical regions display loss of cholinergic innervation, decreases in behaviorally stimulated acetylcholine release and reductions in neurotrophins. While PTD treatment results in significant impairment in measures of spatial learning and memory, other cognitive processes are left intact and may be recruited to improve cognitive outcome. In addition, behavioral recovery can be stimulated in the PTD model by increasing acetylcholine levels in the medial septum, hippocampus and frontal cortex, but not in the retrosplenial cortex. These data indicate that although the hippocampus and frontal cortex are involved in the pathogenesis of KS, these regions retain neuroplasticity and may be critical targets for improving cognitive outcome in KS.

  19. Mechanism-based population pharmacokinetic modelling in diabetes: vildagliptin as a tight binding inhibitor and substrate of dipeptidyl peptidase IV

    Science.gov (United States)

    Landersdorfer, Cornelia B; He, Yan-Ling; Jusko, William J

    2012-01-01

    AIMS To assess the pharmacokinetics of vildagliptin at different doses and build a mechanism-based population model that simultaneously describes vildagliptin pharmacokinetics and its effects on DPP-4 activity based on underlying physiology and biology. METHODS Vildagliptin concentrations and DPP-4 activity vs. time from 13 type 2 diabetic patients after oral vildagliptin 10, 25 or 100 mg and placebo twice daily for 28 days were co-modelled. NONMEM VI and S-ADAPT were utilized for population modelling. RESULTS A target-mediated drug disposition (TMDD) model accounting for capacity-limited high affinity binding of vildagliptin to DPP-4 in plasma and tissues had good predictive performance. Modelling the full time course of the vildagliptin-DPP-4 interaction suggested parallel vildagliptin dissociation from DPP-4 by a slow first-order process and hydrolysis by DPP-4 to an inactive metabolite as a disposition mechanism. Due to limited amounts of DPP-4, vildagliptin concentrations increased slightly more than dose proportionally. This newly proposed model and the parameter estimates are supported by published in vitro studies. Mean parameter estimates (inter-individual coefficient of variation) were: non-saturable clearance 36 l h−1 (25%), central volume of distribution 22 l (37%), half-life of dissociation from DPP-4 1.1 h (94%) and half-life of hydrolysis 6.3 h (81%). CONCLUSIONS Vildagliptin is both an inhibitor and substrate for DPP-4. By utilizing the TMDD approach, slow dissociation of vildagliptin from DPP-4 was found in patients and the half-life of hydrolysis by DPP-4 estimated. This model can be used to predict DPP-4 inhibition effects of other dosage regimens and be modified for other DPP-4 inhibitors to differentiate their properties. PMID:22442826

  20. Optical modelling of thin-film silicon solar cells deposited on textured substrates

    International Nuclear Information System (INIS)

    Krc, J.; Zeman, M.; Smole, F.; Topic, M.

    2004-01-01

    Optical modelling is used to investigate effects of light scattering in amorphous silicon and microcrystalline silicon solar cells. The role of enhanced haze parameter and different angular distribution function of scattered light is analyzed. Results of optical simulation show that enhanced haze parameter compared to that of Asahi U-type SnO 2 :F does not improve external quantum efficiency and short-circuit current density of amorphous silicon solar cell significantly, whereas for microcrystalline silicon solar cell the improvement is larger. Angular distribution function affects the external quantum efficiency and the short-circuit current density significantly

  1. Review of Theoretical Prediction Models for Organic Extract Metabolites, Effect of Drying Temperature on Smooth Muscle Relaxing Activity Induced by Organic Extracts Specially Cecropia Obtusifolia Portal and Web Server Predictors of Drug-Protein Interaction.

    Science.gov (United States)

    Aguirre-Crespo, Francisco; García-Mera, Xerardo; Guillén-Poot, Mónica Anahi; May-Díaz, Héctor Fernado; Tun-Suárez, Adrián; Aguirre-Crespo, A; Hernández-Rodríguez, J; Vergara-Galicia, Jorge; Rodríguez-López, V; Prado-Prado, Francisco J

    2015-02-19

    Cecropia obtusifolia bertol is medicinal specie used in the treatment of diabetes mellitus and hypertension and it has scientific studies that support the traditional use. However, it is required to understand the influence of drying temperature on the yield and pharmacological activity. Drying rate, extraction efficiency, changes in the UV-Vis spectrum and estimating chlorophylls were stimulated with the increasing temperature. Finally, relaxant activity of vascular smooth muscle is increased by 70ºC and reducing ability by the method of CARF increases with temperature. Analytical studies are required to identify changes in the metabolic content and those that ensure the safety and efficacy for human consumption. In this sense, bioinformatic studies may be helpful. Studies such as QSAR can help us to study these metabolites derived from natural products. MIND-BETS model and NL MIND-BETS model to predict DPIs was introduced using MARCH-INSIDE (MI) software to calculate structural parameters for drugs and enzymes respectively. We firstly revised the state-of-art on the design with review of previous works with hypertension activity based on theoretical studies. A study, evaluating the effect of drying temperature of leaves of C. obtusifolia on the relaxing of vascular smooth muscle, antioxidant activity and the presence of chlorophylls, with a focus on Cecropia metabolites. Last, we carried out QSAR studies using MIND-BEST and NL MIND-BEST web servers in order to understand the essential metabolites structural requirement for binding with receptors for FDA proteins.

  2. Non-smooth dynamical systems

    CERN Document Server

    2000-01-01

    The book provides a self-contained introduction to the mathematical theory of non-smooth dynamical problems, as they frequently arise from mechanical systems with friction and/or impacts. It is aimed at applied mathematicians, engineers, and applied scientists in general who wish to learn the subject.

  3. Smoothing type buffer memory device

    International Nuclear Information System (INIS)

    Podorozhnyj, D.M.; Yashin, I.V.

    1990-01-01

    The layout of the micropower 4-bit smoothing type buffer memory device allowing one to record without counting the sequence of input randomly distributed pulses in multi-channel devices with serial poll, is given. The power spent by a memory cell for one binary digit recording is not greater than 0.15 mW, the device dead time is 10 mus

  4. Covariances of smoothed observational data

    Czech Academy of Sciences Publication Activity Database

    Vondrák, Jan; Čepek, A.

    2000-01-01

    Roč. 40, 5-6 (2000), s. 42-44 ISSN 1210-2709 R&D Projects: GA ČR GA205/98/1104 Institutional research plan: CEZ:AV0Z1003909 Keywords : digital filter * smoothing * estimation of uncertainties Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  5. Income smoothing by Dutch hospitals

    NARCIS (Netherlands)

    Boterenbrood, D.R.

    2014-01-01

    Research indicates that hospitals manage their earnings. However, these findings might be influenced by methodological issues. In this study, I exploit specific features of Dutch hospitals to study income smoothing while limiting these methodological issues. The managers of Dutch hospitals have the

  6. Modeling of the Dynamics of Radio Wave Reflection and Absorption in a Smoothly Ionomogeneous Plasma with Electromagnetically Driven Strong Langmuir Turbulence

    Science.gov (United States)

    Kochetov, A. V.

    2018-05-01

    This work was initiated by experiments on studying the self-action of radio waves incident on the ionosphere from a ground-based transmitter at the stage of electromagnetic excitation of Langmuir turbulence (Langmuir effect). The emphasis is on the impact of "self-consistent" collisionless absorption of radio waves by the Langmuir turbulence, which develops when the incident-wave field swells in the resonant region of a smoothly inhomogeneous plasma, on the dynamics of the radio wave reflection. Electrodynamic characteristics of the nonlinear-plasma layer, which has a linear unperturbed profile of the plasma density, with different features of the absorption development are obtained for a high intensity of the incident radiation. Calculations of "soft" and "hard" regimes of the absorption occurrence, as well as hysteresis modes in which the damping switch-on and off thresholds differ several times, are carried out. The algorithms we devised and the results of the study can serve as the basis for a more adequate and more detailed numerical simulation for interpretation of the experimental data obtained at the stage of the Langmuir effect in the ionosphere.

  7. A coupled CFD and two-phase substrate kinetic model for enzymatic hydrolysis of lignocellulose

    Science.gov (United States)

    Danes, Nicholas; Sitaraman, Hariswaran; Stickel, Jonathan; Sprague, Michael

    2017-11-01

    Cost-effective production of fuels from lignocellulosic biomass is an important subject of research in order to meet the world's current and future energy demands. Enzymatic hydrolysis is one of the several steps in the biochemical conversion of biomass into fuels. This process involves the interplay of non-Newtonian fluid dynamics that happen over tens of seconds coupled with chemical reactions that happen over several hours. In this work, we present a coupled CFD-reaction model for conversion of cellulose to sugars in a benchtop mixer reactor. A subcycling approach is used to circumvent the large time scale disparity between fluid dynamics and reactions. We will present a validation study of our simulations with experiments for well-mixed and stratified reactor scenarios along with predictions for conversion rates and product concentrations at varying impeller speeds and in scaled-up reactors. This work is funded by the Bioenergy Technology Office of DOE and the NSF's Enriched Doctoral Training program (DMS-1551229).

  8. Theoretical development and validation of a Sharp Front model of the dewatering of a slurry by an absorbent substrate

    International Nuclear Information System (INIS)

    Collier, N C; Wilson, M A; Carter, M A; Hoff, W D; Hall, Christopher; Ball, R J; El-Turki, A; Allen, G C

    2007-01-01

    The absorption of water from a slurry into an absorbent substrate is analysed using Sharp Front theory. The analysis describes the relationship between the sorptivity S of the substrate, the desorptivity R of the slurry and the transfer sorptivity A between slurry and substrate, and leads to the relationship 1/A 2 = 1/R 2 + 1/S 2 . Experimental data are presented which validate this equation for the practically important case of the absorption of water from soft mortar mixes by fired clay bricks. A unique feature of the experimental work is the measurement of the desorptivity of the mortars at a pressure equal to the wetting front capillary pressure of the clay brick substrate. Analysis of the experimental data also enables, for the first time, the calculation of the capillary potential at the slurry/substrate interface. The analysis has relevance to many aspects of ceramic and mineral processing, industrial filtration and construction engineering

  9. A smooth exit from eternal inflation?

    Science.gov (United States)

    Hawking, S. W.; Hertog, Thomas

    2018-04-01

    The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.

  10. Workshop on advances in smooth particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Wingate, C.A.; Miller, W.A.

    1993-12-31

    This proceedings contains viewgraphs presented at the 1993 workshop held at Los Alamos National Laboratory. Discussed topics include: negative stress, reactive flow calculations, interface problems, boundaries and interfaces, energy conservation in viscous flows, linked penetration calculations, stability and consistency of the SPH method, instabilities, wall heating and conservative smoothing, tensors, tidal disruption of stars, breaking the 10,000,000 particle limit, modelling relativistic collapse, SPH without H, relativistic KSPH avoidance of velocity based kernels, tidal compression and disruption of stars near a supermassive rotation black hole, and finally relativistic SPH viscosity and energy.

  11. A study of the adsorption activities of silanol surface structures on a fused silica model substrate by combining 29Si CP MAS NMR and inverse gas chromatographic data

    NARCIS (Netherlands)

    Scholten, A.B.; Janssen, J.G.M.; Haan, de J.W.; Cramers, C.A.

    1994-01-01

    The possibilities of inverse gas-solid chromatog. (IGC) in obtaining chromatog. data on fumed silica were examd. Aerosil A-200, a fused silica model substrate in 29Si NMR anal., was trimethylsilylated to different degrees. IGC was used to vary reproducibly det. the free specific energies of

  12. A model framework to describe growth-linked biodegradation of trace-level pollutants in the presence of coincidental carbon substrates and microbes.

    Science.gov (United States)

    Liu, Li; Helbling, Damian E; Kohler, Hans-Peter E; Smets, Barth F

    2014-11-18

    Pollutants such as pesticides and their degradation products occur ubiquitously in natural aquatic environments at trace concentrations (μg L(-1) and lower). Microbial biodegradation processes have long been known to contribute to the attenuation of pesticides in contaminated environments. However, challenges remain in developing engineered remediation strategies for pesticide-contaminated environments because the fundamental processes that regulate growth-linked biodegradation of pesticides in natural environments remain poorly understood. In this research, we developed a model framework to describe growth-linked biodegradation of pesticides at trace concentrations. We used experimental data reported in the literature or novel simulations to explore three fundamental kinetic processes in isolation. We then combine these kinetic processes into a unified model framework. The three kinetic processes described were: the growth-linked biodegradation of micropollutant at environmentally relevant concentrations; the effect of coincidental assimilable organic carbon substrates; and the effect of coincidental microbes that compete for assimilable organic carbon substrates. We used Monod kinetic models to describe substrate utilization and microbial growth rates for specific pesticide and degrader pairs. We then extended the model to include terms for utilization of assimilable organic carbon substrates by the specific degrader and coincidental microbes, growth on assimilable organic carbon substrates by the specific degrader and coincidental microbes, and endogenous metabolism. The proposed model framework enables interpretation and description of a range of experimental observations on micropollutant biodegradation. The model provides a useful tool to identify environmental conditions with respect to the occurrence of assimilable organic carbon and coincidental microbes that may result in enhanced or reduced micropollutant biodegradation.

  13. The tight binding model study of the role of band filling on the charge gap in graphene-on-substrate in paramagnetic state

    Science.gov (United States)

    Panda, Rudrashish; Sahu, Sivabrata; Rout, G. C.

    2017-05-01

    We communicate here a tight binding theoretical model study of the band filling effect on the charge gap in graphene-on-substrate. The Hamiltonian consists of nearest neighbor electron hopping and substrate induced gap. Besides this the Coulomb interaction is considered here within mean-field approximation in the paramagnetic limit. The electron occupancies at two sublattices are calculated by Green's function technique and are solved self consistently. Finally the charge gap i.e. Δ ¯=U [ - ] is calculated and computed numerically. The results are reported.

  14. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase

    DEFF Research Database (Denmark)

    Willemoës, Martin; Hove-Jensen, Bjarne; Larsen, Sine

    2000-01-01

    A steady state kinetic investigation of the Pi activation of 5-phospho-D-ribosyl α-1-diphosphate synthase from Escherichia coli suggests that Pi can bind randomly to the enzyme either before or after an ordered addition of free Mg2+ and substrates. Unsaturation with ribose 5-phosphate increased...... the apparent cooperativity of Pi activation. At unsaturating Pi concentrations partial substrate inhibition by ribose 5-phosphate was observed. Together these results suggest that saturation of the enzyme with Pi directs the subsequent ordered binding of Mg2+ and substrates via a fast pathway, whereas...... saturation with ribose 5-phosphate leads to the binding of Mg2+ and substrates via a slow pathway where Pi binds to the enzyme last. The random mechanism for Pi binding was further supported by studies with competitive inhibitors of Mg2+, MgATP, and ribose 5-phosphate that all appeared noncompetitive when...

  15. Contruction of a smoothed DEA frontier

    Directory of Open Access Journals (Sweden)

    Mello João Carlos Correia Baptista Soares de

    2002-01-01

    Full Text Available It is known that the DEA multipliers model does not allow a unique solution for the weights. This is due to the absence of unique derivatives in the extreme-efficient points, which is a consequence of the piecewise linear nature of the frontier. In this paper we propose a method to solve this problem, consisting of changing the original DEA frontier for a new one, smooth (with continuous derivatives at every point and closest to the original frontier. We present the theoretical development for the general case, exemplified with the particular case of the BCC model with one input and one output. The 3-dimensional problem is briefly discussed. Some uses of the model are summarised, and one of them, a new Cross-Evaluation model, is presented.

  16. Smooth surfaces from rational bilinear patches

    KAUST Repository

    Shi, Ling; Wang, Jun; Pottmann, Helmut

    2014-01-01

    Smooth freeform skins from simple panels constitute a challenging topic arising in contemporary architecture. We contribute to this problem area by showing how to approximate a negatively curved surface by smoothly joined rational bilinear patches

  17. Multiple predictor smoothing methods for sensitivity analysis: Description of techniques

    International Nuclear Information System (INIS)

    Storlie, Curtis B.; Helton, Jon C.

    2008-01-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described: (i) locally weighted regression (LOESS), (ii) additive models, (iii) projection pursuit regression, and (iv) recursive partitioning regression. Then, in the second and concluding part of this presentation, the indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present

  18. Multiple predictor smoothing methods for sensitivity analysis: Example results

    International Nuclear Information System (INIS)

    Storlie, Curtis B.; Helton, Jon C.

    2008-01-01

    The use of multiple predictor smoothing methods in sampling-based sensitivity analyses of complex models is investigated. Specifically, sensitivity analysis procedures based on smoothing methods employing the stepwise application of the following nonparametric regression techniques are described in the first part of this presentation: (i) locally weighted regression (LOESS), (ii) additive models, (iii) projection pursuit regression, and (iv) recursive partitioning regression. In this, the second and concluding part of the presentation, the indicated procedures are illustrated with both simple test problems and results from a performance assessment for a radioactive waste disposal facility (i.e., the Waste Isolation Pilot Plant). As shown by the example illustrations, the use of smoothing procedures based on nonparametric regression techniques can yield more informative sensitivity analysis results than can be obtained with more traditional sensitivity analysis procedures based on linear regression, rank regression or quadratic regression when nonlinear relationships between model inputs and model predictions are present

  19. Methods and energy storage devices utilizing electrolytes having surface-smoothing additives

    Science.gov (United States)

    Xu, Wu; Zhang, Jiguang; Graff, Gordon L; Chen, Xilin; Ding, Fei

    2015-11-12

    Electrodeposition and energy storage devices utilizing an electrolyte having a surface-smoothing additive can result in self-healing, instead of self-amplification, of initial protuberant tips that give rise to roughness and/or dendrite formation on the substrate and anode surface. For electrodeposition of a first metal (M1) on a substrate or anode from one or more cations of M1 in an electrolyte solution, the electrolyte solution is characterized by a surface-smoothing additive containing cations of a second metal (M2), wherein cations of M2 have an effective electrochemical reduction potential in the solution lower than that of the cations of M1.

  20. Calcium dynamics in vascular smooth muscle

    OpenAIRE

    Amberg, Gregory C.; Navedo, Manuel F.

    2013-01-01

    Smooth muscle cells are ultimately responsible for determining vascular luminal diameter and blood flow. Dynamic changes in intracellular calcium are a critical mechanism regulating vascular smooth muscle contractility. Processes influencing intracellular calcium are therefore important regulators of vascular function with physiological and pathophysiological consequences. In this review we discuss the major dynamic calcium signals identified and characterized in vascular smooth muscle cells....

  1. multiscale smoothing in supervised statistical learning

    Indian Academy of Sciences (India)

    Optimum level of smoothing is chosen based on the entire training sample, while a good choice of smoothing parameter may also depend on the observation to be classified. One may like to assess the strength of evidence in favor of different competing class at different scale of smoothing. In allows only one single ...

  2. Automatic smoothing parameter selection in GAMLSS with an application to centile estimation.

    Science.gov (United States)

    Rigby, Robert A; Stasinopoulos, Dimitrios M

    2014-08-01

    A method for automatic selection of the smoothing parameters in a generalised additive model for location, scale and shape (GAMLSS) model is introduced. The method uses a P-spline representation of the smoothing terms to express them as random effect terms with an internal (or local) maximum likelihood estimation on the predictor scale of each distribution parameter to estimate its smoothing parameters. This provides a fast method for estimating multiple smoothing parameters. The method is applied to centile estimation where all four parameters of a distribution for the response variable are modelled as smooth functions of a transformed explanatory variable x This allows smooth modelling of the location, scale, skewness and kurtosis parameters of the response variable distribution as functions of x. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Increased oxidative stress and apoptosis in the hypothalamus of diabetic male mice in the insulin receptor substrate-2 knockout model

    Science.gov (United States)

    Canelles, Sandra; Argente, Jesús; Barrios, Vicente

    2016-01-01

    ABSTRACT Insulin receptor substrate-2-deficient (IRS2−/−) mice are considered a good model to study the development of diabetes because IRS proteins mediate the pleiotropic effects of insulin-like growth factor-I (IGF-I) and insulin on metabolism, mitogenesis and cell survival. The hypothalamus might play a key role in the early onset of diabetes, owing to its involvement in the control of glucose homeostasis and energy balance. Because some inflammatory markers are elevated in the hypothalamus of diabetic IRS2−/− mice, our aim was to analyze whether the diabetes associated with the absence of IRS2 results in hypothalamic injury and to analyze the intracellular mechanisms involved. Only diabetic IRS2−/− mice showed increased cell death and activation of caspase-8 and -3 in the hypothalamus. Regulators of apoptosis such as FADD, Bcl-2, Bcl-xL and p53 were also increased, whereas p-IκB and c-FLIPL were decreased. This was accompanied by increased levels of Nox-4 and catalase, enzymes involved in oxidative stress. In summary, the hypothalamus of diabetic IRS2−/− mice showed an increase in oxidative stress and inflammatory markers that finally resulted in cell death via substantial activation of the extrinsic apoptotic pathway. Conversely, non-diabetic IRS2−/− mice did not show cell death in the hypothalamus, possibly owing to an increase in the levels of circulating IGF-I and in the enhanced hypothalamic IGF-IR phosphorylation that would lead to the stimulation of survival pathways. In conclusion, diabetes in IRS2-deficient male mice is associated with increased oxidative stress and apoptosis in the hypothalamus. PMID:27013528

  4. Arginase strongly impairs neuronal nitric oxide-mediated airway smooth muscle relaxation in allergic asthma

    Directory of Open Access Journals (Sweden)

    Zaagsma Johan

    2006-01-01

    Full Text Available Abstract Background Using guinea pig tracheal preparations, we have recently shown that endogenous arginase activity attenuates inhibitory nonadrenergic noncholinergic (iNANC nerve-mediated airway smooth muscle relaxation by reducing nitric oxide (NO production – due to competition with neuronal NO-synthase (nNOS for the common substrate, L-arginine. Furthermore, in a guinea pig model of allergic asthma, airway arginase activity is markedly increased after the early asthmatic reaction (EAR, leading to deficiency of agonist-induced, epithelium-derived NO and subsequent airway hyperreactivity. In this study, we investigated whether increased arginase activity after the EAR affects iNANC nerve-derived NO production and airway smooth muscle relaxation. Methods Electrical field stimulation (EFS; 150 mA, 4 ms, 4 s, 0.5 – 16 Hz-induced relaxation was measured in tracheal open-ring preparations precontracted to 30% with histamine in the presence of 1 μM atropine and 3 μM indomethacin. The contribution of NO to EFS-induced relaxation was assessed by the nonselective NOS inhibitor Nω-nitro-L-arginine (L-NNA, 100 μM, while the involvement of arginase activity in the regulation of EFS-induced NO production and relaxation was investigated by the effect of the specific arginase inhibitor Nω-hydroxy-nor-L-arginine (nor-NOHA, 10 μM. Furthermore, the role of substrate availability to nNOS was measured in the presence of exogenous L-arginine (5.0 mM. Results At 6 h after ovalbumin-challenge (after the EAR, EFS-induced relaxation (ranging from 3.2 ± 1.1% at 0.5 Hz to 58.5 ± 2.2% at 16 Hz was significantly decreased compared to unchallenged controls (7.1 ± 0.8% to 75.8 ± 0.7%; P P P Conclusion The results clearly demonstrate that increased arginase activity after the allergen-induced EAR contributes to a deficiency of iNANC nerve-derived NO and decreased airway smooth muscle relaxation, presumably via increased substrate competition with nNOS.

  5. Evaluation of a biomimetic 3D substrate based on the Human Elastin-like Polypeptides (HELPs) model system for elastolytic activity detection.

    Science.gov (United States)

    Corich, Lucia; Busetti, Marina; Petix, Vincenzo; Passamonti, Sabina; Bandiera, Antonella

    2017-08-10

    Elastin is a fibrous protein that confers elasticity to tissues such as skin, arteries and lung. It is extensively cross-linked, highly hydrophobic and insoluble. Nevertheless, elastin can be hydrolysed by bacterial proteases in infectious diseases, resulting in more or less severe tissue damage. Thus, development of substrates able to reliably and specifically detect pathogen-secreted elastolytic activity is needed to improve the in vitro evaluation of the injury that bacterial proteases may provoke. In this work, two human biomimetic elastin polypeptides, HELP and HELP1, as well as the matrices derived from HELP, have been probed as substrates for elastolytic activity detection. Thirty strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients were analyzed in parallel with standard substrates, to detect proteolytic and elastolytic activity. Results point to the HELP-based 3D matrix as an interesting biomimetic model of elastin to assess bacterial elastolytic activity in vitro. Moreover, this model substrate enables to further elucidate the mechanism underlying elastin degradation at molecular level, as well as to develop biomimetic material-based devices responsive to external stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Comparison of some nonlinear smoothing methods

    International Nuclear Information System (INIS)

    Bell, P.R.; Dillon, R.S.

    1977-01-01

    Due to the poor quality of many nuclear medicine images, computer-driven smoothing procedures are frequently employed to enhance the diagnostic utility of these images. While linear methods were first tried, it was discovered that nonlinear techniques produced superior smoothing with little detail suppression. We have compared four methods: Gaussian smoothing (linear), two-dimensional least-squares smoothing (linear), two-dimensional least-squares bounding (nonlinear), and two-dimensional median smoothing (nonlinear). The two dimensional least-squares procedures have yielded the most satisfactorily enhanced images, with the median smoothers providing quite good images, even in the presence of widely aberrant points

  7. A smoothed maximum score estimator for the binary choice panel data model with individual fixed effects and applications to labour force participation

    NARCIS (Netherlands)

    Charlier, G.W.P.

    1994-01-01

    In a binary choice panel data model with individual effects and two time periods, Manski proposed the maximum score estimator, based on a discontinuous objective function, and proved its consistency under weak distributional assumptions. However, the rate of convergence of this estimator is low (N)

  8. Assessing Goodness of Fit in Item Response Theory with Nonparametric Models: A Comparison of Posterior Probabilities and Kernel-Smoothing Approaches

    Science.gov (United States)

    Sueiro, Manuel J.; Abad, Francisco J.

    2011-01-01

    The distance between nonparametric and parametric item characteristic curves has been proposed as an index of goodness of fit in item response theory in the form of a root integrated squared error index. This article proposes to use the posterior distribution of the latent trait as the nonparametric model and compares the performance of an index…

  9. Calcium signaling in smooth muscle.

    Science.gov (United States)

    Hill-Eubanks, David C; Werner, Matthias E; Heppner, Thomas J; Nelson, Mark T

    2011-09-01

    Changes in intracellular Ca(2+) are central to the function of smooth muscle, which lines the walls of all hollow organs. These changes take a variety of forms, from sustained, cell-wide increases to temporally varying, localized changes. The nature of the Ca(2+) signal is a reflection of the source of Ca(2+) (extracellular or intracellular) and the molecular entity responsible for generating it. Depending on the specific channel involved and the detection technology employed, extracellular Ca(2+) entry may be detected optically as graded elevations in intracellular Ca(2+), junctional Ca(2+) transients, Ca(2+) flashes, or Ca(2+) sparklets, whereas release of Ca(2+) from intracellular stores may manifest as Ca(2+) sparks, Ca(2+) puffs, or Ca(2+) waves. These diverse Ca(2+) signals collectively regulate a variety of functions. Some functions, such as contractility, are unique to smooth muscle; others are common to other excitable cells (e.g., modulation of membrane potential) and nonexcitable cells (e.g., regulation of gene expression).

  10. Large area smoothing of surfaces by ion bombardment: fundamentals and applications

    International Nuclear Information System (INIS)

    Frost, F; Fechner, R; Ziberi, B; Voellner, J; Flamm, D; Schindler, A

    2009-01-01

    Ion beam erosion can be used as a process for achieving surface smoothing at microscopic length scales and for the preparation of ultrasmooth surfaces, as an alternative to nanostructuring of various surfaces via self-organization. This requires that in the evolution of the surface topography different relaxation mechanisms dominate over the roughening, and smoothing of initially rough surfaces can occur. This contribution focuses on the basic mechanisms as well as potential applications of surface smoothing using low energy ion beams. In the first part, the fundamentals for the smoothing of III/V semiconductors, Si and quartz glass surfaces using low energy ion beams (ion energy: ≤2000 eV) are reviewed using examples. The topography evolution of these surfaces with respect to different process parameters (ion energy, ion incidence angle, erosion time, sample rotation) has been investigated. On the basis of the time evolution of different roughness parameters, the relevant surface relaxation mechanisms responsible for surface smoothing are discussed. In this context, physical constraints as regards the effectiveness of surface smoothing by direct ion bombardment will also be addressed and furthermore ion beam assisted smoothing techniques are introduced. In the second application-orientated part, recent technological developments related to ion beam assisted smoothing of optically relevant surfaces are summarized. It will be demonstrated that smoothing by direct ion bombardment in combination with the use of sacrificial smoothing layers and the utilization of appropriate broad beam ion sources enables the polishing of various technologically important surfaces down to 0.1 nm root mean square roughness level, showing great promise for large area surface processing. Specific examples are given for ion beam smoothing of different optical surfaces, especially for substrates used for advanced optical applications (e.g., in x-ray optics and components for extreme

  11. Wetting on structured substrates

    International Nuclear Information System (INIS)

    Dietrich, S; Popescu, M N; Rauscher, M

    2005-01-01

    Chemically patterned surfaces are of significant interest in the context of microfluidic applications, and miniaturization of such devices aims at generating structures on the nano-scale. Whereas on the micron scale purely macroscopic descriptions of liquid flow are valid, on the nanometre scale long-ranged inter-molecular interactions, thermal fluctuations such as capillary waves, and finally the molecular structure of the liquid become important. We discuss the most important conceptual differences between flow on chemically patterned substrates on the micron scale and on the nanometre scale, and formulate four design issues for nanofluidics related to channel width, channel separation, and channel bending radius. As a specific example of nano-scale transport we present a microscopic model for the dynamics of spreading of monolayers on homogeneous substrates. Kinetic Monte Carlo simulations of this model on a homogeneous substrate reveal a complex spatio-temporal structure of the extracted monolayer, which includes the emergence of interfaces and of scaling properties of density profiles. These features are discussed and rationalized within the corresponding continuum limit derived from the microscopic dynamics. The corresponding spreading behaviour on a patterned substrate is briefly addressed

  12. SHP-1 activation inhibits vascular smooth muscle cell proliferation and intimal hyperplasia in a rodent model of insulin resistance and diabetes

    DEFF Research Database (Denmark)

    Qi, Weier; Li, Qian; Liew, Chong Wee

    2017-01-01

    . However, the role of SHP-1 in intimal hyperplasia and restenosis has not been clarified in insulin resistance and diabetes. METHODS: We used a femoral artery wire injury mouse model, rodent models with insulin resistance and diabetes, and patients with type 2 diabetes. Further, we modulated SHP-1...... expression using a transgenic mouse that overexpresses SHP-1 in VSMCs (Shp-1-Tg). SHP-1 agonists were also employed to study the molecular mechanisms underlying the regulation of SHP-1 by oxidised lipids. RESULTS: Mice fed a high-fat diet (HFD) exhibited increased femoral artery intimal hyperplasia...... and decreased arterial SHP-1 expression compared with mice fed a regular diet. Arterial SHP-1 expression was also decreased in Zucker fatty rats, Zucker diabetic fatty rats and in patients with type 2 diabetes. In primary cultured VSMCs, oxidised LDL suppressed SHP-1 expression by activating Mek-1 (also known...

  13. A simple smoothed velocity model of the uppermost Earth’s crust derived from joint inversion of Pg and Sg waves

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Růžek, Bohuslav; Rušajová, Jana

    2012-01-01

    Roč. 60, č. 2 (2012), s. 487-497 ISSN 1895-6572 R&D Projects: GA ČR GA205/03/0999 Institutional research plan: CEZ:AV0Z30860518; CEZ:AV0Z30120515 Keywords : velocity model * tomography * waves inversion * northern Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.910, year: 2012 http://www.springerlink.com/content/fn310w4j44287134/

  14. Fundamental aspects of molecular plating and production of smooth crack-free Nd targets

    International Nuclear Information System (INIS)

    Vascon, A.; Reich, T.; Drebert, J.; Eberhardt, K.; Helmholtz Institute Mainz, Mainz; Duellmann, Ch.E.; GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt; Helmholtz Institute Mainz, Mainz

    2014-01-01

    A general understanding of the molecular plating process was obtained recently, which serves as a first step towards further improvements of the method aiming, for example, at the production of smooth, crack-free targets for nuclear physics applications. Constant current density electrolysis experiments were performed in organic media containing the model electrolyte Nd(NO 3 ) 3 ·6H 2 O. The process was investigated by considering influences of the electrolyte concentration (0.11, 0.22, 0.44 mM), the surface roughness of the deposition substrates (a few tens of nm), and the plating solvent (an isopropanol/isobutanol mixture, and N,N-dimethylformamide). The response of the process to changes of these parameters was monitored by recording cell potential curves and by characterizing the obtained deposits with γ-ray spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. By changing the solvent from isopropanol/isobutanol mixtures to N,N-dimethylformamide, we have succeeded in producing smooth, crack-free Nd targets. (author)

  15. Systemic delivery of a glucosylceramide synthase inhibitor reduces CNS substrates and increases lifespan in a mouse model of type 2 Gaucher disease.

    Directory of Open Access Journals (Sweden)

    Mario A Cabrera-Salazar

    Full Text Available Neuropathic Gaucher disease (nGD, also known as type 2 or type 3 Gaucher disease, is caused by a deficiency of the enzyme glucocerebrosidase (GC. This deficiency impairs the degradation of glucosylceramide (GluCer and glucosylsphingosine (GluSph, leading to their accumulation in the brains of patients and mouse models of the disease. These accumulated substrates have been thought to cause the severe neuropathology and early death observed in patients with nGD and mouse models. Substrate accumulation is evident at birth in both nGD mouse models and humans affected with the most severe type of the disease. Current treatment of non-nGD relies on the intravenous delivery of recombinant human glucocerebrosidase to replace the missing enzyme or the administration of glucosylceramide synthase inhibitors to attenuate GluCer production. However, the currently approved drugs that use these mechanisms do not cross the blood brain barrier, and thus are not expected to provide a benefit for the neurological complications in nGD patients. Here we report the successful reduction of substrate accumulation and CNS pathology together with a significant increase in lifespan after systemic administration of a novel glucosylceramide synthase inhibitor to a mouse model of nGD. To our knowledge this is the first compound shown to cross the blood brain barrier and reduce substrates in this animal model while significantly enhancing its lifespan. These results reinforce the concept that systemically administered glucosylceramide synthase inhibitors could hold enhanced therapeutic promise for patients afflicted with neuropathic lysosomal storage diseases.

  16. Systemic delivery of a glucosylceramide synthase inhibitor reduces CNS substrates and increases lifespan in a mouse model of type 2 Gaucher disease.

    Science.gov (United States)

    Cabrera-Salazar, Mario A; Deriso, Matthew; Bercury, Scott D; Li, Lingyun; Lydon, John T; Weber, William; Pande, Nilesh; Cromwell, Mandy A; Copeland, Diane; Leonard, John; Cheng, Seng H; Scheule, Ronald K

    2012-01-01

    Neuropathic Gaucher disease (nGD), also known as type 2 or type 3 Gaucher disease, is caused by a deficiency of the enzyme glucocerebrosidase (GC). This deficiency impairs the degradation of glucosylceramide (GluCer) and glucosylsphingosine (GluSph), leading to their accumulation in the brains of patients and mouse models of the disease. These accumulated substrates have been thought to cause the severe neuropathology and early death observed in patients with nGD and mouse models. Substrate accumulation is evident at birth in both nGD mouse models and humans affected with the most severe type of the disease. Current treatment of non-nGD relies on the intravenous delivery of recombinant human glucocerebrosidase to replace the missing enzyme or the administration of glucosylceramide synthase inhibitors to attenuate GluCer production. However, the currently approved drugs that use these mechanisms do not cross the blood brain barrier, and thus are not expected to provide a benefit for the neurological complications in nGD patients. Here we report the successful reduction of substrate accumulation and CNS pathology together with a significant increase in lifespan after systemic administration of a novel glucosylceramide synthase inhibitor to a mouse model of nGD. To our knowledge this is the first compound shown to cross the blood brain barrier and reduce substrates in this animal model while significantly enhancing its lifespan. These results reinforce the concept that systemically administered glucosylceramide synthase inhibitors could hold enhanced therapeutic promise for patients afflicted with neuropathic lysosomal storage diseases.

  17. Smoothing the payoff for efficient computation of Basket option prices

    KAUST Repository

    Bayer, Christian

    2017-07-22

    We consider the problem of pricing basket options in a multivariate Black–Scholes or Variance-Gamma model. From a numerical point of view, pricing such options corresponds to moderate and high-dimensional numerical integration problems with non-smooth integrands. Due to this lack of regularity, higher order numerical integration techniques may not be directly available, requiring the use of methods like Monte Carlo specifically designed to work for non-regular problems. We propose to use the inherent smoothing property of the density of the underlying in the above models to mollify the payoff function by means of an exact conditional expectation. The resulting conditional expectation is unbiased and yields a smooth integrand, which is amenable to the efficient use of adaptive sparse-grid cubature. Numerical examples indicate that the high-order method may perform orders of magnitude faster than Monte Carlo or Quasi Monte Carlo methods in dimensions up to 35.

  18. Bone toughness at the molecular scale: A model for fracture toughness using crosslinked osteopontin on synthetic and biogenic mineral substrates.

    Science.gov (United States)

    Cavelier, S; Dastjerdi, A K; McKee, M D; Barthelat, F

    2018-05-01

    The most prominent structural components in bone are collagen and mineral. However, bone additionally contains a substantial amount of noncollagenous proteins (most notably of the SIBLING protein family), some of which may act as cohesive/adhesive "binders" for the composite hybrid collagen/mineral scaffolding, whether in the bulk phase of bone, or at its interfaces. One such noncollagenous protein - osteopontin (OPN) - appears to be critical to the deformability and fracture toughness of bone. In the present study, we used a reconstructed synthetic mineral-OPN-mineral interface, and a biogenic (natural tooth dentin) mineral/collagen-OPN-mineral/collagen interface, to measure the fracture toughness of OPN on mineralized substrates. We used this system to test the hypothesis that OPN crosslinking by the enzyme tissue transglutaminase 2 (TG2) that is found in bone enhances interfacial adhesion to increase the fracture toughness of bone. For this, we prepared double-cantilever beam substrates of synthetic pure hydroxyapatite mineral, and of narwhal dentin, and directly apposed them to one another under different intervening OPN/crosslinking conditions, and fracture toughness was tested using a miniaturized loading stage. The work-of-fracture of the OPN interface was measured for different OPN formulations (monomer vs. polymer), crosslinking states, and substrate composition. Noncrosslinked OPN provided negligible adhesion on pure hydroxyapatite, whereas OPN crosslinking (by the chemical crosslinker glutaraldehyde, and TG2 enzyme) provided strong interfacial adhesion for both hydroxyapatite and dentin using monomeric and polymeric OPN. Pre-coating of the substrate beams with monomeric OPN further improved the adhesive performance of the samples, likely by allowing effective binding of this nascent OPN form to mineral/matrix components, with this pre-attachment providing a protein layer for additional crosslinking between the substrates. Copyright © 2018 Elsevier Inc

  19. Smoothing of, and parameter estimation from, noisy biophysical recordings.

    Directory of Open Access Journals (Sweden)

    Quentin J M Huys

    2009-05-01

    Full Text Available Biophysically detailed models of single cells are difficult to fit to real data. Recent advances in imaging techniques allow simultaneous access to various intracellular variables, and these data can be used to significantly facilitate the modelling task. These data, however, are noisy, and current approaches to building biophysically detailed models are not designed to deal with this. We extend previous techniques to take the noisy nature of the measurements into account. Sequential Monte Carlo ("particle filtering" methods, in combination with a detailed biophysical description of a cell, are used for principled, model-based smoothing of noisy recording data. We also provide an alternative formulation of smoothing where the neural nonlinearities are estimated in a non-parametric manner. Biophysically important parameters of detailed models (such as channel densities, intercompartmental conductances, input resistances, and observation noise are inferred automatically from noisy data via expectation-maximization. Overall, we find that model-based smoothing is a powerful, robust technique for smoothing of noisy biophysical data and for inference of biophysical parameters in the face of recording noise.

  20. Cooperative control of blood compatibility and re-endothelialization by immobilized heparin and substrate topography.

    Science.gov (United States)

    Ding, Yonghui; Yang, Meng; Yang, Zhilu; Luo, Rifang; Lu, Xiong; Huang, Nan; Huang, Pingbo; Leng, Yang

    2015-03-01

    A wide variety of environmental cues provided by the extracellular matrix, including biophysical and biochemical cues, are responsible for vascular cell behavior and function. In particular, substrate topography and surface chemistry have been shown to regulate blood and vascular compatibility individually. The combined impact of chemical and topographic cues on blood and vascular compatibility, and the interplay between these two types of cues, are subjects that are currently being explored. In the present study, a facile polydopamine-mediated approach is introduced for immobilization of heparin on topographically patterned substrates, and the combined effects of these cues on blood compatibility and re-endothelialization are systematically investigated. The results show that immobilized heparin and substrate topography cooperatively modulate anti-coagulation activity, endothelial cell (EC) attachment, proliferation, focal adhesion formation and endothelial marker expression. Meanwhile, the substrate topography is the primary determinant of cell alignment and elongation, driving in vivo-like endothelial organization. Importantly, combining immobilized heparin with substrate topography empowers substantially greater competitive ability of ECs over smooth muscle cells than each cue individually. Moreover, a model is proposed to elucidate the cooperative interplay between immobilized heparin and substrate topography in regulating cell behavior. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates.

    Science.gov (United States)

    Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard

    2015-10-23

    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

  2. Lensing smoothing of BAO wiggles

    Energy Technology Data Exchange (ETDEWEB)

    Dio, Enea Di, E-mail: enea.didio@oats.inaf.it [INAF—Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34143 Trieste (Italy)

    2017-03-01

    We study non-perturbatively the effect of the deflection angle on the BAO wiggles of the matter power spectrum in real space. We show that from redshift z ∼2 this introduces a dispersion of roughly 1 Mpc at BAO scale, which corresponds approximately to a 1% effect. The lensing effect induced by the deflection angle, which is completely geometrical and survey independent, smears out the BAO wiggles. The effect on the power spectrum amplitude at BAO scale is about 0.1 % for z ∼2 and 0.2 % for z ∼4. We compare the smoothing effects induced by the lensing potential and non-linear structure formation, showing that the two effects become comparable at z ∼ 4, while the lensing effect dominates for sources at higher redshifts. We note that this effect is not accounted through BAO reconstruction techniques.

  3. Radial smoothing and closed orbit

    International Nuclear Information System (INIS)

    Burnod, L.; Cornacchia, M.; Wilson, E.

    1983-11-01

    A complete simulation leading to a description of one of the error curves must involve four phases: (1) random drawing of the six set-up points within a normal population having a standard deviation of 1.3 mm; (b) random drawing of the six vertices of the curve in the sextant mode within a normal population having a standard deviation of 1.2 mm. These vertices are to be set with respect to the axis of the error lunes, while this axis has as its origins the positions defined by the preceding drawing; (c) mathematical definition of six parabolic curves and their junctions. These latter may be curves with very slight curvatures, or segments of a straight line passing through the set-up point and having lengths no longer than one LSS. Thus one gets a mean curve for the absolute errors; (d) plotting of the actually observed radial positions with respect to the mean curve (results of smoothing)

  4. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength

    Directory of Open Access Journals (Sweden)

    Kaishi Wang

    2018-03-01

    Full Text Available The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young’s modulus, on the in-plane stress distribution have also been investigated. ‘Thickness-averaged In-plane Stress’ (TIS, a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  5. FEM Modeling of In-Plane Stress Distribution in Thick Brittle Coatings/Films on Ductile Substrates Subjected to Tensile Stress to Determine Interfacial Strength.

    Science.gov (United States)

    Wang, Kaishi; Zhang, Fangzhou; Bordia, Rajendra K

    2018-03-27

    The ceramic-metal interface is present in various material structures and devices that are vulnerable to failures, like cracking, which are typically due to their incompatible properties, e.g., thermal expansion mismatch. In failure of these multilayer systems, interfacial shear strength is a good measure of the robustness of interfaces, especially for planar films. There is a widely-used shear lag model and method by Agrawal and Raj to analyse and measure the interfacial shear strength of thin brittle film on ductile substrates. The use of this classical model for a type of polymer derived ceramic coatings (thickness ~18 μm) on steel substrate leads to high values of interfacial shear strength. Here, we present finite element simulations for such a coating system when it is subjected to in-plane tension. Results show that the in-plane stresses in the coating are non-uniform, i.e., varying across the thickness of the film. Therefore, they do not meet one of the basic assumptions of the classical model: uniform in-plane stress. Furthermore, effects of three significant parameters, film thickness, crack spacing, and Young's modulus, on the in-plane stress distribution have also been investigated. 'Thickness-averaged In-plane Stress' (TIS), a new failure criterion, is proposed for estimating the interfacial shear strength, which leads to a more realistic estimation of the tensile strength and interfacial shear strength of thick brittle films/coatings on ductile substrates.

  6. Substrate texture affects female cricket walking response to male calling song

    Science.gov (United States)

    Sarmiento-Ponce, E. J.; Sutcliffe, M. P. F.; Hedwig, B.

    2018-03-01

    Field crickets are extensively used as a model organism to study female phonotactic walking behaviour, i.e. their attraction to the male calling song. Laboratory-based phonotaxis experiments generally rely on arena or trackball-based settings; however, no attention has been paid to the effect of substrate texture on the response. Here, we tested phonotaxis in female Gryllus bimaculatus, walking on trackballs machined from methyl-methacrylate foam with different cell sizes. Surface height variations of the trackballs, due to the cellular composition of the material, were measured with profilometry and characterized as smooth, medium or rough, with roughness amplitudes of 7.3, 16 and 180 µm. Female phonotaxis was best on a rough and medium trackball surface, a smooth surface resulted in a significant lower phonotactic response. Claws of the cricket foot were crucial for effective walking. Females insert their claws into the surface pores to allow mechanical interlocking with the substrate texture and a high degree of attachment, which cannot be established on smooth surfaces. These findings provide insight to the biomechanical basis of insect walking and may inform behavioural studies that the surface texture on which walking insects are tested is crucial for the resulting behavioural response.

  7. Explaining Ethnic Variability of Transporter Substrate Pharmacokinetics in Healthy Asian and Caucasian Subjects with Allele Frequencies of OATP1B1 and BCRP: A Mechanistic Modeling Analysis.

    Science.gov (United States)

    Li, Rui; Barton, Hugh A

    2018-04-01

    Ethnic variability in the pharmacokinetics of organic anion transporting polypeptide (OATP) 1B1 substrates has been observed, but its basis is unclear. A previous study hypothesizes that, without applying an intrinsic ethnic variability in transporter activity, allele frequencies of transporters cannot explain observed ethnic variability in pharmacokinetics. However, this hypothesis contradicts the data collected from compounds that are OATP1B1 substrates but not breast cancer resistance protein (BCRP) substrates. The objective of this study is to evaluate a hypothesis that is physiologically reasonable and more consistent with clinical observations. We evaluated if allele frequencies of two transporters (OATP1B1 and BCRP) are key contributors to ethnic variability. In this hypothesis, the same genotype leads to the same activity independent of ethnicity, in contrast to the previous hypothesis of intrinsic ethnic variability in OATP1B1 activity. As a validation, we perform mechanistic pharmacokinetic modeling for SLCO1B1 (encoding OATP1B1) and ABCG2 (encoding BCRP) genotyped pharmacokinetic data from 18 clinical studies with healthy Caucasian and/or Asian subjects. Simulations based on the current hypothesis reasonably describe SLCO1B1 and ABCG2 genotyped pharmacokinetic time course data for five transporter substrates (atorvastatin, pitavastatin, pravastatin, repaglinide, and rosuvastatin) in Caucasian and Asian populations. This hypothesis covers the observations that can (e.g., ethnic differences in rosuvastatin pharmacokinetics) or cannot (e.g., lack of differences for pitavastatin pharmacokinetics) be explained by the previous hypothesis. It helps to characterize sources of ethnic variability and provides a foundation for predicting ethnic variability in transporter substrate pharmacokinetics.

  8. Doing smooth pursuit paradigms in Windows 7

    DEFF Research Database (Denmark)

    Wilms, Inge Linda

    predict strengths or deficits in perception and attention. However, smooth pursuit movements have been difficult to study and very little normative data is available for smooth pursuit performance in children and adults. This poster describes the challenges in setting up a smooth pursuit paradigm...... in Windows 7 with live capturing of eye movements using a Tobii TX300 eye tracker. In particular, the poster describes the challenges and limitations created by the hardware and the software...

  9. Mycobacterium tuberculosis RecG binds and unwinds model DNA substrates with a preference for Holliday junctions.

    Science.gov (United States)

    Zegeye, Ephrem Debebe; Balasingham, Seetha V; Laerdahl, Jon K; Homberset, Håvard; Tønjum, Tone

    2012-08-01

    The RecG enzyme, a superfamily 2 helicase, is present in nearly all bacteria. Here we report for the first time that the recG gene is also present in the genomes of most vascular plants as well as in green algae, but is not found in other eukaryotes or archaea. The precise function of RecG is poorly understood, although ample evidence shows that it plays critical roles in DNA repair, recombination and replication. We further demonstrate that Mycobacterium tuberculosis RecG (RecG(Mtb)) DNA binding activity had a broad substrate specificity, whereas it only unwound branched-DNA substrates such as Holliday junctions (HJs), replication forks, D-loops and R-loops, with a strong preference for the HJ as a helicase substrate. In addition, RecG(Mtb) preferentially bound relatively long (≥40 nt) ssDNA, exhibiting a higher affinity for the homopolymeric nucleotides poly(dT), poly(dG) and poly(dC) than for poly(dA). RecG(Mtb) helicase activity was supported by hydrolysis of ATP or dATP in the presence of Mg(2+), Mn(2+), Cu(2+) or Fe(2+). Like its Escherichia coli orthologue, RecG(Mtb) is also a strictly DNA-dependent ATPase.

  10. Hydrolysis of protein and model dipeptide substrated by attached and nonattached marine Pseudomonas sp. strain NCIMB 2021

    International Nuclear Information System (INIS)

    Griffith, P.C.; Fletcher, M.

    1991-01-01

    Rates of substrate hydrolysis by nonattached bacteria and by bacteria attached to particles derived from marine diatom frustules were estimated by using two substrates, a dipeptide analog and a protein. Adsorption of the two substrates onto the particles was also evaluated. Methyl-coumarinyl-amide-leucine (MCA-leucine) was used to estimate hydrolysis of dipeptides by measuring an increase in fluorescence as MCA-leucine was hydrolyzed to leucine and the fluorochrome methylcoumarin. To examine hydrolysis of a larger molecule, was prepared a radiolabeled protein by 14 C-methylation of bovine serum albumin. The rate of protein hydrolysis in samples of particle-attached or nonattached bacteria was estimated by precipitating all nonhydrolyzed protein with cold trichloroacetic acid and then determining the trichloroacetic acid-soluble radiolabeled material, which represented methyl- 14 C-peptides and -amino acids. About 25% of the MCA-leucine adsorbed to the particles. MCA-leucine was hydrolyzed faster by nonattached than attached bacteria, which was probably related to its tendency to remain dissolved in the liquid phase. In contrast, almost 100% of the labeled protein adsorbed to the particles. Accordingly, protein was much less available to nonattached bacteria but was rapidly hydrolyzed by attached bacteria

  11. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    Directory of Open Access Journals (Sweden)

    Yun-Yun Ma

    Full Text Available Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  12. Income and Consumption Smoothing among US States

    DEFF Research Database (Denmark)

    Sørensen, Bent; Yosha, Oved

    within regions but not between regions. This suggests that capital markets transcend regional barriers while credit markets are regional in their nature. Smoothing within the club of rich states is accomplished mainly via capital markets whereas consumption smoothing is dominant within the club of poor...... states. The fraction of a shock to gross state products smoothed by the federal tax-transfer system is the same for various regions and other clubs of states. We calculate the scope for consumption smoothing within various regions and clubs, finding that most gains from risk sharing can be achieved...

  13. A Non-smooth Newton Method for Multibody Dynamics

    International Nuclear Information System (INIS)

    Erleben, K.; Ortiz, R.

    2008-01-01

    In this paper we deal with the simulation of rigid bodies. Rigid body dynamics have become very important for simulating rigid body motion in interactive applications, such as computer games or virtual reality. We present a novel way of computing contact forces using a Newton method. The contact problem is reformulated as a system of non-linear and non-smooth equations, and we solve this system using a non-smooth version of Newton's method. One of the main contribution of this paper is the reformulation of the complementarity problems, used to model impacts, as a system of equations that can be solved using traditional methods.

  14. The smooth entropy formalism for von Neumann algebras

    International Nuclear Information System (INIS)

    Berta, Mario; Furrer, Fabian; Scholz, Volkher B.

    2016-01-01

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra

  15. Gravitational collapse from smooth initial data with vanishing radial pressure

    International Nuclear Information System (INIS)

    Mahajan, Ashutosh; Goswami, Rituparno; Joshi, Pankaj S

    2005-01-01

    We study here the spherical gravitational collapse assuming initial data to be necessarily smooth, as motivated by requirements based on physical reasonableness. A tangential pressure model is constructed and analysed in order to understand the final fate of collapse explicitly in terms of the density and pressure parameters at the initial epoch from which the collapse develops. It is seen that both black holes and naked singularities are produced as collapse end states even when the initial data are smooth. We show that the outcome is decided entirely in terms of the initial data, as given by density, pressure and velocity profiles at the initial epoch, from which the collapse evolves

  16. The smooth entropy formalism for von Neumann algebras

    Energy Technology Data Exchange (ETDEWEB)

    Berta, Mario, E-mail: berta@caltech.edu [Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125 (United States); Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp [Department of Physics, Graduate School of Science, University of Tokyo, Tokyo, Japan and Institute for Theoretical Physics, Leibniz University Hanover, Hanover (Germany); Scholz, Volkher B., E-mail: scholz@phys.ethz.ch [Institute for Theoretical Physics, ETH Zurich, Zurich (Switzerland)

    2016-01-15

    We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.

  17. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    Science.gov (United States)

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Power electronics substrate for direct substrate cooling

    Science.gov (United States)

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  19. Investigation of the role of the NO-cGMP pathway on YC-1 and DEA/NO effects on thoracic aorta smooth muscle responses in a rat preeclampsia model.

    Science.gov (United States)

    Turgut, Nergiz Hacer; Temiz, Tijen Kaya; Turgut, Bülent; Karadas, Baris; Parlak, Mesut; Bagcivan, Ihsan

    2013-10-01

    The present study was designed to investigate the effects of YC-1, a nitric oxide (NO)-independent soluble guanylate cyclase (sGC) activator, and DEA/NO, a NO donor, on smooth muscle responses in the preeclampsia model with suramin-treated rats and on the levels of cyclic guanosine monophosphate (cGMP) of thoracic aorta rings isolated from term-pregnant rats. Rats of 2 groups, control group and suramin group, were given intraperitoneal injection of saline or suramin, respectively. Suramin injection caused increased blood pressure, protein in urine, and fetal growth retardation. Thoracic aorta rings were exposed to contractile and relaxant agents. KCl contraction and papaverine relaxation responses were similar. Relaxation responses of YC-1 and DEA/NO decreased in suramin group. In both groups in the presence of ODQ, a sGC inhibitor, the relaxation responses of YC-1 and DEA/NO decreased. The cGMP content was determined by radioimmunoassay technique. The content of cGMP in the suramin group decreased. In the presence of YC-1 and DEA/NO in both groups, cGMP content increased, but in ODQ-added groups, there was a significant decrease. We conclude that in preeclampsia, the decrease of relaxation responses and the decrease of cGMP content could be due to the reduction in stimulation of sGC and the decrease in cGMP levels.

  20. Dynamic mechanistic modeling of the multienzymatic one-pot reduction of dehydrocholic acid to 12-keto ursodeoxycholic acid with competing substrates and cofactors.

    Science.gov (United States)

    Sun, Boqiao; Hartl, Florian; Castiglione, Kathrin; Weuster-Botz, Dirk

    2015-01-01

    Ursodeoxycholic acid (UDCA) is a bile acid which is used as pharmaceutical for the treatment of several diseases, such as cholesterol gallstones, primary sclerosing cholangitis or primary biliary cirrhosis. A potential chemoenzymatic synthesis route of UDCA comprises the two-step reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid (12-keto-UDCA), which can be conducted in a multienzymatic one-pot process using 3α-hydroxysteroid dehydrogenase (3α-HSDH), 7β-hydroxysteroid dehydrogenase (7β-HSDH), and glucose dehydrogenase (GDH) with glucose as cosubstrate for the regeneration of cofactor. Here, we present a dynamic mechanistic model of this one-pot reduction which involves three enzymes, four different bile acids, and two different cofactors, each with different oxidation states. In addition, every enzyme faces two competing substrates, whereas each bile acid and cofactor is formed or converted by two different enzymes. First, the kinetic mechanisms of both HSDH were identified to follow an ordered bi-bi mechanism with EBQ-type uncompetitive substrate inhibition. Rate equations were then derived for this mechanism and for mechanisms describing competing substrates. After the estimation of the model parameters of each enzyme independently by progress curve analyses, the full process model of a simple batch-process was established by coupling rate equations and mass balances. Validation experiments of the one-pot multienzymatic batch process revealed high prediction accuracy of the process model and a model analysis offered important insight to the identification of optimum reaction conditions. © 2015 American Institute of Chemical Engineers.

  1. Membrane-bound human orphan cytochrome P450 2U1: Sequence singularities, construction of a full 3D model, and substrate docking.

    Science.gov (United States)

    Ducassou, Lionel; Dhers, Laura; Jonasson, Gabriella; Pietrancosta, Nicolas; Boucher, Jean-Luc; Mansuy, Daniel; André, François

    2017-09-01

    Human cytochrome P450 2U1 (CYP2U1) is an orphan CYP that exhibits several distinctive characteristics among the 57 human CYPs with a highly conserved sequence in almost all living organisms. We compared its protein sequence with those of the 57 human CYPs and constructed a 3D structure of a full-length CYP2U1 model bound to a POPC membrane. We also performed docking experiments of arachidonic acid (AA) and N-arachidonoylserotonin (AS) in this model. The protein sequence of CYP2U1 displayed two unique characteristics when compared to those of the human CYPs, the presence of a longer N-terminal region upstream of the putative trans-membrane helix (TMH) containing 8 proline residues, and of an insert of about 20 amino acids containing 5 arginine residues between helices A' and A. Its N-terminal part upstream of TMH involved an additional short terminal helix, in a manner similar to what was reported in the crystal structure of Saccharomyces cerevisiae CYP51. Our model also showed a specific interaction between the charged residues of insert AA' and phosphate groups of lipid polar heads, suggesting a possible role of this insert in substrate recruitment. Docking of AA and AS in this model showed these substrates in channel 2ac, with the terminal alkyl chain of AA or the indole ring of AS close to the heme, in agreement with the reported CYP2U1-catalyzed AA and AS hydroxylation regioselectivities. This model should be useful to find new endogenous or exogenous CYP2U1 substrates and to interpret the regioselectivity of their hydroxylation. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. Smooth horizons and quantum ripples

    International Nuclear Information System (INIS)

    Golovnev, Alexey

    2015-01-01

    Black holes are unique objects which allow for meaningful theoretical studies of strong gravity and even quantum gravity effects. An infalling and a distant observer would have very different views on the structure of the world. However, a careful analysis has shown that it entails no genuine contradictions for physics, and the paradigm of observer complementarity has been coined. Recently this picture was put into doubt. In particular, it was argued that in old black holes a firewall must form in order to protect the basic principles of quantum mechanics. This AMPS paradox has already been discussed in a vast number of papers with different attitudes and conclusions. Here we want to argue that a possible source of confusion is the neglect of quantum gravity effects. Contrary to widespread perception, it does not necessarily mean that effective field theory is inapplicable in rather smooth neighbourhoods of large black hole horizons. The real offender might be an attempt to consistently use it over the huge distances from the near-horizon zone of old black holes to the early radiation. We give simple estimates to support this viewpoint and show how the Page time and (somewhat more speculative) scrambling time do appear. (orig.)

  3. Smooth horizons and quantum ripples

    Energy Technology Data Exchange (ETDEWEB)

    Golovnev, Alexey [Saint Petersburg State University, High Energy Physics Department, Saint-Petersburg (Russian Federation)

    2015-05-15

    Black holes are unique objects which allow for meaningful theoretical studies of strong gravity and even quantum gravity effects. An infalling and a distant observer would have very different views on the structure of the world. However, a careful analysis has shown that it entails no genuine contradictions for physics, and the paradigm of observer complementarity has been coined. Recently this picture was put into doubt. In particular, it was argued that in old black holes a firewall must form in order to protect the basic principles of quantum mechanics. This AMPS paradox has already been discussed in a vast number of papers with different attitudes and conclusions. Here we want to argue that a possible source of confusion is the neglect of quantum gravity effects. Contrary to widespread perception, it does not necessarily mean that effective field theory is inapplicable in rather smooth neighbourhoods of large black hole horizons. The real offender might be an attempt to consistently use it over the huge distances from the near-horizon zone of old black holes to the early radiation. We give simple estimates to support this viewpoint and show how the Page time and (somewhat more speculative) scrambling time do appear. (orig.)

  4. Local Transfer Coefficient, Smooth Channel

    Directory of Open Access Journals (Sweden)

    R. T. Kukreja

    1998-01-01

    Full Text Available Naphthalene sublimation technique and the heat/mass transfer analogy are used to determine the detailed local heat/mass transfer distributions on the leading and trailing walls of a twopass square channel with smooth walls that rotates about a perpendicular axis. Since the variation of density is small in the flow through the channel, buoyancy effect is negligible. Results show that, in both the stationary and rotating channel cases, very large spanwise variations of the mass transfer exist in he turn and in the region immediately downstream of the turn in the second straight pass. In the first straight pass, the rotation-induced Coriolis forces reduce the mass transfer on the leading wall and increase the mass transfer on the trailing wall. In the turn, rotation significantly increases the mass transfer on the leading wall, especially in the upstream half of the turn. Rotation also increases the mass transfer on the trailing wall, more in the downstream half of the turn than in the upstream half of the turn. Immediately downstream of the turn, rotation causes the mass transfer to be much higher on the trailing wall near the downstream corner of the tip of the inner wall than on the opposite leading wall. The mass transfer in the second pass is higher on the leading wall than on the trailing wall. A slower flow causes higher mass transfer enhancement in the turn on both the leading and trailing walls.

  5. Mathematical modeling of the ethanol fermentation of cashew apple juice by a flocculent yeast: the effect of initial substrate concentration and temperature.

    Science.gov (United States)

    Pinheiro, Álvaro Daniel Teles; da Silva Pereira, Andréa; Barros, Emanuel Meneses; Antonini, Sandra Regina Ceccato; Cartaxo, Samuel Jorge Marques; Rocha, Maria Valderez Ponte; Gonçalves, Luciana Rocha B

    2017-08-01

    In this work, the effect of initial sugar concentration and temperature on the production of ethanol by Saccharomyces cerevisiae CCA008, a flocculent yeast, using cashew apple juice in a 1L-bioreactor was studied. The experimental results were used to develop a kinetic model relating biomass, ethanol production and total reducing sugar consumption. Monod, Andrews, Levenspiel and Ghose and Tyagi models were investigated to represent the specific growth rate without inhibition, with inhibition by substrate and with inhibition by product, respectively. Model validation was performed using a new set of experimental data obtained at 34 °C and using 100 g L -1 of initial substrate concentration. The model proposed by Ghose and Tyagi was able to accurately describe the dynamics of ethanol production by S. cerevisiae CCA008 growing on cashew apple juice, containing an initial reducing sugar concentration ranging from 70 to 170 g L -1 and temperature, from 26 to 42 °C. The model optimization was also accomplished based on the following parameters: percentage volume of ethanol per volume of solution (%V ethanol /V solution ), efficiency and reaction productivity. The optimal operational conditions were determined using response surface graphs constructed with simulated data, reaching an efficiency and a productivity of 93.5% and 5.45 g L -1  h -1 , respectively.

  6. Smooth generalized linear models for aggregated data

    OpenAIRE

    Ayma Anza, Diego Armando

    2016-01-01

    Mención Internacional en el título de doctor Aggregated data commonly appear in areas such as epidemiology, demography, and public health. Generally, the aggregation process is done to protect the privacy of patients, to facilitate compact presentation, or to make it comparable with other coarser datasets. However, this process may hinder the visualization of the underlying distribution that follows the data. Also, it prohibits the direct analysis of relationships between ag...

  7. Smoothed Analysis of Local Search Algorithms

    NARCIS (Netherlands)

    Manthey, Bodo; Dehne, Frank; Sack, Jörg-Rüdiger; Stege, Ulrike

    2015-01-01

    Smoothed analysis is a method for analyzing the performance of algorithms for which classical worst-case analysis fails to explain the performance observed in practice. Smoothed analysis has been applied to explain the performance of a variety of algorithms in the last years. One particular class of

  8. Atrial Heterogeneity Generates Re-entrant Substrate during Atrial Fibrillation and Anti-arrhythmic Drug Action: Mechanistic Insights from Canine Atrial Models

    Science.gov (United States)

    Varela, Marta; Hancox, Jules C.; Aslanidi, Oleg V.

    2016-01-01

    Anti-arrhythmic drug therapy is a frontline treatment for atrial fibrillation (AF), but its success rates are highly variable. This is due to incomplete understanding of the mechanisms of action of specific drugs on the atrial substrate at different stages of AF progression. We aimed to elucidate the role of cellular, tissue and organ level atrial heterogeneities in the generation of a re-entrant substrate during AF progression, and their modulation by the acute action of selected anti-arrhythmic drugs. To explore the complex cell-to-organ mechanisms, a detailed biophysical models of the entire 3D canine atria was developed. The model incorporated atrial geometry and fibre orientation from high-resolution micro-computed tomography, region-specific atrial cell electrophysiology and the effects of progressive AF-induced remodelling. The actions of multi-channel class III anti-arrhythmic agents vernakalant and amiodarone were introduced in the model by inhibiting appropriate ionic channel currents according to experimentally reported concentration-response relationships. AF was initiated by applied ectopic pacing in the pulmonary veins, which led to the generation of localized sustained re-entrant waves (rotors), followed by progressive wave breakdown and rotor multiplication in both atria. The simulated AF scenarios were in agreement with observations in canine models and patients. The 3D atrial simulations revealed that a re-entrant substrate was typically provided by tissue regions of high heterogeneity of action potential duration (APD). Amiodarone increased atrial APD and reduced APD heterogeneity and was more effective in terminating AF than vernakalant, which increased both APD and APD dispersion. In summary, the initiation and sustenance of rotors in AF is linked to atrial APD heterogeneity and APD reduction due to progressive remodelling. Our results suggest that anti-arrhythmic strategies that increase atrial APD without increasing its dispersion are

  9. Structure-function relationship of a plant NCS1 member - Homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from arabidopsis

    KAUST Repository

    Witz, Sandra

    2014-03-12

    Plastidic uracil salvage is essential for plant growth and development. So far, PLUTO, the plastidic nucleobase transporter from Arabidopsis thaliana is the only known uracil importer at the inner plastidic membrane which represents the permeability barrier of this organelle. We present the first homology model of PLUTO, the sole plant NCS1 member from Arabidopsis based on the crystal structure of the benzyl hydantoin transporter MHP1 from Microbacterium liquefaciens and validated by molecular dynamics simulations. Polar side chains of residues Glu-227 and backbones of Val-145, Gly-147 and Thr-425 are proposed to form the binding site for the three PLUTO substrates uracil, adenine and guanine. Mutational analysis and competition studies identified Glu-227 as an important residue for uracil and to a lesser extent for guanine transport. A differential response in substrate transport was apparent with PLUTO double mutants E227Q G147Q and E227Q T425A, both of which most strongly affected adenine transport, and in V145A G147Q, which markedly affected guanine transport. These differences could be explained by docking studies, showing that uracil and guanine exhibit a similar binding mode whereas adenine binds deep into the catalytic pocket of PLUTO. Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. 2014 Witz et al.

  10. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  11. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.

    Science.gov (United States)

    Shigorina, Elena; Kordilla, Jannes; Tartakovsky, Alexandre M

    2017-09-01

    We employ a pairwise force smoothed particle hydrodynamics (PF-SPH) model to simulate sessile and transient droplets on rough hydrophobic and hydrophilic surfaces. PF-SPH allows modeling of free-surface flows without discretizing the air phase, which is achieved by imposing the surface tension and dynamic contact angles with pairwise interaction forces. We use the PF-SPH model to study the effect of surface roughness and microscopic contact angle on the effective contact angle and droplet dynamics. In the first part of this work, we investigate static contact angles of sessile droplets on different types of rough surfaces. We find that the effective static contact angles of Cassie and Wenzel droplets on a rough surface are greater than the corresponding microscale static contact angles. As a result, microscale hydrophobic rough surfaces also show effective hydrophobic behavior. On the other hand, microscale hydrophilic surfaces may be macroscopically hydrophilic or hydrophobic, depending on the type of roughness. We study the dependence of the transition between Cassie and Wenzel states on roughness and droplet size, which can be linked to the critical pressure for the given fluid-substrate combination. We observe good agreement between simulations and theoretical predictions. Finally, we study the impact of the roughness orientation (i.e., an anisotropic roughness) and surface inclination on droplet flow velocities. Simulations show that droplet flow velocities are lower if the surface roughness is oriented perpendicular to the flow direction. If the predominant elements of surface roughness are in alignment with the flow direction, the flow velocities increase compared to smooth surfaces, which can be attributed to the decrease in fluid-solid contact area similar to the lotus effect. We demonstrate that classical linear scaling relationships between Bond and capillary numbers for droplet flow on flat surfaces also hold for flow on rough surfaces.

  12. Development of a dynamic in vitro model of a stented blood vessel to evaluate the effects of stent strut material selection and surface coating on smooth muscle cell response

    Science.gov (United States)

    Winn, Bradley Huegh

    formation of this new tissue, primarily consisting of VSMCs of the synthetic phenotype and their subsequent extracellular matrix, is the sole causation of in-stent restenosis since the stent serves to prevent elastic recoil and negative remodeling. This doctoral research program is focused on endovascular stent biomaterials science and engineering. Overall, this doctoral project is founded on the hypothesis that smooth muscle cell hyperplasia, as an important causative factor for vascular restenosis following endovascular stent deployment, is triggered by the various effects of stent strut contact on the vessel wall including contact forces and material biocompatibility. In this program, a dynamic in vitro model of a stented blood vessel aimed at evaluating the effect of stent strut material selection, and surface coating on smooth muscle cell response was developed. The in vitro stented artery model was validated through the proliferation of VSMC in contact with stent struts. Additionally, it was demonstrated that, with respect to known biocompatible materials such as Nitinol and 316L stainless steel, DNA synthesis and alpha-actin expression, as indicators of VSMC phenotype, are independent of stent material composition. Furthermore, hydroxyapatite was shown to be a biocompatible stent surface coating with acceptable post-strain integrity. This coating was shown in a feasibility study to be capable of serving as a favorable drug delivery platform able to reliably deliver locally therapeutic doses of bisphosphonates, such as alendronate, to control VSMC proliferation in an in vitro model of a stented blood vessel. This stent coating/drug combination may be effective for reducing restenosis as a result of VSMC hyperplasia in vivo.

  13. An implicit Smooth Particle Hydrodynamic code

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, Charles E. [Univ. of New Mexico, Albuquerque, NM (United States)

    2000-05-01

    An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

  14. On the Significance of Demand and Inventory Smoothing Interventions in Supply Chain

    NARCIS (Netherlands)

    Cannella, S.; Ciancimino, E.; Ashayeri, J.

    2010-01-01

    The aim of this paper is to quantify the benefit of demand and inventory smoothing in contrasting the extreme volatility and impetuous alteration of the market produced by the current economic recession. To do so we model a traditional supply chain and we test five settings of order smoothing under

  15. Oxidation of dibenzothiophene as a model substrate for the removal of organic sulphur from fossil fuels by iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    VLADIMIR P. BESKOSKI

    2007-06-01

    Full Text Available Within this paper a new idea for the removal of organically bonded sulphur from fossil fuels is discussed. Dibenzothiophene (DBT was used as a model compound of organicmolecules containing sulphur. This form of (biodesulphurization was performed by an indirect mechanism in which iron(III ions generated from pyrite by Acidithiobacillus ferrooxidans performed the abiotic oxidation. The obtained reaction products, dibenzothiopene sulfoxide and dibenzothiophene sulfone, are more soluble in water than the basic substrate and the obtained results confirmed the basic hypothesis and give the posibility of continuing the experiments related to application of this (biodesulphurization process.

  16. A Comuputerized DRBEM model for generalized magneto-thermo-visco-elastic stress waves in functionally graded anisotropic thin film/substrate structures

    Directory of Open Access Journals (Sweden)

    Mohamed Abdelsabour Fahmy

    Full Text Available A numerical computer model, based on the dual reciprocity boundary element method (DRBEM for studying the generalized magneto-thermo-visco-elastic stress waves in a rotating functionally graded anisotropic thin film/substrate structure under pulsed laser irradiation is established. An implicit-implicit staggered algorithm was proposed and implemented for use with the DRBEM to get the solution for the temperature, displacement components and thermal stress components through the structure thickness. A comparison of the results for different theories is presented in the presence and absence of rotation. Some numerical results that demonstrate the validity of the proposed method are also presented.

  17. The use of LeuT as a model in elucidating binding sites for substrates and inhibitors in neurotransmitter transporters

    DEFF Research Database (Denmark)

    Løland, Claus Juul

    2015-01-01

    Background: The mammalian neurotransmitter transporters are complex proteins playing a central role in synaptic transmission between neurons by rapid reuptake of neurotransmitters. The proteins which transport dopamine, noradrenaline and serotonin belong to the Neurotransmitter:Sodium Symporters...... (NSS). Due to their important role, dysfunctions are associated with several psychiatric and neurological diseases and they also serve as targets for a wide range of therapeutic and illicit drugs. Despite the central physiological and pharmacological importance, direct evidence on structure......–function relationships on mammalian NSS proteins has so far been unsuccessful. The crystal structure of the bacterial NSS protein, LeuT, has been a turning point in structural investigations. Scope of review: To provide an update on what is known about the binding sites for substrates and inhibitors in the Leu...

  18. Full-waveform inversion using a nonlinearly smoothed wavefield

    KAUST Repository

    Li, Yuanyuan

    2017-12-08

    Conventional full-waveform inversion (FWI) based on the least-squares misfit function faces problems in converging to the global minimum when using gradient methods because of the cycle-skipping phenomena. An initial model producing data that are at most a half-cycle away from the observed data is needed for convergence to the global minimum. Low frequencies are helpful in updating low-wavenumber components of the velocity model to avoid cycle skipping. However, low enough frequencies are usually unavailable in field cases. The multiplication of wavefields of slightly different frequencies adds artificial low-frequency components in the data, which can be used for FWI to generate a convergent result and avoid cycle skipping. We generalize this process by multiplying the wavefield with itself and then applying a smoothing operator to the multiplied wavefield or its square to derive the nonlinearly smoothed wavefield, which is rich in low frequencies. The global correlation-norm-based objective function can mitigate the dependence on the amplitude information of the nonlinearly smoothed wavefield. Therefore, we have evaluated the use of this objective function when using the nonlinearly smoothed wavefield. The proposed objective function has much larger convexity than the conventional objective functions. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to that of the conventional FWI except for the adjoint source. We progressively reduce the smoothing width applied to the nonlinear wavefield to naturally adopt the multiscale strategy. Using examples on the Marmousi 2 model, we determine that the proposed FWI helps to generate convergent results without the need for low-frequency information.

  19. Real-time optical modelling and investigation of inorganic nano-layer growth onto flexible polymeric substrates

    International Nuclear Information System (INIS)

    Laskarakis, A.; Georgiou, D.; Logothetidis, S.

    2010-01-01

    A major factor for the achievement of the desirable performance, efficiency and lifetime of flexible organic electronic devices is the optimization of the encapsulation layers that protect the device active layers by atmospheric gas molecule permeation. The active layers consisted of small molecule and/or polymer organic semiconductors as well as the organic conductors need to be encapsulated into a transparent medium that will provide the necessary protection and maintain their charge generation and transport characteristics. The encapsulation layers are generally consisted of inorganic thin films (silicon oxide-SiO x and aluminium oxide-AlO x ) deposited onto the polymeric substrates, such as PolyEthylene Terephthalate (PET). In this work, in situ and real-time Spectroscopic Ellipsometry in the ultraviolet spectral region has been implemented in order to investigate the growth of inorganic SiO x and AlO x nano-layers onto PET flexible polymeric substrates as well as the PET/inorganic interface effects during the early stages of growth. The analysis of the pseudodielectric function that was measured in real-time in very short time scales (in the order of hundreds of ms) has provided detailed information on the time evolution of the thickness and deposition rate of the inorganic nano-layers during their growth process as well as on their optical and electronic properties. This work proposes a methodology for using real-time optical monitoring technique with the aim to tailor and control the functionality of these materials for application in flexible electronic devices.

  20. Evaluation of a hierarchy of models reveals importance of substrate limitation for predicting carbon dioxide and methane exchange in restored wetlands

    Science.gov (United States)

    Oikawa, P. Y.; Jenerette, G. D.; Knox, S. H.; Sturtevant, C.; Verfaillie, J.; Dronova, I.; Poindexter, C. M.; Eichelmann, E.; Baldocchi, D. D.

    2017-01-01

    Wetlands and flooded peatlands can sequester large amounts of carbon (C) and have high greenhouse gas mitigation potential. There is growing interest in financing wetland restoration using C markets; however, this requires careful accounting of both CO2 and CH4 exchange at the ecosystem scale. Here we present a new model, the PEPRMT model (Peatland Ecosystem Photosynthesis Respiration and Methane Transport), which consists of a hierarchy of biogeochemical models designed to estimate CO2 and CH4 exchange in restored managed wetlands. Empirical models using temperature and/or photosynthesis to predict respiration and CH4 production were contrasted with a more process-based model that simulated substrate-limited respiration and CH4 production using multiple carbon pools. Models were parameterized by using a model-data fusion approach with multiple years of eddy covariance data collected in a recently restored wetland and a mature restored wetland. A third recently restored wetland site was used for model validation. During model validation, the process-based model explained 70% of the variance in net ecosystem exchange of CO2 (NEE) and 50% of the variance in CH4 exchange. Not accounting for high respiration following restoration led to empirical models overestimating annual NEE by 33-51%. By employing a model-data fusion approach we provide rigorous estimates of uncertainty in model predictions, accounting for uncertainty in data, model parameters, and model structure. The PEPRMT model is a valuable tool for understanding carbon cycling in restored wetlands and for application in carbon market-funded wetland restoration, thereby advancing opportunity to counteract the vast degradation of wetlands and flooded peatlands.

  1. Smooth halos in the cosmic web

    International Nuclear Information System (INIS)

    Gaite, José

    2015-01-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness

  2. Smooth halos in the cosmic web

    Energy Technology Data Exchange (ETDEWEB)

    Gaite, José, E-mail: jose.gaite@upm.es [Physics Dept., ETSIAE, IDR, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, E-28040 Madrid (Spain)

    2015-04-01

    Dark matter halos can be defined as smooth distributions of dark matter placed in a non-smooth cosmic web structure. This definition of halos demands a precise definition of smoothness and a characterization of the manner in which the transition from smooth halos to the cosmic web takes place. We introduce entropic measures of smoothness, related to measures of inequality previously used in economy and with the advantage of being connected with standard methods of multifractal analysis already used for characterizing the cosmic web structure in cold dark matter N-body simulations. These entropic measures provide us with a quantitative description of the transition from the small scales portrayed as a distribution of halos to the larger scales portrayed as a cosmic web and, therefore, allow us to assign definite sizes to halos. However, these ''smoothness sizes'' have no direct relation to the virial radii. Finally, we discuss the influence of N-body discreteness parameters on smoothness.

  3. Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films

    Directory of Open Access Journals (Sweden)

    Friederike Herrig

    2018-05-01

    Full Text Available The sputter deposition of FeMn thin films with thicknesses in the range of hundred nanometres and beyond requires relatively high growth temperatures for the formation of the face-centred cubic (fcc phase, which results in high thin film roughness. A low temperature synthesis strategy, based on local epitaxial growth of a 100 nm thick fcc FeMn film as well as a Cu nucleation layer on an α-Al2O3 substrate at 160 °C, enables roughness values (Ra as low as ~0.6 nm, which is in the same order of magnitude as the pristine substrate (~0.1 nm. The synthesis strategy is guided by ab initio calculations, indicating very strong interfacial bonding of the Cu nucleation layer to an α-Al2O3 substrate (work of separation 5.48 J/m²—which can be understood based on the high Cu coordination at the interface—and between fcc FeMn and Cu (3.45 J/m². Accompanied by small lattice misfits between these structures, the strong interfacial bonding is proposed to enable the local epitaxial growth of a smooth fcc FeMn thin film. Based on the here introduced synthesis strategy, the implementation of fcc FeMn based thin film model systems for materials with interface dominated properties such as FeMn steels containing κ-carbide precipitates or secondary phases appears meaningful.

  4. Electromagnetic modelling of Raman enhancement from nanoscale substrates: a route to estimation of the magnitude of the chemical enhancement mechanism in SERS.

    Science.gov (United States)

    Brown, Richard J C; Wang, Jian; Tantra, Ratna; Yardley, Rachel E; Milton, Martin J T

    2006-01-01

    Despite widespread use for more than two decades, the SERS phenomenon has defied accurate physical and chemical explanation. The relative contributions from electronic and chemical mechanisms are difficult to quantify and are often not reproduced under nominally similar experimental conditions. This work has used electromagnetic modelling to predict the Raman enhancement expected from three configurations: metal nanoparticles, structured metal surfaces, and sharp metal tips interacting with metal surfaces. In each case, parameters such as artefact size, artefact separation and incident radiation wavelength have been varied and the resulting electromagnetic field modelled. This has yielded an electromagnetic description of these configurations with predictions of the maximum expected Raman enhancement, and hence a prediction of the optimum substrate configuration for the SERS process. When combined with experimental observations of the dependence of Raman enhancement with changing ionic strength, the modelling results have allowed a novel estimate of the size of the chemical enhancement mechanism to be produced.

  5. Experimental investigation of smoothing by spectral dispersion

    International Nuclear Information System (INIS)

    Regan, Sean P.; Marozas, John A.; Kelly, John H.; Boehly, Thomas R.; Donaldson, William R.; Jaanimagi, Paul A.; Keck, Robert L.; Kessler, Terrance J.; Meyerhofer, David D.; Seka, Wolf

    2000-01-01

    Measurements of smoothing rates for smoothing by spectral dispersion (SSD) of high-power, solid-state laser beams used for inertial confinement fusion (ICF) research are reported. Smoothing rates were obtained from the intensity distributions of equivalent target plane images for laser pulses of varying duration. Simulations of the experimental data with the known properties of the phase plates and the frequency modulators are in good agreement with the experimental data. These results inspire confidence in extrapolating to higher bandwidths and other SSD configurations that may be suitable for ICF experiments and ultimately for direct-drive laser-fusion ignition. (c) 2000 Optical Society of America

  6. Bifurcations of non-smooth systems

    Science.gov (United States)

    Angulo, Fabiola; Olivar, Gerard; Osorio, Gustavo A.; Escobar, Carlos M.; Ferreira, Jocirei D.; Redondo, Johan M.

    2012-12-01

    Non-smooth systems (namely piecewise-smooth systems) have received much attention in the last decade. Many contributions in this area show that theory and applications (to electronic circuits, mechanical systems, …) are relevant to problems in science and engineering. Specially, new bifurcations have been reported in the literature, and this was the topic of this minisymposium. Thus both bifurcation theory and its applications were included. Several contributions from different fields show that non-smooth bifurcations are a hot topic in research. Thus in this paper the reader can find contributions from electronics, energy markets and population dynamics. Also, a carefully-written specific algebraic software tool is presented.

  7. Predicting the effect of cytochrome P450 inhibitors on substrate drugs: analysis of physiologically based pharmacokinetic modeling submissions to the US Food and Drug Administration.

    Science.gov (United States)

    Wagner, Christian; Pan, Yuzhuo; Hsu, Vicky; Grillo, Joseph A; Zhang, Lei; Reynolds, Kellie S; Sinha, Vikram; Zhao, Ping

    2015-01-01

    The US Food and Drug Administration (FDA) has seen a recent increase in the application of physiologically based pharmacokinetic (PBPK) modeling towards assessing the potential of drug-drug interactions (DDI) in clinically relevant scenarios. To continue our assessment of such approaches, we evaluated the predictive performance of PBPK modeling in predicting cytochrome P450 (CYP)-mediated DDI. This evaluation was based on 15 substrate PBPK models submitted by nine sponsors between 2009 and 2013. For these 15 models, a total of 26 DDI studies (cases) with various CYP inhibitors were available. Sponsors developed the PBPK models, reportedly without considering clinical DDI data. Inhibitor models were either developed by sponsors or provided by PBPK software developers and applied with minimal or no modification. The metric for assessing predictive performance of the sponsors' PBPK approach was the R predicted/observed value (R predicted/observed = [predicted mean exposure ratio]/[observed mean exposure ratio], with the exposure ratio defined as [C max (maximum plasma concentration) or AUC (area under the plasma concentration-time curve) in the presence of CYP inhibition]/[C max or AUC in the absence of CYP inhibition]). In 81 % (21/26) and 77 % (20/26) of cases, respectively, the R predicted/observed values for AUC and C max ratios were within a pre-defined threshold of 1.25-fold of the observed data. For all cases, the R predicted/observed values for AUC and C max were within a 2-fold range. These results suggest that, based on the submissions to the FDA to date, there is a high degree of concordance between PBPK-predicted and observed effects of CYP inhibition, especially CYP3A-based, on the exposure of drug substrates.

  8. Adaptively smoothed seismicity earthquake forecasts for Italy

    Directory of Open Access Journals (Sweden)

    Yan Y. Kagan

    2010-11-01

    Full Text Available We present a model for estimation of the probabilities of future earthquakes of magnitudes m ≥ 4.95 in Italy. This model is a modified version of that proposed for California, USA, by Helmstetter et al. [2007] and Werner et al. [2010a], and it approximates seismicity using a spatially heterogeneous, temporally homogeneous Poisson point process. The temporal, spatial and magnitude dimensions are entirely decoupled. Magnitudes are independently and identically distributed according to a tapered Gutenberg-Richter magnitude distribution. We have estimated the spatial distribution of future seismicity by smoothing the locations of past earthquakes listed in two Italian catalogs: a short instrumental catalog, and a longer instrumental and historic catalog. The bandwidth of the adaptive spatial kernel is estimated by optimizing the predictive power of the kernel estimate of the spatial earthquake density in retrospective forecasts. When available and reliable, we used small earthquakes of m ≥ 2.95 to reveal active fault structures and 29 probable future epicenters. By calibrating the model with these two catalogs of different durations to create two forecasts, we intend to quantify the loss (or gain of predictability incurred when only a short, but recent, data record is available. Both forecasts were scaled to five and ten years, and have been submitted to the Italian prospective forecasting experiment of the global Collaboratory for the Study of Earthquake Predictability (CSEP. An earlier forecast from the model was submitted by Helmstetter et al. [2007] to the Regional Earthquake Likelihood Model (RELM experiment in California, and with more than half of the five-year experimental period over, the forecast has performed better than the others.

  9. Deposition characteristics of copper particles on roughened substrates through kinetic spraying

    International Nuclear Information System (INIS)

    Kumar, S.; Bae, Gyuyeol; Lee, Changhee

    2009-01-01

    In this paper, a systematic study of copper particle deposition behavior on polished and roughened surfaces (aluminum and copper) in kinetic spray process has been performed. The particle deformation behavior was simulated through finite element analysis (FEA) software ABAQUS explicit 6.7-2. The particle-substrate contact time, contact temperature and contact area upon impact have been estimated for smooth and three different roughened substrate cases. Copper powders were deposited on smooth and grit-blasted copper and aluminium substrates and characterized through scanning electron microscopy and Romulus bond strength analyzer. The results indicate that the deformation and the resultant bonding were higher for the roughened substrates than that of smooth. The characteristic factors for bonding are reported and discussed. Thus the substrate roughness appears to be beneficial for the initial deposition efficiency of the kinetic spray process.

  10. Gradient approach to quantify the gradation smoothness for output media

    Science.gov (United States)

    Kim, Youn Jin; Bang, Yousun; Choh, Heui-Keun

    2010-01-01

    We aim to quantify the perception of color gradation smoothness using objectively measurable properties. We propose a model to compute the smoothness of hardcopy color-to-color gradations. It is a gradient-based method that can be determined as a function of the 95th percentile of second derivative for the tone-jump estimator and the fifth percentile of first derivative for the tone-clipping estimator. Performance of the model and a previously suggested method were psychophysically appreciated, and their prediction accuracies were compared to each other. Our model showed a stronger Pearson correlation to the corresponding visual data, and the magnitude of the Pearson correlation reached up to 0.87. Its statistical significance was verified through analysis of variance. Color variations of the representative memory colors-blue sky, green grass and Caucasian skin-were rendered as gradational scales and utilized as the test stimuli.

  11. Comparative Analysis for Robust Penalized Spline Smoothing Methods

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-01-01

    Full Text Available Smoothing noisy data is commonly encountered in engineering domain, and currently robust penalized regression spline models are perceived to be the most promising methods for coping with this issue, due to their flexibilities in capturing the nonlinear trends in the data and effectively alleviating the disturbance from the outliers. Against such a background, this paper conducts a thoroughly comparative analysis of two popular robust smoothing techniques, the M-type estimator and S-estimation for penalized regression splines, both of which are reelaborated starting from their origins, with their derivation process reformulated and the corresponding algorithms reorganized under a unified framework. Performances of these two estimators are thoroughly evaluated from the aspects of fitting accuracy, robustness, and execution time upon the MATLAB platform. Elaborately comparative experiments demonstrate that robust penalized spline smoothing methods possess the capability of resistance to the noise effect compared with the nonrobust penalized LS spline regression method. Furthermore, the M-estimator exerts stable performance only for the observations with moderate perturbation error, whereas the S-estimator behaves fairly well even for heavily contaminated observations, but consuming more execution time. These findings can be served as guidance to the selection of appropriate approach for smoothing the noisy data.

  12. Signal sensitivity of alternating current potential drop measurement for crack detection of conductive substrate with tunable coating materials through finite element modeling

    International Nuclear Information System (INIS)

    Rao, Simha Sandeep; Zhao, Huijuan; Liu, Ming; Peng, Fei; Zhang, Bo

    2016-01-01

    We adopt a finite element numerical modeling approach to investigate the electromagnetic coupling effect of two parallel electric conductors with tunable electric conductivity σ and magnetic permeability μ . For two parallel conductors C and S ( μ C   ⋅  σ C   ≤  μ S   ⋅  σ S ), we find that the shape of current density profile of conductor S is dependent on the product of μ C   ⋅  σ C , while the magnitude is determined by the AC current frequency f . On the other hand, the frequency f affects not only the shape but also the magnitude of the current density profile of conductor C. We further adopt a coplanar model to investigate the signal sensitivity of alternating current potential drop (ACPD) measurement for both surface crack and inner crack detection. We find that with modified coating materials (lower electric conductivity and higher magnetic permeability, compared with the substrate material properties), the crack detection signal sensitivity can be greatly enhanced for both the cracks within the coating and at the coating/substrate interface, where cracks are most commonly encountered in real situations. (paper)

  13. Optimal Smoothing in Adaptive Location Estimation

    OpenAIRE

    Mammen, Enno; Park, Byeong U.

    1997-01-01

    In this paper higher order performance of kernel basedadaptive location estimators are considered. Optimalchoice of smoothing parameters is discussed and it isshown how much is lossed in efficiency by not knowingthe underlying translation density.

  14. Smooth surfaces from rational bilinear patches

    KAUST Repository

    Shi, Ling

    2014-01-01

    Smooth freeform skins from simple panels constitute a challenging topic arising in contemporary architecture. We contribute to this problem area by showing how to approximate a negatively curved surface by smoothly joined rational bilinear patches. The approximation problem is solved with help of a new computational approach to the hyperbolic nets of Huhnen-Venedey and Rörig and optimization algorithms based on it. We also discuss its limits which lie in the topology of the input surface. Finally, freeform deformations based on Darboux transformations are used to generate smooth surfaces from smoothly joined Darboux cyclide patches; in this way we eliminate the restriction to surfaces with negative Gaussian curvature. © 2013 Elsevier B.V.

  15. Substrate compositional variation with tissue/region and Gba1 mutations in mouse models--implications for Gaucher disease.

    Directory of Open Access Journals (Sweden)

    Ying Sun

    Full Text Available Gaucher disease results from GBA1 mutations that lead to defective acid β-glucosidase (GCase mediated cleavage of glucosylceramide (GC and glucosylsphingosine as well as heterogeneous manifestations in the viscera and CNS. The mutation, tissue, and age-dependent accumulations of different GC species were characterized in mice with Gba1 missense mutations alone or in combination with isolated saposin C deficiency (C*. Gba1 heteroallelism for D409V and null alleles (9V/null led to GC excesses primarily in the visceral tissues with preferential accumulations of lung GC24∶0, but not in liver, spleen, or brain. Age-dependent increases of different GC species were observed. The combined saposin C deficiency (C* with V394L homozygosity (4L;C* showed major GC18:0 degradation defects in the brain, whereas the analogous mice with D409H homozygosity and C* (9H;C* led to all GC species accumulating in visceral tissues. Glucosylsphingosine was poorly degraded in brain by V394L and D409H GCases and in visceral tissues by D409V GCase. The neonatal lethal N370S/N370S genotype had insignificant substrate accumulations in any tissue. These results demonstrate age, organ, and mutation-specific quantitative differences in GC species and glucosylsphingosine accumulations that can have influence in the tissue/regional expression of Gaucher disease phenotypes.

  16. Effects of income smoothing practices on the conservatism of public companies listed on the BM & FBOVESPA

    Directory of Open Access Journals (Sweden)

    José Elias Feres de Almeida

    2012-04-01

    Full Text Available The aim of this study was to investigate two aspects of accounting information that may be inherently related: income smoothing practices and conditional conservatism. Theoretically, the more a firm employs income smoothing, i.e., uses accruals to reduce the variability of profits, the less possibility there is for the timely acknowledgement of future economic losses (i.e., bad economic news in profits. Eckel's model (1981 was used in this study to classify listed companies as smoothing or non-smoothing, and Basu's model (1997 was used to quantify the degree of conditional conservatism present in each firm. To make the results more robust, samples were created with annual stock return data from both March and December. The results indicated that non-smoothing firms had a higher degree of conditional conservatism, i.e., more opportunity to recognize future economic losses because the market could use the stock return data to anticipate future losses contained in the information regarding profits. This research made it possible to observe theoretical relationships between properties of accounting information: i there is a relationship between income smoothing and conditional conservatism (i.e., accounting choices; ii the informational environment of the Brazilian capital market contributes to the market distinction between smoothing and non-smoothing firms; and iii the improvement of the capital market provides economic operators with greater insight into economic losses that are contained in accounting results.

  17. Smooth embeddings with Stein surface images

    OpenAIRE

    Gompf, Robert E.

    2011-01-01

    A simple characterization is given of open subsets of a complex surface that smoothly perturb to Stein open subsets. As applications, complex 2-space C^2 contains domains of holomorphy (Stein open subsets) that are exotic R^4's, and others homotopy equivalent to the 2-sphere but cut out by smooth, compact 3-manifolds. Pseudoconvex embeddings of Brieskorn spheres and other 3-manifolds into complex surfaces are constructed, as are pseudoconcave holomorphic fillings (with disagreeing contact and...

  18. Some splines produced by smooth interpolation

    Czech Academy of Sciences Publication Activity Database

    Segeth, Karel

    2018-01-01

    Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www.sciencedirect.com/science/article/pii/S0096300317302746?via%3Dihub

  19. Some splines produced by smooth interpolation

    Czech Academy of Sciences Publication Activity Database

    Segeth, Karel

    2018-01-01

    Roč. 319, 15 February (2018), s. 387-394 ISSN 0096-3003 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : smooth data approximation * smooth data interpolation * cubic spline Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.738, year: 2016 http://www. science direct.com/ science /article/pii/S0096300317302746?via%3Dihub

  20. Modeling Geometric Arrangements of TiO2-Based Catalyst Substrates and Isotropic Light Sources to Enhance the Efficiency of a Photocatalystic Oxidation (PCO) Reactor

    Science.gov (United States)

    Richards, Jeffrey T.; Levine, Lanfang H.; Husk, Geoffrey K.

    2011-01-01

    The closed confined environments of the ISS, as well as in future spacecraft for exploration beyond LEO, provide many challenges to crew health. One such challenge is the availability of a robust, energy efficient, and re-generable air revitalization system that controls trace volatile organic contaminants (VOCs) to levels below a specified spacecraft maximum allowable concentration (SMAC). Photocatalytic oxidation (PCO), which is capable of mineralizing VOCs at room temperature and of accommodating a high volumetric flow, is being evaluated as an alternative trace contaminant control technology. In an architecture of a combined air and water management system, placing a PCO unit before a condensing heat exchanger for humidity control will greatly reduce the organic load into the humidity condensate loop ofthe water processing assembly (WPA) thereby enhancing the life cycle economics ofthe WPA. This targeted application dictates a single pass efficiency of greater than 90% for polar VOCs. Although this target was met in laboratory bench-scaled reactors, no commercial or SBIR-developed prototype PCO units examined to date have achieved this goal. Furthermore, the formation of partial oxidation products (e.g., acetaldehyde) was not eliminated. It is known that single pass efficiency and partial oxidation are strongly dependent upon the contact time and catalyst illumination, hence the requirement for an efficient reactor design. The objective of this study is to maximize the apparent contact time and illuminated catalyst surface area at a given reactor volume and volumetric flow. In this study, a Ti02-based photocatalyst is assumed to be immobilized on porous substrate panels and illumination derived from linear isotropic light sources. Mathematical modeling using computational fluid dynamics (CFD) analyses were performed to investigate the effect of: 1) the geometry and configuration of catalyst-coated substrate panels, 2) porosity of the supporting substrate, and 3

  1. Chaotic behaviour from smooth and non-smooth optical solitons ...

    Indian Academy of Sciences (India)

    2016-07-14

    Jul 14, 2016 ... In particular, solitons in optical fibre models are rarely researched. ... where m is an integer, n is a positive integer, d is the amplitude, w ... transmission system. .... will intersect an infinite number of times, thus forming a type of ...

  2. Generation of 3D nanopatterns with smooth surfaces

    International Nuclear Information System (INIS)

    Waid, Simon; Wanzenboeck, Heinz D; Gavagnin, Marco; Bertagnolli, Emmerich; Muehlberger, Michael

    2014-01-01

    Ga implantation into Si and reactive ion etching has been previously identified as candidate techniques for the generation of 3D nanopatterns. However, the structures manufactured using these techniques exhibited impedingly high surface roughness. In this work, we investigate the source of roughness and introduce a new patterning process to solve this issue. The novel patterning process introduces an additional layer absorbing the implanted Ga, thus preventing the clustering of the implanted Ga observed with uncoated Si substrates. This process enables 3D nanopatterning with sub-100 nm lateral resolution in conjunction with smooth height transitions and surface roughness down to 4 nm root mean square. Such patterns are ideally suited for optical applications and enable the manufacturing of nanoimprint lithography templates for low-profile Fresnel lenses. (paper)

  3. Smoothed Spectra, Ogives, and Error Estimates for Atmospheric Turbulence Data

    Science.gov (United States)

    Dias, Nelson Luís

    2018-01-01

    A systematic evaluation is conducted of the smoothed spectrum, which is a spectral estimate obtained by averaging over a window of contiguous frequencies. The technique is extended to the ogive, as well as to the cross-spectrum. It is shown that, combined with existing variance estimates for the periodogram, the variance—and therefore the random error—associated with these estimates can be calculated in a straightforward way. The smoothed spectra and ogives are biased estimates; with simple power-law analytical models, correction procedures are devised, as well as a global constraint that enforces Parseval's identity. Several new results are thus obtained: (1) The analytical variance estimates compare well with the sample variance calculated for the Bartlett spectrum and the variance of the inertial subrange of the cospectrum is shown to be relatively much larger than that of the spectrum. (2) Ogives and spectra estimates with reduced bias are calculated. (3) The bias of the smoothed spectrum and ogive is shown to be negligible at the higher frequencies. (4) The ogives and spectra thus calculated have better frequency resolution than the Bartlett spectrum, with (5) gradually increasing variance and relative error towards the low frequencies. (6) Power-law identification and extraction of the rate of dissipation of turbulence kinetic energy are possible directly from the ogive. (7) The smoothed cross-spectrum is a valid inner product and therefore an acceptable candidate for coherence and spectral correlation coefficient estimation by means of the Cauchy-Schwarz inequality. The quadrature, phase function, coherence function and spectral correlation function obtained from the smoothed spectral estimates compare well with the classical ones derived from the Bartlett spectrum.

  4. Improved management of lysosomal glucosylceramide levels in a mouse model of type 1 Gaucher disease using enzyme and substrate reduction therapy.

    Science.gov (United States)

    Marshall, John; McEachern, Kerry Anne; Chuang, Wei-Lien; Hutto, Elizabeth; Siegel, Craig S; Shayman, James A; Grabowski, Greg A; Scheule, Ronald K; Copeland, Diane P; Cheng, Seng H

    2010-06-01

    Gaucher disease is caused by a deficiency of the lysosomal enzyme glucocerebrosidase (acid beta-glucosidase), with consequent cellular accumulation of glucosylceramide (GL-1). The disease is managed by intravenous administrations of recombinant glucocerebrosidase (imiglucerase), although symptomatic patients with mild to moderate type 1 Gaucher disease for whom enzyme replacement therapy (ERT) is not an option may also be treated by substrate reduction therapy (SRT) with miglustat. To determine whether the sequential use of both ERT and SRT may provide additional benefits, we compared the relative pharmacodynamic efficacies of separate and sequential therapies in a murine model of Gaucher disease (D409V/null). As expected, ERT with recombinant glucocerebrosidase was effective in reducing the burden of GL-1 storage in the liver, spleen, and lung of 3-month-old Gaucher mice. SRT using a novel inhibitor of glucosylceramide synthase (Genz-112638) was also effective, albeit to a lesser degree than ERT. Animals administered recombinant glucocerebrosidase and then Genz-112638 showed the lowest levels of GL-1 in all the visceral organs and a reduced number of Gaucher cells in the liver. This was likely because the additional deployment of SRT following enzyme therapy slowed the rate of reaccumulation of GL-1 in the affected organs. Hence, in patients whose disease has been stabilized by intravenously administered recombinant glucocerebrosidase, orally administered SRT with Genz-112638 could potentially be used as a convenient maintenance therapy. In patients naïve to treatment, ERT followed by SRT could potentially accelerate clearance of the offending substrate.

  5. The influence of a brittle Cr interlayer on the deformation behavior of thin Cu films on flexible substrates: Experiment and model

    International Nuclear Information System (INIS)

    Marx, Vera M.; Toth, Florian; Wiesinger, Andreas; Berger, Julia; Kirchlechner, Christoph; Cordill, Megan J.; Fischer, Franz D.; Rammerstorfer, Franz G.; Dehm, Gerhard

    2015-01-01

    Thin metal films deposited on polymer substrates are used in flexible electronic devices such as flexible displays or printed memories. They are often fabricated as complicated multilayer structures. Understanding the mechanical behavior of the interface between the metal film and the substrate as well as the process of crack formation under global tension is important for producing reliable devices. In the present work, the deformation behavior of copper films (50–200 nm thick), bonded to polyimide directly or via a 10 nm chromium interlayer, is investigated by experimental analysis and computational simulations. The influence of the various copper film thicknesses and the usage of a brittle interlayer on the crack density as well as on the stress magnitude in the copper after saturation of the cracking process are studied with in situ tensile tests in a synchrotron and under an atomic force microscope. From the computational point of view, the evolution of the crack pattern is modeled as a stochastic process via finite element based cohesive zone simulations. Both, experiments and simulations show that the chromium interlayer dominates the deformation behavior. The interlayer forms cracks that induce a stress concentration in the overlying copper film. This behavior is more pronounced in the 50 nm than in the 200 nm copper films

  6. Nonergodic dynamics of the two-dimensional random-phase sine-Gordon model: Applications to vortex-glass arrays and disordered-substrate surfaces

    International Nuclear Information System (INIS)

    Cule, D.; Shapir, Y.

    1995-01-01

    The dynamics of the random-phase sine-Gordon model, which describes two-dimensional vortex-glass arrays and crystalline surfaces on disordered substrates, is investigated using the self-consistent Hartree approximation. The fluctuation-dissipation theorem is violated below the critical temperature T c for large time t>t * where t * diverges in the thermodynamic limit. While above T c the averaged autocorrelation function diverges as Tln(t), for T c it approaches a finite value q * ∼1/(T c -T) as q(t)=q * -c(t/t * ) -ν (for t→t * ) where ν is a temperature-dependent exponent. On larger time scales t>t * the dynamics becomes nonergodic. The static correlations behave as ∼Tln|rvec x| for T>T c and for T c when x * with ξ * ∼exp{A/(T c -T)}. For scales x>ξ * , they behave as ∼m -1 Tln|rvec x| where m∼T/T c near T c , in general agreement with the variational replica-symmetry breaking approach and with recent simulations of the disordered-substrate surface. For strong coupling the transition becomes first order

  7. Book vs. fair value accounting in banking and intertemporal smoothing

    OpenAIRE

    Freixas, Xavier; Tsomocos, Dimitrios P.

    2004-01-01

    The aim of this paper is to examine the pros and cons of book and fair value accounting from the perspective of the theory of banking. We consider the implications of the two accounting methods in an overlapping generations environment. As observed by Allen and Gale(1997), in an overlapping generation model, banks have a role as intergenerational connectors as they allow for intertemporal smoothing. Our main result is that when dividends depend on profits, book value ex ante dominates fair va...

  8. Data-driven smooth tests of the proportional hazards assumption

    Czech Academy of Sciences Publication Activity Database

    Kraus, David

    2007-01-01

    Roč. 13, č. 1 (2007), s. 1-16 ISSN 1380-7870 R&D Projects: GA AV ČR(CZ) IAA101120604; GA ČR(CZ) GD201/05/H007 Institutional research plan: CEZ:AV0Z10750506 Keywords : Cox model * Neyman's smooth test * proportional hazards assumption * Schwarz's selection rule Subject RIV: BA - General Mathematics Impact factor: 0.491, year: 2007

  9. Reel-to-reel substrate tape polishing system

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, Venkat; Gardner, Michael T.; Judd, Raymond D.; Weloth, Martin; Qiao, Yunfei

    2005-06-21

    Disclosed is a reel-to-reel single-pass mechanical polishing system (100) suitable for polishing long lengths of metal substrate tape (124) used in the manufacture of high-temperature superconductor (HTS) coated tape, including multiple instantiations of a polishing station (114) in combination with a subsequent rinsing station (116) arranged along the axis of the metal substrate tape (124) that is translating between a payout spool (110a) and a take-up spool (110b). The metal substrate tape obtains a surface smoothness that is suitable for the subsequent deposition of a buffer layer.

  10. Non-parametric smoothing of experimental data

    International Nuclear Information System (INIS)

    Kuketayev, A.T.; Pen'kov, F.M.

    2007-01-01

    Full text: Rapid processing of experimental data samples in nuclear physics often requires differentiation in order to find extrema. Therefore, even at the preliminary stage of data analysis, a range of noise reduction methods are used to smooth experimental data. There are many non-parametric smoothing techniques: interval averages, moving averages, exponential smoothing, etc. Nevertheless, it is more common to use a priori information about the behavior of the experimental curve in order to construct smoothing schemes based on the least squares techniques. The latter methodology's advantage is that the area under the curve can be preserved, which is equivalent to conservation of total speed of counting. The disadvantages of this approach include the lack of a priori information. For example, very often the sums of undifferentiated (by a detector) peaks are replaced with one peak during the processing of data, introducing uncontrolled errors in the determination of the physical quantities. The problem is solvable only by having experienced personnel, whose skills are much greater than the challenge. We propose a set of non-parametric techniques, which allows the use of any additional information on the nature of experimental dependence. The method is based on a construction of a functional, which includes both experimental data and a priori information. Minimum of this functional is reached on a non-parametric smoothed curve. Euler (Lagrange) differential equations are constructed for these curves; then their solutions are obtained analytically or numerically. The proposed approach allows for automated processing of nuclear physics data, eliminating the need for highly skilled laboratory personnel. Pursuant to the proposed approach is the possibility to obtain smoothing curves in a given confidence interval, e.g. according to the χ 2 distribution. This approach is applicable when constructing smooth solutions of ill-posed problems, in particular when solving

  11. Effect of smoothing on robust chaos.

    Science.gov (United States)

    Deshpande, Amogh; Chen, Qingfei; Wang, Yan; Lai, Ying-Cheng; Do, Younghae

    2010-08-01

    In piecewise-smooth dynamical systems, situations can arise where the asymptotic attractors of the system in an open parameter interval are all chaotic (e.g., no periodic windows). This is the phenomenon of robust chaos. Previous works have established that robust chaos can occur through the mechanism of border-collision bifurcation, where border is the phase-space region where discontinuities in the derivatives of the dynamical equations occur. We investigate the effect of smoothing on robust chaos and find that periodic windows can arise when a small amount of smoothness is present. We introduce a parameter of smoothing and find that the measure of the periodic windows in the parameter space scales linearly with the parameter, regardless of the details of the smoothing function. Numerical support and a heuristic theory are provided to establish the scaling relation. Experimental evidence of periodic windows in a supposedly piecewise linear dynamical system, which has been implemented as an electronic circuit, is also provided.

  12. TAX SMOOTHING: TESTS ON INDONESIAN DATA

    Directory of Open Access Journals (Sweden)

    Rudi Kurniawan

    2011-01-01

    Full Text Available This paper contributes to the literature of public debt management by testing for tax smoothing behaviour in Indonesia. Tax smoothing means that the government smooths the tax rate across all future time periods to minimize the distortionary costs of taxation over time for a given path of government spending. In a stochastic economy with an incomplete bond market, tax smoothing implies that the tax rate approximates a random walk and changes in the tax rate are nearly unpredictable. For that purpose, two tests were performed. First, random walk behaviour of the tax rate was examined by undertaking unit root tests. The null hypothesis of unit root cannot be rejected, indicating that the tax rate is nonstationary and, hence, it follows a random walk. Second, the predictability of the tax rate was examined by regressing changes in the tax rate on its own lagged values and also on lagged values of changes in the goverment expenditure ratio, and growth of real output. They are found to be not significant in predicting changes in the tax rate. Taken together, the present evidence seems to be consistent with the tax smoothing, therefore provides support to this theory.

  13. Smoothing dynamic positron emission tomography time courses using functional principal components

    OpenAIRE

    Jiang, Ci-Ren; Aston, John A. D.; Wang, Jane-Ling

    2009-01-01

    A functional smoothing approach to the analysis of PET time course data is presented. By borrowing information across space and accounting for this pooling through the use of a non-parametric covariate adjustment, it is possible to smooth the PET time course data thus reducing the noise. A new model for functional data analysis, the Multiplicative Nonparametric Random Effects Model, is introduced to more accurately account for the variation in the data. A locally adaptive bandwidth choice hel...

  14. Numerical simulations of glass impacts using smooth particle hydrodynamics

    International Nuclear Information System (INIS)

    Mandell, D.A.; Wingate, C.A.

    1995-01-01

    As part of a program to develop advanced hydrocode design tools, we have implemented a brittle fracture model for glass into the SPHINX smooth particle hydrodynamics code. We have evaluated this model and the code by predicting data from one-dimensional flyer plate impacts into glass. Since fractured glass properties, which are needed in the model, are not available, we did sensitivity studies of these properties, as well as sensitivity studies to determine the number of particles needed in the calculations. The numerical results are in good agreement with the data

  15. A smooth bouncing cosmology with scale invariant spectrum

    International Nuclear Information System (INIS)

    Creminelli, P.; Senatore, L.

    2007-01-01

    We present a bouncing cosmology which evolves from the contracting to the expanding phase in a smooth way, without developing instabilities or pathologies and remaining in the regime of validity of 4d effective field theory. A nearly scale invariant spectrum of perturbations is generated during the contracting phase by an isocurvature scalar with a negative exponential potential and then converted to adiabatic. The model predicts a slightly blue spectrum, n S > or approx. 1, no observable gravitational waves and a high (but model dependent) level of non-Gaussianities with local shape. The model represents an explicit and predictive alternative to inflation, although, at present, it is clearly less compelling. (author)

  16. Bayesian inference of substrate properties from film behavior

    International Nuclear Information System (INIS)

    Aggarwal, R; Demkowicz, M J; Marzouk, Y M

    2015-01-01

    We demonstrate that by observing the behavior of a film deposited on a substrate, certain features of the substrate may be inferred with quantified uncertainty using Bayesian methods. We carry out this demonstration on an illustrative film/substrate model where the substrate is a Gaussian random field and the film is a two-component mixture that obeys the Cahn–Hilliard equation. We construct a stochastic reduced order model to describe the film/substrate interaction and use it to infer substrate properties from film behavior. This quantitative inference strategy may be adapted to other film/substrate systems. (paper)

  17. Consumption and release of dissolved organic carbon by marine bacteria in a pulsed-substrate environment: from experiments to modelling.

    NARCIS (Netherlands)

    Eichinger, M.; Kooijman, S.A.L.M.; Sempere, R.; Poggiale, J.C.

    2009-01-01

    To investigate the effects of episodic occurrence of dissolved organic carbon(DOC) in the natural environment, bacterial degradation of labile DOC was studied under laboratory-controlled conditions followed by modelling. A single labile DOC compound was periodically added to the experimental culture

  18. Ensemble Kalman filtering with one-step-ahead smoothing

    KAUST Repository

    Raboudi, Naila F.

    2018-01-11

    The ensemble Kalman filter (EnKF) is widely used for sequential data assimilation. It operates as a succession of forecast and analysis steps. In realistic large-scale applications, EnKFs are implemented with small ensembles and poorly known model error statistics. This limits their representativeness of the background error covariances and, thus, their performance. This work explores the efficiency of the one-step-ahead (OSA) smoothing formulation of the Bayesian filtering problem to enhance the data assimilation performance of EnKFs. Filtering with OSA smoothing introduces an updated step with future observations, conditioning the ensemble sampling with more information. This should provide an improved background ensemble in the analysis step, which may help to mitigate the suboptimal character of EnKF-based methods. Here, the authors demonstrate the efficiency of a stochastic EnKF with OSA smoothing for state estimation. They then introduce a deterministic-like EnKF-OSA based on the singular evolutive interpolated ensemble Kalman (SEIK) filter. The authors show that the proposed SEIK-OSA outperforms both SEIK, as it efficiently exploits the data twice, and the stochastic EnKF-OSA, as it avoids observational error undersampling. They present extensive assimilation results from numerical experiments conducted with the Lorenz-96 model to demonstrate SEIK-OSA’s capabilities.

  19. Lyapunov exponents and smooth ergodic theory

    CERN Document Server

    Barreira, Luis

    2001-01-01

    This book is a systematic introduction to smooth ergodic theory. The topics discussed include the general (abstract) theory of Lyapunov exponents and its applications to the stability theory of differential equations, stable manifold theory, absolute continuity, and the ergodic theory of dynamical systems with nonzero Lyapunov exponents (including geodesic flows). The authors consider several non-trivial examples of dynamical systems with nonzero Lyapunov exponents to illustrate some basic methods and ideas of the theory. This book is self-contained. The reader needs a basic knowledge of real analysis, measure theory, differential equations, and topology. The authors present basic concepts of smooth ergodic theory and provide complete proofs of the main results. They also state some more advanced results to give readers a broader view of smooth ergodic theory. This volume may be used by those nonexperts who wish to become familiar with the field.

  20. Adsorption on smooth electrodes: A radiotracer study

    International Nuclear Information System (INIS)

    Rice-Jackson, L.M.

    1990-01-01

    Adsorption on solids is a complicated process and in most cases, occurs as the early stage of other more complicated processes, i.e. chemical reactions, electrooxidation, electroreduction. The research reported here combines the electroanalytical method, cyclic voltammetry, and the use of radio-labeled isotopes, soft beta emitters, to study adsorption processes at smooth electrodes. The in-situ radiotracer method is highly anion (molecule) specific and provides information on the structure and composition of the electric double layer. The emphasis of this research was on studying adsorption processes at smooth electrodes of copper, gold, and platinum. The application of the radiotracer method to these smooth surfaces have led to direct in-situ measurements from which surface coverage was determined; anions and molecules were identified; and weak interactions of adsorbates with the surface of the electrodes were readily monitored. 179 refs

  1. Reduced tract integrity of the model for social communication is a neural substrate of social communication deficits in autism spectrum disorder.

    Science.gov (United States)

    Lo, Yu-Chun; Chen, Yu-Jen; Hsu, Yung-Chin; Tseng, Wen-Yih Isaac; Gau, Susan Shur-Fen

    2017-05-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder with social communication deficits as one of the core symptoms. Recently, a five-level model for the social communication has been proposed in which white matter tracts corresponding to each level of the model are identified. Given that the model for social communication subserves social language functions, we hypothesized that the tract integrity of the model for social communication may be reduced in ASD, and the reduction may be related to social communication deficits. Sixty-two right-handed boys with ASD and 55 typically developing (TD) boys received clinical evaluations, intelligence tests, the Social Communication Questionnaire (SCQ), and MRI scans. Generalized fractional anisotropy (GFA) was measured by diffusion spectrum imaging to indicate the microstructural integrity of the tracts for each level of the social communication model. Group difference in the tract integrity and its relationship with the SCQ subscales of social communication and social interaction were investigated. We found that the GFA values of the superior longitudinal fasciculus III (SLF III, level 1) and the frontal aslant tracts (FAT, level 2) were decreased in ASD compared to TD. Moreover, the GFA values of the SLF III and the FAT were associated with the social interaction subscale in ASD. The tract integrity of the model for social communication is reduced in ASD, and the reduction is associated with impaired social interaction. Our results support that reduced tract integrity of the model for social communication might be a neural substrate of social communication deficits in ASD. © 2016 Association for Child and Adolescent Mental Health.

  2. Polarization beam smoothing for inertial confinement fusion

    International Nuclear Information System (INIS)

    Rothenberg, Joshua E.

    2000-01-01

    For both direct and indirect drive approaches to inertial confinement fusion (ICF) it is imperative to obtain the best possible drive beam uniformity. The approach chosen for the National Ignition Facility uses a random-phase plate to generate a speckle pattern with a precisely controlled envelope on target. A number of temporal smoothing techniques can then be employed to utilize bandwidth to rapidly change the speckle pattern, and thus average out the small-scale speckle structure. One technique which generally can supplement other smoothing methods is polarization smoothing (PS): the illumination of the target with two distinct and orthogonally polarized speckle patterns. Since these two polarizations do not interfere, the intensity patterns add incoherently, and the rms nonuniformity can be reduced by a factor of (√2). A number of PS schemes are described and compared on the basis of the aggregate rms and the spatial spectrum of the focused illumination distribution. The (√2) rms nonuniformity reduction of PS is present on an instantaneous basis and is, therefore, of particular interest for the suppression of laser plasma instabilities, which have a very rapid response time. When combining PS and temporal methods, such as smoothing by spectral dispersion (SSD), PS can reduce the rms of the temporally smoothed illumination by an additional factor of (√2). However, it has generally been thought that in order to achieve this reduction of (√2), the increased divergence of the beam from PS must exceed the divergence of SSD. It is also shown here that, over the time scales of interest to direct or indirect drive ICF, under some conditions PS can reduce the smoothed illumination rms by nearly (√2) even when the PS divergence is much smaller than that of SSD. (c) 2000 American Institute of Physics

  3. ON THE DERIVATIVE OF SMOOTH MEANINGFUL FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Sanjo Zlobec

    2011-02-01

    Full Text Available The derivative of a function f in n variables at a point x* is one of the most important tools in mathematical modelling. If this object exists, it is represented by the row n-tuple f(x* = [∂f/∂xi(x*] called the gradient of f at x*, abbreviated: “the gradient”. The evaluation of f(x* is usually done in two stages, first by calculating the n partials and then their values at x = x*. In this talk we give an alternative approach. We show that one can characterize the gradient without differentiation! The idea is to fix an arbitrary row n-tuple G and answer the following question: What is a necessary and sufficient condition such that G is the gradient of a given f at a given x*? The answer is given after adjusting the quadratic envelope property introduced in [3]. We work with smooth, i.e., continuously differentiable, functions with a Lipschitz derivative on a compact convex set with a non-empty interior. Working with this class of functions is not a serious restriction. In fact, loosely speaking, “almost all” smooth meaningful functions used in modelling of real life situations are expected to have a bounded “acceleration” hence they belong to this class. In particular, the class contains all twice differentiable functions [1]. An important property of the functions from this class is that every f can be represented as the difference of some convex function and a convex quadratic function. This decomposition was used in [3] to characterize the zero derivative points. There we obtained reformulations and augmentations of some well known classic results on optimality such as Fermats extreme value theorem (known from high school and the Lagrange multiplier theorem from calculus [2, 3]. In this talk we extend the results on zero derivative points to characterize the relation G = f(x*, where G is an arbitrary n-tuple. Some special cases: If G = O, we recover the results on zero derivative points. For functions of a single

  4. Some properties of the smoothed Wigner function

    International Nuclear Information System (INIS)

    Soto, F.; Claverie, P.

    1981-01-01

    Recently it has been proposed a modification of the Wigner function which consists in smoothing it by convolution with a phase-space gaussian function; this smoothed Wigner function is non-negative if the gaussian parameters Δ and delta satisfy the condition Δdelta > h/2π. We analyze in this paper the predictions of this modified Wigner function for the harmonic oscillator, for anharmonic oscillator and finally for the hydrogen atom. We find agreement with experiment in the linear case, but for strongly nonlinear systems, such as the hydrogen atom, the results obtained are completely wrong. (orig.)

  5. Cardiac, Skeletal, and smooth muscle mitochondrial respiration

    DEFF Research Database (Denmark)

    Park, Song-Young; Gifford, Jayson R; Andtbacka, Robert H I

    2014-01-01

    , skeletal, and smooth muscle was harvested from a total of 22 subjects (53±6 yrs) and mitochondrial respiration assessed in permeabilized fibers. Complex I+II, state 3 respiration, an index of oxidative phosphorylation capacity, fell progressively from cardiac, skeletal, to smooth muscle (54±1; 39±4; 15......±1 pmol•s(-1)•mg (-1), prespiration rates were normalized by CS (respiration...... per mitochondrial content), oxidative phosphorylation capacity was no longer different between the three muscle types. Interestingly, Complex I state 2 normalized for CS activity, an index of non-phosphorylating respiration per mitochondrial content, increased progressively from cardiac, skeletal...

  6. Intracerebroventricular delivery of glucocerebrosidase reduces substrates and increases lifespan in a mouse model of neuronopathic Gaucher disease.

    Science.gov (United States)

    Cabrera-Salazar, M A; Bercury, S D; Ziegler, R J; Marshall, J; Hodges, B L; Chuang, W-L; Pacheco, J; Li, L; Cheng, S H; Scheule, R K

    2010-10-01

    Gaucher disease is caused by a deficit in the enzyme glucocerebrosidase. As a consequence, degradation of the glycolipids glucosylceramide (GluCer) and glucosylsphingosine (GluSph) is impaired, and their subsequent buildup can lead to significant pathology and early death. Type 1 Gaucher patients can be treated successfully with intravenous replacement enzyme, but this enzyme does not reach the CNS and thus does not ameliorate the neurological involvement in types 2 and 3 Gaucher disease. As one potential approach to treating these latter patients, we have evaluated intracerebroventricular (ICV) administration of recombinant human glucocerebrosidase (rhGC) in a mouse model of neuronopathic Gaucher disease. ICV administration resulted in enzyme distribution throughout the brain and alleviated neuropathology in multiple brain regions of this mouse model. Treatment also resulted in dose-dependent decreases in GluCer and GluSph and significantly extended survival. To evaluate the potential of continuous enzyme delivery, a group of animals was treated ICV with an adeno-associated viral vector encoding hGC and resulted in a further extension of survival. These data suggest that ICV administration of rhGC may represent a potential therapeutic approach for type 2/3 Gaucher patients. Preclinical evaluation in larger animals will be needed to ascertain the translatability of this approach to the clinic. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates

    Science.gov (United States)

    Wang, Yuhuang [Evanston, IL; Hauge, Robert H [Houston, TX; Schmidt, Howard K [Houston, TX; Kim, Myung Jong [Houston, TX; Kittrell, W Carter [Houston, TX

    2009-09-08

    The present invention is generally directed to catalyzed hot stamp methods for polishing and/or patterning carbon nanotube-containing substrates. In some embodiments, the substrate, as a carbon nanotube fiber end, is brought into contact with a hot stamp (typically at 200-800.degree. C.), and is kept in contact with the hot stamp until the morphology/patterns on the hot stamp have been transferred to the substrate. In some embodiments, the hot stamp is made of material comprising one or more transition metals (Fe, Ni, Co, Pt, Ag, Au, etc.), which can catalyze the etching reaction of carbon with H.sub.2, CO.sub.2, H.sub.2O, and/or O.sub.2. Such methods can (1) polish the carbon nanotube-containing substrate with a microscopically smooth finish, and/or (2) transfer pre-defined patterns from the hot stamp to the substrate. Such polished or patterned carbon nanotube substrates can find application as carbon nanotube electrodes, field emitters, and field emitter arrays for displays and electron sources.

  8. Electrokinetic properties of tantalum oxide deposited on model substrate in NaCl and LiCl solutions

    International Nuclear Information System (INIS)

    Sidorova, M.P.; Bogdanova, N.F.; Ermakova, L.Eh.; Bobrov, P.V.

    1997-01-01

    Electrokinetic characteristics of tantalum oxide have been studied using a model system - a plane-parallel capillary in chloride solutions containing monocharge (H + , Na + , Li + ) counterions in a wide range of pH and concentrations. It is shown that position of isoelectric point (IEP) of Ta 2 O 5 depends on concentration and type of counterion, moreover, the dependence is not explained in the framework of classical notions of the influence of counterion specific adsorption on IEP position. Electrokinetic potential of Ta 2 O-5 surface at the background of diluted LiCl solutions is higher in its absolute value, than at the background of NaCl solutions according to direct lyotropic series. The results of measurements of the capillary resistance dependence on pH at the background of NaCl and LiCl solutions 10 -3 -10 -1 M are used for the calculation of efficiency and specific surface conductivity factors

  9. AMPK activation through mitochondrial regulation results in increased substrate oxidation and improved metabolic parameters in models of diabetes.

    Directory of Open Access Journals (Sweden)

    Yonchu Jenkins

    Full Text Available Modulation of mitochondrial function through inhibiting respiratory complex I activates a key sensor of cellular energy status, the 5'-AMP-activated protein kinase (AMPK. Activation of AMPK results in the mobilization of nutrient uptake and catabolism for mitochondrial ATP generation to restore energy homeostasis. How these nutrient pathways are affected in the presence of a potent modulator of mitochondrial function and the role of AMPK activation in these effects remain unclear. We have identified a molecule, named R419, that activates AMPK in vitro via complex I inhibition at much lower concentrations than metformin (IC50 100 nM vs 27 mM, respectively. R419 potently increased myocyte glucose uptake that was dependent on AMPK activation, while its ability to suppress hepatic glucose production in vitro was not. In addition, R419 treatment of mouse primary hepatocytes increased fatty acid oxidation and inhibited lipogenesis in an AMPK-dependent fashion. We have performed an extensive metabolic characterization of its effects in the db/db mouse diabetes model. In vivo metabolite profiling of R419-treated db/db mice showed a clear upregulation of fatty acid oxidation and catabolism of branched chain amino acids. Additionally, analyses performed using both (13C-palmitate and (13C-glucose tracers revealed that R419 induces complete oxidation of both glucose and palmitate to CO2 in skeletal muscle, liver, and adipose tissue, confirming that the compound increases mitochondrial function in vivo. Taken together, our results show that R419 is a potent inhibitor of complex I and modulates mitochondrial function in vitro and in diabetic animals in vivo. R419 may serve as a valuable molecular tool for investigating the impact of modulating mitochondrial function on nutrient metabolism in multiple tissues and on glucose and lipid homeostasis in diabetic animal models.

  10. 16-dimensional smooth projective planes with large collineation groups

    OpenAIRE

    Bödi, Richard

    1998-01-01

    Erworben im Rahmen der Schweizer Nationallizenzen (http://www.nationallizenzen.ch) Smooth projective planes are projective planes defined on smooth manifolds (i.e. the set of points and the set of lines are smooth manifolds) such that the geometric operations of join and intersection are smooth. A systematic study of such planes and of their collineation groups can be found in previous works of the author. We prove in this paper that a 16-dimensional smooth projective plane which admits a ...

  11. Smooth Gowdy-symmetric generalized Taub–NUT solutions

    International Nuclear Information System (INIS)

    Beyer, Florian; Hennig, Jörg

    2012-01-01

    We study a class of S 3 -Gowdy vacuum models with a regular past Cauchy horizon which we call smooth Gowdy-symmetric generalized Taub–NUT solutions. In particular, we prove the existence of such solutions by formulating a singular initial value problem with asymptotic data on the past Cauchy horizon. We prove that also a future Cauchy horizon exists for generic asymptotic data, and derive an explicit expression for the metric on the future Cauchy horizon in terms of the asymptotic data on the past horizon. This complements earlier results about S 1 ×S 2 -Gowdy models. (paper)

  12. Data Visualization of Item-Total Correlation by Median Smoothing

    Directory of Open Access Journals (Sweden)

    Chong Ho Yu

    2016-02-01

    Full Text Available This paper aims to illustrate how data visualization could be utilized to identify errors prior to modeling, using an example with multi-dimensional item response theory (MIRT. MIRT combines item response theory and factor analysis to identify a psychometric model that investigates two or more latent traits. While it may seem convenient to accomplish two tasks by employing one procedure, users should be cautious of problematic items that affect both factor analysis and IRT. When sample sizes are extremely large, reliability analyses can misidentify even random numbers as meaningful patterns. Data visualization, such as median smoothing, can be used to identify problematic items in preliminary data cleaning.

  13. Surface smoothing: a way back in early brain morphogenesis

    Science.gov (United States)

    Lefèvre, Julien; Intwali, Victor; Hertz-Pannier, Lucie; Hüppi, Petra S.; Mangin, Jean-Francois; Dubois, Jessica; Germanaud, David

    2013-01-01

    In this article we propose to investigate the analogy between early cortical folding process and cortical smoothing by mean curvature flow. First, we introduce a one-parameter model that is able to fit a developmental trajectory as represented in a Volume-Area plot and we propose an efficient optimization strategy for parameter estimation. Second, we validate the model on forty cortical surfaces of preterm newborns by comparing global geometrical indices and trajectories of central sulcus along developmental and simulation time. PMID:24505715

  14. Smooth hybrid inflation and non-thermal Type II leptogenesis

    International Nuclear Information System (INIS)

    Sil, Arunansu

    2013-01-01

    We consider a smooth hybrid inflation scenario based on a supersymmetricSU(2) L ⊗ SU(2) R ⊗ U(1) B-L model. The Higgs triplets involved in the model play a key role in inflation as well as in explaining the observed baryon asymmetry of the universe. We show that the baryon asymmetry can originate via non-thermal triplet leptogenesis from the decay of SU(2) B-L triplets, whose tiny vacuum expectation values also provide masses for the light neutrinos. (author)

  15. Aortic smooth muscle cell proteoglycan synthesis in relation to atherosclerosis

    International Nuclear Information System (INIS)

    Edwards, I.J.

    1989-01-01

    Proteoglycans (PG) are implicated in atherogenesis by their effects on tissue permeability and cell proliferation and their interaction with plasma low density lipoproteins. Using the pigeon model in which an atherosclerosis-susceptible (WC) and -resistant (SR) breed can be compared, PG synthesis by cultured aortic smooth muscle cells was examined by the use of [ 35 S]-sodium sulfate and [ 3 H]-serine or [ 3 H]-glucosamine as labeling precursors. In both SR and WC cells, the majority of newly synthesized PG were secreted into the media. Chondroitin sulfate (CS) PG and dermatan sulfate (DS) PG were the major PG produced. Total PG production was consistently lower in WC compared to SR cultures due in part to reduce PG synthesis but also to degradation of newly synthesized PG. Since increased DS-PG accompanines atherosclerosis progression, experiments were designed to test the hypothesis that macrophages modulate smooth muscle cell metabolism to cause increase DS-PG production. Cultured WC aortic smooth muscle cells were exposed to the media of cholesteryl ester-loaded pigeon peritoneal macrophages or a macrophage cell line P388D1 and the production of PG examined. Increasing concentration of conditioned media from both types of macrophages caused increased incorporation of 35 S-sulfate into secreted PG, but no change in cell-associated PG. Lipopolysaccharide activation of P388D1 cells enhanced the effect

  16. An adaptive method for γ spectra smoothing

    International Nuclear Information System (INIS)

    Xiao Gang; Zhou Chunlin; Li Tiantuo; Han Feng; Di Yuming

    2001-01-01

    Adaptive wavelet method and multinomial fitting gliding method are used for smoothing γ spectra, respectively, and then FWHM of 1332 keV peak of 60 Co and activities of 238 U standard specimen are calculated. Calculated results show that adaptive wavelet method is better than the other

  17. Smoothness in Banach spaces. Selected problems

    Czech Academy of Sciences Publication Activity Database

    Fabian, Marián; Montesinos, V.; Zizler, Václav

    2006-01-01

    Roč. 100, č. 2 (2006), s. 101-125 ISSN 1578-7303 R&D Projects: GA ČR(CZ) GA201/04/0090; GA AV ČR(CZ) IAA100190610 Institutional research plan: CEZ:AV0Z10190503 Keywords : smooth norm * renorming * weakly compactly generated space Subject RIV: BA - General Mathematics

  18. The Koch curve as a smooth manifold

    International Nuclear Information System (INIS)

    Epstein, Marcelo; Sniatycki, Jedrzej

    2008-01-01

    We show that there exists a homeomorphism between the closed interval [0,1] is contained in R and the Koch curve endowed with the subset topology of R 2 . We use this homeomorphism to endow the Koch curve with the structure of a smooth manifold with boundary

  19. on Isolated Smooth Muscle Preparation in Rats

    African Journals Online (AJOL)

    Samuel Olaleye

    ABSTRACT. This study investigated the receptor effects of methanolic root extract of ... Phytochemical Analysis: Photochemistry of the methanolic extract was ... mounted with resting tension 0.5g in an organ bath containing .... Effects of extra cellular free Ca2+ and 0.5mM ... isolated smooth muscle by high K+ on the other.

  20. PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code

    Science.gov (United States)

    Price, Daniel J.; Wurster, James; Nixon, Chris; Tricco, Terrence S.; Toupin, Stéven; Pettitt, Alex; Chan, Conrad; Laibe, Guillaume; Glover, Simon; Dobbs, Clare; Nealon, Rebecca; Liptai, David; Worpel, Hauke; Bonnerot, Clément; Dipierro, Giovanni; Ragusa, Enrico; Federrath, Christoph; Iaconi, Roberto; Reichardt, Thomas; Forgan, Duncan; Hutchison, Mark; Constantino, Thomas; Ayliffe, Ben; Mentiplay, Daniel; Hirsh, Kieran; Lodato, Giuseppe

    2017-09-01

    Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.

  1. Data driven smooth tests for composite hypotheses

    NARCIS (Netherlands)

    Inglot, Tadeusz; Kallenberg, Wilbert C.M.; Ledwina, Teresa

    1997-01-01

    The classical problem of testing goodness-of-fit of a parametric family is reconsidered. A new test for this problem is proposed and investigated. The new test statistic is a combination of the smooth test statistic and Schwarz's selection rule. More precisely, as the sample size increases, an

  2. On the theory of smooth structures. 2

    International Nuclear Information System (INIS)

    Shafei Deh Abad, A.

    1992-09-01

    In this paper we continue by introducing the concepts of substructures, quotient structures and tensor product, and examine some of their properties. By using the concept of tensor product, in the next paper, we will give another product for smooth structures which is a characterization of integral domains which are not fields. (author). 2 refs

  3. Local smoothness for global optical flow

    DEFF Research Database (Denmark)

    Rakêt, Lars Lau

    2012-01-01

    by this technique and work on local-global optical flow we propose a simple method for fusing optical flow estimates of different smoothness by evaluating interpolation quality locally by means of L1 block match on the corresponding set of gradient images. We illustrate the method in a setting where optical flows...

  4. Supplementary speed control for wind power smoothing

    NARCIS (Netherlands)

    Haan, de J.E.S.; Frunt, J.; Kechroud, A.; Kling, W.L.

    2010-01-01

    Wind fluctuations result in even larger wind power fluctuations because the power of wind is proportional to the cube of the wind speed. This report analyzes wind power fluctuations to investigate inertial power smoothing, in particular for the frequency range of 0.08 - 0.5 Hz. Due to the growing

  5. Smooth individual level covariates adjustment in disease mapping.

    Science.gov (United States)

    Huque, Md Hamidul; Anderson, Craig; Walton, Richard; Woolford, Samuel; Ryan, Louise

    2018-05-01

    Spatial models for disease mapping should ideally account for covariates measured both at individual and area levels. The newly available "indiCAR" model fits the popular conditional autoregresssive (CAR) model by accommodating both individual and group level covariates while adjusting for spatial correlation in the disease rates. This algorithm has been shown to be effective but assumes log-linear associations between individual level covariates and outcome. In many studies, the relationship between individual level covariates and the outcome may be non-log-linear, and methods to track such nonlinearity between individual level covariate and outcome in spatial regression modeling are not well developed. In this paper, we propose a new algorithm, smooth-indiCAR, to fit an extension to the popular conditional autoregresssive model that can accommodate both linear and nonlinear individual level covariate effects while adjusting for group level covariates and spatial correlation in the disease rates. In this formulation, the effect of a continuous individual level covariate is accommodated via penalized splines. We describe a two-step estimation procedure to obtain reliable estimates of individual and group level covariate effects where both individual and group level covariate effects are estimated separately. This distributed computing framework enhances its application in the Big Data domain with a large number of individual/group level covariates. We evaluate the performance of smooth-indiCAR through simulation. Our results indicate that the smooth-indiCAR method provides reliable estimates of all regression and random effect parameters. We illustrate our proposed methodology with an analysis of data on neutropenia admissions in New South Wales (NSW), Australia. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Nanowires and nanoneedles nucleation on vicinal substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: zhangxubetter@gmail.com [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China); Xie, Dan; Huang, Genling [Zhengzhou Railway Vocational and Technical College, Zhengzhou 450052 (China); Sun, Xiao-Hong [Henan Key Laboratory of Laser and Opto-electric Information Technology, School of Information Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-01-01

    An analytic stress-driven nucleation model of nanowires (NWs) and nanoneedles (NNs) growing on a mismatched vicinal substrate is proposed. It is demonstrated that the formation enthalpy of NWs and NNs is a function of three independent variables, the base radius, aspect ratio and miscut angle of the vicinal surface. Theoretical analysis shows that the minimum nucleation barrier of an island decreases with increment of substrate misorientation, which means the nucleation of islands on a vicinal substrate is more favorable than that on a flat substrate.

  7. Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization

    International Nuclear Information System (INIS)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao

    2016-01-01

    Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetric prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.

  8. Poster - 52: Smoothing constraints in Modulated Photon Radiotherapy (XMRT) fluence map optimization

    Energy Technology Data Exchange (ETDEWEB)

    McGeachy, Philip; Villarreal-Barajas, Jose Eduardo; Zinchenko, Yuriy; Khan, Rao [Department of Medical Physics, CancerCare Manitoba, Winnipeg, MB, CAN, Department of Physics and Astronomy, University of Calgary, Calgary, AB, CAN, Department of Mathematics and Statistics, University of Calgary, Calgary, AB, CAN, Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO (United States)

    2016-08-15

    Purpose: Modulated Photon Radiotherapy (XMRT), which simultaneously optimizes photon beamlet energy (6 and 18 MV) and fluence, has recently shown dosimetric improvement in comparison to conventional IMRT. That said, the degree of smoothness of resulting fluence maps (FMs) has yet to be investigated and could impact the deliverability of XMRT. This study looks at investigating FM smoothness and imposing smoothing constraint in the fluence map optimization. Methods: Smoothing constraints were modeled in the XMRT algorithm with the sum of positive gradient (SPG) technique. XMRT solutions, with and without SPG constraints, were generated for a clinical prostate scan using standard dosimetric prescriptions, constraints, and a seven coplanar beam arrangement. The smoothness, with and without SPG constraints, was assessed by looking at the absolute and relative maximum SPG scores for each fluence map. Dose volume histograms were utilized when evaluating impact on the dose distribution. Results: Imposing SPG constraints reduced the absolute and relative maximum SPG values by factors of up to 5 and 2, respectively, when compared with their non-SPG constrained counterparts. This leads to a more seamless conversion of FMS to their respective MLC sequences. This improved smoothness resulted in an increase to organ at risk (OAR) dose, however the increase is not clinically significant. Conclusions: For a clinical prostate case, there was a noticeable improvement in the smoothness of the XMRT FMs when SPG constraints were applied with a minor increase in dose to OARs. This increase in OAR dose is not clinically meaningful.

  9. Impact of bacterial activity on turnover of insoluble hydrophobic substrates (phenanthrene and pyrene)-Model simulations for prediction of bioremediation success.

    Science.gov (United States)

    Rein, Arno; Adam, Iris K U; Miltner, Anja; Brumme, Katja; Kästner, Matthias; Trapp, Stefan

    2016-04-05

    Many attempts for bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated sites failed in the past, but the reasons for this failure are not well understood. Here we apply and improve a model for integrated assessment of mass transfer, biodegradation and residual concentrations for predicting the success of remediation actions. First, we provide growth parameters for Mycobacterium rutilum and Mycobacterium pallens growing on phenanthrene (PHE) or pyrene (PYR) degraded the PAH completely at all investigated concentrations. Maximum metabolic rates vmax and growth rates μ were similar for the substrates PHE and PYR and for both strains. The investigated Mycobacterium species were not superior in PHE degradation to strains investigated earlier with this method. Real-world degradation scenario simulations including diffusive flux to the microbial cells indicate: that (i) bioaugmentation only has a small, short-lived effect; (ii) Increasing sorption shifts the remaining PAH to the adsorbed/sequestered PAH pool; (iii) mobilizing by solvents or surfactants resulted in a significant decrease of the sequestered PAH, and (iv) co-metabolization e.g. by compost addition can contribute significantly to the reduction of PAH, because active biomass is maintained at a high level by the compost. The model therefore is a valuable contribution to the assessment of potential remediation action at PAH-polluted sites. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. In vitro generation of three-dimensional substrate-adherent embryonic stem cell-derived neural aggregates for application in animal models of neurological disorders.

    Science.gov (United States)

    Hargus, Gunnar; Cui, Yi-Fang; Dihné, Marcel; Bernreuther, Christian; Schachner, Melitta

    2012-05-01

    In vitro-differentiated embryonic stem (ES) cells comprise a useful source for cell replacement therapy, but the efficiency and safety of a translational approach are highly dependent on optimized protocols for directed differentiation of ES cells into the desired cell types in vitro. Furthermore, the transplantation of three-dimensional ES cell-derived structures instead of a single-cell suspension may improve graft survival and function by providing a beneficial microenvironment for implanted cells. To this end, we have developed a new method to efficiently differentiate mouse ES cells into neural aggregates that consist predominantly (>90%) of postmitotic neurons, neural progenitor cells, and radial glia-like cells. When transplanted into the excitotoxically lesioned striatum of adult mice, these substrate-adherent embryonic stem cell-derived neural aggregates (SENAs) showed significant advantages over transplanted single-cell suspensions of ES cell-derived neural cells, including improved survival of GABAergic neurons, increased cell migration, and significantly decreased risk of teratoma formation. Furthermore, SENAs mediated functional improvement after transplantation into animal models of Parkinson's disease and spinal cord injury. This unit describes in detail how SENAs are efficiently derived from mouse ES cells in vitro and how SENAs are isolated for transplantation. Furthermore, methods are presented for successful implantation of SENAs into animal models of Huntington's disease, Parkinson's disease, and spinal cord injury to study the effects of stem cell-derived neural aggregates in a disease context in vivo.

  11. Application of the relative activity factor approach in scaling from heterologously expressed cytochromes p450 to human liver microsomes: studies on amitriptyline as a model substrate.

    Science.gov (United States)

    Venkatakrishnan, K; von Moltke, L L; Greenblatt, D J

    2001-04-01

    The relative activity factor (RAF) approach is being increasingly used in the quantitative phenotyping of multienzyme drug biotransformations. Using lymphoblast-expressed cytochromes P450 (CYPs) and the tricyclic antidepressant amitriptyline as a model substrate, we have tested the hypothesis that the human liver microsomal rates of a biotransformation mediated by multiple CYP isoforms can be mathematically reconstructed from the rates of the biotransformation catalyzed by individual recombinant CYPs using the RAF approach, and that the RAF approach can be used for the in vitro-in vivo scaling of pharmacokinetic clearance from in vitro intrinsic clearance measurements in heterologous expression systems. In addition, we have compared the results of two widely used methods of quantitative reaction phenotyping, namely, chemical inhibition studies and the prediction of relative contributions of individual CYP isoforms using the RAF approach. For the pathways of N-demethylation (mediated by CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and E-10 hydroxylation (mediated by CYPs 2B6, 2D6, and 3A4), the model-predicted biotransformation rates in microsomes from a panel of 12 human livers determined from enzyme kinetic parameters of the recombinant CYPs were similar to, and correlated with the observed rates. The model-predicted clearance via N-demethylation was 53% lower than the previously reported in vivo pharmacokinetic estimates. Model-predicted relative contributions of individual CYP isoforms to the net biotransformation rate were similar to, and correlated with the fractional decrement in human liver microsomal reaction rates by chemical inhibitors of the respective CYPs, provided the chemical inhibitors used were specific to their target CYP isoforms.

  12. Produtividade do tomateiro em diferentes substratos e modelos de casas de vegetação Tomato crop production under different substrates and greenhouse models

    Directory of Open Access Journals (Sweden)

    Osmar A. Carrijo

    2004-03-01

    Full Text Available Um experimento com a cultura do tomate, foi instalado na Embrapa Hortaliças em Brasília, durante os anos de 2000 e 2001, para avaliar a produção do tomateiro em diferentes substratos e casas de vegetação. Os substratos utilizados foram casca de arroz, casca de arroz parcialmente carbonizada, fibra de coco verde, lã de rocha, maravalha, serragem e substrato para produção de mudas utilizado na Embrapa Hortaliças (150 L de terra de subsolo, 50 L de casca de arroz parcialmente carbonizada e 17 L de esterco de galinha. Os modelos de casas de vegetação utilizados foram teto em arco, arco com teto convectivo e capela. Não foi verificada diferença estatística significativa quanto a produção de frutos comerciais entre os substratos fibra de coco (10,4 kg m-2, serragem (9,3 kg m-2, casca de arroz carbonizada (9,3 kg m-2 e maravalha (9,0 kg m-2. A menor produção foi obtida com o substrato lã de rocha (6,4 kg m-2. Houve redução da produção entre os anos de cultivo, em torno de 33%, em decorrência de um intenso ataque de traça do tomateiro (Tuta absoluta em todas as casas de vegetação, prejudicando a produtividade. O maior peso médio dos frutos foi obtido sobre a fibra de coco (128 g m-2 e casca de arroz carbonizada (123 g m-2, independente do modelo de casa de vegetação utilizado.The trial was carried out at Embrapa Hortaliças, in Brasilia, Brazil, to evaluate the performance of tomato crop production during two years (2000 and 2001, under three greenhouse models and different types of substrates. The greenhouse models were arch roof; even span and an arch roof with upper convective aperture. The substrates were rice husk, carbonized rice husk, coconut fiber, sawdust, coarsed sawdust, rockwool and a substrate for seedling production used at Embrapa Hortaliças. No significant statistical difference was verified for tomatoes cultivated in coconut fiber (10,4 kg m-2, sawdust (9,9 kg m-2, carbonized rice husk (9,3 kg m-2 and

  13. On smoothness-asymmetric null infinities

    International Nuclear Information System (INIS)

    Valiente Kroon, Juan Antonio

    2006-01-01

    We discuss the existence of asymptotically Euclidean initial data sets for the vacuum Einstein field equations which would give rise (modulo an existence result for the evolution equations near spatial infinity) to developments with a past and a future null infinity of different smoothness. For simplicity, the analysis is restricted to the class of conformally flat, axially symmetric initial data sets. It is shown how the free parameters in the second fundamental form of the data can be used to satisfy certain obstructions to the smoothness of null infinity. The resulting initial data sets could be interpreted as those of some sort of (nonlinearly) distorted Schwarzschild black hole. Their developments would be that they admit a peeling future null infinity, but at the same time have a polyhomogeneous (non-peeling) past null infinity

  14. Smooth homogeneous structures in operator theory

    CERN Document Server

    Beltita, Daniel

    2005-01-01

    Geometric ideas and techniques play an important role in operator theory and the theory of operator algebras. Smooth Homogeneous Structures in Operator Theory builds the background needed to understand this circle of ideas and reports on recent developments in this fruitful field of research. Requiring only a moderate familiarity with functional analysis and general topology, the author begins with an introduction to infinite dimensional Lie theory with emphasis on the relationship between Lie groups and Lie algebras. A detailed examination of smooth homogeneous spaces follows. This study is illustrated by familiar examples from operator theory and develops methods that allow endowing such spaces with structures of complex manifolds. The final section of the book explores equivariant monotone operators and Kähler structures. It examines certain symmetry properties of abstract reproducing kernels and arrives at a very general version of the construction of restricted Grassmann manifolds from the theory of loo...

  15. Evaluation of silicon nitride as a substrate for culture of PC12 cells: an interfacial model for functional studies in neurons.

    Directory of Open Access Journals (Sweden)

    Johan Jaime Medina Benavente

    Full Text Available Silicon nitride is a biocompatible material that is currently used as an interfacial surface between cells and large-scale integration devices incorporating ion-sensitive field-effect transistor technology. Here, we investigated whether a poly-L-lysine coated silicon nitride surface is suitable for the culture of PC12 cells, which are widely used as a model for neural differentiation, and we characterized their interaction based on cell behavior when seeded on the tested material. The coated surface was first examined in terms of wettability and topography using contact angle measurements and atomic force microscopy and then, conditioned silicon nitride surface was used as the substrate for the study of PC12 cell culture properties. We found that coating silicon nitride with poly-L-lysine increased surface hydrophilicity and that exposing this coated surface to an extracellular aqueous environment gradually decreased its roughness. When PC12 cells were cultured on a coated silicon nitride surface, adhesion and spreading were facilitated, and the cells showed enhanced morphological differentiation compared to those cultured on a plastic culture dish. A bromodeoxyuridine assay demonstrated that, on the coated silicon nitride surface, higher proportions of cells left the cell cycle, remained in a quiescent state and had longer survival times. Therefore, our study of the interaction of the silicon nitride surface with PC12 cells provides important information for the production of devices that need to have optimal cell culture-supporting properties in order to be used in the study of neuronal functions.

  16. Border-Collision Bifurcations and Chaotic Oscillations in a Piecewise-Smooth Dynamical System

    DEFF Research Database (Denmark)

    Zhusubaliyev, Z.T.; Soukhoterin, E.A.; Mosekilde, Erik

    2002-01-01

    Many problems of engineering and applied science result in the consideration of piecewise-smooth dynamical systems. Examples are relay and pulse-width control systems, impact oscillators, power converters, and various electronic circuits with piecewise-smooth characteristics. The subject...... of investigation in the present paper is the dynamical model of a constant voltage converter which represents a three-dimensional piecewise-smooth system of nonautonomous differential equations. A specific type of phenomena that arise in the dynamics of piecewise-smooth systems are the so-called border......-collision bifurcations. The paper contains a detailed analysis of this type of bifurcational transition in the dynamics of the voltage converter, in particular, the merging and subsequent disappearance of cycles of different types, change of solution type, and period-doubling, -tripling, -quadrupling and -quintupling...

  17. Ion bombardment induced smoothing of amorphous metallic surfaces: Experiments versus computer simulations

    International Nuclear Information System (INIS)

    Vauth, Sebastian; Mayr, S. G.

    2008-01-01

    Smoothing of rough amorphous metallic surfaces by bombardment with heavy ions in the low keV regime is investigated by a combined experimental-simulational study. Vapor deposited rough amorphous Zr 65 Al 7.5 Cu 27.5 films are the basis for systematic in situ scanning tunneling microscopy measurements on the smoothing reaction due to 3 keV Kr + ion bombardment. The experimental results are directly compared to the predictions of a multiscale simulation approach, which incorporates stochastic rate equations of the Langevin type in combination with previously reported classical molecular dynamics simulations [Phys. Rev. B 75, 224107 (2007)] to model surface smoothing across length and time scales. The combined approach of experiments and simulations clearly corroborates a key role of ion induced viscous flow and ballistic effects in low keV heavy ion induced smoothing of amorphous metallic surfaces at ambient temperatures

  18. Does responsive pricing smooth demand shocks?

    OpenAIRE

    Pascal, Courty; Mario, Pagliero

    2011-01-01

    Using data from a unique pricing experiment, we investigate Vickrey’s conjecture that responsive pricing can be used to smooth both predictable and unpredictable demand shocks. Our evidence shows that increasing the responsiveness of price to demand conditions reduces the magnitude of deviations in capacity utilization rates from a pre-determined target level. A 10 percent increase in price variability leads to a decrease in the variability of capacity utilization rates between...

  19. The Smooth Muscle of the Artery

    Science.gov (United States)

    1975-01-01

    of vascular smooth muscle are contrac- tion, thereby mediating vaso constriction, and the synthesis of the extracellular proteins and polysaccharides ...of the monosaccharides turned out to be different for instance from cornea to aorta (229, 283). In the conditions yed (4 hours incubation at 37 degrees... polysaccharides only. This glyco- protein is not very rich in sugar components (- 5Z) (228, 284), but is a very acidic protein (286). Fig.66 shows

  20. Log canonical thresholds of smooth Fano threefolds

    International Nuclear Information System (INIS)

    Cheltsov, Ivan A; Shramov, Konstantin A

    2008-01-01

    The complex singularity exponent is a local invariant of a holomorphic function determined by the integrability of fractional powers of the function. The log canonical thresholds of effective Q-divisors on normal algebraic varieties are algebraic counterparts of complex singularity exponents. For a Fano variety, these invariants have global analogues. In the former case, it is the so-called α-invariant of Tian; in the latter case, it is the global log canonical threshold of the Fano variety, which is the infimum of log canonical thresholds of all effective Q-divisors numerically equivalent to the anticanonical divisor. An appendix to this paper contains a proof that the global log canonical threshold of a smooth Fano variety coincides with its α-invariant of Tian. The purpose of the paper is to compute the global log canonical thresholds of smooth Fano threefolds (altogether, there are 105 deformation families of such threefolds). The global log canonical thresholds are computed for every smooth threefold in 64 deformation families, and the global log canonical thresholds are computed for a general threefold in 20 deformation families. Some bounds for the global log canonical thresholds are computed for 14 deformation families. Appendix A is due to J.-P. Demailly.

  1. Smooth Nb surfaces fabricated by buffered electropolishing

    International Nuclear Information System (INIS)

    Wu, Andy T.; Mammosser, John; Phillips, Larry; Delayen, Jean; Reece, Charles; Wilkerson, Amy; Smith, David; Ike, Robert

    2007-01-01

    It was demonstrated that smooth Nb surfaces could be obtained through buffered electropolishing (BEP) employing an electrolyte consisting of lactic, sulfuric, and hydrofluoric acids. Parameters that control the polishing process were optimized to achieve a smooth surface finish. The polishing rate of BEP was determined to be 0.646 μm/min which was much higher than 0.381 μm/min achieved by the conventional electropolishing (EP) process widely used in the superconducting radio frequency (SRF) community. Root mean square measurements using a 3D profilometer revealed that Nb surfaces treated by BEP were an order of magnitude smoother than those treated by the optimized EP process. The chemical composition of the Nb surfaces after BEP was analyzed by static and dynamic secondary ion mass spectrometry (SIMS) systems. SIMS results implied that the surface oxide structure of Nb might be more complicated than what usually believed and could be inhomogeneous. Preliminary results of BEP on Nb SRF single cell cavities and half-cells were reported. It was shown that smooth and bright surfaces could be obtained in 1800 s when the electric field inside a SRF cavity was uniform during a BEP process. This study showed that BEP is a promising technique for surface treatment on Nb SRF cavities to be used in particle accelerators

  2. Imparting Icephobicity with Substrate Flexibility

    Science.gov (United States)

    Schutzius, Thomas; Vasileiou, Thomas; Poulikakos, Dimos

    2017-11-01

    Ice accumulation poses serious safety and performance issues for modern infrastructure. Rationally designed superhydrophobic surfaces have demonstrated potential as a passive means to mitigate ice accretion; however, further studies on solutions that reduce impalement and contact time for impacting supercooled droplets are urgently needed. Here we demonstrate the collaborative effect of substrate flexibility and surface texture on enhancing icephobicity and repelling viscous droplets. We first investigate the influence of increased viscosity on impalement resistance and droplet-substrate contact time. Then we examine the effect of droplet partial solidification on recoil by impacting supercooled water droplets onto surfaces containing ice nucleation promoters. We demonstrate a passive method for shedding partially solidified droplets that does not rely on the classic recoil mechanism. Using an energy-based model, we identify a previously unexplored mechanism whereby the substrate oscillation governs the rebound process by efficiently absorbing the droplet kinetic energy and rectifying it back, allowing for droplet recoil. This mechanism applies for a range of droplet viscosities and ice slurries, which do not rebound from rigid superhydrophobic substrates. Partial support of the Swiss National Science Foundation under Grant No. 162565 and the European Research Council under Advanced Grant No. 669908 (INTICE) is acknowledged.

  3. Structure-function relationship of a plant NCS1 member - Homology modeling and mutagenesis identified residues critical for substrate specificity of PLUTO, a nucleobase transporter from arabidopsis

    KAUST Repository

    Witz, Sandra; Panwar, Pankaj; Schober, Markus; Deppe, Johannes; Pasha, Farhan Ahmad; Lemieux, M. Joanne; Mö hlmann, Torsten

    2014-01-01

    . Furthermore, competition studies confirmed these results. The present study defines the molecular determinants for PLUTO substrate binding and demonstrates key differences in structure-function relations between PLUTO and other NCS1 family members. 2014 Witz

  4. Ag films deposited on Si and Ti: How the film-substrate interaction influences the nanoscale film morphology

    Science.gov (United States)

    Ruffino, F.; Torrisi, V.

    2017-11-01

    Submicron-thick Ag films were sputter deposited, at room temperature, on Si, covered by the native SiO2 layer, and on Ti, covered by the native TiO2 layer, under normal and oblique deposition angle. The aim of this work was to study the morphological differences in the grown Ag films on the two substrates when fixed all the other deposition parameters. In fact, the surface diffusivity of the Ag adatoms is different on the two substrates (higher on the SiO2 surface) due to the different Ag-SiO2 and Ag-TiO2 atomic interactions. So, the effect of the adatoms surface diffusivity, as determined by the adatoms-substrate interaction, on the final film morphology was analyzed. To this end, microscopic analyses were used to study the morphology of the grown Ag films. Even if the homologous temperature prescribes that the Ag film grows on both substrates in the zone I described by the structure zone model some significant differences are observed on the basis of the supporting substrate. In the normal incidence condition, on the SiO2/Si surface a dense close-packed Ag film exhibiting a smooth surface is obtained, while on the TiO2/Ti surface a more columnar film morphology is formed. In the oblique incidence condition the columnar morphology for the Ag film occurs both on SiO2/Si and TiO2/Ti but a higher porous columnar film is obtained on TiO2/Ti due to the lower Ag diffusivity. These results indicate that the adatoms diffusivity on the substrate as determined by the adatom-surface interaction (in addition to the substrate temperature) strongly determines the final film nanostructure.

  5. Moving college students to a better understanding of substrate specificity of enzymes through utilizing multimedia pre-training and an interactive enzyme model

    Science.gov (United States)

    Saleh, Mounir R.

    Scientists' progress in understanding enzyme specificity uncovered a complex natural phenomenon. However, not all of the currently available biology textbooks seem to be up to date on this progress. Students' understanding of how enzymes work is a core requirement in biochemistry and biology tertiary education. Nevertheless, current pre-college science education does not provide students with enough biochemical background to enable them to understand complex material such as this. To bridge this gap, a multimedia pre-training presentation was prepared to fuel the learner's prior knowledge with discrete facts necessary to understand the presented concept. This treatment is also known to manage intrinsic cognitive load during the learning process. An interactive instructional enzyme model was also built to motivate students to learn about substrate specificity of enzymes. Upon testing the effect of this combined treatment on 111 college students, desirable learning outcomes were found in terms of cognitive load, motivation, and achievement. The multimedia pre-training group reported significantly less intrinsic cognitive load, higher motivation, and demonstrated higher transfer performance than the control and post-training groups. In this study, a statistical mediation model is also proposed to explain how cognitive load and motivation work in concert to foster learning from multimedia pre-training. This type of research goes beyond simple forms of "what works" to a deeper understanding of "how it works", thus enabling informed decisions for multimedia instructional design. Multimedia learning plays multiple roles in science education. Therefore, science learners would be some of the first to benefit from improving multimedia instructional design. Accordingly, complex scientific phenomena can be introduced to college students in a motivating, informative, and cognitively efficient learning environment.

  6. Extrapolation of Inter Domain Communications and Substrate Binding Cavity of Camel HSP70 1A: A Molecular Modeling and Dynamics Simulation Study.

    Directory of Open Access Journals (Sweden)

    Saurabh Gupta

    Full Text Available Heat shock protein 70 (HSP70 is an important chaperone, involved in protein folding, refolding, translocation and complex remodeling reactions under normal as well as stress conditions. However, expression of HSPA1A gene in heat and cold stress conditions associates with other chaperons and perform its function. Experimental structure for Camel HSP70 protein (cHSP70 has not been reported so far. Hence, we constructed 3D models of cHSP70 through multi- template comparative modeling with HSP110 protein of S. cerevisiae (open state and with HSP70 protein of E. coli 70kDa DnaK (close state and relaxed them for 100 nanoseconds (ns using all-atom Molecular Dynamics (MD Simulation. Two stable conformations of cHSP70 with Substrate Binding Domain (SBD in open and close states were obtained. The collective mode analysis of different transitions of open state to close state and vice versa was examined via Principal Component Analysis (PCA and Minimum Distance Matrix (MDM. The results provide mechanistic representation of the communication between Nucleotide Binding Domain (NBD and SBD to identify the role of sub domains in conformational change mechanism, which leads the chaperone cycle of cHSP70. Further, residues present in the chaperon functioning site were also identified through protein-peptide docking. This study provides an overall insight into the inter domain communication mechanism and identification of the chaperon binding cavity, which explains the underlying mechanism involved during heat and cold stress conditions in camel.

  7. Using smooth sheets to describe groundfish habitat in Alaskan waters, with specific application to two flatfishes

    Science.gov (United States)

    Zimmermann, Mark; Reid, Jane A.; Golden, Nadine

    2016-01-01

    In this analysis we demonstrate how preferred fish habitat can be predicted and mapped for juveniles of two Alaskan groundfish species – Pacific halibut (Hippoglossus stenolepis) and flathead sole (Hippoglossoides elassodon) – at five sites (Kiliuda Bay, Izhut Bay, Port Dick, Aialik Bay, and the Barren Islands) in the central Gulf of Alaska. The method involves using geographic information system (GIS) software to extract appropriate information from National Ocean Service (NOS) smooth sheets that are available from NGDC (the National Geophysical Data Center). These smooth sheets are highly detailed charts that include more soundings, substrates, shoreline and feature information than the more commonly-known navigational charts. By bringing the information from smooth sheets into a GIS, a variety of surfaces, such as depth, slope, rugosity and mean grain size were interpolated into raster surfaces. Other measurements such as site openness, shoreline length, proportion of bay that is near shore, areas of rocky reefs and kelp beds, water volumes, surface areas and vertical cross-sections were also made in order to quantify differences between the study sites. Proper GIS processing also allows linking the smooth sheets to other data sets, such as orthographic satellite photographs, topographic maps and precipitation estimates from which watersheds and runoff can be derived. This same methodology can be applied to larger areas, taking advantage of these free data sets to describe predicted groundfish essential fish habitat (EFH) in Alaskan waters.

  8. Adhesive interactions of geckos with wet and dry fluoropolymer substrates.

    Science.gov (United States)

    Stark, Alyssa Y; Dryden, Daniel M; Olderman, Jeffrey; Peterson, Kelly A; Niewiarowski, Peter H; French, Roger H; Dhinojwala, Ali

    2015-07-06

    Fluorinated substrates like Teflon® (poly(tetrafluoroethylene); PTFE) are well known for their role in creating non-stick surfaces. We showed previously that even geckos, which can stick to most surfaces under a wide variety of conditions, slip on PTFE. Surprisingly, however, geckos can stick reasonably well to PTFE if it is wet. In an effort to explain this effect, we have turned our attention to the role of substrate surface energy and roughness when shear adhesion occurs in media other than air. In this study, we removed the roughness component inherent to commercially available PTFE and tested geckos on relatively smooth wet and dry fluoropolymer substrates. We found that roughness had very little effect on shear adhesion in air or in water and that the level of fluorination was most important for shear adhesion, particularly in air. Surface energy calculations of the two fluorinated substrates and one control substrate using the Tabor-Winterton approximation and the Young-Dupré equation were used to determine the interfacial energy of the substrates. Using these interfacial energies we estimated the ratio of wet and dry normal adhesion for geckos clinging to the three substrates. Consistent with the results for rough PTFE, our predictions show a qualitative trend in shear adhesion based on fluorination, and the quantitative experimental differences highlight the unusually low shear adhesion of geckos on dry smooth fluorinated substrates, which is not captured by surface energy calculations. Our work has implications for bioinspired design of synthetics that can preferentially stick in water but not in air.

  9. Nodular smooth muscle metaplasia in multiple peritoneal endometriosis

    OpenAIRE

    Kim, Hyun-Soo; Yoon, Gun; Ha, Sang Yun; Song, Sang Yong

    2015-01-01

    We report here an unusual presentation of peritoneal endometriosis with smooth muscle metaplasia as multiple protruding masses on the lateral pelvic wall. Smooth muscle metaplasia is a common finding in rectovaginal endometriosis, whereas in peritoneal endometriosis, smooth muscle metaplasia is uncommon and its nodular presentation on the pelvic wall is even rarer. To the best of our knowledge, this is the first case of nodular smooth muscle metaplasia occurring in peritoneal endometriosis. A...

  10. Dynamics of Preferential Substrate Recognition in HIV-1 Protease: Redefining the Substrate Envelope

    Science.gov (United States)

    Özen, Ayşegül; Haliloğlu, Türkan; Schiffer, Celia A.

    2011-01-01

    HIV-1 protease (PR) permits viral maturation by processing the Gag and Gag-Pro-Pol polyproteins. Though HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy, the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates the consideration of drug resistance in novel drug-design strategies. Drug-resistant HIV-1 PR variants, while no longer efficiently inhibited, continue to efficiently hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we defined as the “substrate envelope”. We previously showed that resistance mutations arise where PIs protrude beyond the substrate envelope, as these regions are crucial for drug binding but not for substrate recognition. Here, we extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. Seven molecular dynamics simulations of PR-substrate complexes were performed to estimate the conformational flexibility of substrates in their complexes. Interdependency of the substrate-protease interactions may compensate for the variations in cleavage-site sequences, and explain how a diverse set of sequences can be recognized as substrates by the same enzyme. This diversity may be essential for regulating sequential processing of substrates. We also define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance. PMID:21762811

  11. Sensor Substrate Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Novel substrates, such as aerogels and porous, low density ceramics may increase the sensitivities of chemical reaction-based sensors for toxic vapors. These sensors...

  12. ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer.

    Science.gov (United States)

    Costa, Saionara V; Gonçalves, Agnaldo S; Zaguete, Maria A; Mazon, Talita; Nogueira, Ana F

    2013-09-21

    In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures.

  13. Radial Basis Function Based Quadrature over Smooth Surfaces

    Science.gov (United States)

    2016-03-24

    Radial Basis Functions φ(r) Piecewise Smooth (Conditionally Positive Definite) MN Monomial |r|2m+1 TPS thin plate spline |r|2mln|r| Infinitely Smooth...smooth surfaces using polynomial interpolants, while [27] couples Thin - Plate Spline interpolation (see table 1) with Green’s integral formula [29

  14. Smoothing-Norm Preconditioning for Regularizing Minimum-Residual Methods

    DEFF Research Database (Denmark)

    Hansen, Per Christian; Jensen, Toke Koldborg

    2006-01-01

    take into account a smoothing norm for the solution. This technique is well established for CGLS, but it does not immediately carry over to minimum-residual methods when the smoothing norm is a seminorm or a Sobolev norm. We develop a new technique which works for any smoothing norm of the form $\\|L...

  15. Neurophysiology and Neuroanatomy of Smooth Pursuit in Humans

    Science.gov (United States)

    Lencer, Rebekka; Trillenberg, Peter

    2008-01-01

    Smooth pursuit eye movements enable us to focus our eyes on moving objects by utilizing well-established mechanisms of visual motion processing, sensorimotor transformation and cognition. Novel smooth pursuit tasks and quantitative measurement techniques can help unravel the different smooth pursuit components and complex neural systems involved…

  16. Smoothing of respiratory motion traces for motion-compensated radiotherapy.

    Science.gov (United States)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera "as is." Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS2 algorithms. The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the exception of the FP5000 and the

  17. Smoothing of respiratory motion traces for motion-compensated radiotherapy

    International Nuclear Information System (INIS)

    Ernst, Floris; Schlaefer, Alexander; Schweikard, Achim

    2010-01-01

    Purpose: The CyberKnife system has been used successfully for several years to radiosurgically treat tumors without the need for stereotactic fixation or sedation of the patient. It has been shown that tumor motion in the lung, liver, and pancreas can be tracked with acceptable accuracy and repeatability. However, highly precise targeting for tumors in the lower abdomen, especially for tumors which exhibit strong motion, remains problematic. Reasons for this are manifold, like the slow tracking system operating at 26.5 Hz, and using the signal from the tracking camera ''as is''. Since the motion recorded with the camera is used to compensate for system latency by prediction and the predicted signal is subsequently used to infer the tumor position from a correlation model based on x-ray imaging of gold fiducials around the tumor, camera noise directly influences the targeting accuracy. The goal of this work is to establish the suitability of a new smoothing method for respiratory motion traces used in motion-compensated radiotherapy. The authors endeavor to show that better prediction--With a lower rms error of the predicted signal--and/or smoother prediction is possible using this method. Methods: The authors evaluated six commercially available tracking systems (NDI Aurora, PolarisClassic, Polaris Vicra, MicronTracker2 H40, FP5000, and accuTrack compact). The authors first tracked markers both stationary and while in motion to establish the systems' noise characteristics. Then the authors applied a smoothing method based on the a trous wavelet decomposition to reduce the devices' noise level. Additionally, the smoothed signal of the moving target and a motion trace from actual human respiratory motion were subjected to prediction using the MULIN and the nLMS 2 algorithms. Results: The authors established that the noise distribution for a static target is Gaussian and that when the probe is moved such as to mimic human respiration, it remains Gaussian with the

  18. Output Power Smoothing Control for a Wind Farm Based on the Allocation of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Ying Zhu

    2018-06-01

    Full Text Available This paper presents a new output power smoothing control strategy for a wind farm based on the allocation of wind turbines. The wind turbines in the wind farm are divided into control wind turbines (CWT and power wind turbines (PWT, separately. The PWTs are expected to output as much power as possible and a maximum power point tracking (MPPT control strategy combining the rotor inertia based power smoothing method is adopted. The CWTs are in charge of the output power smoothing for the whole wind farm by giving the calculated appropriate power. The battery energy storage system (BESS with small capacity is installed to be the support and its charge and discharge times are greatly reduced comparing with the traditional ESSs based power smoothing strategies. The simulation model of the permanent magnet synchronous generators (PMSG based wind farm by considering the wake effect is built in Matlab/Simulink to test the proposed power smoothing method. Three different working modes of the wind farm are given in the simulation and the simulation results verify the effectiveness of the proposed power smoothing control strategy.

  19. Smoothing of ZnO films by gas cluster ion beam

    International Nuclear Information System (INIS)

    Chen, H.; Liu, S.W.; Wang, X.M.; Iliev, M.N.; Chen, C.L.; Yu, X.K.; Liu, J.R.; Ma, K.; Chu, W.K.

    2005-01-01

    Planarization of wide-band-gap semiconductor ZnO surface is crucial for thin-film device performance. In this study, the rough initial surfaces of ZnO films deposited by r.f. magnetron sputtering on Si substrates were smoothed by gas cluster ion beams. AFM measurements show that the average surface roughness (R a ) of the ZnO films could be reduced considerably from 16.1 nm to 0.9 nm. Raman spectroscopy was used to monitor the structure of both the as-grown and the smoothed ZnO films. Rutherford back-scattering in combination with channeling effect was used to study the damage production induced by the cluster bombardment

  20. Electric cell-substrate impedance sensing (ECIS) based real-time measurement of titer dependent cytotoxicity induced by adenoviral vectors in an IPI-2I cell culture model.

    Science.gov (United States)

    Müller, Jakob; Thirion, Christian; Pfaffl, Michael W

    2011-01-15

    Recombinant viral vectors are widespread tools for transfer of genetic material in various modern biotechnological applications like for example RNA interference (RNAi). However, an accurate and reproducible titer assignment represents the basic step for most downstream applications regarding a precise multiplicity of infection (MOI) adjustment. As necessary scaffold for the studies described in this work we introduce a quantitative real-time PCR (qPCR) based approach for viral particle measurement. Still an implicated problem concerning physiological effects is that the appliance of viral vectors is often attended by toxic effects on the individual target. To determine the critical viral dose leading to cell death we developed an electric cell-substrate impedance sensing (ECIS) based assay. With ECIS technology the impedance change of a current flow through the cell culture medium in an array plate is measured in a non-invasive manner, visualizing effects like cell attachment, cell-cell contacts or proliferation. Here we describe the potential of this online measurement technique in an in vitro model using the porcine ileal epithelial cell line IPI-2I in combination with an adenoviral transfection vector (Ad5-derivate). This approach shows a clear dose-depending toxic effect, as the amount of applied virus highly correlates (p<0.001) with the level of cell death. Thus this assay offers the possibility to discriminate the minimal non-toxic dose of the individual transfection method. In addition this work suggests that the ECIS-device bears the feasibility to transfer this assay to multiple other cytotoxicological questions. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Dewetting of thin polymer film on rough substrate: II. Experiment

    International Nuclear Information System (INIS)

    Volodin, Pylyp; Kondyurin, Alexey

    2008-01-01

    The theory of the dewetting process developed for a model of substrate-film interaction forces was examined by an experimental investigation of the dewetting process of thin polystyrene (PS) films on chemically etched silicon substrates. In the dependence on PS films thickness and silicon roughness, various situations of dewetting were observed as follows: (i) if the wavelength of the substrate roughness is much larger than the critical spinodal wavelength of a film, then spinodal dewetting of the film is observed; (ii) if the wavelength of the substrate roughness is smaller than the critical wavelength of the film and the substrate roughness is larger in comparison with film thickness, then the dewetting due to substrate roughness is observed and the dewetted film patterns repeat the rough substrate structure; (iii) if the wavelength of the substrate roughness is smaller than the critical wavelength of the film and the substrate roughness is small in comparison with the film thickness, then spinodal dewetting proceeds

  2. Smooth and non-smooth travelling waves in a nonlinearly dispersive Boussinesq equation

    International Nuclear Information System (INIS)

    Shen Jianwei; Xu Wei; Lei Youming

    2005-01-01

    The dynamical behavior and special exact solutions of nonlinear dispersive Boussinesq equation (B(m,n) equation), u tt -u xx -a(u n ) xx +b(u m ) xxxx =0, is studied by using bifurcation theory of dynamical system. As a result, all possible phase portraits in the parametric space for the travelling wave system, solitary wave, kink and anti-kink wave solutions and uncountably infinite many smooth and non-smooth periodic wave solutions are obtained. It can be shown that the existence of singular straight line in the travelling wave system is the reason why smooth waves converge to cusp waves, finally. When parameter are varied, under different parametric conditions, various sufficient conditions guarantee the existence of the above solutions are given

  3. Isolation of pulmonary artery smooth muscle cells from neonatal mice.

    Science.gov (United States)

    Lee, Keng Jin; Czech, Lyubov; Waypa, Gregory B; Farrow, Kathryn N

    2013-10-19

    Pulmonary hypertension is a significant cause of morbidity and mortality in infants. Historically, there has been significant study of the signaling pathways involved in vascular smooth muscle contraction in PASMC from fetal sheep. While sheep make an excellent model of term pulmonary hypertension, they are very expensive and lack the advantage of genetic manipulation found in mice. Conversely, the inability to isolate PASMC from mice was a significant limitation of that system. Here we described the isolation of primary cultures of mouse PASMC from P7, P14, and P21 mice using a variation of the previously described technique of Marshall et al. that was previously used to isolate rat PASMC. These murine PASMC represent a novel tool for the study of signaling pathways in the neonatal period. Briefly, a slurry of 0.5% (w/v) agarose + 0.5% iron particles in M199 media is infused into the pulmonary vascular bed via the right ventricle (RV). The iron particles are 0.2 μM in diameter and cannot pass through the pulmonary capillary bed. Thus, the iron lodges in the small pulmonary arteries (PA). The lungs are inflated with agarose, removed and dissociated. The iron-containing vessels are pulled down with a magnet. After collagenase (80 U/ml) treatment and further dissociation, the vessels are put into a tissue culture dish in M199 media containing 20% fetal bovine serum (FBS), and antibiotics (M199 complete media) to allow cell migration onto the culture dish. This initial plate of cells is a 50-50 mixture of fibroblasts and PASMC. Thus, the pull down procedure is repeated multiple times to achieve a more pure PASMC population and remove any residual iron. Smooth muscle cell identity is confirmed by immunostaining for smooth muscle myosin and desmin.

  4. Bessel smoothing filter for spectral-element mesh

    Science.gov (United States)

    Trinh, P. T.; Brossier, R.; Métivier, L.; Virieux, J.; Wellington, P.

    2017-06-01

    Smoothing filters are extremely important tools in seismic imaging and inversion, such as for traveltime tomography, migration and waveform inversion. For efficiency, and as they can be used a number of times during inversion, it is important that these filters can easily incorporate prior information on the geological structure of the investigated medium, through variable coherent lengths and orientation. In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering the direct application of the filter, we demonstrate that we can rely on the equation associated with its inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-element-based elastic full waveform inversion framework. Taking advantage of this formulation, we apply the Bessel filter by solving the associated partial differential equation directly on the spectral-element mesh through the standard weak formulation. This avoids cumbersome projection operators between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convolution on the finite-element mesh, which is often used for applying smoothing operators. The associated linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix vector product is factorized and highly optimized with vectorized computation. Significant scaling behaviour is obtained when comparing this strategy with the explicit convolution method. The theoretical numerical complexity of this approach increases linearly with the coherent length, whereas a sublinear relationship is observed practically. Numerical illustrations are provided here for schematic examples, and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark model. These examples illustrate well the

  5. ASIC PROTEINS REGULATE SMOOTH MUSCLE CELL MIGRATION

    OpenAIRE

    Grifoni, Samira C.; Jernigan, Nikki L.; Hamilton, Gina; Drummond, Heather A.

    2007-01-01

    The purpose of the present study was to investigate Acid Sensing Ion Channel (ASIC) protein expression and importance in cellular migration. We recently demonstrated Epithelial Na+ Channel (ENaC) proteins are required for vascular smooth muscle cell (VSMC) migration, however the role of the closely related ASIC proteins has not been addressed. We used RT-PCR and immunolabeling to determine expression of ASIC1, ASIC2, ASIC3 and ASIC4 in A10 cells. We used small interference RNA to silence indi...

  6. On spaces of functions of smoothness zero

    International Nuclear Information System (INIS)

    Besov, Oleg V

    2012-01-01

    The paper is concerned with the new spaces B-bar p,q 0 of functions of smoothness zero defined on the n-dimensional Euclidean space R n or on a subdomain G of R n . These spaces are compared with the spaces B p,q 0 (R n ) and bmo(R n ). The embedding theorems for Sobolev spaces are refined in terms of the space B-bar p,q 0 with the limiting exponent. Bibliography: 8 titles.

  7. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney; Burkhard, George F.; McGehee, Michael D.; Peumans, Peter

    2011-01-01

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Smooth Nanowire/Polymer Composite Transparent Electrodes

    KAUST Repository

    Gaynor, Whitney

    2011-04-29

    Smooth composite transparent electrodes are fabricated via lamination of silver nanowires into the polymer poly-(4,3-ethylene dioxythiophene): poly(styrene-sulfonate) (PEDOT:PSS). The surface roughness is dramatically reduced compared to bare nanowires. High-efficiency P3HT:PCBM organic photovoltaic cells can be fabricated using these composites, reproducing the performance of cells on indium tin oxide (ITO) on glass and improving the performance of cells on ITO on plastic. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Smoothing internal migration age profiles for comparative research

    Directory of Open Access Journals (Sweden)

    Aude Bernard

    2015-05-01

    Full Text Available Background: Age patterns are a key dimension to compare migration between countries and over time. Comparative metrics can be reliably computed only if data capture the underlying age distribution of migration. Model schedules, the prevailing smoothing method, fit a composite exponential function, but are sensitive to function selection and initial parameter setting. Although non-parametric alternatives exist, their performance is yet to be established. Objective: We compare cubic splines and kernel regressions against model schedules by assessingwhich method provides an accurate representation of the age profile and best performs on metrics for comparing aggregate age patterns. Methods: We use full population microdata for Chile to perform 1,000 Monte-Carlo simulations for nine sample sizes and two spatial scales. We use residual and graphic analysis to assess model performance on the age and intensity at which migration peaks and the evolution of migration age patterns. Results: Model schedules generate a better fit when (1 the expected distribution of the age profile is known a priori, (2 the pre-determined shape of the model schedule adequately describes the true age distribution, and (3 the component curves and initial parameter values can be correctly set. When any of these conditions is not met, kernel regressions and cubic splines offer more reliable alternatives. Conclusions: Smoothing models should be selected according to research aims, age profile characteristics, and sample size. Kernel regressions and cubic splines enable a precise representation of aggregate migration age profiles for most sample sizes, without requiring parameter setting or imposing a pre-determined distribution, and therefore facilitate objective comparison.

  10. Quantum key distribution with finite resources: Smooth Min entropy vs. Smooth Renyi entropy

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, Markus; Abruzzo, Silvestre; Bratzik, Sylvia; Kampermann, Hermann; Bruss, Dagmar [Institut fuer Theoretische Physik III, Duesseldorf (Germany)

    2010-07-01

    We consider different entropy measures that play an important role in the analysis of the security of QKD with finite resources. The smooth min entropy leads to an optimal bound for the length of a secure key. Another bound on the secure key length was derived by using Renyi entropies. Unfortunately, it is very hard or even impossible to calculate these entropies for realistic QKD scenarios. To estimate the security rate it becomes important to find computable bounds on these entropies. Here, we compare a lower bound for the smooth min entropy with a bound using Renyi entropies. We compare these entropies for the six-state protocol with symmetric attacks.

  11. PREFACE: Cell-substrate interactions Cell-substrate interactions

    Science.gov (United States)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    not on the amount of ligand for adhesion receptors, but on its spatial distribution [1]. New protocols for the preparation of soft elastic substrates were essential to show that adhesion structures and cytoskeleton of adherent cells strongly adapt to substrate stiffness [2], with dramatic effects for cellular decision making. For example, it has been shown recently that differentiation of mesenchymal stem cells is strongly influenced by substrate stiffness [3]. Thus, physical factors appear to be equally important as biochemical ones in determining the cellular response to its substrate [4]. The introduction of novel physical techniques not only opened up completely new perspectives regarding biological function, it also introduced a new quantitative element into this field. For example, the availability of soft elastic substrates with controlled stiffness allows us to reconstruct cellular traction forces and to correlate them with other cellular features. This development enables modeling approaches to work in close contact with experimental data, thus opening up the perspective that the field of cell-substrate interactions will become a quantitative and predictive science in the future. Because physical research into cell-substrate interactions has become one of the fastest growing research areas in cellular biophysics and materials science, we believe that it is very timely that this special issue gathers some of the on-going research effort in this field. In contrast to the non-living world, cellular systems usually interact with their environment through specific adhesion, mainly based on adhesion receptors from the integrin family. During recent years, force spectroscopy has emerged as one of the main methods to study the physics of specific adhesion. In this special issue, single cell force spectroscopy is used by Boettiger and Wehrle-Haller to characterize the strength of cell-matrix adhesion and how it is modulated by the glycocalyx [5], while Chirasatitsin

  12. Validation of CMIP5 multimodel ensembles through the smoothness of climate variables

    KAUST Repository

    Lee, Myoungji

    2015-05-14

    Smoothness is an important characteristic of a spatial process that measures local variability. If climate model outputs are realistic, then not only the values at each grid pixel but also the relative variation over nearby pixels should represent the true climate. We estimate the smoothness of long-term averages for land surface temperature anomalies in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and compare them by climate regions and seasons. We also compare the estimated smoothness of the climate outputs in CMIP5 with those of reanalysis data. The estimation is done through the composite likelihood approach for locally self-similar processes. The composite likelihood that we consider is a product of conditional likelihoods of neighbouring observations. We find that the smoothness of the surface temperature anomalies in CMIP5 depends primarily on the modelling institution and on the climate region. The seasonal difference in the smoothness is generally small, except for some climate regions where the average temperature is extremely high or low.

  13. An approach for spherical harmonic analysis of non-smooth data

    Science.gov (United States)

    Wang, Hansheng; Wu, Patrick; Wang, Zhiyong

    2006-12-01

    A method is proposed to evaluate the spherical harmonic coefficients of a global or regional, non-smooth, observable dataset sampled on an equiangular grid. The method is based on an integration strategy using new recursion relations. Because a bilinear function is used to interpolate points within the grid cells, this method is suitable for non-smooth data; the slope of the data may be piecewise continuous, with extreme changes at the boundaries. In order to validate the method, the coefficients of an axisymmetric model are computed, and compared with the derived analytical expressions. Numerical results show that this method is indeed reasonable for non-smooth models, and that the maximum degree for spherical harmonic analysis should be empirically determined by several factors including the model resolution and the degree of non-smoothness in the dataset, and it can be several times larger than the total number of latitudinal grid points. It is also shown that this method is appropriate for the approximate analysis of a smooth dataset. Moreover, this paper provides the program flowchart and an internet address where the FORTRAN code with program specifications are made available.

  14. Smooth Tubercle Bacilli: Neglected Opportunistic Tropical Pathogens

    Directory of Open Access Journals (Sweden)

    Djaltou eAboubaker

    2016-01-01

    Full Text Available Smooth tubercle bacilli (STB including ‘‘Mycobacterium canettii’’ are members of the Mycobacterium tuberculosis complex (MTBC which cause non-contagious tuberculosis in human. This group comprises less than one hundred isolates characterized by smooth colonies and cordless organisms. Most STB isolates have been obtained from patients exposed to the Republic of Djibouti but seven isolates, including the three seminal ones obtained by Georges Canetti between 1968 and 1970, were recovered from patients in France, Madagascar, Sub-Sahara East Africa and French Polynesia. STB form a genetically heterogeneous group of MTBC organisms with large 4.48 ± 0.05 Mb genomes which may link Mycobacterium kansasii to MTBC organisms. Lack of inter-human transmission suggested a yet unknown environmental reservoir. Clinical data indicate a respiratory tract route of contamination and the digestive tract as an alternative route of contamination. Further epidemiological and clinical studies are warranted to elucidate areas of uncertainty regarding these unusual mycobacteria and the tuberculosis they cause.

  15. Snap evaporation of droplets on smooth topographies.

    Science.gov (United States)

    Wells, Gary G; Ruiz-Gutiérrez, Élfego; Le Lirzin, Youen; Nourry, Anthony; Orme, Bethany V; Pradas, Marc; Ledesma-Aguilar, Rodrigo

    2018-04-11

    Droplet evaporation on solid surfaces is important in many applications including printing, micro-patterning and cooling. While seemingly simple, the configuration of evaporating droplets on solids is difficult to predict and control. This is because evaporation typically proceeds as a "stick-slip" sequence-a combination of pinning and de-pinning events dominated by static friction or "pinning", caused by microscopic surface roughness. Here we show how smooth, pinning-free, solid surfaces of non-planar topography promote a different process called snap evaporation. During snap evaporation a droplet follows a reproducible sequence of configurations, consisting of a quasi-static phase-change controlled by mass diffusion interrupted by out-of-equilibrium snaps. Snaps are triggered by bifurcations of the equilibrium droplet shape mediated by the underlying non-planar solid. Because the evolution of droplets during snap evaporation is controlled by a smooth topography, and not by surface roughness, our ideas can inspire programmable surfaces that manage liquids in heat- and mass-transfer applications.

  16. Smooth muscle myosin light chain kinase efficiently phosphorylates serine 15 of cardiac myosin regulatory light chain

    International Nuclear Information System (INIS)

    Josephson, Matthew P.; Sikkink, Laura A.; Penheiter, Alan R.; Burghardt, Thomas P.; Ajtai, Katalin

    2011-01-01

    Highlights: ► Cardiac myosin regulatory light chain (MYL2) is phosphorylated at S15. ► Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase. ► It is a widely believed that MYL2 is a poor substrate for smMLCK. ► In fact, smMLCK efficiently and rapidly phosphorylates S15 in MYL2. ► Phosphorylation kinetics measured by novel fluorescence method without radioactivity. -- Abstract: Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca 2+ sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis–Menten V max and K M for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.

  17. Substrate-induced instability in gas microstrip detectors

    International Nuclear Information System (INIS)

    Bateman, J.E.; Connolly, J.F.

    1992-12-01

    The results of a programme of research into substrate-induced gain instability in gas microstrip detectors are reported. Information has been collected on a wide range of substrates including many commonly available glasses and ceramics. A theoretical model of the gain instability is proposed. While we have not yet found an acceptable substrate for the construction of high flux detectors our experience points to electronically conductive glasses as the most promising source of a stable substrate. (Author)

  18. MicroRNAs dynamically remodel gastrointestinal smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Chanjae Park

    2011-04-01

    Full Text Available Smooth muscle cells (SMCs express a unique set of microRNAs (miRNAs which regulate and maintain the differentiation state of SMCs. The goal of this study was to investigate the role of miRNAs during the development of gastrointestinal (GI SMCs in a transgenic animal model. We generated SMC-specific Dicer null animals that express the reporter, green fluorescence protein, in a SMC-specific manner. SMC-specific knockout of Dicer prevented SMC miRNA biogenesis, causing dramatic changes in phenotype, function, and global gene expression in SMCs: the mutant mice developed severe dilation of the intestinal tract associated with the thinning and destruction of the smooth muscle (SM layers; contractile motility in the mutant intestine was dramatically decreased; and SM contractile genes and transcriptional regulators were extensively down-regulated in the mutant SMCs. Profiling and bioinformatic analyses showed that SMC phenotype is regulated by a complex network of positive and negative feedback by SMC miRNAs, serum response factor (SRF, and other transcriptional factors. Taken together, our data suggest that SMC miRNAs are required for the development and survival of SMCs in the GI tract.

  19. Integrated Plastic Substrates for OLED Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, Whitney

    2015-08-01

    OLED lighting has immense potential as aesthetically pleasing, energy-efficient general illumination. Unlike other light sources, such as incandescents, fluorescents, and inorganic LEDs, OLEDs naturally emit over a large-area surface. They are glare free, do not need to be shaded, and are cool to the touch, requiring no heatsink. The best efficiencies and lifetimes reported are on par with or better than current forms of illumination. However, the cost for OLED lighting remains high – so much so that these products are not market competitive and there is very low consumer demand. We believe that flexible, plastic-based devices will highlight the advantages of aesthetically-pleasing OLED lighting systems while paving the way for lowering both materials and manufacturing costs. These flexible devices require new development in substrate and support technology, which was the focus of the work reported here. The project team, led by Sinovia Technologies, has developed integrated plastic substrates to serve as supports for flexible OLED lighting. The substrates created in this project would enable large-area, flexible devices and are specified to perform three functions. They include a barrier to protect the OLED from moisture and oxygen-related degradation, a smooth, highly conductive transparent electrode to enable large-area device operation, and a light scattering layer to improve emission efficiency. Through the course of this project, integrated substrates were fabricated, characterized, evaluated for manufacturing feasibility and cost, and used in white OLED demonstrations to test their impact on flexible OLED lighting. Our integrated substrates meet or exceed the DOE specifications for barrier performance in water vapor and oxygen transport rates, as well as the transparency and conductivity of the anode film. We find that these integrated substrates can be manufactured in a completely roll-to-roll, high throughput process and have developed and demonstrated

  20. Coating of substrates

    International Nuclear Information System (INIS)

    Cairns, J.A.; Nelson, R.L.; Woodhead, J.L.

    1979-01-01

    The process is concerned with providing substrates with coatings obtainable from sols, for example to protect the substrate (such as in nuclear reactors or hydrocarbon cracking plant) or to provide a carrier for catalytically active material. Hitherto, coatings obtained from sols have had a high porosity and high surface area so that they have not been entirely satisfactory for the above applications. In the process described, dense, low-porosity coatings are provided by contacting the substrate with a sol of refractory material (e.g. CeO 2 or SiO 2 ) convertible to a gel of density at least 40% of the theoretical density of the refractory material, and converting the sol to the gel. Optionally, the gel may be converted to a ceramic coating by firing. (author)