WorldWideScience

Sample records for smart sensor research

  1. Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yirong [Univ. of Texas, El Paso, TX (United States)

    2017-12-10

    The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall material property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.

  2. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  3. Smart sensors for health and environment monitoring

    CERN Document Server

    2015-01-01

    This book covers two most important applications of smart sensors, namely bio-health sensing and environmental monitoring.   The approach taken is holistic and covers the complete scope of the subject matter from the principles of the sensing mechanism, through device physics, circuit and system implementation techniques, and energy issues  to wireless connectivity solutions. It is written at a level suitable mainly for post-graduate level researchers interested in practical applications. The chapters are independent but complementary to each other, and the book works within the wider perspective of essential smart sensors for the Internet of Things (IoT).   This is the second of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies.  The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering significant improve...

  4. Vehicle Fault Diagnose Based on Smart Sensor

    Science.gov (United States)

    Zhining, Li; Peng, Wang; Jianmin, Mei; Jianwei, Li; Fei, Teng

    In the vehicle's traditional fault diagnose system, we usually use a computer system with a A/D card and with many sensors connected to it. The disadvantage of this system is that these sensor can hardly be shared with control system and other systems, there are too many connect lines and the electro magnetic compatibility(EMC) will be affected. In this paper, smart speed sensor, smart acoustic press sensor, smart oil press sensor, smart acceleration sensor and smart order tracking sensor were designed to solve this problem. With the CAN BUS these smart sensors, fault diagnose computer and other computer could be connected together to establish a network system which can monitor and control the vehicle's diesel and other system without any duplicate sensor. The hard and soft ware of the smart sensor system was introduced, the oil press, vibration and acoustic signal are resampled by constant angle increment to eliminate the influence of the rotate speed. After the resample, the signal in every working cycle could be averaged in angle domain and do other analysis like order spectrum.

  5. Open architecture of smart sensor suites

    Science.gov (United States)

    Müller, Wilmuth; Kuwertz, Achim; Grönwall, Christina; Petersson, Henrik; Dekker, Rob; Reinert, Frank; Ditzel, Maarten

    2017-10-01

    Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network - a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness. Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc. The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.

  6. Smart Query Answering for Marine Sensor Data

    Directory of Open Access Journals (Sweden)

    Paulo de Souza

    2011-03-01

    Full Text Available We review existing query answering systems for sensor data. We then propose an extended query answering approach termed smart query, specifically for marine sensor data. The smart query answering system integrates pattern queries and continuous queries. The proposed smart query system considers both streaming data and historical data from marine sensor networks. The smart query also uses query relaxation technique and semantics from domain knowledge as a recommender system. The proposed smart query benefits in building data and information systems for marine sensor networks.

  7. Smart query answering for marine sensor data.

    Science.gov (United States)

    Shahriar, Md Sumon; de Souza, Paulo; Timms, Greg

    2011-01-01

    We review existing query answering systems for sensor data. We then propose an extended query answering approach termed smart query, specifically for marine sensor data. The smart query answering system integrates pattern queries and continuous queries. The proposed smart query system considers both streaming data and historical data from marine sensor networks. The smart query also uses query relaxation technique and semantics from domain knowledge as a recommender system. The proposed smart query benefits in building data and information systems for marine sensor networks.

  8. Sensor technology for smart homes.

    Science.gov (United States)

    Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia

    2011-06-01

    A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. Smart Sensors Enable Smart Air Conditioning Control

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2014-06-01

    Full Text Available In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It’s also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  10. Smart Sensors for Launch Vehicles

    Science.gov (United States)

    Ray, Sabooj; Mathews, Sheeja; Abraham, Sheena; Pradeep, N.; Vinod, P.

    2017-12-01

    Smart Sensors bring a paradigm shift in the data acquisition mechanism adopted for launch vehicle telemetry system. The sensors integrate signal conditioners, digitizers and communication systems to give digital output from the measurement location. Multiple sensors communicate with a centralized node over a common digital data bus. An in-built microcontroller gives the sensor embedded intelligence to carry out corrective action for sensor inaccuracies. A smart pressure sensor has been realized and flight-proven to increase the reliability as well as simplicity in integration so as to obtain improved data output. Miniaturization is achieved by innovative packaging. This work discusses the construction, working and flight performance of such a sensor.

  11. Wireless smart shipboard sensor network

    OpenAIRE

    Nozik, Andrew B.

    2005-01-01

    This thesis studies the feasibility of developing a smart shipboard sensor network. The objective of the thesis is to prove that sensors can be made smart by keeping calibration constants and other relevant data such as network information stored on the sensor and a server computer. Study will focus on the design and implementation of an Ipsil IP(micro)8930 microcontroller, which is then connected, by the standard TCP/IP implementation, to a network where the sensor information can be see...

  12. Smart sensors and systems innovations for medical, environmental, and IoT applications

    CERN Document Server

    Yasuura, Hiroto; Liu, Yongpan; Lin, Youn-Long

    2017-01-01

    This book describes the technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoT). The authors provide a multidisciplinary view of sensor technology from materials, process, circuits, and big data domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc. Unlike earlier books on sensors, this book provides a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms. Profiles active research on smart sensors based on CMOS microelectronics; Describes applications of sensors and sensor systems in cyber physical systems, the social information infrastructure in our modern world; Includes coverage of a variety of related information technologies supporting the application of sensors; Discusses the integration of computation, networking, actuation, database...

  13. Wafer-Level Vacuum Packaging of Smart Sensors.

    Science.gov (United States)

    Hilton, Allan; Temple, Dorota S

    2016-10-31

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  14. From Smart to Intelligent Sensors: A Case Study

    Directory of Open Access Journals (Sweden)

    Vincenzo Di Lecce

    2012-03-01

    Full Text Available This paper showcases the opportunity of embedding intelligence in smart sensor devices with particular reference to air quality monitoring applications. The work bases upon recent findings attained and published by authors in the field of information extraction from measurements signals and smart sensor research. Smart sensors are commonly conceived as hardware/software transducers able to lift the source physical signal(s to the application target level. This entails an intricate twist of physical measurements and application-level bits of information. When measures are noisy or ambiguous, information extraction is demanding and thus requires artificial intelligence to intervene in the data interpretation process. Experience gained with handcrafted prototypes allowed us to harness the complexity of bringing artificial intelligence inside physical measurements. To provide a complete picture of the encountered criticalities, the chosen semantic model, the carried out and the obtained results are reported and discussed.

  15. A Review of Rock Bolt Monitoring Using Smart Sensors

    Directory of Open Access Journals (Sweden)

    Gangbing Song

    2017-04-01

    Full Text Available Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.

  16. A Review of Rock Bolt Monitoring Using Smart Sensors.

    Science.gov (United States)

    Song, Gangbing; Li, Weijie; Wang, Bo; Ho, Siu Chun Michael

    2017-04-05

    Rock bolts have been widely used as rock reinforcing members in underground coal mine roadways and tunnels. Failures of rock bolts occur as a result of overloading, corrosion, seismic burst and bad grouting, leading to catastrophic economic and personnel losses. Monitoring the health condition of the rock bolts plays an important role in ensuring the safe operation of underground mines. This work presents a brief introduction on the types of rock bolts followed by a comprehensive review of rock bolt monitoring using smart sensors. Smart sensors that are used to assess rock bolt integrity are reviewed to provide a firm perception of the application of smart sensors for enhanced performance and reliability of rock bolts. The most widely used smart sensors for rock bolt monitoring are the piezoelectric sensors and the fiber optic sensors. The methodologies and principles of these smart sensors are reviewed from the point of view of rock bolt integrity monitoring. The applications of smart sensors in monitoring the critical status of rock bolts, such as the axial force, corrosion occurrence, grout quality and resin delamination, are highlighted. In addition, several prototypes or commercially available smart rock bolt devices are also introduced.

  17. Sensor Management for Applied Research Technologies (SMART)-On Demand Modeling (ODM) Project

    Science.gov (United States)

    Goodman, M.; Blakeslee, R.; Hood, R.; Jedlovec, G.; Botts, M.; Li, X.

    2006-01-01

    NASA requires timely on-demand data and analysis capabilities to enable practical benefits of Earth science observations. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep learning curve associated with each sensor and data type. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output. A three year project, entitled Sensor Management for Applied Research Technologies (SMART) - On Demand Modeling (ODM), will develop and demonstrate the readiness of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) capabilities that integrate both Earth observations and forecast model output into new data acquisition and assimilation strategies. The advancement of SWE-enabled systems (i.e., use of SensorML, sensor planning services - SPS, sensor observation services - SOS, sensor alert services - SAS and common observation model protocols) will have practical and efficient uses in the Earth science community for enhanced data set generation, real-time data assimilation with operational applications, and for autonomous sensor tasking for unique data collection.

  18. Online Fabric Defect Inspection Using Smart Visual Sensors

    Directory of Open Access Journals (Sweden)

    Changqing Sun

    2013-04-01

    Full Text Available Fabric defect inspection is necessary and essential for quality control in the textile industry. Traditionally, fabric inspection to assure textile quality is done by humans, however, in the past years, researchers have paid attention to PC-based automatic inspection systems to improve the detection efficiency. This paper proposes a novel automatic inspection scheme for the warp knitting machine using smart visual sensors. The proposed system consists of multiple smart visual sensors and a controller. Each sensor can scan 800 mm width of web, and can work independently. The following are considered in dealing with broken-end defects caused by a single yarn: first, a smart visual sensor is composed of a powerful DSP processor and a 2-megapixel high definition image sensor. Second, a wavelet transform is used to decompose fabric images, and an improved direct thresholding method based on high frequency coefficients is proposed. Third, a proper template is chosen in a mathematical morphology filter to remove noise. Fourth, a defect detection algorithm is optimized to meet real-time demands. The proposed scheme has been running for six months on a warp knitting machine in a textile factory. The actual operation shows that the system is effective, and its detection rate reaches 98%.

  19. Smart Home Wireless Sensor Nodes

    DEFF Research Database (Denmark)

    Lynggaard, Per

    . This paper introduces an approach that considerably lowers the wireless sensor node power consumption and the amount of transmitted sensor events. It uses smart objects that include artificial intelligence to efficiently process the sensor event on location and thereby saves the costly wireless...

  20. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  1. Application of carbon nanotubes flexible strain sensor in smart textiles

    Directory of Open Access Journals (Sweden)

    Qiong CHENG

    2017-10-01

    Full Text Available Smart textiles have not only the necessary functions of daily wear, but also the intelligence. The focus of the current textile materials research is the selection of flexible material. For flexible materials, carbon material is one of the ideal materials for preparing flexible strain gauges. The application of flexible strain sensor prepared by carbon nanotubes as a flexible material in smart textiles is the research content. The research status of carbon nanotubes flexible strain sensor is introduced from the aspects of the structure, properties and application. The characteristics and functions of flexible strain gages prepared with carbon nanotube fibers and carbon nanotube films as flexible materials are discussed in terms of selection, preparation method, performance test and application. At the same time, the advantages and disadvantages of the flexible strain sensor of carbon nanotubes are reviewed from the aspects of preparation difficulty, production cost and practical application effect. High sensitivity with high strain will be a key research direction for carbon nanotube flexible strain sensors.

  2. Development of smart active layer sensor

    International Nuclear Information System (INIS)

    Lee, Young Sup; Lee, Sang Il; Yoon, Dong Jin; Kwon, Jae Hwa

    2004-01-01

    Structural health monitoring (SHM) is a new technology that will be increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper. In this study, SAL sensor can be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves.

  3. Sensors 4.0 – smart sensors and measurement technology enable Industry 4.0

    Directory of Open Access Journals (Sweden)

    A. Schütze

    2018-05-01

    Full Text Available Industrie 4.0 or the Industrial Internet of Things (IIoT are two terms for the current (revolution seen in industrial automation and control. Everything is getting smarter and data generated at all levels of the production process are used to improve product quality, flexibility, and productivity. This would not be possible without smart sensors, which generate the data and allow further functionality from self-monitoring and self-configuration to condition monitoring of complex processes. In analogy to Industry 4.0, the development of sensors has undergone distinctive stages culminating in today's smart sensors or Sensor 4.0. This paper briefly reviews the development of sensor technology over the last 2 centuries, highlights some of the potential that can be achieved with smart sensors and data evaluation, and discusses success requirements for future developments. In addition to magnetic sensor technologies which allow self-test and self-calibration and can contribute to many applications due to their wide spectrum of measured quantities, the paper discusses condition monitoring as a primary paradigm for introducing smart sensors and data analysis in manufacturing processes based on two projects performed in our group.

  4. Smart and Intelligent Sensors

    Science.gov (United States)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make

  5. Smart Optoelectronic Sensors and Intelligent Sensor Systems

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2012-03-01

    Full Text Available Light-to-frequency converters are widely used in various optoelectronic sensor systems. However, a further frequency-to-digital conversion is a bottleneck in such systems due to a broad frequency range of light-to-frequency converters’ outputs. This paper describes an effective OEM design approach, which can be used for smart and intelligent sensor systems design. The design is based on novel, multifunctional integrated circuit of Universal Sensors & Transducers Interface especially designed for such sensor applications. Experimental results have confirmed an efficiency of this approach and high metrological performances.

  6. Wafer-Level Vacuum Packaging of Smart Sensors

    Directory of Open Access Journals (Sweden)

    Allan Hilton

    2016-10-01

    Full Text Available The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  7. Connected smart sensors make super-smart buildings; Connected smart sensors maken gebouwen superslim

    Energy Technology Data Exchange (ETDEWEB)

    Van der Veen, J.K.

    2012-10-15

    In 2020, between 20 and 50 billion appliances will be connected to the internet and exchange information, usually without human intervention. A large part will consist of smart, autonomous sensors that generate their own supply voltage and have wireless connection with the web. The 'internet of things' offers dazzling opportunities for smart buildings [Dutch] In 2020 zullen tussen de twintig en vijftig miljard apparaten met internet verbonden zijn en, veelal zonder tussenkomst van mensen, informatie uitwisselen. Een groot deel hiervan zal bestaan uit slimme, autonome sensoren, die hun eigen voedingsspanning opwekken en draadloos met het web zijn verbonden. Voor slimme gebouwen biedt 'the internet of things' duizelingwekkende mogelijkheden.

  8. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  9. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    Science.gov (United States)

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  10. Utilizing Smart Textiles-Enabled Sensorized Toy and Playful Interactions for Assessment of Psychomotor Development on Children

    Directory of Open Access Journals (Sweden)

    Mario Vega-Barbas

    2015-01-01

    Full Text Available Emerging pervasive technologies like smart textiles make it possible to develop new and more accessible healthcare services for patients independently of their location or time. However, none of these new e-health solutions guarantee a complete user acceptance, especially in cases requiring extensive interaction between the user and the solution. So far, researchers have focused their efforts on new interactions techniques to improve the perception of privacy and confidence of the people using e-health services. In this way, the use of smart everyday objects arises as an interesting approach to facilitate the required interaction and increase user acceptance. Such Smart Daily Objects together with smart textiles provide researchers with a novel way to introduce sophisticated sensor technology in the daily life of people. This work presents a sensorized smart toy for assessment of psychomotor development in early childhood. The aim of this work is to design, develop, and evaluate the usability and playfulness of a smart textile-enabled sensorized toy that facilitates the user engagement in a personalized monitoring healthcare activity. To achieve this objective the monitoring is based on a smart textile sensorized toy as catalyzer of acceptance and multimodal sensing sources to monitor psychomotor development activities during playtime.

  11. AGSM Intelligent Devices/Smart Sensors Project

    Science.gov (United States)

    Harp, Janicce Leshay

    2014-01-01

    This project provides development and qualification of Smart Sensors capable of self-diagnosis and assessment of their capability/readiness to support operations. These sensors will provide pressure and temperature measurements to use in ground systems.

  12. Annotating smart environment sensor data for activity learning.

    Science.gov (United States)

    Szewcyzk, S; Dwan, K; Minor, B; Swedlove, B; Cook, D

    2009-01-01

    The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track the activities that people perform at home. Machine learning techniques can perform this task, but the software algorithms rely upon large amounts of sample data that is correctly labeled with the corresponding activity. Labeling, or annotating, sensor data with the corresponding activity can be time consuming, may require input from the smart home resident, and is often inaccurate. Therefore, in this paper we investigate four alternative mechanisms for annotating sensor data with a corresponding activity label. We evaluate the alternative methods along the dimensions of annotation time, resident burden, and accuracy using sensor data collected in a real smart apartment.

  13. Sense, decide, act, communicate (SDAC): next generation of smart sensor systems

    Science.gov (United States)

    Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian

    2004-09-01

    The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.

  14. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model

    Science.gov (United States)

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-01-01

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results

  15. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model

    Directory of Open Access Journals (Sweden)

    Antoine Bagula

    2015-06-01

    Full Text Available Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1 slave sensor nodes located on the parking spot to detect car presence/absence; (2 master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3 repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by

  16. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model.

    Science.gov (United States)

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-06-30

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called "anchor" nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results

  17. The Design and Comparison of Central and Distributed Light Sensored Smart LED Lighting Systems

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Özçelik

    2018-01-01

    Full Text Available There is a lack of published peer-reviewed research comparing the efficiencies of distributed versus central sensor-controlled LED lighting systems. This research proposes improving the smart illumination of a room with external fenestration using central and distributed light sensors. The optical and electrical measurements of the daylight have been made in the case where the light was not distributed evenly and not sufficient. Test results show that the proposed distributed light sensor illumination system has increased the efficiency by 28% when compared to the proposed central system. It has also been shown that the two tested systems are more cost-effective than common smart illumination systems.

  18. A Survey of Sensor Web Services for the Smart Grid

    Directory of Open Access Journals (Sweden)

    Omar Asad

    2013-03-01

    Full Text Available The broad use ofWireless Sensor Networks (WSN in various fields have resulted in growing demand for advanced data collection and querying mechanisms embedded in the sensor node. Sensor Web Services (SWS have recently emerged as a promising tool to enable external machines to have access to the information collected by public sensor webs. Machine-to-machine interactions or wireless sensor and actor networks can take advantage of this platform-independent technology to develop diverse smart grid applications. In this survey, we first briefly present the state of the art in SWS technology by describing the techniques for customizing web services to fit the sensor node capabilities such as customizing the WSDL file, compressing XML documents and redesigning TCP protocol. Then, we survey the studies that have utilized the SWS technology in smart grid applications. These studies have shown that SWS provide energy management capabilities to the consumers and the utilities, and they are well suited for smart grid integrated smart home solutions.

  19. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    OpenAIRE

    Kwangsoo Kim; Seong-il Jin

    2015-01-01

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network co...

  20. First investigations on the safety evaluation of smart sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bousquet, S.; Elsensohn, O. [CEA Fontenay aux Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Benoit, G. [CEA Saclay, Dir. de la Recherche Technologique DRT, 91 - Gif sur Yvette (France)

    2001-10-01

    IPSN (Institute for Protection and Nuclear Safety) is the technical support for the French nuclear safety authority and thus involved in the safety evaluation of new I and C technologies and particularly of smart sensors. Smart sensors are characterized by the use of a microprocessor that converts the process variable into digital signals and exchanges other information with I and C control systems. There are two types of smart sensors: HART (Highway Addressable Remote Transducer) sensors, which provide both analogue (4 to 20 mA) and digital signals, and network sensors, which provide only digital signals. The expected benefits for operators are improved accuracy and reliability and cost savings in installation, commissioning, testing and maintenance. Safety evaluation of these smart sensors raises new issues: How does the sensor react to unknown commands? How to avoid unexpected changes in configuration? What is its sensitivity to electromagnetic interferences (EMI), to radiations...? In order to evaluate whether these sensors can be qualified for a safety application and to define the qualification tests to be done, IPSN has planned some functional and hardware tests (EMI, radiations) on 'HART' and field bus sensors. During the functional tests, we were not able to disrupt the HART tested sensors by invalid commands. However, these results cannot be extended to other sensors, because of the use of different technology, of different versions of hardware and software and of constructors' specific commands. Furthermore, easy modifications of configuration parameters can cause additional failures. Environmental tests are in progress on HART sensors and will be followed by experiments on field bus sensors. These preliminary investigations and the latest incident initiated by an incorrect computing algorithm of digital switchgear at Ringhals NPP, clearly illustrate that testing and verification programmes for smart equipment must be meticulously designed

  1. First investigations on the safety evaluation of smart sensors

    International Nuclear Information System (INIS)

    Bousquet, S.; Elsensohn, O.

    2001-10-01

    IPSN (Institute for Protection and Nuclear Safety) is the technical support for the French nuclear safety authority and thus involved in the safety evaluation of new I and C technologies and particularly of smart sensors. Smart sensors are characterized by the use of a microprocessor that converts the process variable into digital signals and exchanges other information with I and C control systems. There are two types of smart sensors: HART (Highway Addressable Remote Transducer) sensors, which provide both analogue (4 to 20 mA) and digital signals, and network sensors, which provide only digital signals. The expected benefits for operators are improved accuracy and reliability and cost savings in installation, commissioning, testing and maintenance. Safety evaluation of these smart sensors raises new issues: How does the sensor react to unknown commands? How to avoid unexpected changes in configuration? What is its sensitivity to electromagnetic interferences (EMI), to radiations...? In order to evaluate whether these sensors can be qualified for a safety application and to define the qualification tests to be done, IPSN has planned some functional and hardware tests (EMI, radiations) on 'HART' and field bus sensors. During the functional tests, we were not able to disrupt the HART tested sensors by invalid commands. However, these results cannot be extended to other sensors, because of the use of different technology, of different versions of hardware and software and of constructors' specific commands. Furthermore, easy modifications of configuration parameters can cause additional failures. Environmental tests are in progress on HART sensors and will be followed by experiments on field bus sensors. These preliminary investigations and the latest incident initiated by an incorrect computing algorithm of digital switchgear at Ringhals NPP, clearly illustrate that testing and verification programmes for smart equipment must be meticulously designed and reviewed

  2. Senior residents' perceived need of and preferences for "smart home" sensor technologies.

    Science.gov (United States)

    Demiris, George; Hensel, Brian K; Skubic, Marjorie; Rantz, Marilyn

    2008-01-01

    The goal of meeting the desire of older adults to remain independent in their home setting while controlling healthcare costs has led to the conceptualization of "smart homes." A smart home is a residence equipped with technology that enhances safety of residents and monitors their health conditions. The study aim is to assess older adults' perceptions of specific smart home technologies (i.e., a bed sensor, gait monitor, stove sensor, motion sensor, and video sensor). The study setting is TigerPlace, a retirement community designed according to the Aging in Place model. Focus group sessions with fourteen residents were conducted to assess perceived advantages and concerns associated with specific applications, and preferences for recipients of sensor-generated information pertaining to residents' activity levels, sleep patterns and potential emergencies. Sessions were audio-taped; tapes were transcribed, and a content analysis was performed. A total of fourteen older adults over the age of 65 participated in three focus group sessions Most applications were perceived as useful, and participants would agree to their installation in their own home. Preference for specific sensors related to sensors' appearance and residents' own level of frailty and perceived need. Specific concerns about privacy were raised. The findings indicate an overall positive attitude toward sensor technologies for nonobtrusive monitoring. Researchers and practitioners are called upon to address ethical and technical challenges in this emerging domain.

  3. Wafer-Level Vacuum Packaging of Smart Sensors

    OpenAIRE

    Hilton, Allan; Temple, Dorota S.

    2016-01-01

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging...

  4. Smart Sensor Network for Aircraft Corrosion Monitoring

    Science.gov (United States)

    2010-02-01

    Network Elements – Hub, Network capable application processor ( NCAP ) – Node, Smart transducer interface module (STIM)  Corrosion Sensing and...software Transducer software Network Protocol 1451.2 1451.3 1451.5 1451.6 1451.7 I/O Node -processor Power TEDS Smart Sensor Hub ( NCAP ) IEEE 1451.0 and

  5. A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation Systems

    OpenAIRE

    Kyunghee Sun; Intae Ryoo

    2018-01-01

    When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node Group Management Medium Access Control Scheme designed to group smart sensor devices and collect data from them efficiently. The proposed scheme performs grouping of portable sensor devices connected to a system depending on th...

  6. Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review

    International Nuclear Information System (INIS)

    Song Gangbing; Gu Haichang; Mo Yilung

    2008-01-01

    This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator–sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime. (topical review)

  7. Smartphone and Bluetooth Smart Sensor Usage in IoT Applications

    Directory of Open Access Journals (Sweden)

    Khurshid ALIEV

    2016-06-01

    Full Text Available Bluetooth Low Energy is an interesting short-range radio technology that could be used for connecting tiny devices into the Internet of Things (IoT through gateways or cellular networks. For example, they are widely used in various contexts, from building and home automation to wearables. This paper proposes a method to improve the use of smartphones with a smart wireless sensor network acquisition system through Bluetooth Low Energy (BLE. A new BLE Smart Sensor, which acquires environmental data, was designed and calibration methods were performed. A detailed deviation is calculated between reference sensor and sensor node. The data obtained from laboratory experiments were used to evaluate battery life of the node. An Android application for devices such as Smartphones and Tablets can be used to collect data from a smart sensor, which becomes more accurate.

  8. Development of Smart Active Layer Sensor (II): Manufacturing and Application

    International Nuclear Information System (INIS)

    Lee, Young Sup; Lee, Sang Il; Kwon, Jae Hwa; Yoon, Dong Jin

    2004-01-01

    This paper is the second part of the study on the development of a smart active layer (SAL) sensor, which consists of two parts. As mentioned in the first paper, structural health monitoring (SHM) is a new technology that is being increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor which is described with regard to the theory and concept of the SAL sensor in the first paper. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper In this study, SAL sensor ran be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves

  9. Innovative smart micro sensors for Army weaponry applications

    Science.gov (United States)

    Ruffin, Paul B.; Brantley, Christina; Edwards, Eugene

    2008-03-01

    Micro sensors offer the potential solution to cost, size, and weight issues associated with smart networked sensor systems designed for environmental/missile health monitoring and rocket out-gassing/fuel leak detection, as well as situational awareness on the battlefield. In collaboration with the University of Arkansas (Fayetteville), University of Alabama (Tuscaloosa and Birmingham), Alabama A&M University (Normal), and Streamline Automation (Huntsville, AL), scientists and engineers at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) are investigating several nano-based technologies to solve the problem of sensing extremely small levels of toxic gases associated with both chemical warfare agents (in air and liquids) and potential rocket motor leaks. Innovative techniques are being devised to adapt voltammetry, which is a well established technique for the detection and quantification of substances dissolved in liquids, to low-cost micro sensors for detecting airborne chemical agents and potential missile propellant leakages. In addition, a surface enhanced Raman scattering (SERS) technique, which enhances Raman scattered light by excitation of surface plasmons on nanoporous metal surfaces (nanospheres), is being investigated to develop novel smart sensors for the detection of chemical agents (including rocket motor out-gassing) and potential detection of home-made explosive devices. In this paper, results are delineated that are associated with experimental studies, which are conducted for the aforementioned cases and for several other nano-based technology approaches. The design challenges of each micro sensor technology approach are discussed. Finally, a comparative analysis of the various innovative micro-sensor techniques is provided.

  10. Sensor Fusion and Smart Sensor in Sports and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    José Jair Alves Mendes Jr.

    2016-09-01

    Full Text Available The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports, it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others.

  11. Smart sensors for real-time water quality monitoring

    CERN Document Server

    Mason, Alex

    2013-01-01

    Sensors are being utilised to increasing degrees in all forms of industry.  Researchers and industrial practitioners in all fields seek to obtain a better understanding of appropriate processes so as to improve quality of service and efficiency.  The quality of water is no exception, and the water industry is faced with a wide array of water quality issues being present world-wide.  Thus, the need for sensors to tackle this diverse subject is paramount.  The aim of this book is to combine, for the first time, international expertise in the area of water quality monitoring using smart sensors and systems in order that a better understanding of the challenges faced and solutions posed may be available to all in a single text.

  12. Opportunistic mobility support for resource constrained sensor devices in smart cities.

    Science.gov (United States)

    Granlund, Daniel; Holmlund, Patrik; Åhlund, Christer

    2015-03-02

    A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP)-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE) chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment.

  13. Opportunistic Mobility Support for Resource Constrained Sensor Devices in Smart Cities

    Directory of Open Access Journals (Sweden)

    Daniel Granlund

    2015-03-01

    Full Text Available A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment.

  14. Context-Aware Mobile Sensors for Sensing Discrete Events in Smart Environment

    Directory of Open Access Journals (Sweden)

    Awais Ahmad

    2016-01-01

    Full Text Available Over the last few decades, several advancements in the field of smart environment gained importance, so the experts can analyze ideas for smart building based on embedded systems to minimize the expense and energy conservation. Therefore, propelling the concept of smart home toward smart building, several challenges of power, communication, and sensors’ connectivity can be seen. Such challenges distort the interconnectivity between different technologies, such as Bluetooth and ZigBee, making it possible to provide the continuous connectivity among different objects such as sensors, actuators, home appliances, and cell phones. Therefore, this paper presents the concept of smart building based on embedded systems that enhance low power mobile sensors for sensing discrete events in embedded systems. The proposed scheme comprises system architecture that welcomes all the mobile sensors to communicate with each other using a single platform service. The proposed system enhances the concept of smart building in three stages (i.e., visualization, data analysis, and application. For low power mobile sensors, we propose a communication model, which provides a common medium for communication. Finally, the results show that the proposed system architecture efficiently processes, analyzes, and integrates different datasets efficiently and triggers actions to provide safety measurements for the elderly, patients, and others.

  15. Wireless Sensor Network Based Smart Grid Communications: Cyber Attacks, Intrusion Detection System and Topology Control

    Directory of Open Access Journals (Sweden)

    Lipi Chhaya

    2017-01-01

    Full Text Available The existing power grid is going through a massive transformation. Smart grid technology is a radical approach for improvisation in prevailing power grid. Integration of electrical and communication infrastructure is inevitable for the deployment of Smart grid network. Smart grid technology is characterized by full duplex communication, automatic metering infrastructure, renewable energy integration, distribution automation and complete monitoring and control of entire power grid. Wireless sensor networks (WSNs are small micro electrical mechanical systems that are deployed to collect and communicate the data from surroundings. WSNs can be used for monitoring and control of smart grid assets. Security of wireless sensor based communication network is a major concern for researchers and developers. The limited processing capabilities of wireless sensor networks make them more vulnerable to cyber-attacks. The countermeasures against cyber-attacks must be less complex with an ability to offer confidentiality, data readiness and integrity. The address oriented design and development approach for usual communication network requires a paradigm shift to design data oriented WSN architecture. WSN security is an inevitable part of smart grid cyber security. This paper is expected to serve as a comprehensive assessment and analysis of communication standards, cyber security issues and solutions for WSN based smart grid infrastructure.

  16. Development of Smart Sensors System Based on Formal Concept Analysis and Ontology Model

    Directory of Open Access Journals (Sweden)

    Hongsheng Xu

    2013-06-01

    Full Text Available The smart sensor is the product of the combination of one or more sensitive components, precision analog circuits, digital circuits, microprocessor, communication interface, intelligent software systems and hardware integration in a packaging component. Formal concept analysis is from the given data to automatically extract the classification relationship between the entire hidden concept and concept, formation of concept model. Ontology is a set of relations between concepts of the specific domain and concept, and it can effectively express the general knowledge of specific field. The paper proposes development of smart sensors system based on formal concept analysis and ontology model. Smart sensor is a micro processor, sensor with information detection, information processing, information memory, logical thinking and judging function. The methods can improve the effect of the smart sensors.

  17. Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant smart environments.

    Science.gov (United States)

    Roy, Nirmalya; Misra, Archan; Cook, Diane

    2016-02-01

    Activity recognition in smart environments is an evolving research problem due to the advancement and proliferation of sensing, monitoring and actuation technologies to make it possible for large scale and real deployment. While activities in smart home are interleaved, complex and volatile; the number of inhabitants in the environment is also dynamic. A key challenge in designing robust smart home activity recognition approaches is to exploit the users' spatiotemporal behavior and location, focus on the availability of multitude of devices capable of providing different dimensions of information and fulfill the underpinning needs for scaling the system beyond a single user or a home environment. In this paper, we propose a hybrid approach for recognizing complex activities of daily living (ADL), that lie in between the two extremes of intensive use of body-worn sensors and the use of ambient sensors. Our approach harnesses the power of simple ambient sensors (e.g., motion sensors) to provide additional 'hidden' context (e.g., room-level location) of an individual, and then combines this context with smartphone-based sensing of micro-level postural/locomotive states. The major novelty is our focus on multi-inhabitant environments, where we show how the use of spatiotemporal constraints along with multitude of data sources can be used to significantly improve the accuracy and computational overhead of traditional activity recognition based approaches such as coupled-hidden Markov models. Experimental results on two separate smart home datasets demonstrate that this approach improves the accuracy of complex ADL classification by over 30 %, compared to pure smartphone-based solutions.

  18. Ambient and smartphone sensor assisted ADL recognition in multi-inhabitant smart environments

    Science.gov (United States)

    Misra, Archan; Cook, Diane

    2016-01-01

    Activity recognition in smart environments is an evolving research problem due to the advancement and proliferation of sensing, monitoring and actuation technologies to make it possible for large scale and real deployment. While activities in smart home are interleaved, complex and volatile; the number of inhabitants in the environment is also dynamic. A key challenge in designing robust smart home activity recognition approaches is to exploit the users' spatiotemporal behavior and location, focus on the availability of multitude of devices capable of providing different dimensions of information and fulfill the underpinning needs for scaling the system beyond a single user or a home environment. In this paper, we propose a hybrid approach for recognizing complex activities of daily living (ADL), that lie in between the two extremes of intensive use of body-worn sensors and the use of ambient sensors. Our approach harnesses the power of simple ambient sensors (e.g., motion sensors) to provide additional ‘hidden’ context (e.g., room-level location) of an individual, and then combines this context with smartphone-based sensing of micro-level postural/locomotive states. The major novelty is our focus on multi-inhabitant environments, where we show how the use of spatiotemporal constraints along with multitude of data sources can be used to significantly improve the accuracy and computational overhead of traditional activity recognition based approaches such as coupled-hidden Markov models. Experimental results on two separate smart home datasets demonstrate that this approach improves the accuracy of complex ADL classification by over 30 %, compared to pure smartphone-based solutions. PMID:27042240

  19. Multiple Distributed Smart Microgrids with a Self-Autonomous, Energy Harvesting Wireless Sensor Network

    DEFF Research Database (Denmark)

    Guerrero, Josep M.; Kheng Tan, Yen

    2012-01-01

    The chapter covers the smart wireless sensors for microgrids, as well as the energy harvesting technology used to sustain the operations of these sensors. Last, a case study on the multiple distributed smart microgrids with a self-autonomous, energy harvesting wireless sensor network is presented....

  20. Smart wheelchair: integration of multiple sensors

    Science.gov (United States)

    Gassara, H. E.; Almuhamed, S.; Moukadem, A.; Schacher, L.; Dieterlen, A.; Adolphe, D.

    2017-10-01

    The aim of the present work is to develop a smart wheelchair by integrating multiple sensors for measuring user’s physiological signals and subsequently transmitting and monitoring the treated signals to the user, a designated person or institution. Among other sensors, force, accelerometer, and temperature sensors are successfully integrated within both the backrest and the seat cushions of the wheelchair; while a pulse sensor is integrated within the armrest. The pulse sensor is connected to an amplification circuit board that is, in turn, placed within the armrest. The force and temperature sensors are integrated into a textile cover of the cushions by means of embroidery and sewing techniques. The signal from accelerometer is transmitted through Wi-Fi connection. The electrical connections needed for power supplying of sensors are made by embroidered conductive threads.

  1. Autonomous smart sensor network for full-scale structural health monitoring

    Science.gov (United States)

    Rice, Jennifer A.; Mechitov, Kirill A.; Spencer, B. F., Jr.; Agha, Gul A.

    2010-04-01

    The demands of aging infrastructure require effective methods for structural monitoring and maintenance. Wireless smart sensor networks offer the ability to enhance structural health monitoring (SHM) practices through the utilization of onboard computation to achieve distributed data management. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While smart sensor technology is not new, the number of full-scale SHM applications has been limited. This slow progress is due, in part, to the complex network management issues that arise when moving from a laboratory setting to a full-scale monitoring implementation. This paper presents flexible network management software that enables continuous and autonomous operation of wireless smart sensor networks for full-scale SHM applications. The software components combine sleep/wake cycling for enhanced power management with threshold detection for triggering network wide tasks, such as synchronized sensing or decentralized modal analysis, during periods of critical structural response.

  2. Researches of smart materials in Japan

    International Nuclear Information System (INIS)

    Furuya, Y.; Tani, J.

    2000-01-01

    The choice of sensor and actuator material as well as optimum design to combine the actuator element with the host structure become very essential to develop a smart materials and structures. In the present paper, first, the present state and issues of the main solid actuators are described from the viewpoint of material science and engineering. Next, the developments of smart materials and systems using shape memory materials in Japan are introduced. Shape memory TiNi fiber reinforced/Al or polymer matrix composites have been fabricated to confirm the enhancements of fracture toughness (K-value) by utilizing the compression stresses caused by shape memory shrinkage of embedded TiNi fibers. Sudden failure prevention system for structures are also proposed by combining non-destructive acoustic emission detecting system with suppression of crack-tip stress intensity by shape memory shrinkage effect. Lastly, the research project scheme and several targets on smart actuator development are introduced, which are imposed on the Tohoku University team in the Japanese National Project (1998∝2002 A.D.) on smart materials and structure system by NEDO/MITI. (orig.)

  3. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications.

    Science.gov (United States)

    Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-05

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.

  4. TOPICAL REVIEW: Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review

    Science.gov (United States)

    Song, Gangbing; Gu, Haichang; Mo, Yi-Lung

    2008-06-01

    This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.

  5. A Smart Sensor Data Transmission Technique for Logistics and Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Kyunghee Sun

    2018-03-01

    Full Text Available When it comes to Internet of Things systems that include both a logistics system and an intelligent transportation system, a smart sensor is one of the key elements to collect useful information whenever and wherever necessary. This study proposes the Smart Sensor Node Group Management Medium Access Control Scheme designed to group smart sensor devices and collect data from them efficiently. The proposed scheme performs grouping of portable sensor devices connected to a system depending on the distance from the sink node and transmits data by setting different buffer thresholds to each group. This method reduces energy consumption of sensor devices located near the sink node and enhances the IoT system’s general energy efficiency. When a sensor device is moved and, thus, becomes unable to transmit data, it is allocated to a new group so that it can continue transmitting data to the sink node.

  6. Smart Cities Intelligence System (SMACiSYS) Integrating Sensor Web with Spatial Data Infrastructures (sensdi)

    Science.gov (United States)

    Bhattacharya, D.; Painho, M.

    2017-09-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  7. SMART CITIES INTELLIGENCE SYSTEM (SMACiSYS INTEGRATING SENSOR WEB WITH SPATIAL DATA INFRASTRUCTURES (SENSDI

    Directory of Open Access Journals (Sweden)

    D. Bhattacharya

    2017-09-01

    Full Text Available The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS with sensor-web access (SENSDI utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  8. Pure random search for ambient sensor distribution optimisation in a smart home environment.

    Science.gov (United States)

    Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming

    2011-01-01

    Smart homes are living spaces facilitated with technology to allow individuals to remain in their own homes for longer, rather than be institutionalised. Sensors are the fundamental physical layer with any smart home, as the data they generate is used to inform decision support systems, facilitating appropriate actuator actions. Positioning of sensors is therefore a fundamental characteristic of a smart home. Contemporary smart home sensor distribution is aligned to either a) a total coverage approach; b) a human assessment approach. These methods for sensor arrangement are not data driven strategies, are unempirical and frequently irrational. This Study hypothesised that sensor deployment directed by an optimisation method that utilises inhabitants' spatial frequency data as the search space, would produce more optimal sensor distributions vs. the current method of sensor deployment by engineers. Seven human engineers were tasked to create sensor distributions based on perceived utility for 9 deployment scenarios. A Pure Random Search (PRS) algorithm was then tasked to create matched sensor distributions. The PRS method produced superior distributions in 98.4% of test cases (n=64) against human engineer instructed deployments when the engineers had no access to the spatial frequency data, and in 92.0% of test cases (n=64) when engineers had full access to these data. These results thus confirmed the hypothesis.

  9. Smart fabric sensors and e-textile technologies: a review

    International Nuclear Information System (INIS)

    Castano, Lina M; Flatau, Alison B

    2014-01-01

    This paper provides a review of recent developments in the rapidly changing and advancing field of smart fabric sensor and electronic textile technologies. It summarizes the basic principles and approaches employed when building fabric sensors as well as the most commonly used materials and techniques used in electronic textiles. This paper shows that sensing functionality can be created by intrinsic and extrinsic modifications to textile substrates depending on the level of integration into the fabric platform. The current work demonstrates that fabric sensors can be tailored to measure force, pressure, chemicals, humidity and temperature variations. Materials, connectors, fabric circuits, interconnects, encapsulation and fabrication methods associated with fabric technologies prove to be customizable and versatile but less robust than their conventional electronics counterparts. The findings of this survey suggest that a complete smart fabric system is possible through the integration of the different types of textile based functional elements. This work intends to be a starting point for standardization of smart fabric sensing techniques and e-textile fabrication methods. (topical review)

  10. ABS-SmartComAgri: An Agent-Based Simulator of Smart Communication Protocols in Wireless Sensor Networks for Debugging in Precision Agriculture.

    Science.gov (United States)

    García-Magariño, Iván; Lacuesta, Raquel; Lloret, Jaime

    2018-03-27

    Smart communication protocols are becoming a key mechanism for improving communication performance in networks such as wireless sensor networks. However, the literature lacks mechanisms for simulating smart communication protocols in precision agriculture for decreasing production costs. In this context, the current work presents an agent-based simulator of smart communication protocols for efficiently managing pesticides. The simulator considers the needs of electric power, crop health, percentage of alive bugs and pesticide consumption. The current approach is illustrated with three different communication protocols respectively called (a) broadcast, (b) neighbor and (c) low-cost neighbor. The low-cost neighbor protocol obtained a statistically-significant reduction in the need of electric power over the neighbor protocol, with a very large difference according to the common interpretations about the Cohen's d effect size. The presented simulator is called ABS-SmartComAgri and is freely distributed as open-source from a public research data repository. It ensures the reproducibility of experiments and allows other researchers to extend the current approach.

  11. Flexible pressure sensors for smart protective clothing against impact loading

    International Nuclear Information System (INIS)

    Wang, Fei; Zhu, Bo; Shu, Lin; Tao, Xiaoming

    2014-01-01

    The development of smart protective clothing will facilitate the quick detection of injuries from contact sports, traffic collisions and other accidents. To obtain real-time information like spatial and temporal pressure distributions on the clothing, flexible pressure sensor arrays are required. Based on a resistive fabric strain sensor we demonstrate all flexible, resistive pressure sensors with a large workable pressure range (0–8 MPa), a high sensitivity (1 MPa −1 ) and an excellent repeatability (lowest non-repeatability ±2.4% from 0.8 to 8 MPa) that can be inexpensively fabricated using fabric strain sensors and biocompatible polydimethylsiloxane (PDMS). The pressure sensitivity is tunable by using elastomers with different elasticities or by the pre-strain control of fabric strain sensors. Finite element simulation further confirms the sensor design. The simple structure, large workable pressure range, high sensitivity, high flexibility, facile fabrication and low cost of these pressure sensors make them promising candidates for smart protective clothing against impact loading. (paper)

  12. A smart sensor-based vision system: implementation and evaluation

    International Nuclear Information System (INIS)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R

    2006-01-01

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations

  13. A smart sensor-based vision system: implementation and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R [Institute of Fundamental Electronics, Bat. 220, Paris XI University, 91405 Orsay (France)

    2006-04-21

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations.

  14. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain

    Science.gov (United States)

    Vernet, David; Corral, Guiomar

    2018-01-01

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction. PMID:29385748

  15. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain.

    Science.gov (United States)

    Caballero, Víctor; Vernet, David; Zaballos, Agustín; Corral, Guiomar

    2018-01-30

    Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs) layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid's Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  16. Prototyping a Web-of-Energy Architecture for Smart Integration of Sensor Networks in Smart Grids Domain

    Directory of Open Access Journals (Sweden)

    Víctor Caballero

    2018-01-01

    Full Text Available Sensor networks and the Internet of Things have driven the evolution of traditional electric power distribution networks towards a new paradigm referred to as Smart Grid. However, the different elements that compose the Information and Communication Technologies (ICTs layer of a Smart Grid are usually conceived as isolated systems that typically result in rigid hardware architectures which are hard to interoperate, manage, and to adapt to new situations. If the Smart Grid paradigm has to be presented as a solution to the demand for distributed and intelligent energy management system, it is necessary to deploy innovative IT infrastructures to support these smart functions. One of the main issues of Smart Grids is the heterogeneity of communication protocols used by the smart sensor devices that integrate them. The use of the concept of the Web of Things is proposed in this work to tackle this problem. More specifically, the implementation of a Smart Grid’s Web of Things, coined as the Web of Energy is introduced. The purpose of this paper is to propose the usage of Web of Energy by means of the Actor Model paradigm to address the latent deployment and management limitations of Smart Grids. Smart Grid designers can use the Actor Model as a design model for an infrastructure that supports the intelligent functions demanded and is capable of grouping and converting the heterogeneity of traditional infrastructures into the homogeneity feature of the Web of Things. Conducted experimentations endorse the feasibility of this solution and encourage practitioners to point their efforts in this direction.

  17. A decentralized receptance-based damage detection strategy for wireless smart sensors

    International Nuclear Information System (INIS)

    Jang, Shinae; Spencer Jr, Billie F; Sim, Sung-Han

    2012-01-01

    Various structural health monitoring strategies have been proposed recently that can be implemented in the decentralized computing environment intrinsic to wireless smart sensor networks (WSSN). Many are based on changes in the experimentally determined flexibility matrix for the structure under consideration. However, the flexibility matrix contains only static information; much richer information is available by considering the dynamic flexibility, or receptance, of the structure. Recently, the stochastic dynamic damage locating vector (SDDLV) method was proposed based on changes of dynamic flexibility matrices employing centrally collected output-only measurements. This paper investigates the potential of the SDDLV method for implementation on a network of wireless smart sensors, where a decentralized, hierarchical, in-network processing approach is used to address issues of scalability of the SDDLV algorithm. Two approaches to aggregate results are proposed that provide robust estimates of damage locations. The efficacy of the developed strategy is first verified using wired sensors emulating a wireless sensor network. Subsequently, the decentralized damage detection strategy is implemented on MEMSIC’s Imote2 smart sensor platform and validated experimentally on a laboratory scale truss bridge. (paper)

  18. Health-Enabled Smart Sensor Fusion Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — It has been proven that the combination of smart sensors with embedded metadata and wireless technologies present real opportunities for significant improvements in...

  19. A SMART MONITORING SYSTEM FOR CAMPUS USING ZIGBEE WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Alaa Azmi Allahham

    2018-02-01

    Full Text Available The wireless sensor networks are autonomous sensors that are distributed to monitor environmental and physical conditions and pass them across the network to other areas, which is considered one of the key elements that are used in the applications of smart cities. Therefore, this paper aims to provide a design to add more smart applications to the sanctuary and other compounds based on wireless sensor networks using ZigBee technology. The transition from reliance on the style of surveillance and controlled manually by staff to apply the principles of smart applications through wireless sensor network which provides the ability to getting all the necessary information and capabilities of controlling and monitoring are required to automatically and thus saving the time, effort, and money. The system proposed in this paper to design a smart monitoring system at the campus to control the opening and closing of the doors of many halls and the possibility of including lighting systems and appliances. The results obtained from OPNET program show that the network topology, which used within a ZigBee network vary in terms of performance, thus giving options for designers to build their network and choose technologies that suit their project.

  20. Sensor Transmission Power Schedule for Smart Grids

    Science.gov (United States)

    Gao, C.; Huang, Y. H.; Li, J.; Liu, X. D.

    2017-11-01

    Smart grid has attracted much attention by the requirement of new generation renewable energy. Nowadays, the real-time state estimation, with the help of phasor measurement unit, plays an important role to keep smart grid stable and efficient. However, the limitation of the communication channel is not considered by related work. Considering the familiar limited on-board batteries wireless sensor in smart grid, transmission power schedule is designed in this paper, which minimizes energy consumption with proper EKF filtering performance requirement constrain. Based on the event-triggered estimation theory, the filtering algorithm is also provided to utilize the information contained in the power schedule. Finally, its feasibility and performance is demonstrated using the standard IEEE 39-bus system with phasor measurement units (PMUs).

  1. WIRELESS SENSOR SYSTEM FOR IMPLEMENTATION OF SMART SPACES

    Directory of Open Access Journals (Sweden)

    Gerardo Cázarez-Ayala

    2014-01-01

    Full Text Available This paper describes the design, implementation and application of a smart sensor system based in wireless communication protocol, which was developed with the main objective of facilitate the implementation of smart places, whereby monitoring and supervision of environmental physical variables in a residence or commercial buildings. Based in this system, we want to co-help taking advantage and save electric energy, optimizing the use of the lighting systems and air conditioner only in the schedules and under pre-established conditions for the final user. The system is based in a variety of nodes o modules of sensors like temperature, humidity, light, carbon monoxide, noise and LP gas which have the ability to work collaboratively in networks with topologies like star, tree and mesh.

  2. A Human-Centered Smart Home System with Wearable-Sensor Behavior Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jianting; Liu, Ting; Shen, Chao; Wu, Hongyu; Liu, Wenyi; Su, Man; Chen, Siyun; Jia, Zhanpei

    2016-11-17

    Smart home has recently attracted much research interest owing to its potential in improving the quality of human life. How to obtain user's demand is the most important and challenging task for appliance optimal scheduling in smart home, since it is highly related to user's unpredictable behavior. In this paper, a human-centered smart home system is proposed to identify user behavior, predict their demand and schedule the household appliances. Firstly, the sensor data from user's wearable devices are monitored to profile user's full-day behavior. Then, the appliance-demand matrix is constructed to predict user's demand on home environment, which is extracted from the history of appliance load data and user behavior. Two simulations are designed to demonstrate user behavior identification, appliance-demand matrix construction and strategy of appliance optimal scheduling generation.

  3. Wireless instrumentation for data transfer of smart sensors

    International Nuclear Information System (INIS)

    Kim, Chi Yeop; Kwon, Il Bum

    2005-01-01

    A wireless instrumentation system was constructed to transfer the data from a structure site to a monitoring site. The device was composed of a transmitter and a receiver. The transmitter was connected with smart sensors, as fiber optic sensors, piezo-sensors, and shape memory alloy sensors. The specification of this device was as follows: 2.4 GHz of transmitted frequency, 8 channels, 57600 bps of the transmitted speed, and 10 mW of the transmitted power. By bending the beam, the strain data were well transmitted to a monitor PC.

  4. Branch-Based Centralized Data Collection for Smart Grids Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Kwangsoo Kim

    2015-05-01

    Full Text Available A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  5. Branch-based centralized data collection for smart grids using wireless sensor networks.

    Science.gov (United States)

    Kim, Kwangsoo; Jin, Seong-il

    2015-05-21

    A smart grid is one of the most important applications in smart cities. In a smart grid, a smart meter acts as a sensor node in a sensor network, and a central device collects power usage from every smart meter. This paper focuses on a centralized data collection problem of how to collect every power usage from every meter without collisions in an environment in which the time synchronization among smart meters is not guaranteed. To solve the problem, we divide a tree that a sensor network constructs into several branches. A conflict-free query schedule is generated based on the branches. Each power usage is collected according to the schedule. The proposed method has important features: shortening query processing time and avoiding collisions between a query and query responses. We evaluate this method using the ns-2 simulator. The experimental results show that this method can achieve both collision avoidance and fast query processing at the same time. The success rate of data collection at a sink node executing this method is 100%. Its running time is about 35 percent faster than that of the round-robin method, and its memory size is reduced to about 10% of that of the depth-first search method.

  6. Smart Sensors: Why and when the origin was and why and where the future will be

    Science.gov (United States)

    Corsi, C.

    2013-12-01

    Smart Sensors is a technique developed in the 70's when the processing capabilities, based on readout integrated with signal processing, was still far from the complexity needed in advanced IR surveillance and warning systems, because of the enormous amount of noise/unwanted signals emitted by operating scenario especially in military applications. The Smart Sensors technology was kept restricted within a close military environment exploding in applications and performances in the 90's years thanks to the impressive improvements in the integrated signal read-out and processing achieved by CCD-CMOS technologies in FPA. In fact the rapid advances of "very large scale integration" (VLSI) processor technology and mosaic EO detector array technology allowed to develop new generations of Smart Sensors with much improved signal processing by integrating microcomputers and other VLSI signal processors. inside the sensor structure achieving some basic functions of living eyes (dynamic stare, non-uniformity compensation, spatial and temporal filtering). New and future technologies (Nanotechnology, Bio-Organic Electronics, Bio-Computing) are lightning a new generation of Smart Sensors extending the Smartness from the Space-Time Domain to Spectroscopic Functional Multi-Domain Signal Processing. History and future forecasting of Smart Sensors will be reported.

  7. Campaign monitoring of railroad bridges in high-speed rail shared corridors using wireless smart sensors.

    Science.gov (United States)

    2015-06-01

    This research project used wireless smart sensors to develop a cost-effective and practical portable structural health monitoring : system for railroad bridges in North America. The system is designed for periodic deployment rather than as a permanen...

  8. Design and implementation of smart web sensors

    Directory of Open Access Journals (Sweden)

    Jevtić Nenad J.

    2015-01-01

    Full Text Available This paper presents the design and implementation of the smart web sensors. The paper briefly describes the concept of automatic configuration based on electronic specifications in industrial measurement and control systems as well as in distributed systems based on the OGC SWE family of standards. The model for the implementation of Plug and Play sensor in accordance with the IEEE 1451 family of standards is analyzed in detail. Special attention is paid to the network connectivity of analog sensors in accordance with IEEE 1451.4. The practical implementation of the 1451.4 compatible network processor for RTD temperature sensors and adequate software support for 1451.4 TEDS generation, are included in the paper.

  9. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review.

    Science.gov (United States)

    Zou, Liang; Ge, Chang; Wang, Z Jane; Cretu, Edmond; Li, Xiaoou

    2017-11-17

    During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.

  10. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review

    Directory of Open Access Journals (Sweden)

    Liang Zou

    2017-11-01

    Full Text Available During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.

  11. Development of Wireless Smart Sensor for Structure and Machine Monitoring

    Directory of Open Access Journals (Sweden)

    Ismoyo Haryanto

    2013-07-01

    Full Text Available Vibration based condition monitoring is a method used for determining the condition of a system. The condition of mechanical or a structural system can be determined from the vibration. The vibration that is produced by the system indicates the condition of a system and possibly used to calculate the lifetime of a system or even used to take early action before fatal failure occurred. This paper explains how the wireless smart sensor can be used to identify the health condition of a system by monitoring the vibration parameters. The wireless smart sensor would continously  senses the vibration parameters of the system in a real-time systems and then data will be transmitted wirelessly  to a base station which is a host PC used for digital signal processing, from there the vibration will be plotted as a graph which used to analyzed the condition of the system. Finally, several tested performed to the real system to verify the accuracy of a smart sensor and the method of condition based monitoring.

  12. A sensor and video based ontology for activity recognition in smart environments.

    Science.gov (United States)

    Mitchell, D; Morrow, Philip J; Nugent, Chris D

    2014-01-01

    Activity recognition is used in a wide range of applications including healthcare and security. In a smart environment activity recognition can be used to monitor and support the activities of a user. There have been a range of methods used in activity recognition including sensor-based approaches, vision-based approaches and ontological approaches. This paper presents a novel approach to activity recognition in a smart home environment which combines sensor and video data through an ontological framework. The ontology describes the relationships and interactions between activities, the user, objects, sensors and video data.

  13. Smart textile plasmonic fiber dew sensors.

    Science.gov (United States)

    Esmaeilzadeh, Hamid; Rivard, Maxime; Arzi, Ezatollah; Légaré, François; Hassani, Alireza

    2015-06-01

    We propose a novel Surface Plasmon Resonance (SPR)-based sensor that detects dew formation in optical fiber-based smart textiles. The proposed SPR sensor facilitates the observation of two phenomena: condensation of moisture and evaporation of water molecules in air. This sensor detects dew formation in less than 0.25 s, and determines dew point temperature with an accuracy of 4%. It can be used to monitor water layer depth changes during dew formation and evaporation in the range of a plasmon depth probe, i.e., 250 nm, with a resolution of 7 nm. Further, it facilitates estimation of the relative humidity of a medium over a dynamic range of 30% to 70% by measuring the evaporation time via the plasmon depth probe.

  14. Wireless Smart Sensor Network System Using SmartBridge Sensor Nodes for Structural Health Monitoring of Existing Concrete Bridges

    Science.gov (United States)

    Gaviña, J. R.; Uy, F. A.; Carreon, J. D.

    2017-06-01

    There are over 8000 bridges in the Philippines today according to the Department of Public Works and Highways (DPWH). Currently, visual inspection is the most common practice in monitoring the structural integrity of bridges. However, visual inspections have proven to be insufficient in determining the actual health or condition of a bridge. Structural Health Monitoring (SHM) aims to give, in real-time, a diagnosis of the actual condition of the bridge. In this study, SmartBridge Sensor Nodes were installed on an existing concrete bridge with American Association of State Highway and Transportation Officials (AASHTO) Type IV Girders to gather vibration of the elements of the bridge. Also, standards on the effective installation of SmartBridge Sensor Nodes, such as location and orientation was determined. Acceleration readings from the sensor were then uploaded to a server, wherein they are monitored against certain thresholds, from which, the health of the bridge will be derived. Final output will be a portal or webpage wherein the information, health, and acceleration readings of the bridge will be available for viewing. With levels of access set for different types of users, the main users will have access to download data and reports. Data transmission and webpage access are available online, making the SHM system wireless.

  15. Smart Sensor for Analyzing Train Vibration in WCR Zone

    Directory of Open Access Journals (Sweden)

    Alka DUBEY

    2009-09-01

    Full Text Available In the present paper a smart vibration sensor is developed for railway electric engine WAP-7. Which is a self-sensation device equipped with recording and wireless communication interface. One programmed microcontroller 89C52 is used, which record vibration of trains with real time into memory. There is certain limit of vibrations, which is acceptable by track. Beyond this limit track can be damaged and may result major casualty. Smart sensor indicate the level of current vibration with its ideal value for prevention of excessive vibration it starts buzz ring. The work is highly applicable to the high speed trains. The high level vibration cause serious accidents due to the vibration.

  16. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems.

    Science.gov (United States)

    Khan, Murad; Silva, Bhagya Nathali; Han, Kijun

    2017-02-09

    The Web of Things (WoT) plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN), which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST) architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  17. A Web of Things-Based Emerging Sensor Network Architecture for Smart Control Systems

    Directory of Open Access Journals (Sweden)

    Murad Khan

    2017-02-01

    Full Text Available The Web of Things (WoT plays an important role in the representation of the objects connected to the Internet of Things in a more transparent and effective way. Thus, it enables seamless and ubiquitous web communication between users and the smart things. Considering the importance of WoT, we propose a WoT-based emerging sensor network (WoT-ESN, which collects data from sensors, routes sensor data to the web, and integrate smart things into the web employing a representational state transfer (REST architecture. A smart home scenario is introduced to evaluate the proposed WoT-ESN architecture. The smart home scenario is tested through computer simulation of the energy consumption of various household appliances, device discovery, and response time performance. The simulation results show that the proposed scheme significantly optimizes the energy consumption of the household appliances and the response time of the appliances.

  18. Gesture recognition for smart home applications using portable radar sensors.

    Science.gov (United States)

    Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip

    2014-01-01

    In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.

  19. Smart and intelligent sensor payload project

    Science.gov (United States)

    2009-01-01

    Engineers working on the smart and intelligent sensor payload project include (l to r): Ed Conley (NASA), Mark Mitchell (Jacobs Technology), Luke Richards (NASA), Robert Drackett (Jacobs Technology), Mark Turowski (Jacobs Technology) , Richard Franzl (seated, Jacobs Technology), Greg McVay (Jacobs Technology), Brianne Guillot (Jacobs Technology), Jon Morris (Jacobs Technology), Stephen Rawls (NASA), John Schmalzel (NASA) and Andrew Bracey (NASA).

  20. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes.

    Science.gov (United States)

    Ahvar, Ehsan; Lee, Gyu Myoung; Han, Son N; Crespi, Noel; Khan, Imran

    2016-06-27

    User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD) will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i) users' privacy; (ii) device-/tag-free; and (iii) fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.

  1. Sensor Network-Based and User-Friendly User Location Discovery for Future Smart Homes

    Directory of Open Access Journals (Sweden)

    Ehsan Ahvar

    2016-06-01

    Full Text Available User location is crucial context information for future smart homes where many location based services will be proposed. This location necessarily means that User Location Discovery (ULD will play an important role in future smart homes. Concerns about privacy and the need to carry a mobile or a tag device within a smart home currently make conventional ULD systems uncomfortable for users. Future smart homes will need a ULD system to consider these challenges. This paper addresses the design of such a ULD system for context-aware services in future smart homes stressing the following challenges: (i users’ privacy; (ii device-/tag-free; and (iii fault tolerance and accuracy. On the other hand, emerging new technologies, such as the Internet of Things, embedded systems, intelligent devices and machine-to-machine communication, are penetrating into our daily life with more and more sensors available for use in our homes. Considering this opportunity, we propose a ULD system that is capitalizing on the prevalence of sensors for the home while satisfying the aforementioned challenges. The proposed sensor network-based and user-friendly ULD system relies on different types of inexpensive sensors, as well as a context broker with a fuzzy-based decision-maker. The context broker receives context information from different types of sensors and evaluates that data using the fuzzy set theory. We demonstrate the performance of the proposed system by illustrating a use case, utilizing both an analytical model and simulation.

  2. Understanding Smart Home Sensor Data for Ageing in Place Through Everyday Household Routines: A Mixed Method Case Study.

    Science.gov (United States)

    van Kasteren, Yasmin; Bradford, Dana; Zhang, Qing; Karunanithi, Mohan; Ding, Hang

    2017-06-13

    An ongoing challenge for smart homes research for aging-in-place is how to make sense of the large amounts of data from in-home sensors to facilitate real-time monitoring and develop reliable alerts. The objective of our study was to explore the usefulness of a routine-based approach for making sense of smart home data for the elderly. Maximum variation sampling was used to select three cases for an in-depth mixed methods exploration of the daily routines of three elderly participants in a smart home trial using 180 days of power use and motion sensor data and longitudinal interview data. Sensor data accurately matched self-reported routines. By comparing daily movement data with personal routines, it was possible to identify changes in routine that signaled illness, recovery from bereavement, and gradual deterioration of sleep quality and daily movement. Interview and sensor data also identified changes in routine with variations in temperature and daylight hours. The findings demonstrated that a routine-based approach makes interpreting sensor data easy, intuitive, and transparent. They highlighted the importance of understanding and accounting for individual differences in preferences for routinization and the influence of the cyclical nature of daily routines, social or cultural rhythms, and seasonal changes in temperature and daylight hours when interpreting information based on sensor data. This research has demonstrated the usefulness of a routine-based approach for making sense of smart home data, which has furthered the understanding of the challenges that need to be addressed in order to make real-time monitoring and effective alerts a reality. ©Yasmin van Kasteren, Dana Bradford, Qing Zhang, Mohan Karunanithi, Hang Ding. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 13.06.2017.

  3. Analog Organic Electronics Building Blocks for Organic Smart Sensor Systems on Foil

    CERN Document Server

    Marien, Hagen; Heremans, Paul

    2013-01-01

     This book provides insight into organic electronics technology and in analog circuit techniques that can be used to increase the performance of both analog and digital organic circuits. It explores the domain of organic electronics technology for analog circuit applications, specifically smart sensor systems.  It focuses on all the building blocks in the data path of an organic sensor system between the sensor and the digital processing block. Sensors, amplifiers, analog-to-digital converters and DC-DC converters are discussed in detail. Coverage includes circuit techniques, circuit implementation, design decisions and measurement results of the building blocks described. Offers readers the first book to focus on analog organic circuit design; Discusses organic electronics technology for analog circuit applications in the context of smart sensor systems; Describes all building blocks necessary for an organic sensor system between the sensor and the digital processing block; Includes circuit techniques, cir...

  4. WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings

    Science.gov (United States)

    Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender

    2015-01-01

    Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance. PMID:25946630

  5. WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings

    Directory of Open Access Journals (Sweden)

    Hemant Ghayvat

    2015-05-01

    Full Text Available Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.

  6. WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings.

    Science.gov (United States)

    Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender

    2015-05-04

    Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home environment and performs his or her daily routine in order to live a long and healthy life. We initiate the research with the development of the smart home approach and implement it in different home conditions (different houses) to monitor the activity of an inhabitant for wellness detection. Additionally, our research extends the smart home system to smart buildings and models the design issues related to the smart building environment; these design issues are linked with system performance and reliability. This research paper also discusses and illustrates the possible mitigation to handle the ISM band interference and attenuation losses without compromising optimum system performance.

  7. Innovative testing and measurement solutions for smart grid

    CERN Document Server

    Huang, Qi; Yi, Jianbo; Zhen, Wei

    2015-01-01

    Focuses on sensor applications and smart meters in the newly developing interconnected smart grid Focuses on sensor applications and smart meters in the newly developing interconnected smart grid Presents the most updated technological developments in the measurement and testing of power systems within the smart grid environment Reflects the modernization of electric utility power systems with the extensive use of computer, sensor, and data communications technologies, providing benefits to energy consumers and utility companies alike The leading author heads a group of researchers focusing on

  8. Full-scale experimental validation of decentralized damage identification using wireless smart sensors

    International Nuclear Information System (INIS)

    Jang, Shinae; Sim, Sung-Han; Jo, Hongki; Spencer Jr, Billie F

    2012-01-01

    Wireless smart sensor networks (WSSN) facilitate a new paradigm for structural health monitoring (SHM) of civil infrastructure. Conventionally, SHM systems employing wired sensors and centralized data acquisition have been used to characterize the state of a structure; however, widespread implementation has been limited due to high costs and difficulties in installation. WSSN offer a unique opportunity to overcome such difficulties. Recent developments have realized low-cost, smart sensors with on-board computation and wireless communication capabilities, making deployment of a dense array of sensors on large civil structures both economical and feasible. Wireless smart sensors (WSS) have shown their tremendous potential for SHM in recent full-scale bridge monitoring examples. However, structural damage identification using on-board computation capability in a WSSN, a primary objective of SHM, has yet to reach its full potential. This paper presents full-scale validation of a damage identification strategy using a decentralized network of Imote2 nodes on a historic steel truss bridge. A total of 24 WSS nodes with 144 sensor channels are deployed on the bridge to validate the developed damage identification software. The performance of this decentralized damage identification strategy is demonstrated on the WSSN by comparing its results with those from the traditional centralized approach, as well as visual inspection. (paper)

  9. Smart CMOS image sensor for lightning detection and imaging.

    Science.gov (United States)

    Rolando, Sébastien; Goiffon, Vincent; Magnan, Pierre; Corbière, Franck; Molina, Romain; Tulet, Michel; Bréart-de-Boisanger, Michel; Saint-Pé, Olivier; Guiry, Saïprasad; Larnaudie, Franck; Leone, Bruno; Perez-Cuevas, Leticia; Zayer, Igor

    2013-03-01

    We present a CMOS image sensor dedicated to lightning detection and imaging. The detector has been designed to evaluate the potentiality of an on-chip lightning detection solution based on a smart sensor. This evaluation is performed in the frame of the predevelopment phase of the lightning detector that will be implemented in the Meteosat Third Generation Imager satellite for the European Space Agency. The lightning detection process is performed by a smart detector combining an in-pixel frame-to-frame difference comparison with an adjustable threshold and on-chip digital processing allowing an efficient localization of a faint lightning pulse on the entire large format array at a frequency of 1 kHz. A CMOS prototype sensor with a 256×256 pixel array and a 60 μm pixel pitch has been fabricated using a 0.35 μm 2P 5M technology and tested to validate the selected detection approach.

  10. Weight-Aware Sensor Deployment in Wireless Sensor Networks for Smart Cities

    Directory of Open Access Journals (Sweden)

    Mingshan Xie

    2018-01-01

    Full Text Available During the construction of wireless sensor networks (WSNs for smart cities, a preliminary survey of the relative criticalness within the monitored area can be performed. It is a challenge for deterministic sensor deployment to balance the tradeoff of sensing reliability and cost. In this paper, based on the sensing accuracy of the sensor, we establish a reliability model of the sensing area which is divided into sensing grids, and different weights are allocated to those grids. We employ a practical evaluation criterion using seesaw mapping for determining the weights of sensing grids. We further formulate and solve an optimization problem for maximizing the trust degree of the WSNs. With our proposed method, the efficient deployment of sensors can be realized. Simulation results show that our proposed deployment strategy can achieve higher trust degree with reduced sensor deployment cost and lower number of sensors at a certain miss probability threshold.

  11. Transforming Ordinary Buildings into Smart Buildings via Low-Cost, Self-Powering Wireless Sensors & Sensor Networks

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Philip [Case Western Reserve Univ., Cleveland, OH (United States)

    2017-06-09

    The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products will have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.

  12. Tree Alignment Based on Needleman-Wunsch Algorithm for Sensor Selection in Smart Homes.

    Science.gov (United States)

    Chua, Sook-Ling; Foo, Lee Kien

    2017-08-18

    Activity recognition in smart homes aims to infer the particular activities of the inhabitant, the aim being to monitor their activities and identify any abnormalities, especially for those living alone. In order for a smart home to support its inhabitant, the recognition system needs to learn from observations acquired through sensors. One question that often arises is which sensors are useful and how many sensors are required to accurately recognise the inhabitant's activities? Many wrapper methods have been proposed and remain one of the popular evaluators for sensor selection due to its superior accuracy performance. However, they are prohibitively slow during the evaluation process and may run into the risk of overfitting due to the extent of the search. Motivated by this characteristic, this paper attempts to reduce the cost of the evaluation process and overfitting through tree alignment. The performance of our method is evaluated on two public datasets obtained in two distinct smart home environments.

  13. Conductive polymer sensor arrays for smart orthopaedic implants

    Science.gov (United States)

    Micolini, Carolina; Holness, F. B.; Johnson, James A.; Price, Aaron D.

    2017-04-01

    This study proposes and demonstrates the design, implementation, and characterization of a 3D-printed smartpolymer sensor array using conductive polyaniline (PANI) structures embedded in a polymeric substrate. The piezoresistive characteristics of PANI were studied to evaluate the efficacy of the manufacturing of an embedded pressure sensor. PANI's stability throughout loading and unloading cycles together with the response to incremental loading cycles was investigated. It is demonstrated that this specially developed multi-material additive manufacturing process for polyaniline is a good candidate for the manufacture of implant components with smart-polymer sensors embedded for the analysis of joint loads in orthopaedic implants.

  14. Bio-inspired smart sensors for a hexapod robot

    DEFF Research Database (Denmark)

    Bilberg, Arne

    2011-01-01

    EMICAB (Embodied Motion Intelligence for Cognitive, Autonomous Robots) is an EU founded project where a consortium of 4 Universities is working together to integrate smart body mechanics and sensors with intelligent planning and motor behavior in order to make a holistic approach to artificial...

  15. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    Science.gov (United States)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  16. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Science.gov (United States)

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  17. Monofractal Characteristics of Traffic in Wireless Sensor Networks for Smart Grid

    Directory of Open Access Journals (Sweden)

    Ming-Yue Zhai

    2014-05-01

    Full Text Available Wireless sensor networks (WSNs have extensive applications in the smart grid in recently years. The time series in WSNs in smart grid should be discussed by analysis method which is non-linear. The method of monofractal is used here. Self-similar Hurst parameter calculated by the algorithm of Rescaled Range Analysis (R/S and fractal dimension are obtained, which confirm that the time sequences in WSNs for smart grid belong to the fractal sets and have the characteristic of self- similarity.

  18. Smart homes, private homes? An empirical study of technology researchers' perceptions of ethical issues in developing smart-home health technologies.

    Science.gov (United States)

    Birchley, Giles; Huxtable, Richard; Murtagh, Madeleine; Ter Meulen, Ruud; Flach, Peter; Gooberman-Hill, Rachael

    2017-04-04

    Smart-home technologies, comprising environmental sensors, wearables and video are attracting interest in home healthcare delivery. Development of such technology is usually justified on the basis of the technology's potential to increase the autonomy of people living with long-term conditions. Studies of the ethics of smart-homes raise concerns about privacy, consent, social isolation and equity of access. Few studies have investigated the ethical perspectives of smart-home engineers themselves. By exploring the views of engineering researchers in a large smart-home project, we sought to contribute to dialogue between ethics and the engineering community. Either face-to-face or using Skype, we conducted in-depth qualitative interviews with 20 early- and mid-career smart-home researchers from a multi-centre smart-home project, who were asked to describe their own experience and to reflect more broadly about ethical considerations that relate to smart-home design. With participants' consent, interviews were audio-recorded, transcribed and analysed using a thematic approach. Two overarching themes emerged: in 'Privacy', researchers indicated that they paid close attention to negative consequences of potential unauthorised information sharing in their current work. However, when discussing broader issues in smart-home design beyond the confines of their immediate project, researchers considered physical privacy to a lesser extent, even though physical privacy may manifest in emotive concerns about being watched or monitored. In 'Choice', researchers indicated they often saw provision of choice to end-users as a solution to ethical dilemmas. While researchers indicated that choices of end-users may need to be restricted for technological reasons, ethical standpoints that restrict choice were usually assumed and embedded in design. The tractability of informational privacy may explain the greater attention that is paid to it. However, concerns about physical privacy may

  19. APPLICATION OF SMART MOBILE PHONES IN VIBRATION MONITORING

    Directory of Open Access Journals (Sweden)

    Ljubomir Vračar

    2015-08-01

    Full Text Available The purpose of the research presented in this paper is the development of the smart mobile phone application for vibration monitoring of pumping aggregate, based on Microchip’s microcontroller (MC. Hardware used is based on Bluetooth connection between smart sensor and smart mobile phone. Software for acquisition and data analysis is optimized for imbedded application in smart sensors. Smart acceleration sensor in conjunction with Bluetooth connection to smart mobile phone creates one touch mobile vibration monitoring system. The authors have performed numerous measurements on a wide range of aggregates for establishing the operating functionality of the newly created system. The possibility of system application I rail vehicle vibration monitoring is also analyzed.

  20. A smart microelectromechanical sensor and switch triggered by gas

    KAUST Repository

    Bouchaala, Adam M.; Jaber, Nizar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-01-01

    device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a

  1. Design of external sensors board based on Bluetooth interface of smart phones for structural health monitoring system

    Science.gov (United States)

    Yu, Yan; Zhou, Yaping; Zhao, Xuefeng; Li, Dongsheng; Ou, Jinping

    2016-04-01

    As an important part of new information technology, the Internet of Things(IoT) is based on intelligent perception, recognition technology, ubiquitous computing, ubiquitous network integration, and it is known as the third wave of the development of information industry in the world after the computer and the Internet. And Smart Phones are the general term for a class of mobile phones with a separate operating system and operational memory, in which the third-party service programs including software, games, navigation, et.al, can be installed. Smart Phones, with not only sensors but also actuators, are widely used in the IoT world. As the current hot issues in the engineering area, Structural health monitoring (SHM) is also facing new problems about design ideas in the IoT environment. The development of IoT, wireless sensor network and mobile communication technology, provides a good technical platform for SHM. Based on these facts, this paper introduces a kind of new idea for Structural Health Monitoring using Smart Phones Technique. The system is described in detail, and the external sensor board based on Bluetooth interface is designed, the test based on Smart Phones is finished to validate the implementation and feasibility. The research is preliminary and more tests need to be carried out before it can be of practical use.

  2. Innovative P1451-Enabled Smart Power IVHM Sensor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has expressed a requirement for advanced Smart Sensors to support new systems for harsh environments. Power systems are an integral component of virtually any...

  3. A wireless smart sensor network for automated monitoring of cable tension

    International Nuclear Information System (INIS)

    Sim, Sung-Han; Cho, Soojin; Li, Jian; Jo, Hongki; Park, Jong-Woong; Jung, Hyung-Jo; Spencer Jr, Billie F

    2014-01-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea. (paper)

  4. A wireless smart sensor network for automated monitoring of cable tension

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo

    2014-02-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.

  5. Smart paint sensor for monitoring structural vibrations

    International Nuclear Information System (INIS)

    Al-Saffar, Y; Baz, A; Aldraihem, O

    2012-01-01

    A class of smart paint sensors is proposed for monitoring the structural vibration of beams. The sensor is manufactured from an epoxy resin which is mixed with carbon black nano-particles to make it electrically conducting and sensitive to mechanical vibrations. A comprehensive theoretical and experimental investigation is presented to understand the underlying phenomena governing the operation of this class of paint sensors and evaluate its performance characteristics. A theoretical model is presented to model the electromechanical behavior of the sensor system using molecular theory. The model is integrated with an amplifier circuit in order to predict the current and voltage developed by the paint sensor when subjected to loading. Furthermore, the sensor/amplifier circuit models are coupled with a finite element model of a base beam to which the sensor is bonded. The resulting multi-field model is utilized to predict the behavior of both the sensor and the beam when subjected to a wide variety of vibration excitations. The predictions of the multi-field finite element model are validated experimentally and the behavior of the sensor is evaluated both in the time and the frequency domains. The performance of the sensor is compared with the performance of conventional strain gages to emphasize its potential and merits. The presented techniques are currently being extended to sensors that can monitor the vibration and structural power flow of two-dimensional structures. (paper)

  6. Smart Sensor ASIC for Nuclear Power Monitoring

    International Nuclear Information System (INIS)

    Kerwin, David B.; Merkel, Kenneth G.; Rouxel, Olivier

    2013-06-01

    Mixed-signal integrated circuits are used in a variety of applications where ionizing radiation is present, including satellites, space vehicles, nuclear reactor monitoring, medical imaging, and cancer therapy. While total ionizing radiation is present in each of these environments, the type of radiation (e.g. heavy ions vs. high-energy x-rays) and other environmental factors present unique challenges to the mixed-signal designer. This paper discusses a Smart Sensor radiation hardened, mixed-signal, application specific integrated circuit (ASIC) specifically designed for sensor monitoring in a nuclear reactor environment. Results after exposure to gamma rays, neutrons, and temperatures up to 200 deg. C are reported. (authors)

  7. Fused Smart Sensor Network for Multi-Axis Forward Kinematics Estimation in Industrial Robots

    Directory of Open Access Journals (Sweden)

    Rene de Jesus Romero-Troncoso

    2011-04-01

    Full Text Available Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint’s angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  8. Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots.

    Science.gov (United States)

    Rodriguez-Donate, Carlos; Osornio-Rios, Roque Alfredo; Rivera-Guillen, Jesus Rooney; Romero-Troncoso, Rene de Jesus

    2011-01-01

    Flexible manipulator robots have a wide industrial application. Robot performance requires sensing its position and orientation adequately, known as forward kinematics. Commercially available, motion controllers use high-resolution optical encoders to sense the position of each joint which cannot detect some mechanical deformations that decrease the accuracy of the robot position and orientation. To overcome those problems, several sensor fusion methods have been proposed but at expenses of high-computational load, which avoids the online measurement of the joint's angular position and the online forward kinematics estimation. The contribution of this work is to propose a fused smart sensor network to estimate the forward kinematics of an industrial robot. The developed smart processor uses Kalman filters to filter and to fuse the information of the sensor network. Two primary sensors are used: an optical encoder, and a 3-axis accelerometer. In order to obtain the position and orientation of each joint online a field-programmable gate array (FPGA) is used in the hardware implementation taking advantage of the parallel computation capabilities and reconfigurability of this device. With the aim of evaluating the smart sensor network performance, three real-operation-oriented paths are executed and monitored in a 6-degree of freedom robot.

  9. Automated wireless monitoring system for cable tension using smart sensors

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jongwoong; Cho, Soojin; Spencer, Billie F.; Yun, Chung-Bang

    2013-04-01

    Cables are critical load carrying members of cable-stayed bridges; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Monitoring systems for the cable tension can be efficiently realized using wireless smart sensors in conjunction with vibration-based cable tension estimation approaches. This study develops an automated cable tension monitoring system using MEMSIC's Imote2 smart sensors. An embedded data processing strategy is implemented on the Imote2-based wireless sensor network to calculate cable tensions using a vibration-based method, significantly reducing the wireless data transmission and associated power consumption. The autonomous operation of the monitoring system is achieved by AutoMonitor, a high-level coordinator application provided by the Illinois SHM Project Services Toolsuite. The monitoring system also features power harvesting enabled by solar panels attached to each sensor node and AutoMonitor for charging control. The proposed wireless system has been deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea. Tension forces are autonomously monitored for 12 cables in the east, land side of the bridge, proving the validity and potential of the presented tension monitoring system for real-world applications.

  10. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.

    Science.gov (United States)

    Xiao, Jian; Zou, Xiang; Xu, Wenyao

    2017-09-26

    "Smart Pavement" is an emerging infrastructure for various on-road applications in transportation and road engineering. However, existing road monitoring solutions demand a certain periodic maintenance effort due to battery life limits in the sensor systems. To this end, we present an end-to-end self-powered wireless sensor-ePave-to facilitate smart and autonomous pavements. The ePave system includes a self-power module, an ultra-low-power sensor system, a wireless transmission module and a built-in power management module. First, we performed an empirical study to characterize the piezoelectric module in order to optimize energy-harvesting efficiency. Second, we developed an integrated sensor system with the optimized energy harvester. An adaptive power knob is designated to adjust the power consumption according to energy budgeting. Finally, we intensively evaluated the ePave system in real-world applications to examine the system's performance and explore the trade-off.

  11. Smart jacket design for neonatal monitoring with wearable sensors

    NARCIS (Netherlands)

    Bouwstra, S.; Chen, W.; Feijs, L.M.G.; Bambang Oetomo, S.

    2009-01-01

    Critically ill new born babies admitted at the Neonatal Intensive Care Unit (NICU) are extremely tiny and vulnerable to external disturbance. Smart Jacket proposed in this paper is the vision of a wearable unobtrusive continuous monitoring system realized by body sensor networks (BSN) and wireless

  12. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    Science.gov (United States)

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  13. Long-term real-time structural health monitoring using wireless smart sensor

    Science.gov (United States)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  14. Development and Application of Smart Geogrid Embedded with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Zheng-fang Wang

    2015-01-01

    Full Text Available Smart geogrids embedded with fiber Bragg grating (FBG for reinforcement as well as measurement of geotechnical structures have been developed. After the fabricating process of the geogrids is detailed, finite element (FE simulations are conducted to analyze the strain distribution of geogrids and the strain transfer characteristics from geogrids to fiber optic. Results indicate that FBG should be deployed in the middle of the geogrids rib to make sure that uniform strain distribution along the FBG. Also, PVC protective sleeves, which are used to protect fiber optic when integrated with geogrids, have smaller strain transfer loss than nylon sleeves. Tensile experiments are conducted to test strain measurement performance of proposed geogrids, and the results demonstrate that proposed smart geogrids have good linearity and consistency. Temperature experiments show that FBG embedded in geogrids has higher temperature sensitivity, and the temperature induced error can be compensated by an extra FBG strain-independent sensor. Furthermore, designed smart geogrids are used in a geotechnical model test to monitor strain during tunnel excavation. The strain tendency measured by smart geogrids and traditional strain sensor agree very well. The results indicate that smart geogrids embedded with FBGs can be an effective method to measure strains for geological engineering related applications.

  15. Energy-Efficient Broadcasting Scheme for Smart Industrial Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Zhuangbin Chen

    2017-01-01

    Full Text Available In smart Industrial Wireless Sensor Networks (IWSNs, sensor nodes usually adopt a programmable technology. These smart devices can obtain new or special functions by reprogramming: they upgrade their soft systems through receiving new version of program codes. If sensor nodes need to be upgraded, the sink node will propagate program code packets to them through “one-to-many” broadcasting, and therefore new capabilities can be obtained, forming the so-called Software Defined Network (SDN. However, due to the high volume of code packet, the constraint energy of sensor node, and the unreliable link quality of wireless network, rapidly broadcasting the code packets to all nodes in network can be a challenge issue. In this paper, a novel Energy-efficient Broadcast scheme with adjustable broadcasting radius is proposed aiming to improve the performance of network upgrade. In our scheme, the nonhotspots sensor nodes take full advantage of their residual energy caused in data collection period to improve the packet reception probability and reduce the broadcasting delay of code packet transmission by enlarging the broadcasting radius, that is, the transmitting power. The theoretical analyses and experimental results show that, compared with previous work, our approach can averagely reduce the Network Upgrade Delay (NUD by 14.8%–45.2% and simultaneously increase the reliability without harming the lifetime of network.

  16. Smart Sensors' Role in Integrated System Health Management

    Science.gov (United States)

    Perotti, Jose M.; Mata, Carlos

    2005-01-01

    During the last decade, there has been a major effort in the aerospace industry to reduce the cost per pond of payload and become competitive in the international market. Competition from Europe, Japan, and China has reduced this cost to almost a third from 1990 to 2000. This cost has leveled in recent years to an average price of around $12,000/pound of payload. One of NASA's goals is to promote the development of technologies to reduce this cost by a factor of 10 or more Exploration of space, specially manned exploration missions, involves very complex launch and flight vehicles, associated ground support systems, and extensive human support during all phases of the mission. When considering the Space Shuttle Program, we can see that vehicle and ground support systems' processing, operation, and maintenance represent a large percentage of the program cost and time. Reducing operating, processing and maintenance costs will greatly reduce the cost of Exploration programs. The Integrated System Health Management (ISHM) concept is one of the technologies that will help reduce these operating, processing and maintenance costs. ISHM is an integrated health monitoring system applicable to both flight and ground systems. It automatically and autonomously acquires information from sensors and actuators and processes that information using the ISHM-embedded knowledge. As a result, it establishes the health of the system based on the acquired information and its prior knowledge. When this concept is fully implemented, ISHM systems shall be able to perform failure prediction and remediation before actual hard failures occurs, preventing its costly consequences. Data sources, sensors, and their associated data acquisition systems, constitute the foundation of the system. A smart sensing architecture is required to support the acquisition of reliable, high quality data, required by the ISHM. A thorough definition of the smart sensor architectures, their embedded diagnostic

  17. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    Science.gov (United States)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  18. Smart homes design, implementation and issues

    CERN Document Server

    Suryadevara, Nagender Kumar

    2015-01-01

    The book addresses issues towards the design and development of Wireless Sensor Network based Smart Home and fusion of Real-Time Data for Wellness Determination of an elderly person living alone in a Smart Home. The fundamentals of selection of sensor, fusion of sensor data, system design, modelling, characterizations, experimental investigations and analyses have been covered. This book will be extremely useful for the engineers and researchers especially higher undergraduate, postgraduate students as well as practitioners working on the development of Wireless Sensor Networks, Internet of Things and Data Mining.

  19. Design and implementation of smart sensor nodes for wireless disaster monitoring systems

    Science.gov (United States)

    Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung

    2004-07-01

    A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.

  20. Inkjet Printed Fully-Passive Body-Worn Wireless Sensors for Smart and Connected Community (SCC

    Directory of Open Access Journals (Sweden)

    Bashir I. Morshed

    2017-11-01

    Full Text Available Future Smart and Connected Communities (SCC will utilize distributed sensors and embedded computing to seamlessly generate meaningful data that can assist individuals, communities, and society with interlocking physical, social, behavioral, economic, and infrastructural interaction. SCC will require newer technologies for seamless and unobtrusive sensing and computation in natural settings. This work presents a new technology for health monitoring with low-cost body-worn disposable fully passive electronic sensors, along with a scanner, smartphone app, and web-server for a complete smart sensor system framework. The novel wireless resistive analog passive (WRAP sensors are printed using an inkjet printing (IJP technique on paper with silver inks (Novacentrix Ag B40, sheet resistance of 21 mΩ/sq and incorporate a few discrete surface mounted electronic components (overall thickness of <1 mm. These zero-power flexible sensors are powered through a wireless inductive link from a low-power scanner (500 mW during scanning burst of 100 ms by amplitude modulation at the carrier signal of 13.56 MHz. While development of various WRAP sensors is ongoing, this paper describes development of a WRAP temperature sensor in detail as an illustration. The prototypes were functionally verified at various temperatures with energy consumption of as low as 50 mJ per scan. The data is analyzed with a smartphone app that computes severity (Events-of-Interest, or EoI using a real-time algorithm. The severity can then be anonymously shared with a custom web-server, and visualized either in temporal or spatial domains. This research aims to reduce ER visits of patients by enabling self-monitoring, thereby improving community health for SSC.

  1. Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging

    Science.gov (United States)

    Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin

    2014-06-01

    Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.

  2. Cognitive radio based sensor network in smart grid: Architectures, applications and communication technologies

    CSIR Research Space (South Africa)

    Ogbodo, EU

    2017-09-01

    Full Text Available The cognitive radio-based sensor network (CRSN) is envisioned as a strong driver in the development of modern power system smart grids (SGs). This can address the spectrum limitation in the sensor nodes due to interference cause by other wireless...

  3. High precision silicon piezo resistive SMART pressure sensor

    International Nuclear Information System (INIS)

    Brown, Rod

    2005-01-01

    Instruments for test and calibration require a pressure sensor that is precise and stable. Market forces also dictate a move away from single measurand test equipment and, certainly in the case of pressure, away from single range equipment. A pressure 'module' is required which excels in pressure measurement but is interchangble with sensors for other measurands. A communications interface for such a sensor has been specified. Instrument Digital Output Sensor (IDOS) that permits this interchanagability and allows the sensor to be inside or outside the measuring instrument. This paper covers the design and specification of a silicon diaphragm piezo resistive SMART sensor using this interface. A brief history of instrument sensors will be given to establish the background to this development. Design choices of the silicon doping, bridge energisation method, temperature sensing, signal conversion, data processing, compensation method, communications interface will be discussed. The physical format of the 'in-instrument' version will be shown and then extended to the packaging design for the external version. Test results will show the accuracy achieved exceeds the target of 0.01%FS over a range of temperatures

  4. High precision silicon piezo resistive SMART pressure sensor

    Science.gov (United States)

    Brown, Rod

    2005-01-01

    Instruments for test and calibration require a pressure sensor that is precise and stable. Market forces also dictate a move away from single measurand test equipment and, certainly in the case of pressure, away from single range equipment. A pressure `module' is required which excels in pressure measurement but is interchangble with sensors for other measurands. A communications interface for such a sensor has been specified. Instrument Digital Output Sensor (IDOS) that permits this interchanagability and allows the sensor to be inside or outside the measuring instrument. This paper covers the design and specification of a silicon diaphragm piezo resistive SMART sensor using this interface. A brief history of instrument sensors will be given to establish the background to this development. Design choices of the silicon doping, bridge energisation method, temperature sensing, signal conversion, data processing, compensation method, communications interface will be discussed. The physical format of the `in-instrument' version will be shown and then extended to the packaging design for the external version. Test results will show the accuracy achieved exceeds the target of 0.01%FS over a range of temperatures.

  5. Development of a smart home simulator for use as a heuristic tool for management of sensor distribution.

    Science.gov (United States)

    Poland, Michael P; Nugent, Chris D; Wang, Hui; Chen, Liming

    2009-01-01

    Smart Homes offer potential solutions for various forms of independent living for the elderly. The assistive and protective environment afforded by smart homes offer a safe, relatively inexpensive, dependable and viable alternative to vulnerable inhabitants. Nevertheless, the success of a smart home rests upon the quality of information its decision support system receives and this in turn places great importance on the issue of correct sensor deployment. In this article we present a software tool that has been developed to address the elusive issue of sensor distribution within smart homes. Details of the tool will be presented and it will be shown how it can be used to emulate any real world environment whereby virtual sensor distributions can be rapidly implemented and assessed without the requirement for physical deployment for evaluation. As such, this approach offers the potential of tailoring sensor distributions to the specific needs of a patient in a non-evasive manner. The heuristics based tool presented here has been developed as the first part of a three stage project.

  6. Improving Biometric-Based Authentication Schemes with Smart Card Revocation/Reissue for Wireless Sensor Networks.

    Science.gov (United States)

    Moon, Jongho; Lee, Donghoon; Lee, Youngsook; Won, Dongho

    2017-04-25

    User authentication in wireless sensor networks is more difficult than in traditional networks owing to sensor network characteristics such as unreliable communication, limited resources, and unattended operation. For these reasons, various authentication schemes have been proposed to provide secure and efficient communication. In 2016, Park et al. proposed a secure biometric-based authentication scheme with smart card revocation/reissue for wireless sensor networks. However, we found that their scheme was still insecure against impersonation attack, and had a problem in the smart card revocation/reissue phase. In this paper, we show how an adversary can impersonate a legitimate user or sensor node, illegal smart card revocation/reissue and prove that Park et al.'s scheme fails to provide revocation/reissue. In addition, we propose an enhanced scheme that provides efficiency, as well as anonymity and security. Finally, we provide security and performance analysis between previous schemes and the proposed scheme, and provide formal analysis based on the random oracle model. The results prove that the proposed scheme can solve the weaknesses of impersonation attack and other security flaws in the security analysis section. Furthermore, performance analysis shows that the computational cost is lower than the previous scheme.

  7. Research Advance in Smart Metamaterials

    Directory of Open Access Journals (Sweden)

    YU Xiang-long

    2016-07-01

    Full Text Available Metamaterials, man-made materials, enable us to design our own "atoms", and thereby to create materials with unprecedented effective properties that have not yet been found in nature. Smart metamaterial is one of those that is an intelligent perceptive to the changes from external environments and simultaneously having the capability to respond to thermal and mechanical stimuli. This paper can provide a review on these smart metamaterials in perspective of science, engineering and industrial products. We divide smart metamaterials according to what they are tuning into: optical, mechanical, thermal and coupled smart metamaterials. The rest of two techniques we addressed are modelling/simulation and fabrication/gene engineering. All of these types smart materials presented here are associated with at least five fundamental research: coupled mechanism of multi-physics fields, man-made design for atom/molecular, metamaterials coupled with natural materials, tunability of metamaterials, and mechanism of sensing metamaterials. Therefore, we give a systematic overview of various potential smart metamaterials together with the upcoming challenges in the intriguing and promising research field.

  8. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    Directory of Open Access Journals (Sweden)

    Irineo Torres-Pacheco

    2010-09-01

    Full Text Available Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities.

  9. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    Science.gov (United States)

    Millan-Almaraz, Jesus Roberto; de Jesus Romero-Troncoso, Rene; Guevara-Gonzalez, Ramon Gerardo; Contreras-Medina, Luis Miguel; Carrillo-Serrano, Roberto Valentin; Osornio-Rios, Roque Alfredo; Duarte-Galvan, Carlos; Rios-Alcaraz, Miguel Angel; Torres-Pacheco, Irineo

    2010-01-01

    Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities. PMID:22163656

  10. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities.

    Science.gov (United States)

    Sagl, Günther; Resch, Bernd; Blaschke, Thomas

    2015-07-14

    In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today's technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different

  11. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities

    Science.gov (United States)

    Sagl, Günther; Resch, Bernd; Blaschke, Thomas

    2015-01-01

    In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today’s technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different

  12. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Directory of Open Access Journals (Sweden)

    Ion Stiharu

    2010-08-01

    Full Text Available Computer numerically controlled (CNC machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA-based sensor node.

  13. A Field Programmable Gate Array-Based Reconfigurable Smart-Sensor Network for Wireless Monitoring of New Generation Computer Numerically Controlled Machines

    Science.gov (United States)

    Moreno-Tapia, Sandra Veronica; Vera-Salas, Luis Alberto; Osornio-Rios, Roque Alfredo; Dominguez-Gonzalez, Aurelio; Stiharu, Ion; de Jesus Romero-Troncoso, Rene

    2010-01-01

    Computer numerically controlled (CNC) machines have evolved to adapt to increasing technological and industrial requirements. To cover these needs, new generation machines have to perform monitoring strategies by incorporating multiple sensors. Since in most of applications the online Processing of the variables is essential, the use of smart sensors is necessary. The contribution of this work is the development of a wireless network platform of reconfigurable smart sensors for CNC machine applications complying with the measurement requirements of new generation CNC machines. Four different smart sensors are put under test in the network and their corresponding signal processing techniques are implemented in a Field Programmable Gate Array (FPGA)-based sensor node. PMID:22163602

  14. SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines

    Directory of Open Access Journals (Sweden)

    Ali M. Sadeghioon

    2014-02-01

    Full Text Available Asset monitoring, specifically infrastructure monitoring such as water distribution pipelines, is becoming increasingly critical for utility owners who face new challenges due to an aging network. In the UK alone, during the period of 2009–2010, approximately 3281 mega litres (106 of water were wasted due to failure or leaks in water pipelines. Various techniques can be used for the monitoring of water distribution networks. This paper presents the design, development and testing of a smart wireless sensor network for leak detection in water pipelines, based on the measurement of relative indirect pressure changes in plastic pipes. Power consumption of the sensor nodes is minimised to 2.2 mW based on one measurement every 6 h in order to prolong the lifetime of the network and increase the sensor nodes’ compatibility with current levels of power available by energy harvesting methods and long life batteries. A novel pressure sensing method is investigated for its performance and capabilities by both laboratory and field trials. The sensors were capable of measuring pressure changes due to leaks. These pressure profiles can also be used to locate the leaks.

  15. Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and Superhydrophobic-Surface-Based Triboelectric Nanogenerator.

    Science.gov (United States)

    Zhao, Kun; Wang, Zhong Lin; Yang, Ya

    2016-09-27

    Wireless sensor networks will be responsible for a majority of the fast growth in intelligent systems in the next decade. However, most of the wireless smart sensor nodes require an external power source such as a Li-ion battery, where the labor cost and environmental waste issues of replacing batteries have largely limited the practical applications. Instead of using a Li-ion battery, we report an ultrastable, highly efficient, and superhydrophobic-surface-based triboelectric nanogenerator (TENG) to scavenge wind energy for sustainably powering a wireless smart temperature sensor node. There is no decrease in the output voltage and current of the TENG after continuous working for about 14 h at a wind speed of 12 m/s. Through a power management circuit, the TENG can deliver a constant output voltage of 3.3 V and a pulsed output current of about 100 mA to achieve highly efficient energy storage in a capacitor. A wireless smart temperature sensor node can be sustainably powered by the TENG for sending the real-time temperature data to an iPhone under a working distance of 26 m, demonstrating the feasibility of the self-powered wireless smart sensor networks.

  16. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays.

    Science.gov (United States)

    Park, Jihun; Kim, Joohee; Kim, So-Yun; Cheong, Woon Hyung; Jang, Jiuk; Park, Young-Geun; Na, Kyungmin; Kim, Yun-Tae; Heo, Jun Hyuk; Lee, Chang Young; Lee, Jung Heon; Bien, Franklin; Park, Jang-Ung

    2018-01-01

    Recent advances in wearable electronics combined with wireless communications are essential to the realization of medical applications through health monitoring technologies. For example, a smart contact lens, which is capable of monitoring the physiological information of the eye and tear fluid, could provide real-time, noninvasive medical diagnostics. However, previous reports concerning the smart contact lens have indicated that opaque and brittle components have been used to enable the operation of the electronic device, and this could block the user's vision and potentially damage the eye. In addition, the use of expensive and bulky equipment to measure signals from the contact lens sensors could interfere with the user's external activities. Thus, we report an unconventional approach for the fabrication of a soft, smart contact lens in which glucose sensors, wireless power transfer circuits, and display pixels to visualize sensing signals in real time are fully integrated using transparent and stretchable nanostructures. The integration of this display into the smart lens eliminates the need for additional, bulky measurement equipment. This soft, smart contact lens can be transparent, providing a clear view by matching the refractive indices of its locally patterned areas. The resulting soft, smart contact lens provides real-time, wireless operation, and there are in vivo tests to monitor the glucose concentration in tears (suitable for determining the fasting glucose level in the tears of diabetic patients) and, simultaneously, to provide sensing results through the contact lens display.

  17. The smart grid research network: Road map for Smart Grid research, development and demonstration up to 2020

    Energy Technology Data Exchange (ETDEWEB)

    Troi, A. [Technical Univ. of Denmark. DTU Electrical Engineering, DTU Risoe Campus, Roskilde (Denmark); Noerregaard Joergensen, B. [Syddansk Univ. (SDU), Odense (Denmark); Mahler Larsen, E. [Technical Univ. of Denmark. DTU Electrical Engineering, Kgs. Lyngby (Denmark)] [and others

    2013-01-15

    This road map is a result of part-recommendation no. 25 in 'MAIN REPORT - The Smart Grid Network's recommendations', written by the Smart Grid Network for the Danish Ministry of Climate, Energy and Building in October 2011. This part-recommendation states: ''Part-recommendation 25 - A road map for Smart Grid research, development and demonstration It is recommended that the electricity sector invite the Ministry to participate in the creation of a road map to ensure that solutions are implemented and coordinated with related policy areas. The sector should also establish a fast-acting working group with representatives from universities, distribution companies and the electric industry, in order to produce a mutual, binding schedule for the RDD of the Smart Grid in Denmark. Time prioritisation of part-recommendation: 2011-2012 Responsibility for implementation of part-recommendation: Universities, along with relevant electric-industry actors, should establish a working group for the completion of a consolidated road map by the end of 2012.'' In its work on this report, the Smart Grid Research Network has focused particularly on part-recommendations 26, 27 and 28 in 'MAIN REPORT - The Smart Grid Network's recommendations', which relate to strengthening and marketing the research infrastructure that will position Denmark as the global hub for Smart Grid development; strengthening basic research into the complex relationships in electric systems with large quantities of independent parties; and improved understanding of consumer behaviour and social economics. Naturally the work has spread to related areas along the way. The work has been conducted by the Smart Grid Research Network. (Author)

  18. Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging

    Science.gov (United States)

    Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin

    2014-01-01

    Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging. PMID:24953037

  19. Design and Implementation of a Smart Sensor for Respiratory Rate Monitoring

    Directory of Open Access Journals (Sweden)

    Juan Aponte Luis

    2014-02-01

    Full Text Available This work presents the design, development and implementation of a smart sensor to monitor the respiratory rate. This sensor is aimed at overcoming the drawbacks of other systems currently available in market, namely, devices that are costly, uncomfortable, difficult-to-install, provide low detection sensitivity, and little-to-null patient-to-patient calibration. The device is based on capacitive sensing by means of an LC oscillator. Experimental results show that the sensor meets the necessary requirements, making feasible the proposed monitoring system with the technology used.

  20. Optical fiber sensors for IoT and smart devices

    CERN Document Server

    Domingues, Maria de Fátima F

    2017-01-01

    This brief provides a review of the evolution of optical fiber sensing solutions and related applications. Unique production methods are presented and discussed, highlighting their evolution and analyzing their complexity. Under this scope, this brief presents the existing silica optical fiber sensors and polymer optical fiber sensors solutions, comparing its field of action (sensitivity, accuracy), complexity of manufacture and economic cost. Special attention is given to low-cost production methods. This brief evaluates the different existing techniques, assessing the accuracy and suitability of these sensors for possible Internet of Things (IoT) integration in different considered scenarios. Critical analytical techniques, also covered in this brief, are expected to play a key role in the world of IoT and the smart city of tomorrow.

  1. SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System.

    Science.gov (United States)

    Xiao, Changjiang; Chen, Nengcheng; Li, Dandan; Lv, You; Gong, Jianya

    2016-12-30

    Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web-enabled smart cultural relics management system (SCRMS). In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID) is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics.

  2. IEEE 1451.2 based Smart sensor system using ADuc847

    Science.gov (United States)

    Sreejithlal, A.; Ajith, Jose

    IEEE 1451 standard defines a standard interface for connecting transducers to microprocessor based data acquisition systems, instrumentation systems, control and field networks. Smart transducer interface module (STIM) acts as a unit which provides signal conditioning, digitization and data packet generation functions to the transducers connected to it. This paper describes the implementation of a microcontroller based smart transducer interface module based on IEEE 1451.2 standard. The module, implemented using ADuc847 microcontroller has 2 transducer channels and is programmed using Embedded C language. The Sensor system consists of a Network Controlled Application Processor (NCAP) module which controls the Smart transducer interface module (STIM) over an IEEE1451.2-RS232 bus. The NCAP module is implemented as a software module in C# language. The hardware details, control principles involved and the software implementation for the STIM are described in detail.

  3. MEMSWear - Biomonitoring - Incorporating sensors into smart shirt for wireless sentinel medical detection and alarm

    International Nuclear Information System (INIS)

    Po, Samuel Ng Choon; Dagang, Guo; Hapipi, Mohammad Dzulkifli Bin Mohyi; Hock, Francis Tay Eng

    2006-01-01

    This paper presents a method of using a body-distributed smart sensor platform for continuous detection of vital physiological signs in a body area network (BAN) system. An overview of the approach utilising predefined sentinel vital sign events is mentioned in order to optimise the platform in both hardware and software level. A BAN system consisting of smart sensor platform with short range ISM transmission will be used to communicate with a communication gateway. This communication gateway will encode and send the signals via Bluetooth to designated devices to inform caregivers, family members or transmit information to internet server

  4. MEMSWear - Biomonitoring - Incorporating sensors into smart shirt for wireless sentinel medical detection and alarm

    Energy Technology Data Exchange (ETDEWEB)

    Po, Samuel Ng Choon; Dagang, Guo; Hapipi, Mohammad Dzulkifli Bin Mohyi; Hock, Francis Tay Eng [Mechanical Engineering National University Of Singapore, 10 Kent Ridge Crescent, Singapore 119260 Singapore (Singapore)

    2006-04-01

    This paper presents a method of using a body-distributed smart sensor platform for continuous detection of vital physiological signs in a body area network (BAN) system. An overview of the approach utilising predefined sentinel vital sign events is mentioned in order to optimise the platform in both hardware and software level. A BAN system consisting of smart sensor platform with short range ISM transmission will be used to communicate with a communication gateway. This communication gateway will encode and send the signals via Bluetooth to designated devices to inform caregivers, family members or transmit information to internet server.

  5. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors

    International Nuclear Information System (INIS)

    Zhang, Jinrui; Lu, Youyuan; Lu, Zeyu; Liu, Chao; Sun, Guoxing; Li, Zongjin

    2015-01-01

    Cement-based piezoelectric composites are employed as the sensing elements of a new smart traffic monitoring system. The piezoelectricity of the cement-based piezoelectric sensors enables powerful and accurate real-time detection of the pressure induced by the traffic flow. To describe the mechanical-electrical conversion mechanism between traffic flow and the electrical output of the embedded piezoelectric sensors, a mathematical model is established based on Duhamel’s integral, the constitutive law and the charge-leakage characteristics of the piezoelectric composite. Laboratory tests show that the voltage magnitude of the sensor is linearly proportional to the applied pressure, which ensures the reliability of the cement-based piezoelectric sensors for traffic monitoring. A series of on-site road tests by a 10 tonne truck and a 6.8 tonne van show that vehicle weight-in-motion can be predicted based on the mechanical-electrical model by taking into account the vehicle speed and the charge-leakage property of the piezoelectric sensor. In the speed range from 20 km h −1 to 70 km h −1 , the error of the repeated weigh-in-motion measurements of the 6.8 tonne van is less than 1 tonne. The results indicate that the embedded cement-based piezoelectric sensors and associated measurement setup have good capability of smart traffic monitoring, such as traffic flow detection, vehicle speed detection and weigh-in-motion measurement. (paper)

  6. KEA-71 Smart Current Signature Sensor (SCSS)

    Science.gov (United States)

    Perotti, Jose M.

    2010-01-01

    This slide presentation reviews the development and uses of the Smart Current Signature Sensor (SCSS), also known as the Valve Health Monitor (VHM) system. SCSS provides a way to not only monitor real-time the valve's operation in a non invasive manner, but also to monitor its health (Fault Detection and Isolation) and identify potential faults and/or degradation in the near future (Prediction/Prognosis). This technology approach is not only applicable for solenoid valves, and it could be extrapolated to other electrical components with repeatable electrical current signatures such as motors.

  7. Suitability of Strain Gage Sensors for Integration into Smart Sport Equipment: A Golf Club Example.

    Science.gov (United States)

    Umek, Anton; Zhang, Yuan; Tomažič, Sašo; Kos, Anton

    2017-04-21

    Wearable devices and smart sport equipment are being increasingly used in amateur and professional sports. Smart sport equipment employs various sensors for detecting its state and actions. The correct choice of the most appropriate sensor(s) is of paramount importance for efficient and successful operation of sport equipment. When integrated into the sport equipment, ideal sensors are unobstructive, and do not change the functionality of the equipment. The article focuses on experiments for identification and selection of sensors that are suitable for the integration into a golf club with the final goal of their use in real time biofeedback applications. We tested two orthogonally affixed strain gage (SG) sensors, a 3-axis accelerometer, and a 3-axis gyroscope. The strain gage sensors are calibrated and validated in the laboratory environment by a highly accurate Qualisys Track Manager (QTM) optical tracking system. Field test results show that different types of golf swing and improper movement in early phases of golf swing can be detected with strain gage sensors attached to the shaft of the golf club. Thus they are suitable for biofeedback applications to help golfers to learn repetitive golf swings. It is suggested that the use of strain gage sensors can improve the golf swing technical error detection accuracy and that strain gage sensors alone are enough for basic golf swing analysis. Our final goal is to be able to acquire and analyze as many parameters of a smart golf club in real time during the entire duration of the swing. This would give us the ability to design mobile and cloud biofeedback applications with terminal or concurrent feedback that will enable us to speed-up motor skill learning in golf.

  8. Theory and applications of smart cameras

    CERN Document Server

    2016-01-01

    This book presents an overview of smart camera systems, considering practical applications but also reviewing fundamental aspects of the underlying technology.  It introduces in a tutorial style the principles of sensing and signal processing, and also describes topics such as wireless connection to the Internet of Things (IoT) which is expected to be the biggest market for smart cameras. It is an excellent guide to the fundamental of smart camera technology, and the chapters complement each other well as the authors have worked as a team under the auspice of GFP(Global Frontier Project), the largest-scale funded research in Korea.  This is the third of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies.  The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering significant improvements in information processi...

  9. Performance Analysis of AODV Routing Protocol for Wireless Sensor Network based Smart Metering

    International Nuclear Information System (INIS)

    Farooq, Hasan; Jung, Low Tang

    2013-01-01

    Today no one can deny the need for Smart Grid and it is being considered as of utmost importance to upgrade outdated electric infrastructure to cope with the ever increasing electric load demand. Wireless Sensor Network (WSN) is considered a promising candidate for internetworking of smart meters with the gateway using mesh topology. This paper investigates the performance of AODV routing protocol for WSN based smart metering deployment. Three case studies are presented to analyze its performance based on four metrics of (i) Packet Delivery Ratio, (ii) Average Energy Consumption of Nodes (iii) Average End-End Delay and (iv) Normalized Routing Load.

  10. Design of smart home sensor visualizations for older adults.

    Science.gov (United States)

    Le, Thai; Reeder, Blaine; Chung, Jane; Thompson, Hilaire; Demiris, George

    2014-07-24

    Smart home sensor systems provide a valuable opportunity to continuously and unobtrusively monitor older adult wellness. However, the density of sensor data can be challenging to visualize, especially for an older adult consumer with distinct user needs. We describe the design of sensor visualizations informed by interviews with older adults. The goal of the visualizations is to present sensor activity data to an older adult consumer audience that supports both longitudinal detection of trends and on-demand display of activity details for any chosen day. The design process is grounded through participatory design with older adult interviews during a six-month pilot sensor study. Through a secondary analysis of interviews, we identified the visualization needs of older adults. We incorporated these needs with cognitive perceptual visualization guidelines and the emotional design principles of Norman to develop sensor visualizations. We present a design of sensor visualization that integrate both temporal and spatial components of information. The visualization supports longitudinal detection of trends while allowing the viewer to view activity within a specific date.CONCLUSIONS: Appropriately designed visualizations for older adults not only provide insight into health and wellness, but also are a valuable resource to promote engagement within care.

  11. Design of smart home sensor visualizations for older adults.

    Science.gov (United States)

    Le, Thai; Reeder, Blaine; Chung, Jane; Thompson, Hilaire; Demiris, George

    2014-01-01

    Smart home sensor systems provide a valuable opportunity to continuously and unobtrusively monitor older adult wellness. However, the density of sensor data can be challenging to visualize, especially for an older adult consumer with distinct user needs. We describe the design of sensor visualizations informed by interviews with older adults. The goal of the visualizations is to present sensor activity data to an older adult consumer audience that supports both longitudinal detection of trends and on-demand display of activity details for any chosen day. The design process is grounded through participatory design with older adult interviews during a six-month pilot sensor study. Through a secondary analysis of interviews, we identified the visualization needs of older adults. We incorporated these needs with cognitive perceptual visualization guidelines and the emotional design principles of Norman to develop sensor visualizations. We present a design of sensor visualization that integrate both temporal and spatial components of information. The visualization supports longitudinal detection of trends while allowing the viewer to view activity within a specific date. Appropriately designed visualizations for older adults not only provide insight into health and wellness, but also are a valuable resource to promote engagement within care.

  12. Smart homes, private homes? An empirical study of technology researchers? perceptions of ethical issues in developing smart-home health technologies

    OpenAIRE

    Birchley, Giles; Huxtable, Richard; Murtagh, Madeleine; ter Meulen, Ruud; Flach, Peter; Gooberman-Hill, Rachael

    2017-01-01

    Background Smart-home technologies, comprising environmental sensors, wearables and video are attracting interest in home healthcare delivery. Development of such technology is usually justified on the basis of the technology?s potential to increase the autonomy of people living with long-term conditions. Studies of the ethics of smart-homes raise concerns about privacy, consent, social isolation and equity of access. Few studies have investigated the ethical perspectives of smart-home engine...

  13. A Reliable TTP-Based Infrastructure with Low Sensor Resource Consumption for the Smart Home Multi-Platform.

    Science.gov (United States)

    Kang, Jungho; Kim, Mansik; Park, Jong Hyuk

    2016-07-05

    With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms.

  14. A Reliable TTP-Based Infrastructure with Low Sensor Resource Consumption for the Smart Home Multi-Platform

    Directory of Open Access Journals (Sweden)

    Jungho Kang

    2016-07-01

    Full Text Available With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms.

  15. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-30

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.

  16. Control systems using modal domain optical fiber sensors for smart structure applications

    Science.gov (United States)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  17. SCRMS: An RFID and Sensor Web-Enabled Smart Cultural Relics Management System

    Directory of Open Access Journals (Sweden)

    Changjiang Xiao

    2016-12-01

    Full Text Available Cultural relics represent national or even global resources of inestimable value. How to efficiently manage and preserve these cultural relics is a vitally important issue. To achieve this goal, this study proposed, designed, and implemented an RFID and Sensor Web–enabled smart cultural relics management system (SCRMS. In this system, active photovoltaic subtle energy-powered Radio Frequency Identification (RFID is used for long-range contactless identification and lifecycle management of cultural relics during their storage and circulation. In addition, different types of ambient sensors are integrated with the RFID tags and deployed around cultural relics to monitor their environmental parameters, helping to ensure that they remain in good condition. An Android-based smart mobile application, as middleware, is used in collaboration with RFID readers to collect information and provide convenient management for the circulation of cultural relics. Moreover, multiple sensing techniques are taken advantage of simultaneously for preservation of cultural relics. The proposed system was successfully applied to a museum in the Yongding District, Fujian Province, China, demonstrating its feasibility and advantages for smart and efficient management and preservation of cultural relics.

  18. Development of Smart Active Layer Sensor (I) : Theory and Concept Study

    International Nuclear Information System (INIS)

    Yoon, Dong Jin; Lee, Young Sup; Kwon, Jae Hwa; Lee, Sang Il

    2004-01-01

    This paper is the first part of the study on the development of a smart active layer (SAL) sensor, which consists of two parts. In this first part, the theory and concept of the SAL sensor is investigated, which is designed for the detection of elastic waves caused by internal cracks and damages in structures. For the development SAL sensor, (i) the basic theory of elastic waves was studied, (ii) the feasible study of the SAL as an elastic waves detection sensor using the finite element analysis (FEA) with respect to a piezoceramic disc was performed. (iii) the comparison of performances between some piezoceramic sensors and a commercial acoustic emission (AE) sensor was accomplished to ensure the applicability by the experimental means, such as a pencil lead break test. Also, the conceptional study for the SAL sensor, which can be utilized for the effective detection and locating of defects by the arrangement of regularly distributed sensors, was discussed

  19. SSIART: Opening the Way to Wireless Sensor Networks On-Board Spacecraft with an Inter-Agency Research Environment

    Science.gov (United States)

    Gunes-Lasnet, Sev; Dufour, Jean-Francois

    2012-08-01

    The potential uses and benefits of wireless technologies in space are very broad. Since many years the CCSDS SOIS wireless working group has worked at the identification of key applications for which wireless would bring benefits, and at supporting the deployment of wireless in space thanks to documents, in particular a Green informative book and magenta books presenting recommended practices.The Smart Sensor Inter-Agency Research Test bench (SSIART) is being designed to provide the space Agencies and the Industry with a reference smart sensor platform to test wireless sensor technologies in reference representative applications and RF propagation environments, while promoting these technologies at the same time.

  20. Material Agency In User-Centred Design Practices: High School Students Improvising (with) Smart Sensor Prototypes

    NARCIS (Netherlands)

    Sauer, S.

    2015-01-01

    This paper investigates (digital) materiality through an analysis of the "sociomaterial configuration" (Orlikowski 2009) of the participatory design project SensorLab (2010). In SensorLab, users were enrolled as designers: a group of high school students developed and tested smart pollution-sensing

  1. Material Agency In User-Centred Design Practices: High School Students Improvising (with) Smart Sensor Prototypes

    NARCIS (Netherlands)

    Sauer, S.C.

    2015-01-01

    This paper investigates (digital) materiality through an analysis of the “sociomaterial configuration” (Orlikowski 2009) of the participatory design project SensorLab (2010). In SensorLab, users were enrolled as designers: a group of high school students developed and tested smart pollution-sensing

  2. Smart Rocks for Bridge Scour Monitoring: Design and Localization Using Electromagnetic Techniques and Embedded Orientation Sensors

    Science.gov (United States)

    Radchenko, Andro

    River bridge scour is an erosion process in which flowing water removes sediment materials (such as sand, rocks) from a bridge foundation, river beds and banks. As a result, the level of the river bed near a bridge pier is lowering such that the bridge foundation stability can be compromised, and the bridge can collapse. The scour is a dynamic process, which can accelerate rapidly during a flood event. Thus, regular monitoring of the scour progress is necessary to be performed at most river bridges. Present techniques are usually expensive, require large man/hour efforts, and often lack the real-time monitoring capabilities. In this dissertation a new method--'Smart Rocks Network for bridge scour monitoring' is introduced. The method is based on distributed wireless sensors embedded in ground underwater nearby the bridge pillars. The sensor nodes are unconstrained in movement, are equipped with years-lasting batteries and intelligent custom designed electronics, which minimizes power consumption during operation and communication. The electronic part consists of a microcontroller, communication interfaces, orientation and environment sensors (such as are accelerometer, magnetometer, temperature and pressure sensors), supporting power supplies and circuitries. Embedded in the soil nearby a bridge pillar the Smart Rocks can move/drift together with the sediments, and act as the free agent probes transmitting the unique signature signals to the base-station monitors. Individual movement of a Smart Rock can be remotely detected processing the orientation sensors reading. This can give an indication of the on-going scour progress, and set a flag for the on-site inspection. The map of the deployed Smart Rocks Network can be obtained utilizing the custom developed in-network communication protocol with signals intensity (RSSI) analysis. Particle Swarm Optimization (PSO) is applied for map reconstruction. Analysis of the map can provide detailed insight into the scour

  3. Smart Homes for Elderly Healthcare-Recent Advances and Research Challenges.

    Science.gov (United States)

    Majumder, Sumit; Aghayi, Emad; Noferesti, Moein; Memarzadeh-Tehran, Hamidreza; Mondal, Tapas; Pang, Zhibo; Deen, M Jamal

    2017-10-31

    Advancements in medical science and technology, medicine and public health coupled with increased consciousness about nutrition and environmental and personal hygiene have paved the way for the dramatic increase in life expectancy globally in the past several decades. However, increased life expectancy has given rise to an increasing aging population, thus jeopardizing the socio-economic structure of many countries in terms of costs associated with elderly healthcare and wellbeing. In order to cope with the growing need for elderly healthcare services, it is essential to develop affordable, unobtrusive and easy-to-use healthcare solutions. Smart homes, which incorporate environmental and wearable medical sensors, actuators, and modern communication and information technologies, can enable continuous and remote monitoring of elderly health and wellbeing at a low cost. Smart homes may allow the elderly to stay in their comfortable home environments instead of expensive and limited healthcare facilities. Healthcare personnel can also keep track of the overall health condition of the elderly in real-time and provide feedback and support from distant facilities. In this paper, we have presented a comprehensive review on the state-of-the-art research and development in smart home based remote healthcare technologies.

  4. Smart Homes for Elderly Healthcare—Recent Advances and Research Challenges

    Science.gov (United States)

    Aghayi, Emad; Noferesti, Moein; Memarzadeh-Tehran, Hamidreza; Mondal, Tapas; Deen, M. Jamal

    2017-01-01

    Advancements in medical science and technology, medicine and public health coupled with increased consciousness about nutrition and environmental and personal hygiene have paved the way for the dramatic increase in life expectancy globally in the past several decades. However, increased life expectancy has given rise to an increasing aging population, thus jeopardizing the socio-economic structure of many countries in terms of costs associated with elderly healthcare and wellbeing. In order to cope with the growing need for elderly healthcare services, it is essential to develop affordable, unobtrusive and easy-to-use healthcare solutions. Smart homes, which incorporate environmental and wearable medical sensors, actuators, and modern communication and information technologies, can enable continuous and remote monitoring of elderly health and wellbeing at a low cost. Smart homes may allow the elderly to stay in their comfortable home environments instead of expensive and limited healthcare facilities. Healthcare personnel can also keep track of the overall health condition of the elderly in real-time and provide feedback and support from distant facilities. In this paper, we have presented a comprehensive review on the state-of-the-art research and development in smart home based remote healthcare technologies. PMID:29088123

  5. Smart Homes for Elderly Healthcare—Recent Advances and Research Challenges

    Directory of Open Access Journals (Sweden)

    Sumit Majumder

    2017-10-01

    Full Text Available Advancements in medical science and technology, medicine and public health coupled with increased consciousness about nutrition and environmental and personal hygiene have paved the way for the dramatic increase in life expectancy globally in the past several decades. However, increased life expectancy has given rise to an increasing aging population, thus jeopardizing the socio-economic structure of many countries in terms of costs associated with elderly healthcare and wellbeing. In order to cope with the growing need for elderly healthcare services, it is essential to develop affordable, unobtrusive and easy-to-use healthcare solutions. Smart homes, which incorporate environmental and wearable medical sensors, actuators, and modern communication and information technologies, can enable continuous and remote monitoring of elderly health and wellbeing at a low cost. Smart homes may allow the elderly to stay in their comfortable home environments instead of expensive and limited healthcare facilities. Healthcare personnel can also keep track of the overall health condition of the elderly in real-time and provide feedback and support from distant facilities. In this paper, we have presented a comprehensive review on the state-of-the-art research and development in smart home based remote healthcare technologies.

  6. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks.

    Science.gov (United States)

    de Araújo, Paulo Régis C; Filho, Raimir Holanda; Rodrigues, Joel J P C; Oliveira, João P C M; Braga, Stephanie A

    2018-04-24

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.

  7. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Paulo Régis C. de Araújo

    2018-04-01

    Full Text Available At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs. In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.

  8. Radiation dosimetry properties of smart-phone CMOS sensors

    International Nuclear Information System (INIS)

    Van Hoey, Olivier; Salavrakos, Alexia; Marques, Antonio; Nagao, Alexandre; Vanhavere, Filip; Cauwels, Vanessa; Nascimento, Luana F.; Willems, Ruben

    2016-01-01

    During the past years, several smart-phone applications have been developed for radiation detection. These applications measure radiation using the smart-phone camera complementary metal-oxide-semiconductor sensor. They are potentially useful for data collection and personal dose assessment in case of a radiological incident. However, it is important to assess these applications. Six applications were tested by means of irradiations with calibrated X-ray and gamma sources. It was shown that the measurement stabilises only after at least 10-25 min. All applications exhibited a flat dose rate response in the studied ambient dose equivalent range from 2 to 1000 μSv h -1 . Most applications significantly over- or underestimate the dose rate or are not calibrated in terms of dose rate. A considerable energy dependence was observed below 100 keV but not for the higher energy range more relevant for incident scenarios. Photon impact angle variation gave a measured signal variation of only about 10 %. (authors)

  9. DESIGN OF CAUCUS MEDIUM ACCESS CONTROL (C-MAC PROTOCOL FOR WIRELESS SENSOR NETWORKS IN SMART GRIDS

    Directory of Open Access Journals (Sweden)

    JEETU SHARMA

    2017-10-01

    Full Text Available A Caucus-based medium access control protocol (C-MAC is proposed to reduce the end to end delay and battery consumption of the sensor nodes deployed in the monitoring of various smart grid regions, such as substation, pole and wires, perimeter security, real time and non-real-time monitoring using wireless sensor networks. The objective is to prolong the network lifetime and to reduce the end to end delay by mitigating the energy-hole problem and by eliminating bottlenecks significantly by using caucus based efficient synchronization techniques in multi-hop square grid topology of the wireless sensor networks (WSNs. The protocol self-reliantly and adaptively schedules node’s wake-up times, decreases idle listening and collisions, increases network throughput, and extends network lifetime. It induces a low duty cycle for adjusting wake-up times of sensor nodes. The appropriate selection of active and sleep time slots and next hop relay nodes are proposed to minimize the data transmission latency and to reduce battery consumption to increase the network lifetime. The uniform and synchronized transmission of the data packets is of prime importance to improve the network performance. Simulation results justify that the proposed C-MAC protocol increases the network lifetime, successful data transmission ratio along-with the reduction in end to end delay. The objective of this paper is to envisage benefits and utilization of C-MAC protocol for WSNs deployed in smart grids and to draw the attention of researchers in this area.

  10. Anomaly detection in smart city wireless sensor networks

    OpenAIRE

    Garcia Font, Víctor

    2017-01-01

    Aquesta tesi proposa una plataforma de detecció d’intrusions per a revelar atacs a les xarxes de sensors sense fils (WSN, per les sigles en anglès) de les ciutats intel·ligents (smart cities). La plataforma està dissenyada tenint en compte les necessitats dels administradors de la ciutat intel·ligent, els quals necessiten accés a una arquitectura centralitzada que pugui gestionar alarmes de seguretat en un sistema altament heterogeni i distribuït. En aquesta tesi s’identifiquen els diversos p...

  11. Anomaly detection in smart city wireless sensor networks

    OpenAIRE

    García Font, Víctor

    2017-01-01

    Aquesta tesi proposa una plataforma de detecció d'intrusions per a revelar atacs a les xarxes de sensors sense fils (WSN, per les sigles en anglès) de les ciutats intel·ligents (smart cities). La plataforma està dissenyada tenint en compte les necessitats dels administradors de la ciutat intel·ligent, els quals necessiten accés a una arquitectura centralitzada que pugui gestionar alarmes de seguretat en un sistema altament heterogeni i distribuït. En aquesta tesi s'identifiquen els diversos p...

  12. A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.

    Science.gov (United States)

    Chen, Chun-Chi; Chen, Hao-Wen

    2013-08-28

    This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

  13. SVM-based multimodal classification of activities of daily living in Health Smart Homes: sensors, algorithms, and first experimental results.

    Science.gov (United States)

    Fleury, Anthony; Vacher, Michel; Noury, Norbert

    2010-03-01

    By 2050, about one third of the French population will be over 65. Our laboratory's current research focuses on the monitoring of elderly people at home, to detect a loss of autonomy as early as possible. Our aim is to quantify criteria such as the international activities of daily living (ADL) or the French Autonomie Gerontologie Groupes Iso-Ressources (AGGIR) scales, by automatically classifying the different ADL performed by the subject during the day. A Health Smart Home is used for this. Our Health Smart Home includes, in a real flat, infrared presence sensors (location), door contacts (to control the use of some facilities), temperature and hygrometry sensor in the bathroom, and microphones (sound classification and speech recognition). A wearable kinematic sensor also informs postural transitions (using pattern recognition) and walk periods (frequency analysis). This data collected from the various sensors are then used to classify each temporal frame into one of the ADL that was previously acquired (seven activities: hygiene, toilet use, eating, resting, sleeping, communication, and dressing/undressing). This is done using support vector machines. We performed a 1-h experimentation with 13 young and healthy subjects to determine the models of the different activities, and then we tested the classification algorithm (cross validation) with real data.

  14. Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components

    Science.gov (United States)

    Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian

    2018-03-01

    Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.

  15. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-01-01

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods. PMID:28042831

  16. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network.

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-12-30

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.

  17. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Sandeep Pirbhulal

    2016-12-01

    Full Text Available Wireless sensor networks (WSNs provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP to develop the Internet of Things (IoT for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.

  18. SACRB-MAC: A High-Capacity MAC Protocol for Cognitive Radio Sensor Networks in Smart Grid.

    Science.gov (United States)

    Yang, Zhutian; Shi, Zhenguo; Jin, Chunlin

    2016-03-31

    The Cognitive Radio Sensor Network (CRSN) is considered as a viable solution to enhance various aspects of the electric power grid and to realize a smart grid. However, several challenges for CRSNs are generated due to the harsh wireless environment in a smart grid. As a result, throughput and reliability become critical issues. On the other hand, the spectrum aggregation technique is expected to play an important role in CRSNs in a smart grid. By using spectrum aggregation, the throughput of CRSNs can be improved efficiently, so as to address the unique challenges of CRSNs in a smart grid. In this regard, we proposed Spectrum Aggregation Cognitive Receiver-Based MAC (SACRB-MAC), which employs the spectrum aggregation technique to improve the throughput performance of CRSNs in a smart grid. Moreover, SACRB-MAC is a receiver-based MAC protocol, which can provide a good reliability performance. Analytical and simulation results demonstrate that SACRB-MAC is a promising solution for CRSNs in a smart grid.

  19. Smart sensor-based geospatial architecture for dike monitoring

    Science.gov (United States)

    Herle, S.; Becker, R.; Blankenbach, J.

    2016-04-01

    Artificial hydraulic structures like dams or dikes used for water level regulations or flood prevention are continuously under the influence of the weather and variable river regimes. Thus, ongoing monitoring and simulation is crucial in order to determine the inner condition. Potentially life-threatening situations, in extreme case a failure, must be counteracted by all available means. Nowadays flood warning systems rely exclusively on water level forecast without considering the state of the structure itself. Area-covering continuous knowledge of the inner state including time dependent changes increases the capability of recognizing and locating vulnerable spots for early treatment. In case of a predicted breach, advance warning time for alerting affected citizens can be extended. Our approach is composed of smart sensors integrated in a service-oriented geospatial architecture to monitor and simulate artificial hydraulic structures continuously. The sensors observe the inner state of the construction like the soil moisture or the stress and deformation over time but also various external influences like water levels or wind speed. They are interconnected in distributed network architecture by a so-called sensor bus system based on lightweight protocols like Message Queue Telemetry Transport for Sensor Networks (MQTT-SN). These sensor data streams are transferred into an OGC Sensor Web Enablement (SWE) data structure providing high-level geo web services to end users. Bundled with 3rd party geo web services (WMS etc.) powerful processing and simulation tools can be invoked using the Web Processing Service (WPS) standard. Results will be visualized in a geoportal allowing user access to all information.

  20. Smart sensor systems for outdoor intrusion detection

    International Nuclear Information System (INIS)

    Lynn, J.K.

    1988-01-01

    A major improvement in outdoor perimeter security system probability of detection (PD) and reduction in false alarm rate (FAR) and nuisance alarm rate (NAR) may be obtained by analyzing the indications immediately preceding an event which might be interpreted as an intrusion. Existing systems go into alarm after crossing a threshold. Very slow changes, which accumulate until the threshold is reached, may be assessed falsely as an intrusion. A hierarchial program has begun at Stellar to develop a modular, expandable Smart Sensor system which may be interfaced to most types of sensor and alarm reporting systems. A major upgrade to the SSI Test Site is in progress so that intrusions may be simulated in a controlled and repeatable manner. A test platform is being constructed which will operate in conduction with a mobile instrumentation center with CCTVB, lighting control, weather and data monitoring and remote control of the test platform and intrusion simulators. Additional testing was contracted with an independent test facility to assess the effects of severe winter weather conditions

  1. WSN- and IOT-Based Smart Homes and Their Extension to Smart Buildings

    OpenAIRE

    Ghayvat, Hemant; Mukhopadhyay, Subhas; Gui, Xiang; Suryadevara, Nagender

    2015-01-01

    Our research approach is to design and develop reliable, efficient, flexible, economical, real-time and realistic wellness sensor networks for smart home systems. The heterogeneous sensor and actuator nodes based on wireless networking technologies are deployed into the home environment. These nodes generate real-time data related to the object usage and movement inside the home, to forecast the wellness of an individual. Here, wellness stands for how efficiently someone stays fit in the home...

  2. Fabrication of a Highly-sensitive Acetylcholine Sensor Based on AChOx Immobilized Smart-chips

    Directory of Open Access Journals (Sweden)

    M. M. RAHMAN

    2011-03-01

    Full Text Available Acetylcholine (ACh sensor based on acetylcholine oxidase (AChOx on EDC activated thioglycolic acid self-assembled monolayer (TGA-SAM using smart-chip has been developed. The simple cyclic voltammetry (CV, at 0.1 V/s technique is performed in total investigation, where 0.5M K3Fe(CN6 is utilized as a standard mediator in phosphate buffer solution (PBS, 0.1M. The ACh sensor exhibited a lower detection limit (DL, 0.1392 ± 0.005 nM, a wide linear dynamic range (LDR, 1.0 nM to 1.0 mM, good linearity (R=0.9951, and higher sensitivity (7.3543 ± 0.2 μAμM-1cm-2, and required small sample volume (70.0 μL as well as good stability and reproducibility. The smart-chip system employed a simple and efficient approach to the immobilization of enzymes onto active sensitive surface, which can enhance sensor performances to a large group of bio-molecules for wide range of biomedical applications in health care fields.

  3. Conceptions of end users in current smart grid research and opportunities for further social scientific research on users in smart grids

    DEFF Research Database (Denmark)

    Larsen, Lars Ege

    of existing knowledge and seeing new possibilities for social scientific research where knowledge gaps appear. Different user representations and user roles are found through a content analysis of project related documents from a selection of European and North American smart grid projects. It is argued......Many resources have been put into preparing our energy provision systems for a future with more distributed and intermittent energy production. Especially in Europe and the US a large amount of public research funds has gone to the research field of smart grids. Within policy communities and smart...... grid research communities there is a consensus that a changed user-system relation where users become sensitive to system level constraints is a key element of smart grids. However, the way this sensitivity is conceptualized and the nature of claims differs from one project to the other and sometimes...

  4. Using Smart City Technology to Make Healthcare Smarter.

    Science.gov (United States)

    Cook, Diane J; Duncan, Glen; Sprint, Gina; Fritz, Roschelle

    2018-04-01

    Smart cities use information and communication technologies (ICT) to scale services include utilities and transportation to a growing population. In this article we discuss how smart city ICT can also improve healthcare effectiveness and lower healthcare cost for smart city residents. We survey current literature and introduce original research to offer an overview of how smart city infrastructure supports strategic healthcare using both mobile and ambient sensors combined with machine learning. Finally, we consider challenges that will be faced as healthcare providers make use of these opportunities.

  5. Smart device definition and application on embedded system: performance and optimi-zation on a RGBD sensor

    Directory of Open Access Journals (Sweden)

    Jose-Luis JIMÉNEZ-GARCÍA

    2014-10-01

    Full Text Available Embedded control systems usually are characterized by its limitations in terms of computational power and memory. Although this systems must deal with perpection and actuation signal adaptation and calculate control actions ensuring its reliability and providing a certain degree of fault tolerance. The allocation of these tasks between some different embedded nodes conforming a distributed control system allows to solve many of these issues. For that reason is proposed the application of smart devices aims to perform the data processing tasks related with the perception and actuation and offer a simple interface to be configured by other nodes in order to share processed information and raise QoS based alarms. In this work is introduced the procedure of implementing a smart device as a sensor as an embedded node in a distributed control system. In order to analyze its benefits an application based on a RGBD sensor implemented as an smart device is proposed.

  6. SMART CITIES INTELLIGENCE SYSTEM (SMACiSYS) INTEGRATING SENSOR WEB WITH SPATIAL DATA INFRASTRUCTURES (SENSDI)

    OpenAIRE

    D. Bhattacharya; M. Painho

    2017-01-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists...

  7. Smart garments in chronic disease management: progress and challenges

    Science.gov (United States)

    Khosla, Ajit

    2012-10-01

    This paper presents the progress made developments in the area of Smart Garments for chronic disease management over last 10 years. A large number of health monitoring smart garments and wearable sensors have been manufactured to monitor patient's physiological parameters such as electrocardiogram, blood pressure, body temperature, heart rate, oxygen saturation, while patient is not in hospital. In last few years with the advancement in smartphones and cloud computing it is now possible to send the measure physiological data to any desired location. However there are many challenges in the development of smart garment systems. The two major challenges are development of new lightweight power sources and there is a need for global standardization and a road map for development of smart garments. In this paper we will discuss current state-of-theart smart garments and wearable sensor systems. Also discussed will be the new emerging trends in smart garment research and development.

  8. Direction-sensitive smart monitoring of structures using heterogeneous smartphone sensor data and coordinate system transformation

    Science.gov (United States)

    Ozer, Ekin; Feng, Maria Q.

    2017-04-01

    Mobile, heterogeneous, and smart sensor networks produce pervasive structural health monitoring (SHM) information. With various embedded sensors, smartphones have emerged to innovate SHM by empowering citizens to serve as sensors. By default, smartphones meet the fundamental smart sensor criteria, thanks to the built-in processor, memory, wireless communication units and mobile operating system. SHM using smartphones, however, faces technical challenges due to citizen-induced uncertainties, undesired sensor-structure integration, and lack of control over the sensing platform. Previously, the authors presented successful applications of smartphone accelerometers for structural vibration measurement and proposed a monitoring framework under citizen-induced spatiotemporal uncertainties. This study aims at extending the capabilities of smartphone-based SHM with a special focus on the lack of control over the sensor (i.e., the phone) positioning by citizens resulting in unknown sensor orientations. Using smartphone gyroscope, accelerometer, and magnetometer; instantaneous sensor orientation can be obtained with respect to gravitational and magnetic north directions. Using these sensor data, mobile operating system frameworks return processed features such as attitude and heading that can be used to correct misaligned sensor signals. For this purpose, a coordinate transformation procedure is proposed and illustrated on a two-story laboratory structural model and real-scale bridges with various sensor positioning examples. The proposed method corrects the sensor signals by tracking their orientations and improves measurement accuracy. Moreover, knowing structure’s coordinate system a priori, even the data from arbitrarily positioned sensors can automatically be transformed to the structural coordinates. In addition, this paper also touches some secondary mobile and heterogeneous data issues including imperfect sampling and geolocation services. The coordinate system

  9. Smart sensors and virtual physiology human approach as a basis of personalized therapies in diabetes mellitus.

    Science.gov (United States)

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient's information to the models.A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies.

  10. SmartStuff: A case study of a smart water bottle.

    Science.gov (United States)

    Jovanov, Emil; Nallathimmareddygari, Vindhya R; Pryor, Jonathan E

    2016-08-01

    The rapid growth of Internet of Things (IoT) and miniature wearable biosensors have generated new opportunities for personalized eHealth and mHealth services. Smart objects equipped with physiological sensors can provide robust monitoring of activities of daily living and context for wearable physiological sensors. We present a case study of an intelligent water bottle that can precisely measure the amount of liquid in the bottle, monitor activity using inertial sensors, and physiological parameters using a touch and photoplethysmographic sensor. We evaluate two system configurations: a smart water bottle integrated into a personal body sensor network and a cloud based device. This paper presents system organization and the results from preliminary field testing of the prototype device.

  11. The smart grid research network

    DEFF Research Database (Denmark)

    Troi, Anders; Jørgensen, Bo Nørregaard; Larsen, Emil Mahler

    2013-01-01

    Grid Network’s recommendations’, which relate to strengthening and marketing the research infrastructure that will position Denmark as the global hub for Smart Grid development; strengthening basic research into the complex relationships in electric systems with large quantities of independent parties...

  12. The Design and Implementation of Smart Monitoring System for Large-Scale Railway Maintenance Equipment Cab Based on ZigBee Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Hairui Wang

    2014-06-01

    Full Text Available In recent years, organizations use IEEE 802.15.4 and ZigBee technology to deliver solution in variety areas including home environment monitoring. ZigBee technology has advantages on low-cost, low power consumption and self-forming. With the rapid expansion of the Internet, there is the requirement for remote monitoring large-scale railway maintenance equipment cab. This paper discusses the disadvantages of the existing smart monitoring system, and proposes a solution. A ZigBee wireless sensor network smart monitoring system and Wi-Fi network is integrated through a home gateway to increase the system flexibility. At the same time the home gateway cooperated with a pre- processing system provide a flexible user interface, and the security and safety of the smart monitoring system. To testify the efficiency of the proposed system, the temperature and humidity sensors and light sensors have developed and evaluated in the smart monitoring system.

  13. Intelligent sensor networks the integration of sensor networks, signal processing and machine learning

    CERN Document Server

    Hu, Fei

    2012-01-01

    Although governments worldwide have invested significantly in intelligent sensor network research and applications, few books cover intelligent sensor networks from a machine learning and signal processing perspective. Filling this void, Intelligent Sensor Networks: The Integration of Sensor Networks, Signal Processing and Machine Learning focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on the world-class research of award-winning authors, the book provides a firm grounding in the fundamentals of intelligent sensor networks, incl

  14. Dirichlet Process Gaussian Mixture Model for Activity Discovery in Smart Homes with Ambient Sensors

    NARCIS (Netherlands)

    Nguyen, Thuong; Le Viet Duc, Duc Viet; Zhang, Quing; Karunanithi, Mohan

    2017-01-01

    Most of the existing approaches to activity recognition in smart homes rely on supervised learning with well annotated sensor data. However obtaining such labeled data is not only challenging but sometimes also an unobtainable task, especially for senior citizens who may suffer various mental health

  15. An Efficient Secure Scheme Based on Hierarchical Topology in the Smart Home Environment

    Directory of Open Access Journals (Sweden)

    Mansik Kim

    2017-08-01

    Full Text Available As the Internet of Things (IoT has developed, the emerging sensor network (ESN that integrates emerging technologies, such as autonomous driving, cyber-physical systems, mobile nodes, and existing sensor networks has been in the limelight. Smart homes have been researched and developed by various companies and organizations. Emerging sensor networks have some issues of providing secure service according to a new environment, such as a smart home, and the problems of low power and low-computing capacity for the sensor that previous sensor networks were equipped with. This study classifies various sensors used in smart homes into three classes and contains the hierarchical topology for efficient communication. In addition, a scheme for establishing secure communication among sensors based on physical unclonable functions (PUFs that cannot be physically cloned is suggested in regard to the sensor’s low performance. In addition, we analyzed this scheme by conducting security and performance evaluations proving to constitute secure channels while consuming fewer resources. We believe that our scheme can provide secure communication by using fewer resources in a smart home environment in the future.

  16. A smart microelectromechanical sensor and switch triggered by gas

    KAUST Repository

    Bouchaala, Adam M.

    2016-07-05

    There is an increasing interest to realize smarter sensors and actuators that can deliver a multitude of sophisticated functionalities while being compact in size and of low cost. We report here combining both sensing and actuation on the same device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a preset threshold of absorbed gas. Toward this, an electrostatically actuated polymer microbeam is fabricated and is then functionalized with a metal-organic framework, namely, HKUST-1. The microbeam is demonstrated to absorb vapors up to a certain threshold, after which is shown to collapse through the dynamic pull-in instability. Upon pull-in, the microstructure can be made to act as an electrical switch to achieve desirable actions, such as alarming.

  17. A smart microelectromechanical sensor and switch triggered by gas

    Science.gov (United States)

    Bouchaala, Adam; Jaber, Nizar; Shekhah, Osama; Chernikova, Valeriya; Eddaoudi, Mohamed; Younis, Mohammad I.

    2016-07-01

    There is an increasing interest to realize smarter sensors and actuators that can deliver a multitude of sophisticated functionalities while being compact in size and of low cost. We report here combining both sensing and actuation on the same device based on a single microstructure. Specifically, we demonstrate a smart resonant gas (mass) sensor, which in addition to being capable of quantifying the amount of absorbed gas, can be autonomously triggered as an electrical switch upon exceeding a preset threshold of absorbed gas. Toward this, an electrostatically actuated polymer microbeam is fabricated and is then functionalized with a metal-organic framework, namely, HKUST-1. The microbeam is demonstrated to absorb vapors up to a certain threshold, after which is shown to collapse through the dynamic pull-in instability. Upon pull-in, the microstructure can be made to act as an electrical switch to achieve desirable actions, such as alarming.

  18. The Sensor Management for Applied Research Technologies (SMART) Project

    Science.gov (United States)

    Goodman, Michael; Jedlovec, Gary; Conover, Helen; Botts, Mike; Robin, Alex; Blakeslee, Richard; Hood, Robbie; Ingenthron, Susan; Li, Xiang; Maskey, Manil; hide

    2007-01-01

    NASA seeks on-demand data processing and analysis of Earth science observations to facilitate timely decision-making that can lead to the realization of the practical benefits of satellite instruments, airborne and surface remote sensing systems. However, a significant challenge exists in accessing and integrating data from multiple sensors or platforms to address Earth science problems because of the large data volumes, varying sensor scan characteristics, unique orbital coverage, and the steep "learning curve" associated with each sensor, data type, and associated products. The development of sensor web capabilities to autonomously process these data streams (whether real-time or archived) provides an opportunity to overcome these obstacles and facilitate the integration and synthesis of Earth science data and weather model output.

  19. Statistical analysis of modal properties of a cable-stayed bridge through long-term structural health monitoring with wireless smart sensor networks

    Science.gov (United States)

    Asadollahi, Parisa; Li, Jian

    2016-04-01

    Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.

  20. A Multi-Agent-Based Intelligent Sensor and Actuator Network Design for Smart House and Home Automation

    Directory of Open Access Journals (Sweden)

    Fei Hu

    2013-08-01

    Full Text Available The smart-house technology aims to increase home automation and security with reduced energy consumption. A smart house consists of various intelligent sensors and actuators operating on different platforms with conflicting objectives. This paper proposes a multi-agent system (MAS design framework to achieve smart house automation. The novelties of this work include the developments of (1 belief, desire and intention (BDI agent behavior models; (2 a regulation policy-based multi-agent collaboration mechanism; and (3 a set of metrics for MAS performance evaluation. Simulations of case studies are performed using the Java Agent Development Environment (JADE to demonstrate the advantages of the proposed method.

  1. Ambient Intelligence in a Smart Home for Energy Efficiency and Eldercare

    Science.gov (United States)

    de Silva, Liyanage C.; Petra, M. Iskandar; Punchihewa, G. Amal

    In this paper we present our research results related to smart monitoring, control and communication with the main objective of energy efficiency and eldercare in mind. One of the main objectives of this research work is to use multitude of different sensors to monitor activities in a smart home and use the results to control the home environment to meet the objectives of energy efficiency and eldercare. Here we present the application of the smart monitoring to a prototype system.

  2. First investigations on the feasibility of integration of a smart sensor in harsh environment

    International Nuclear Information System (INIS)

    Ben-Krit, S.; Rahajandraibe, W.; Coulie-Castellani, K.; Micolau, G.; Lyoussi, A.

    2013-06-01

    Investigations of the feasibility of smart sensor in harsh environment is presented. This very first study takes place in the framework of the I-SMART European project. First approach on the feasibility of integration of the full system is introduced. This system will have to work in harsh environment in terms of temperature and radiations what makes necessary the development of specifications for operation and reliability of the components and the investigation of margins for the interplay of the components. Implementation of the analog conditioning chain is investigated where electrical performances have been validated at SPICE-level simulations. (authors)

  3. Vibration attenuation and shape control of surface mounted, embedded smart beam

    Directory of Open Access Journals (Sweden)

    Vivek Rathi

    Full Text Available Active Vibration Control (AVC using smart structure is used to reduce the vibration of a system by automatic modification of the system structural response. AVC is widely used, because of its wide and broad frequency response range, low additional mass, high adaptability and good efficiency. A lot of research has been done on Finite Element (FE models for AVC based on Euler Bernoulli Beam Theory (EBT. In the present work Timoshenko Beam Theory (TBT is used to model a smart cantilever beam with surface mounted sensors / actuators. A Periodic Output Feedback (POF Controller has been designed and applied to control the first three modes of vibration of a flexible smart cantilever beam. The difficulties encountered in the usage of surface mounted piezoelectric patches in practical situations can be overcome by the use of embedded shear sensors / actuators. A mathematical model of a smart cantilever beam with embedded shear sensors and actuators is developed. A POF Controller has been designed and applied to control of vibration of a flexible smart cantilever beam and effect of actuator location on the performance of the controller is investigated. The mathematical modeling and control of a Multiple Input multiple Output (MIMO systems with two sensors and two actuators have also been considered.

  4. Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture.

    Science.gov (United States)

    Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin

    2015-07-10

    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.

  5. Application of smart BFRP bars with distributed fiber optic sensors into concrete structures

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei

    2010-04-01

    In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.

  6. Research and development of smart wearable health applications: the challenge ahead.

    Science.gov (United States)

    Lymberis, Andreas

    2004-01-01

    Continuous monitoring of physiological and physical parameters is necessary for the assessment and management of personal health status. It can significantly contribute to the reduction of healthcare cost by avoiding unnecessary hospitalisations and ensuring that those who need urgent care get it sooner. In conjunction with cost-effective telemedicine platforms, ubiquitous health monitoring can significantly contribute to the enhancement of disease prevention and early diagnosis, disease management, treatment and home rehabilitation. Latest developments in the area of micro and nanotechnologies, information processing and wireless communication offer, today, the possibility for minimally (or non) invasive biomedical measurement but also wearable sensing, processing and data communication. Although the systems are being developed to satisfy specific user needs, a number of common critical issues have to be tackled to achieve reliable and acceptable smart health wearable applications e.g. biomedical sensors, user interface, clinical validation, data security and confidentiality, scenarios of use, decision support, user acceptance and business models. Major technological achievements have been realised the last few years. Cutting edge development combining functional clothing and integrated electronics open a new research area and possibilities for body sensing and communicating health parameters. This paper reviews the current status of research and development on smart wearable health systems and applications and discusses the outstanding issues and future challenges.

  7. Wearable electronics sensors for safe and healthy living

    CERN Document Server

    2015-01-01

    This edited book contains invited papers from renowned experts working in the field of Wearable Electronics Sensors. It includes 14 chapters describing recent advancements in the area of Wearable Sensors, Wireless Sensors and Sensor Networks, Protocols, Topologies, Instrumentation architectures, Measurement techniques, Energy harvesting and scavenging, Signal processing, Design and Prototyping. The book will be useful for engineers, scientist and post-graduate students as a reference book for their research on wearable sensors, devices and technologies which is experiencing a period of rapid growth driven by new applications such as heart rate monitors, smart watches, tracking devices and smart glasses.  .

  8. MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy.

    Science.gov (United States)

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-03-17

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users' health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users' physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson's disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  9. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy

    Directory of Open Access Journals (Sweden)

    Gastone Ciuti

    2015-03-01

    Full Text Available Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users’ health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users’ physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson’s disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  10. Big Sensed Data Meets Deep Learning for Smarter Health Care in Smart Cities

    Directory of Open Access Journals (Sweden)

    Alex Adim Obinikpo

    2017-11-01

    Full Text Available With the advent of the Internet of Things (IoT concept and its integration with the smart city sensing, smart connected health systems have appeared as integral components of the smart city services. Hard sensing-based data acquisition through wearables or invasive probes, coupled with soft sensing-based acquisition such as crowd-sensing results in hidden patterns in the aggregated sensor data. Recent research aims to address this challenge through many hidden perceptron layers in the conventional artificial neural networks, namely by deep learning. In this article, we review deep learning techniques that can be applied to sensed data to improve prediction and decision making in smart health services. Furthermore, we present a comparison and taxonomy of these methodologies based on types of sensors and sensed data. We further provide thorough discussions on the open issues and research challenges in each category.

  11. Designing and Managing a Smart Parking System Using Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Adil Hilmani

    2018-06-01

    Full Text Available For several years, the population of cities has continued to multiply at a rapid pace. The main cause of this phenomenon in developing countries like Morocco is the rural exodus. In fact, rural youth are increasingly attracted by the modern way of life and the opportunities of employment offered by cities. This increase in population density has a large number of negative effects on the quality of life in the city. The most obvious is the intensity of the traffic, which has become an almost insurmountable problem and which causes a great deal of damage, such as the increase in the number of accidents that cause serious bodily harm to the road users, the pollution caused by the large amount of CO2 released by the vehicles, and the continuous stress of drivers who must drive in often narrow and very busy roads and who must look for a long time to find a space to park. Thus, to solve the parking problem, several modern technologies have been created to equip car parks with smart devices that help road users identify the nearest car park that has a free space. These technologies most often use wireless sensor networks and Internet of Things (IoT technology. In this paper, we present the design and development of a smart parking system using the latest technologies based on wireless sensor networks (WSN. Our system uses an adaptable and hybrid self-organization algorithm for wireless sensor networks that adapts to all types of car parks existing in the city (linear and mass parking, and offers a better management of the energy consumption during the wireless communication to increase the lifetime of the sensor nodes and the longevity of the WSN. This system also offers innovative services which facilitate the task to the drivers when looking for an available parking space in the city near their destination, in a fast and efficient manner.

  12. Perancangan Sistem Kendali Otomatis pada Smart Home menggunakan Modul Arduino Uno

    Directory of Open Access Journals (Sweden)

    Danny Kurnianto

    2016-10-01

    Full Text Available Efficiency, effectiveness and electrical energy saving have become topics of research that attracts many researchers today. Model of technology has been widely proposed to improve effectiveness and energy saving for the livelihood of the peoples. One of example is a model of a Smart Home technology. Smart Home models proposed in this research is controlled centrally by an Arduino Uno microcontroller. Microcontroller detect output from the two magnetic sensors installed in the entrance. Microcontroller response to the two outputs of magnetic sensors in the form of control of room lighting. fan, mosquito repellent and LCD. The system will work automatically when someone inside the house. Room lights will turn on automatically, the fan will work in accordance with the room temperature conditions and mosquito repellent device will work automatically. The test results show that the proposed model of a Smart Home can work well according design with a success rate of 100%.

  13. Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Andres Hernandez

    2015-07-01

    Full Text Available Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV. The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1 the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU sensors and image processing; (2 a method to build a 3D map using information obtained from a regular camera; and (3 the design and implementation of a path-following control algorithm using model predictive control (MPC. Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.

  14. Use of Smart Sensors in the Measurement of Power Quality

    Directory of Open Access Journals (Sweden)

    A. Moreno-Muñoz

    2008-03-01

    Full Text Available Today’s businesses depend heavily on electrical services for lighting, general power, computer hardware and communications hardware. With the generalized use of sophisticated electronic devices, industries are shifting toward almost entirely electronic IT systems. PQ events are of increasing concern for the economy because today’s equipment, particularly computers and automated manufacturing devices, is highly sensitive to such imperfections. Traditionally the control and supervision of a plant distribution network has mainly been focused on the protection of the network. Relatively little attention has been focused on the quality of the electrical energy. Metering technologies and communications systems have advanced to enable the development of web-based sensors. Power Quality is one area where these smart sensors can be very valuable. This paper investigates the challenges and possibilities in the development of distributed PQ measurement systems. This paper describes the challenges and lessons learned from this work.

  15. A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks

    Science.gov (United States)

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2014-01-01

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology. PMID:24379047

  16. A FPGA embedded web server for remote monitoring and control of smart sensors networks.

    Science.gov (United States)

    Magdaleno, Eduardo; Rodríguez, Manuel; Pérez, Fernando; Hernández, David; García, Enrique

    2013-12-27

    This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI). The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A). Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.

  17. A FPGA Embedded Web Server for Remote Monitoring and Control of Smart Sensors Networks

    Directory of Open Access Journals (Sweden)

    Eduardo Magdaleno

    2013-12-01

    Full Text Available This article describes the implementation of a web server using an embedded Altera NIOS II IP core, a general purpose and configurable RISC processor which is embedded in a Cyclone FPGA. The processor uses the μCLinux operating system to support a Boa web server of dynamic pages using Common Gateway Interface (CGI. The FPGA is configured to act like the master node of a network, and also to control and monitor a network of smart sensors or instruments. In order to develop a totally functional system, the FPGA also includes an implementation of the time-triggered protocol (TTP/A. Thus, the implemented master node has two interfaces, the webserver that acts as an Internet interface and the other to control the network. This protocol is widely used to connecting smart sensors and actuators and microsystems in embedded real-time systems in different application domains, e.g., industrial, automotive, domotic, etc., although this protocol can be easily replaced by any other because of the inherent characteristics of the FPGA-based technology.

  18. Printable low-cost sensor systems for healthcare smart textiles

    Science.gov (United States)

    Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.

    2011-04-01

    Smart textiles-based wearable health monitoring systems (ST-HMS) have been presented as elegant solutions to the requirements of individuals across a wide range of ages. They can be used to monitor young or elderly recuperating /convalescent patients either in hospital or at home, or they can be used by young athletes to monitor important physiological parameters to better design their training or fitness program. Business and academic interests, all over the world, have fueled a great deal of work in the development of this technology since 1990. However, two important impediments to the development of ST-HMS are:-integration of flexible electrodes, flexible sensors, signal conditioning circuits and data logging or wireless transmission devices into a seamless garment and a means to mass manufacture the same, while keeping the costs low. Roll-to-roll printing and screen printing are two low cost methods for large scale manufacturing on flexible substrates and can be extended to textiles as well. These two methods are, currently, best suited for planar structures. The sensors, integrated with wireless telemetry, facilitate development of a ST-HMS that allows for unobtrusive health monitoring. In this paper, we present our results with planar screen printable sensors based on conductive inks which can be used to monitor EKG, abdominal respiration effort, blood pressure, pulse rate and body temperature. The sensor systems were calibrated, and tested for sensitivity, reliability and robustness to ensure reuse after washing cycles.

  19. A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor Networks.

    Science.gov (United States)

    Garcia-Font, Victor; Garrigues, Carles; Rifà-Pous, Helena

    2016-06-13

    In many countries around the world, smart cities are becoming a reality. These cities contribute to improving citizens' quality of life by providing services that are normally based on data extracted from wireless sensor networks (WSN) and other elements of the Internet of Things. Additionally, public administration uses these smart city data to increase its efficiency, to reduce costs and to provide additional services. However, the information received at smart city data centers is not always accurate, because WSNs are sometimes prone to error and are exposed to physical and computer attacks. In this article, we use real data from the smart city of Barcelona to simulate WSNs and implement typical attacks. Then, we compare frequently used anomaly detection techniques to disclose these attacks. We evaluate the algorithms under different requirements on the available network status information. As a result of this study, we conclude that one-class Support Vector Machines is the most appropriate technique. We achieve a true positive rate at least 56% higher than the rates achieved with the other compared techniques in a scenario with a maximum false positive rate of 5% and a 26% higher in a scenario with a false positive rate of 15%.

  20. A Comparative Study of Anomaly Detection Techniques for Smart City Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Victor Garcia-Font

    2016-06-01

    Full Text Available In many countries around the world, smart cities are becoming a reality. These cities contribute to improving citizens’ quality of life by providing services that are normally based on data extracted from wireless sensor networks (WSN and other elements of the Internet of Things. Additionally, public administration uses these smart city data to increase its efficiency, to reduce costs and to provide additional services. However, the information received at smart city data centers is not always accurate, because WSNs are sometimes prone to error and are exposed to physical and computer attacks. In this article, we use real data from the smart city of Barcelona to simulate WSNs and implement typical attacks. Then, we compare frequently used anomaly detection techniques to disclose these attacks. We evaluate the algorithms under different requirements on the available network status information. As a result of this study, we conclude that one-class Support Vector Machines is the most appropriate technique. We achieve a true positive rate at least 56% higher than the rates achieved with the other compared techniques in a scenario with a maximum false positive rate of 5% and a 26% higher in a scenario with a false positive rate of 15%.

  1. Research of a smart cutting tool based on MEMS strain gauge

    Science.gov (United States)

    Zhao, Y.; Zhao, Y. L.; Shao, YW; Hu, T. J.; Zhang, Q.; Ge, X. H.

    2018-03-01

    Cutting force is an important factor that affects machining accuracy, cutting vibration and tool wear. Machining condition monitoring by cutting force measurement is a key technology for intelligent manufacture. Current cutting force sensors exist problems of large volume, complex structure and poor compatibility in practical application, for these problems, a smart cutting tool is proposed in this paper for cutting force measurement. Commercial MEMS (Micro-Electro-Mechanical System) strain gauges with high sensitivity and small size are adopted as transducing element of the smart tool, and a structure optimized cutting tool is fabricated for MEMS strain gauge bonding. Static calibration results show that the developed smart cutting tool is able to measure cutting forces in both X and Y directions, and the cross-interference error is within 3%. Its general accuracy is 3.35% and 3.27% in X and Y directions, and sensitivity is 0.1 mV/N, which is very suitable for measuring small cutting forces in high speed and precision machining. The smart cutting tool is portable and reliable for practical application in CNC machine tool.

  2. Wireless network system based multi-non-invasive sensors for smart home

    Science.gov (United States)

    Issa Ahmed, Rudhwan

    There are several techniques that have been implemented for smart homes usage; however, most of these techniques are limited to a few sensors. Many of these methods neither meet the needs of the user nor are cost-effective. This thesis discusses the design, development, and implementation of a wireless network system, based on multi-non-invasive sensors for smart home environments. This system has the potential to be used as a means to accurately, and remotely, determine the activities of daily living by continuously monitoring relatively simple parameters that measure the interaction between users and their surrounding environment. We designed and developed a prototype system to meet the specific needs of the elderly population. Unlike audio-video based health monitoring systems (which have associated problems such as the encroachment of privacy), the developed system's distinct features ensure privacy and are almost invisible to the occupants, thus increasing the acceptance levels of this system in household environments. The developed system not only achieved high levels of accuracy, but it is also portable, easy to use, cost-effective, and requires low data rates and less power compared to other wireless devices such as Wi-Fi, Bluetooth, wireless USB, Ultra wideband (UWB), or Infrared (IR) wireless. Field testing of the prototype system was conducted at different locations inside and outside of the Minto Building (Centre for Advanced Studies in Engineering at Carleton University) as well as other locations, such as the washroom, kitchen, and living room of a prototype apartment. The main goal of the testing was to determine the range of the prototype system and the functionality of each sensor in different environments. After it was verified that the system operated well in all of the tested environments, data were then collected at the different locations for analysis and interpretation in order to identify the activities of daily living of an occupant.

  3. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications.

    Science.gov (United States)

    Costa, Daniel G; Duran-Faundez, Cristian; Andrade, Daniel C; Rocha-Junior, João B; Peixoto, João Paulo Just

    2018-04-03

    Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter , and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.

  4. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications

    Directory of Open Access Journals (Sweden)

    Daniel G. Costa

    2018-04-01

    Full Text Available Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter, and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.

  5. A CMOS smart temperature and humidity sensor with combined readout.

    Science.gov (United States)

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-09-16

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.

  6. Wireless Hydrogen Smart Sensor Based on Pt/Graphene-Immobilized Radio-Frequency Identification Tag.

    Science.gov (United States)

    Lee, Jun Seop; Oh, Jungkyun; Jun, Jaemoon; Jang, Jyongsik

    2015-08-25

    Hydrogen, a clean-burning fuel, is of key importance to various industrial applications, including fuel cells and the aerospace and automotive industries. However, hydrogen gas is odorless, colorless, and highly flammable; thus, appropriate safety protocol implementation and monitoring are essential. Highly sensitive hydrogen-gas leak detection and surveillance systems are needed; additionally, the ability to monitor large areas (e.g., cities) via wireless networks is becoming increasingly important. In this report, we introduce a radio frequency identification (RFID)-based wireless smart-sensor system, composed of a Pt-decorated reduced graphene oxide (Pt_rGO)-immobilized RFID sensor tag and an RFID-reader antenna-connected network analyzer to detect hydrogen gas. The Pt_rGOs, produced using a simple chemical reduction process, were immobilized on an antenna pattern in the sensor tag through spin coating. The resulting Pt_rGO-based RFID sensor tag exhibited a high sensitivity to hydrogen gas at unprecedentedly low concentrations (1 ppm), with wireless communication between the sensor tag and RFID-reader antenna. The wireless sensor tag demonstrated flexibility and a long lifetime due to the strong immobilization of Pt_rGOs on the substrate and battery-independent operation during hydrogen sensing, respectively.

  7. Smart learning services based on smart cloud computing.

    Science.gov (United States)

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user's behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)--smart pull, smart prospect, smart content, and smart push--concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users' needs by collecting and analyzing users' behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users' behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.

  8. Smart Learning Services Based on Smart Cloud Computing

    Directory of Open Access Journals (Sweden)

    Yong-Ik Yoon

    2011-08-01

    Full Text Available Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.

  9. Visualization and Analysis of Wireless Sensor Network Data for Smart Civil Structure Applications Based On Spatial Correlation Technique

    Science.gov (United States)

    Chowdhry, Bhawani Shankar; White, Neil M.; Jeswani, Jai Kumar; Dayo, Khalil; Rathi, Manorma

    2009-07-01

    Disasters affecting infrastructure, such as the 2001 earthquakes in India, 2005 in Pakistan, 2008 in China and the 2004 tsunami in Asia, provide a common need for intelligent buildings and smart civil structures. Now, imagine massive reductions in time to get the infrastructure working again, realtime information on damage to buildings, massive reductions in cost and time to certify that structures are undamaged and can still be operated, reductions in the number of structures to be rebuilt (if they are known not to be damaged). Achieving these ideas would lead to huge, quantifiable, long-term savings to government and industry. Wireless sensor networks (WSNs) can be deployed in buildings to make any civil structure both smart and intelligent. WSNs have recently gained much attention in both public and research communities because they are expected to bring a new paradigm to the interaction between humans, environment, and machines. This paper presents the deployment of WSN nodes in the Top Quality Centralized Instrumentation Centre (TQCIC). We created an ad hoc networking application to collect real-time data sensed from the nodes that were randomly distributed throughout the building. If the sensors are relocated, then the application automatically reconfigures itself in the light of the new routing topology. WSNs are event-based systems that rely on the collective effort of several micro-sensor nodes, which are continuously observing a physical phenomenon. WSN applications require spatially dense sensor deployment in order to achieve satisfactory coverage. The degree of spatial correlation increases with the decreasing inter-node separation. Energy consumption is reduced dramatically by having only those sensor nodes with unique readings transmit their data. We report on an algorithm based on a spatial correlation technique that assures high QoS (in terms of SNR) of the network as well as proper utilization of energy, by suppressing redundant data transmission

  10. Smart built-in test for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    Lombrozo, P.C.

    1992-03-01

    Smart built-in test (BIT) technologies are envisioned for nuclear thermal propulsion spacecraft components which undergo constant irradiation and are therefore unsafe for manual testing. Smart BIT systems of automated/remote type allow component and system tests to be conducted; failure detections are directly followed by reconfiguration of the components affected. The 'smartness' of the BIT system in question involves the reduction of sensor counts via the use of multifunction sensors, the use of components as integral sensors, and the use of system design techniques which allow the verification of system function beyond component connectivity

  11. Inkjet-printed "Zero-Power" Wireless Sensor and Power Management Nodes for IoT and "Smart Skin" Applications

    OpenAIRE

    Traille, A.; Georgiadis, Apostolos; Collado, Ana; Kawahara, Y.; Aubert, H.; Tentzeris, M.M.

    2014-01-01

    Nanotechnology and inkjet-printed flexible electronics, sensor and power management (PMU) nodes fabricated on paper, plastic and other polymer substrates are introduced as a sustainable ultra-low-cost solution for the first paradigms of Internet of Things (IoT), “Smart Skins” and “Zero-Power” applications. The paper will cover examples from the state-of-the-art of fully integrated wireless sensor modules on paper or flexible polymers. We will demonstrate numerous 3D multilayer paper-based and...

  12. Smart-tag Based Data Dissemination

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Beaufour, Allan; Leopold, Martin

    2002-01-01

    Monitoring wide, hostile areas requires disseminating data between fixed, disconnected clusters of sensor nodes. It is not always possible to install long-range radios in order to cover the whole area. We propose to leverage the movement of mobile individuals, equipped with smart-tags, to dissemi......-tag based data dissemination. We use simulation to study the characteristics of the model we propose. Finally, we present an implementation based on Bluetooth smart-tags.......Monitoring wide, hostile areas requires disseminating data between fixed, disconnected clusters of sensor nodes. It is not always possible to install long-range radios in order to cover the whole area. We propose to leverage the movement of mobile individuals, equipped with smart......-tags, to disseminate data across disconnected static nodes spread across a wide area. Static nodes and mobile smart-tags exchange data when they are in the vicinity of each other; smart-tags disseminate data as they move around. In this paper, we propose an algorithm for update propagation and a model for smart...

  13. Characterization and optimization of an inkjet-printed smart textile UV-sensor cured with UV-LED light

    Science.gov (United States)

    Seipel, S.; Yu, J.; Periyasamy, A. P.; Viková, M.; Vik, M.; Nierstrasz, V. A.

    2017-10-01

    For the development of niche products like smart textiles and other functional high-end products, resource-saving production processes are needed. Niche products only require small batches, which makes their production with traditional textile production techniques time-consuming and costly. To achieve a profitable production, as well as to further foster innovation, flexible and integrated production techniques are a requirement. Both digital inkjet printing and UV-light curing contribute to a flexible, resource-efficient, energy-saving and therewith economic production of smart textiles. In this article, a smart textile UV-sensor is printed using a piezoelectric drop-on-demand printhead and cured with a UV-LED lamp. The UVcurable ink system is based on free radical polymerization and the integrated UVsensing material is a photochromic dye, Reversacol Ruby Red. The combination of two photoactive compounds, for which UV-light is both the curer and the activator, challenges two processes: polymer crosslinking of the resin and color performance of the photochromic dye. Differential scanning calorimetry (DSC) is used to characterize the curing efficiency of the prints. Color measurements are made to determine the influence of degree of polymer crosslinking on the developed color intensities, as well as coloration and decoloration rates of the photochromic prints. Optimized functionality of the textile UV-sensor is found using different belt speeds and lamp intensities during the curing process.

  14. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    Science.gov (United States)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  15. Safety and regulatory researches on the SMART reactor

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Kim, Wee Kyong; Chang, Moo Hee

    2000-01-01

    The 330 MW thermal power of integral pressurized water reactor, named SMART (System integrated Modular Advanced ReacTor), is under development at the Korea Atomic Energy Research Institute (KAERI) for seawater desalination application and electricity generation. The plant is expected to install near the population zone. Thus, the public around the plant should be in depth protected from the possible release of radioactive materials, and also the fresh water should be prevented from radioactivity contamination. Currently, in parallel with the design development, the regulatory research is being conducted to identify and resolve the safety concerns of the nuclear desalination plant. Until now, some general items to be considered in the safety aspects have been identified for the conceptual design of SMART. They include the use of proven technology, application of strengthening defense-in-depth, event categorization and selection, effects of desalination plant, and maintainability of major components. These cooperative researches with regulatory body in the design stage are expected to provide an opportunity to early resolve the safety concerns and eventually the licensing stability of the SMART design. (author)

  16. Rethinking GIS Towards The Vision Of Smart Cities Through CityGML

    Science.gov (United States)

    Guney, C.

    2016-10-01

    Smart cities present a substantial growth opportunity in the coming years. The role of GIS in the smart city ecosystem is to integrate different data acquired by sensors in real time and provide better decisions, more efficiency and improved collaboration. Semantically enriched vision of GIS will help evolve smart cities into tomorrow's much smarter cities since geospatial/location data and applications may be recognized as a key ingredient of smart city vision. However, it is need for the Geospatial Information communities to debate on "Is 3D Web and mobile GIS technology ready for smart cities?" This research places an emphasis on the challenges of virtual 3D city models on the road to smarter cities.

  17. E-Smart System for In-Situ Detection of Environmental Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    S. Leffler

    2000-03-01

    A team of industrial, academic, and government organizations participated in the development of the Environmental Systems Management, Analysis and Reporting Network (E-SMART). E-SMART integrates diverse monitoring and control technologies by means of a modular, ''building block'' design approach to allow for flexible system configuration. The E-SMART network treats each smart device-whether a sensor, sampler, or actuator- as a black box that obeys the standard communication protocols and electrical interfaces for the network. This approach allows multiple vendors to produce different sensors which meet the same functional specification and which can be interchanged on the network without affecting operation. The project further developed and advanced the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces. Specifically, the E-SMART team developed the following three system elements: (1) Base technology for a new class of smart , highly sensitive, chemically-specific, in-situ, multichannel microsensors utilizing integrated optical interferometry technology, (2) A set of additional E-SMART-compatible sensors adapted from commercial off-the-shelf technologies, and (3) A Data Management and Analysis System (DMAS), including network management components and the user-friendly graphical user interface (GUI) for data evaluation and visualization.

  18. Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery.

    Science.gov (United States)

    Sun, Xinyao; Byrns, Simon; Cheng, Irene; Zheng, Bin; Basu, Anup

    2017-02-01

    We introduce a smart sensor-based motion detection technique for objective measurement and assessment of surgical dexterity among users at different experience levels. The goal is to allow trainees to evaluate their performance based on a reference model shared through communication technology, e.g., the Internet, without the physical presence of an evaluating surgeon. While in the current implementation we used a Leap Motion Controller to obtain motion data for analysis, our technique can be applied to motion data captured by other smart sensors, e.g., OptiTrack. To differentiate motions captured from different participants, measurement and assessment in our approach are achieved using two strategies: (1) low level descriptive statistical analysis, and (2) Hidden Markov Model (HMM) classification. Based on our surgical knot tying task experiment, we can conclude that finger motions generated from users with different surgical dexterity, e.g., expert and novice performers, display differences in path length, number of movements and task completion time. In order to validate the discriminatory ability of HMM for classifying different movement patterns, a non-surgical task was included in our analysis. Experimental results demonstrate that our approach had 100 % accuracy in discriminating between expert and novice performances. Our proposed motion analysis technique applied to open surgical procedures is a promising step towards the development of objective computer-assisted assessment and training systems.

  19. Smart Sensor for Real-Time Quantification of Common Symptoms Present in Unhealthy Plants

    Directory of Open Access Journals (Sweden)

    Jesus R. Millan-Almaraz

    2012-01-01

    Full Text Available Plant responses to physiological function disorders are called symptoms and they are caused principally by pathogens and nutritional deficiencies. Plant symptoms are commonly used as indicators of the health and nutrition status of plants. Nowadays, the most popular method to quantify plant symptoms is based on visual estimations, consisting on evaluations that raters give based on their observation of plant symptoms; however, this method is inaccurate and imprecise because of its obvious subjectivity. Computational Vision has been employed in plant symptom quantification because of its accuracy and precision. Nevertheless, the systems developed so far lack in-situ, real-time and multi-symptom analysis. There exist methods to obtain information about the health and nutritional status of plants based on reflectance and chlorophyll fluorescence, but they use expensive equipment and are frequently destructive. Therefore, systems able of quantifying plant symptoms overcoming the aforementioned disadvantages that can serve as indicators of health and nutrition in plants are desirable. This paper reports an FPGA-based smart sensor able to perform non-destructive, real-time and in-situ analysis of leaf images to quantify multiple symptoms presented by diseased and malnourished plants; this system can serve as indicator of the health and nutrition in plants. The effectiveness of the proposed smart-sensor was successfully tested by analyzing diseased and malnourished plants.

  20. Smart sensor for real-time quantification of common symptoms present in unhealthy plants.

    Science.gov (United States)

    Contreras-Medina, Luis M; Osornio-Rios, Roque A; Torres-Pacheco, Irineo; Romero-Troncoso, Rene de J; Guevara-González, Ramon G; Millan-Almaraz, Jesus R

    2012-01-01

    Plant responses to physiological function disorders are called symptoms and they are caused principally by pathogens and nutritional deficiencies. Plant symptoms are commonly used as indicators of the health and nutrition status of plants. Nowadays, the most popular method to quantify plant symptoms is based on visual estimations, consisting on evaluations that raters give based on their observation of plant symptoms; however, this method is inaccurate and imprecise because of its obvious subjectivity. Computational Vision has been employed in plant symptom quantification because of its accuracy and precision. Nevertheless, the systems developed so far lack in-situ, real-time and multi-symptom analysis. There exist methods to obtain information about the health and nutritional status of plants based on reflectance and chlorophyll fluorescence, but they use expensive equipment and are frequently destructive. Therefore, systems able of quantifying plant symptoms overcoming the aforementioned disadvantages that can serve as indicators of health and nutrition in plants are desirable. This paper reports an FPGA-based smart sensor able to perform non-destructive, real-time and in-situ analysis of leaf images to quantify multiple symptoms presented by diseased and malnourished plants; this system can serve as indicator of the health and nutrition in plants. The effectiveness of the proposed smart-sensor was successfully tested by analyzing diseased and malnourished plants.

  1. Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters

    International Nuclear Information System (INIS)

    Krishnamurti, Tamar; Schwartz, Daniel; Davis, Alexander; Fischhoff, Baruch; Bruine de Bruin, Wändi; Lave, Lester; Wang, Jack

    2012-01-01

    With the enactment of the 2009 American Recovery and Reinvestment Act, U.S. President Obama made a public commitment to a new approach to energy production and transmission in the United States. It features installing smart meters and related technologies in residential homes, as part of transforming the current electrical grid into a “smart grid.” Realizing this transformation requires consumers to accept these new technologies and take advantage of the opportunities that they create. We use methods from behavioral decision research to understand consumer beliefs about smart meters, including in-depth mental models interviews and a follow-up survey with a sample of potential smart meter customers of a major U.S. mid-Atlantic electricity utility. In both the surveys and the interviews, most respondents reported wanting smart meters. However, these preferences were often based on erroneous beliefs regarding their purpose and function. Respondents confused smart meters with in-home displays and other enabling technologies, while expecting to realize immediate savings. They also perceived risks, including less control over their electricity usage, violations of their privacy, and increased costs. We discuss the policy implications of our results. - Highlights: ► We outline normative risks and benefits of smart meters from scientific literature. ► We examine consumer perceptions of smart meters via interviews and surveys. ► Smart meter desire stems from consumer misconceptions about purpose and function. ► Appropriate communications may prevent consumer protests against the smart grid.

  2. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    International Nuclear Information System (INIS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-01-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications. (paper)

  3. Smart Grid: Smart Customer Policy Needs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    In September 2010, the International Energy Agency (IEA) held a workshop on the regulatory, market and consumer policies necessary to ensure that smart grids are deployed with adequate consideration of their risks and benefits to all stakeholders. This was one of several workshops that brought together energy providers, network operators, technology developers, regulators, customers and government policy makers to discuss smart grid technology and policy. The Smart Grid - Smart Customer Policies workshop allowed stakeholders to: gain a perspective on key issues and barriers facing early deployment of smart grids; hear expert opinion on regulatory, consumer and market challenges to smart grids; discuss smart grid-smart customer policy priorities; and build consensus on the technology and policy ingredients needed for customer-friendly smart grid deployments. Drawing on workshop discussions, the following paper lays out a logical framework to maximise the benefits and minimise the risks that smart grids pose for customers. The paper also describes key policy research questions that will guide future IEA research on this topic.

  4. Deploying 5G-technologies in smart city and smart home wireless sensor networks with interferences

    DEFF Research Database (Denmark)

    Lynggaard, Per; Skouby, Knud Erik

    2015-01-01

    communication in an Internet of Things (5G) contexts. In this paper we discuss some of the key challenges that exist in the smart city and smart home networks in the light of possible 5G-solutions. Focus is on deploying cognitive radio technologies (5G) which enables the smart city networks to support......Deploying 5G technologies in a combination of smart homes and smart city opens for a new ecosystem with big potentials. The potentials lie in the creation of an advanced ICT infrastructure with support for connected and entangled services possibilities including technologies for efficient...... interconnected infrastructure elements, to handle big-data from the smart homes, and to be compatible with existing infrastructures. The considered cognitive radio technology is based on pre-coded OFDM which offers the needed flexibility to deal with the key challenges found in the smart home networks. Thus...

  5. Smart solutions for low-income buildings rehabilitation: international researches and experiences

    Directory of Open Access Journals (Sweden)

    Eugenio Arbizzani

    2015-11-01

    Full Text Available Smart City concept briefly refers to a sustainable city where innovative Smart strategies will be adopted to an efficient management of resources flows and social interoperability. Aligned with the most relevant European research experiences, the paper describes the relations between an on-going research from the PDTA Dept., centered on a knowledge platform tool for energy-efficient interactive buildings design, and the contribution of the ELIH-MED project on the use of industrialized solutions and smart devices during the rehabilitation process in Mediterranean low-income housings. A pilot project in the Spanish climate context reveals the important role of Smart Monitoring Devices to encourage energy savings and tackle recognized needs through a participative process where stakeholders and beneficiaries are actively involved.

  6. Get SMARTS] (Sports Medicine Research Team System): A Computerized Outpatient Data Collection System for Epidemiologic Research

    National Research Council Canada - National Science Library

    Brodine, S

    1997-01-01

    .... This report describes features of the Sports Medicine Research Team System (SMARTS) and reviews results of a SMARTS supported prospective study of male Marine Corps recruits undergoing basic training...

  7. FPGA-based fused smart-sensor for tool-wear area quantitative estimation in CNC machine inserts.

    Science.gov (United States)

    Trejo-Hernandez, Miguel; Osornio-Rios, Roque Alfredo; de Jesus Romero-Troncoso, Rene; Rodriguez-Donate, Carlos; Dominguez-Gonzalez, Aurelio; Herrera-Ruiz, Gilberto

    2010-01-01

    Manufacturing processes are of great relevance nowadays, when there is a constant claim for better productivity with high quality at low cost. The contribution of this work is the development of a fused smart-sensor, based on FPGA to improve the online quantitative estimation of flank-wear area in CNC machine inserts from the information provided by two primary sensors: the monitoring current output of a servoamplifier, and a 3-axis accelerometer. Results from experimentation show that the fusion of both parameters makes it possible to obtain three times better accuracy when compared with the accuracy obtained from current and vibration signals, individually used.

  8. Inertial Sensor-Based Gait Recognition: A Review

    Science.gov (United States)

    Sprager, Sebastijan; Juric, Matjaz B.

    2015-01-01

    With the recent development of microelectromechanical systems (MEMS), inertial sensors have become widely used in the research of wearable gait analysis due to several factors, such as being easy-to-use and low-cost. Considering the fact that each individual has a unique way of walking, inertial sensors can be applied to the problem of gait recognition where assessed gait can be interpreted as a biometric trait. Thus, inertial sensor-based gait recognition has a great potential to play an important role in many security-related applications. Since inertial sensors are included in smart devices that are nowadays present at every step, inertial sensor-based gait recognition has become very attractive and emerging field of research that has provided many interesting discoveries recently. This paper provides a thorough and systematic review of current state-of-the-art in this field of research. Review procedure has revealed that the latest advanced inertial sensor-based gait recognition approaches are able to sufficiently recognise the users when relying on inertial data obtained during gait by single commercially available smart device in controlled circumstances, including fixed placement and small variations in gait. Furthermore, these approaches have also revealed considerable breakthrough by realistic use in uncontrolled circumstances, showing great potential for their further development and wide applicability. PMID:26340634

  9. Embedded Fiber Optic Sensors for Integral Armor

    National Research Council Canada - National Science Library

    Fink, Bruce

    2000-01-01

    This report describes the work performed with Production Products Manufacturing & Sales (PPMS), Inc., under the "Liquid Molded Composite Armor Smart Structures Using Embedded Sensors" Small Business Innovative Research...

  10. Integration of Multisensor Hybrid Reasoners to Support Personal Autonomy in the Smart Home

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Valero

    2014-09-01

    Full Text Available The deployment of the Ambient Intelligence (AmI paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii an integration middleware that allows context capture from heterogeneous sensors to program environment´s reaction; (iii a vision system for intelligent monitoring of daily activities in the home; and (iv an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy.

  11. Integration of multisensor hybrid reasoners to support personal autonomy in the smart home.

    Science.gov (United States)

    Valero, Miguel Ángel; Bravo, José; Chamizo, Juan Manuel García; López-de-Ipiña, Diego

    2014-09-17

    The deployment of the Ambient Intelligence (AmI) paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i) a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii) an integration middleware that allows context capture from heterogeneous sensors to program environment's reaction; (iii) a vision system for intelligent monitoring of daily activities in the home; and (iv) an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy.

  12. Integration of Multisensor Hybrid Reasoners to Support Personal Autonomy in the Smart Home

    Science.gov (United States)

    Valero, Miguel Ángel; Bravo, José; Chamizo, Juan Manuel García; López-de-Ipiña, Diego

    2014-01-01

    The deployment of the Ambient Intelligence (AmI) paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i) a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii) an integration middleware that allows context capture from heterogeneous sensors to program environment's reaction; (iii) a vision system for intelligent monitoring of daily activities in the home; and (iv) an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy. PMID:25232910

  13. Evaluation of the Impact of Furniture on Communications Performance for Ubiquitous Deployment of Wireless Sensor Networks in Smart Homes

    Science.gov (United States)

    Bleda, Andrés L.; Jara, Antonio J.; Maestre, Rafael; Santa, Guadalupe; Gómez Skarmeta, Antonio F.

    2012-01-01

    The extensions of the environment with the integration of sensing systems in any space, in conjunction with ubiquitous computing are enabling the so-called Smart Space Sensor Networks. This new generation of networks are offering full connectivity with any object, through the Internet of Things (IoT) and/or the Web, i.e., the Web of Things. These connectivity capabilities are making it feasible to sense the behaviours of people at home and act accordingly. These sensing systems must be integrated within typical elements found at home such as furniture. For that reason, this work considers furniture as an interesting element for the transparent location of sensors. Furniture is a ubiquitous object, i.e., it can be found everywhere at home or the office, and it can integrate and hide the sensors of a network. This work addresses the lack of an exhaustive study of the effect of furniture on signal losses. In addition an easy-to-use tool for estimating the robustness of the communication channel among the sensor nodes and gateways is proposed. Specifically, the losses in a sensor network signal due to the materials found within the communication link are evaluated. Then, this work proposes a software tool that gathers the obtained results and is capable of evaluating the impact of a given set of materials on the communications. This tool also provides a mechanism to optimize the sensor network deployments during the definition of smart spaces. Specifically, it provides information such as: maximum distances between sensor nodes, most suitable type of furniture to integrate sensors, or battery life of sensor nodes. This tool has been validated empirically in the lab, and it is currently being used by several enterprise partners of the Technological Centre of Furniture and Wood in the southeast of Spain. PMID:22778653

  14. Evaluation of the impact of furniture on communications performance for ubiquitous deployment of Wireless Sensor Networks in smart homes.

    Science.gov (United States)

    Bleda, Andrés L; Jara, Antonio J; Maestre, Rafael; Santa, Guadalupe; Gómez Skarmeta, Antonio F

    2012-01-01

    The extensions of the environment with the integration of sensing systems in any space, in conjunction with ubiquitous computing are enabling the so-called Smart Space Sensor Networks. This new generation of networks are offering full connectivity with any object, through the Internet of Things (IoT) and/or the Web, i.e., the Web of Things. These connectivity capabilities are making it feasible to sense the behaviours of people at home and act accordingly. These sensing systems must be integrated within typical elements found at home such as furniture. For that reason, this work considers furniture as an interesting element for the transparent location of sensors. Furniture is a ubiquitous object, i.e., it can be found everywhere at home or the office, and it can integrate and hide the sensors of a network. This work addresses the lack of an exhaustive study of the effect of furniture on signal losses. In addition an easy-to-use tool for estimating the robustness of the communication channel among the sensor nodes and gateways is proposed. Specifically, the losses in a sensor network signal due to the materials found within the communication link are evaluated. Then, this work proposes a software tool that gathers the obtained results and is capable of evaluating the impact of a given set of materials on the communications. This tool also provides a mechanism to optimize the sensor network deployments during the definition of smart spaces. Specifically, it provides information such as: maximum distances between sensor nodes, most suitable type of furniture to integrate sensors, or battery life of sensor nodes. This tool has been validated empirically in the lab, and it is currently being used by several enterprise partners of the Technological Centre of Furniture and Wood in the southeast of Spain.

  15. Evaluation of the Impact of Furniture on Communications Performance for Ubiquitous Deployment of Wireless Sensor Networks in Smart Homes

    Directory of Open Access Journals (Sweden)

    Antonio F. Gómez Skarmeta

    2012-05-01

    Full Text Available The extensions of the environment with the integration of sensing systems in any space, in conjunction with ubiquitous computing are enabling the so-called Smart Space Sensor Networks. This new generation of networks are offering full connectivity with any object, through the Internet of Things (IoT and/or the Web, i.e., the Web of Things. These connectivity capabilities are making it feasible to sense the behaviours of people at home and act accordingly. These sensing systems must be integrated within typical elements found at home such as furniture. For that reason, this work considers furniture as an interesting element for the transparent location of sensors. Furniture is a ubiquitous object, i.e., it can be found everywhere at home or the office, and it can integrate and hide the sensors of a network. This work addresses the lack of an exhaustive study of the effect of furniture on signal losses. In addition an easy-to-use tool for estimating the robustness of the communication channel among the sensor nodes and gateways is proposed. Specifically, the losses in a sensor network signal due to the materials found within the communication link are evaluated. Then, this work proposes a software tool that gathers the obtained results and is capable of evaluating the impact of a given set of materials on the communications. This tool also provides a mechanism to optimize the sensor network deployments during the definition of smart spaces. Specifically, it provides information such as: maximum distances between sensor nodes, most suitable type of furniture to integrate sensors, or battery life of sensor nodes. This tool has been validated empirically in the lab, and it is currently being used by several enterprise partners of the Technological Centre of Furniture and Wood in the southeast of Spain.

  16. Wrist ambulatory monitoring system and smart glove for real time emotional, sensorial and physiological analysis.

    Science.gov (United States)

    Axisa, F; Gehin, C; Delhomme, G; Collet, C; Robin, O; Dittmar, A

    2004-01-01

    Improvement of the quality and efficiency of the quality of health in medicine, at home and in hospital becomes more and more important Designed to be user-friendly, smart clothes and gloves fit well for such a citizen use and health monitoring. Analysis of the autonomic nervous system using non-invasive sensors provides information for the emotional, sensorial, cognitive and physiological analysis. MARSIAN (modular autonomous recorder system for the measurement of autonomic nervous system) is a wrist ambulatory monitoring and recording system with a smart glove with sensors for the detection of the activity of the autonomic nervous system. It is composed of a "smart tee shirt", a "smart glove", a wrist device and PC which records data. The smart glove is one of the key point of MARSIAN. Complex movements, complex geometry, sensation make smart glove designing a challenge. MARSIAN has a large field of applications and researches (vigilance, behaviour, sensorial analysis, thermal environment for human, cognition science, sport, etc...) in various fields like neurophysiology, affective computing and health monitoring.

  17. Modelling and precision of the localization of the robotic mobile platforms for constructions with laser tracker and SmartTrack sensor

    Science.gov (United States)

    Dima, M.; Francu, C.

    2016-08-01

    This paper presents a way to expand the field of use of the laser tracker and SmartTrack sensor localization device used in lately for the localisation of the end effector of the industrial robots to the localization of the mobile construction robots. The research paper presents the equipment along with its characteristics, determines the relationships for the localization coordinates by comparison to the forward kinematics of the industrial robot's spherical arm (positioning mechanism in spherical coordinates) and the orientation mechanism with three revolute axes. In the end of the paper the accuracy of the mobile robot's localization is analysed.

  18. SMART wind turbine rotor. Design and field test

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  19. Employing a RGB-D Sensor for Real-Time Tracking of Humans across Multiple Re-Entries in a Smart Environment

    NARCIS (Netherlands)

    J. Han (Jungong ); E.J. Pauwels (Eric); P.M. de Zeeuw (Paul); P.H.N. de With

    2012-01-01

    textabstractThe term smart environment refers to physical spaces equipped with sensors feeding into adaptive algorithms that enable the environment to become sensitive and responsive to the presence and needs of its occupants. People with special needs, such as the elderly or disabled

  20. Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates

    International Nuclear Information System (INIS)

    Kong, Qingzhao; Song, Gangbing; Hou, Shuang; Ji, Qing; Mo, Y L

    2013-01-01

    Very early age (0–20 h) concrete hydration is a complicated chemical reaction. During the very early age period, the concrete condition dramatically changes from liquid state to solid state. This paper presents the authors’ recent research on monitoring very early age concrete hydration characterization by using piezoceramic based smart aggregates. The smart aggregate (SA) transducer is designed as a sandwich structure using two marble blocks and a pre-soldered lead zirconate titanate (PZT) patch. Based on the electromechanical property of piezo materials, the PZT patches function as both actuators and sensors. In addition, the marble blocks provide reliable protection to the fragile PZT patch and develop the SA into a robust embedded actuator or sensor in the structure. The active-sensing approach, which involved a pair of smart aggregates with one as an actuator and the other one as a sensor, was applied in this paper’s experimental investigation of concrete hydration characterization monitoring. In order to completely understand the hydration condition of the inhomogeneous, over-cluttering, high-scattering characteristics of concrete (specifically of very early concrete), a swept sine wave and several constant frequency sine waves were chosen and produced by a function generator to excite the embedded actuating smart aggregate. The PZT vibration induced ultrasonic wave propagated through the concrete and was sent to the other smart aggregate sensor. The electrical signal transferred from the smart aggregate sensor was recorded during the test. As the concrete hydration reaction was occurring, the characteristic of the electrical signal continuously changed. This paper describes the successful investigation of the three states (the fluid state, the transition state, and the hardened state) of very early age concrete hydration based on classification of the received electrical signal. Specifically, the amplitude and frequency response of the electrical

  1. A Hilbert Transform-Based Smart Sensor for Detection, Classification, and Quantification of Power Quality Disturbances

    Directory of Open Access Journals (Sweden)

    Roque A. Osornio-Rios

    2013-04-01

    Full Text Available Power quality disturbance (PQD monitoring has become an important issue due to the growing number of disturbing loads connected to the power line and to the susceptibility of certain loads to their presence. In any real power system, there are multiple sources of several disturbances which can have different magnitudes and appear at different times. In order to avoid equipment damage and estimate the damage severity, they have to be detected, classified, and quantified. In this work, a smart sensor for detection, classification, and quantification of PQD is proposed. First, the Hilbert transform (HT is used as detection technique; then, the classification of the envelope of a PQD obtained through HT is carried out by a feed forward neural network (FFNN. Finally, the root mean square voltage (Vrms, peak voltage (Vpeak, crest factor (CF, and total harmonic distortion (THD indices calculated through HT and Parseval’s theorem as well as an instantaneous exponential time constant quantify the PQD according to the disturbance presented. The aforementioned methodology is processed online using digital hardware signal processing based on field programmable gate array (FPGA. Besides, the proposed smart sensor performance is validated and tested through synthetic signals and under real operating conditions, respectively.

  2. Robust site security using smart seismic array technology and multi-sensor data fusion

    Science.gov (United States)

    Hellickson, Dean; Richards, Paul; Reynolds, Zane; Keener, Joshua

    2010-04-01

    Traditional site security systems are susceptible to high individual sensor nuisance alarm rates that reduce the overall system effectiveness. Visual assessment of intrusions can be intensive and manually difficult as cameras are slewed by the system to non intrusion areas or as operators respond to nuisance alarms. Very little system intrusion performance data are available other than discrete sensor alarm indications that provide no real value. This paper discusses the system architecture, integration and display of a multi-sensor data fused system for wide area surveillance, local site intrusion detection and intrusion classification. The incorporation of a novel seismic array of smart sensors using FK Beamforming processing that greatly enhances the overall system detection and classification performance of the system is discussed. Recent test data demonstrates the performance of the seismic array within several different installations and its ability to classify and track moving targets at significant standoff distances with exceptional immunity to background clutter and noise. Multi-sensor data fusion is applied across a suite of complimentary sensors eliminating almost all nuisance alarms while integrating within a geographical information system to feed a visual-fusion display of the area being secured. Real-time sensor detection and intrusion classification data is presented within a visual-fusion display providing greatly enhanced situational awareness, system performance information and real-time assessment of intrusions and situations of interest with limited security operator involvement. This approach scales from a small local perimeter to very large geographical area and can be used across multiple sites controlled at a single command and control station.

  3. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-11-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete.

  4. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    International Nuclear Information System (INIS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-01-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete

  5. Vibration isolation/suppression: research experience for undergraduates in mechatronics and smart structures

    Science.gov (United States)

    Fonda, James; Rao, Vittal S.; Sana, Sridhar

    2001-08-01

    This paper provides an account of a student research project conducted under the sponsoring of the National Science Foundation (NSF) program on Research Experience for Undergraduates (REU) in Mechatronics and Smart Strictures in the summer of 2000. The objective of the research is to design and test a stand-alone controller for a vibration isolation/suppression system. The design specification for the control system is to suppress the vibrations induced by the external disturbances by at least fiver times and hence to achieve vibration isolation. Piezo-electric sensors and actuators are utilized for suppression of unwanted vibrations. Various steps such as modeling of the system, controller design, simulation, closed-loop testing using d- Space rapid prototyping system, and analog control implementation are discussed in the paper. Procedures for data collection, the trade-offs carried out in the design, and analog controller implementation issues are also presented in the paper. The performances of various controllers are compared. The experiences of an undergraduate student are summarized in the conclusion of the paper.

  6. Employing a RGB-D sensor for real-time tracking of humans across multiple re-entries in a smart environment

    NARCIS (Netherlands)

    Han, Jungong; Pauwels, E.J.; Zeeuw, de P.M.; With, de P.H.N.

    2012-01-01

    The term smart environment refers to physical spaces equipped with sensors feeding into adaptive algorithms that enable the environment to become sensitive and responsive to the presence and needs of its occupants. People with special needs, such as the elderly or disabled people, stand to benefit

  7. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    Directory of Open Access Journals (Sweden)

    Guanwu Zhou

    2014-07-01

    Full Text Available Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system’s performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor.

  8. A Science Cloud for Smart Cities Research

    DEFF Research Database (Denmark)

    Heller, Alfred; Liu, Xiufeng; Gianniou, Panagiota

    2017-01-01

    , amongst many other things, the whole lifecycle of big data management and analytics for research activities. At the Centre for IT-Intelligent Smart Energy for Cities, we have therefore been developing a flexible infrastructure, based on open sourcetechnologies. This paper presents this solution and its...

  9. Passive low-cost inkjet-printed smart skin sensor for structural health monitoring

    KAUST Repository

    Cook, Benjamin Stassen

    2012-11-20

    Monitoring fatigue cracking of large engineering structures is a costly and time-intensive process. The authors\\' present the first low-cost inkjet-printed patch antenna sensor that can passively detect crack formation, orientation and shape by means of resonant frequency shifts in the two resonant modes of the antenna. For the first time, the effect of non-linear crack shapes on the parallel and perpendicular resonant modes of a patch antenna is quantified with simulation and measurement. This study presents a step towards fully integrated, low-cost, conformal and environmentally friendly smart skins for real-time monitoring of large structures. © The Institution of Engineering and Technology 2012.

  10. Design of Smart Home Systems Prototype Using MyRIO

    Science.gov (United States)

    Ratna Wati, Dwi Ann; Abadianto, Dika

    2017-06-01

    This paper presents the design of smart home systems prototype. It applies. MyRIO 1900 embedded device as the main controller of the smart home systems. The systems include wireless monitoring systems and email based notifications as well as data logging. The prototype systems use simulated sensor such as temperature sensor, push button as proximity sensor, and keypad while its simulated actuators are buzzer as alarm system, LED as light and LCD. Based on the test and analysis, the smart home systems prototype as well as the wireless monitoring systems have real time responses when input signals are available. Tbe performance of MyRIO controller is excellent and it results in a stable system.

  11. Semantic Approach to Smart Home Data Aggregation Multi-sensor Data Processing for Smart Environments

    Directory of Open Access Journals (Sweden)

    Fano Ramparany

    2016-04-01

    Full Text Available One salient feature of data produced by the IoT is its heterogeneity. Despite this heterogeneity, future IoT applications including Smart Home, Smart City, Smart Energy services, will require that all data be easily compared, correlated and merged, and that interpretation of this resulting aggregate into higher level context better matches people needs and requirements. In this paper we propose a framework based on semantic technologies for aggregating IoT data. Our approach has been assessed in the domain of the Smart Home with real data provided by Orange Homelive solution. We show that our approach enables simple reasoning mechanisms to be conducted on the aggregated data, so that contexts such as the presence, activities of people as well as abnormal situations requiring corrective actions, be inferred.

  12. Smart grid for comfort; Smart grid voor comfort

    Energy Technology Data Exchange (ETDEWEB)

    Zeiler, W.; Van der Velden, J.A.J. [Kropman, Rijswijk (Netherlands); Vissers, D.R.; Maaijen, H.N. [Faculteit Bouwkunde, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Kling, W.L. [Faculteit Electrical Engineering, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Larsen, J.P. [Sense Observation Systems, Rotterdam (Netherlands)

    2012-04-15

    A new control strategy was developed based on the application of wireless sensor network with the connection to a smart grid to investigate if it is possible to save energy on the level of the user under the condition of maintaining the same or even improved level of individual comfort. By using different scenarios, for individual comfort and energy consumption, agents provide the steering of the process control This forms the basis of a new approach to optimize the energy consumption, after which the effect of it can be used on the level of residential building to optimize the interaction with the electrical infrastructure, the smart grid. [Dutch] Er vindt onderzoek plaats naar een nieuwe regelstrategie gebaseerd op de toepassing van een draadloos sensor netwerk dat is gekoppeld aan het smart grid. Doel van deze regelstrategie is om op gebruikersniveau energie te kunnen besparen met behoud of zelfs verbetering van het individueel comfort. Er zijn verschillende scenario's voor individueel comfort en energiegebruik van apparatuur met behulp van agents die voor de aansturing kunnen zorgen. Zo wordt de kern van de energievraag geoptimaliseerd. De doorwerking hiervan tot op het niveau van woninggebouw en de koppeling met het externe elektriciteitsnet kan vervolgens worden geoptimaliseerd.

  13. Trends and Challenges in Smart Healthcare Research: A Journey from Data to Wisdom

    Energy Technology Data Exchange (ETDEWEB)

    Solanas, Agusti; Fran, Casino; Batista, Edgar; Rallo Moya, Roberto J.

    2017-10-12

    Smart Healthcare is a relatively new context-aware healthcare paradigm influenced by several fields of knowledge, namely medical informatics, communications and electronics, bioengineering, ethics and so on. Thus, many challenging problems are related to smart healthcare but in many cases they are explored individually in their respective fields and, as a result, they are not always known by the smart healthcare research community working in more specific domains. The aim of this article is to identify some of the most relevant trends and research lines that are going to affect the smart healthcare field in the years to come. To do so, the article considers a systematic approach that classifies the identified research trends and problems according to their appearance within the data life cycle, this is, from the data gathering in the physical layer (lowest level) until their final use in the application layer (highest level). By identifying and classifying those research trends and challenges, we help to pose questions that the smart healthcare community will need to address. Consequently, we set a common ground to explore important problems in the field, which will have significant impact in the years to come.

  14. Smart wearable systems: current status and future challenges.

    Science.gov (United States)

    Chan, Marie; Estève, Daniel; Fourniols, Jean-Yves; Escriba, Christophe; Campo, Eric

    2012-11-01

    Extensive efforts have been made in both academia and industry in the research and development of smart wearable systems (SWS) for health monitoring (HM). Primarily influenced by skyrocketing healthcare costs and supported by recent technological advances in micro- and nanotechnologies, miniaturisation of sensors, and smart fabrics, the continuous advances in SWS will progressively change the landscape of healthcare by allowing individual management and continuous monitoring of a patient's health status. Consisting of various components and devices, ranging from sensors and actuators to multimedia devices, these systems support complex healthcare applications and enable low-cost wearable, non-invasive alternatives for continuous 24-h monitoring of health, activity, mobility, and mental status, both indoors and outdoors. Our objective has been to examine the current research in wearable to serve as references for researchers and provide perspectives for future research. Herein, we review the current research and development of and the challenges facing SWS for HM, focusing on multi-parameter physiological sensor systems and activity and mobility measurement system designs that reliably measure mobility or vital signs and integrate real-time decision support processing for disease prevention, symptom detection, and diagnosis. For this literature review, we have chosen specific selection criteria to include papers in which wearable systems or devices are covered. We describe the state of the art in SWS and provide a survey of recent implementations of wearable health-care systems. We describe current issues, challenges, and prospects of SWS. We conclude by identifying the future challenges facing SWS for HM. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Sensing Models and Sensor Network Architectures for Transport Infrastructure Monitoring in Smart Cities

    Science.gov (United States)

    Simonis, Ingo

    2015-04-01

    Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.

  16. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator

    Directory of Open Access Journals (Sweden)

    Joaquin Ballesteros

    2016-11-01

    Full Text Available Gait analysis can provide valuable information on a person’s condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars—related to the user condition—and the estimation error; and (ii this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  17. On Gait Analysis Estimation Errors Using Force Sensors on a Smart Rollator.

    Science.gov (United States)

    Ballesteros, Joaquin; Urdiales, Cristina; Martinez, Antonio B; van Dieën, Jaap H

    2016-11-10

    Gait analysis can provide valuable information on a person's condition and rehabilitation progress. Gait is typically captured using external equipment and/or wearable sensors. These tests are largely constrained to specific controlled environments. In addition, gait analysis often requires experts for calibration, operation and/or to place sensors on volunteers. Alternatively, mobility support devices like rollators can be equipped with onboard sensors to monitor gait parameters, while users perform their Activities of Daily Living. Gait analysis in rollators may use odometry and force sensors in the handlebars. However, force based estimation of gait parameters is less accurate than traditional methods, especially when rollators are not properly used. This paper presents an evaluation of force based gait analysis using a smart rollator on different groups of users to determine when this methodology is applicable. In a second stage, the rollator is used in combination with two lab-based gait analysis systems to assess the rollator estimation error. Our results show that: (i) there is an inverse relation between the variance in the force difference between handlebars and support on the handlebars-related to the user condition-and the estimation error; and (ii) this error is lower than 10% when the variation in the force difference is above 7 N. This lower limit was exceeded by the 95.83% of our challenged volunteers. In conclusion, rollators are useful for gait characterization as long as users really need the device for ambulation.

  18. Rancangbangun Smart Green House untuk Tanaman Hidroponik

    OpenAIRE

    Syam, Rafiuddin

    2011-01-01

    Penelitian ini bertujuan merancang sistem kendali dan membuat manipulator smart green house. Metode penelitian yang dilakukan adalah eksperimen pada model smart green house. Dalam sistem ini mengggunakan mikrokontroller sebagai antar muka untuk melakukan peregerakan manipulator dalam sistem secara integritas. Smart greenhouse menggunakan sensor suhu, cahaya dan mikrokontroller yang digunakan adalah ATMEGA 8535. Torsi motor digunakan untuk mengangkat dan mendorong jendela dengan lengan manipul...

  19. Multi-agent collaborative planning in smart environments

    OpenAIRE

    Amato, Flora; Mazzocca, Nicola; Moscato, Francesco; Xhafa Xhafa, Fatos

    2017-01-01

    Nowadays Smart systems have become commonplace in our lives: domotics, social networks, automotive, smart application, virtual reality are having each time more and more users. One recent example of smart spaces can be found in domains like cultural heritages sites, museums or libraries where the use of new technologies grows up fast, namely, distributed sensors networks, virtual reality and smart systems are now being widely used to aid in preserving archaeological findings and sites as well...

  20. A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context.

    Science.gov (United States)

    Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo; Pozzebon, Alessandro

    2018-04-21

    This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented.

  1. A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context

    Directory of Open Access Journals (Sweden)

    Matteo Cerchecci

    2018-04-01

    Full Text Available This paper focuses on the realization of an Internet of Things (IoT architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented.

  2. A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context

    Science.gov (United States)

    Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo

    2018-01-01

    This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented. PMID:29690552

  3. A Survey on Novel Services in Smart Home (Optimized for Smart Electricity Grid)

    OpenAIRE

    Tuly, Kaniz Fatema

    2016-01-01

    Advancement in technology has not only transformed our life but also extended in every sphere of our way of living. Till now in most of the cases we are adapting our lifestyle with the way that is directed by the functions of the modern devices. But scientists are researching on more modern smart devices that should rather adapt with our lifestyle seamlessly. That is the core concept of pervasive computing - a collection of invisible and visible sensors and computing devices to ease our daily...

  4. Smart mobility in smart cities

    Energy Technology Data Exchange (ETDEWEB)

    Baucells, Aleta N.

    2016-07-01

    Cities are currently undergoing a transformation into the Smart concept, like Smartphones or SmartTV. Many initiatives are being developed in the framework of the Smart Cities projects, however, there is a lack of consistent indicators and methodologies to assess, finance, prioritize and implement this kind of projects. Smart Cities projects are classified according to six axes: Government, Mobility, Environment, Economy, People and Living. (Giffinger, 2007). The main objective of this research is to develop an evaluation model in relation to the mobility concept as one of the six axes of the Smart City classification and apply it to the Spanish cities. The evaluation was carried out in the 62 cities that made up in September 2015 the Spanish Network of Smart Cities (RECI- Red Española de Ciudades Inteligentes). This research is part of a larger project about Smart Cities’ evaluation (+CITIES), the project evaluates RECI’s cities in all the axes. The analysis was carried out taking into account sociodemographic indicators such as the size of the city or the municipal budget per inhabitant. The mobility’s evaluation in those cities has been focused in: sustainability mobility urban plans and measures to reduce the number of vehicles. The 62 cities from the RECI have been evaluated according to their degree of progress in several Smart Cities’ initiatives related to smart mobility. The applied methodology has been specifically made for this project. The grading scale has different ranks depending on the deployment level of smart cities’ initiatives. (Author)

  5. NASA SMART Probe: Breast Cancer Application

    Science.gov (United States)

    Mah, Robert W.; Norvig, Peter (Technical Monitor)

    2000-01-01

    There is evidence in breast cancer and other malignancies that the physiologic environment within a tumor correlates with clinical outcome. We are developing a unique percutaneous Smart Probe to be used at the time of needle biopsy of the breast. The Smart Probe will simultaneously measure multiple physiologic parameters within a breast tumor. Direct and indirect measurements of tissue oxygen levels, blood flow, pH, and tissue fluid pressure will be analyzed in real-time. These parameters will be interpreted individually and collectively by innovative neural network techniques using advanced intelligent software. The goals are 1) develop a pecutaneous Smart Probe with multiple sensor modalities and applying advanced Information Technologies to provide real time diagnostic information of the tissue at tip of the probe, 2) test the percutaneous Smart Probe in women with benign and malignant breast masses who will be undergoing surgical biopsy, 3) correlate probe sensor data with benign and malignant status of breast masses, 4) determine whether the probe can detect physiologic differences within a breast tumor, and its margins, and in adjacent normal breast tissue, 5) correlate probe sensor data with known prognostic factors for breast caner, including tumor size, tumor grade, axillary lymph node metastases, estrogen receptor and progesterone receptor status.

  6. HDOMO: Smart Sensor Integration for an Active and Independent Longevity of the Elderly.

    Science.gov (United States)

    Frontoni, Emanuele; Pollini, Rama; Russo, Paola; Zingaretti, Primo; Cerri, Graziano

    2017-11-13

    The aim of this paper is to present the main results of HDOMO, an Ambient Assisted Living (AAL) project that involved 16 Small and Medium Enterprises (SMEs) and 2 research institutes. The objective of the project was to create an autonomous and automated domestic environment, primarily for elderly people and people with physical and motor disabilities. A known and familiar environment should help users in their daily activities and it should act as a virtual caregiver by calling, if necessary, relief efforts. Substantially, the aim of the project is to simplify the life of people in need of support, while keeping them autonomous in their private environment. From a technical point of view, the project provides the use of different Smart Objects (SOs), able to communicate among each other, in a cloud base infrastructure, and with the assisted users and their caregivers, in a perspective of interoperability and standardization of devices, usability and effectiveness of alarm systems. In the state of the art there are projects that achieve only a few of the elements listed. The HDOMO project aims to achieve all of them in one single project effectively. The experimental trials performed in a real scenario demonstrated the accuracy and efficiency of the system in extracting and processing data in real time to promptly acting, and in providing timely response to the needs of the user by integrating and confirming main alarms with different interoperable smart sensors. The article proposes a new technique to improve the accuracy of the system in detecting alarms using a multi-SO approach with information fusion between different devices, proving that this architecture can provide robust and reliable results on real environments.

  7. Smart Nacre-inspired Nanocomposites.

    Science.gov (United States)

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The SmartOR: a distributed sensor network to improve operating room efficiency.

    Science.gov (United States)

    Huang, Albert Y; Joerger, Guillaume; Fikfak, Vid; Salmon, Remi; Dunkin, Brian J; Bass, Barbara L; Garbey, Marc

    2017-09-01

    Despite the significant expense of OR time, best practice achieves only 70% efficiency. Compounding this problem is a lack of real-time data. Most current OR utilization programs require manual data entry. Automated systems require installation and maintenance of expensive tracking hardware throughout the institution. This study developed an inexpensive, automated OR utilization system and analyzed data from multiple operating rooms. OR activity was deconstructed into four room states. A sensor network was then developed to automatically capture these states using only three sensors, a local wireless network, and a data capture computer. Two systems were then installed into two ORs, recordings captured 24/7. The SmartOR recorded the following events: any room activity, patient entry/exit time, anesthesia time, laparoscopy time, room turnover time, and time of preoperative patient identification by the surgeon. From November 2014 to December 2015, data on 1003 cases were collected. The mean turnover time was 36 min, and 38% of cases met the institutional goal of ≤30 min. Data analysis also identified outlier cases (>1 SD from mean) in the domains of time from patient entry into the OR to intubation (11% of cases) and time from extubation to patient exiting the OR (11% of cases). Time from surgeon identification of patient to scheduled procedure start time was 11 min (institution bylaws require 20 min before scheduled start time), yet OR teams required 22 min on average to bring a patient into the room after surgeon identification. The SmartOR automatically and reliably captures data on OR room state and, in real time, identifies outlier cases that may be examined closer to improve efficiency. As no manual entry is required, the data are indisputable and allow OR teams to maintain a patient-centric focus.

  9. Smarter energy from smart metering to the smart grid

    CERN Document Server

    Sun, Hongjian; Poor, H Vincent; Carpanini, Laurence; Fornié, Miguel Angel Sánchez

    2016-01-01

    This book presents cutting-edge perspectives and research results in smart energy spanning multiple disciplines across four main topics: smart metering, smart grid modeling, control and optimisation, and smart grid communications and networking.

  10. Design And Implementation Of Smart Parking System Using Peripheral Interface Controllers And Infrared Sensors

    Directory of Open Access Journals (Sweden)

    May Thaw Htet

    2015-08-01

    Full Text Available With the increase in world population and vehicle production parking spaces and facilities are required. As the numbers of vehicles on the road are increasing day by day parking problems which are increasing at an alarming rate in every major city cause drivers frustration traffic congestion and time wasting especially during the peak business hours. Lot of researches was being done all over the world to implement better parking management system which reduces parking problems. SPARK Smart Parking is parking garage system that utilizes various technologies to implement best parking system. The proposed system is aimed to inform drivers about the number of available parking spaces without any parking difficulties. This system is designed for two- level parking slots with twenty six parking spaces and one aisle on each floor. The condition of parking slots is detected by IR sensors and is reported periodically to main controller via floor controllers and self controllers. PIC 18F4550 is chosen to be used as controllers because it is suitable for the proposed system. Each floor contains LCD display which will show available parking spaces of that floor. LCD display at the entrance gate will show overall available parking slots of two floors. In this paper a new parking system called Smart Parking system is proposed to help drivers getting the real-time parking information and to find vacant spaces in a car park in a shorter time. This kind of system minimizes not only traffic congestion problems but also staff requirements to control the traffic in the car park.

  11. Smart home in a box: usability study for a large scale self-installation of smart home technologies.

    Science.gov (United States)

    Hu, Yang; Tilke, Dominique; Adams, Taylor; Crandall, Aaron S; Cook, Diane J; Schmitter-Edgecombe, Maureen

    2016-07-01

    This study evaluates the ability of users to self-install a smart home in a box (SHiB) intended for use by a senior population. SHiB is a ubiquitous system, developed by the Washington State University Center for Advanced Studies in Adaptive Systems (CASAS). Participants involved in this study are from the greater Palouse region of Washington State, and there are 13 participants in the study with an average age of 69.23. The SHiB package, which included several different types of components to collect and transmit sensor data, was given to participants to self-install. After installation of the SHiB, the participants were visited by researchers for a check of the installation. The researchers evaluated how well the sensors were installed and asked the resident questions about the installation process to help improve the SHiB design. The results indicate strengths and weaknesses of the SHiB design. Indoor motion tracking sensors are installed with high success rate, low installation success rate was found for door sensors and setting up the Internet server.

  12. Mining Productive-Associated Periodic-Frequent Patterns in Body Sensor Data for Smart Home Care.

    Science.gov (United States)

    Ismail, Walaa N; Hassan, Mohammad Mehedi

    2017-04-26

    The understanding of various health-oriented vital sign data generated from body sensor networks (BSNs) and discovery of the associations between the generated parameters is an important task that may assist and promote important decision making in healthcare. For example, in a smart home scenario where occupants' health status is continuously monitored remotely, it is essential to provide the required assistance when an unusual or critical situation is detected in their vital sign data. In this paper, we present an efficient approach for mining the periodic patterns obtained from BSN data. In addition, we employ a correlation test on the generated patterns and introduce productive-associated periodic-frequent patterns as the set of correlated periodic-frequent items. The combination of these measures has the advantage of empowering healthcare providers and patients to raise the quality of diagnosis as well as improve treatment and smart care, especially for elderly people in smart homes. We develop an efficient algorithm named PPFP-growth (Productive Periodic-Frequent Pattern-growth) to discover all productive-associated periodic frequent patterns using these measures. PPFP-growth is efficient and the productiveness measure removes uncorrelated periodic items. An experimental evaluation on synthetic and real datasets shows the efficiency of the proposed PPFP-growth algorithm, which can filter a huge number of periodic patterns to reveal only the correlated ones.

  13. Mining Productive-Associated Periodic-Frequent Patterns in Body Sensor Data for Smart Home Care

    Directory of Open Access Journals (Sweden)

    Walaa N. Ismail

    2017-04-01

    Full Text Available The understanding of various health-oriented vital sign data generated from body sensor networks (BSNs and discovery of the associations between the generated parameters is an important task that may assist and promote important decision making in healthcare. For example, in a smart home scenario where occupants’ health status is continuously monitored remotely, it is essential to provide the required assistance when an unusual or critical situation is detected in their vital sign data. In this paper, we present an efficient approach for mining the periodic patterns obtained from BSN data. In addition, we employ a correlation test on the generated patterns and introduce productive-associated periodic-frequent patterns as the set of correlated periodic-frequent items. The combination of these measures has the advantage of empowering healthcare providers and patients to raise the quality of diagnosis as well as improve treatment and smart care, especially for elderly people in smart homes. We develop an efficient algorithm named PPFP-growth (Productive Periodic-Frequent Pattern-growth to discover all productive-associated periodic frequent patterns using these measures. PPFP-growth is efficient and the productiveness measure removes uncorrelated periodic items. An experimental evaluation on synthetic and real datasets shows the efficiency of the proposed PPFP-growth algorithm, which can filter a huge number of periodic patterns to reveal only the correlated ones.

  14. FRP confined smart concrete/mortar

    Science.gov (United States)

    Xiao, Y.; Zhu, P. S.; Choi, K. G.; Wu, Y. T.; Huang, Z. Y.; Shan, B.

    2006-03-01

    In this study, fiber reinforced polymer (FRP) confined smart concrete/mortar sensors were invented and validated for significantly improved measurement range. Several trial mixes were made using cement mortar and micron-phase graphite powders at different mix proportions. Compressive loading tests were conducted on smart mortar cylinder specimens with or without FRP confinement. Two-probe method was used to detect the electrical resistance of the smart cement mortar specimens. Strong correlation was recognized between the stress and electric resistance of the smart mortar. The test results indicated that the FRP wrapping could significantly enlarge the range of such self-sensing property as a consequence of confinement.

  15. HETEROGENEOUS SENSOR DATA EXPLORATION AND SUSTAINABLE DECLARATIVE MONITORING ARCHITECTURE: APPLICATION TO SMART BUILDING

    Directory of Open Access Journals (Sweden)

    S. Servigne

    2016-09-01

    Full Text Available Concerning energy consumption and monitoring architectures, our goal is to develop a sustainable declarative monitoring architecture for lower energy consumption taking into account the monitoring system itself. Our second is to develop theoretical and practical tools to model, explore and exploit heterogeneous data from various sources in order to understand a phenomenon like energy consumption of smart building vs inhabitants' social behaviours. We focus on a generic model for data acquisition campaigns based on the concept of generic sensor. The concept of generic sensor is centered on acquired data and on their inherent multi-dimensional structure, to support complex domain-specific or field-oriented analysis processes. We consider that a methodological breakthrough may pave the way to deep understanding of voluminous and heterogeneous scientific data sets. Our use case concerns energy efficiency of buildings to understand relationship between physical phenomena and user behaviors. The aim of this paper is to give a presentation of our methodology and results concerning architecture and user-centric tools.

  16. POF based smart sensor for studying the setting dynamics of cement paste

    International Nuclear Information System (INIS)

    Rajesh, M; Sheeba, M; Nampoori, V P N

    2007-01-01

    Fiber optic smart sensors are used to monitor the civil structures. One of the important parameters in civil engineering is the setting characteristics of concrete made of cement. The paper discusses how a simple polymer optical fiber can be used to characterise the setting dynamics of various grades of cement. The results explain the comparative performance of polymer fiber over silica fiber. The basic principle underlying the sensor is that as the cement sets, it exerts a stress on the sensing fiber, which is laid within the cement paste. This stress induces strain on the optical fiber, which can be thought of as a series of aperiodic microbends on the surface of the fiber. This in turn changes the characteristics of the light signal transmitted through the fiber and can be viewed as stress induced modulation of light in the fiber. By monitoring the intensity variation of transmitted light signal with time we can determine the cement setting rate. This can be used as an effective tool for quality testing of commercially available cements of different grades

  17. Fabrication of CMOS-compatible nanopillars for smart bio-mimetic CMOS image sensors

    KAUST Repository

    Saffih, Faycal

    2012-06-01

    In this paper, nanopillars with heights of 1μm to 5μm and widths of 250nm to 500nm have been fabricated with a near room temperature etching process. The nanopillars were achieved with a continuous deep reactive ion etching technique and utilizing PMMA (polymethylmethacrylate) and Chromium as masking layers. As opposed to the conventional Bosch process, the usage of the unswitched deep reactive ion etching technique resulted in nanopillars with smooth sidewalls with a measured surface roughness of less than 40nm. Moreover, undercut was nonexistent in the nanopillars. The proposed fabrication method achieves etch rates four times faster when compared to the state-of-the-art, leading to higher throughput and more vertical side walls. The fabrication of the nanopillars was carried out keeping the CMOS process in mind to ultimately obtain a CMOS-compatible process. This work serves as an initial step in the ultimate objective of integrating photo-sensors based on these nanopillars seamlessly along with the controlling transistors to build a complete bio-inspired smart CMOS image sensor on the same wafer. © 2012 IEEE.

  18. Wellness protocol for smart homes an integrated framework for ambient assisted living

    CERN Document Server

    Ghayvat, Hemant

    2017-01-01

    This book focuses on the development of wellness protocols for smart home monitoring, aiming to forecast the wellness of individuals living in ambient assisted living (AAL) environments. It describes in detail the design and implementation of heterogeneous wireless sensors and networks as applied to data mining and machine learning, which the protocols are based on. Further, it shows how these sensor and actuator nodes are deployed in the home environment, generating real-time data on object usage and other movements inside the home, and therefore demonstrates that the protocols have proven to offer a reliable, efficient, flexible, and economical solution for smart home systems. Documenting the approach from sensor to decision making and information generation, the book addresses various issues concerning interference mitigation, errors, security and large data handling. As such, it offers a valuable resource for researchers, students and practitioners interested in interdisciplinary studies at the intersecti...

  19. Simulation of Smart Home Activity Datasets

    Directory of Open Access Journals (Sweden)

    Jonathan Synnott

    2015-06-01

    Full Text Available A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation.

  20. Simulation of Smart Home Activity Datasets.

    Science.gov (United States)

    Synnott, Jonathan; Nugent, Chris; Jeffers, Paul

    2015-06-16

    A globally ageing population is resulting in an increased prevalence of chronic conditions which affect older adults. Such conditions require long-term care and management to maximize quality of life, placing an increasing strain on healthcare resources. Intelligent environments such as smart homes facilitate long-term monitoring of activities in the home through the use of sensor technology. Access to sensor datasets is necessary for the development of novel activity monitoring and recognition approaches. Access to such datasets is limited due to issues such as sensor cost, availability and deployment time. The use of simulated environments and sensors may address these issues and facilitate the generation of comprehensive datasets. This paper provides a review of existing approaches for the generation of simulated smart home activity datasets, including model-based approaches and interactive approaches which implement virtual sensors, environments and avatars. The paper also provides recommendation for future work in intelligent environment simulation.

  1. Cuffless differential blood pressure estimation using smart phones.

    Science.gov (United States)

    Chandrasekaran, Vikram; Dantu, Ram; Jonnada, Srikanth; Thiyagaraja, Shanti; Subbu, Kalyan Pathapati

    2013-04-01

    Smart phones today have become increasingly popular with the general public for their diverse functionalities such as navigation, social networking, and multimedia facilities. These phones are equipped with high-end processors, high-resolution cameras, and built-in sensors such as accelerometer, orientation-sensor, and light-sensor. According to comScore survey, 26.2% of U.S. adults use smart phones in their daily lives. Motivated by this statistic and the diverse capability of smart phones, we focus on utilizing them for biomedical applications. We present a new application of the smart phone with its built-in camera and microphone replacing the traditional stethoscope and cuff-based measurement technique, to quantify vital signs such as heart rate and blood pressure. We propose two differential blood pressure estimating techniques using the heartbeat and pulse data. The first method uses two smart phones whereas the second method replaces one of the phones with a customized external microphone. We estimate the systolic and diastolic pressure in the two techniques by computing the pulse pressure and the stroke volume from the data recorded. By comparing the estimated blood pressure values with those measured using a commercial blood pressure meter, we obtained encouraging results of 95-100% accuracy.

  2. Consumer-oriented smart grid for energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Mrazovac, Bojan; Bjelica, Milan Z.; Teslic, Nikola; Papp, Istvan; Temerinac, Miodrag [RT-RK Institute for Computer Based Systems, Novi Sad (Serbia)

    2012-07-01

    The global market faces a large expansion of available solutions for residential power management and energy conservation that can be easily integrated into the smart grid. Unfortunately, most of these solutions lack the capability to make automated power saving decisions which do not require a user to intervene. In this paper we present an intelligent device-level energy monitoring and managing platform for the residential use. The platform is mainly based on interactive wireless electrical infrastructure, smart outlets and smart light switches, which provide low installation costs. As opposed to conventional smart home solutions that utilize a complex set of sensors for human detection, user awareness is achieved without specific sensor devices, only by analyzing and quantifying radio signal strength variations at the inputs of radio transceivers, embedded in smart nodes. The automation is achieved by interpreting user-defined behavioural patterns, which enable the platform to be used for various setups of an environment. The platform intelligently controls power consumption of appliances, contributing to energy savings in the household. (orig.)

  3. Smart city networks through the internet of things

    CERN Document Server

    Pardalos, Panos

    2017-01-01

    This book both analyzes and synthesizes new cutting-edge theories and methods for future design implementations in smart cities through interdisciplinary synergizing of architecture, technology, and the Internet of Things (IoT). Implementation of IoT enables the collection and data exchange of objects embedded with electronics, software, sensors, and network connectivity. Recently IoT practices have moved into uniquely identifiable objects that are able to transfer data directly into networks. This book features new technologically advanced ideas, highlighting properties of smart future city networks. Chapter contributors include theorists, computer scientists, mathematicians, and interdisciplinary planners, who currently work on identifying theories, essential elements, and practices where the IoT can impact the formation of smart cities and sustainability via optimization, network analyses, data mining, mathematical modeling and engineering. Moreover, this book includes research-based theories and real wo...

  4. Coverage and Connectivity Issue in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rachit Trivedi

    2013-04-01

    Full Text Available Wireless sensor networks (WSNs are an emerging area of interest in research and development. It finds use in military surveillance, health care, environmental monitoring, forest fire detection and smart environments. An important research issue in WSNs is the coverage since cost, area and lifetime are directly validated to it.In this paper we present an overview of WSNs and try to refine the coverage and connectivity issues in wireless sensor networks.

  5. The role of local interaction mechanics in fiber optic smart structures

    Science.gov (United States)

    Sirkis, J. S.; Dasgupta, A.

    1993-04-01

    The concept of using 'smart' composite materials/structures with built-in self-diagnostic capabilities for health monitoring involves embedding discrete and/or distributed sensory networks in the host composite material, along with a central and/or distributed artificial intelligence capability for signal processing, data collection, interpretation and diagnostic evaluations. This article concentrates on the sensory functions in 'smart' structure applications and concentrates in particular on optical fiber sensors. Specifically, we present an overview of recent research dealing with the basic mechanics of local interactions between the embedded optical fiber sensors and the surrounding host composite. The term 'local' is defined by length scales on the order of several optical fiber diameters. We examine some generic issues, such as the 'calibration' and 'obtrusivity' of the sensor, and the inherent damage caused by the sensor inclusions to the surrounding host and vice-versa under internal and/or external applied loads. Analytical, numerical and experimental results are presented regarding the influence of local strain concentrations caused by the sensory inclusions on sensor and host performance. The important issues examined are the local mechanistic effects of optical fiber coatings on the behavior of the sensor and the host, and mechanical survivability of optical fibers experiencing quasi-static and time-varying thermomechanical loading.

  6. Detection of Social Interaction in Smart Spaces.

    Science.gov (United States)

    Cook, Diane J; Crandall, Aaron; Singla, Geetika; Thomas, Brian

    2010-02-01

    The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. An aspect of daily life that is important for one's emotional and physical health is social interaction. In this paper we investigate the use of smart environment technologies to detect and analyze interactions in smart spaces. We introduce techniques for collect and analyzing sensor information in smart environments to help in interpreting resident behavior patterns and determining when multiple residents are interacting. The effectiveness of our techniques is evaluated using two physical smart environment testbeds.

  7. 7th ECCOMAS Thematic Conference on Smart Structures and Materials

    CERN Document Server

    Soares, Carlos

    2017-01-01

    This work was compiled with expanded and reviewed contributions from the 7th ECCOMAS Thematic Conference on Smart Structures and Materials, that was held from 3 to 6 June 2015 at Ponta Delgada, Azores, Portugal. The Conference provided a comprehensive forum for discussing the current state of the art in the field as well as generating inspiration for future ideas specifically on a multidisciplinary level. The scope of the Conference included topics related to the following areas: Fundamentals of smart materials and structures; Modeling/formulation and characterization of smart actuators, sensors and smart material systems; Trends and developments in diverse areas such as material science including composite materials, intelligent hydrogels, interfacial phenomena, phase boundaries and boundary layers of phase boundaries, control, micro- and nano-systems, electronics, etc. to be considered for smart systems; Comparative evaluation of different smart actuators and sensors; Analysis of structural concepts and des...

  8. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  9. A smart cap for olive oil rancidity detection using optochemical sensors

    Science.gov (United States)

    Mignani, A. G.; Ciaccheri, L.; Mencaglia, A. A.; Paolesse, R.; Mastroianni, M.; Monti, D.; Buonocore, G.; Del Nobile, A.; Mentana, A.; Grimaldi, M. F.

    2007-09-01

    The design and experimental setup of a smart cap are presented. It is capable of sniffing the vapors of extra virgin olive oil, thus alerting the consumer or the retailer of any rancid flavor. The cap is made of an array of metalloporphyrin-based optochemical sensors, the colors of which are modulated by the concentration of aldehydes, the main responsible for rancid off-flavors. A micro-optic device, implemented to simulate a cap prototype, is presented. The spectral response of the chromophore-array is processed by means of multivariate data analysis so as to achieve an artificial olfactory perception of oil aroma and, consequently, an indication of oil ageing and rancidity. In practice, the cap prototype proved to be a device for non-destructive testing of bottled oil quality.

  10. A Computational Architecture Based on RFID Sensors for Traceability in Smart Cities

    Directory of Open Access Journals (Sweden)

    Higinio Mora-Mora

    2015-06-01

    Full Text Available Information Technology and Communications (ICT is presented as the main element in order to achieve more efficient and sustainable city resource management, while making sure that the needs of the citizens to improve their quality of life are satisfied. A key element will be the creation of new systems that allow the acquisition of context information, automatically and transparently, in order to provide it to decision support systems. In this paper, we present a novel distributed system for obtaining, representing and providing the flow and movement of people in densely populated geographical areas. In order to accomplish these tasks, we propose the design of a smart sensor network based on RFID communication technologies, reliability patterns and integration techniques. Contrary to other proposals, this system represents a comprehensive solution that permits the acquisition of user information in a transparent and reliable way in a non-controlled and heterogeneous environment. This knowledge will be useful in moving towards the design of smart cities in which decision support on transport strategies, business evaluation or initiatives in the tourism sector will be supported by real relevant information. As a final result, a case study will be presented which will allow the validation of the proposal.

  11. A Computational Architecture Based on RFID Sensors for Traceability in Smart Cities

    Science.gov (United States)

    Mora-Mora, Higinio; Gilart-Iglesias, Virgilio; Gil, David; Sirvent-Llamas, Alejandro

    2015-01-01

    Information Technology and Communications (ICT) is presented as the main element in order to achieve more efficient and sustainable city resource management, while making sure that the needs of the citizens to improve their quality of life are satisfied. A key element will be the creation of new systems that allow the acquisition of context information, automatically and transparently, in order to provide it to decision support systems. In this paper, we present a novel distributed system for obtaining, representing and providing the flow and movement of people in densely populated geographical areas. In order to accomplish these tasks, we propose the design of a smart sensor network based on RFID communication technologies, reliability patterns and integration techniques. Contrary to other proposals, this system represents a comprehensive solution that permits the acquisition of user information in a transparent and reliable way in a non-controlled and heterogeneous environment. This knowledge will be useful in moving towards the design of smart cities in which decision support on transport strategies, business evaluation or initiatives in the tourism sector will be supported by real relevant information. As a final result, a case study will be presented which will allow the validation of the proposal. PMID:26067195

  12. A Computational Architecture Based on RFID Sensors for Traceability in Smart Cities.

    Science.gov (United States)

    Mora-Mora, Higinio; Gilart-Iglesias, Virgilio; Gil, David; Sirvent-Llamas, Alejandro

    2015-06-10

    Information Technology and Communications (ICT) is presented as the main element in order to achieve more efficient and sustainable city resource management, while making sure that the needs of the citizens to improve their quality of life are satisfied. A key element will be the creation of new systems that allow the acquisition of context information, automatically and transparently, in order to provide it to decision support systems. In this paper, we present a novel distributed system for obtaining, representing and providing the flow and movement of people in densely populated geographical areas. In order to accomplish these tasks, we propose the design of a smart sensor network based on RFID communication technologies, reliability patterns and integration techniques. Contrary to other proposals, this system represents a comprehensive solution that permits the acquisition of user information in a transparent and reliable way in a non-controlled and heterogeneous environment. This knowledge will be useful in moving towards the design of smart cities in which decision support on transport strategies, business evaluation or initiatives in the tourism sector will be supported by real relevant information. As a final result, a case study will be presented which will allow the validation of the proposal.

  13. Findings from a participatory evaluation of a smart home application for older adults.

    Science.gov (United States)

    Demiris, George; Oliver, Debra Parker; Dickey, Geraldine; Skubic, Marjorie; Rantz, Marilyn

    2008-01-01

    The aim of this paper is to present a participatory evaluation of an actual "smart home" project implemented in an independent retirement facility. Using the participatory evaluation process, residents guided the research team through development and implementation of the initial phase of a smart home project designed to assist residents to remain functionally independent and age in place. We recruited nine residents who provided permission to install the technology in their apartments. We conducted a total of 75 interviews and three observational sessions. Residents expressed overall positive perceptions of the sensor technologies and did not feel that these interfered with their daily activities. The process of adoption and acceptance of the sensors included three phases, familiarization, adjustment and curiosity, and full integration. Residents did not express privacy concerns. They provided detailed feedback and suggestions that were integrated into the redesign of the system. They also reported a sense of control resulting from their active involvement in the evaluation process. Observational sessions confirmed that the sensors were not noticeable and residents did not change their routines. The participatory evaluation approach not only empowers end-users but it also allows for the implementation of smart home systems that address residents' needs.

  14. Evaluation of Sensor Networks in Smart Home

    OpenAIRE

    Arefe Esalat Nejad; Atefe Enteshari; Vahid Amir

    2014-01-01

    Smart homes are no longer design concepts of the future. They are being built now, and they are having a direct impact on the lifestyles of people living in them. The aim of smart home systems is to create an environment that is aware of the activities taking place within it. Beside the healthy people, disabled people also need such systems to make their life easier. Because they encounter with a lot of difficulties in their everyday life especially when they are at home. Accordingly the home...

  15. Developing ''SMART'' equipment and systems through collaborative NERI research and development

    International Nuclear Information System (INIS)

    Harmon, Daryl L.; Chapman, Leon D.; Golay, Michael W.; Maynard, Kenneth P.; SpencerR, Joseph W.

    2000-01-01

    The United States Department of Energy initiated the Nuclear Energy Research Initiative (NERI) to conduct research and development with the objectives of: (1) overcoming the principal technical obstacles to expanded nuclear energy use, (2) advancing the state of nuclear technology to maintain its competitive position in domestic and world markets, and (3) improving the performance, efficiency, reliability, and economics of nuclear energy. Fiscal Year 1999 program funding is $19 Million, with increased finding expected for subsequent years, emphasizing international cooperation. Among the programs selected for funding is the ''Smart Equipment and Systems to Improve Reliability and Safety in Future Nuclear Power Plant Operations''. This program is a 30 month collaborative effort bringing together the technical capabilities of ABB C-E Nuclear Power, Inc. (ABB CENP), Sandia National Laboratories, Duke Engineering and Services (DE and S), Massachusetts Institute of Technology (MIT) and Pennsylvania State University (PSU). The program's goal is to design, develop and evaluate an integrated set of smart equipment and predictive maintenance tools and methodologies that will significantly reduce nuclear plant construction, operation and maintenance costs. To accomplish this goal the Smart Equipment program will: (1) Identify and prioritize nuclear plant equipment that would most likely benefit from adding smart features; (2) Develop a methodology for systematically monitoring the health of individual pieces of equipment implemented with smart features (i.e. smart equipment); (3) Develop a methodology to provide plant operators with real-time information through smart equipment Man-Machine Interfaces (MMI) to support their decision making; (4) Demonstrate the methodology on a targeted component and/or system; (5) Expand the concept to system and plant levels that allow communication and integration of data among smart equipment. This paper will discuss (1) detailed subtask

  16. Designing and Securing an Event Processing System for Smart Spaces

    Science.gov (United States)

    Li, Zang

    2011-01-01

    Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…

  17. Smart Dairy Farming through Internet of Things

    Directory of Open Access Journals (Sweden)

    Poonsri Vate-U-LanAssumption University, Bangkok, Thailand

    2017-07-01

    Full Text Available The objective of this paper is to report a smart dairy farming in Ontario, Canada, which is a case study for future of food production, and ways that advancements related to the Internet of Things (IoT. It is impacting upon agricultural practice in the form of smart farming. Smart farming is the practice of intelligent agricultural management based upon technological data gathering farm practice for the purpose of increased levels of quality, production, and environmental protection. This paper will illustrate one example whereby partnerships among the academic world, government agencies and local food producing communities in Canada are adapting innovative thinking and smart technologies to address the need to implement the more effective agricultural practice. Food from Thought is a Canadian research project, based upon high-tech information systems to produce enough food for a growing human population while sustaining the Earth’s ecosystems. The paper will outline how one dairy farmer in Ontario has been able to apply smart farming technologies to increase milk production while maintaining the health of his cattle and preserving the environment. The review of applications of smart farming in Ontario such as digital tracking for a cow, genomic testing, digitally signaled birth, sensor driven crop management and data driven dairy production also details in this article.

  18. Design of detection module for smart ligthting system

    OpenAIRE

    Matveev, I. G.; Goponenko, A. S.

    2015-01-01

    The paper considers a smart lighting system based on Beaglebone microcomputer. The analysis of existing motion and presence sensors was carried out and then used as a basis for design of a detection system. The detection system and the corresponding connection solution for a smart lighting system were developed. Using the designed smart lighting system, experimental studies were carried out.

  19. Smart Energy 2011. Smart Grid or the future of power industry; Smart Energy 2011. Smart Grid oder die Zukunft der Energiewirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, Uwe; Kunold, Ingo (eds.)

    2011-07-01

    The demand for smart grids, energy information networks, smart metering, new tariffs offering incentives for load shifting to household customers and load reduction options to energy providers are discussed increasingly. The privacy protection of customers being threatened by detailed consumption profiles also needs attention. Practitioners and researches from enterprises and research institutions present results from their field of work in nine papers. This book mainly focusses on three topics: 'Energy 2020', 'Data protection and data security within smart grids' and 'Smart grid and energy information networks'. On the one hand this volume addresses researchers and practitioners from enterprises and research institutions, on the other hand teachers and students dealing with questions concerning the energy market of the future. (orig.)

  20. Design and Optimisation Problems in Wireless Sensor Networks

    Indian Academy of Sciences (India)

    Premkumar Karumbu,1.05 ECE,,+91-9448227167

    2010-11-14

    Nov 14, 2010 ... Wireless Networks of Multifunction Smart Sensors (WSNs). A smart sensor ... Energy and environment management networks in large buildings. Emerging ISA ... Monitoring mobile patients in hospitals and homes. Locating ...

  1. The Smart Ring Experience in l’Aquila (Italy: Integrating Smart Mobility Public Services with Air Quality Indexes

    Directory of Open Access Journals (Sweden)

    Maria-Gabriella Villani

    2016-12-01

    Full Text Available This work presents the “City Dynamics and Smart Environment” activities of the Smart Ring project, a model for the smart city, based on the integration of sustainable urban transport services and environmental monitoring over a 4–5-km circular path, the “Smart Ring”, around the historical center of l’Aquila (Italy. We describe our pilot experience performed during an experimental on-demand public service electric bus, “SmartBus”, which was equipped with a multi-parametric air quality low-cost gas electrochemical sensor platform, “NASUS IV”. For five days (28–29 August 2014 and 1–3 September 2014, the sensor platform was installed inside the SmartBus and measured air quality gas compounds (nitrogen dioxide, carbon oxide, sulfur dioxide, hydrogen sulfide during the service. Data were collected and analyzed on the bases of an air quality index, which provided qualitative insights on the air status potentially experienced by the users. The results obtained are in agreement with the synoptic meteorological conditions, the urban background air quality reference measurements and the potential traffic flow variations. Furthermore, they indicated that the air quality status was influenced by the gas component NO 2 , followed by H 2 S, SO 2 and CO. We discuss the features of our campaign, and we highlight the potential, limitations and key factors to consider for future project designs.

  2. Efficient and anonymous two-factor user authentication in wireless sensor networks: achieving user anonymity with lightweight sensor computation.

    Science.gov (United States)

    Nam, Junghyun; Choo, Kim-Kwang Raymond; Han, Sangchul; Kim, Moonseong; Paik, Juryon; Won, Dongho

    2015-01-01

    A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme) is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques) for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000) model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks).

  3. Efficient and anonymous two-factor user authentication in wireless sensor networks: achieving user anonymity with lightweight sensor computation.

    Directory of Open Access Journals (Sweden)

    Junghyun Nam

    Full Text Available A smart-card-based user authentication scheme for wireless sensor networks (hereafter referred to as a SCA-WSN scheme is designed to ensure that only users who possess both a smart card and the corresponding password are allowed to gain access to sensor data and their transmissions. Despite many research efforts in recent years, it remains a challenging task to design an efficient SCA-WSN scheme that achieves user anonymity. The majority of published SCA-WSN schemes use only lightweight cryptographic techniques (rather than public-key cryptographic techniques for the sake of efficiency, and have been demonstrated to suffer from the inability to provide user anonymity. Some schemes employ elliptic curve cryptography for better security but require sensors with strict resource constraints to perform computationally expensive scalar-point multiplications; despite the increased computational requirements, these schemes do not provide user anonymity. In this paper, we present a new SCA-WSN scheme that not only achieves user anonymity but also is efficient in terms of the computation loads for sensors. Our scheme employs elliptic curve cryptography but restricts its use only to anonymous user-to-gateway authentication, thereby allowing sensors to perform only lightweight cryptographic operations. Our scheme also enjoys provable security in a formal model extended from the widely accepted Bellare-Pointcheval-Rogaway (2000 model to capture the user anonymity property and various SCA-WSN specific attacks (e.g., stolen smart card attacks, node capture attacks, privileged insider attacks, and stolen verifier attacks.

  4. Recent progress in distributed optical fiber Raman photon sensors at China Jiliang University

    Science.gov (United States)

    Zhang, Zaixuan; Wang, Jianfeng; Li, Yi; Gong, Huaping; Yu, Xiangdong; Liu, Honglin; Jin, Yongxing; Kang, Juan; Li, Chenxia; Zhang, Wensheng; Zhang, Wenping; Niu, Xiaohui; Sun, Zhongzhou; Zhao, Chunliu; Dong, Xinyong; Jin, Shangzhong

    2012-06-01

    A brief review of recent progress in researches, productions and applications of full distributed fiber Raman photon sensors at China Jiliang University (CJLU) is presented. In order to improve the measurement distance, the accuracy, the space resolution, the ability of multi-parameter measurements, and the intelligence of full distributed fiber sensor systems, a new generation fiber sensor technology based on the optical fiber nonlinear scattering fusion principle is proposed. A series of new generation full distributed fiber sensors are investigated and designed, which consist of new generation ultra-long distance full distributed fiber Raman and Rayleigh scattering photon sensors integrated with a fiber Raman amplifier, auto-correction full distributed fiber Raman photon temperature sensors based on Raman correlation dual sources, full distributed fiber Raman photon temperature sensors based on a pulse coding source, full distributed fiber Raman photon temperature sensors using a fiber Raman wavelength shifter, a new type of Brillouin optical time domain analyzers (BOTDAs) integrated with a fiber Raman amplifier for replacing a fiber Brillouin amplifier, full distributed fiber Raman and Brillouin photon sensors integrated with a fiber Raman amplifier, and full distributed fiber Brillouin photon sensors integrated with a fiber Brillouin frequency shifter. The Internet of things is believed as one of candidates of the next technological revolution, which has driven hundreds of millions of class markets. Sensor networks are important components of the Internet of things. The full distributed optical fiber sensor network (Rayleigh, Raman, and Brillouin scattering) is a 3S (smart materials, smart structure, and smart skill) system, which is easy to construct smart fiber sensor networks. The distributed optical fiber sensor can be embedded in the power grids, railways, bridges, tunnels, roads, constructions, water supply systems, dams, oil and gas pipelines and other

  5. MAC/GMC Code Enhanced for Coupled Electromagnetothermoelastic Analysis of Smart Composites

    Science.gov (United States)

    Bednarcyk, Brett A.; Arnold, Steven M.; Aboudi, Jacob

    2002-01-01

    Intelligent materials are those that exhibit coupling between their electromagnetic response and their thermomechanical response. This coupling allows smart materials to react mechanically (e.g., an induced displacement) to applied electrical or magnetic fields (for instance). These materials find many important applications in sensors, actuators, and transducers. Recently interest has arisen in the development of smart composites that are formed via the combination of two or more phases, one or more of which is a smart material. To design with and utilize smart composites, designers need theories that predict the coupled smart behavior of these materials from the electromagnetothermoelastic properties of the individual phases. The micromechanics model known as the generalized method of cells (GMC) has recently been extended to provide this important capability. This coupled electromagnetothermoelastic theory has recently been incorporated within NASA Glenn Research Center's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). This software package is user friendly and has many additional features that render it useful as a design and analysis tool for composite materials in general, and with its new capabilities, for smart composites as well.

  6. Intelligent Sensors for Integrated Systems Health Management (ISHM)

    Science.gov (United States)

    Schmalzel, John L.

    2008-01-01

    IEEE 1451 Smart Sensors contribute to a number of ISHM goals including cost reduction achieved through: a) Improved configuration management (TEDS); and b) Plug-and-play re-configuration. Intelligent Sensors are adaptation of Smart Sensors to include ISHM algorithms; this offers further benefits: a) Sensor validation. b) Confidence assessment of measurement, and c) Distributed ISHM processing. Space-qualified intelligent sensors are possible a) Size, mass, power constraints. b) Bus structure/protocol.

  7. A simulation model for aligning smart home networks and deploying smart objects

    DEFF Research Database (Denmark)

    Lynggaard, Per

    Smart homes use sensor based networks to capture activities and offer learned services to the user. These smart home networks are challenging because they mainly use wireless communication at frequencies that are shared with other services and equipments. One of the major challenges...... is the interferences produced by WiFi access points in smart home networks which are expensive to overcome in terms of battery energy. Currently, different method exists to handle this. However, they use complex mechanisms such as sharing frequencies, sharing time slots, and spatial reuse of frequencies. This paper...... introduces a unique concept which saves battery energy and lowers the interference level by simulating the network alignment and assign the necessary amount of transmit power to each individual network node and finally, deploy the smart objects. The needed transmit powers are calculated by the presented...

  8. HDOMO: Smart Sensor Integration for an Active and Independent Longevity of the Elderly

    Science.gov (United States)

    2017-01-01

    The aim of this paper is to present the main results of HDOMO, an Ambient Assisted Living (AAL) project that involved 16 Small and Medium Enterprises (SMEs) and 2 research institutes. The objective of the project was to create an autonomous and automated domestic environment, primarily for elderly people and people with physical and motor disabilities. A known and familiar environment should help users in their daily activities and it should act as a virtual caregiver by calling, if necessary, relief efforts. Substantially, the aim of the project is to simplify the life of people in need of support, while keeping them autonomous in their private environment. From a technical point of view, the project provides the use of different Smart Objects (SOs), able to communicate among each other, in a cloud base infrastructure, and with the assisted users and their caregivers, in a perspective of interoperability and standardization of devices, usability and effectiveness of alarm systems. In the state of the art there are projects that achieve only a few of the elements listed. The HDOMO project aims to achieve all of them in one single project effectively. The experimental trials performed in a real scenario demonstrated the accuracy and efficiency of the system in extracting and processing data in real time to promptly acting, and in providing timely response to the needs of the user by integrating and confirming main alarms with different interoperable smart sensors. The article proposes a new technique to improve the accuracy of the system in detecting alarms using a multi-SO approach with information fusion between different devices, proving that this architecture can provide robust and reliable results on real environments. PMID:29137174

  9. Energy-efficient digital and wireless IC design for wireless smart sensing

    Science.gov (United States)

    Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong

    2017-10-01

    Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.

  10. Smart Health - Potential and Pathways: A Survey

    Science.gov (United States)

    Arulananthan, C.; Hanifa, Sabibullah Mohamed

    2017-08-01

    Healthcare is an imperative key field of research, where individuals or groups can be engaged in the self-tracking of any kind of biological, physical, behavioral, or environmental information. In a massive health care data, the valuable information is hidden. The quantity of the available unstructured data has been expanding on an exponential scale. The newly developing Disruptive Technologies can handle many challenges that face data analysis and ability to extract valuable information via data analytics. Connected Wellness in Healthcare would retrieve patient’s physiological, pathological and behavioral parameters through sensors to perform inner workings of human body analysis. Disruptive technologies can take us from a reactive illness-driven to a proactive wellness-driven system in health care. It is need to be strive and create a smart health system towards wellness-driven instead of being illness-driven, today’s biggest problem in health care. Wellness-driven-analytics application help to promote healthiest living environment called “Smart Health”, deliver empower based quality of living. The contributions of this survey reveals and opens (touches uncovered areas) the possible doors in the line of research on smart health and its computing technologies.

  11. A review about Smart Objects, Sensors, and Actuators

    Directory of Open Access Journals (Sweden)

    Cristian González García

    2017-03-01

    Full Text Available Smart Objects and the Internet of Things are two ideas which describe the future, walk together, and complement each other. Thus, the interconnection among objects can make them more intelligent or expand their intelligence to unsuspected limits. This could be achieved with a new network that interconnects each object around the world. However, to achieve this goal, the objects need a network that supports heterogeneous and ubiquitous objects, a network where exists more traffic among objects than among humans, but supporting for both types. For these reasons, both concepts are very close. Cities, houses, cars, machines, or any another object that can sense, respond, work, or make easier the lives of their owner. This is a part of the future, an immediate future. Notwithstanding, first of all, there are to resolve a series of problems. The most important problem is the heterogeneity of objects. This article is going to show a theoretical frame and the related work about Smart Object. The article will explain what are Smart Objects, doing emphasis in their difference with Not- Smart Objects. After, we will present one of the different object classification system, in our opinion, the most complete.

  12. Smart governance for smart city

    Science.gov (United States)

    Mutiara, Dewi; Yuniarti, Siti; Pratama, Bambang

    2018-03-01

    Some of the local government in Indonesia claimed they already created a smart city. Mostly the claim based of IT utilization for their governance. In general, a smart city definition is to describe a developed urban area that creates sustainable economic development and high quality of life by excelling in multiple key; economy, mobility, environment, people, living, and government. For public services, the law guarantees good governance by setting the standard for e-government implicitly including for local government or a city. Based on the arguments, this research tries to test the condition of e-government of the Indonesian city in 34 provinces. The purpose is to map e-government condition by measuring indicators of smart government, which are: transparent governance and open data for the public. This research is departing from public information disclosure law and to correspond with the existence law. By examining government transparency, the output of the research can be used to measure the effectiveness of public information disclosure law and to determine the condition of e-government in local government in which as part of a smart city.

  13. Smart rotor modeling aero-servo-elastic modeling of a smart rotor with adaptive trailing edge flaps

    CERN Document Server

    Bergami, Leonardo

    2014-01-01

    A smart rotor is a wind turbine rotor that, through a combination of sensors, control units and actuators actively reduces the variation of the aerodynamic loads it has to withstand. Smart rotors feature?promising load alleviation potential and might provide the technological breakthrough required by the next generation of large wind turbine rotors.The book presents the aero-servo-elastic model of a smart rotor with Adaptive Trailing Edge Flaps for active load alleviation and provides an insight on the rotor aerodynamic, structural and control modeling. A novel model for the unsteady aerodynam

  14. A low-power CMOS smart temperature sensor for RFID application

    International Nuclear Information System (INIS)

    Xie Liangbo; Liu Jiaxin; Wang Yao; Wen Guangjun

    2014-01-01

    This paper presents the design and implement of a CMOS smart temperature sensor, which consists of a low power analog front-end and a 12-bit low-power successive approximation register (SAR) analog-to-digital converter (ADC). The analog front-end generates a proportional-to-absolute-temperature (PTAT) voltage with MOSFET circuits operating in the sub-threshold region. A reference voltage is also generated and optimized in order to minimize the temperature error and the 12-bit SAR ADC is used to digitize the PTAT voltage. Using 0.18 μm CMOS technology, measurement results show that the temperature error is −0.69/+0.85 °C after one-point calibration over a temperature range of −40 to 100 °C. Under a conversion speed of 1K samples/s, the power consumption is only 2.02 μW while the chip area is 230 × 225 μm 2 , and it is suitable for RFID application. (semiconductor integrated circuits)

  15. Design and Development of Smart Medicine Box

    Science.gov (United States)

    Rosli, Ekbal; Husaini, Yusnira

    2018-03-01

    The Smart Medicine Box is successfully designed in helping the introvert patients taking their medicine without help of others. This project is to develop a robotic device that can assist patient to take medicine alone by implementing an IOT apps system for controlling the Smart Medicine Box where it will overcome an emotional disturbance experience by the introvert patients. There are four sensors such as PIR, IR, temperature and ultrasonic sensors use for the project. The purpose of PIR sensor is to detect hand movement near the device, while IR sensor is to detect the line follower on the floor. The LM 35 acts as the detection of the temperature inside the box and the ultrasonic acts as the detection of the obstacle in front of the device. The MIT Apps Invention 2 is used to develop an apps and collect the data from sensors through Arduino microcontroller. A proof of concept design has implemented and demonstrated successfully.

  16. Ultra-Low-Power Smart Electronic Nose System Based on Three-Dimensional Tin Oxide Nanotube Arrays.

    Science.gov (United States)

    Chen, Jiaqi; Chen, Zhuo; Boussaid, Farid; Zhang, Daquan; Pan, Xiaofang; Zhao, Huijuan; Bermak, Amine; Tsui, Chi-Ying; Wang, Xinran; Fan, Zhiyong

    2018-06-04

    In this work, we present a high-performance smart electronic nose (E-nose) system consisting of a multiplexed tin oxide (SnO 2 ) nanotube sensor array, read-out circuit, wireless data transmission unit, mobile phone receiver, and data processing application (App). Using the designed nanotube sensor device structure in conjunction with multiple electrode materials, high-sensitivity gas detection and discrimination have been achieved at room temperature, enabling a 1000 times reduction of the sensor's power consumption as compared to a conventional device using thin film SnO 2 . The experimental results demonstrate that the developed E-nose can identify indoor target gases using a simple vector-matching gas recognition algorithm. In addition, the fabricated E-nose has achieved state-of-the-art sensitivity for H 2 and benzene detection at room temperature with metal oxide sensors. Such a smart E-nose system can address the imperative needs for distributed environmental monitoring in smart homes, smart buildings, and smart cities.

  17. Smart Grid Research: Control Systems - IEEE Vision for Smart Grid Controls

    DEFF Research Database (Denmark)

    Aho, Jacob; Arnold, George; Buckspan, Andrew

    This document highlights the role of control systems in the evolution of the Smart Grid. It includes an overview of research investigations that are needed for renewable integration, reliability, self-healing, energy efficiency, and resilience to physical and cyber attacks. These investigations...... are encapsulated in several loci of control including: new methodologies for transmission, distribution, and renewable energy, and storage; new roles in emerging topics such as electricity markets, demand-response, microgrids, and virtual power plants; and new solutions for efficiency, heating and cooling...

  18. Mapping and navigational control for a “smart” wheelchair.

    Science.gov (United States)

    Schultz, Dana L; Shea, Kathleen M; Barrett, Steven F

    2012-01-01

    A “smart” wheelchair is in development to provide mobility to those unable to control a traditional wheelchair. A “smart” wheelchair is an autonomous machine with the ability to navigate a mapped environment while avoiding obstacles. The flexibility and complex design of “smart” wheelchairs have made those currently available expensive. Ongoing research at the University of Wyoming has been aimed at designing a cheaper, alternative control system that could be interfaced with a typical powered wheelchair. The goal of this project is to determine methods for mapping and navigational control for the wheelchair. The control system acquires data from eighteen sensors and uses the data to navigate around a pre-programmed map which is stored on a micro SD card. The control system also provides a user interface in the form of a touchscreen LCD. The designed system will be an easy-to-use and cost effective alternative to current “smart” wheelchair technology.

  19. Recent Research and Application Activities on Structural Health ...

    African Journals Online (AJOL)

    ... newly constructed bridges, (2) research and development activities on smart sensors such as optical fiber sensors and piezo-electric sensors, (3) structural damage detection methods using measured data, and (4) a test road project for pavement design verification and enhancement by the Korea Highway Corporation.

  20. From sensor output to improved product quality

    NARCIS (Netherlands)

    Hertog, M.L.A.T.M.; Vollebregt, Martijntje; Unzueta, I.; Hoofman, R.J.O.M.; Lammertyn, J.

    2015-01-01

    The research conducted in the European PASTEUR project focussed on perishables monitoring through smart tracking of lifetime and quality. The aim was to develop a wireless sensor platform to monitor the environmental conditions of perishable goods in the supply chain between producer and

  1. Smart business for smart users? : A social science agenda for developing smart grids

    NARCIS (Netherlands)

    Verbong, G.P.J.; Verkade, N.; Verhees, B.; Huijben, J.C.C.M.; Höffken, J.I.; Beaulieu, A.; de Wilde, J.; Scherpen, J.M.A.

    2016-01-01

    The promise of smart grids is very attractive. However, it is not yet clear what the future smart grid will look like. Although most researchers acknowledge that users will play a more prominent role in smart grids, there is a lot of uncertainty on this issue. To counter the strong techno-logical

  2. LOCATION ANALYSIS ON SMART HOUSE USING PROJECTIVE TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    Galih Andi Pradana

    2014-08-01

    Full Text Available In this paper, a method of location analysis for smart house is proposed. The proposed method uses projective transformation to process the input from visual sensor for determining coordinate of resident and also the entire device inside the smart house. With a good calculated coordinate, each device function in the smart house can be optimized for the good of the resident. From the experiment results, the proposed method successfully maps all coordinates of any device in the smart house up to 81% accuracy.

  3. Renewable Energy Resources With Smart Microgrid Model In India

    Directory of Open Access Journals (Sweden)

    Manikant Kumar

    2015-08-01

    Full Text Available Along with the development of civilization is increasing energy consumption. Due to which India is facing an energy crisis. It is estimated that global energy demand will double in 2030. India Trhurga other developing countries will face a crisis. Returning to the problem Fall growth of renewable energy resources will increase. Even for electricity generation from renewable sources. Naturally replenished renewable energy such as sunlight wind rain tides and geothermal heat as will have to depend on natural resources. High energy demand and environmental concerns in the papers smart microgrid is forced to change the existing power grid. This paper dynamic demand response and smart microgrid for residential and industrial consumption in the context of renewable energy production including the proposed management approach. The objectives of this research renewable energy resources with a smart microgrid has played an important role. Power system in rural areas in India to meet growing energy demand. The model deployed PLC networks data management system sensors Switchgears Transformers and other utility tools to integrate Smart Grid Smart homes are used together. Analytical results Residential renewable energy generation and smart meters show the effectiveness of the proposed system to optimize control of the electrical grid and is designed to improve energy conservation.

  4. System Security And Monitoring On Smart Home Using Android

    Science.gov (United States)

    Romadhon, A. S.

    2018-01-01

    Home security system is needed for homeowners who have a lot of activities, as a result, they often leave the house without locking the door and even leave the house in a state of lights that are not lit. In order to overcome this case, a system that can control and can monitor the state of the various devices contained in the house or smart home system is urgently required. The working principle of this smart home using android is when the homeowner sends a certain command using android, the command will be forwarded to the microcontroller and then it will be executed based on the parameters that have been determined. For example, it can turn off and on the light using android app. In this study, testing was conducted to a smart home prototype which is equipped with light bulbs, odour sensors, heat sensors, ultrasonic sensors, LDR, buzzer and camera. The test results indicate that the application has been able to control all the sensors of home appliances well.

  5. An Integrated Approach for Pollution Monitoring: Smart Acquirement and Smart Information

    Science.gov (United States)

    Arco, E.; Boccardo, P.; Gandino, F.; Lingua, A.; Noardo, F.; Rebaudengo, M.

    2016-09-01

    Air quality is a factor of primary importance for the quality of life. The increase of the pollutants percentage in the air can cause serious problems to the human and environmental health. For this reason it is essential to monitor its values to prevent the consequences of an excessive concentration, to reduce the pollution production or to avoid the contact with major pollutant concentration through the available tools. Some recently developed tools for the monitoring and sharing of the data in an effective system permit to manage the information in a smart way, in order to improve the knowledge of the problem and, consequently, to take preventing measures in favour of the urban air quality and human health. In this paper, the authors describe an innovative solution that implements geomatics sensors (GNSS) and pollutant measurement sensors to develop a low cost sensor for the acquisition of pollutants dynamic data using a mobile platform based on bicycles. The acquired data can be analysed to evaluate the local distribution of pollutant density and shared through web platforms that use standard protocols for an effective smart use.

  6. AN INTEGRATED APPROACH FOR POLLUTION MONITORING: SMART ACQUIREMENT AND SMART INFORMATION

    Directory of Open Access Journals (Sweden)

    E. Arco

    2016-09-01

    Full Text Available Air quality is a factor of primary importance for the quality of life. The increase of the pollutants percentage in the air can cause serious problems to the human and environmental health. For this reason it is essential to monitor its values to prevent the consequences of an excessive concentration, to reduce the pollution production or to avoid the contact with major pollutant concentration through the available tools. Some recently developed tools for the monitoring and sharing of the data in an effective system permit to manage the information in a smart way, in order to improve the knowledge of the problem and, consequently, to take preventing measures in favour of the urban air quality and human health. In this paper, the authors describe an innovative solution that implements geomatics sensors (GNSS and pollutant measurement sensors to develop a low cost sensor for the acquisition of pollutants dynamic data using a mobile platform based on bicycles. The acquired data can be analysed to evaluate the local distribution of pollutant density and shared through web platforms that use standard protocols for an effective smart use.

  7. Model-driven methodology for rapid deployment of smart spaces based on resource-oriented architectures.

    Science.gov (United States)

    Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R

    2012-01-01

    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.

  8. Model-Driven Methodology for Rapid Deployment of Smart Spaces Based on Resource-Oriented Architectures

    Directory of Open Access Journals (Sweden)

    José R. Casar

    2012-07-01

    Full Text Available Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT and Web of Things (WoT are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i to integrate sensing and actuating functionalities into everyday objects, and (ii to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD methodology based on the Model Driven Architecture (MDA. This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.

  9. Demonstration of the CDMA-mode CAOS smart camera.

    Science.gov (United States)

    Riza, Nabeel A; Mazhar, Mohsin A

    2017-12-11

    Demonstrated is the code division multiple access (CDMA)-mode coded access optical sensor (CAOS) smart camera suited for bright target scenarios. Deploying a silicon CMOS sensor and a silicon point detector within a digital micro-mirror device (DMD)-based spatially isolating hybrid camera design, this smart imager first engages the DMD starring mode with a controlled factor of 200 high optical attenuation of the scene irradiance to provide a classic unsaturated CMOS sensor-based image for target intelligence gathering. Next, this CMOS sensor provided image data is used to acquire a focused zone more robust un-attenuated true target image using the time-modulated CDMA-mode of the CAOS camera. Using four different bright light test target scenes, successfully demonstrated is a proof-of-concept visible band CAOS smart camera operating in the CDMA-mode using up-to 4096 bits length Walsh design CAOS pixel codes with a maximum 10 KHz code bit rate giving a 0.4096 seconds CAOS frame acquisition time. A 16-bit analog-to-digital converter (ADC) with time domain correlation digital signal processing (DSP) generates the CDMA-mode images with a 3600 CAOS pixel count and a best spatial resolution of one micro-mirror square pixel size of 13.68 μm side. The CDMA-mode of the CAOS smart camera is suited for applications where robust high dynamic range (DR) imaging is needed for un-attenuated un-spoiled bright light spectrally diverse targets.

  10. A portable smart phone-based plasmonic nanosensor readout platform that measures transmitted light intensities of nanosubstrates using an ambient light sensor.

    Science.gov (United States)

    Fu, Qiangqiang; Wu, Ze; Xu, Fangxiang; Li, Xiuqing; Yao, Cuize; Xu, Meng; Sheng, Liangrong; Yu, Shiting; Tang, Yong

    2016-05-21

    Plasmonic nanosensors may be used as tools for diagnostic testing in the field of medicine. However, quantification of plasmonic nanosensors often requires complex and bulky readout instruments. Here, we report the development of a portable smart phone-based plasmonic nanosensor readout platform (PNRP) for accurate quantification of plasmonic nanosensors. This device operates by transmitting excitation light from a LED through a nanosubstrate and measuring the intensity of the transmitted light using the ambient light sensor of a smart phone. The device is a cylinder with a diameter of 14 mm, a length of 38 mm, and a gross weight of 3.5 g. We demonstrated the utility of this smart phone-based PNRP by measuring two well-established plasmonic nanosensors with this system. In the first experiment, the device measured the morphology changes of triangular silver nanoprisms (AgNPRs) in an immunoassay for the detection of carcinoembryonic antigen (CEA). In the second experiment, the device measured the aggregation of gold nanoparticles (AuNPs) in an aptamer-based assay for the detection of adenosine triphosphate (ATP). The results from the smart phone-based PNRP were consistent with those from commercial spectrophotometers, demonstrating that the smart phone-based PNRP enables accurate quantification of plasmonic nanosensors.

  11. Using data from ambient assisted living and smart homes in electronic health records.

    Science.gov (United States)

    Knaup, P; Schöpe, L

    2014-01-01

    This editorial is part of the Focus Theme of Methods of Information in Medicine on "Using Data from Ambient Assisted Living and Smart Homes in Electronic Health Records". To increase efficiency in the health care of the future, data from innovative technology like it is used for ambient assisted living (AAL) or smart homes should be available for individual health decisions. Integrating and aggregating data from different medical devices and health records enables a comprehensive view on health data. The objective of this paper is to present examples of the state of the art in research on information management that leads to a sustainable use and long-term storage of health data provided by innovative assistive technologies in daily living. Current research deals with the perceived usefulness of sensor data, the participatory design of visual displays for presenting monitoring data, and communication architectures for integrating sensor data from home health care environments with health care providers either via a regional health record bank or via a telemedical center. Integrating data from AAL systems and smart homes with data from electronic patient or health records is still in an early stage. Several projects are in an advanced conceptual phase, some of them exploring feasibility with the help of prototypes. General comprehensive solutions are hardly available and should become a major issue of medical informatics research in the near future.

  12. 3rd international KES conference on Smart Education and Smart e-Learning

    CERN Document Server

    Howlett, Robert; Jain, Lakhmi

    2016-01-01

    This book contains the contributions presented at the 3rd international KES conference on Smart Education and Smart e-Learning, which took place in Puerto de la Cruz, Tenerife, Spain, June 15-17, 2016. It contains a total of 56 peer-reviewed book chapters that are grouped into several parts: Part 1 - Smart University: Conceptual Modeling, Part 2 – Smart Education: Research and Case Studies, Part 3 – Smart e-Learning, Part 4 – Smart Education: Software and Hardware Systems, and Part 5 – Smart Technology as a Resource to Improve Education and Professional Training. We believe that the book will serve as a useful source of research data and valuable information for faculty, scholars, Ph.D. students, administrators, and practitioners - those who are interested in innovative areas of smart education and smart e-learning. .

  13. Development and Experimental Investigations of Motion Detection Module for Smart Lighting System

    OpenAIRE

    Matveev, I.; Siemens, E.; Yurchenko, Aleksey Vasilievich; Kuznetsov, D.

    2016-01-01

    This work considers motion sensors as parts of the smart lighting system on basis of Beaglebone microcomputer. Detection system is designed for the smart lighting system. Experimental investigations of the detection system were made with different motion sensors. Based on the results comparative analysis was performed and optimal conditions for the detection system operation were found.

  14. Progress in triboluminescence-based smart optical sensor system

    International Nuclear Information System (INIS)

    Olawale, David O.; Dickens, Tarik; Sullivan, William G.; Okoli, Okenwa I.; Sobanjo, John O.; Wang, Ben

    2011-01-01

    Extensive research work has been done in recent times to apply the triboluminescence (TL) phenomenon for damage detection in engineering structures. Of particular note are the various attempts to apply it in the detection of impact damages in composites and aerospace structures. This is because TL-based sensor systems have a great potential for wireless, in-situ and distributed (WID) structural health monitoring when fully developed. This review article highlights development and the current state-of-the-art in the application of TL-based sensor systems. The underlying mechanisms believed to be responsible for triboluminescence, particularly in zinc sulfide manganese, a highly triboluminescent material, are discussed. The challenges militating against the full exploitation and field application of TL sensor systems are also identified. Finally, viable solutions and approaches to address these challenges are enumerated. - Highlights: → The underlying mechanisms believed to be responsible for triboluminescence. → State-of-the-art in the development and application of TL-based sensor systems. → The challenges militating against the full exploitation and field application of TL sensor systems are identified. → Viable solutions and approaches to address these challenges are enumerated.

  15. Automated Cognitive Health Assessment From Smart Home-Based Behavior Data.

    Science.gov (United States)

    Dawadi, Prafulla Nath; Cook, Diane Joyce; Schmitter-Edgecombe, Maureen

    2016-07-01

    Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behavior in the home and predicting clinical scores of the residents. To accomplish this goal, we propose a clinical assessment using activity behavior (CAAB) approach to model a smart home resident's daily behavior and predict the corresponding clinical scores. CAAB uses statistical features that describe characteristics of a resident's daily activity performance to train machine learning algorithms that predict the clinical scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years. We obtain a statistically significant correlation ( r=0.72) between CAAB-predicted and clinician-provided cognitive scores and a statistically significant correlation ( r=0.45) between CAAB-predicted and clinician-provided mobility scores. These prediction results suggest that it is feasible to predict clinical scores using smart home sensor data and learning-based data analysis.

  16. User Adaptive and Context-Aware Smart Home Using Pervasive and Semantic Technologies

    Directory of Open Access Journals (Sweden)

    Aggeliki Vlachostergiou

    2016-01-01

    Full Text Available Ubiquitous Computing is moving the interaction away from the human-computer paradigm and towards the creation of smart environments that users and things, from the IoT perspective, interact with. User modeling and adaptation is consistently present having the human user as a constant but pervasive interaction introduces the need for context incorporation towards context-aware smart environments. The current article discusses both aspects of the user modeling and adaptation as well as context awareness and incorporation into the smart home domain. Users are modeled as fuzzy personas and these models are semantically related. Context information is collected via sensors and corresponds to various aspects of the pervasive interaction such as temperature and humidity, but also smart city sensors and services. This context information enhances the smart home environment via the incorporation of user defined home rules. Semantic Web technologies support the knowledge representation of this ecosystem while the overall architecture has been experimentally verified using input from the SmartSantander smart city and applying it to the SandS smart home within FIRE and FIWARE frameworks.

  17. Optimal Plant Growth in Smart Farm Hydroponics System using the Integration of Wireless Sensor Networks into Internet of Things

    Directory of Open Access Journals (Sweden)

    Nathaphon Boonnam

    2017-07-01

    Full Text Available Greenhouse cultivation is easy to keep up and control important factors such as light, temperature, and humidity. Using of sensors and actuators in the greenhouse to capture different values allows for the control of the equipment, it can also be optimized for growth at optimal temperature and humidity of various crops planted. We use wireless sensor networks’ system by sending results to the cloud service, monitoring values, and devices’s controlling via smart phone. The results of this study are useful for growing crops not only in technical parts, but also in physical part; it was evaluated by questionnaire using technology acceptance model.

  18. Energy-Efficient Capacitance-to-Digital Converters for Smart Sensor Applications

    KAUST Repository

    Alhoshany, Abdulaziz

    2017-12-01

    One of the key requirements in the design of wireless sensor nodes and miniature biomedical devices is energy efficiency. For a sensor node, which is a sensor and readout circuit, to survive on limited energy sources such as a battery or harvested energy, its energy consumption should be minimized. Capacitive sensors are candidates for use in energy-constrained applications, as they do not consume static power and can be used in a wide range of applications to measure different physical, chemical or biological quantities. However, the energy consumption is dominated by the capacitive interface circuit, i.e. the capacitance-to-digital converter (CDC). Several energy-efficient CDC architectures are introduced in this dissertation to meet the demand for high resolution and energy efficiency in smart capacitive sensors. First, we propose an energy-efficient CDC based on a differential successive-approximation data converter. The proposed differential CDC employs an energy-efficient operational transconductance amplifier (OTA) based on an inverter. A wide capacitance range with fine absolute resolution is implemented in the proposed coarse-fine DAC architecture which saves 89% of silicon area. The proposed CDC achieves an energy efficiency figure-of-merit () of 45.8fJ/step, which is the best reported energy efficiency to date. Second, we propose an energy efficient CDC for high-precision capacitive resolution by using oversampling and noise shaping. The proposed CDC achieves 150 aF absolute resolution and an energy efficiency of 187fJ/conversion-step which outperforms state of the art high-precision differential CDCs. In the third and last part, we propose an in-vitro cancer diagnostic biosensor-CMOS platform for low-power, rapid detection, and low cost. The introduced platform is the first to demonstrate the ability to screen and quantify the spermidine/spermine N1 acetyltransferase (SSAT) enzyme which reveals the presence of early-stage cancer, on the surface of a

  19. Ubiquitous Green Computing Techniques for High Demand Applications in Smart Environments

    Directory of Open Access Journals (Sweden)

    Jose M. Moya

    2012-08-01

    Full Text Available Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.

  20. Ubiquitous green computing techniques for high demand applications in Smart environments.

    Science.gov (United States)

    Zapater, Marina; Sanchez, Cesar; Ayala, Jose L; Moya, Jose M; Risco-Martín, José L

    2012-01-01

    Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.

  1. Sensors, Volume 1, Fundamentals and General Aspects

    Science.gov (United States)

    Grandke, Thomas; Ko, Wen H.

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume deals with the fundamentals and common principles of sensors and covers the wide areas of principles, technologies, signal processing, and applications. Contents include: Sensor Fundamentals, e.g. Sensor Parameters, Modeling, Design and Packaging; Basic Sensor Technologies, e.g. Thin and Thick Films, Integrated Magnetic Sensors, Optical Fibres and Intergrated Optics, Ceramics and Oxides; Sensor Interfaces, e.g. Signal Processing, Multisensor Signal Processing, Smart Sensors, Interface Systems; Sensor Applications, e.g. Automotive: On-board Sensors, Traffic Surveillance and Control, Home Appliances, Environmental Monitoring, etc. This volume is an indispensable reference work and text book for both specialits and newcomers, researchers and developers.

  2. SVANET: A smart vehicular ad hoc network for efficient data transmission with wireless sensors.

    Science.gov (United States)

    Sahoo, Prasan Kumar; Chiang, Ming-Jer; Wu, Shih-Lin

    2014-11-25

    Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET) architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  3. Smart-Home Architecture Based on Bluetooth mesh Technology

    Science.gov (United States)

    Wan, Qing; Liu, Jianghua

    2018-03-01

    This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.

  4. Smart Structures and Materials

    Indian Academy of Sciences (India)

    function. It is reasonable to expect that all engineering design should be smart, and not dumb. But one can still make a distinction .... among the sensors, the actuators and the decision-making centre(s). ..... basic emotions like fear or pleasure.

  5. Smart Pipes—Instrumented Water Pipes, Can This Be Made a Reality?

    Directory of Open Access Journals (Sweden)

    Nicole Metje

    2011-07-01

    Full Text Available Several millions of kilometres of pipes and cables are buried beneath our streets in the UK. As they are not visible and easily accessible, the monitoring of their integrity as well as the quality of their contents is a challenge. Any information of these properties aids the utility owners in their planning and management of their maintenance regime. Traditionally, expensive and very localised sensors are used to provide irregular measurements of these properties. In order to have a complete picture of the utility network, cheaper sensors need to be investigated which would allow large numbers of small sensors to be incorporated into (or near to the pipe leading to so-called smart pipes. This paper focuses on a novel trial where a short section of a prototype smart pipe was buried using mainly off-the-shelf sensors and communication elements. The challenges of such a burial are presented together with the limitations of the sensor system. Results from the sensors were obtained during and after burial indicating that off-the-shelf sensors can be used in a smart pipes system although further refinements are necessary in order to miniaturise these sensors. The key challenges identified were the powering of these sensors and the communication of the data to the operator using a range of different methods.

  6. Enabling active and healthy ageing decision support systems with the smart collection of TV usage patterns.

    Science.gov (United States)

    Billis, Antonis S; Batziakas, Asterios; Bratsas, Charalampos; Tsatali, Marianna S; Karagianni, Maria; Bamidis, Panagiotis D

    2016-03-01

    Smart monitoring of seniors behavioural patterns and more specifically activities of daily living have attracted immense research interest in recent years. Development of smart decision support systems to support the promotion of health smart homes has also emerged taking advantage of the plethora of smart, inexpensive and unobtrusive monitoring sensors, devices and software tools. To this end, a smart monitoring system has been used in order to extract meaningful information about television (TV) usage patterns and subsequently associate them with clinical findings of experts. The smart TV operating state remote monitoring system was installed in four elderly women homes and gathered data for more than 11 months. Results suggest that TV daily usage (time the TV is turned on) can predict mental health change. Conclusively, the authors suggest that collection of smart device usage patterns could strengthen the inference capabilities of existing health DSSs applied in uncontrolled settings such as real senior homes.

  7. Tamper indicating and sensing optical-based smart structures

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Gordon, N.R.; Simmons, K.L.; Stahl, K.A.; Undem, H.A.

    1995-05-01

    This paper has presented an overview of the type of optical-based structures that can be designed and constructed. These smart structures are capable of responding to their environment. The examples given represent a modest sampling of the complexity that can be achieved in both design and practice. Tamper-indicating containers and smart, sensing windows demonstrate just a few of the applications. We have shown that optical-based smart structures can be made multifunctional with the sensing built in. The next generation smart structure will combine the sensing functionality of these optical-based smart structures with other sensors such as piezoelectrics and electro-rheological fluids to not only be able to respond to the environment, but to adapt to it as well. An example of functionality in this regime would be a piezosensor that senses pressure changes (e.g., shock waves), which then causes an electro-rheological fluid to change viscosity. A fiber sensor located in or near the electro-rheological fluid senses the stiffness change and sends a signal through a feedback loop back to the piezosensor for additional adjustments to the electro-rheological fluid

  8. SMART II : the spot market agent research tool version 2.0.

    Energy Technology Data Exchange (ETDEWEB)

    North, M. J. N.

    2000-12-14

    Argonne National Laboratory (ANL) has worked closely with Western Area Power Administration (Western) over many years to develop a variety of electric power marketing and transmission system models that are being used for ongoing system planning and operation as well as analytic studies. Western markets and delivers reliable, cost-based electric power from 56 power plants to millions of consumers in 15 states. The Spot Market Agent Research Tool Version 2.0 (SMART II) is an investigative system that partially implements some important components of several existing ANL linear programming models, including some used by Western. SMART II does not implement a complete model of the Western utility system but it does include several salient features of this network for exploratory purposes. SMART II uses a Swarm agent-based framework. SMART II agents model bulk electric power transaction dynamics with recognition for marginal costs as well as transmission and generation constraints. SMART II uses a sparse graph of nodes and links to model the electric power spot market. The nodes represent power generators and consumers with distinct marginal decision curves and varying investment capital as well individual learning parameters. The links represent transmission lines with individual capacities taken from a range of central distribution, outlying distribution and feeder line types. The application of SMART II to electric power systems studies has produced useful results different from those often found using more traditional techniques. Use of the advanced features offered by the Swarm modeling environment simplified the creation of the SMART II model.

  9. Hybrid-Aware Model for Senior Wellness Service in Smart Home.

    Science.gov (United States)

    Jung, Yuchae

    2017-05-22

    Smart home technology with situation-awareness is important for seniors to improve safety and security. With the development of context-aware computing, wearable sensor technology, and ubiquitous computing, it is easier for seniors to manage their health problem in smart home environment. For monitoring senior activity in smart home, wearable, and motion sensors-such as respiration rate (RR), electrocardiography (ECG), body temperature, and blood pressure (BP)-were used for monitoring movements of seniors. For context-awareness, environmental sensors-such as gas, fire, smoke, dust, temperature, and light sensors-were used for senior location data collection. Based on senior activity, senior health status can be classified into positive and negative. Based on senior location and time, senior safety is classified into safe and emergency. In this paper, we propose a hybrid inspection service middleware for monitoring elderly health risk based on senior activity and location. This hybrid-aware model for the detection of abnormal status of seniors has four steps as follows: (1) data collection from biosensors and environmental sensors; (2) monitoring senior location and time of stay in each location using environmental sensors; (3) monitoring senior activity using biometric data; finally, (4) expectation-maximization based decision-making step recommending proper treatment based on a senior health risk ratio.

  10. Flexible Temperature Sensors on Fibers

    Directory of Open Access Journals (Sweden)

    Marcin Sloma

    2010-08-01

    Full Text Available The aim of this paper is to present research dedicated to the elaboration of novel, miniaturized flexible temperature sensors for textronic applications. Examined sensors were manufactured on a single yarn, which ensures their high flexibility and good compatibility with textiles. Stable and linear characteristics were obtained by special technological process and applied temperature profiles. As a thermo-sensitive materials the innovative polymer compositions filled with multiwalled carbon nanotubes were used. Elaborated material was adapted to printing and dip-coating techniques to produce NTC composites. Nanotube sensors were free from tensometric effect typical for other carbon-polymer sensor, and demonstrated TCR of 0.13%/K. Obtained temperature sensors, compatible with textile structure, can be applied in rapidly developing smart textiles and be used for health and protections purposes.

  11. General Motors and the University of Michigan smart materials and structures collaborative research laboratory

    Science.gov (United States)

    Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.

    2007-04-01

    The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.

  12. The SmartHand transradial prosthesis

    Directory of Open Access Journals (Sweden)

    Carrozza Maria Chiara

    2011-05-01

    Full Text Available Abstract Background Prosthetic components and control interfaces for upper limb amputees have barely changed in the past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be inappropriate if/when a large bandwidth human-machine interface for control and perception would be available, due to either their limited (or inexistent sensorization or limited dexterity. SmartHand tackles this issue as is meant to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their effectiveness. This paper presents the design and on bench evaluation of the SmartHand. Methods SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was designed with the aim of delivering significant afferent information to the user through adequate interfaces. Results SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4 motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a customized embedded controller both employed for implementing automatic grasp control and for potentially delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point the index. The weight (530 g and speed (closing time: 1.5 seconds are comparable to actual commercial prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects. Conclusions Due to its unique embedded features and human-size, the SmartHand holds the promise to be experimentally fitted on transradial

  13. Fault Activity Aware Service Delivery in Wireless Sensor Networks for Smart Cities

    Directory of Open Access Journals (Sweden)

    Xiaomei Zhang

    2017-01-01

    Full Text Available Wireless sensor networks (WSNs are increasingly used in smart cities which involve multiple city services having quality of service (QoS requirements. When misbehaving devices exist, the performance of current delivery protocols degrades significantly. Nonetheless, the majority of existing schemes either ignore the faulty behaviors’ variability and time-variance in city environments or focus on homogeneous traffic for traditional data services (simple text messages rather than city services (health care units, traffic monitors, and video surveillance. We consider the problem of fault-aware multiservice delivery, in which the network performs secure routing and rate control in terms of fault activity dynamic metric. To this end, we first design a distributed framework to estimate the fault activity information based on the effects of nondeterministic faulty behaviors and to incorporate these estimates into the service delivery. Then we present a fault activity geographic opportunistic routing (FAGOR algorithm addressing a wide range of misbehaviors. We develop a leaky-hop model and design a fault activity rate-control algorithm for heterogeneous traffic to allocate resources, while guaranteeing utility fairness among multiple city services. Finally, we demonstrate the significant performance of our scheme in routing performance, effective utility, and utility fairness in the presence of misbehaving sensors through extensive simulations.

  14. Grading smart sensors: Performance assessment and ranking using familiar scores like A+ to D-

    Science.gov (United States)

    Kessel, Ronald T.

    2005-03-01

    Starting with the supposition that the product of smart sensors - whether autonomous, networked, or fused - is in all cases information, it is shown here using information theory how a metric Q, ranging between 0 and 100%, can be derived to assess the quality of the information provided. The analogy with student grades is immediately evident and elaborated. As with student grades, numerical percentages suggest more precision than can be justified, so a conversion to letter grades A+ to D- is desirable. Owing to the close analogy with familiar academic grades, moreover, the new grade is a measure of effectiveness (MOE) that commanders and decision makers should immediately appreciate and find quite natural, even if they do not care to follow the methodology behind the performance test, as they focus on higher-level strategic matters of sensor deployment or procurement. The metric is illustrated by translating three specialist performance tests - the Receiver Operating Characteristic (ROC) curve, the Constant False Alarm Rate (CFAR) approach, and confusion matrices - into letter grades for use then by strategists. Actual military and security systems are included among the examples.

  15. Smart Homes and Sensors for Surveillance and Preventive Education at Home: Example of Obesity

    Directory of Open Access Journals (Sweden)

    Jacques Demongeot

    2016-08-01

    Full Text Available (1 Background: The aim of this paper is to show that e-health tools like smart homes allow the personalization of the surveillance and preventive education of chronic patients, such as obese persons, in order to maintain a comfortable and preventive lifestyle at home. (2 Technologies and methods: Several types of sensors allow coaching the patient at home, e.g., the sensors recording the activity and monitoring the physiology of the person. All of this information serves to personalize serious games dedicated to preventive education, for example in nutrition and vision. (3 Results: We built a system of personalized preventive education at home based on serious games, derived from the feedback information they provide through a monitoring system. Therefore, it is possible to define (after clustering and personalized calibration from the at home surveillance of chronic patients different comfort zones where their behavior can be estimated as normal or abnormal and, then, to adapt both alarm levels for surveillance and education programs for prevention, the chosen example of application being obesity.

  16. Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer.

    Science.gov (United States)

    Yang, Enlong; Xu, Zhe; Chur, Lucas K; Behroozfar, Ali; Baniasadi, Mahmoud; Moreno, Salvador; Huang, Jiacheng; Gilligan, Jules; Minary-Jolandan, Majid

    2017-07-19

    Smart textiles are envisioned to make a paradigm shift in wearable technologies to directly impart functionality into the fibers rather than integrating sensors and electronics onto conformal substrates or skin in wearable devices. Among smart materials, piezoelectric fabrics have not been widely reported, yet. Piezoelectric smart fabrics can be used for mechanical energy harvesting, for thermal energy harvesting through the pyroelectric effect, for ferroelectric applications, as pressure and force sensors, for motion detection, and for ultrasonic sensing. We report on mechanical and material properties of the plied nanofibrous piezoelectric yarns as a function of postprocessing conditions including thermal annealing and drawing (stretching). In addition, we used a continuous electrospinning setup to directly produce P(VDF-TrFE) nanofibers and convert them into twisted plied yarns, and demonstrated application of these plied yarns in woven piezoelectric fabrics. The results of this work can be an early step toward realization of piezoelectric smart fabrics.

  17. Smart(er) Research

    DEFF Research Database (Denmark)

    Pries-Heje, Jan

    2016-01-01

    This is an answer and an elaboration to Carsten Sørensens’ “The Curse of the Smart Machine?”. My answer disagrees with the postulate of a mainframe focus within the IS field. Instead I suggest that it is a struggle between old and new science. The answer then agrees with the notion that we need n...

  18. Development of a Smart Residential Fire Protection System

    Directory of Open Access Journals (Sweden)

    Juhwan Oh

    2013-01-01

    Full Text Available Embedded system is applied for the development of smart residential fire detection and extinguishing system. Wireless communication capability is integrated into various fire sensors and alarm devices. The system activates the fire alarm to warn occupants, executes emergency and rescue calls to remote residents and fire-fighting facility in an intelligent way. The effective location of extra-sprinklers within the space of interest for the fire extinguishing system is also investigated. Actual fire test suggests that the developed wireless system for the smart residential fire protection system is reliable in terms of sensors and their communication linkage.

  19. Sound and speech detection and classification in a Health Smart Home.

    Science.gov (United States)

    Fleury, A; Noury, N; Vacher, M; Glasson, H; Seri, J F

    2008-01-01

    Improvements in medicine increase life expectancy in the world and create a new bottleneck at the entrance of specialized and equipped institutions. To allow elderly people to stay at home, researchers work on ways to monitor them in their own environment, with non-invasive sensors. To meet this goal, smart homes, equipped with lots of sensors, deliver information on the activities of the person and can help detect distress situations. In this paper, we present a global speech and sound recognition system that can be set-up in a flat. We placed eight microphones in the Health Smart Home of Grenoble (a real living flat of 47m(2)) and we automatically analyze and sort out the different sounds recorded in the flat and the speech uttered (to detect normal or distress french sentences). We introduce the methods for the sound and speech recognition, the post-processing of the data and finally the experimental results obtained in real conditions in the flat.

  20. RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter Data Analysis

    Directory of Open Access Journals (Sweden)

    Stephen Makonin

    2018-02-01

    Full Text Available Datasets are important for researchers to build models and test how well their machine learning algorithms perform. This paper presents the Rainforest Automation Energy (RAE dataset to help smart grid researchers test their algorithms that make use of smart meter data. This initial release of RAE contains 1 Hz data (mains and sub-meters from two residential houses. In addition to power data, environmental and sensor data from the house’s thermostat is included. Sub-meter data from one of the houses includes heat pump and rental suite captures, which is of interest to power utilities. We also show an energy breakdown of each house and show (by example how RAE can be used to test non-intrusive load monitoring (NILM algorithms.

  1. Occupancy-driven smart register for building energy saving (Conference Presentation)

    Science.gov (United States)

    Chen, Zhangjie; Wang, Ya S.

    2017-04-01

    The new era in energy-efficiency building is to integrate automatic occupancy detection with automated heating, ventilation and cooling (HVAC), the largest source of building energy consumption. By closing off some air vents, during certain hours of the day, up to 7.5% building energy consumption could be saved. In the past, smart vent has received increasing attention and several products have been developed and introduced to the market for building energy saving. For instance, Ecovent Systems Inc. and Keen Home Inc. have both developed smart vent registers capable of turning the vent on and off through smart phone apps. However, their products do not have on-board occupancy sensors and are therefore open-loop. Their vent control was achieved by simply positioning the vent blade through a motor and a controller without involving any smart actuation. This paper presents an innovative approach for automated vent control and automatic occupancy (human subjects) detection. We devise this approach in a smart register that has polydimethylsiloxane (PDMS) frame with embedded Shape memory alloy (SMA) actuators. SMAs belong to a class of shape memory materials (SMMs), which have the ability to `memorise' or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations. And it can work as actuators and be applied to vent control. Specifically, a Ni-Ti SMA strip will be pre-trained to a circular shape, wrapped with a Ni-Cr resistive wire that is coated with thermally conductive and electrically isolating material. Then, the SMA strip along with an antagonistic SMA strip will be bonded with PZT sensor and thermal sensors, to be inserted into a 3D printed mould which will be filled with silicone rubber materials. In the end, a demoulding process yields a fully integrated blade of the smart register. Several blades are installed together to form the smart register. The PZT sensors can feedback the shape of the actuator for precise

  2. A NEW UBIQUITOUS-BASED INDOOR POSITIONING SYSTEM WITH MINIMUM EXTRA HARDWARE USING SMART PHONES

    Directory of Open Access Journals (Sweden)

    S. Hassany Pazoky

    2014-10-01

    Full Text Available Knowing the position has been an ambition in many areas such as science, military, business, etc. GPS was the realization of this wish in 1970s. Technological advances such as ubiquitous computing, as a conquering perspective, requires any service to work for any user, any place, anytime, and via any network. As GPS cannot provide services in indoor environments, many scientists began to develop indoor positioning systems (IPS. Smart phones penetrating our everyday lives were a great platform to host IPS applications. Sensors in smart phones were another big motive to develop IPS applications. Many researchers have been working on the topic developing various applications. However, the applications introduced lack simplicity. In other words, they need to install a step counter or smart phone on the ankle, which makes it awkward and inapplicable in many situations. In the current study, a new IPS methodology is introduced using only the usual embedded sensors in the smart phones. The robustness of this methodology cannot compete with those of the aforementioned approaches. The price paid for simplicity was decreasing robustness and complicating the methods and formulations. However, methods or tricks to harness the errors to an acceptable range are introduced as the future works.

  3. Design and Implementation of Ubiquitous Health System U-Health Using Smart-Watches Sensors

    Science.gov (United States)

    Razavi Termeh, V.; Sadeghi Niaraki, A.

    2015-12-01

    Today as diseases grow rapidly, the responsibilities of the health clinics in giving services to patients increase and patients have to be more monitored and controlled. Remote systems of monitoring patients result in reducing cost, ease of movement, and also persistent control of patients by their doctors, so that patient can be monitored without need to go to the clinic. Recent advances in the field of ubiquitous sciences as well as using smartphones have resulted in increasingly use of this devices in remote monitoring of patients. The aim of this paper is to design and implement a ubiquitous health system using smartphones and sensors of smart-watches. This is accomplished through the information sent to the smartphone from the sensors of the watch, e.g. heart beat measurement sensor and ultraviolet ray. Then, this information is analyzed in the smartphone and some information based on the position of the patient and the path of him/her using GIS analyses as well as the information about the health level of the patient is sent to the doctor via SMS or phone call. Unnatural heart beats can be resulted in diseases such as Heart Failure and Arterial Fibrillation. With the approach adopted in this study, the patient or the doctor could be aware of these diseases at any time. The proposed approach is a low cost, without need to complex and resilient equipment, system in ubiquitous health that does not limit the movement of the patient.

  4. A Framework to Develop Persuasive Smart Environments

    Science.gov (United States)

    Lobo, Pedro; Romão, Teresa; Dias, A. Eduardo; Danado, José Carlos

    This paper presents a framework for the creation of context-sensitive persuasive applications. The framework allows the authoring of new persuasive smart environments producing the appropriate feedback to the users based on different sensors spread throughout the environment to capture contextual information. Using this framework, we created an application, Smart Bins, aimed at promoting users' behavioural changes regarding the recycling of waste materials. Furthermore, to evaluate the usability of our authoring tool, we performed user tests to analyze if developers could successfully create the Smart Bins application using the framework. A description of the Smart Bins application, as well as the results of the user tests, are also presented in this paper.

  5. Software Defined Networking for Improved Wireless Sensor Network Management: A Survey.

    Science.gov (United States)

    Ndiaye, Musa; Hancke, Gerhard P; Abu-Mahfouz, Adnan M

    2017-05-04

    Wireless sensor networks (WSNs) are becoming increasingly popular with the advent of the Internet of things (IoT). Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment of thousands or maybe hundreds of thousands of sensor nodes/actuators. To ensure proper working order and network efficiency of such a network of sensor nodes, an effective WSN management system has to be integrated. However, the inherent challenges of WSNs such as sensor/actuator heterogeneity, application dependency and resource constraints have led to challenges in implementing effective traditional WSN management. This difficulty in management increases as the WSN becomes larger. Software Defined Networking (SDN) provides a promising solution in flexible management WSNs by allowing the separation of the control logic from the sensor nodes/actuators. The advantage with this SDN-based management in WSNs is that it enables centralized control of the entire WSN making it simpler to deploy network-wide management protocols and applications on demand. This paper highlights some of the recent work on traditional WSN management in brief and reviews SDN-based management techniques for WSNs in greater detail while drawing attention to the advantages that SDN brings to traditional WSN management. This paper also investigates open research challenges in coming up with mechanisms for flexible and easier SDN-based WSN configuration and management.

  6. Software Defined Networking for Improved Wireless Sensor Network Management: A Survey

    Directory of Open Access Journals (Sweden)

    Musa Ndiaye

    2017-05-01

    Full Text Available Wireless sensor networks (WSNs are becoming increasingly popular with the advent of the Internet of things (IoT. Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment of thousands or maybe hundreds of thousands of sensor nodes/actuators. To ensure proper working order and network efficiency of such a network of sensor nodes, an effective WSN management system has to be integrated. However, the inherent challenges of WSNs such as sensor/actuator heterogeneity, application dependency and resource constraints have led to challenges in implementing effective traditional WSN management. This difficulty in management increases as the WSN becomes larger. Software Defined Networking (SDN provides a promising solution in flexible management WSNs by allowing the separation of the control logic from the sensor nodes/actuators. The advantage with this SDN-based management in WSNs is that it enables centralized control of the entire WSN making it simpler to deploy network-wide management protocols and applications on demand. This paper highlights some of the recent work on traditional WSN management in brief and reviews SDN-based management techniques for WSNs in greater detail while drawing attention to the advantages that SDN brings to traditional WSN management. This paper also investigates open research challenges in coming up with mechanisms for flexible and easier SDN-based WSN configuration and management.

  7. Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention.

    Science.gov (United States)

    Axisa, Fabrice; Schmitt, Pierre Michael; Gehin, Claudine; Delhomme, Georges; McAdams, Eric; Dittmar, André

    2005-09-01

    Improvement of the quality and efficiency of healthcare in medicine, both at home and in hospital, is becoming more and more important for patients and society at large. As many technologies (micro technologies, telecommunication, low-power design, new textiles, and flexible sensors) are now available, new user-friendly devices can be developed to enhance the comfort and security of the patient. As clothes and textiles are in direct contact with about 90% of the skin surface, smart sensors and smart clothes with noninvasive sensors are an attractive solution for home-based and ambulatory health monitoring. Moreover, wearable devices or smart homes with exosensors are also potential solutions. All these systems can provide a safe and comfortable environment for home healthcare, illness prevention, and citizen medicine.

  8. Smart Water Conservation System for Irrigated Landscape

    Science.gov (United States)

    2016-05-01

    controllers, centralized and site-specific sensor inputs, leak detection sensors, and the use of harvested water (i.e., rainwater and air condition water ...include ET functionality with soil moisture sensor, and leak detection via flow meter. ESTCP Final Report Smart Water Conservation System 58... leakage . The minimum static pressure was not achieved because tank water levels were less than 10 feet in the selected low profile tank.) Adjust break

  9. Smart grid voor comfort

    NARCIS (Netherlands)

    Zeiler, W.; Vissers, D.R.; Maaijen, H.N.; Kling, W.L.; Velden, van der J.A.J.; Larsen, J.P.

    2012-01-01

    Er vindt onderzoek plaats naar een nieuwe regelstrategie gebaseerd op de toepassing van een draadloos sensor netwerk dat is gekoppeld aan het smart grid. Doel van deze regelstrategie is om op gebruikersniveau energie te kunnen besparen met behoud of zelfs verbetering van het individueel comfort. Er

  10. SVANET: A Smart Vehicular Ad Hoc Network for Efficient Data Transmission with Wireless Sensors

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2014-11-01

    Full Text Available Wireless sensors can sense any event, such as accidents, as well as icy roads, and can forward the rescue/warning messages through intermediate vehicles for any necessary help. In this paper, we propose a smart vehicular ad hoc network (SVANET architecture that uses wireless sensors to detect events and vehicles to transmit the safety and non-safety messages efficiently by using different service channels and one control channel with different priorities. We have developed a data transmission protocol for the vehicles in the highway, in which data can be forwarded with the help of vehicles if they are connected with each other or data can be forwarded with the help of nearby wireless sensors. Our data transmission protocol is designed to increase the driving safety, to prevent accidents and to utilize channels efficiently by adjusting the control and service channel time intervals dynamically. Besides, our protocol can transmit information to vehicles in advance, so that drivers can decide an alternate route in case of traffic congestion. For various data sharing, we design a method that can select a few leader nodes among vehicles running along a highway to broadcast data efficiently. Simulation results show that our protocol can outperform the existing standard in terms of the end to end packet delivery ratio and latency.

  11. Design and Development of Smart Aquaculture System Based on IFTTT Model and Cloud Integration

    Directory of Open Access Journals (Sweden)

    Dzulqornain Muhammad Iskandar

    2018-01-01

    Full Text Available The internet of things technology (IoT is growing very rapidly. IoT implementation has been conducted in several sectors. One of them is for aquaculture. For the traditional farmers, they face problems for monitoring water quality and the way to increase the quality of the water quickly and efficiently. This paper presents a real-time monitoring and controlling system for aquaculture based on If This Then That (IFTTT model and cloud integration. This system was composed of smart sensor module which supports modularity, smart aeration system for controlling system, local network system, cloud computing system and client visualization data. In order to monitor the water condition, we collect the data from smart sensor module. Smart sensor module consists of sensor dissolved oxygen, potential of hydrogen, water temperature and water level. The components of smart aeration system are microcontroller NodeMCU v3, relay, power supply, and propeller that can produce oxygen. The system could set the IFTTT rules for the ideal water condition for the pond in any kinds of aquaculture based on its needs through the web and android application. The experimental result shows that use IFTTT model makes the aquaculture monitoring system more customizable, expandable and dynamic.

  12. Energy Cloud: Services for Smart Buildings

    DEFF Research Database (Denmark)

    Mohamed, Nader; Al-Jaroodi, Jameela; Lazarova-Molnar, Sanja

    2018-01-01

    , and network technologies. Using smart building energy management systems provides intelligent procedures to control buildings’ equipment such as HVAC (heating, ventilating, and air-conditioning) systems, home and office appliances, and lighting systems to reduce energy consumption while maintaining......Energy consumption in buildings is responsible for a significant portion of the total energy use and carbon emissions in large cities. One of the main approaches to reduce energy consumption and its environmental impact is to convert buildings into smart buildings using computer, software, sensor...... the required quality of living in all of the building’s spaces. This chapter discusses and reviews utilizing cloud computing to provide energy-related services to enhance the operations of smart buildings’ energy management systems. Cloud computing can provide many advantages for smart buildings’ energy...

  13. Smart material-based radiation sources

    Science.gov (United States)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  14. Maximizing lifetime of wireless sensor networks using genetic approach

    DEFF Research Database (Denmark)

    Wagh, Sanjeev; Prasad, Ramjee

    2014-01-01

    The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor......-objective parameters are considered to solve the problem using genetic algorithm of evolutionary approach.......The wireless sensor networks are designed to install the smart network applications or network for emergency solutions, where human interaction is not possible. The nodes in wireless sensor networks have to self organize as per the users requirements through monitoring environments. As the sensor...

  15. Learning under uncertainty in smart home environments.

    Science.gov (United States)

    Zhang, Shuai; McClean, Sally; Scotney, Bryan; Nugent, Chris

    2008-01-01

    Technologies and services for the home environment can provide levels of independence for elderly people to support 'ageing in place'. Learning inhabitants' patterns of carrying out daily activities is a crucial component of these technological solutions with sensor technologies being at the core of such smart environments. Nevertheless, identifying high-level activities from low-level sensor events can be a challenge, as information may be unreliable resulting in incomplete data. Our work addresses the issues of learning in the presence of incomplete data along with the identification and the prediction of inhabitants and their activities under such uncertainty. We show via the evaluation results that our approach also offers the ability to assess the impact of various sensors in the activity recognition process. The benefit of this work is that future predictions can be utilised in a proposed intervention mechanism in a real smart home environment.

  16. Electricity Markets, Smart Grids and Smart Buildings

    Science.gov (United States)

    Falcey, Jonathan M.

    A smart grid is an electricity network that accommodates two-way power flows, and utilizes two-way communications and increased measurement, in order to provide more information to customers and aid in the development of a more efficient electricity market. The current electrical network is outdated and has many shortcomings relating to power flows, inefficient electricity markets, generation/supply balance, a lack of information for the consumer and insufficient consumer interaction with electricity markets. Many of these challenges can be addressed with a smart grid, but there remain significant barriers to the implementation of a smart grid. This paper proposes a novel method for the development of a smart grid utilizing a bottom up approach (starting with smart buildings/campuses) with the goal of providing the framework and infrastructure necessary for a smart grid instead of the more traditional approach (installing many smart meters and hoping a smart grid emerges). This novel approach involves combining deterministic and statistical methods in order to accurately estimate building electricity use down to the device level. It provides model users with a cheaper alternative to energy audits and extensive sensor networks (the current methods of quantifying electrical use at this level) which increases their ability to modify energy consumption and respond to price signals The results of this method are promising, but they are still preliminary. As a result, there is still room for improvement. On days when there were no missing or inaccurate data, this approach has R2 of about 0.84, sometimes as high as 0.94 when compared to measured results. However, there were many days where missing data brought overall accuracy down significantly. In addition, the development and implementation of the calibration process is still underway and some functional additions must be made in order to maximize accuracy. The calibration process must be completed before a reliable

  17. Human-Computer Interaction in Smart Environments

    Science.gov (United States)

    Paravati, Gianluca; Gatteschi, Valentina

    2015-01-01

    Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  18. Smart Toys Designed for Detecting Developmental Delays.

    Science.gov (United States)

    Rivera, Diego; García, Antonio; Alarcos, Bernardo; Velasco, Juan R; Ortega, José Eugenio; Martínez-Yelmo, Isaías

    2016-11-20

    In this paper, we describe the design considerations and implementation of a smart toy system, a technology for supporting the automatic recording and analysis for detecting developmental delays recognition when children play using the smart toy. To achieve this goal, we take advantage of the current commercial sensor features (reliability, low consumption, easy integration, etc.) to develop a series of sensor-based low-cost devices. Specifically, our prototype system consists of a tower of cubes augmented with wireless sensing capabilities and a mobile computing platform that collect the information sent from the cubes allowing the later analysis by childhood development professionals in order to verify a normal behaviour or to detect a potential disorder. This paper presents the requirements of the toy and discusses our choices in toy design, technology used, selected sensors, process to gather data from the sensors and generate information that will help in the decision-making and communication of the information to the collector system. In addition, we also describe the play activities the system supports.

  19. Smart Toys Designed for Detecting Developmental Delays

    Directory of Open Access Journals (Sweden)

    Diego Rivera

    2016-11-01

    Full Text Available In this paper, we describe the design considerations and implementation of a smart toy system, a technology for supporting the automatic recording and analysis for detecting developmental delays recognition when children play using the smart toy. To achieve this goal, we take advantage of the current commercial sensor features (reliability, low consumption, easy integration, etc. to develop a series of sensor-based low-cost devices. Specifically, our prototype system consists of a tower of cubes augmented with wireless sensing capabilities and a mobile computing platform that collect the information sent from the cubes allowing the later analysis by childhood development professionals in order to verify a normal behaviour or to detect a potential disorder. This paper presents the requirements of the toy and discusses our choices in toy design, technology used, selected sensors, process to gather data from the sensors and generate information that will help in the decision-making and communication of the information to the collector system. In addition, we also describe the play activities the system supports.

  20. Smart Home Energy Management Based on Zigbee

    OpenAIRE

    E.Mallikarjuna

    2015-01-01

    Today organizations use IEEE 802.15&Zigbee to effectively deliver solutions for a variety of areas including consumer electronic device control, energy management and efficiency home and commercial building automation as well as industrial plant management. The smart home energy network has gained widespread attentions due to its flexible integrati- ion into everyday life. This next generation green home system transparently unifies various home appliances smart sensors &wireless communicati...

  1. Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.

    Science.gov (United States)

    Felt, Wyatt; Chin, Khai Yi; Remy, C David

    2017-09-01

    This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.

  2. Smart Extraction and Analysis System for Clinical Research.

    Science.gov (United States)

    Afzal, Muhammad; Hussain, Maqbool; Khan, Wajahat Ali; Ali, Taqdir; Jamshed, Arif; Lee, Sungyoung

    2017-05-01

    With the increasing use of electronic health records (EHRs), there is a growing need to expand the utilization of EHR data to support clinical research. The key challenge in achieving this goal is the unavailability of smart systems and methods to overcome the issue of data preparation, structuring, and sharing for smooth clinical research. We developed a robust analysis system called the smart extraction and analysis system (SEAS) that consists of two subsystems: (1) the information extraction system (IES), for extracting information from clinical documents, and (2) the survival analysis system (SAS), for a descriptive and predictive analysis to compile the survival statistics and predict the future chance of survivability. The IES subsystem is based on a novel permutation-based pattern recognition method that extracts information from unstructured clinical documents. Similarly, the SAS subsystem is based on a classification and regression tree (CART)-based prediction model for survival analysis. SEAS is evaluated and validated on a real-world case study of head and neck cancer. The overall information extraction accuracy of the system for semistructured text is recorded at 99%, while that for unstructured text is 97%. Furthermore, the automated, unstructured information extraction has reduced the average time spent on manual data entry by 75%, without compromising the accuracy of the system. Moreover, around 88% of patients are found in a terminal or dead state for the highest clinical stage of disease (level IV). Similarly, there is an ∼36% probability of a patient being alive if at least one of the lifestyle risk factors was positive. We presented our work on the development of SEAS to replace costly and time-consuming manual methods with smart automatic extraction of information and survival prediction methods. SEAS has reduced the time and energy of human resources spent unnecessarily on manual tasks.

  3. Ubiquitous Smart Home System Using Android Application

    OpenAIRE

    Kumar, Shiu

    2014-01-01

    This paper presents a flexible standalone, low-cost smart home system, which is based on the Android app communicating with the micro-web server providing more than the switching functionalities. The Arduino Ethernet is used to eliminate the use of a personal computer (PC) keeping the cost of the overall system to a minimum while voice activation is incorporated for switching functionalities. Devices such as light switches, power plugs, temperature sensors, humidity sensors, current sensors, ...

  4. Towards Interoperable IoT Deployments inSmart Cities - How project VITAL enables smart, secure and cost- effective cities

    OpenAIRE

    Schiele , Gregor; Soldatos , John; Mitton , Nathalie

    2014-01-01

    International audience; IoT-based deployments in smart cities raise several challenges, especially in terms of interoperability. In this paper, we illustrate semantic interoperability solutions for IoT systems. Based on these solutions, we describe how the FP7 VITAL project aims to bridge numerous silo IoT deployments in smart cities through repurposing and reusing sensors and data streams across multiple applications without carelessly compromising citizens’ security and privacy. This approa...

  5. A Survey on Virtualization of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ga-Won Lee

    2012-02-01

    Full Text Available Wireless Sensor Networks (WSNs are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.

  6. A Survey on Virtualization of Wireless Sensor Networks

    Science.gov (United States)

    Islam, Md. Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization. PMID:22438759

  7. A survey on virtualization of Wireless Sensor Networks.

    Science.gov (United States)

    Islam, Md Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.

  8. Smart Home Test Bed: Examining How Smart Homes Interact with the Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-01

    This fact sheet highlights the Smart Home Test Bed capability at the Energy Systems Integration Facility. The National Renewable Energy Laboratory (NREL) is working on one of the new frontiers of smart home research: finding ways for smart home technologies and systems to enhance grid operations in the presence of distributed, clean energy technologies such as photovoltaics (PV). To help advance this research, NREL has developed a controllable, flexible, and fully integrated Smart Home Test Bed.

  9. Automated Clinical Assessment from Smart home-based Behavior Data

    Science.gov (United States)

    Dawadi, Prafulla Nath; Cook, Diane Joyce; Schmitter-Edgecombe, Maureen

    2016-01-01

    Smart home technologies offer potential benefits for assisting clinicians by automating health monitoring and well-being assessment. In this paper, we examine the actual benefits of smart home-based analysis by monitoring daily behaviour in the home and predicting standard clinical assessment scores of the residents. To accomplish this goal, we propose a Clinical Assessment using Activity Behavior (CAAB) approach to model a smart home resident’s daily behavior and predict the corresponding standard clinical assessment scores. CAAB uses statistical features that describe characteristics of a resident’s daily activity performance to train machine learning algorithms that predict the clinical assessment scores. We evaluate the performance of CAAB utilizing smart home sensor data collected from 18 smart homes over two years using prediction and classification-based experiments. In the prediction-based experiments, we obtain a statistically significant correlation (r = 0.72) between CAAB-predicted and clinician-provided cognitive assessment scores and a statistically significant correlation (r = 0.45) between CAAB-predicted and clinician-provided mobility scores. Similarly, for the classification-based experiments, we find CAAB has a classification accuracy of 72% while classifying cognitive assessment scores and 76% while classifying mobility scores. These prediction and classification results suggest that it is feasible to predict standard clinical scores using smart home sensor data and learning-based data analysis. PMID:26292348

  10. Smart Contract Templates: foundations, design landscape and research directions

    OpenAIRE

    Clack, Christopher D.; Bakshi, Vikram A.; Braine, Lee

    2016-01-01

    In this position paper, we consider some foundational topics regarding smart contracts (such as terminology, automation, enforceability, and semantics) and define a smart contract as an automatable and enforceable agreement. We explore a simple semantic framework for smart contracts, covering both operational and non-operational aspects, and describe templates and agreements for legally-enforceable smart contracts, based on legal documents. Building upon the Ricardian Contract, we identify op...

  11. Towards Self-Powered Wireless Sensor Networks

    OpenAIRE

    SPENZA, DORA

    2013-01-01

    Ubiquitous computing aims at creating smart environments in which computational and communication capabilities permeate the word at all scales, improving the human experience and quality of life in a totally unobtrusive yet completely reliable manner. According to this vision, an huge variety of smart devices and products (e.g., wireless sensor nodes, mobile phones, cameras, sensors, home appliances and industrial machines) are interconnected to realize a network of distributed agents that co...

  12. A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework

    Science.gov (United States)

    Hernández, Luis; Baladrón, Carlos; Aguiar, Javier M.; Calavia, Lorena; Carro, Belén; Sánchez-Esguevillas, Antonio; Cook, Diane J.; Chinarro, David; Gómez, Jorge

    2012-01-01

    One of the main challenges of today's society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc.) have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid) applications.

  13. Poster Abstract: A Practical Model for Human-Smart Appliances Interaction

    DEFF Research Database (Denmark)

    Fürst, Jonathan; Fruergaard, Andreas; Johannesen, Marco Høvinghof

    2016-01-01

    for human-smart appliance interaction. We present a prototype implementation with an off-the-shelf smart lighting and heating system in a shared office space. Our approach minimizes the need for location metadata. It relies on a human-feedback loop (both sensor based and manual) to identify the optimal...

  14. New tricks with old sensors: Pervasive Technologies for Novel Applications

    International Nuclear Information System (INIS)

    Merrett, Geoff

    2013-01-01

    Sensors are interleaved into society, instrumenting considerable aspects of our lives without our comprehension. Sensors such as the MEMS accelerometer have transitioned from their original domains to applications that they were never conceived for: from games controllers to contextually rotating the screen on your smartphone. Further advances in technologies such as pervasive computing and networked embedded sensing are enabling new applications and smart devices which utilise sensors in new ways. In this presentation I will highlight new trends, applications and research in these fields, and show how ''simple'' sensors are being used in larger connected systems – from assistive technologies to distributed monitoring.

  15. Human-Computer Interaction in Smart Environments

    Directory of Open Access Journals (Sweden)

    Gianluca Paravati

    2015-08-01

    Full Text Available Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  16. A review of smart homes- present state and future challenges.

    Science.gov (United States)

    Chan, Marie; Estève, Daniel; Escriba, Christophe; Campo, Eric

    2008-07-01

    In the era of information technology, the elderly and disabled can be monitored with numerous intelligent devices. Sensors can be implanted into their home for continuous mobility assistance and non-obtrusive disease prevention. Modern sensor-embedded houses, or smart houses, cannot only assist people with reduced physical functions but help resolve the social isolation they face. They are capable of providing assistance without limiting or disturbing the resident's daily routine, giving him or her greater comfort, pleasure, and well-being. This article presents an international selection of leading smart home projects, as well as the associated technologies of wearable/implantable monitoring systems and assistive robotics. The latter are often designed as components of the larger smart home environment. The paper will conclude by discussing future challenges of the domain.

  17. SMART SECURITY SYSTEM FOR CARS

    OpenAIRE

    Akshay V. Balki*, Ankit A. Ramteke, Akshay Dhankar, Prof. Nilesh S. Panchbudhe

    2017-01-01

    This propose work is an attempt to model design an smart advance vehicle security system that uses biometric scanner and RFID card reader to give ignition pulse using two main module and to prevent theft. The system contains biometric scanner, RFID card reader, alcohol sensor, vibration sensor, GSM module, microcontroller (8051), relay switch, high voltage mesh..The safety of car is exceptionally essential. It provides pulse to ignition system by synchronizing driver’s data from license and t...

  18. 2nd international KES conference on Smart Education and Smart e-Learning

    CERN Document Server

    Howlett, Robert; Jain, Lakhmi

    2015-01-01

    This book contains the contributions presented at the 2nd international KES conference on Smart Education and Smart e-Learning, which took place in Sorrento, Italy, June 17-19, 2015. It contains a total of 45 peer-reviewed book chapters that are grouped into several parts: Part 1 - Smart Education, Part 2 – Smart Educational Technology, Part 3 – Smart e-Learning, Part 4 – Smart Professional Training and Teachers’ Education, and Part 5 – Smart Teaching and Training related Topics.  This book can be a useful source of research data and valuable information for faculty, scholars, Ph.D. students, administrators, and practitioners  - those who are interested in innovative areas of smart education and smart e-learning.  .

  19. Development of a Conductivity Sensor for Monitoring Groundwater Resources to Optimize Water Management in Smart City Environments.

    Science.gov (United States)

    Parra, Lorena; Sendra, Sandra; Lloret, Jaime; Bosch, Ignacio

    2015-08-26

    The main aim of smart cities is to achieve the sustainable use of resources. In order to make the correct use of resources, an accurate monitoring and management is needed. In some places, like underground aquifers, access for monitoring can be difficult, therefore the use of sensors can be a good solution. Groundwater is very important as a water resource. Just in the USA, aquifers represent the water source for 50% of the population. However, aquifers are endangered due to the contamination. One of the most important parameters to monitor in groundwater is the salinity, as high salinity levels indicate groundwater salinization. In this paper, we present a specific sensor for monitoring groundwater salinization. The sensor is able to measure the electric conductivity of water, which is directly related to the water salinization. The sensor, which is composed of two copper coils, measures the magnetic field alterations due to the presence of electric charges in the water. Different salinities of the water generate different alterations. Our sensor has undergone several tests in order to obtain a conductivity sensor with enough accuracy. First, several prototypes are tested and are compared with the purpose of choosing the best combination of coils. After the best prototype was selected, it was calibrated using up to 30 different samples. Our conductivity sensor presents an operational range from 0.585 mS/cm to 73.8 mS/cm, which is wide enough to cover the typical range of water salinities. With this work, we have demonstrated that it is feasible to measure water conductivity using solenoid coils and that this is a low cost application for groundwater monitoring.

  20. Fusion of smart, multimedia and computer gaming technologies research, systems and perspectives

    CERN Document Server

    Favorskaya, Margarita; Jain, Lakhmi; Howlett, Robert

    2015-01-01

      This monograph book is focused on the recent advances in smart, multimedia and computer gaming technologies. The Contributions include:   ·         Smart Gamification and Smart Serious Games. ·         Fusion of secure IPsec-based Virtual Private Network, mobile computing and rich multimedia technology. ·         Teaching and Promoting Smart Internet of Things Solutions Using the Serious-game Approach. ·         Evaluation of Student Knowledge using an e-Learning Framework. ·         The iTEC Eduteka. ·         3D Virtual Worlds as a Fusion of Immersing, Visualizing, Recording, and Replaying Technologies. ·         Fusion of multimedia and mobile technology in audioguides for Museums and Exhibitions: from Bluetooth Push to Web Pull. The book is directed to researchers, students and software developers working in the areas of education and information technologies.  

  1. Smart sensor: a platform for an interactive human physiological state recognition study

    Directory of Open Access Journals (Sweden)

    Andrej Gorochovik

    2013-03-01

    Full Text Available This paper describes a concept of making interactive human state recognition systems based on smart sensor design. The token measures on proper ADC signal processing had significantly lowered the interference level. A more reliable way of measuring human skin temperature was offered by using Maxim DS18B20 digital thermometers. They introduced a more sensible response to temperature changes compared to previously used analog LM35 thermometers. An adaptive HR measuring algorithm was introduced to suppress incorrect ECG signal readings caused by human muscular activities. User friendly interactive interface for touch sensitive GLCD screen was developed to present real time physiological data readings both in numerals and graphics. User was granted an ability to dynamically customize data processing methods according to his needs. Specific procedures were developed to simplify physiological state recording for further analysis. The introduced physiological data sampling and preprocessing platform was optimized to be compatible with “ATmega Oscilloscope” PC data collecting and visualizing software.

  2. FPGA-Based Smart Sensor for Online Displacement Measurements Using a Heterodyne Interferometer

    Science.gov (United States)

    Vera-Salas, Luis Alberto; Moreno-Tapia, Sandra Veronica; Garcia-Perez, Arturo; de Jesus Romero-Troncoso, Rene; Osornio-Rios, Roque Alfredo; Serroukh, Ibrahim; Cabal-Yepez, Eduardo

    2011-01-01

    The measurement of small displacements on the nanometric scale demands metrological systems of high accuracy and precision. In this context, interferometer-based displacement measurements have become the main tools used for traceable dimensional metrology. The different industrial applications in which small displacement measurements are employed requires the use of online measurements, high speed processes, open architecture control systems, as well as good adaptability to specific process conditions. The main contribution of this work is the development of a smart sensor for large displacement measurement based on phase measurement which achieves high accuracy and resolution, designed to be used with a commercial heterodyne interferometer. The system is based on a low-cost Field Programmable Gate Array (FPGA) allowing the integration of several functions in a single portable device. This system is optimal for high speed applications where online measurement is needed and the reconfigurability feature allows the addition of different modules for error compensation, as might be required by a specific application. PMID:22164040

  3. FM-CW radar sensors for vital signs and motor activity monitoring

    Directory of Open Access Journals (Sweden)

    Octavian Adrian Postolache

    2011-12-01

    Full Text Available The article summarizes on-going research on vital signs and motor activity monitoring based on radar sensors embedded in wheelchairs, walkers and crutches for in home rehabilitation. Embedded sensors, conditioning circuits, real-time platforms that perform data acquisition, auto-identification, primary data processing and data communication contribute to convert daily used objects in home rehabilitation into smart objects that can be accessed by caregivers during the training sessions through human–machine interfaces expressed by the new generation of smart phones or tablet computers running Android OS or iOS operating systems. The system enables the management of patients in home rehabilitation by providing more accurate and up-to-date information using pervasive computing of vital signs and motor activity records.

  4. Static and Dynamic Strain Monitoring of Reinforced Concrete Components through Embedded Carbon Nanotube Cement-Based Sensors

    Directory of Open Access Journals (Sweden)

    Antonella D’Alessandro

    2017-01-01

    Full Text Available The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i the repeatability and accuracy of sensors’ behavior over a meaningful number of sensors, (ii testing configurations and calibration methods, and (iii the sensors’ ability to provide static and dynamic strain measurements when actually embedded in RC elements. To address these research needs, this paper presents a preliminary characterization of the self-sensing capabilities and the dynamic properties of a meaningful number of cement-based sensors and studies their application as embedded sensors in a full-scale RC beam. Results from electrical and electromechanical tests conducted on small and full-scale specimens using different electrical measurement methods confirm that smart cement-based sensors show promise for both static and vibration-based structural health monitoring applications of concrete elements but that calibration of each sensor seems to be necessary.

  5. Collaborative data analytics for smart buildings: opportunities and models

    DEFF Research Database (Denmark)

    Lazarova-Molnar, Sanja; Mohamed, Nader

    2018-01-01

    of collaborative data analytics for smart buildings, its benefits, as well as presently possible models of carrying it out. Furthermore, we present a framework for collaborative fault detection and diagnosis as a case of collaborative data analytics for smart buildings. We also provide a preliminary analysis...... of the energy efficiency benefit of such collaborative framework for smart buildings. The result shows that significant energy savings can be achieved for smart buildings using collaborative data analytics.......Smart buildings equipped with state-of-the-art sensors and meters are becoming more common. Large quantities of data are being collected by these devices. For a single building to benefit from its own collected data, it will need to wait for a long time to collect sufficient data to build accurate...

  6. Research on the application of wisdom technology in smart city

    Science.gov (United States)

    Li, Juntao; Ma, Shuai; Gu, Weihua; Chen, Weiyi

    2015-12-01

    This paper first analyzes the concept of smart technology, the relationship between wisdom technology and smart city, and discusses the practical application of IOT(Internet of things) in smart city to explore a better way to realize smart city; then Introduces the basic concepts of cloud computing and smart city, and explains the relationship between the two; Discusses five advantages of cloud computing that applies to smart city construction: a unified and highly efficient, large-scale infrastructure software and hardware management, service scheduling and resource management, security control and management, energy conservation and management platform layer, and to promote modern practical significance of the development of services, promoting regional social and economic development faster. Finally, a brief description of the wisdom technology and smart city management is presented.

  7. Smart Medical Systems with Application to Nutrition and Fitness in Space

    Science.gov (United States)

    Soller, Babs R.; Cabrera, Marco; Smith, Scott M.; Sutton, Jeffrey P.

    2002-01-01

    Smart medical systems are being developed to allow medical treatments to address alterations in chemical and physiological status in real time. In a smart medical system sensor arrays assess subject status, which are interpreted by computer processors which analyze multiple inputs and recommend treatment interventions. The response of the subject to the treatment is again assessed by the sensor arrays, closing the loop. An early form of "smart medicine" has been practiced in space to assess nutrition. Nutrient levels are assessed with food frequency questionnaires, which are interpreted by flight surgeons to recommend in-flight alterations in diet. In the future, sensor arrays will directly probe body chemistry. Near infrared spectroscopy can be used to noninvasively measure several blood and tissue parameters which are important in the assessment of nutrition and fitness. In particular, this technology can be used to measure blood hematocrit and interstitial fluid pH. The noninvasive measurement of interstitial pH is discussed as a surrogate for blood lactate measurement for the development and real-time assessment of exercise protocols in space. Earth-based application of these sensors are also described.

  8. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    Directory of Open Access Journals (Sweden)

    Pablo Guzmán

    2010-03-01

    Full Text Available The purpose of this study is to develop a motion sensor (delivering optical flow estimations using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip. Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane and digital (NIOS II processor. The system is fully functional and is organized in different stages where the early processing (focal plane stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains.

  9. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    Science.gov (United States)

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains. PMID:22319283

  10. Soft Smart Garments for Lower Limb Joint Position Analysis.

    Science.gov (United States)

    Totaro, Massimo; Poliero, Tommaso; Mondini, Alessio; Lucarotti, Chiara; Cairoli, Giovanni; Ortiz, Jesùs; Beccai, Lucia

    2017-10-12

    Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors' responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.

  11. Fall Detection Using Commodity Smart Watch and Smart Phone

    OpenAIRE

    Maglogiannis , Ilias; Ioannou , Charalampos; Spyroglou , George; Tsanakas , Panayiotis

    2014-01-01

    Part 3: Social Media and Mobile Applications of AI; International audience; Human motion data captured from wearable devices such as smart watches can be utilized for activity recognition or emergency event detection, especially in the case of elderly or disabled people living independently in their homes. The output of such sensors is data streams that require real-time recognition, especially in emergency situations. This paper presents a novel application that utilizes the low-cost Pebble ...

  12. From electric networks to 'Smart grids'

    International Nuclear Information System (INIS)

    Hadjsaid, Nourredine; Sabonnadiere, Jean-Claude

    2015-12-01

    After decades of slow evolutions, and because of the emergence of renewable energies and of a multiplication of actors due to the liberalisation of energy markets, electric networks are entering a phase of large and complex development which will lead to a massive introduction of intelligence and to the building up of the 'smart grid' concept. The authors first identify the characteristics of the new energetic paradigm. The present operation of electric grids is based on four components: production by means of high power units installed in strategic locations, transport to consumption centres by means of a highly instrumented transport network which has highly centralised and hierarchical management, and consumers who are passive actors. They comment the implications of recent development for these three components. They describe how information and communication technologies (ICT) are used at the service of the grid, and how new technologies are integrated in different instruments (smart counter, actuators, fast cut devices, sensors, advanced supervision and control functions). Then they discuss the definition of a smart network or smart grid, the objectives it allows to be reached for energy transport as well as energy distribution. They discuss the desirable evolution of distribution networks and their technical objectives. Then, they give an overview of the various involved actors (consumers, network managers, electric equipment manufacturers, energy producers, and so on), evokes bodies and institutions involved in research on smart grids (notably in Grenoble within the INPG), give some examples of innovative concepts which are now being developed (intelligence distribution, virtual central station, grid monitoring, re-configurable grid, smart building). They also identify scientific and technological deadlocks, and outline the challenge of preparing the needed abilities for the development of smart grids

  13. Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India

    Science.gov (United States)

    Mohan, M.

    2016-06-01

    In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  14. Smart grid security

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, Jorge (ed.) [Siemens AG, Muenchen (Germany). Corporate Technology

    2013-11-01

    The engineering, deployment and security of the future smart grid will be an enormous project requiring the consensus of many stakeholders with different views on the security and privacy requirements, not to mention methods and solutions. The fragmentation of research agendas and proposed approaches or solutions for securing the future smart grid becomes apparent observing the results from different projects, standards, committees, etc, in different countries. The different approaches and views of the papers in this collection also witness this fragmentation. This book contains the following papers: 1. IT Security Architecture Approaches for Smart Metering and Smart Grid. 2. Smart Grid Information Exchange - Securing the Smart Grid from the Ground. 3. A Tool Set for the Evaluation of Security and Reliability in Smart Grids. 4. A Holistic View of Security and Privacy Issues in Smart Grids. 5. Hardware Security for Device Authentication in the Smart Grid. 6. Maintaining Privacy in Data Rich Demand Response Applications. 7. Data Protection in a Cloud-Enabled Smart Grid. 8. Formal Analysis of a Privacy-Preserving Billing Protocol. 9. Privacy in Smart Metering Ecosystems. 10. Energy rate at home Leveraging ZigBee to Enable Smart Grid in Residential Environment.

  15. Healthcare Blockchain System Using Smart Contracts for Secure Automated Remote Patient Monitoring.

    Science.gov (United States)

    Griggs, Kristen N; Ossipova, Olya; Kohlios, Christopher P; Baccarini, Alessandro N; Howson, Emily A; Hayajneh, Thaier

    2018-06-06

    As Internet of Things (IoT) devices and other remote patient monitoring systems increase in popularity, security concerns about the transfer and logging of data transactions arise. In order to handle the protected health information (PHI) generated by these devices, we propose utilizing blockchain-based smart contracts to facilitate secure analysis and management of medical sensors. Using a private blockchain based on the Ethereum protocol, we created a system where the sensors communicate with a smart device that calls smart contracts and writes records of all events on the blockchain. This smart contract system would support real-time patient monitoring and medical interventions by sending notifications to patients and medical professionals, while also maintaining a secure record of who has initiated these activities. This would resolve many security vulnerabilities associated with remote patient monitoring and automate the delivery of notifications to all involved parties in a HIPAA compliant manner.

  16. Nomadic service discovery in smart cities

    NARCIS (Netherlands)

    Stolikj, M.; Lukkien, J.J.; Cuijpers, P.J.L.; Buchina, N.; Obaidat, M.; Nicopolitidis, P.

    2016-01-01

    Smart cities blend the boundaries between infrastructure and consumer devices, and rely on their cooperation for making new applications possible. This poses a challenge, as extremely resource-constrained devices such as ubiquitous sensors and actuators need to communicate with more powerful

  17. Muscle Performance Investigated With a Novel Smart Compression Garment Based on Pressure Sensor Force Myography and Its Validation Against EMG

    Directory of Open Access Journals (Sweden)

    Aaron Belbasis

    2018-04-01

    Full Text Available Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG, comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD showed a higher time dependency (R2 = 0.84 compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue. In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical

  18. Muscle Performance Investigated With a Novel Smart Compression Garment Based on Pressure Sensor Force Myography and Its Validation Against EMG.

    Science.gov (United States)

    Belbasis, Aaron; Fuss, Franz Konstantin

    2018-01-01

    Muscle activity and fatigue performance parameters were obtained and compared between both a smart compression garment and the gold-standard, a surface electromyography (EMG) system during high-speed cycling in seven participants. The smart compression garment, based on force myography (FMG), comprised of integrated pressure sensors that were sandwiched between skin and garment, located on five thigh muscles. The muscle activity was assessed by means of crank cycle diagrams (polar plots) that displayed the muscle activity relative to the crank cycle. The fatigue was assessed by means of the median frequency of the power spectrum of the EMG signal; the fractal dimension (FD) of the EMG signal; and the FD of the pressure signal. The smart compression garment returned performance parameters (muscle activity and fatigue) comparable to the surface EMG. The major differences were that the EMG measured the electrical activity, whereas the pressure sensor measured the mechanical activity. As such, there was a phase shift between electrical and mechanical signals, with the electrical signals preceding the mechanical counterparts in most cases. This is specifically pronounced in high-speed cycling. The fatigue trend over the duration of the cycling exercise was clearly reflected in the fatigue parameters (FDs and median frequency) obtained from pressure and EMG signals. The fatigue parameter of the pressure signal (FD) showed a higher time dependency ( R 2 = 0.84) compared to the EMG signal. This reflects that the pressure signal puts more emphasis on the fatigue as a function of time rather than on the origin of fatigue (e.g., peripheral or central fatigue). In light of the high-speed activity results, caution should be exerted when using data obtained from EMG for biomechanical models. In contrast to EMG data, activity data obtained from FMG are considered more appropriate and accurate as an input for biomechanical modeling as they truly reflect the mechanical muscle

  19. OpenBAN: An Open Building ANalytics Middleware for Smart Buildings

    Directory of Open Access Journals (Sweden)

    Pandarasamy Arjunan

    2016-03-01

    Full Text Available Towards the realization of smart building applications, buildings are increasingly instrumented with diverse sensors and actuators. These sensors generate large volumes of data which can be analyzed for optimizing building operations. Many building energy management tasks such as energy forecasting, disaggregation, among others require complex analytics leveraging collected sensor data. While several standalone and cloud-based systems for archiving, sharing and visualizing sensor data have emerged, their support for analyzing sensor data streams is primitive and limited to rule-based actions based on thresholds and simple aggregation functions. We develop OpenBAN, an open source sensor data analytics middleware for buildings, to make analytics an integral component of modern smart building applications. OpenBAN provides a framework of extensible sensor data processing elements for identifying various building context, which different applications can leverage. We validate the capabilities of OpenBAN by developing three representative real-world applications which are deployed in our test-bed buildings: (i household energy disaggregation, (ii detection of sprinkler usage from water meter data, and (iii electricity demand forecasting. We also provide a preliminary system performance of OpenBAN when deployed in the cloud and locally.

  20. SIMULASI SISTEM KELISTRIKAN KAMAR HOTEL MENGGUNAKAN SMART RELAY

    Directory of Open Access Journals (Sweden)

    I Nyoman Sukarma

    2018-03-01

    Full Text Available Fungsi dari alat key tag atau hotel switch atau key card adalah memutus atau menyambungkan aliran listrik ke dalam suatu area tertentu atau ruang. Key tag memiliki peran penting pada kamar hotel untuk mencegah pemborosan energi pada saat kamar hotel tidak berpenghuni atau belum tersewakan. Untuk itu, penulis merancang simulasi sistem kelistrikan pada kamar hotel yang dikontrol dengan smart relay. Pada simulasi ini digunakan smart relay Zelio Logic buatan Schneider Electric. Pemrograman smart relay ini menggunakan ladder diagram yang disusun menggunakan perangkat lunak ZelioSoft2 dari Schneider Electric. Smart relay menerima sinyal masukan dari sensor, key tag dan sakelar. Sinyal masukan tersebut selanjutnya diproses agar lampu, kotak-kontak, exhaust fan, dan AC (Air Conditioner pada kamar hotel dapat bekerja.

  1. A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework

    Directory of Open Access Journals (Sweden)

    David Chinarro

    2012-08-01

    Full Text Available One of the main challenges of today’s society is the need to fulfill at the same time the two sides of the dichotomy between the growing energy demand and the need to look after the environment. Smart Grids are one of the answers: intelligent energy grids which retrieve data about the environment through extensive sensor networks and react accordingly to optimize resource consumption. In order to do this, the Smart Grids need to understand the existing relationship between energy demand and a set of relevant climatic variables. All smart “systems” (buildings, cities, homes, consumers, etc. have the potential to employ their intelligence for self-adaptation to climate conditions. After introducing the Smart World, a global framework for the collaboration of these smart systems, this paper presents the relationship found at experimental level between a range of relevant weather variables and electric power demand patterns, presenting a case study using an agent-based system, and emphasizing the need to consider this relationship in certain Smart World (and specifically Smart Grid and microgrid applications.

  2. Location-based language learning for migrants in a smart city

    OpenAIRE

    Gaved, Mark; Peasgood, Alice

    2015-01-01

    The SALSA (Sensors and Apps for Languages in Smart Areas) project, a winner of the Open University’s MK:Smart Open Challenge awards, is investigating how a smart city infrastructure can enable the provision of highly accurate, location-based learning activities for language learners, particularly recent migrants who have a real need to learn the language of their new home. \\ud \\ud Second language acquisition is perceived by adult migrants themselves, as well as host governments, “as a crucial...

  3. WIRELESS SENSOR NETWORKS – ARCHITECTURE, SECURITY REQUIREMENTS, SECURITY THREATS AND ITS COUNTERMEASURES

    OpenAIRE

    Ranjit Panigrahi; Kalpana Sharma; M.K. Ghose

    2013-01-01

    Wireless Sensor Network (WSN) has a huge range of applications such as battlefield, surveillance, emergency rescue operation and smart home technology etc. Apart from its inherent constraints such as limited memory and energy resources, when deployed in hostile environmental conditions, the sensor nodes are vulnerable to physical capture and other security constraints. These constraints put security as a major challenge for the researchers in the field of computer networking. T...

  4. Research, development and demonstration. Issue paper - working group 3; Denmark. Smart Grid Network; Forskning, udvikling og demonstration. Issue paper, arbejdsgruppe 3

    Energy Technology Data Exchange (ETDEWEB)

    Balasiu, A [Siemens A/S, Ballerup (Denmark); Troi, A [Danmarks Tekniske Univ. Risoe Nationallaboratoriet for Baeredygtig Energi, Roskilde (Denmark); Andersen, Casper [DI Energibranchen, Copenhagen (Denmark); and others

    2011-07-01

    The Smart Grid Network was established in 2010 by the Danish climate and energy minister tasked with developing recommendations for future actions and initiatives that make it possible to handle up to 50% electricity from wind energy in the power system in 2020. The task of working group 3 was defined as: - An overview of the Danish research and development of smart grids and related areas; - Conducting an analysis of the research and development needs required for the introduction of a smart grid in Denmark. Based on this analysis, provide suggestions for new large research and development projects; - Provide recommendations on how the activities are best carried out taking into account innovation, economic growth and jobs. In the analysis it is explained that Denmark so far has a strong position in several elements of RD and D activities. This position will soon be threatened as several European countries have launched ambitious initiatives to strengthen the national position. The working group recommends that Denmark gives priority to Smart Grids as a national action in order to solve the challenge of technically and economically efficient integration of renewable energy. Smart Grid is a catalyst that strengthens a new green growth industry (cleantech) in Denmark. Research and development has an important role to play in this development. A common vision and roadmap must be established for research institutions, energy companies and industries related to research, development and demonstration of Smart Grid, which can maintain and expand Denmark's global leadership position. As part of this, there is a need to strengthen and market research infrastructures, which can turn Denmark into a global hub for smart grid development. There is a current need to strengthen the advanced technical and scientific research in the complexities of the power system, research on market design, user behavior and smart grid interoperability. (LN)

  5. Research, development and demonstration. Issue paper - working group 3; Denmark. Smart Grid Network; Forskning, udvikling og demonstration. Issue paper, arbejdsgruppe 3

    Energy Technology Data Exchange (ETDEWEB)

    Balasiu, A. (Siemens A/S, Ballerup (Denmark)); Troi, A. (Danmarks Tekniske Univ.. Risoe Nationallaboratoriet for Baeredygtig Energi, Roskilde (Denmark)); Andersen, Casper (DI Energibranchen, Copenhagen (Denmark)) (and others)

    2011-07-01

    The Smart Grid Network was established in 2010 by the Danish climate and energy minister tasked with developing recommendations for future actions and initiatives that make it possible to handle up to 50% electricity from wind energy in the power system in 2020. The task of working group 3 was defined as: - An overview of the Danish research and development of smart grids and related areas; - Conducting an analysis of the research and development needs required for the introduction of a smart grid in Denmark. Based on this analysis, provide suggestions for new large research and development projects; - Provide recommendations on how the activities are best carried out taking into account innovation, economic growth and jobs. In the analysis it is explained that Denmark so far has a strong position in several elements of RD and D activities. This position will soon be threatened as several European countries have launched ambitious initiatives to strengthen the national position. The working group recommends that Denmark gives priority to Smart Grids as a national action in order to solve the challenge of technically and economically efficient integration of renewable energy. Smart Grid is a catalyst that strengthens a new green growth industry (cleantech) in Denmark. Research and development has an important role to play in this development. A common vision and roadmap must be established for research institutions, energy companies and industries related to research, development and demonstration of Smart Grid, which can maintain and expand Denmark's global leadership position. As part of this, there is a need to strengthen and market research infrastructures, which can turn Denmark into a global hub for smart grid development. There is a current need to strengthen the advanced technical and scientific research in the complexities of the power system, research on market design, user behavior and smart grid interoperability. (LN)

  6. Regulatory Experience on Safety Smart Transmitter's CCF of SKN 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. M.; Jeong, C. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    Smart transmitters are digital I and C equipment which can replace analog transmitters. Non safety grade smart transmitters have been used for I and C systems of NPP(Nuclear Power Plant).. But, recently, smart transmitters have been used for safety grade I and C systems as well as non-safety grade I and C system for SKN 3 and 4. Smart transmitters execute measuring sensor values, generating output signals and adjusting range using software. Also, smart transmitters are basically capable of remote calibration through digital communication. The operating capability is more reliable and effective with remote calibration of smart transmitters, but there is potential vulnerability that causes the result no one wanted such as cyber attacks or software CCF. This paper addresses our regulatory experiences how to evaluate safety smart transmitter's CCF of SKN 3 and 4. Nuclear I and C equipment have increased the use on digital technology in safety system. According that, interest in a postulated software CCF is increasing. The software may be firmware or operating system of digital equipment. During SKN 3 and 4 operating license process, safety grade smart transmitter's adequacy was reviewed such as software V and V processes and equipment qualification. Also, it was analyzed that effect of the software CCFs of smart transmitters under DBA condition. Main concern was whether the postulated smart transmitter's software CCF may lead to an adverse safety consequence. We have future research plan to execute proof tests about our concerns and develop regulatory guide for smart transmitters.

  7. SmartCampusAAU

    DEFF Research Database (Denmark)

    Hansen, Rene; Thomsen, Bent; Thomsen, Lone Leth

    2013-01-01

    This paper describes SmartCampusAAU - an open, extendable platform that supports the easy creation of indoor location based systems. SmartCampusAAU offers an app and backend that can be used to enable indoor positioning and navigation in any building. The SmartCampusAAU app is available on all ma...... major mobile platforms (Android, iPhone and Windows Phone) and supports both device- and infrastructure-based positioning. SmartCampusAAU also offers a publicly available OData backend that allows researchers to share radio map and location tracking data.......This paper describes SmartCampusAAU - an open, extendable platform that supports the easy creation of indoor location based systems. SmartCampusAAU offers an app and backend that can be used to enable indoor positioning and navigation in any building. The SmartCampusAAU app is available on all...

  8. Attack classification schema for smart city WSNs

    OpenAIRE

    García Font, Víctor; Garrigues Olivella, Carles; Rifà Pous, Helena

    2017-01-01

    Peer-reviewed Urban areas around the world are populating their streets with wireless sensor networks (WSNs) in order to feed incipient smart city IT systems with metropolitan data. In the future smart cities, WSN technology will have a massive presence in the streets, and the operation of municipal services will be based to a great extent on data gathered with this technology. However, from an information security point of view, WSNs can have failures and can be the target of many differe...

  9. Biomolecule-Functionalized Smart Polydiacetylene for Biomedical and Environmental Sensing.

    Science.gov (United States)

    Cho, Eunae; Jung, Seunho

    2018-01-04

    Polydiacetylene (PDA) has attracted interest for use as a sensing platform in biomedical, environmental, and chemical engineering applications owing to its capacity for colorimetric and fluorescent transition in response to external stimuli. Many researchers have attempted to develop a tailor-made PDA sensor via conjugation of chemical or biological substances to PDA. Here, we review smart bio-conjugates of PDA with various biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In addition, materialization and signal amplification strategies to improve handling and sensitivity are described.

  10. An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures

    Directory of Open Access Journals (Sweden)

    Andrea Meoni

    2018-03-01

    Full Text Available The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs, and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNT contents. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both quasi-static and sine-sweep dynamic uni-axial compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.

  11. An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures.

    Science.gov (United States)

    Meoni, Andrea; D'Alessandro, Antonella; Downey, Austin; García-Macías, Enrique; Rallini, Marco; Materazzi, A Luigi; Torre, Luigi; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo

    2018-03-09

    The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete prior to casting. The strain sensing principle is based on the multifunctional composites outputting a measurable change in their electrical properties when subjected to a deformation. Previous work by the authors was devoted to material fabrication, modeling and applications in SHM. In this paper, we investigate the behavior of several sensors fabricated with and without aggregates and with different MWCNT contents. The strain sensitivity of the sensors, in terms of fractional change in electrical resistivity for unit strain, as well as their linearity are investigated through experimental testing under both quasi-static and sine-sweep dynamic uni-axial compressive loadings. Moreover, the responses of the sensors when subjected to destructive compressive tests are evaluated. Overall, the presented results contribute to improving the scientific knowledge on the behavior of smart concrete sensors and to furthering their understanding for SHM applications.

  12. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data

    Directory of Open Access Journals (Sweden)

    Tobias Nef

    2015-05-01

    Full Text Available Smart homes for the aging population have recently started attracting the attention of the research community. The “health state” of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB, support vector machine (SVM and random forest (RF. Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different

  13. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.

    Science.gov (United States)

    Nef, Tobias; Urwyler, Prabitha; Büchler, Marcel; Tarnanas, Ioannis; Stucki, Reto; Cazzoli, Dario; Müri, René; Mosimann, Urs

    2015-05-21

    Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our

  14. An Optimized WSN Design for Latency-Critical Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    Mounib Khanafer

    2017-01-01

    Full Text Available The growing popularity of the Internet of Things (IoT systems such as the smart grid, Body Area Networks (BANs, and the Intelligent Transportation System (ITS is driving Wireless Sensor Network (WSN systems to the limit in terms of abilities and performance. WSNs were initially designed for low power, low data rate, and latency-tolerant applications. However, this paradigm is changing because of the nature of the new applications. Therefore, instead of only focusing on power-efficient WSN design, researchers and industries are now developing Quality of Service (QoS protocols for WSNs. In addition to that, latency- and reliability-critical protocol designs are also becoming significantly important in WSNs. In this paper, we present an overview of some important smart grid latency-critical applications and highlight WSNs implementation challenges for these smart grid applications. Furthermore, we develop and evaluate two novel optimization models that solve for the optimum values of the end-to-end latency and power consumption in a clustered WSN given lower bounds on reliability and other network parameters.

  15. Human Activity Recognition from Smart-Phone Sensor Data using a Multi-Class Ensemble Learning in Home Monitoring.

    Science.gov (United States)

    Ghose, Soumya; Mitra, Jhimli; Karunanithi, Mohan; Dowling, Jason

    2015-01-01

    Home monitoring of chronically ill or elderly patient can reduce frequent hospitalisations and hence provide improved quality of care at a reduced cost to the community, therefore reducing the burden on the healthcare system. Activity recognition of such patients is of high importance in such a design. In this work, a system for automatic human physical activity recognition from smart-phone inertial sensors data is proposed. An ensemble of decision trees framework is adopted to train and predict the multi-class human activity system. A comparison of our proposed method with a multi-class traditional support vector machine shows significant improvement in activity recognition accuracies.

  16. Microbial Biofilm as a Smart Material

    DEFF Research Database (Denmark)

    Garde, Christian; Welch, Martin; Ferkinghoff-Borg, Jesper

    2015-01-01

    Microbial biofilm colonies will in many cases form a smart material capable of responding to external threats dependent on their size and internal state. The microbial community accordingly switches between passive, protective, or attack modes of action. In order to decide which strategy to employ......, it is essential for the biofilm community to be able to sense its own size. The sensor designed to perform this task is termed a quorum sensor, since it only permits collective behaviour once a sufficiently large assembly of microbes have been established. The generic quorum sensor construct involves two genes...

  17. Smart City Platform Development for an Automated Waste Collection System

    Directory of Open Access Journals (Sweden)

    Cicerone Laurentiu Popa

    2017-11-01

    Full Text Available Nowadays, governments and companies are looking for solutions to increase the collection level of various waste types by using new technologies and devices such as smart sensors, Internet of Things (IoT, cloud platforms etc. In order to fulfil this need, this paper presents solutions provided by a research project involving the design, development and implementation of fully automated waste collection systems with an increased usage degree, productivity and storage capacity. The paper will focus on the main results of this research project in turning the automated waste collection system into a smart system so that it can be easily integrated in any smart city infrastructure. For this purpose, the Internet of Things platform for the automated waste collection system provided by the project will allow real time monitoring and communication with central systems. Details about each module are sent to the central systems: various modules’ statuses (working, blocked, needs repairs or maintenance etc.; equipment status; storage systems status (allowing full reports for all waste types; the amount of waste for each module, allowing optimal discharging; route optimization for waste discharging etc. To do that, we describe here an IoT cloud solution integrating device connection, data processing, analytics and management.

  18. SMART NOTEBOOK AS AN ICT WAY FОR DEVELOPMENT OF RESEARCH COMPETENCE

    Directory of Open Access Journals (Sweden)

    Svitlana V. Vasylenko

    2014-05-01

    Full Text Available The article discusses the benefits of the educational process for general and higher education through the development of research competence of students, information and communication technology training. These technologies are used in many areas of activity, including updated content of education, implementing of distance learning, introducing new forms of collaboration. Attention is accented on the features using SMART Notebook software for organizing the learning process in the form of interactive sessions, clarified a basic arguments to use SMART Notebook for creation an author's educational resources, to orient teachers to construct their personal innovative methodical system.

  19. Communication and Networking in Smart Grids

    CERN Document Server

    Xiao, Yang

    2012-01-01

    Appropriate for researchers, practitioners, and students alike, Communication and Networking in Smart Grids presents state-of-the-art approaches and novel technologies for communication networks in smart grids. It explains how contemporary grid networks are developed and deployed and presents a collection of cutting-edge advances to help improve current practice. Prominent researchers working on smart grids and in related fields around the world explain the fundamental aspects and applications of smart grids. Describing the role that communication and networking will play in future smart grids

  20. tranSMART: An Open Source and Community-Driven Informatics and Data Sharing Platform for Clinical and Translational Research.

    Science.gov (United States)

    Athey, Brian D; Braxenthaler, Michael; Haas, Magali; Guo, Yike

    2013-01-01

    tranSMART is an emerging global open source public private partnership community developing a comprehensive informatics-based analysis and data-sharing cloud platform for clinical and translational research. The tranSMART consortium includes pharmaceutical and other companies, not-for-profits, academic entities, patient advocacy groups, and government stakeholders. The tranSMART value proposition relies on the concept that the global community of users, developers, and stakeholders are the best source of innovation for applications and for useful data. Continued development and use of the tranSMART platform will create a means to enable "pre-competitive" data sharing broadly, saving money and, potentially accelerating research translation to cures. Significant transformative effects of tranSMART includes 1) allowing for all its user community to benefit from experts globally, 2) capturing the best of innovation in analytic tools, 3) a growing 'big data' resource, 4) convergent standards, and 5) new informatics-enabled translational science in the pharma, academic, and not-for-profit sectors.

  1. Smart gas sensors for mitigating environments

    International Nuclear Information System (INIS)

    Azad, A.M.

    1997-01-01

    From the viewpoint of industrial and automobile exhaust pollution control sensors capable of detecting and metering the concentration of harmful gasers such as carbon monoxide, hydrogen, hydrocarbons, NO sub x, SO sub x, etc, in the ambient are desired. Solid state gas sensors based on semiconducting metal oxides have been widely used for the detection and metering of a host of reducing gases, albeit with varying degrees of success. In this presentation, development aspects of new solid-state CO and H2 sensors are described. Benevolent effect of second phases and catalyst on the sensing characteristics, and the possible sensing mechanism are discussed. In the case of titania-based CO sensors, test results in a Ford V6 engine under programmed near-stoichiometric combustion conditions are also presented. Some new concepts in the area of reliable metering of humidity (water content) in the ambient are briefly highlighted. (author)

  2. Development of a Three Dimensional Wireless Sensor Network for Terrain-Climate Research in Remote Mountainous Environments

    Science.gov (United States)

    Kavanagh, K.; Davis, A.; Gessler, P.; Hess, H.; Holden, Z.; Link, T. E.; Newingham, B. A.; Smith, A. M.; Robinson, P.

    2011-12-01

    Developing sensor networks that are robust enough to perform in the world's remote regions is critical since these regions serve as important benchmarks compared to human-dominated areas. Paradoxically, the factors that make these remote, natural sites challenging for sensor networking are often what make them indispensable for climate change research. We aim to overcome these challenges by developing a three-dimensional sensor network arrayed across a topoclimatic gradient (1100-1800 meters) in a wilderness area in central Idaho. Development of this sensor array builds upon advances in sensing, networking, and power supply technologies coupled with experiences of the multidisciplinary investigators in conducting research in remote mountainous locations. The proposed gradient monitoring network will provide near real-time data from a three-dimensional (3-D) array of sensors measuring biophysical parameters used in ecosystem process models. The network will monitor atmospheric carbon dioxide concentration, humidity, air and soil temperature, soil water content, precipitation, incoming and outgoing shortwave and longwave radiation, snow depth, wind speed and direction, tree stem growth and leaf wetness at time intervals ranging from seconds to days. The long-term goal of this project is to realize a transformative integration of smart sensor networks adaptively communicating data in real-time to ultimately achieve a 3-D visualization of ecosystem processes within remote mountainous regions. Process models will be the interface between the visualization platforms and the sensor network. This will allow us to better predict how non-human dominated terrestrial and aquatic ecosystems function and respond to climate dynamics. Access to the data will be ensured as part of the Northwest Knowledge Network being developed at the University of Idaho, through ongoing Idaho NSF-funded cyber infrastructure initiatives, and existing data management systems funded by NSF, such as

  3. Humidity Sensors Printed on Recycled Paper and Cardboard

    Directory of Open Access Journals (Sweden)

    Matija Mraović

    2014-07-01

    Full Text Available Research, design, fabrication and results of various screen printed capacitive humidity sensors is presented in this paper. Two types of capacitive humidity sensors have been designed and fabricated via screen printing on recycled paper and cardboard, obtained from the regional paper and cardboard industry. As printing ink, commercially available silver nanoparticle-based conductive ink was used. A considerable amount of work has been devoted to the humidity measurement methods using paper as a dielectric material. Performances of different structures have been tested in a humidity chamber. Relative humidity in the chamber was varied in the range of 35%–80% relative humidity (RH at a constant temperature of 23 °C. Parameters of interest were capacitance and conductance of each sensor material, as well as long term behaviour. Process reversibility has also been considered. The results obtained show a mainly logarithmic response of the paper sensors, with the only exception being cardboard-based sensors. Recycled paper-based sensors exhibit a change in value of three orders of magnitude, whereas cardboard-based sensors have a change in value of few 10s over the entire scope of relative humidity range (RH 35%–90%. Two different types of capacitor sensors have been investigated: lateral (comb type sensors and modified, perforated flat plate type sensors. The objective of the present work was to identify the most important factors affecting the material performances with humidity, and to contribute to the development of a sensor system supported with a Radio Frequency Identification (RFID chip directly on the material, for use in smart packaging applications. Therefore, the authors built a passive and a battery-supported wireless module based on SL900A smart sensory tag’s IC to achieve UHF-RFID functionality with data logging capability.

  4. GEOSPATIAL INFORMATION FROM SATELLITE IMAGERY FOR GEOVISUALISATION OF SMART CITIES IN INDIA

    Directory of Open Access Journals (Sweden)

    M. Mohan

    2016-06-01

    Full Text Available In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  5. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements : tech transfer summary.

    Science.gov (United States)

    2016-08-01

    Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...

  6. A remote assessment system with a vision robot and wearable sensors.

    Science.gov (United States)

    Zhang, Tong; Wang, Jue; Ren, Yumiao; Li, Jianjun

    2004-01-01

    This paper describes an ongoing researched remote rehabilitation assessment system that has a 6-freedom double-eyes vision robot to catch vision information, and a group of wearable sensors to acquire biomechanical signals. A server computer is fixed on the robot, to provide services to the robot's controller and all the sensors. The robot is connected to Internet by wireless channel, and so do the sensors to the robot. Rehabilitation professionals can semi-automatically practise an assessment program via Internet. The preliminary results show that the smart device, including the robot and the sensors, can improve the quality of remote assessment, and reduce the complexity of operation at a distance.

  7. Finite element analysis of actively controlled smart plate with patched actuators and sensors

    Directory of Open Access Journals (Sweden)

    M. Yaqoob Yasin

    Full Text Available The active vibration control of smart plate equipped with patched piezoelectric sensors and actuators is presented in this study. An equivalent single layer third order shear deformation theory is employed to model the kinematics of the plate and to obtain the shear strains. The governing equations of motion are derived using extended Hamilton's principle. Linear variation of electric potential across the piezoelectric layers in thickness direction is considered. The electrical variable is discretized by Lagrange interpolation function considering two-noded line element. Undamped natural frequencies and the corresponding mode shapes are obtained by solving the eigen value problem with and without electromechanical coupling. The finite element model in nodal variables are transformed into modal model and then recast into state space. The dynamic model is reduced for further analysis using Hankel norm for designing the controller. The optimal control technique is used to control the vibration of the plate.

  8. Energy conservation through smart homes in a smart city: A lesson for Singapore households

    International Nuclear Information System (INIS)

    Bhati, Abhishek; Hansen, Michael; Chan, Ching Man

    2017-01-01

    Energy saving is a hot topic due to the proliferation of climate changes and energy challenges globally. However, people's perception about using smart technology for energy saving is still in the concept stage. This means that people talk about environmental awareness readily, yet in reality, they accept to pay the given energy bill. Due to the availability of electricity and its integral role, modulating consumers’ attitudes towards energy savings can be a challenge. Notably, the gap in today's smart technology design in smart homes is the understanding of consumers’ behaviour and the integration of this understanding into the smart technology. As part of the Paris Climate change agreement (2015), it is paramount for Singapore to introduce smart technologies targeted to reduce energy consumption. This paper focused on the perception of Singapore households on smart technology and its usage to save energy. Areas of current research include: (1) energy consumption in Singapore households, (2) public programs and policies in energy savings, (3) use of technology in energy savings, and (4) household perception of energy savings in smart homes. Furthermore, three case studies are reviewed in relation to smart homes and smart technology, while discussing the maturity of existing solutions. - Highlights: • Analyse perception of Singapore households about the usage of smart technology to save energy. • Reviews energy consumption, public policies and household perception of energy savings. • Three case studies were developed and reviewed in relation to smart homes and smart technology. • Analyse research gap of household behaviours and perceptions as smart home design focus.

  9. Challenges in Improving Energy Efficiency in a University Campus Through the Application of Persuasive Technology and Smart Sensors

    Directory of Open Access Journals (Sweden)

    Anthony Emeakaroha

    2012-12-01

    Full Text Available The impact of energy consumption and carbon emission in the UK poses a grave challenge. This challenge is particularly high amongst residents of university campuses, where usage of electricity and carbon emission remain invisible to the students. In student residential accommodation, personal choices and social influences affect electricity consumption and ultimately the resultant reduction in carbon emissions. Therefore, innovative solutions are required to change students’ energy consumption behavior, and one promising part of the solution is to present real-time electricity consumption data to students in real-time via a dedicated web platform, while, at the same time, appointing an energy delegate in each hall to induce motivation among the students. The results of some interventions show that immediate energy feedback from smart meters or display devices can provide savings of 5%–15%. However, the situation is different; with the complexity in behavior of our target groups “the students who are living in the halls of residence”, there are economical and environmental aspects to be addressed in these issues, in the campus halls of residence. Therefore, we propose a system to address this issue, by applying smart sensors (real-time electricity data capture, integration of dedicated visual web interface (real-time electricity feedback display and an appointed energy delegate in each hall (a motivator. It is expected that this will motivate students living in the halls of residence to reduce their electricity wastage and, therefore, control the energy cost and also reduce the carbon emissions released into the environment. In the present research, we focus on the University of Kent, Canterbury campus to study energy conservation and carbon emission reduction strategies.

  10. Development of Sensor Based Applications for the Android Platform: an Approach Based on Realistic Simulation

    Directory of Open Access Journals (Sweden)

    Pablo CAMPILLO-SÁNCHEZ

    2013-05-01

    Full Text Available Smart phones are equipped with a wide range of sensors (such as GPS, light, accelerometer, gyroscope, etc. and allow users to be connected everywhere. These characteristics offer a rich information source for creating context-aware applications. However, testing these applications in the lab, before their deployment, could become a hard task or impossible because of sensors correlation, too wide testing area or an excessive number of people involved. This work aims to solve these problems carrying out the testing in a simulator, simulating the world in which the application user is immersed into. Tester controls her avatar and the avatar has a simulated smart phone that is connected with the user’s smart phone. Applications under test are installed on the real smart phone and are compiled with a library that replaces standard services of the sensors by others that offer data sensor from the simulator (depending on the simulated smart phone context instead of real world.

  11. A Smart Gateway Architecture for Improving Efficiency of Home Network Applications

    OpenAIRE

    Ding, Fei; Song, Aiguo; Tong, En; Li, Jianqing

    2016-01-01

    A smart home gateway plays an important role in the Internet of Things (IoT) system that takes responsibility for the connection between the network layer and the ubiquitous sensor network (USN) layer. Even though the home network application is developing rapidly, researches on the home gateway based open development architecture are less. This makes it difficult to extend the home network to support new applications, share service, and interoperate with other home network systems. An integr...

  12. Towards a smart home framework

    OpenAIRE

    Alam, Muddasser; Alan, Alper; Rogers, Alex; Ramchurn, Sarvapali D.

    2013-01-01

    We present our Smart Home Framework (SHF) which simplifies the modelling, prototyping and simulation of smart infrastructure (i.e., smart home and smart communities). It provides the buildings blocks (e.g., home appliances) that can be extended and assembled together to build a smart infrastructure model to which appropriate AI techniques can be applied. This approach enables rapid modelling where new research initiatives can build on existing work.

  13. Advanced Smart Structures Flight Experiments for Precision Spacecraft

    Science.gov (United States)

    Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory

    2000-07-01

    This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.

  14. Smart sensing surveillance system

    Science.gov (United States)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4

  15. Perancangan Sistem Pengairan Tanaman Otomatis Menggunakan Grove Moisture Sensor Sen0100 Berbasis Arduino Leonardo dan Monitoring Melalui Wifi

    OpenAIRE

    Siregar, Risci Michael

    2016-01-01

    132408024 Internet of thing becomes a field of research since the development of Internet technology and other communications media, growing human needs of the technology, the more research that will be present, internet of things one result of researchers to optimize some of the tools such as media sensor, radio frequency identification (RFID), wireless sensor networks and other smart object that allows humans to easily interact with all the equipment that is connected to the Internet net...

  16. A Depth Video Sensor-Based Life-Logging Human Activity Recognition System for Elderly Care in Smart Indoor Environments

    Directory of Open Access Journals (Sweden)

    Ahmad Jalal

    2014-07-01

    Full Text Available Recent advancements in depth video sensors technologies have made human activity recognition (HAR realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital.

  17. A depth video sensor-based life-logging human activity recognition system for elderly care in smart indoor environments.

    Science.gov (United States)

    Jalal, Ahmad; Kamal, Shaharyar; Kim, Daijin

    2014-07-02

    Recent advancements in depth video sensors technologies have made human activity recognition (HAR) realizable for elderly monitoring applications. Although conventional HAR utilizes RGB video sensors, HAR could be greatly improved with depth video sensors which produce depth or distance information. In this paper, a depth-based life logging HAR system is designed to recognize the daily activities of elderly people and turn these environments into an intelligent living space. Initially, a depth imaging sensor is used to capture depth silhouettes. Based on these silhouettes, human skeletons with joint information are produced which are further used for activity recognition and generating their life logs. The life-logging system is divided into two processes. Firstly, the training system includes data collection using a depth camera, feature extraction and training for each activity via Hidden Markov Models. Secondly, after training, the recognition engine starts to recognize the learned activities and produces life logs. The system was evaluated using life logging features against principal component and independent component features and achieved satisfactory recognition rates against the conventional approaches. Experiments conducted on the smart indoor activity datasets and the MSRDailyActivity3D dataset show promising results. The proposed system is directly applicable to any elderly monitoring system, such as monitoring healthcare problems for elderly people, or examining the indoor activities of people at home, office or hospital.

  18. Mathematical modeling of the infrastructure of attosecond actuators and femtosecond sensors of nonequilibrium physical media in smart materials

    Science.gov (United States)

    Beznosyuk, Sergey A.; Maslova, Olga A.; Zhukovsky, Mark S.; Valeryeva, Ekaterina V.; Terentyeva, Yulia V.

    2017-12-01

    The task of modeling the multiscale infrastructure of quantum attosecond actuators and femtosecond sensors of nonequilibrium physical media in smart materials is considered. Computer design and calculation of supra-atomic femtosecond sensors of nonequilibrium physical media in materials based on layered graphene-transition metal nanosystems are carried out by vdW-DF and B3LYP methods. It is shown that the molybdenum substrate provides fixation of graphene nanosheets by Van der Waals forces at a considerable distance (5.3 Å) from the metal surface. This minimizes the effect of the electronic and nuclear subsystem of the substrate metal on the sensory properties of "pure" graphene. The conclusion is substantiated that graphene-molybdenum nanosensors are able to accurately orient and position one molecule of carbon monoxide. It is shown that graphene selectively adsorbs CO and fixes the oxygen atom of the molecule at the position of the center of the graphene ring C6.

  19. Smart limbed vehicles for naval applications. Part II. Relevant technologies and performance evaluation. Interim report on research work on smart vehicle concepts for military use on the ocean surface

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, A.; Wood, L.

    1976-09-30

    Research work in smart, unmanned water-traversing limbed vehicles for naval warfare applications is reported. The areas covered include prime movers, power transformers and actuators, structural considerations, physical control, joint servo-control, motion control, visual data and the ocean surface, smartness, and vehicle characterization. (TFD)

  20. Smart Spectrometer for Distributed Fuzzy Control

    OpenAIRE

    Benoit, Eric; Foulloy, Laurent

    2009-01-01

    Document rédigé sous FrameMaker (pas sous Latex); International audience; If the main use of colour measurement is the metrology, it is now possible to find industrial control applications which uses this information. Using colour in process control leads to specific problems where human perception has to be replaced by colour sensors. This paper relies on the fuzzy representation of colours that can be taken into account by fuzzy controllers. If smart sensors already include intelligent func...