WorldWideScience

Sample records for smart sensing processing

  1. Smart sensing surveillance system

    Science.gov (United States)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4

  2. Smart sensing surveillance system

    Science.gov (United States)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    Unattended ground sensor (UGS) networks have been widely used in remote battlefield and other tactical applications over the last few decades due to the advances of the digital signal processing. The UGS network can be applied in a variety of areas including border surveillance, special force operations, perimeter and building protection, target acquisition, situational awareness, and force protection. In this paper, a highly-distributed, fault-tolerant, and energyefficient Smart Sensing Surveillance System (S4) is presented to efficiently provide 24/7 and all weather security operation in a situation management environment. The S4 is composed of a number of distributed nodes to collect, process, and disseminate heterogeneous sensor data. Nearly all S4 nodes have passive sensors to provide rapid omnidirectional detection. In addition, Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR cameras are integrated to selected nodes to track the objects and capture associated imagery. These S4 camera-connected nodes will provide applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. In the S4, all the nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology, which can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The S4 utilizes a Service Oriented Architecture such that remote applications can interact with the S4 network and use the specific presentation methods. The S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded

  3. Modelling and simulation of processes by smart sensing : a solar dryer for plant material

    Energy Technology Data Exchange (ETDEWEB)

    Correa, E.C.; Diezma, B.; Ruiz-Altisent, M. [LPF-TAGRALIA Univ. Politecnica, CENIM-CSIC, Madrid (Spain)

    2010-07-01

    This paper reported on a study in which as small wood dryer was modelled. Studies have shown that properly designed solar dryers may prove to be energy saving devices for drying processes. The drying rate expressed as -dX/dt=f/X (where X is DB wood moisture content), allows to identify 2 different kinetics, notably for high X values or fibre saturation point (FSP) and for X values under FSP, in which diffusion is the mechanism that governs a decreasing drying rate at this stage. The complex drying rate model developed in this study made it possible the determine the wood and convective mass transfer at the wood-air interface. Validation and application to fruit and plant drying cycles is currently underway. Three different proposed models are used in the software for a smart sensor system, which is based on Sensirion sensors for temperature and relative humidity in the air, and thermocouples for timber temperature.

  4. The role of advanced sensing in smart cities.

    Science.gov (United States)

    Hancke, Gerhard P; Silva, Bruno de Carvalho E; Hancke, Gerhard P

    2012-12-27

    In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities.

  5. Synchrophasor Sensing and Processing based Smart Grid Security Assessment for Renewable Energy Integration

    Science.gov (United States)

    Jiang, Huaiguang

    With the evolution of energy and power systems, the emerging Smart Grid (SG) is mainly featured by distributed renewable energy generations, demand-response control and huge amount of heterogeneous data sources. Widely distributed synchrophasor sensors, such as phasor measurement units (PMUs) and fault disturbance recorders (FDRs), can record multi-modal signals, for power system situational awareness and renewable energy integration. An effective and economical approach is proposed for wide-area security assessment. This approach is based on wavelet analysis for detecting and locating the short-term and long-term faults in SG, using voltage signals collected by distributed synchrophasor sensors. A data-driven approach for fault detection, identification and location is proposed and studied. This approach is based on matching pursuit decomposition (MPD) using Gaussian atom dictionary, hidden Markov model (HMM) of real-time frequency and voltage variation features, and fault contour maps generated by machine learning algorithms in SG systems. In addition, considering the economic issues, the placement optimization of distributed synchrophasor sensors is studied to reduce the number of the sensors without affecting the accuracy and effectiveness of the proposed approach. Furthermore, because the natural hazards is a critical issue for power system security, this approach is studied under different types of faults caused by natural hazards. A fast steady-state approach is proposed for voltage security of power systems with a wind power plant connected. The impedance matrix can be calculated by the voltage and current information collected by the PMUs. Based on the impedance matrix, locations in SG can be identified, where cause the greatest impact on the voltage at the wind power plants point of interconnection. Furthermore, because this dynamic voltage security assessment method relies on time-domain simulations of faults at different locations, the proposed approach

  6. Smart Sensing Using Wavelets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Further refinements to the FOSS technologies are focusing on “smart” sensing techniques that adjust sensing parameters as needed in real time so that...

  7. A Study on the Influence of Speed on Road Roughness Sensing: The SmartRoadSense Case

    Directory of Open Access Journals (Sweden)

    Giacomo Alessandroni

    2017-02-01

    Full Text Available SmartRoadSense is a crowdsensing project aimed at monitoring the conditions of the road surface. Using the sensors of a smartphone, SmartRoadSense monitors the vertical accelerations inside a vehicle traveling the road and extracts a roughness index conveying information about the road conditions. The roughness index and the smartphone GPS data are periodically sent to a central server where they are processed, associated with the specific road, and aggregated with data measured by other smartphones. This paper studies how the smartphone vertical accelerations and the roughness index are related to the vehicle speed. It is shown that the dependence can be locally approximated with a gamma (power law. Extensive experimental results using data extracted from SmartRoadSense database confirm the gamma law relationship between the roughness index and the vehicle speed. The gamma law is then used for improving the SmartRoadSense data aggregation accounting for the effect of vehicle speed.

  8. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review.

    Science.gov (United States)

    Zou, Liang; Ge, Chang; Wang, Z Jane; Cretu, Edmond; Li, Xiaoou

    2017-11-17

    During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.

  9. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review

    Directory of Open Access Journals (Sweden)

    Liang Zou

    2017-11-01

    Full Text Available During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.

  10. Signal processing for smart cards

    Science.gov (United States)

    Quisquater, Jean-Jacques; Samyde, David

    2003-06-01

    In 1998, Paul Kocher showed that when a smart card computes cryptographic algorithms, for signatures or encryption, its consumption or its radiations leak information. The keys or the secrets hidden in the card can then be recovered using a differential measurement based on the intercorrelation function. A lot of silicon manufacturers use desynchronization countermeasures to defeat power analysis. In this article we detail a new resynchronization technic. This method can be used to facilitate the use of a neural network to do the code recognition. It becomes possible to reverse engineer a software code automatically. Using data and clock separation methods, we show how to optimize the synchronization using signal processing. Then we compare these methods with watermarking methods for 1D and 2D signal. The very last watermarking detection improvements can be applied to signal processing for smart cards with very few modifications. Bayesian processing is one of the best ways to do Differential Power Analysis, and it is possible to extract a PIN code from a smart card in very few samples. So this article shows the need to continue to set up effective countermeasures for cryptographic processors. Although the idea to use advanced signal processing operators has been commonly known for a long time, no publication explains that results can be obtained. The main idea of differential measurement is to use the cross-correlation of two random variables and to repeat consumption measurements on the processor to be analyzed. We use two processors clocked at the same external frequency and computing the same data. The applications of our design are numerous. Two measurements provide the inputs of a central operator. With the most accurate operator we can improve the signal noise ratio, re-synchronize the acquisition clock with the internal one, or remove jitter. The analysis based on consumption or electromagnetic measurements can be improved using our structure. At first sight

  11. Tamper indicating and sensing optical-based smart structures

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Gordon, N.R.; Simmons, K.L.; Stahl, K.A.; Undem, H.A.

    1995-05-01

    This paper has presented an overview of the type of optical-based structures that can be designed and constructed. These smart structures are capable of responding to their environment. The examples given represent a modest sampling of the complexity that can be achieved in both design and practice. Tamper-indicating containers and smart, sensing windows demonstrate just a few of the applications. We have shown that optical-based smart structures can be made multifunctional with the sensing built in. The next generation smart structure will combine the sensing functionality of these optical-based smart structures with other sensors such as piezoelectrics and electro-rheological fluids to not only be able to respond to the environment, but to adapt to it as well. An example of functionality in this regime would be a piezosensor that senses pressure changes (e.g., shock waves), which then causes an electro-rheological fluid to change viscosity. A fiber sensor located in or near the electro-rheological fluid senses the stiffness change and sends a signal through a feedback loop back to the piezosensor for additional adjustments to the electro-rheological fluid

  12. Energy-efficient digital and wireless IC design for wireless smart sensing

    Science.gov (United States)

    Zhou, Jun; Huang, Xiongchuan; Wang, Chao; Tae-Hyoung Kim, Tony; Lian, Yong

    2017-10-01

    Wireless smart sensing is now widely used in various applications such as health monitoring and structural monitoring. In conventional wireless sensor nodes, significant power is consumed in wirelessly transmitting the raw data. Smart sensing adds local intelligence to the sensor node and reduces the amount of wireless data transmission via on-node digital signal processing. While the total power consumption is reduced compared to conventional wireless sensing, the power consumption of the digital processing becomes as dominant as wireless data transmission. This paper reviews the state-of-the-art energy-efficient digital and wireless IC design techniques for reducing the power consumption of the wireless smart sensor node to prolong battery life and enable self-powered applications.

  13. An integrated sensing technique for smart monitoring of water pipelines

    Science.gov (United States)

    Bernini, Romeo; Catapano, Ilaria; Soldovieri, Francesco; Crocco, Lorenzo

    2014-05-01

    Lowering the rate of water leakage from the network of underground pipes is one of the requirements that "smart" cities have to comply with. In fact, losses in the water supply infrastructure have a remarkable social, environmental and economic impact, which obviously conflicts with the expected efficiency and sustainability of a smart city. As a consequence, there is a huge interest in developing prevention policies based on state-of-art sensing techniques and possibly their integration, as well as in envisaging ad hoc technical solutions designed for the application at hand. As a contribution to this framework, in this communication we present an approach aimed to pursue a thorough non-invasive monitoring of water pipelines, with both high spatial and temporal resolution. This goal is necessary to guarantee that maintenance operations are performed timely, so to reduce the extent of the leakage and its possible side effects, and precisely, so to minimize the cost and the discomfort resulting from operating on the water supply network. The proposed approach integrates two sensing techniques that work at different spatial and temporal scales. The first one is meant to provide a continuous (in both space and time) monitoring of the pipeline and exploits a distributed optic fiber sensor based on the Brillouin scattering phenomenon. This technique provides the "low" spatial resolution information (at meter scale) needed to reveal the presence of a leak and call for interventions [1]. The second technique is based on the use of Ground Penetrating Radar (GPR) and is meant to provide detailed images of area where the damage has been detected. GPR systems equipped with suitable data processing strategies [2,3] are indeed capable of providing images of the shallow underground, where the pipes would be buried, characterized by a spatial resolution in the order of a few centimeters. This capability is crucial to address in the most proper way maintenance operations, by for

  14. Design of smart sensing components for volcano monitoring

    Science.gov (United States)

    Xu, M.; Song, W.-Z.; Huang, R.; Peng, Y.; Shirazi, B.; LaHusen, R.; Kiely, A.; Peterson, N.; Ma, A.; Anusuya-Rangappa, L.; Miceli, M.; McBride, D.

    2009-01-01

    In a volcano monitoring application, various geophysical and geochemical sensors generate continuous high-fidelity data, and there is a compelling need for real-time raw data for volcano eruption prediction research. It requires the network to support network synchronized sampling, online configurable sensing and situation awareness, which pose significant challenges on sensing component design. Ideally, the resource usages shall be driven by the environment and node situations, and the data quality is optimized under resource constraints. In this paper, we present our smart sensing component design, including hybrid time synchronization, configurable sensing, and situation awareness. Both design details and evaluation results are presented to show their efficiency. Although the presented design is for a volcano monitoring application, its design philosophy and framework can also apply to other similar applications and platforms. ?? 2009 Elsevier B.V.

  15. Context-Aware Mobile Sensors for Sensing Discrete Events in Smart Environment

    Directory of Open Access Journals (Sweden)

    Awais Ahmad

    2016-01-01

    Full Text Available Over the last few decades, several advancements in the field of smart environment gained importance, so the experts can analyze ideas for smart building based on embedded systems to minimize the expense and energy conservation. Therefore, propelling the concept of smart home toward smart building, several challenges of power, communication, and sensors’ connectivity can be seen. Such challenges distort the interconnectivity between different technologies, such as Bluetooth and ZigBee, making it possible to provide the continuous connectivity among different objects such as sensors, actuators, home appliances, and cell phones. Therefore, this paper presents the concept of smart building based on embedded systems that enhance low power mobile sensors for sensing discrete events in embedded systems. The proposed scheme comprises system architecture that welcomes all the mobile sensors to communicate with each other using a single platform service. The proposed system enhances the concept of smart building in three stages (i.e., visualization, data analysis, and application. For low power mobile sensors, we propose a communication model, which provides a common medium for communication. Finally, the results show that the proposed system architecture efficiently processes, analyzes, and integrates different datasets efficiently and triggers actions to provide safety measurements for the elderly, patients, and others.

  16. A smart magnetic resonance contrast agent for selective copper sensing.

    Science.gov (United States)

    Que, Emily L; Chang, Christopher J

    2006-12-20

    We describe the synthesis and properties of Copper-Gad-1 (CG1), a new type of smart magnetic resonance (MR) sensor for selective detection of copper. CG1 is composed of a gadolinium contrast agent core tethered to copper-selective recognition motif. Cu2+-induced modulation of inner-sphere water access to the Gd3+ center provides a sensing mechanism for reporting Cu2+ levels by reading out changes in longitudinal proton relaxivity values. CG1 features good selectivity for Cu2+ over abundant biological cations and a 41% increase in relaxivity upon Cu2+ binding and is capable of detecting micromolar changes in Cu2+ concentrations in aqueous media.

  17. Biomolecule-Functionalized Smart Polydiacetylene for Biomedical and Environmental Sensing.

    Science.gov (United States)

    Cho, Eunae; Jung, Seunho

    2018-01-04

    Polydiacetylene (PDA) has attracted interest for use as a sensing platform in biomedical, environmental, and chemical engineering applications owing to its capacity for colorimetric and fluorescent transition in response to external stimuli. Many researchers have attempted to develop a tailor-made PDA sensor via conjugation of chemical or biological substances to PDA. Here, we review smart bio-conjugates of PDA with various biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In addition, materialization and signal amplification strategies to improve handling and sensitivity are described.

  18. Power systems signal processing for smart grids

    NARCIS (Netherlands)

    Ribeiro, P.F.; Duque, C.A.; Da Silveira, P.M.; Cerqueira, A.S.

    2013-01-01

    With special relation to smart grids, this book provides clear and comprehensive explanation of how Digital Signal Processing (DSP) and Computational Intelligence (CI) techniques can be applied to solve problems in the power system. Its unique coverage bridges the gap between DSP, electrical power

  19. Designing and Securing an Event Processing System for Smart Spaces

    Science.gov (United States)

    Li, Zang

    2011-01-01

    Smart spaces, or smart environments, represent the next evolutionary development in buildings, banking, homes, hospitals, transportation systems, industries, cities, and government automation. By riding the tide of sensor and event processing technologies, the smart environment captures and processes information about its surroundings as well as…

  20. Big Sensed Data Meets Deep Learning for Smarter Health Care in Smart Cities

    Directory of Open Access Journals (Sweden)

    Alex Adim Obinikpo

    2017-11-01

    Full Text Available With the advent of the Internet of Things (IoT concept and its integration with the smart city sensing, smart connected health systems have appeared as integral components of the smart city services. Hard sensing-based data acquisition through wearables or invasive probes, coupled with soft sensing-based acquisition such as crowd-sensing results in hidden patterns in the aggregated sensor data. Recent research aims to address this challenge through many hidden perceptron layers in the conventional artificial neural networks, namely by deep learning. In this article, we review deep learning techniques that can be applied to sensed data to improve prediction and decision making in smart health services. Furthermore, we present a comparison and taxonomy of these methodologies based on types of sensors and sensed data. We further provide thorough discussions on the open issues and research challenges in each category.

  1. Crowdsensing in Smart Cities: Overview, Platforms, and Environment Sensing Issues

    Directory of Open Access Journals (Sweden)

    Oscar Alvear

    2018-02-01

    Full Text Available Evidence shows that Smart Cities are starting to materialise in our lives through the gradual introduction of the Internet of Things (IoT paradigm. In this scope, crowdsensing emerges as a powerful solution to address environmental monitoring, allowing to control air pollution levels in crowded urban areas in a distributed, collaborative, inexpensive and accurate manner. However, even though technology is already available, such environmental sensing devices have not yet reached consumers. In this paper, we present an analysis of candidate technologies for crowdsensing architectures, along with the requirements for empowering users with air monitoring capabilities. Specifically, we start by providing an overview of the most relevant IoT architectures and protocols. Then, we present the general design of an off-the-shelf mobile environmental sensor able to cope with air quality monitoring requirements; we explore different hardware options to develop the desired sensing unit using readily available devices, discussing the main technical issues associated with each option, thereby opening new opportunities in terms of environmental monitoring programs.

  2. Crowdsensing in Smart Cities: Overview, Platforms, and Environment Sensing Issues.

    Science.gov (United States)

    Alvear, Oscar; Calafate, Carlos T; Cano, Juan-Carlos; Manzoni, Pietro

    2018-02-04

    Evidence shows that Smart Cities are starting to materialise in our lives through the gradual introduction of the Internet of Things (IoT) paradigm. In this scope, crowdsensing emerges as a powerful solution to address environmental monitoring, allowing to control air pollution levels in crowded urban areas in a distributed, collaborative, inexpensive and accurate manner. However, even though technology is already available, such environmental sensing devices have not yet reached consumers. In this paper, we present an analysis of candidate technologies for crowdsensing architectures, along with the requirements for empowering users with air monitoring capabilities. Specifically, we start by providing an overview of the most relevant IoT architectures and protocols. Then, we present the general design of an off-the-shelf mobile environmental sensor able to cope with air quality monitoring requirements; we explore different hardware options to develop the desired sensing unit using readily available devices, discussing the main technical issues associated with each option, thereby opening new opportunities in terms of environmental monitoring programs.

  3. Power systems signal processing for smart grids

    CERN Document Server

    Ribeiro, Paulo Fernando; Ribeiro, Paulo Márcio; Cerqueira, Augusto Santiago

    2013-01-01

    With special relation to smart grids, this book provides clear and comprehensive explanation of how Digital Signal Processing (DSP) and Computational Intelligence (CI) techniques can be applied to solve problems in the power system. Its unique coverage bridges the gap between DSP, electrical power and energy engineering systems, showing many different techniques applied to typical and expected system conditions with practical power system examples. Surveying all recent advances on DSP for power systems, this book enables engineers and researchers to understand the current state of the art a

  4. [INVITED] Luminescent QR codes for smart labelling and sensing

    Science.gov (United States)

    Ramalho, João F. C. B.; António, L. C. F.; Correia, S. F. H.; Fu, L. S.; Pinho, A. S.; Brites, C. D. S.; Carlos, L. D.; André, P. S.; Ferreira, R. A. S.

    2018-05-01

    QR (Quick Response) codes are two-dimensional barcodes composed of special geometric patterns of black modules in a white square background that can encode different types of information with high density and robustness, correct errors and physical damages, thus keeping the stored information protected. Recently, these codes have gained increased attention as they offer a simple physical tool for quick access to Web sites for advertising and social interaction. Challenges encompass the increase of the storage capacity limit, even though they can store approximately 350 times more information than common barcodes, and encode different types of characters (e.g., numeric, alphanumeric, kanji and kana). In this work, we fabricate luminescent QR codes based on a poly(methyl methacrylate) substrate coated with organic-inorganic hybrid materials doped with trivalent terbium (Tb3+) and europium (Eu3+) ions, demonstrating the increase of storage capacity per unit area by a factor of two by using the colour multiplexing, when compared to conventional QR codes. A novel methodology to decode the multiplexed QR codes is developed based on a colour separation threshold where a decision level is calculated through a maximum-likelihood criteria to minimize the error probability of the demultiplexed modules, maximizing the foreseen total storage capacity. Moreover, the thermal dependence of the emission colour coordinates of the Eu3+/Tb3+-based hybrids enables the simultaneously QR code colour-multiplexing and may be used to sense temperature (reproducibility higher than 93%), opening new fields of applications for QR codes as smart labels for sensing.

  5. Smart Sensing System for the Prognostic Monitoring of Bone Health

    KAUST Repository

    Afsarimanesh, Nasrin; Zia, Asif; Mukhopadhyay, Subhas; Kruger, Marlena; Yu, Pak-Lam; Kosel, Jü rgen; Kovacs, Zoltan

    2016-01-01

    The objective of this paper is to report a novel non-invasive, real-time, and label-free smart assay technique for the prognostic detection of bone loss by electrochemical impedance spectroscopy (EIS). The proposed system incorporated an antibody-antigen-based sensor functionalization to induce selectivity for the C-terminal telopeptide type one collagen (CTx-I) molecules—a bone loss biomarker. Streptavidin agarose was immobilized on the sensing area of a silicon substrate-based planar sensor, patterned with gold interdigital electrodes, to capture the antibody-antigen complex. Calibration experiments were conducted with various known CTx-I concentrations in a buffer solution to obtain a reference curve that was used to quantify the concentration of an analyte in the unknown serum samples. Multivariate chemometric analyses were done to determine the performance viability of the developed system. The analyses suggested that a frequency of 710 Hz is the most discriminating regarding the system sensitivity. A detection limit of 0.147 ng/mL was achieved for the proposed sensor and the corresponding reference curve was linear in the range of 0.147 ng/mL to 2.669 ng/mL. Two sheep blood samples were tested by the developed technique and the results were validated using enzyme-linked immunosorbent assay (ELISA). The results from the proposed technique match those from the ELISA.

  6. Smart Sensing System for the Prognostic Monitoring of Bone Health

    KAUST Repository

    Afsarimanesh, Nasrin

    2016-06-24

    The objective of this paper is to report a novel non-invasive, real-time, and label-free smart assay technique for the prognostic detection of bone loss by electrochemical impedance spectroscopy (EIS). The proposed system incorporated an antibody-antigen-based sensor functionalization to induce selectivity for the C-terminal telopeptide type one collagen (CTx-I) molecules—a bone loss biomarker. Streptavidin agarose was immobilized on the sensing area of a silicon substrate-based planar sensor, patterned with gold interdigital electrodes, to capture the antibody-antigen complex. Calibration experiments were conducted with various known CTx-I concentrations in a buffer solution to obtain a reference curve that was used to quantify the concentration of an analyte in the unknown serum samples. Multivariate chemometric analyses were done to determine the performance viability of the developed system. The analyses suggested that a frequency of 710 Hz is the most discriminating regarding the system sensitivity. A detection limit of 0.147 ng/mL was achieved for the proposed sensor and the corresponding reference curve was linear in the range of 0.147 ng/mL to 2.669 ng/mL. Two sheep blood samples were tested by the developed technique and the results were validated using enzyme-linked immunosorbent assay (ELISA). The results from the proposed technique match those from the ELISA.

  7. Smart Sensing Technology for Agriculture and Environmental Monitoring

    CERN Document Server

    2012-01-01

    The book focuses on the different aspects of sensing technology, i.e. high reliability, adaptability, recalibration, information processing, data fusion, validation and integration of novel and high performance sensors specifically aims to monitor agricultural and environmental parameters.   This book is dedicated to Sensing systems for Agricultural and Environmental Monitoring  offers to variety of users, namely, Master and PhD degree students, researchers, practitioners, especially Agriculture and Environmental engineers. The book will provide an opportunity of a dedicated and a deep approach in order to improve their knowledge in this specific field.

  8. Monitoring the performance of Aux. Feedwater Pump using Smart Sensing Model

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Seong, Poong Hyun [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-10-15

    Many artificial intelligence (AI) techniques equipped with learning systems have recently been proposed to monitor sensors and components in NPPs. Therefore, the objective of this study is the development of an integrity evaluation method for safety critical components such as Aux. feedwater pump, high pressure safety injection (HPSI) pump, etc. using smart sensing models based on AI techniques. In this work, the smart sensing model is developed at first to predict the performance of Aux. feedwater pump by estimating flowrate using group method of data handing (GMDH) method. If the performance prediction is achieved by this feasibility study, the smart sensing model will be applied to development of the integrity evaluation method for safety critical components. Also, the proposed algorithm for the performance prediction is verified by comparison with the simulation data of the MARS code for station blackout (SBO) events. In this study, the smart sensing model for the prediction performance of Aux. feedwater pump has been developed. In order to develop the smart sensing model, the GMDH algorithm is employed. The GMDH algorithm is the way to find a function that can well express a dependent variable from independent variables. This method uses a data structure similar to that of multiple regression models. The proposed GMDH model can accurately predict the performance of Aux.

  9. Monitoring the performance of Aux. Feedwater Pump using Smart Sensing Model

    International Nuclear Information System (INIS)

    No, Young Gyu; Seong, Poong Hyun

    2015-01-01

    Many artificial intelligence (AI) techniques equipped with learning systems have recently been proposed to monitor sensors and components in NPPs. Therefore, the objective of this study is the development of an integrity evaluation method for safety critical components such as Aux. feedwater pump, high pressure safety injection (HPSI) pump, etc. using smart sensing models based on AI techniques. In this work, the smart sensing model is developed at first to predict the performance of Aux. feedwater pump by estimating flowrate using group method of data handing (GMDH) method. If the performance prediction is achieved by this feasibility study, the smart sensing model will be applied to development of the integrity evaluation method for safety critical components. Also, the proposed algorithm for the performance prediction is verified by comparison with the simulation data of the MARS code for station blackout (SBO) events. In this study, the smart sensing model for the prediction performance of Aux. feedwater pump has been developed. In order to develop the smart sensing model, the GMDH algorithm is employed. The GMDH algorithm is the way to find a function that can well express a dependent variable from independent variables. This method uses a data structure similar to that of multiple regression models. The proposed GMDH model can accurately predict the performance of Aux

  10. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

    2017-01-01

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

  11. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications.

    Science.gov (United States)

    Costa, Daniel G; Duran-Faundez, Cristian; Andrade, Daniel C; Rocha-Junior, João B; Peixoto, João Paulo Just

    2018-04-03

    Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter , and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.

  12. TwitterSensing: An Event-Based Approach for Wireless Sensor Networks Optimization Exploiting Social Media in Smart City Applications

    Directory of Open Access Journals (Sweden)

    Daniel G. Costa

    2018-04-01

    Full Text Available Modern cities are subject to periodic or unexpected critical events, which may bring economic losses or even put people in danger. When some monitoring systems based on wireless sensor networks are deployed, sensing and transmission configurations of sensor nodes may be adjusted exploiting the relevance of the considered events, but efficient detection and classification of events of interest may be hard to achieve. In Smart City environments, several people spontaneously post information in social media about some event that is being observed and such information may be mined and processed for detection and classification of critical events. This article proposes an integrated approach to detect and classify events of interest posted in social media, notably in Twitter, and the assignment of sensing priorities to source nodes. By doing so, wireless sensor networks deployed in Smart City scenarios can be optimized for higher efficiency when monitoring areas under the influence of the detected events.

  13. Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support

    Science.gov (United States)

    Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.

    2017-12-01

    The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.

  14. Smart Sensing Technologies for Structural Health Monitoring of Civil Engineering Structures

    OpenAIRE

    M. Sun; W. J. Staszewski; R. N. Swamy

    2010-01-01

    Structural Health Monitoring (SHM) aims to develop automated systems for the continuous monitoring, inspection, and damage detection of structures with minimum labour involvement. The first step to set up a SHM system is to incorporate a level of structural sensing capability that is reliable and possesses long term stability. Smart sensing technologies including the applications of fibre optic sensors, piezoelectric sensors, magnetostrictive sensors and self-diagnosing fibre reinforced compo...

  15. Crack identification for reinforced concrete using PZT based smart rebar active sensing diagnostic network

    Science.gov (United States)

    Song, N. N.; Wu, F.

    2016-04-01

    An active sensing diagnostic system using PZT based smart rebar for SHM of RC structure has been currently under investigation. Previous test results showed that the system could detect the de-bond of concrete from reinforcement, and the diagnostic signals were increased exponentially with the de-bonding size. Previous study also showed that the smart rebar could function well like regular reinforcement to undertake tension stresses. In this study, a smart rebar network has been used to detect the crack damage of concrete based on guided waves. Experimental test has been carried out for the study. In the test, concrete beams with 2 reinforcements have been built. 8 sets of PZT elements were mounted onto the reinforcement bars in an optimized way to form an active sensing diagnostic system. A 90 kHz 5-cycle Hanning-windowed tone burst was used as input. Multiple cracks have been generated on the concrete structures. Through the guided bulk waves propagating in the structures from actuators and sensors mounted from different bars, crack damage could be detected clearly. Cases for both single and multiple cracks were tested. Different crack depths from the surface and different crack numbers have been studied. Test result shows that the amplitude of sensor output signals is deceased linearly with a propagating crack, and is decreased exponentially with increased crack numbers. From the study, the active sensing diagnostic system using PZT based smart rebar network shows a promising way to provide concrete crack damage information through the "talk" among sensors.

  16. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities

    Science.gov (United States)

    Sagl, Günther; Resch, Bernd; Blaschke, Thomas

    2015-01-01

    In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today’s technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different

  17. Contextual Sensing: Integrating Contextual Information with Human and Technical Geo-Sensor Information for Smart Cities.

    Science.gov (United States)

    Sagl, Günther; Resch, Bernd; Blaschke, Thomas

    2015-07-14

    In this article we critically discuss the challenge of integrating contextual information, in particular spatiotemporal contextual information, with human and technical sensor information, which we approach from a geospatial perspective. We start by highlighting the significance of context in general and spatiotemporal context in particular and introduce a smart city model of interactions between humans, the environment, and technology, with context at the common interface. We then focus on both the intentional and the unintentional sensing capabilities of today's technologies and discuss current technological trends that we consider have the ability to enrich human and technical geo-sensor information with contextual detail. The different types of sensors used to collect contextual information are analyzed and sorted into three groups on the basis of names considering frequently used related terms, and characteristic contextual parameters. These three groups, namely technical in situ sensors, technical remote sensors, and human sensors are analyzed and linked to three dimensions involved in sensing (data generation, geographic phenomena, and type of sensing). In contrast to other scientific publications, we found a large number of technologies and applications using in situ and mobile technical sensors within the context of smart cities, and surprisingly limited use of remote sensing approaches. In this article we further provide a critical discussion of possible impacts and influences of both technical and human sensing approaches on society, pointing out that a larger number of sensors, increased fusion of information, and the use of standardized data formats and interfaces will not necessarily result in any improvement in the quality of life of the citizens of a smart city. This article seeks to improve our understanding of technical and human geo-sensing capabilities, and to demonstrate that the use of such sensors can facilitate the integration of different

  18. Stretchable Triboelectric-Photonic Smart Skin for Tactile and Gesture Sensing.

    Science.gov (United States)

    Bu, Tianzhao; Xiao, Tianxiao; Yang, Zhiwei; Liu, Guoxu; Fu, Xianpeng; Nie, Jinhui; Guo, Tong; Pang, Yaokun; Zhao, Junqing; Xi, Fengben; Zhang, Chi; Wang, Zhong Lin

    2018-04-01

    Smart skin is expected to be stretchable and tactile for bionic robots as the medium with the ambient environment. Here, a stretchable triboelectric-photonic smart skin (STPS) is reported that enables multidimensional tactile and gesture sensing for a robotic hand. With a grating-structured metal film as the bioinspired skin stripe, the STPS exhibits a tunable aggregation-induced emission in a lateral tensile range of 0-160%. Moreover, the STPS can be used as a triboelectric nanogenerator for vertical pressure sensing with a maximum sensitivity of 34 mV Pa -1 . The pressure sensing characteristics can remain stable in different stretching conditions, which demonstrates a synchronous and independent sensing property for external stimuli with great durability. By integrating on a robotic hand as a conformal covering, the STPS shows multidimensional mechanical sensing abilities for external touch and different gestures with joints bending. This work has first demonstrated a triboelectric-photonic coupled multifunctional sensing terminal, which may have great applications in human-machine interaction, soft robots, and artificial intelligence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Developing upconversion nanoparticle-based smart substrates for remote temperature sensing

    Science.gov (United States)

    Coker, Zachary; Marble, Kassie; Alkahtani, Masfer; Hemmer, Philip; Yakovlev, Vladislav V.

    2018-02-01

    Recent developments in understanding of nanomaterial behaviors and synthesis have led to their application across a wide range of commercial and scientific applications. Recent investigations span from applications in nanomedicine and the development of novel drug delivery systems to nanoelectronics and biosensors. In this study, we propose the application of a newly engineered temperature sensitive water-based bio-compatible core/shell up-conversion nanoparticle (UCNP) in the development of a smart substrate for remote temperature sensing. We developed this smart substrate by dispersing functionalized nanoparticles into a polymer solution and then spin-coating the solution onto one side of a microscope slide to form a thin film substrate layer of evenly dispersed nanoparticles. By using spin-coating to deposit the particle solution we both create a uniform surface for the substrate while simultaneously avoid undesired particle agglomeration. Through this investigation, we have determined the sensitivity and capabilities of this smart substrate and conclude that further development can lead to a greater range of applications for this type smart substrate and use in remote temperature sensing in conjunction with other microscopy and spectroscopy investigations.

  20. Fundamental Theories and Key Technologies for Smart and Optimal Manufacturing in the Process Industry

    Directory of Open Access Journals (Sweden)

    Feng Qian

    2017-04-01

    Full Text Available Given the significant requirements for transforming and promoting the process industry, we present the major limitations of current petrochemical enterprises, including limitations in decision-making, production operation, efficiency and security, information integration, and so forth. To promote a vision of the process industry with efficient, green, and smart production, modern information technology should be utilized throughout the entire optimization process for production, management, and marketing. To focus on smart equipment in manufacturing processes, as well as on the adaptive intelligent optimization of the manufacturing process, operating mode, and supply chain management, we put forward several key scientific problems in engineering in a demand-driven and application-oriented manner, namely: ① intelligent sensing and integration of all process information, including production and management information; ② collaborative decision-making in the supply chain, industry chain, and value chain, driven by knowledge; ③ cooperative control and optimization of plant-wide production processes via human-cyber-physical interaction; and ④ life-cycle assessments for safety and environmental footprint monitoring, in addition to tracing analysis and risk control. In order to solve these limitations and core scientific problems, we further present fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Although this paper discusses the process industry in China, the conclusions in this paper can be extended to the process industry around the world.

  1. Smart textiles for tactile sensing and energy storage

    Science.gov (United States)

    Gorgutsa, Stepan

    During my master's I have mainly worked on two subjects in the research area of electroactive smart textiles. My first project involved building a touch sensitive textile pad using original home-made all-polymer soft capacitor fibers. The capacitor fibers featuring relatively high capacitance and resistance were fabricated using fiber drawing technique. For the ease of connectorization, a thin copper wire was integrated into the fiber core during drawing procedure. Soft-capacitor fibers have a typical capacitance per unit length of 69 nF/m, and a typical resistivity parameter of 5 kΩ·m. Our measurements and theoretical modeling show that the fiber capacitance is a very stable, geometry defined parameter independent of the fiber diameter, and fiber fabrication parameters. In contrast, fiber resistivity has a very strong positive temperature coefficient, it is highly sensitive to stretching, and it is strongly dependent on the fiber drawing parameters. Next, an individual capacitor fiber was demonstrated to act as a slide sensor that allows determining the touch position along its length by measuring the fiber AC response at a single point at the fiber surface. Electrical response of such a sensor was described by the RC ladder model, with the modelling data in excellent agreement with experimental observations. Developed capacitor fibers are soft, small diameter, lightweight and do not use liquid electrolytes, thus they are ideally suited for the integration into textile products. At the end of the chapter, we have demonstrated that by weaving a one dimensional array of capacitor fibers (in parallel to each other) a fully woven 2D touchpad sensor could be build. Performance of a touchpad sensor was then characterised and the absence of the inter-channel crosstalk was confirmed. We also note that a 2D touchpad has a partial multi-touch functionality. My second project involved assembly of flexible and stretchable Li-ion batteries, their integration into a textile

  2. Smart bricks for strain sensing and crack detection in masonry structures

    Science.gov (United States)

    Downey, Austin; D'Alessandro, Antonella; Laflamme, Simon; Ubertini, Filippo

    2018-01-01

    The paper proposes the novel concept of smart bricks as a durable sensing solution for structural health monitoring of masonry structures. The term smart bricks denotes piezoresistive clay bricks with suitable electronics capable of outputting measurable changes in their electrical properties under changes in their state of strain. This feature can be exploited to evaluate stress at critical locations inside a masonry wall and to detect changes in loading paths associated with structural damage, for instance following an earthquake. Results from an experimental campaign show that normal clay bricks, fabricated in the laboratory with embedded electrodes made of a special steel for resisting the high baking temperature, exhibit a quite linear and repeatable piezoresistive behavior. That is a change in electrical resistance proportional to a change in axial strain. In order to be able to exploit this feature for strain sensing, high-resolution electronics are used with a biphasic DC measurement approach to eliminate any resistance drift due to material polarization. Then, an enhanced nanocomposite smart brick is proposed, where titania is mixed with clay before baking, in order to enhance the brick’s mechanical properties, improve its noise rejection, and increase its electrical conductivity. Titania was selected among other possible conductive nanofillers due to its resistance to high temperatures and its ability to improve the durability of construction materials while maintaining the aesthetic appearance of clay bricks. An application of smart bricks for crack detection in masonry walls is demonstrated by laboratory testing of a small-scale wall specimen under different loading conditions and controlled damage. Overall, it is demonstrated that a few strategically placed smart bricks enable monitoring of the state of strain within the wall and provide information that is capable of crack detection.

  3. SMART-1 highlights and relevant studies on early bombardment and geological processes on rocky planets

    International Nuclear Information System (INIS)

    Foing, B H; Koschny, D; Frew, D; Almeida, M; Zender, J; Heather, D; Peters, S; Racca, G D; Marini, A; Stagnaro, L; Josset, J L; Beauvivre, S; Grande, M; Kellett, B; Huovelin, J; Nathues, A; Mall, U; Ehrenfreund, P; McCannon, P

    2008-01-01

    We present results from SMART-1 science and technology payload, in the context of the Nobel symposium on 'Physics of Planetary Systems'. SMART-1 is Europe' first lunar mission (Foing et al 2000 LPSC XXXI Abstract 1677 (CDROM); Foing et al 2001 Earth, Moon Planets 85-86 523-31; Marini et al 2002 Adv. Space Res. 30 1895-900; Racca et al 2001 Earth Moon Planets 85-86 379-95, Racca et al 2002 Planet Space Sci. 50 1323-37) demonstrating technologies for future science and exploration missions, and providing advances in our understanding of lunar origin and evolution, and general planetary questions. The mission also contributes a step in developing an international program of lunar exploration. The spacecraft, launched on 27 September 2003 as an Ariane 5 Auxiliary passenger to geostationary transfer orbit (GTO), performed a 14-month long cruise using a tiny thrust of electric propulsion alone, reached lunar capture in November 2004, and lunar science orbit in March 2005. SMART-1 carried 7 hardware experiments (Foing et al 2003 Adv. Space Res. 31 2323, Foing et al 2005 LPI/LPSC XXXVI 2404 (CDROM)) performing 10 investigations, including 3 remote-sensing instruments, used during the cruise, the mission' nominal six-months and one-year extension in lunar science orbit. Three remote sensing instruments, D-CIXS, SIR and AMIE, have returned data that are relevant to a broad range of lunar studies. The mission provided regional and global x-ray measurements of the Moon, global high-spectral resolution NIR spectrometry, high spatial resolution colour imaging of selected regions. The South Pole-Aitken Basin (SPA) and other impact basins have been prime targets for studies using the SMART-1 suite of instruments. Combined, these should aid a large number of science studies, from bulk crustal composition and theories of lunar origin/evolution, the global and local crustal composition, to the search for cold traps at the lunar poles and the mapping of potential lunar resources. We

  4. Inferential smart sensing for feedwater flowrate in PWRs

    International Nuclear Information System (INIS)

    Na, M. G.; Hwang, I. J.; Lee, Y. J.

    2006-01-01

    The feedwater flowrate that is measured by Venturi flow meters in most pressurized water reactors can be over-measured because of the fouling phenomena that make corrosion products accumulate in the Venturi meters. Therefore, in this work, two kinds of methods, a support vector regression method and a fuzzy modeling method, combined with a sequential probability ratio test, are used in order to accurately estimate online the feedwater flowrate, and also to monitor the status of the existing hardware sensors. Also, the data for training the support vector machines and the fuzzy model are selected by using a subtractive clustering scheme to use informative data from among all acquired data. The proposed inferential sensing and monitoring algorithm is verified by using the acquired real plant data of Yonggwang Nuclear Power Plant Unit 3. In the simulations, it was known that the root mean squared error and the relative maximum error are so small and the proposed method early detects the degradation of an existing hardware sensor. (authors)

  5. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid

    Directory of Open Access Journals (Sweden)

    Bat-erdene Byambasuren

    2016-02-01

    Full Text Available Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  6. Inspection Robot Based Mobile Sensing and Power Line Tracking for Smart Grid.

    Science.gov (United States)

    Byambasuren, Bat-Erdene; Kim, Donghan; Oyun-Erdene, Mandakh; Bold, Chinguun; Yura, Jargalbaatar

    2016-02-19

    Smart sensing and power line tracking is very important in a smart grid system. Illegal electricity usage can be detected by remote current measurement on overhead power lines using an inspection robot. There is a need for accurate detection methods of illegal electricity usage. Stable and correct power line tracking is a very prominent issue. In order to correctly track and make accurate measurements, the swing path of a power line should be previously fitted and predicted by a mathematical function using an inspection robot. After this, the remote inspection robot can follow the power line and measure the current. This paper presents a new power line tracking method using parabolic and circle fitting algorithms for illegal electricity detection. We demonstrate the effectiveness of the proposed tracking method by simulation and experimental results.

  7. Sense, decide, act, communicate (SDAC): next generation of smart sensor systems

    Science.gov (United States)

    Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian

    2004-09-01

    The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.

  8. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  9. Multidimensional Signal Processing for Sensing & Communications

    Science.gov (United States)

    2015-07-29

    Spectrum Sensing,” submitted to IEEE Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico , 13-16 Dec. 2015...Sensing,” submitted to IEEE Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Cancun, Mexico , 13-16 Dec. 2015...diversity in echolocating mammals ,” IEEE Signal Processing Magazine, vol. 26, no. 1, pp. 65- 75, Jan. 2009. DISTRIBUTION A: Distribution approved for

  10. Sensing the gas metal arc welding process

    Science.gov (United States)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  11. Smart Soft-Sensing for the Feedwater Flowrate at PWRs Using a GMDH Algorithm

    Science.gov (United States)

    Lim, Dong Hyuk; Lee, Sung Han; Na, Man Gyun

    2010-02-01

    The thermal reactor power in pressurized water reactors (PWRs) is typically assessed using secondary system calorimetric calculations based on accurate measurements of the feedwater flowrate. Therefore, precise measurements of the feedwater flowrate are essential. In most PWRs, Venturi meters are used to measure the feedwater flowrate. However, the fouling phenomena of the Venturi meter deteriorate the accuracy of the existing hardware sensors. Consequently, it is essential to resolve the inaccurate measurements of the feedwater flowrate. In this study, in order to estimate the feedwater flowrate online with high precision, a smart soft sensing model for monitoring the feedwater flowrate was developed using a group method of data handling (GMDH) algorithm combined with a sequential probability ratio test (SPRT). The uncertainty of the GMDH model was also analyzed. The proposed sensing and monitoring algorithm was verified using the acquired real plant data from Yonggwang Nuclear Power Plant Unit 3.

  12. Signal processing and control challenges for smart vehicles

    Science.gov (United States)

    Zhang, Hui; Braun, Simon G.

    2017-03-01

    Smart phones have changed not only the mobile phone market but also our society during the past few years. Could the next potential intelligent device may be the vehicle? Judging by the visibility, in all media, of the numerous attempts to develop autonomous vehicles, this is certainly one of the logical outcomes. Smart vehicles would be equipped with an advanced operating system such that the vehicles could communicate with others, optimize the operation to reduce fuel consumption and emissions, enhance safety, or even become self-driving. These combined new features of vehicles require instrumentation and hardware developments, fast signal processing/fusion, decision making and online optimization. Meanwhile, the inevitable increasing system complexity would certainly challenges the control unit design.

  13. Smart Secure Homes: A Survey of Smart Home Technologies that Sense, Assess, and Respond to Security Threats.

    Science.gov (United States)

    Dahmen, Jessamyn; Cook, Diane J; Wang, Xiaobo; Honglei, Wang

    2017-08-01

    Smart home design has undergone a metamorphosis in recent years. The field has evolved from designing theoretical smart home frameworks and performing scripted tasks in laboratories. Instead, we now find robust smart home technologies that are commonly used by large segments of the population in a variety of settings. Recent smart home applications are focused on activity recognition, health monitoring, and automation. In this paper, we take a look at another important role for smart homes: security. We first explore the numerous ways smart homes can and do provide protection for their residents. Next, we provide a comparative analysis of the alternative tools and research that has been developed for this purpose. We investigate not only existing commercial products that have been introduced but also discuss the numerous research that has been focused on detecting and identifying potential threats. Finally, we close with open challenges and ideas for future research that will keep individuals secure and healthy while in their own homes.

  14. A Smart Washer for Bolt Looseness Monitoring Based on Piezoelectric Active Sensing Method

    Directory of Open Access Journals (Sweden)

    Heyue Yin

    2016-10-01

    Full Text Available Piezoceramic based active sensing methods have been researched to monitor preload on bolt connections. However, there is a saturation problem involved with this type of method. The transmitted energy is sometimes saturated before the maximum preload which is due to it coming into contact with flat surfaces. When it comes to flat contact surfaces, the true contact area will easily saturate with the preload. The design of a new type of bolt looseness monitoring sensor, a smart washer, is to mitigate the saturation problem. The smart washer is composed of two annular disks with contact surfaces that are machined into convex and concave respectively, to eliminate the complete flat contact surfaces and to reduce the saturation effect. One piezoelectric patch is bonded on the non-contact surface of each annular disk. These two mating annular disks form a smart washer. One of the two piezoelectric patches serves as an actuator to generate an ultrasonic wave that propagates through the contact surface; the other one serves as a sensor to detect the propagated waves. The wave energy propagated through the contact surface is proportional to the true contact area which is determined by the bolt preload. The time reversal method is used to extract the peak of the focused signal as the index of the transmission wave energy; then, the relationship between the signal peak and bolt preload is obtained. Experimental results show that the focused signal peak value changes with the bolt preload and presents an approximate linear relationship when the saturation problem is experienced. The proposed smart washer can monitor the full range of the rated preload.

  15. SmartAQnet: remote and in-situ sensing of urban air quality

    Science.gov (United States)

    Budde, Matthias; Riedel, Till; Beigl, Michael; Schäfer, Klaus; Emeis, Stefan; Cyrys, Josef; Schnelle-Kreis, Jürgen; Philipp, Andreas; Ziegler, Volker; Grimm, Hans; Gratza, Thomas

    2017-10-01

    Air quality and the associated subjective and health-related quality of life are among the important topics of urban life in our time. However, it is very difficult for many cities to take measures to accommodate today's needs concerning e.g. mobility, housing and work, because a consistent fine-granular data and information on causal chains is largely missing. This has the potential to change, as today, both large-scale basic data as well as new promising measuring approaches are becoming available. The project "SmartAQnet", funded by the German Federal Ministry of Transport and Digital Infrastructure (BMVI), is based on a pragmatic, data driven approach, which for the first time combines existing data sets with a networked mobile measurement strategy in the urban space. By connecting open data, such as weather data or development plans, remote sensing of influencing factors, and new mobile measurement approaches, such as participatory sensing with low-cost sensor technology, "scientific scouts" (autonomous, mobile smart dust measurement device that is auto-calibrated to a high-quality reference instrument within an intelligent monitoring network) and demand-oriented measurements by light-weight UAVs, a novel measuring and analysis concept is created within the model region of Augsburg, Germany. In addition to novel analytics, a prototypical technology stack is planned which, through modern analytics methods and Big Data and IoT technologies, enables application in a scalable way.

  16. Point cloud processing for smart systems

    Directory of Open Access Journals (Sweden)

    Jaromír Landa

    2013-01-01

    Full Text Available High population as well as the economical tension emphasises the necessity of effective city management – from land use planning to urban green maintenance. The management effectiveness is based on precise knowledge of the city environment. Point clouds generated by mobile and terrestrial laser scanners provide precise data about objects in the scanner vicinity. From these data pieces the state of the roads, buildings, trees and other objects important for this decision-making process can be obtained. Generally, they can support the idea of “smart” or at least “smarter” cities.Unfortunately the point clouds do not provide this type of information automatically. It has to be extracted. This extraction is done by expert personnel or by object recognition software. As the point clouds can represent large areas (streets or even cities, usage of expert personnel to identify the required objects can be very time-consuming, therefore cost ineffective. Object recognition software allows us to detect and identify required objects semi-automatically or automatically.The first part of the article reviews and analyses the state of current art point cloud object recognition techniques. The following part presents common formats used for point cloud storage and frequently used software tools for point cloud processing. Further, a method for extraction of geospatial information about detected objects is proposed. Therefore, the method can be used not only to recognize the existence and shape of certain objects, but also to retrieve their geospatial properties. These objects can be later directly used in various GIS systems for further analyses.

  17. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  18. Solution-Processed Smart Window Platforms Based on Plasmonic Electrochromics

    KAUST Repository

    Abbas, Sara

    2018-04-30

    Electrochromic smart windows offer a viable route to reducing the consumption of buildings energy, which represents about 30% of the worldwide energy consumption. Smart windows are far more compelling than current static windows in that they can dynamically modulate the solar spectrum depending on climate and lighting conditions or simply to meet personal preferences. The latest generation of smart windows relies on nominally transparent metal oxide nanocrystal materials whose chromism can be electrochemically controlled using the plasmonic effect. Plasmonic electrochromic materials selectively control the near infrared (NIR) region of the solar spectrum, responsible for solar heat, without affecting the visible transparency. This is in contrast to conventional electrochromic materials which block both the visible and NIR and thus enables electrochromic devices to reduce the energy consumption of a building or a greenhouse in warm climate regions due to enhancements of both visible lighting and heat blocking. Despite this edge, this technology can benefit from important developments, including low-cost solution-based manufacturing on flexible substrates while maintaining durability and coloration efficiency, demonstration of independent control in the NIR and visible spectra, and demonstration of self-powering capabilities. This thesis is focused on developing low-temperature and all-solution processed plasmonic electrochromic devices and dual-band electrochromic devices. We demonstrate new device fabrication approaches in terms of materials and processes which enhance electrochromic performance all the while maintaining low processing temperatures. Scalable fabrication methods are used to highlight compatibility with high throughput, continuous roll-to-roll fabrication on flexible substrates. In addition, a dualband plasmonic electrochromic device was developed by combining the plasmonic layer with a conventional electrochromic ion storage layer. This enables

  19. Multifunctional fluorescent sensing of chemical and physical stimuli using smart riboflavin-5'-phosphate/Eu3+ coordination polymers.

    Science.gov (United States)

    Xue, Shi-Fan; Zhang, Jing-Fei; Chen, Zi-Han; Han, Xin-Yue; Zhang, Min; Shi, Guoyue

    2018-07-05

    A novel type of stimuli-responsive fluorescent polymers has been developed via the self-assembly of riboflavin-5'-phosphate (RiP) as ligand and europium (III) (Eu 3+ ) as central metal ion coordinated with the ligand. The as-prepared RiP/Eu 3+ coordination polymers (RiP/Eu 3+ CPs) are smart and multifunctional for respectively responding to chemical and physical stimuli, in which RiP acts as the stimuli-responsive fluorescent signal indicator. For sensing chemical stimuli, 2,6-pyridinedicarboxylic acid (DPA, an anthrax biomarker) having higher bonding force towards Eu 3+ can grab it from smart RiP/Eu 3+ CPs through competition reaction, resulting in the release of RiP for highly sensitive and selective DPA monitoring in a mix-and-read fluorescent enhancement format, and the detection limit is as low as 41.5 nM. Density functional theory (DFT) calculations has been also performed to verify the DPA sensing principle. For sensing physical stimuli, the smart RiP/Eu 3+ CPs can be acting as a novel sensory probe for the determination of temperature from 10 °C to 40 °C based on the thermal-induced disruption of the binding between Eu 3+ and RiP and the disassembly of the smart RiP/Eu 3+ CPs accompanying with the recovery of the fluorescence of RiP. This work establishes an effective platform for multifunctional sensing of chemical and physical stimuli utilizing both smart lanthanide nanoscale coordination polymers (LNCPs) and novel sensing strategies. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Novel Pressure-Sensing Smart Insole System Used for the Prevention of Pressure Ulceration in the Insensate Foot

    Directory of Open Access Journals (Sweden)

    Allyson R. Alfonso, BS, BA

    2017-12-01

    Full Text Available Summary:. Wounds of the foot challenge reconstructive surgeons to manage multiple factors: sensibility, stability, and durability. In this article, we focus on the insensate foot, which poses challenges to wound prevention with its propensity to develop pressure ulceration. The authors present the innovative use of a pressure-sensing smart insole system (SurroSense Rx, Orpyx Medical Technologies Inc., Calgary, Canada in the management of the insensate foot in a patient following foot reconstruction. The pressure-sensing smart insole system provided unique feedback to both patient and provider in ways that contributed to the prevention of pressure ulcer recurrence, as well as highlight the importance of prescribed footwear in both the affected and unaffected foot. Wearable real-time monitoring and feedback faces the challenge of patient adherence. Future studies are indicated to examine the specific behaviors that are associated with favorable outcomes and long-term behavior changes.

  1. Smart signal processing for an evolving electric grid

    Science.gov (United States)

    Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.

    2015-12-01

    Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.

  2. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications.

    Science.gov (United States)

    Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-05

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.

  3. Semantic Approach to Smart Home Data Aggregation Multi-sensor Data Processing for Smart Environments

    Directory of Open Access Journals (Sweden)

    Fano Ramparany

    2016-04-01

    Full Text Available One salient feature of data produced by the IoT is its heterogeneity. Despite this heterogeneity, future IoT applications including Smart Home, Smart City, Smart Energy services, will require that all data be easily compared, correlated and merged, and that interpretation of this resulting aggregate into higher level context better matches people needs and requirements. In this paper we propose a framework based on semantic technologies for aggregating IoT data. Our approach has been assessed in the domain of the Smart Home with real data provided by Orange Homelive solution. We show that our approach enables simple reasoning mechanisms to be conducted on the aggregated data, so that contexts such as the presence, activities of people as well as abnormal situations requiring corrective actions, be inferred.

  4. Design of a High Performance Green-Mode PWM Controller IC with Smart Sensing Protection Circuits

    Directory of Open Access Journals (Sweden)

    Shen-Li Chen

    2014-08-01

    Full Text Available A design of high performance green-mode pulse-width-modulation (PWM controller IC with smart sensing protection circuits for the application of lithium-ion battery charger (1.52 V ~ 7.5 V is investigated in this paper. The protection circuits architecture of this system mainly bases on the lithium battery function and does for the system design standard of control circuit. In this work, the PWM controller will be with an automatic load sensing and judges the system operated in the operating mode or in the standby mode. Therefore, it reduces system’s power dissipation effectively and achieves the saving power target. In the same time, many protection sensing circuits such as: (1 over current protection (OCP and under current protection (UCP, (2 over voltage protection (OVP and under voltage protection (UVP, (3 loading determintion and short circuit protection (SCP, (4 over temperature protection (OTP, (5 VDD surge-spiking protection are included. Then, it has the characteristics of an effective monitoring the output loading and the harm prevention as a battery charging. Eventually, this green-mode pulse-width-modulation (PWM controller IC will be that the operation voltage is 3.3 V, the operation frequency is 0.98 MHz, and the output current range is from 454 mA to 500 mA. Meanwhile, the output convert efficiency is range from 74.8 % to 91 %, the power dissipation efficiency in green-mode is 25 %, and the operation temperature range is between -20 0C ~ 114 0C.

  5. Processing models for conflicting user requests in ubiquitous corporate smart spaces

    Directory of Open Access Journals (Sweden)

    Levonevskiy Dmitriy

    2018-01-01

    Full Text Available This paper considers processing of conflicting user requests in ubiquitous corporate smart spaces. The formulated problem consists in the contradiction between the limitation of available smart space resources to perform the conflicting user requests and necessity to provide the proper quality of service in corporate smart spaces. The principles of constructing the simulation model are described. The experiments were carried out basing on a model of the SPIIRAS digital signage service. Several task management strategies are discussed, an assessment of their effectiveness is given. The research is aimed at improving the quality of service and user experience in human-computer interaction within the corporate smart spaces.

  6. Development of integrated control system for smart factory in the injection molding process

    Science.gov (United States)

    Chung, M. J.; Kim, C. Y.

    2018-03-01

    In this study, we proposed integrated control system for automation of injection molding process required for construction of smart factory. The injection molding process consists of heating, tool close, injection, cooling, tool open, and take-out. Take-out robot controller, image processing module, and process data acquisition interface module are developed and assembled to integrated control system. By adoption of integrated control system, the injection molding process can be simplified and the cost for construction of smart factory can be inexpensive.

  7. SmartHome: a domotic framework based on smart sensing and actuator network to reduce energy wastes

    Science.gov (United States)

    Santamaria, Amilcare Francesco; De Rango, Floriano; Falbo, Domenico; Barletta, Domenico

    2014-05-01

    Domestic environment and human interaction with services supplied by domotic devices is going to be a very interesting application field. With a domotic system is possible to achieve great interaction between human beings, environments and smart devices. The enhancing of these interactions is the main goal of this work whose intent is to improve the classic concept of domotics. The framework we developed can be used for several application fields such as lighting, heating, conditioning or water management and energy consumption. In particular, the proposed system can optimize energy consumptions by rising awareness to users that have full control of their house and the possibility to save money and reduce the impact of the energetic consumes to the earth, matching the new "green" motto requirements. In this way, the overall system wants to match the central concept of Internet Of Things (IoT) as well. From this point of view a complex automation system with smart devices make possible a more efficient way to produce, follow and manage domotic policies. Following the spread of IoT, for this work we designed and implemented new plug-and-play and ready-to-use smart devices that are part of a complex automation system that offers a user-friendly web application and allows users to control and interact with different plans of their house in order to make life more comfortable and be aware of their energy consumptions. Control and awareness arc the two key points that led us to develop the proposed system.

  8. A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography.

    Science.gov (United States)

    Visentin, Francesco; Fiorini, Paolo; Suzuki, Kenji

    2016-11-16

    In this paper, we present a low-cost, adaptable, and flexible pressure sensor that can be applied as a smart skin over both stiff and deformable media. The sensor can be easily adapted for use in applications related to the fields of robotics, rehabilitation, or costumer electronic devices. In order to remove most of the stiff components that block the flexibility of the sensor, we based the sensing capability on the use of a tomographic technique known as Electrical Impedance Tomography. The technique allows the internal structure of the domain under study to be inferred by reconstructing its conductivity map. By applying the technique to a material that changes its resistivity according to applied forces, it is possible to identify these changes and then localise the area where the force was applied. We tested the system when applied to flat and curved surfaces. For all configurations, we evaluate the artificial skin capabilities to detect forces applied over a single point, over multiple points, and changes in the underlying geometry. The results are all promising, and open the way for the application of such sensors in different robotic contexts where deformability is the key point.

  9. Network control stations in the smart grid. Process and information knots for business intelligence applications; Netzleitstellen im Smart Grid. Prozess- und Informationsknoten fuer Business Intelligence Applikationen

    Energy Technology Data Exchange (ETDEWEB)

    Kautsch, Stephan; Kroll, Meinhard [ABB AG, Mannheim (Germany); Schoellhorn, Daniel [EnBW Regional AG, Stuttgart (Germany)

    2012-07-01

    The degree of automation in the distribution will increase, whereas a more extensive monitoring is possible. Smart metering in the local network station replaces the drag pointers. This allows the pre-determined load flows to be precise and it can be determined and valuable data can be collected about how resources, for example the transformers in the secondary substations, are actually utilized. The amount of information available is increasing steadily, not least because of the increasing expansion of smart meters, that also provide valuable information for the operation of the distribution networks. This ''flood'' of data that is processed by the system, filtered, and analyzed must be prepared for the user in order to make sense, but can also be used to support and optimize many business processes. Although these tasks mentioned are usually not yet allocated within the grid operator organization, they offer themselves to be placed close to the network control centers as they propose new challenges but also opportunities. (orig.)

  10. Distributed Aerodynamic Sensing and Processing Toolbox

    Science.gov (United States)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun

    2011-01-01

    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  11. Real-Time Smart Tools for Processing Spectroscopy Data, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose novel and real-time smart software tools to process spectroscopy data. Material abundance or compositional maps will be generated for rover guidance,...

  12. Smart Sensing System for Early Detection of Bone Loss: Current Status and Future Possibilities

    Directory of Open Access Journals (Sweden)

    Nasrin Afsarimanesh

    2018-02-01

    Full Text Available Bone loss and osteoporosis is a serious health problem worldwide. The impact of osteoporosis is far greater than many other serious health problems, such as breast and prostate cancers. Statistically, one in three women and one in five men over 50 years of age will experience osteoporotic fractures in their life. In this paper, the design and development of a portable IoT-based sensing system for early detection of bone loss have been presented. The CTx-I biomarker was measured in serum samples as a marker of bone resorption. A planar interdigital sensor was used to evaluate the changes in impedance by any variation in the level of CTx-I. Artificial antibodies were used to introduce selectivity to the sensor for CTx-I molecule. Artificial antibodies for CTx-I molecules were created using molecular imprinted polymer (MIP technique in order to increase the stability of the system and reduce the production cost and complexity of the assay procedure. Real serum samples collected from sheep blood were tested and the result validation was done by using an ELISA kit. The PoC device was able to detect CTx-I concentration as low as 0.09 ng/mL. It exhibited an excellent linear behavior in the range of 0.1–2.5 ng/mL, which covers the normal reference ranges required for bone loss detection. Future possibilities to develop a smart toilet for simultaneous measurement of different bone turnover biomarkers was also discussed.

  13. Development of a standardized, citywide process for managing smart-pump drug libraries.

    Science.gov (United States)

    Walroth, Todd A; Smallwood, Shannon; Arthur, Karen; Vance, Betsy; Washington, Alana; Staublin, Therese; Haslar, Tammy; Reddan, Jennifer G; Fuller, James

    2018-06-15

    Development and implementation of an interprofessional consensus-driven process for review and optimization of smart-pump drug libraries and dosing limits are described. The Indianapolis Coalition for Patient Safety (ICPS), which represents 6 Indianapolis-area health systems, identified an opportunity to reduce clinically insignificant alerts that smart infusion pumps present to end users. Through a consensus-driven process, ICPS aimed to identify best practices to implement at individual hospitals in order to establish specific action items for smart-pump drug library optimization. A work group of pharmacists, nurses, and industrial engineers met to evaluate variability within and lack of scrutiny of smart-pump drug libraries. The work group used Lean Six Sigma methodologies to generate a list of key needs and barriers to be addressed in process standardization. The group reviewed targets for smart-pump drug library optimization, including dosing limits, types of alerts reviewed, policies, and safety best practices. The work group also analyzed existing processes at each site to develop a final consensus statement outlining a model process for reviewing alerts and managing smart-pump data. Analysis of the total number of alerts per device across ICPS-affiliated health systems over a 4-year period indicated a 50% decrease (from 7.2 to 3.6 alerts per device per month) after implementation of the model by ICPS member organizations. Through implementation of a standardized, consensus-driven process for smart-pump drug library optimization, ICPS member health systems reduced clinically insignificant smart-pump alerts. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  14. Necessary and Sufficient Process leading to Work Smart Standards. Final report

    International Nuclear Information System (INIS)

    1996-11-01

    The Necessary and Sufficient Process leading to Work Smart Standards is a Department of Energy initiative to assure adequate protection for workers, the public, and the environment. The Work Smart Standards initiative directs the Laboratory to develop a set of ES and H standards based on the work performed at the Laboratory and the hazards associated with the work. Berkeley Lab's set of Work Smart Standards includes required Federal, State and local laws and, additionally, national and international standards which represent the highest operating standards of industrial and commercial institutions

  15. Necessary and Sufficient Process leading to Work Smart Standards. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The Necessary and Sufficient Process leading to Work Smart Standards is a Department of Energy initiative to assure adequate protection for workers, the public, and the environment. The Work Smart Standards initiative directs the Laboratory to develop a set of ES and H standards based on the work performed at the Laboratory and the hazards associated with the work. Berkeley Lab`s set of Work Smart Standards includes required Federal, State and local laws and, additionally, national and international standards which represent the highest operating standards of industrial and commercial institutions.

  16. Signal analysis and processing for SmartPET

    International Nuclear Information System (INIS)

    Scraggs, David; Boston, Andrew; Boston, Helen; Cooper, Reynold; Hall, Chris; Mather, Andy; Nolan, Paul; Turk, Gerard

    2007-01-01

    Measurement of induced transient charges on spectator electrodes is a critical requirement of the SmartPET project. Such a task requires the precise measurement of small amplitude pulses. Induced charge magnitudes on the SmartPET detectors were therefore studied and the suitability of wavelet analysis applied to de-noising signals was investigated. It was found that the absolute net maximum induced charge magnitudes from the two adjacent electrodes to the collecting electrode is 17% of the real charge magnitude for the AC side and 20% for the DC side. It was also found that wavelet analysis could identify induced charges of comparable magnitude to system noise

  17. New Liquid Crystal Smart Window and its Production Process (SmartWin II)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Kristiansen, Finn Harken; Schultz, Jørgen Munthe

    2005-01-01

    window: 1) with sufficient area glazing to meet the market, 2) using a technology which supplies the glazing with three operating modes: 2a) a reflective mode limiting the glazing overheating, 2b) a transparent mode with an excellent transparency, 2c) a scattering mode having a grey scale, 3) for which...... large market potential for this technology. Conception and realisation of a pre-industrial machine for manufacturing smart windows were obtained. By means of this pre-industrial machine, the sample surface area was progressive increased from lab-scale (approx. 10 cm sq.) up to 60 cm x 80 cm at Mid...

  18. Cognitive radio networks efficient resource allocation in cooperative sensing, cellular communications, high-speed vehicles, and smart grid

    CERN Document Server

    Jiang, Tao; Cao, Yang

    2015-01-01

    PrefaceAcknowledgmentsAbout the AuthorsIntroductionCognitive Radio-Based NetworksOpportunistic Spectrum Access NetworksCognitive Radio Networks with Cooperative SensingCognitive Radio Networks for Cellular CommunicationsCognitive Radio Networks for High-Speed VehiclesCognitive Radio Networks for a Smart GridContent and OrganizationTransmission Slot Allocation in an Opportunistic Spectrum Access NetworkSingle-User Single-Channel System ModelProbabilistic Slot Allocation SchemeOptimal Probabilistic Slot AllocationBaseline PerformanceExponential DistributionHyper-Erlang DistributionPerformance An

  19. Renewable energy integration in smart grids-multicriteria assessment using the fuzzy analytical hierarchy process

    OpenAIRE

    JANJIC, ALEKSANDAR; SAVIC, SUZANA; VELIMIROVIC, LAZAR; NIKOLIC, VESNA

    2015-01-01

    Unlike the traditional way of efficiency assessment of renewable energy sources integration, the smart grid concept is introducing new goals and objectives regarding increased use of renewable electricity sources, grid security, energy conservation, energy efficiency, and deregulated energy market. Possible benefits brought by renewable sources integration are evaluated by the degree of the approach to the ideal smart grid. In this paper, fuzzy analytical hierarchy process methodology for the...

  20. New Liquid Crystal Smart Window and its Production Process (SmartWin II)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev

    2005-01-01

    the operating modes don’t require energy consumption and where the transition from one to the other mode is fast (10 ms) thanks to an applied voltage or voltage pulse, 4) allowing a high solar factor modulation; a Solar Heat Gain Factor (SHGS) between 0.3 and 0.8.and a high daylight modulation between 0.1 and 0.......8, 5) with a good lifetime. The outcome of the project was: Several methods were developed and these allowed improving and realisation a number of lab-scale size (from 2 cm sq. up to 15 cm x 30 cm), active films with three optical states (clear, reflective or scattering state) to three original...... as well as realisation and scaling-up of switch-able patterned glass samples for smart windows. A market assessment study of smart windows have been carried out and by taking into account e.g. the fenestration markets, functionality and cost of currently available daylight systems, and it shows a very...

  1. Smart Sensing of the Aux. Feed-water Pump Performance in NPP Severe Accidents Using Advanced GMDH Method

    Energy Technology Data Exchange (ETDEWEB)

    No, Young Gyu; Seong, Poong Hyun [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    In order to develop and verify the models, a number of data obtained by simulating station black out (SBO) scenario for the optimized power reactor 1000 (OPR1000) using MARS code were used. Most of monitoring systems for component have been suggested by using the directly measured data. However, it is very difficult to acquire data related to safety-critical component' status. Therefore, it is necessary to develop the new method that combines the data-based equipped with learning system and data miming technique. Many data-based modeling methods have been applied successfully to nuclear engineering area, such as signal validation, plant diagnostics and event identification. Also, the data miming is the process of analyzing data from different perspectives and summarizing it into useful information. In this study, the smart sensing technique was developed using advanced group method of data handing (GMDH) model. The original GMDH is an inductive self organizing algebraic model. The advanced GMDH model is equipped with a fuzzy concept. The proposed advanced GMDH model enhances the original GMDH model by reducing the effect of outliers and noise. The advanced GMDH uses different weightings according to their importance which is specified by the fuzzy membership grade. The developed model was verified using SBO accident simulation data for the OPR1000 nuclear power plant acquired with MARS code. Also, the advanced GMDH model was trained using the simulated development data and verified with simulated test data. The development and test data sets were independent. The simulation results show that the performance of the developed advanced GMDH model was very satisfactory, as shown in Table 1. Therefore, if the developed model can be optimized using diverse and specific data, it will be possible to predict the performance of Aux. feed water pump accurately.

  2. Sensing Models and Sensor Network Architectures for Transport Infrastructure Monitoring in Smart Cities

    Science.gov (United States)

    Simonis, Ingo

    2015-04-01

    Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.

  3. Readiness Assessment Towards Smart Manufacturing System for Tuna Processing Industry in Indonesia

    Science.gov (United States)

    Anggrahini, D.; Kurniati, N.; Karningsih, P. D.; Parenreng, S. M.; Syahroni, N.

    2018-04-01

    Marine product processing is one of the top priority clusters in the national development. Tuna, as a kind of deep ocean fishes, has the highest number of production that significantly increased throughout the years. Indonesia government encourages tuna processing industry, which are mostly dominated by small to medium enterprises, to grow continuously. Nowadays, manufacturers are facing substantial challenges in adopting modern system and technology that will lead a significant improvement through the internet of things (IoT). A smart factory transform integrated manufacturing process, in a high speed processing to respond customer needs. It has some positive impacts, such as increasing productivity, reducing set up time, shortening marketing and other support activities, hence the process is being more flexible and efficient. To implement smart manufacturing system, factories should know the readiness at any level of them, technology capability and strategy appropriateness. This exploratory study aims to identify the criterias, and develop an assessment tools to measure the level towards smart factory.

  4. Landscape Design Process of Lakewood Nava Park BSD City Based on Smart Growth Concept

    Science.gov (United States)

    Islami, M. Z.; Kaswanto, R. L.

    2017-10-01

    A comfortable and green housing area in a city is a must for the people live in a city. The rapid development in a city caused greater need for land. This problem happens simultaneously with environmental problem globally such as growing number of people, pollution, excessive exploitation of resource, and decreasing in ethic of land uses. The design of Lakewood Nava Park BSD City prioritizes on pedestrian and walkable environment to apprehend those problems. Lakewood Nava Park is a landscape design project conducted by landscape consultant company, Sheils Flynn Asia. The concept of Smart Growth used as a recommendation for Lakewood Nava Park design. Smart Growth is a city planning and transportation theory which expand a city into a walkable city. The method used on this research is a comparison between landscape design process and Booth theory, also analyze ten principle concept of Smart Growth at the project. Generally, the comparison between design process and Booth theory resulted a slight difference in term and separate phase. The analysis result from Smart Growth concept is around 70% has been applied, and the rest 30% applied after the design has been built. By using Smart Growth principle, the purpose of Lakewood Nava Park design can be applied well.

  5. Feasibility, Process, and Outcomes of Cardiovascular Clinical Trial Data Sharing: A Reproduction Analysis of the SMART-AF Trial.

    Science.gov (United States)

    Gay, Hawkins C; Baldridge, Abigail S; Huffman, Mark D

    2017-12-01

    Data sharing is as an expanding initiative for enhancing trust in the clinical research enterprise. To evaluate the feasibility, process, and outcomes of a reproduction analysis of the THERMOCOOL SMARTTOUCH Catheter for the Treatment of Symptomatic Paroxysmal Atrial Fibrillation (SMART-AF) trial using shared clinical trial data. A reproduction analysis of the SMART-AF trial was performed using the data sets, data dictionary, case report file, and statistical analysis plan from the original trial accessed through the Yale Open Data Access Project using the SAS Clinical Trials Data Transparency platform. SMART-AF was a multicenter, single-arm trial evaluating the effectiveness and safety of an irrigated, contact force-sensing catheter for ablation of drug refractory, symptomatic paroxysmal atrial fibrillation in 172 participants recruited from 21 sites between June 2011 and December 2011. Analysis of the data was conducted between December 2016 and April 2017. Effectiveness outcomes included freedom from atrial arrhythmias after ablation and proportion of participants without any arrhythmia recurrence over the 12 months of follow-up after a 3-month blanking period. Safety outcomes included major adverse device- or procedure-related events. The SMART AF trial participants' mean age was 58.7 (10.8) years, and 72% were men. The time from initial proposal submission to final analysis was 11 months. Freedom from atrial arrhythmias at 12 months postprocedure was similar compared with the primary study report (74.0%; 95% CI, 66.0-82.0 vs 76.4%; 95% CI, 68.7-84.1). The reproduction analysis success rate was higher than the primary study report (65.8%; 95% CI 56.5-74.2 vs 75.6%; 95% CI, 67.2-82.5). Adverse events were minimal and similar between the 2 analyses, but contact force range or regression models could not be reproduced. The feasibility of a reproduction analysis of the SMART-AF trial was demonstrated through an academic data-sharing platform. Data sharing can be

  6. The Diabetes Self-management Assessment Report Tool (D-SMART): process evaluation and patient satisfaction.

    Science.gov (United States)

    Charron-Prochownik, Denise; Zgibor, Janice C; Peyrot, Mark; Peeples, Malinda; McWilliams, Janis; Koshinsky, Janice; Noullet, William; Siminerio, Linda M

    2007-01-01

    The purpose of this article is to present the results of the process evaluation and patient experience in completing the Diabetes Self-management Assessment Report Tool (D-SMART), an instrument within the AADE Outcome System to assist diabetes educators to assess, facilitate, and track behavior change in the provision of diabetes self-management education (DSME). The D-SMART was integrated into computer and telephonic systems at 5 sites within the Pittsburgh Regional Initiative for Diabetes Education (PRIDE) network. Data were obtained from 290 patients with diabetes using the system at these programs via paper-and-pencil questionnaires following baseline D-SMART assessments and electronic system measurement of system performance. Process evaluation included time of completion, understanding content, usability of technology, and satisfaction with the system. Patients were 58% female and 85% Caucasian and had a mean age of 58 years. Fifty-six percent of patients had no more than a high school education, and 78% had Internet access at home. Most patients reported completing the D-SMART at home (78%), in 1 attempt (86%) via the Internet (55%), and in less than 30 minutes. Seventy-six percent believed the questions were easy to understand, and 80% did not need assistance. Age was negatively associated with ease of use. Moreover, 76% of patients believed the D-SMART helped them think about their diabetes, with 67% indicating that it gave the diabetes educator good information about themselves and their diabetes. Most (94%) were satisfied with the D-SMART. Level of satisfaction was independent of the system being used. The D-SMART was easily completed at home in 1 attempt, content was understandable, and patients were generally satisfied with the wording of questions and selection of answers. The D-SMART is easy to use and enhanced communication between the patient and clinician; however, elderly patients may need more assistance. Computer-based and telephonic D-SMARTs

  7. Profit Analysis Model of Smart Item Implementation in Integrated Supply Chain Process

    Science.gov (United States)

    Tritularsih, Yustina; Rinanto, Andhy; Prasetyo, Hoedi; Nur Rosyidi, Cucuk

    2018-03-01

    Nowadays all links of the entire supply chain need to integrate their different infrastructures and they have better control of them to drive better profits. This integration should offer the ability for companies in order to have an overall and transparent insight to its supply chain activities. An intelligent supply chain which is mainly supported by Smart Items technology can satisfy the need of those integration. By means of Smart Items, a company can benefit some advantages. Those are cost reduction and value creation. However, currently there is no comprehensive Smart Item infrastructure exists yet so it is difficult to calculate the true benefit information. This paper attempts to recommend a model for estimating the benefits of implementing Smart Items in a company which has an integrated supply chain process. The integrated supply chain means that three echelons (supplier, shipper and retailer) of supply chain are belonged to a company. The proposed model was used to determine the shrinkage value and RFID tag price which can give the maximum benefit of Smart Items implementation. A numerical example is also provided to give a better comprehension on model calculation.

  8. Smart specialisation as a process tool in lower-tier territories

    DEFF Research Database (Denmark)

    Drejer, Ina; Laursen, Lea Louise Holst

    The paper focuses on the potential of combining the smart specialization – and the associated quadruple helix – framework with a place-specific planning perspective in proposing as process tool for organizing business development in small and medium-sized non-urban, lower-tier territories...

  9. The Jellyfish: smart electro-active polymers for an autonomous distributed sensing node

    Science.gov (United States)

    Blottman, John B.; Richards, Roger T.

    2006-05-01

    The US Navy has recently placed emphasis on deployable, distributed sensors for Force Protection, Anti-Terrorism and Homeland Defense missions. The Naval Undersea Warfare Center has embarked on the development of a self-contained deployable node that is composed of electro-active polymers (EAP) for use in a covert persistent distributed surveillance system. Electro-Active Polymers (EAP) have matured to a level that permits their application in energy harvesting, hydrophones, electro-elastic actuation and electroluminescence. The problem to resolve is combining each of these functions into an autonomous sensing platform. The concept presented here promises an operational life several orders of magnitude beyond what is expected of a Sonobuoy due to energy conservation and harvesting, and at a reasonable cost. The embodiment envisioned is that of a deployed device resembling a jellyfish, made in most part of polymers, with the body encapsulating the necessary electronic processing and communications package and the tentacles of the jellyfish housing the sonar sensors. It will be small, neutrally buoyant, and will survey the water column much in the manner of a Cartesian Diver. By using the Electro-Active Polymers as artificial muscles, the motion of the jellyfish can be finely controlled. An increased range of detection and true node autonomy is achieved through volumetric array beamforming to focus the direction of interrogation and to null-out extraneous ambient noise.

  10. Urban Automation Networks: Current and Emerging Solutions for Sensed Data Collection and Actuation in Smart Cities.

    Science.gov (United States)

    Gomez, Carles; Paradells, Josep

    2015-09-10

    Urban Automation Networks (UANs) are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost.

  11. Urban Automation Networks: Current and Emerging Solutions for Sensed Data Collection and Actuation in Smart Cities

    Directory of Open Access Journals (Sweden)

    Carles Gomez

    2015-09-01

    Full Text Available Urban Automation Networks (UANs are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost.

  12. Assessment of a Smart Sensing Shoe for Gait Phase Detection in Level Walking

    Directory of Open Access Journals (Sweden)

    Nicola Carbonaro

    2016-11-01

    Full Text Available Gait analysis and more specifically ambulatory monitoring of temporal and spatial gait parameters may open relevant fields of applications in activity tracking, sports and also in the assessment and treatment of specific diseases. Wearable technology can boost this scenario by spreading the adoption of monitoring systems to a wide set of healthy users or patients. In this context, we assessed a recently developed commercial smart shoe—the FootMoov—for automatic gait phase detection in level walking. FootMoov has built-in force sensors and a triaxial accelerometer and is able to transmit the sensor data to the smartphone through a wireless connection. We developed a dedicated gait phase detection algorithm relying both on force and inertial information. We tested the smart shoe on ten healthy subjects in free level walking conditions and in a laboratory setting in comparison with an optical motion capture system. Results confirmed a reliable detection of the gait phases. The maximum error committed, on the order of 44.7 ms, is comparable with previous studies. Our results confirmed the possibility to exploit consumer wearable devices to extract relevant parameters to improve the subject health or to better manage his/her progressions.

  13. A Perspective on Smart Process Manufacturing Research Challenges for Process Systems Engineers

    Directory of Open Access Journals (Sweden)

    Ian David Lockhart Bogle

    2017-04-01

    Full Text Available The challenges posed by smart manufacturing for the process industries and for process systems engineering (PSE researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, but benchmarking would give greater confidence. Technical challenges confronting process systems engineers in developing enabling tools and techniques are discussed regarding flexibility and uncertainty, responsiveness and agility, robustness and security, the prediction of mixture properties and function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to drive agility will require tackling new challenges, such as how to ensure the consistency and confidentiality of data through long and complex supply chains. Modeling challenges also exist, and involve ensuring that all key aspects are properly modeled, particularly where health, safety, and environmental concerns require accurate predictions of small but critical amounts at specific locations. Environmental concerns will require us to keep a closer track on all molecular species so that they are optimally used to create sustainable solutions. Disruptive business models may result, particularly from new personalized products, but that is difficult to predict.

  14. Smart logistics

    NARCIS (Netherlands)

    Woensel, van T.

    2012-01-01

    This lecture focuses on Smart Logistics referring to these intelligent managerial decisions related to the design, operations and control of the transportation chain processes in an efficient and cost-effective way. The starting point for Smart Logistics is the key observation that the real-life

  15. Implementing polytope projects for smart systems

    CERN Document Server

    Iordache, Octavian

    2017-01-01

    This book presents a domain of extreme industrial and scientific interest: the study of smart systems and structures. It presents polytope projects as comprehensive physical and cognitive architectures that support the investigation, fabrication and implementation of smart systems and structures. These systems feature multifunctional components that can perform sensing, control, and actuation. In light of the fact that devices, tools, methodologies and organizations based on electronics and information technology for automation, specific to the third industrial revolution, are increasingly reaching their limits, it is essential that smart systems be implemented in industry. Polytope projects facilitate the utilization of smart systems and structures as key elements of the fourth industrial revolution. The book begins by presenting polytope projects as a reference architecture for cyber-physical systems and smart systems, before addressing industrial process synthesis in Chapter 2. Flow-sheet trees, cyclic sep...

  16. Wireless Sensor Networks Data Processing Summary Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Caiyun Huang

    2014-07-01

    Full Text Available As a newly proposed theory, compressive sensing (CS is commonly used in signal processing area. This paper investigates the applications of compressed sensing (CS in wireless sensor networks (WSNs. First, the development and research status of compressed sensing technology and wireless sensor networks are described, then a detailed investigation of WSNs research based on CS are conducted from aspects of data fusion, signal acquisition, signal routing transmission, and signal reconstruction. At the end of the paper, we conclude our survey and point out the possible future research directions.

  17. Poisson point processes imaging, tracking, and sensing

    CERN Document Server

    Streit, Roy L

    2010-01-01

    This overview of non-homogeneous and multidimensional Poisson point processes and their applications features mathematical tools and applications from emission- and transmission-computed tomography to multiple target tracking and distributed sensor detection.

  18. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance... and spatial co-ordinates into discrete components. The mathematical concepts involved are the sampling and transform theory. Two dimensional transforms are used for image enhancement, restoration, encoding and description too. The main objective of the image...

  19. Curvature vector smart sensing with a long-period fibre grating probed by artificial intelligence

    International Nuclear Information System (INIS)

    Costa, R Z V; Possetti, G R C; De Arruda, L V R; Muller, M; Fabris, J L

    2010-01-01

    This work shows a curvature vector sensing device based on a single long-period grating written in a commercial photosensitive optical fibre. The sensing approach uses an artificial neural network based on multilayer perceptrons for data analysis. Curvatures from 0.00 to 3.13 m −1 and angular orientations from 0 to 180° were measured with the device, with combined standard uncertainties of 0.05 m −1 and 1.5°, respectively. The root mean square errors for curvature and angular orientation were 0.0008 m −1 and 0.3° in the training stage and 0.002 m −1 and 0.9° in the test stage, respectively

  20. Smart Sound Processing for Defect Sizing in Pipelines Using EMAT Actuator Based Multi-Frequency Lamb Waves

    Directory of Open Access Journals (Sweden)

    Joaquín García-Gómez

    2018-03-01

    Full Text Available Pipeline inspection is a topic of particular interest to the companies. Especially important is the defect sizing, which allows them to avoid subsequent costly repairs in their equipment. A solution for this issue is using ultrasonic waves sensed through Electro-Magnetic Acoustic Transducer (EMAT actuators. The main advantage of this technology is the absence of the need to have direct contact with the surface of the material under investigation, which must be a conductive one. Specifically interesting is the meander-line-coil based Lamb wave generation, since the directivity of the waves allows a study based in the circumferential wrap-around received signal. However, the variety of defect sizes changes the behavior of the signal when it passes through the pipeline. Because of that, it is necessary to apply advanced techniques based on Smart Sound Processing (SSP. These methods involve extracting useful information from the signals sensed with EMAT at different frequencies to obtain nonlinear estimations of the depth of the defect, and to select the features that better estimate the profile of the pipeline. The proposed technique has been tested using both simulated and real signals in steel pipelines, obtaining good results in terms of Root Mean Square Error (RMSE.

  1. Smart Sound Processing for Defect Sizing in Pipelines Using EMAT Actuator Based Multi-Frequency Lamb Waves.

    Science.gov (United States)

    García-Gómez, Joaquín; Gil-Pita, Roberto; Rosa-Zurera, Manuel; Romero-Camacho, Antonio; Jiménez-Garrido, Jesús Antonio; García-Benavides, Víctor

    2018-03-07

    Pipeline inspection is a topic of particular interest to the companies. Especially important is the defect sizing, which allows them to avoid subsequent costly repairs in their equipment. A solution for this issue is using ultrasonic waves sensed through Electro-Magnetic Acoustic Transducer (EMAT) actuators. The main advantage of this technology is the absence of the need to have direct contact with the surface of the material under investigation, which must be a conductive one. Specifically interesting is the meander-line-coil based Lamb wave generation, since the directivity of the waves allows a study based in the circumferential wrap-around received signal. However, the variety of defect sizes changes the behavior of the signal when it passes through the pipeline. Because of that, it is necessary to apply advanced techniques based on Smart Sound Processing (SSP). These methods involve extracting useful information from the signals sensed with EMAT at different frequencies to obtain nonlinear estimations of the depth of the defect, and to select the features that better estimate the profile of the pipeline. The proposed technique has been tested using both simulated and real signals in steel pipelines, obtaining good results in terms of Root Mean Square Error (RMSE).

  2. A high performance, low power computational platform for complex sensing operations in smart cities

    KAUST Repository

    Jiang, Jiming; Claudel, Christian

    2017-01-01

    This paper presents a new wireless platform designed for an integrated traffic/flash flood monitoring system. The sensor platform is built around a 32-bit ARM Cortex M4 microcontroller and a 2.4GHz 802.15.4802.15.4 ISM compliant radio module. It can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. This platform is specifically designed for solar-powered, low bandwidth, high computational performance wireless sensor network applications. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debugging. We illustrate the performance of this wireless sensor platform on complex problems arising in smart cities, such as traffic flow monitoring, machine-learning-based flash flood monitoring or Kalman-filter based vehicle trajectory estimation. All design files have been uploaded and shared in an open science framework, and can be accessed from [1]. The hardware design is under CERN Open Hardware License v1.2.

  3. A high performance, low power computational platform for complex sensing operations in smart cities

    KAUST Repository

    Jiang, Jiming

    2017-02-02

    This paper presents a new wireless platform designed for an integrated traffic/flash flood monitoring system. The sensor platform is built around a 32-bit ARM Cortex M4 microcontroller and a 2.4GHz 802.15.4802.15.4 ISM compliant radio module. It can be interfaced with fixed traffic sensors, or receive data from vehicle transponders. This platform is specifically designed for solar-powered, low bandwidth, high computational performance wireless sensor network applications. A self-recovering unit is designed to increase reliability and allow periodic hard resets, an essential requirement for sensor networks. A radio monitoring circuitry is proposed to monitor incoming and outgoing transmissions, simplifying software debugging. We illustrate the performance of this wireless sensor platform on complex problems arising in smart cities, such as traffic flow monitoring, machine-learning-based flash flood monitoring or Kalman-filter based vehicle trajectory estimation. All design files have been uploaded and shared in an open science framework, and can be accessed from [1]. The hardware design is under CERN Open Hardware License v1.2.

  4. A point-wise fiber Bragg grating displacement sensing system and its application for active vibration suppression of a smart cantilever beam subjected to multiple impact loadings

    International Nuclear Information System (INIS)

    Chuang, Kuo-Chih; Ma, Chien-Ching; Liao, Heng-Tseng

    2012-01-01

    In this work, active vibration suppression of a smart cantilever beam subjected to disturbances from multiple impact loadings is investigated with a point-wise fiber Bragg grating (FBG) displacement sensing system. An FBG demodulator is employed in the proposed fiber sensing system to dynamically demodulate the responses obtained by the FBG displacement sensor with high sensitivity. To investigate the ability of the proposed FBG displacement sensor as a feedback sensor, velocity feedback control and delay control are employed to suppress the vibrations of the first three bending modes of the smart cantilever beam. To improve the control performance for the first bending mode when the cantilever beam is subjected to an impact loading, we improve the conventional velocity feedback controller by tuning the control gain online with the aid of information from a higher vibration mode. Finally, active control of vibrations induced by multiple impact loadings due to a plastic ball is performed with the improved velocity feedback control. The experimental results show that active vibration control of smart structures subjected to disturbances such as impact loadings can be achieved by employing the proposed FBG sensing system to feed back out-of-plane point-wise displacement responses with high sensitivity. (paper)

  5. Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Leu, Hoang-Jyh; Chiu, Kuo-Feng; Lin, Chiu-Yue

    2013-01-01

    Highlights: ► Using oxygen plasma and smart coating technique for membrane modification. ► Oxygen plasma treatment can increase the reaction area of the membrane. ► AFM, SEM, FT-IR, XPS, EIS spectra can prove the surface treatment process. ► Nafion membrane modification can reduce Rct and enhance current density. - Abstract: The interfaces of electrolyte|catalyst|electrode play an important role in the performance of proton-exchange membrane fuel cells (PEMFCs). Increasing the interface effective area and lowering the charge transfer resistance of the interface are significant issues to promote the cell performance. In this study, oxygen plasma treatment was used to increase the surface roughness of Nafion®117 membrane, and then a smart coating process was applied to fabricate the initial Pt/C catalyst layer, which served to reduce the charge transfer resistance of the interface. The morphology and surface characteristics of membranes have been qualified by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. These results show that the plasma treatments and smart coating processes were effective in reducing the interface charge transfer resistance. At optimal condition, the interface charge transfer resistance was 0.45 Ω/cm 2 which was 1–2 order less than the untreated ones

  6. Engineering Cooperative Smart Things based on Embodied Cognition

    OpenAIRE

    Nascimento, Nathalia Moraes do; de Lucena, Carlos Jose Pereira

    2018-01-01

    The goal of the Internet of Things (IoT) is to transform any thing around us, such as a trash can or a street light, into a smart thing. A smart thing has the ability of sensing, processing, communicating and/or actuating. In order to achieve the goal of a smart IoT application, such as minimizing waste transportation costs or reducing energy consumption, the smart things in the application scenario must cooperate with each other without a centralized control. Inspired by known approaches to ...

  7. Researching on the process of remote sensing video imagery

    Science.gov (United States)

    Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan

    Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.

  8. Designing a Smart Car Parking System (PoC Prototype Utilizing CCTV Nodes: A vision of an IoT parking system via UCD process

    Directory of Open Access Journals (Sweden)

    Muftah Fraifer

    2017-06-01

    Full Text Available Using smart parking systems has become very important, and particularly so for metropolitan areas, because of the benefits for drivers in many aspects, such as time, frustration, stress, and anger, in addition to the increased consumption of fuel while searching for a vacant parking space. This paper proposes a review of recent advances in sensing and communication technology concerning smart parking systems. It includes a brief study of the selected topics and provides an implementation process of those selected systems. Moreover, this work proposes a design approach for a smart car parking system prototype based on utilizing CCTVs (nodes, it is also illustrates the algorithms used for computer vision detection through simulation and real environments, as the system has been deployed in both these environments. Furthermore, the system has been tested and evaluated by stakeholders via a user-centred design process by applying a qualitative research; the promising results demonstrate the effectiveness of our prototype. Finally, this paper discusses the benefits of engaging the stakeholders to develop the prototype.

  9. Divided Attention and Processes Underlying Sense of Agency

    Directory of Open Access Journals (Sweden)

    Wen eWen

    2016-01-01

    Full Text Available Sense of agency refers to the subjective feeling of controlling events through one’s behavior or will. Sense of agency results from matching predictions of one’s own actions with actual feedback regarding the action. Furthermore, when an action involves a cued goal, performance-based inference contributes to sense of agency. That is, if people achieve their goal, they would believe themselves to be in control. Previous studies have shown that both action-effect comparison and performance-based inference contribute to sense of agency; however, the dominance of one process over the other may shift based on task conditions such as the presence or absence of specific goals. In this study, we examined the influence of divided attention on these two processes underlying sense of agency in two conditions. In the experimental task, participants continuously controlled a moving dot for 10 s while maintaining a string of three or seven digits in working memory. We found that when there was no cued goal (no-cued-goal condition, sense of agency was impaired by high cognitive load. Contrastingly, when participants controlled the dot based on a cued goal (cued-goal-directed condition, their sense of agency was lower than in the no-cued-goal condition and was not affected by cognitive load. The results suggest that the action-effect comparison process underlying sense of agency requires attention. On the other hand, the weaker influence of divided attention in the cued-goal-directed condition could be attributed to the dominance of performance-based inference, which is probably automatic.

  10. Defect recognition in CFRP components using various NDT methods within a smart manufacturing process

    Science.gov (United States)

    Schumacher, David; Meyendorf, Norbert; Hakim, Issa; Ewert, Uwe

    2018-04-01

    The manufacturing process of carbon fiber reinforced polymer (CFRP) components is gaining a more and more significant role when looking at the increasing amount of CFRPs used in industries today. The monitoring of the manufacturing process and hence the reliability of the manufactured products, is one of the major challenges we need to face in the near future. Common defects which arise during manufacturing process are e.g. porosity and voids which may lead to delaminations during operation and under load. To find irregularities and classify them as possible defects in an early stage of the manufacturing process is of high importance for the safety and reliability of the finished products, as well as of significant impact from an economical point of view. In this study we compare various NDT methods which were applied to similar CFRP laminate samples in order to detect and characterize regions of defective volume. Besides ultrasound, thermography and eddy current, different X-ray methods like radiography, laminography and computed tomography are used to investigate the samples. These methods are compared with the intention to evaluate their capability to reliably detect and characterize defective volume. Beyond the detection and evaluation of defects, we also investigate possibilities to combine various NDT methods within a smart manufacturing process in which the decision which method shall be applied is inherent within the process. Is it possible to design an in-line or at-line testing process which can recognize defects reliably and reduce testing time and costs? This study aims to show up opportunities of designing a smart NDT process synchronized to the production based on the concepts of smart production (Industry 4.0). A set of defective CFRP laminate samples and different NDT methods were used to demonstrate how effective defects are recognized and how communication between interconnected NDT sensors and the manufacturing process could be organized.

  11. Scalable and Environmentally Benign Process for Smart Textile Nanofinishing

    NARCIS (Netherlands)

    Feng, J.; Hontañón, Esther; Blanes, Maria; Meyer, Jörg; Guo, Xiaoai; Santos, Laura; Paltrinieri, L.; Ramlawi, N.; de Smet, L.C.P.M.; Nirschl, Hermann; Kruis, Frank Einar; Schmidt-Ott, A.; Biskos, G.

    2016-01-01

    A major challenge in nanotechnology is that of determining how to introduce green and sustainable principles when assembling individual nanoscale elements to create working devices. For instance, textile nanofinishing is restricted by the many constraints of traditional pad-dry-cure processes,

  12. Graphene papers: smart architecture and specific functionalization for biomimetics, electrocatalytic sensing and energy storage

    DEFF Research Database (Denmark)

    Zhang, Minwei; Hou, Chengyi; Halder, Arnab

    2017-01-01

    for their critical applications associated with sensing, environmental and energy technologies. The contents of this review are based on a balance combination of our own studies and selected research studies done by worldwide academic groups. We first give a brief introduction to graphene as a versatile building...... block and to the current status of research studies on graphene papers. This is followed by addressing some crucial methods of how to prepare graphene papers. We then summarize multiple possibilities of functionalizing graphene papers, membranes or films. Finally, we evaluate some key applications...

  13. Incorporating Semantic Knowledge into Dynamic Data Processing for Smart Power Grids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qunzhi; Simmhan, Yogesh; Prasanna, Viktor

    2012-11-15

    Semantic Web allows us to model and query time-invariant or slowly evolving knowledge using ontologies. Emerging applications in Cyber Physical Systems such as Smart Power Grids that require continuous information monitoring and integration present novel opportunities and challenges for Semantic Web technologies. Semantic Web is promising to model diverse Smart Grid domain knowledge for enhanced situation awareness and response by multi-disciplinary participants. However, current technology does pose a performance overhead for dynamic analysis of sensor measurements. In this paper, we combine semantic web and complex event processing for stream based semantic querying. We illustrate its adoption in the USC Campus Micro-Grid for detecting and enacting dynamic response strategies to peak power situations by diverse user roles. We also describe the semantic ontology and event query model that supports this. Further, we introduce and evaluate caching techniques to improve the response time for semantic event queries to meet our application needs and enable sustainable energy management.

  14. Big Data Analytics Embedded Smart City Architecture for Performance Enhancement through Real-Time Data Processing and Decision-Making

    Directory of Open Access Journals (Sweden)

    Bhagya Nathali Silva

    2017-01-01

    Full Text Available The concept of the smart city is widely favored, as it enhances the quality of life of urban citizens, involving multiple disciplines, that is, smart community, smart transportation, smart healthcare, smart parking, and many more. Continuous growth of the complex urban networks is significantly challenged by real-time data processing and intelligent decision-making capabilities. Therefore, in this paper, we propose a smart city framework based on Big Data analytics. The proposed framework operates on three levels: (1 data generation and acquisition level collecting heterogeneous data related to city operations, (2 data management and processing level filtering, analyzing, and storing data to make decisions and events autonomously, and (3 application level initiating execution of the events corresponding to the received decisions. In order to validate the proposed architecture, we analyze a few major types of dataset based on the proposed three-level architecture. Further, we tested authentic datasets on Hadoop ecosystem to determine the threshold and the analysis shows that the proposed architecture offers useful insights into the community development authorities to improve the existing smart city architecture.

  15. Smart Educational Process Based on Personal Learning Capabilities

    OpenAIRE

    Gavriushenko, Mariia; Lindberg, Renny S. N.; Khriyenko, Oleksiy

    2017-01-01

    Personalized learning is increasingly gaining popularity, especially with the development of information technology and modern educational resources for learning. Each person is individual and has different knowledge background, different kind of memory, different learning speed. Teacher can adapt learning course, learning instructions or learning material according to the majority of learners in class, but that means that learning process is not adapted to the personality of each...

  16. SmartWeld/SmartProcess - intelligent model based system for the design and validation of welding processes

    Energy Technology Data Exchange (ETDEWEB)

    Mitchner, J.

    1996-04-01

    Diagrams are presented on an intelligent model based system for the design and validation of welding processes. Key capabilities identified include `right the first time` manufacturing, continuous improvement, and on-line quality assurance.

  17. Westinghouse integrated cementation facility. Smart process automation minimizing secondary waste

    International Nuclear Information System (INIS)

    Fehrmann, H.; Jacobs, T.; Aign, J.

    2015-01-01

    The Westinghouse Cementation Facility described in this paper is an example for a typical standardized turnkey project in the area of waste management. The facility is able to handle NPP waste such as evaporator concentrates, spent resins and filter cartridges. The facility scope covers all equipment required for a fully integrated system including all required auxiliary equipment for hydraulic, pneumatic and electric control system. The control system is based on actual PLC technology and the process is highly automated. The equipment is designed to be remotely operated, under radiation exposure conditions. 4 cementation facilities have been built for new CPR-1000 nuclear power stations in China

  18. [INVITED] Computational intelligence for smart laser materials processing

    Science.gov (United States)

    Casalino, Giuseppe

    2018-03-01

    Computational intelligence (CI) involves using a computer algorithm to capture hidden knowledge from data and to use them for training ;intelligent machine; to make complex decisions without human intervention. As simulation is becoming more prevalent from design and planning to manufacturing and operations, laser material processing can also benefit from computer generating knowledge through soft computing. This work is a review of the state-of-the-art on the methodology and applications of CI in laser materials processing (LMP), which is nowadays receiving increasing interest from world class manufacturers and 4.0 industry. The focus is on the methods that have been proven effective and robust in solving several problems in welding, cutting, drilling, surface treating and additive manufacturing using the laser beam. After a basic description of the most common computational intelligences employed in manufacturing, four sections, namely, laser joining, machining, surface, and additive covered the most recent applications in the already extensive literature regarding the CI in LMP. Eventually, emerging trends and future challenges were identified and discussed.

  19. Co-designing smart tourism

    DEFF Research Database (Denmark)

    Liburd, Janne J.; Nielsen, Tanja K.; Heape, Chris

    2017-01-01

    Emerging theories of smart tourism are chiefly concerned with how Internet Communication Technology and Big Data can influence marketing, product and destination development. The risk being that an overt focus on formal outcomes, namely technology, products and services, diverts attention from how...... things and operations are actually achieved. This paper challenges the notions of smart and value co-creation by introducing tourism co-design as a learning and experiment driven development process. Tourism co-design leverages the communicative interaction between people and enables tourism operators...... to change their practices. Based on fieldwork in the northern part of Denmark we explore how smart tourism can become smarter through tourism co-design processes. We argue that a shift is needed from: How can we efficiently achieve a more or less known goal? To: How can we effectively explore and give sense...

  20. Decreasing Data Analytics Time: Hybrid Architecture MapReduce-Massive Parallel Processing for a Smart Grid

    Directory of Open Access Journals (Sweden)

    Abdeslam Mehenni

    2017-03-01

    Full Text Available As our populations grow in a world of limited resources enterprise seek ways to lighten our load on the planet. The idea of modifying consumer behavior appears as a foundation for smart grids. Enterprise demonstrates the value available from deep analysis of electricity consummation histories, consumers’ messages, and outage alerts, etc. Enterprise mines massive structured and unstructured data. In a nutshell, smart grids result in a flood of data that needs to be analyzed, for better adjust to demand and give customers more ability to delve into their power consumption. Simply put, smart grids will increasingly have a flexible data warehouse attached to them. The key driver for the adoption of data management strategies is clearly the need to handle and analyze the large amounts of information utilities are now faced with. New approaches to data integration are nauseating moment; Hadoop is in fact now being used by the utility to help manage the huge growth in data whilst maintaining coherence of the Data Warehouse. In this paper we define a new Meter Data Management System Architecture repository that differ with three leaders MDMS, where we use MapReduce programming model for ETL and Parallel DBMS in Query statements(Massive Parallel Processing MPP.

  1. The Signal Validation method of Digital Process Instrumentation System on signal conditioner for SMART

    International Nuclear Information System (INIS)

    Moon, Hee Gun; Park, Sang Min; Kim, Jung Seon; Shon, Chang Ho; Park, Heui Youn; Koo, In Soo

    2005-01-01

    The function of PIS(Process Instrumentation System) for SMART is to acquire the process data from sensor or transmitter. The PIS consists of signal conditioner, A/D converter, DSP(Digital Signal Process) and NIC(Network Interface Card). So, It is fully digital system after A/D converter. The PI cabinet and PDAS(Plant Data Acquisition System) in commercial plant is responsible for data acquisition of the sensor or transmitter include RTD, TC, level, flow, pressure and so on. The PDAS has the software that processes each sensor data and PI cabinet has the signal conditioner, which is need for maintenance and test. The signal conditioner has the potentiometer to adjust the span and zero for test and maintenance. The PIS of SMART also has the signal conditioner which has the span and zero adjust same as the commercial plant because the signal conditioner perform the signal condition for AD converter such as 0∼10Vdc. But, To adjust span and zero is manual test and calibration. So, This paper presents the method of signal validation and calibration, which is used by digital feature in SMART. There are I/E(current to voltage), R/E(resistor to voltage), F/E(frequency to voltage), V/V(voltage to voltage). Etc. In this paper show only the signal validation and calibration about I/E converter that convert level, pressure, flow such as 4∼20mA into signal for AD conversion such as 0∼10Vdc

  2. Integrated Gis-remote sensing processing applied to vegetation ...

    African Journals Online (AJOL)

    A remotely sensed digital image of SPOT by its linear enhancement on a large memory, high speed, and digital electronic computer revealed from false colour composite that vegetation is expressed as red. Further processing of SPOT digital image for arithmetic banding of Normalized Differential Vegetation Index (NDVI) ...

  3. The research and implementation of nuclear science and technology literature processing system based on smart client technology

    International Nuclear Information System (INIS)

    Zhang Shufeng

    2010-01-01

    Nuclear literature processing, namely cataloging, subject indexing and abstracting, is one of the highly specialized work, the quality and speed of literature processing have an important impact on the building of information resources in nuclear field. Firstly, the system's overall functionality was determined through the analysis of system requirements and the difficulties we meet with were pointed out. Secondly, the function of collaborative collecting and processing of nuclear literature is realized using smart client technology, achieve the purpose of providing a network platform to the literature processing specialists located in different places, therefore the out source of nuclear literature collecting and processing can be done. The article comprises three aspects: needs analysis and overall functional design, smart client technical presentations, Net platform based on smart client technology, nuclear literature processing system implementation. (author)

  4. Remote sensing models and methods for image processing

    CERN Document Server

    Schowengerdt, Robert A

    2007-01-01

    Remote sensing is a technology that engages electromagnetic sensors to measure and monitor changes in the earth's surface and atmosphere. Normally this is accomplished through the use of a satellite or aircraft. This book, in its 3rd edition, seamlessly connects the art and science of earth remote sensing with the latest interpretative tools and techniques of computer-aided image processing. Newly expanded and updated, this edition delivers more of the applied scientific theory and practical results that helped the previous editions earn wide acclaim and become classroom and industry standa

  5. Portable remote sensing image processing system; Kahangata remote sensing gazo shori system

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, S; Uchida, K; Tanaka, S; Jingo, H [Dowa Engineering Co. Ltd., Tokyo (Japan); Hato, M [Earth Remote Sensing Data Analysis Center, Tokyo (Japan)

    1997-10-22

    Recently, geological analysis using remote sensing data has been put into practice due to data with high spectral resolution and high spatial resolution. There has been a remarkable increase in both software and hardware of personal computer. Software is independent of hardware due to Windows. It has become easy to develop softwares. Under such situation, a portable remote sensing image processing system coping with Window 95 has been developed. Using this system, basic image processing can be conducted, and present location can be displayed on the image in real time by linking with GPS. Accordingly, it is not required to bring printed images for the field works of image processing. This system can be used instead of topographic maps for overseas surveys. Microsoft Visual C++ ver. 2.0 is used for the software. 1 fig.

  6. Distributed Sensing and Processing for Multi-Camera Networks

    Science.gov (United States)

    Sankaranarayanan, Aswin C.; Chellappa, Rama; Baraniuk, Richard G.

    Sensor networks with large numbers of cameras are becoming increasingly prevalent in a wide range of applications, including video conferencing, motion capture, surveillance, and clinical diagnostics. In this chapter, we identify some of the fundamental challenges in designing such systems: robust statistical inference, computationally efficiency, and opportunistic and parsimonious sensing. We show that the geometric constraints induced by the imaging process are extremely useful for identifying and designing optimal estimators for object detection and tracking tasks. We also derive pipelined and parallelized implementations of popular tools used for statistical inference in non-linear systems, of which multi-camera systems are examples. Finally, we highlight the use of the emerging theory of compressive sensing in reducing the amount of data sensed and communicated by a camera network.

  7. Implementation of the SMART MOVE intervention in primary care: a qualitative study using normalisation process theory.

    Science.gov (United States)

    Glynn, Liam G; Glynn, Fergus; Casey, Monica; Wilkinson, Louise Gaffney; Hayes, Patrick S; Heaney, David; Murphy, Andrew W M

    2018-05-02

    Problematic translational gaps continue to exist between demonstrating the positive impact of healthcare interventions in research settings and their implementation into routine daily practice. The aim of this qualitative evaluation of the SMART MOVE trial was to conduct a theoretically informed analysis, using normalisation process theory, of the potential barriers and levers to the implementation of a mhealth intervention to promote physical activity in primary care. The study took place in the West of Ireland with recruitment in the community from the Clare Primary Care Network. SMART MOVE trial participants and the staff from four primary care centres were invited to take part and all agreed to do so. A qualitative methodology with a combination of focus groups (general practitioners, practice nurses and non-clinical staff from four separate primary care centres, n = 14) and individual semi-structured interviews (intervention and control SMART MOVE trial participants, n = 4) with purposeful sampling utilising the principles of Framework Analysis was utilised. The Normalisation Process Theory was used to develop the topic guide for the interviews and also informed the data analysis process. Four themes emerged from the analysis: personal and professional exercise strategies; roles and responsibilities to support active engagement; utilisation challenges; and evaluation, adoption and adherence. It was evident that introducing a new healthcare intervention demands a comprehensive evaluation of the intervention itself and also the environment in which it is to operate. Despite certain obstacles, the opportunity exists for the successful implementation of a novel healthcare intervention that addresses a hitherto unresolved healthcare need, provided that the intervention has strong usability attributes for both disseminators and target users and coheres strongly with the core objectives and culture of the health care environment in which it is to operate. We

  8. Online sensing and control of oil in process wastewater

    Science.gov (United States)

    Khomchenko, Irina B.; Soukhomlinoff, Alexander D.; Mitchell, T. F.; Selenow, Alexander E.

    2002-02-01

    Industrial processes, which eliminate high concentration of oil in their waste stream, find it extremely difficult to measure and control the water purification process. Most oil separation processes involve chemical separation using highly corrosive caustics, acids, surfactants, and emulsifiers. Included in the output of this chemical treatment process are highly adhesive tar-like globules, emulsified and surface oils, and other emulsified chemicals, in addition to suspended solids. The level of oil/hydrocarbons concentration in the wastewater process may fluctuate from 1 ppm to 10,000 ppm, depending upon the specifications of the industry and level of water quality control. The authors have developed a sensing technology, which provides the accuracy of scatter/absorption sensing in a contactless environment by combining these methodologies with reflective measurement. The sensitivity of the sensor may be modified by changing the fluid level control in the flow cell, allowing for a broad range of accurate measurement from 1 ppm to 10,000 ppm. Because this sensing system has been designed to work in a highly invasive environment, it can be placed close to the process source to allow for accurate real time measurement and control.

  9. Ergonomic audit of a specially engineered sonic powered toothbrush with unique sensing and control technologies, the Sonicare Flexcare, and the Oral-B Smart Series 5000.

    Science.gov (United States)

    Hunter, Gail; Burns, Laurie; Bone, Brian; Mintel, Thomas; Jimenez, Eduardo

    2012-01-01

    The presence of ergonomic features can impact the marketplace success of a new product. Metaphase Design Group, Inc., in partnership with the Colgate-Palmolive Company, conducted an ergonomic audit on three electric toothbrushes: a specially engineered sonic powered toothbrush with unique sensing and control technologies, the Sonicare FlexCare, and the Oral-B Smart Series 5000. The ergonomic audit was conducted by Metaphase Design Groups's ergonomic and usability experts. Two experts used the toothbrushes over a one-week period and assessed the performance of each brush against a set of ergonomic principles. The three toothbrushes have some solid ergonomic features. They each have adequate grip zones, provide grip security with elastomeric materials, and provide easy access to the on/off button. The most distinctive feature is the longitudinal shape of the handle of the specially engineered sonic powered toothbrush with unique sensing and control technologies. This handle angles downward at the top end and provides additional advantages through improved grip security and visibility. Yet all three toothbrushes have different opportunities for improvement. The Sonicare Flex Care toothbrush has a cluttered and complicated user interface that is difficult to read. The disadvantages of the Oral-B Smart Series 5000 toothbrush are related to its physical dimensions and audible feedback. The specially engineered sonic powered toothbrush with unique sensing afid control technologies is surprising to use with its changes in speeds, brush movements, and resulting changes in audible feedback.

  10. Fuel consumption optimization for smart hybrid electric vehicle during a car-following process

    Science.gov (United States)

    Li, Liang; Wang, Xiangyu; Song, Jian

    2017-03-01

    Hybrid electric vehicles (HEVs) provide large potential to save energy and reduce emission, and smart vehicles bring out great convenience and safety for drivers. By combining these two technologies, vehicles may achieve excellent performances in terms of dynamic, economy, environmental friendliness, safety, and comfort. Hence, a smart hybrid electric vehicle (s-HEV) is selected as a platform in this paper to study a car-following process with optimizing the fuel consumption. The whole process is a multi-objective optimal problem, whose optimal solution is not just adding an energy management strategy (EMS) to an adaptive cruise control (ACC), but a deep fusion of these two methods. The problem has more restricted conditions, optimal objectives, and system states, which may result in larger computing burden. Therefore, a novel fuel consumption optimization algorithm based on model predictive control (MPC) is proposed and some search skills are adopted in receding horizon optimization to reduce computing burden. Simulations are carried out and the results indicate that the fuel consumption of proposed method is lower than that of the ACC+EMS method on the condition of ensuring car-following performances.

  11. Combining high resolution water use data from smart meters with remote sensing and geospatial datasets to investigate outdoor water demand and greenness changes during drought

    Science.gov (United States)

    Quesnel, K.; Ajami, N.; Urata, J.; Marx, A.

    2017-12-01

    Infrastructure modernization, information technology, and the internet of things are impacting urban water use. Advanced metering infrastructure (AMI), also known as smart meters, is one forthcoming technology that holds the potential to fundamentally shift the way customers use water and utilities manage their water resources. Broadly defined, AMI is a system and process used to measure, communicate, and analyze water use data at high resolution intervals at the customer or sub-customer level. There are many promising benefits of AMI systems, but there are also many challenges; consequently, AMI in the water sector is still in its infancy. In this study we provide insights into this emerging technology by taking advantage of the higher temporal and spatial resolution of water use data provided by these systems. We couple daily water use observations from AMI with monthly and bimonthly billing records to investigate water use trends, patterns, and drivers using a case study of the City of Redwood City, CA from 2007 through 2016. We look across sectors, with a particular focus on water use for urban irrigation. Almost half of Redwood City's irrigation accounts use recycled water, and we take this unique opportunity to investigate if the behavioral response for recycled water follows the water and energy efficiency paradox in which customers who have upgraded to more efficient devices end up using more of the commodity. We model potable and recycled water demand using geospatially explicit climate, demographic, and economic factors to gain insight into various water use drivers. Additionally, we use high resolution remote sensing data from the National Agricultural Imaging Program (NAIP) to observe how changes in greenness and impervious surface are related to water use. Using a series of statistical and unsupervised machine learning techniques, we find that water use has changed dramatically over the past decade corresponding to varying climatic regimes and drought

  12. Special Issue: Design and Engineering of Microreactor and Smart-Scaled Flow Processes

    Directory of Open Access Journals (Sweden)

    Volker Hessel

    2014-12-01

    Full Text Available Reaction-oriented research in flow chemistry and microreactor has been extensively focused upon in special journal issues and books. On a process level, this resembled the “drop-in” (retrofit concept with the microreactor replacing a conventional (batch reactor. Meanwhile, with the introduction of the mobile, compact, modular container technology, the focus is more on the process side, including also providing an end-to-end vision of intensified process design. Exactly this is the focus of the current special issue “Design and Engineering of Microreactor and Smart-Scaled Flow Processes” of the journal “Processes”. This special issue comprises three review papers, five research articles and two communications. [...

  13. Hierarchical Categorical Perception in Sensing and Cognitive Processes

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2008-01-01

    This article considers categorical perception (CP) as a crucial process involved in all sort of communication throughout the biological hierarchy, i.e. in all of biosemiosis. Until now, there has been consideration of CP exclusively within the functional cycle of perception-cognition-action and i...... of categorical sensing and perception with the equally hierarchical issues of the "binding problem", "triadic causality", the "emergent interpretant" and the increasing semiotic freedom observed in biological and cognitive systems....

  14. Sensor technology for smart homes.

    Science.gov (United States)

    Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia

    2011-06-01

    A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Smart city solutions in regard to urbanization processes – Polish cases

    Directory of Open Access Journals (Sweden)

    Brdulak Halina

    2015-11-01

    Full Text Available The aim of this paper is to show the spectrum of problems associated with the growing importance of cities in the context of rapidly occurring processes of urbanization. Therefore the following issues are included: the concept of smart cities, which are a combination of the intelligent use of information systems allowing for active management of the various areas of urban activity with the potential of institutions, companies and the active involvement and creative people; transport problems and the use of new technologies. Particular attention will be given to both, the issue of transport congestion as the strongest factor affecting the quality of life of residents and to the role of social capital in the creation of sustainable development. To exemplify the result of the cooperation between southern Polish communities there will be presented a case of the introducing process of the Silesian Card of Public Services with a wide range of its functionality.

  16. Double-Twisted Conductive Smart Threads Comprising a Homogeneously and a Gradient-Coated Thread for Multidimensional Flexible Pressure-Sensing Devices

    KAUST Repository

    Tai, Yanlong

    2016-03-17

    Fiber-based, flexible pressure-sensing systems have attracted attention recently due to their promising application as electronic skins. Here, a new kind of flexible pressure-sensing device based on a polydimethylsiloxane membrane instrumented with double-twisted smart threads (DTSTs) is reported. DTSTs are made of two conductive threads obtained by coating cotton threads with carbon nanotubes. One thread is coated with a homogeneous thickness of single-walled carbon nanotubes (SWCNTs) to detect the intensity of an applied load and the other is coated with a graded thickness of SWCNTs to identify the position of the load along the thread. The mechanism and capacity of DTSTs to accurately sense an applied load are systematically analyzed. Results demonstrate that the fabricated 1D, 2D, and 3D sensing devices can be used to predict both the intensity and the position of an applied load. The sensors feature high sensitivity (between ≈0.1% and 1.56% kPa) and tunable resolution, good cycling resilience (>104 cycles), and a short response time (minimum 2.5 Hz). The presented strategy is a viable alternative for the design of simple, low-cost pressure sensors.

  17. Smart Cities and Charming Villages: New Heritage Processes in the Twenty-first Century

    Directory of Open Access Journals (Sweden)

    Beatriz Santamarina Campos

    2017-12-01

    Full Text Available The heritage phenomenon has undergone spectacular growth in recent decades in a boom that can be interpreted as an aspect of the third spirit of capitalism. The arrival of the economy of intangibles with its emphasis on this new production of value has changed the rules of the game for the global economy. In this article, we argue that a crucial transformation has taken place within the activation of heritage assets: we have moved from the political nationalism which triggered collective heritage in the nineteenth century, to a nationalism of consumption during the twentyfirst century. In this context, we focus on the different impact of heritage processes depending on where a location is positioned within global markets. This position will then condition the bid to become a smart city or charming village. We contend that both are two sides of the same coin.

  18. Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yirong [Univ. of Texas, El Paso, TX (United States)

    2017-12-10

    The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall material property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.

  19. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Directory of Open Access Journals (Sweden)

    Stefan Stein

    Full Text Available The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]. Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6] due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et

  20. A Brillouin smart FRP material and a strain data post processing software for structural health monitoring through laboratory testing and field application on a highway bridge

    Science.gov (United States)

    Bastianini, Filippo; Matta, Fabio; Galati, Nestore; Nanni, Antonio

    2005-05-01

    Strain and temperature sensing obtained through frequency shift evaluation of Brillouin scattered light is a technology that seems extremely promising for Structural Health Monitoring (SHM). Due to the intrinsic distributed sensing capability, Brillouin can measure the deformation of any individual segment of huge lengths of inexpensive single-mode fiber. In addition, Brillouin retains other typical advantages of Fiber Optic Sensors (FOS), such as harsh environment durability and interference rejection. Despite these advantages, the diffusion of Brillouin for SHM is constrained by different factors, such as the high equipment cost, the commercial unavailability of specific SHM oriented fiber products and even some prejudices on the required sensitivity performances. In the present work, a complete SHM pilot application was developed, installed and successfully operated during a diagnostic load test on the High Performance Steel (HPS) bridge A6358 located at the Lake of the Ozarks (Miller County, MO, USA). Four out of five girders were extensively instrumented with a "smart" Glass Fiber Reinforced Polymer (GFRP) tape having embedded fibers for strain sensing and thermal compensation. Data collected during a diagnostic load test were elaborated through a specific post-processing software, and the strain profiles retrieved were compared to traditional strain gauges and theoretical results based on the AASHTO LRFD Bridge Design Specifications for structural assessment purposes. The excellent results obtained confirm the effectiveness of Brillouin SHM systems for the monitoring of real applications.

  1. THE INFLUENCE OF AUTONOMOUS DIVING ON SENSES AND MENTAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Dragan Krivokapić

    2010-09-01

    Full Text Available Diving is classified within a group of sports accompanied with an increased risk, yet it is a sport of full biological significance. Diving implies change of immediate human environment. Water, as the natural ambient for diving issues specific demands to the organism, which in turn influence decrease in psychophysical abilities when underwater, and in some instances, immediately after emerging from it. The most important factors influencing decrease in psychophysical abilities are: immersion, increased ambient pressure, characteristics of diving equipment and atmosphere separation. The senses and the mental processes of the diver are significantly altered during the autonomous diving. Loss of self-weight perception and pressure put on joints cause disorders in function of kinesthetic senses and vestibular apparatus, which in turn becomes reflected on proprioception. Coldness of water, especially at grater depths, induces decline in pain sensation as well as in aptness and mobility of fingers. Sight remains normal, but the image received is slightly changed due to refraction of light on boundary surfaces. Visual field is narrowed down to fit the limited diving mask field of view. At the same time, diffusion of light and color absorption brings about the loss of both ability to perceive things and contrasts when at depths .Objects tend to appear bigger and closer underwater. Hearing is changed owing to the fact that the sound is not carried through the air but through the water, yet the speed of transmission causes only slight difference of left and right ear stimulation. Mental processes, informationassessment, creation of clear mental images of the actual moment, abstract thinking, decision making, etc. are not effective and precise. This state can be partly ascribed to the above mentioned problems with senses, partly to the greater influence of emotional as opposed to rational, but also to the narcotic effect of nitrogen that is produced while

  2. Smart grid

    International Nuclear Information System (INIS)

    Choi, Dong Bae

    2001-11-01

    This book describes press smart grid from basics to recent trend. It is divided into ten chapters, which deals with smart grid as green revolution in energy with introduction, history, the fields, application and needed technique for smart grid, Trend of smart grid in foreign such as a model business of smart grid in foreign, policy for smart grid in U.S.A, Trend of smart grid in domestic with international standard of smart grid and strategy and rood map, smart power grid as infrastructure of smart business with EMS development, SAS, SCADA, DAS and PQMS, smart grid for smart consumer, smart renewable like Desertec project, convergence IT with network and PLC, application of an electric car, smart electro service for realtime of electrical pricing system, arrangement of smart grid.

  3. REAL TIME DATA PROCESSING FOR OPTICAL REMOTE SENSING PAYLOADS

    Directory of Open Access Journals (Sweden)

    J. Wohlfeil

    2012-07-01

    Full Text Available The application of operational systems for remote sensing requires new approaches for data processing. It has to be the goal to derive user relevant information close the sensor itself and to downlink this information to a ground station or to provide them as input to an actuator of the space-borne platform. A complete automation of data processing is an essential first step for a thematic onboard data processing. In a second step, an appropriate onboard computer system has to be de-signed being able to fulfill the requirements. In this paper, standard data processing steps will be introduced correcting systematic errors during image capturing. A new hardware operating system, which is the interface between FPGA hardware and data processing algorithms, gives the opportunity to implement complex data processing modules in an effective way. As an example the derivation the camera's orientation based on data of an optical payload is described in detail. The thereby derived absolute or relative orientation is essential for high level data products. This will be illustrated by means of an onboard image matcher

  4. Enhancing the Teaching of Digital Processing of Remote Sensing Image Course through Geospatial Web Processing Services

    Science.gov (United States)

    di, L.; Deng, M.

    2010-12-01

    Remote sensing (RS) is an essential method to collect data for Earth science research. Huge amount of remote sensing data, most of them in the image form, have been acquired. Almost all geography departments in the world offer courses in digital processing of remote sensing images. Such courses place emphasis on how to digitally process large amount of multi-source images for solving real world problems. However, due to the diversity and complexity of RS images and the shortcomings of current data and processing infrastructure, obstacles for effectively teaching such courses still remain. The major obstacles include 1) difficulties in finding, accessing, integrating and using massive RS images by students and educators, and 2) inadequate processing functions and computing facilities for students to freely explore the massive data. Recent development in geospatial Web processing service systems, which make massive data, computing powers, and processing capabilities to average Internet users anywhere in the world, promises the removal of the obstacles. The GeoBrain system developed by CSISS is an example of such systems. All functions available in GRASS Open Source GIS have been implemented as Web services in GeoBrain. Petabytes of remote sensing images in NASA data centers, the USGS Landsat data archive, and NOAA CLASS are accessible transparently and processable through GeoBrain. The GeoBrain system is operated on a high performance cluster server with large disk storage and fast Internet connection. All GeoBrain capabilities can be accessed by any Internet-connected Web browser. Dozens of universities have used GeoBrain as an ideal platform to support data-intensive remote sensing education. This presentation gives a specific example of using GeoBrain geoprocessing services to enhance the teaching of GGS 588, Digital Remote Sensing taught at the Department of Geography and Geoinformation Science, George Mason University. The course uses the textbook "Introductory

  5. Development of Open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV

    Science.gov (United States)

    Park, J. W.; Jeong, H. H.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Recently, aerial photography with unmanned aerial vehicle (UAV) system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF) modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments's LTE (long-term evolution), Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area's that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision), RTKLIB, Open Drone Map.

  6. Development of Open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV

    Directory of Open Access Journals (Sweden)

    J. W. Park

    2016-06-01

    Full Text Available Recently, aerial photography with unmanned aerial vehicle (UAV system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments’s LTE (long-term evolution, Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area’s that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision, RTKLIB, Open Drone Map.

  7. Process Modeling for Energy Usage in “Smart House” System with a Help of Markov Discrete Chain

    Directory of Open Access Journals (Sweden)

    Victor Kravets

    2016-05-01

    Full Text Available Method for evaluating economic efficiency of technical systems using discrete Markov chains modelling illustrated by the system of “Smart house”, consisting, for example, of the three independently functioning elements. Dynamic model of a random power consumption process in the form of a symmetrical state graph of heterogeneous discrete Markov chain is built. The corresponding mathematical model of a random Markov process of power consumption in the “smart house” system in recurrent matrix form is being developed. Technique of statistical determination of probability of random transition elements of the system and the corresponding to the transition probability matrix of the discrete inhomogeneous Markov chain are developed. Statistically determined random transitions of system elements power consumption and the corresponding distribution laws are introduced. The matrix of transition prices, expectations for the possible states of a system price transition and, eventually, the cost of Markov process of power consumption throughout the day.

  8. Digital Learning As Enhanced Learning Processing? Cognitive Evidence for New insight of Smart Learning.

    Science.gov (United States)

    Di Giacomo, Dina; Ranieri, Jessica; Lacasa, Pilar

    2017-01-01

    Large use of technology improved quality of life across aging and favoring the development of digital skills. Digital skills can be considered an enhancing to human cognitive activities. New research trend is about the impact of the technology in the elaboration information processing of the children. We wanted to analyze the influence of technology in early age evaluating the impact on cognition. We investigated the performance of a sample composed of n. 191 children in school age distributed in two groups as users: high digital users and low digital users. We measured the verbal and visuoperceptual cognitive performance of children by n. 8 standardized psychological tests and ad hoc self-report questionnaire. Results have evidenced the influence of digital exposition on cognitive development: the cognitive performance is looked enhanced and better developed: high digital users performed better in naming, semantic, visual memory and logical reasoning tasks. Our finding confirms the data present in literature and suggests the strong impact of the technology using not only in the social, educational and quality of life of the people, but also it outlines the functionality and the effect of the digital exposition in early age; increased cognitive abilities of the children tailor digital skilled generation with enhanced cognitive processing toward to smart learning.

  9. A scaleable integrated sensing and control system for NDE, monitoring, and control of medium to very large composite smart structures

    Science.gov (United States)

    Jones, Jerry; Rhoades, Valerie; Arner, Radford; Clem, Timothy; Cuneo, Adam

    2007-04-01

    NDE measurements, monitoring, and control of smart and adaptive composite structures requires that the central knowledge system have an awareness of the entire structure. Achieving this goal necessitates the implementation of an integrated network of significant numbers of sensors. Additionally, in order to temporally coordinate the data from specially distributed sensors, the data must be time relevant. Early adoption precludes development of sensor technology specifically for this application, instead it will depend on the ability to utilize legacy systems. Partially supported by the U.S. Department of Commerce, National Institute of Standards and Technology, Advanced Technology Development Program (NIST-ATP), a scalable integrated system has been developed to implement monitoring of structural integrity and the control of adaptive/intelligent structures. The project, called SHIELD (Structural Health Identification and Electronic Life Determination), was jointly undertaken by: Caterpillar, N.A. Tech., Motorola, and Microstrain. SHIELD is capable of operation with composite structures, metallic structures, or hybrid structures. SHIELD consists of a real-time processing core on a Motorola MPC5200 using a C language based real-time operating system (RTOS). The RTOS kernel was customized to include a virtual backplane which makes the system completely scalable. This architecture provides for multiple processes to be operating simultaneously. They may be embedded as multiple threads on the core hardware or as separate independent processors connected to the core using a software driver called a NAT-Network Integrator (NATNI). NATNI's can be created for any communications application. In it's current embodiment, NATNI's have been created for CAN bus, TCP/IP (Ethernet) - both wired and 802.11 b and g, and serial communications using RS485 and RS232. Since SHIELD uses standard C language, it is easy to port any monitoring or control algorithm, thus providing for legacy

  10. A wearable 3D motion sensing system integrated with a Bluetooth smart phone application: A system level overview

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif

    2018-01-01

    description of a wearable 3D motion sensor. The sensing mechanism is based upon well-established magnetic and inertial measurement unit (MIMU), which integrates accelerometer, gyroscope and magnetometer data. Two sensor boards have been integrated within a

  11. The Elderly’s Independent Living in Smart Homes: A Characterization of Activities and Sensing Infrastructure Survey to Facilitate Services Development

    Science.gov (United States)

    Ni, Qin; García Hernando, Ana Belén; de la Cruz, Iván Pau

    2015-01-01

    Human activity detection within smart homes is one of the basis of unobtrusive wellness monitoring of a rapidly aging population in developed countries. Most works in this area use the concept of “activity” as the building block with which to construct applications such as healthcare monitoring or ambient assisted living. The process of identifying a specific activity encompasses the selection of the appropriate set of sensors, the correct preprocessing of their provided raw data and the learning/reasoning using this information. If the selection of the sensors and the data processing methods are wrongly performed, the whole activity detection process may fail, leading to the consequent failure of the whole application. Related to this, the main contributions of this review are the following: first, we propose a classification of the main activities considered in smart home scenarios which are targeted to older people’s independent living, as well as their characterization and formalized context representation; second, we perform a classification of sensors and data processing methods that are suitable for the detection of the aforementioned activities. Our aim is to help researchers and developers in these lower-level technical aspects that are nevertheless fundamental for the success of the complete application. PMID:26007717

  12. The Elderly’s Independent Living in Smart Homes: A Characterization of Activities and Sensing Infrastructure Survey to Facilitate Services Development

    Directory of Open Access Journals (Sweden)

    Qin Ni

    2015-05-01

    Full Text Available Human activity detection within smart homes is one of the basis of unobtrusive wellness monitoring of a rapidly aging population in developed countries. Most works in this area use the concept of “activity” as the building block with which to construct applications such as healthcare monitoring or ambient assisted living. The process of identifying a specific activity encompasses the selection of the appropriate set of sensors, the correct preprocessing of their provided raw data and the learning/reasoning using this information. If the selection of the sensors and the data processing methods are wrongly performed, the whole activity detection process may fail, leading to the consequent failure of the whole application. Related to this, the main contributions of this review are the following: first, we propose a classification of the main activities considered in smart home scenarios which are targeted to older people’s independent living, as well as their characterization and formalized context representation; second, we perform a classification of sensors and data processing methods that are suitable for the detection of the aforementioned activities. Our aim is to help researchers and developers in these lower-level technical aspects that are nevertheless fundamental for the success of the complete application.

  13. Named data networking-based smart home

    Directory of Open Access Journals (Sweden)

    Syed Hassan Ahmed

    2016-09-01

    Full Text Available Named data networking (NDN treats content/data as a “first class citizen” of the network by giving it a “name”. This content “name” is used to retrieve any information, unlike in device-centric networks (i.e., the current Internet, which depend on physical IP addresses. Meanwhile, the smart home concept has been gaining attention in academia and industries; various low-cost embedded devices are considered that can sense, process, store, and communicate data autonomously. In this paper, we study NDN in the context of smart-home communications, discuss the preliminary evaluations, and describe the future challenges of applying NDN in smart-home applications.

  14. Bringing the Community into the Process: Issues and Promising Practices for Involving Parents & Business in Local Smart Start Partnerships. UNC Smart Start Evaluation Report.

    Science.gov (United States)

    Cornish, Mary; Noblit, George

    Smart Start is North Carolina's partnership between state government and local leaders, service providers, and families to better serve children under age 6 and their families. The aim of the program is ensuring that all children enter school healthy and ready to learn. This study examined parent and business involvement in local Smart Start…

  15. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Science.gov (United States)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The

  16. Proceedings of the Eleventh International Symposium on Remote Sensing of Environment, volume 2. [application and processing of remotely sensed data

    Science.gov (United States)

    1977-01-01

    Application and processing of remotely sensed data are discussed. Areas of application include: pollution monitoring, water quality, land use, marine resources, ocean surface properties, and agriculture. Image processing and scene analysis are described along with automated photointerpretation and classification techniques. Data from infrared and multispectral band scanners onboard LANDSAT satellites are emphasized.

  17. Deep smarts.

    Science.gov (United States)

    Leonard, Dorothy; Swap, Walter

    2004-09-01

    When a person sizes up a complex situation and rapidly comes to a decision that proves to be not just good but brilliant, you think, "That was smart." After you watch him do this a few times, you realize you're in the presence of something special. It's not raw brainpower, though that helps. It's not emotional intelligence, either, though that, too, is often involved. It's deep smarts. Deep smarts are not philosophical--they're not"wisdom" in that sense, but they're as close to wisdom as business gets. You see them in the manager who understands when and how to move into a new international market, in the executive who knows just what kind of talk to give when her organization is in crisis, in the technician who can track a product failure back to an interaction between independently produced elements. These are people whose knowledge would be hard to purchase on the open market. Their insight is based on know-how more than on know-what; it comprises a system view as well as expertise in individual areas. Because deep smarts are experienced based and often context specific, they can't be produced overnight or readily imported into an organization. It takes years for an individual to develop them--and no time at all for an organization to lose them when a valued veteran walks out the door. They can be taught, however, with the right techniques. Drawing on their forthcoming book Deep Smarts, Dorothy Leonard and Walter Swap say the best way to transfer such expertise to novices--and, on a larger scale, to make individual knowledge institutional--isn't through PowerPoint slides, a Web site of best practices, online training, project reports, or lectures. Rather, the sage needs to teach the neophyte individually how to draw wisdom from experience. Companies have to be willing to dedicate time and effort to such extensive training, but the investment more than pays for itself.

  18. A wearable 3D motion sensing system integrated with a Bluetooth smart phone application: A system level overview

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-02

    An era of ubiquitous motion sensing has just begun. All electronic gadgets ranging from game consoles to mobile phones have some sort of motion sensors in them. In contrast to rigid motion sensing systems, this paper presents a system level description of a wearable 3D motion sensor. The sensing mechanism is based upon well-established magnetic and inertial measurement unit (MIMU), which integrates accelerometer, gyroscope and magnetometer data. Two sensor boards have been integrated within a wearable arm sleeve to capture 3D orientation of the human arm. The sensors have been interfaced with a Bluetooth transceiver chip, which transmits data to a mobile phone app using standard Bluetooth protocol. An android mobile phone app has been developed to display the human arm motion in real time.

  19. Challenging 'smart' in smart city strategies

    DEFF Research Database (Denmark)

    Sandvik, Kjetil; Knudsen, Jacob

    and development. Focusing on processes of citizen participation and co-creation as the main driving force, we introduce a concept of 'smart city at eye level'. The introduction of new media technology and new media uses need to emerge from a profound understanding of the wants, needs and abilities of the citizens......Smart city strategies concern the improvement of economic and political efficiency and the enabling of social, cultural and urban development (Hollands 2008) and covers a variety of fields from improving infrastructures, social and cultural development, resilience strategies (e.g. green energy......), improving schools, social welfare institutions, public and private institutions etc. The 'smart' in smart city strategies implies that these efforts are accomplished by the introduction and embedding of smart media technology into the very fabric of society. This is often done in a top-down and technology...

  20. Pattern Recognition in Optical Remote Sensing Data Processing

    Science.gov (United States)

    Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir

    Computational procedures of the land surface biophysical parameters retrieval imply that modeling techniques are available of the outgoing radiation description together with monitoring techniques of remote sensing data processing using registered radiances between the related optical sensors and the land surface objects called “patterns”. Pattern recognition techniques are a valuable approach to the processing of remote sensing data for images of the land surface - atmosphere system. Many simplified codes of the direct and inverse problems of atmospheric optics are considered applicable for the imagery processing of low and middle spatial resolution. Unless the authors are not interested in the accuracy of the final information products, they utilize these standard procedures. The emerging necessity of processing data of high spectral and spatial resolution given by imaging spectrometers puts forward the newly defined pattern recognition techniques. The proposed tools of using different types of classifiers combined with the parameter retrieval procedures for the forested environment are maintained to have much wider applications as compared with the image features and object shapes extraction, which relates to photometry and geometry in pixel-level reflectance representation of the forested land cover. The pixel fraction and reflectance of “end-members” (sunlit forest canopy, sunlit background and shaded background for a particular view and solar illumination angle) are only a part in the listed techniques. It is assumed that each pixel views collections of the individual forest trees and the pixel-level reflectance can thus be computed as a linear mixture of sunlit tree tops, sunlit background (or understory) and shadows. Instead of these photometry and geometry constraints, the improved models are developed of the functional description of outgoing spectral radiation, in which such parameters of the forest canopy like the vegetation biomass density for

  1. Smart technology

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1991-01-01

    The success of smart technology in the pursuit of the Gulf War has accentuated the awareness of how the Safeguards and Security disciplines are changing in response to new weaponry. Throughout the Department of Energy Integrated Complex (IC) Safeguards and Security efforts such as: Protection Programs Operations; Materials, Controls and Accountability; Information Security; Computer Security; Operational Security; Personnel Security, Safeguards and/or Security (S and S) surveys, and Inspections and Evaluations are undergoing a reassessment and refocusing. Some of this is in response to such things as the DOE initiated Freeze Report and the Drell Report. An important aspect is also technological, adjusting the way business is done in light of the weapons, tools and processes/procedures becoming available. This paper addresses the S and S issues with the promise of using smart technology to develop new approaches and equipment across the IC

  2. Research on Remote Sensing Image Template Processing Based on Global Subdivision Theory

    OpenAIRE

    Xiong Delan; Du Genyuan

    2013-01-01

    Aiming at the questions of vast data, complex operation, and time consuming processing for remote sensing image, subdivision template was proposed based on global subdivision theory, which can set up high level of abstraction and generalization for remote sensing image. The paper emphatically discussed the model and structure of subdivision template, and put forward some new ideas for remote sensing image template processing, key technology and quickly applied demonstration. The research has ...

  3. GEOVISUALIZATION FOR SMART VIDEO SURVEILLANCE

    Directory of Open Access Journals (Sweden)

    R. Oves García

    2017-09-01

    Full Text Available Nowadays with the emergence of smart cities and the creation of new sensors capable to connect to the network, it is not only possible to monitor the entire infrastructure of a city, including roads, bridges, rail/subways, airports, communications, water, power, but also to optimize its resources, plan its preventive maintenance and monitor security aspects while maximizing services for its citizens. In particular, the security aspect is one of the most important issues due to the need to ensure the safety of people. However, if we want to have a good security system, it is necessary to take into account the way that we are going to present the information. In order to show the amount of information generated by sensing devices in real time in an understandable way, several visualization techniques are proposed for both local (involves sensing devices in a separated way and global visualization (involves sensing devices as a whole. Taking into consideration that the information is produced and transmitted from a geographic location, the integration of a Geographic Information System to manage and visualize the behavior of data becomes very relevant. With the purpose of facilitating the decision-making process in a security system, we have integrated the visualization techniques and the Geographic Information System to produce a smart security system, based on a cloud computing architecture, to show relevant information about a set of monitored areas with video cameras.

  4. Geovisualization for Smart Video Surveillance

    Science.gov (United States)

    Oves García, R.; Valentín, L.; Serrano, S. A.; Palacios-Alonso, M. A.; Sucar, L. Enrique

    2017-09-01

    Nowadays with the emergence of smart cities and the creation of new sensors capable to connect to the network, it is not only possible to monitor the entire infrastructure of a city, including roads, bridges, rail/subways, airports, communications, water, power, but also to optimize its resources, plan its preventive maintenance and monitor security aspects while maximizing services for its citizens. In particular, the security aspect is one of the most important issues due to the need to ensure the safety of people. However, if we want to have a good security system, it is necessary to take into account the way that we are going to present the information. In order to show the amount of information generated by sensing devices in real time in an understandable way, several visualization techniques are proposed for both local (involves sensing devices in a separated way) and global visualization (involves sensing devices as a whole). Taking into consideration that the information is produced and transmitted from a geographic location, the integration of a Geographic Information System to manage and visualize the behavior of data becomes very relevant. With the purpose of facilitating the decision-making process in a security system, we have integrated the visualization techniques and the Geographic Information System to produce a smart security system, based on a cloud computing architecture, to show relevant information about a set of monitored areas with video cameras.

  5. A new smart micro grid process control strategy : the human leading the thermal comfort control

    NARCIS (Netherlands)

    Zeiler, W.; Vissers, D.R.; Boxem, G.

    2013-01-01

    There is a clear need for more sustainable solutions to provide energy within the built environment. A Smart Electrical Energy supplyGrid is being developed by the major Electricity distribution companies to cope with fluctuations in energy generation from the different renewableenergy sources. To

  6. Dirichlet Process Gaussian Mixture Model for Activity Discovery in Smart Homes with Ambient Sensors

    NARCIS (Netherlands)

    Nguyen, Thuong; Le Viet Duc, Duc Viet; Zhang, Quing; Karunanithi, Mohan

    2017-01-01

    Most of the existing approaches to activity recognition in smart homes rely on supervised learning with well annotated sensor data. However obtaining such labeled data is not only challenging but sometimes also an unobtainable task, especially for senior citizens who may suffer various mental health

  7. Smart sensors and systems innovations for medical, environmental, and IoT applications

    CERN Document Server

    Yasuura, Hiroto; Liu, Yongpan; Lin, Youn-Long

    2017-01-01

    This book describes the technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoT). The authors provide a multidisciplinary view of sensor technology from materials, process, circuits, and big data domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc. Unlike earlier books on sensors, this book provides a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms. Profiles active research on smart sensors based on CMOS microelectronics; Describes applications of sensors and sensor systems in cyber physical systems, the social information infrastructure in our modern world; Includes coverage of a variety of related information technologies supporting the application of sensors; Discusses the integration of computation, networking, actuation, database...

  8. Design, processing and characterization of mechanically alloyed galfenol & lightly rare-earth doped FeGa alloys as smart materials for actuators and transducers

    Science.gov (United States)

    Taheri, Parisa

    Smart materials find a wide range of application areas due to their varied response to external stimuli. The different areas of application can be in our day to day life, aerospace, civil engineering applications, and mechatronics to name a few. Magnetostrictive materials are a class of smart materials that can convert energy between the magnetic and elastic states. Galfenol is a magnetostrictive alloy comprised primarily of the elements iron (Fe) and gallium (Ga). Galfenol exhibits a unique combination of mechanical and magnetostrictive (magnetic) properties that legacy smart materials do not. Galfenol's ability to function while in tension, mechanical robustness and high Curie temperature (600 °C) is attracting interest for the alloy's use in mechanically harsh and elevated temperature environments. Applications actively being investigated include transducers for down-hole use, next-generation fuel injectors, sensing, and energy harvesting devices. Understanding correlations between microstructure, electronic structure, and functional response is key to developing novel magnetostrictive materials for sensor and actuator technologies. To this end, in the first part of this thesis we report successful fabrication and investigation of magnetic and magnetostrictive properties of mechanically alloyed Fe81Ga19 compounds. For the first time, we could measure magnetostrictive properties of mechanically alloyed FeGa compounds. A maximum saturation magnetostriction of 41 ppm was achieved which is comparable to those measured from polycrystalline FeGa alloys prepared by other processing techniques, namely gas atomization and cold rolling. Overall, this study demonstrates the feasibility of large-scale production of FeGa polycrystalline alloys powders by a simple and cost-effective mechanical alloying technique. In the second part of this work, we report for the first time, experimental results pertaining to successful fabrication and advanced characterization of a series

  9. Findings for the implementation of a foresight process. Case: NCE Smart Energy Markets; Funn etter gjennomfoering av en foresightprosess. Case: NCE Smart Energy Markets

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Frode Ramstad

    2011-07-01

    NCE Smart Energy Markets conducted in the period 2009 - 2010 a foresight process in which it was conducted a preliminary meeting, a kick-off meeting, four major collections and a 'recovery meeting' way for players who would enter the process. As a result, they decided to continue a joint process management meetings under the name of the cluster with new collections 2010 - 2011 with the same external process manager. VRI Oestfold; Oestfold Research helped with follow-up evaluation of the process and presented in this report findings from the evaluation of the process. The purpose of the evaluation was, among other things, to contribute to a good process flow, documentation of experiences and achievements and contributions to better understanding and discussion about the direction and emphasis on the way. The evaluation aimed to answer the following three questions: Are the expected results achieved? Is the process complete successfully?Is foresight appropriate instrument in the given situation?The findings indicate that participants perceive that they are on course to reach the goals that are related to the community; common cluster strategy for growth and renewal, carving out the correct goals for the future, the process for getting into a committed relationship, and develop an innovative environment that can stay ahead of the market. At the same time they perceive that they are not close to having achieved the one goal that is directly related to the individual company - to contribute to the individual company's strategy will be more successful. Process management is perceived as a distinct and developing well underway, while project management is perceived as not quite so obvious, but in a better development. When we look at the core businesses consisting of few active businesses and some of the original have reduced their participation, while a number new have come to the last two workshops. It also appears that there is a potential to increase

  10. Experimental wind tunnel study of a smart sensing skin for condition evaluation of a wind turbine blade

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2017-12-01

    Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry and lack of economic and scalable sensing technologies capable of detecting, localizing, and quantifying faults over a blade’s global area. A solution is to deploy inexpensive large area electronics over strategic areas of the monitored component, analogous to sensing skin. The authors have previously proposed a large area electronic consisting of a soft elastomeric capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can, therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that measures the additive strain over a surface. Recently, its application in a hybrid dense sensor network (HDSN) configuration has been studied, where a network of SECs is augmented with a few off-the-shelf strain gauges to measure boundary conditions and decompose the additive strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect, localize, and quantify faults. In this work, we study the performance of the proposed sensing skin at conducting condition evaluation of a wind turbine blade model in an operational environment. Damage in the form of changing boundary conditions and cuts in the monitored substrate are induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated algorithms to detect, localize, and quantify damage. These results show promise for the future deployment of fully integrated sensing skins deployed inside wind turbine blades for condition evaluation.

  11. Hardware Design of a Smart Meter

    OpenAIRE

    Ganiyu A. Ajenikoko; Anthony A. Olaomi

    2014-01-01

    Smart meters are electronic measurement devices used by utilities to communicate information for billing customers and operating their electric systems. This paper presents the hardware design of a smart meter. Sensing and circuit protection circuits are included in the design of the smart meter in which resistors are naturally a fundamental part of the electronic design. Smart meters provides a route for energy savings, real-time pricing, automated data collection and elimina...

  12. Smart TV and data protection

    NARCIS (Netherlands)

    van Breda, B.; van Eijk, N.; Irion, K.; McGonagle, T.; van Voorst, S.

    2016-01-01

    What is smart TV? How does smart TV compare with other forms of audiovisual media? What regulatory frameworks govern smart TV? What guidance can be found in selected country-specific case studies? What are the dangers associated with the collection, storage and processing of private user information

  13. Humidity sensing in insects-from ecology to neural processing.

    Science.gov (United States)

    Enjin, Anders

    2017-12-01

    Humidity is an omnipresent climatic factor that influences the fitness, reproductive behavior and geographic distribution of animals. Insects in particular use humidity cues to navigate the environment. Although the sensory neurons of this elusive sense were first described more than fifty years ago, the transduction mechanism of humidity sensing (hygrosensation) remains unknown. Recent work has uncovered some of the key molecules involved, opening up for novel approaches to study hygrosensory transduction. In this review, I will discuss this progress made toward understanding hygrosensation in insects. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Hybrid data acquisition and processing strategies with increased throughput and selectivity: pSMART analysis for global qualitative and quantitative analysis.

    Science.gov (United States)

    Prakash, Amol; Peterman, Scott; Ahmad, Shadab; Sarracino, David; Frewen, Barbara; Vogelsang, Maryann; Byram, Gregory; Krastins, Bryan; Vadali, Gouri; Lopez, Mary

    2014-12-05

    Data-dependent acquisition (DDA) and data-independent acquisition strategies (DIA) have both resulted in improved understanding of proteomics samples. Both strategies have advantages and disadvantages that are well-published, where DDA is typically applied for deep discovery and DIA may be used to create sample records. In this paper, we present a hybrid data acquisition and processing strategy (pSMART) that combines the strengths of both techniques and provides significant benefits for qualitative and quantitative peptide analysis. The performance of pSMART is compared to published DIA strategies in an experiment that allows the objective assessment of DIA performance with respect to interrogation of previously acquired MS data. The results of this experiment demonstrate that pSMART creates fewer decoy hits than a standard DIA strategy. Moreover, we show that pSMART is more selective, sensitive, and reproducible than either standard DIA or DDA strategies alone.

  15. Smart Grid, Smart Europe

    OpenAIRE

    VITIELLO SILVIA; FULLI Gianluca; MENGOLINI Anna Maria

    2013-01-01

    Le smart grid, o reti elettriche intelligenti, aprono la strada a nuove applicazioni con conseguenze di vasta portata per l’intero sistema elettrico, tra le quali la principale è la capacità di integrare nella rete esistente più fonti di energia rinnovabili (FER), veicoli elettrici e fonti di generazione distribuita. Le smart grid inoltre garantiscono una più efficiente ed affidabile risposta alla domanda di energia, sia da un punto di vista tecnico, permettendo un monitoraggio e un controll...

  16. Remote sensing, airborne radiometric survey and aeromagnetic survey data processing and analysis

    International Nuclear Information System (INIS)

    Dong Xiuzhen; Liu Dechang; Ye Fawang; Xuan Yanxiu

    2009-01-01

    Taking remote sensing data, airborne radiometric data and aero magnetic survey data as an example, the authors elaborate about basic thinking of remote sensing data processing methods, spectral feature analysis and adopted processing methods, also explore the remote sensing data combining with the processing of airborne radiometric survey and aero magnetic survey data, and analyze geological significance of processed image. It is not only useful for geological environment research and uranium prospecting in the study area, but also reference to applications in another area. (authors)

  17. Smart Sensing Based on DNA-Metal Interaction Enables a Label-Free and Resettable Security Model of Electrochemical Molecular Keypad Lock.

    Science.gov (United States)

    Du, Yan; Han, Xu; Wang, Chenxu; Li, Yunhui; Li, Bingling; Duan, Hongwei

    2018-01-26

    Recently, molecular keypad locks have received increasing attention. As a new subgroup of smart biosensors, they show great potential for protecting information as a molecular security data processor, rather than merely molecular recognition and quantitation. Herein, label-free electrochemically transduced Ag + and cysteine (Cys) sensors were developed. A molecular keypad lock model with reset function was successfully realized based on the balanced interaction of metal ion with its nucleic acid and chemical ligands. The correct input of "1-2-3" (i.e., "Ag + -Cys-cDNA") is the only password of such molecular keypad lock. Moreover, the resetting process of either correct or wrong input order could be easily made by Cys, buffer, and DI water treatment. Therefore, our system provides an even smarter system of molecular keypad lock, which could inhibit illegal access of unauthorized users, holding great promise in information protection at the molecular level.

  18. Remote Sensing of Surficial Process Responses to Extreme Meteorological Events

    Science.gov (United States)

    Brakenridge, G. Robert

    1997-01-01

    Changes in the frequency and magnitude of extreme meteorological events are associated with changing environmental means. Such events are important in human affairs, and can also be investigated by orbital remote sensing. During the course of this project, we applied ERS-1, ERS-2, Radarsat, and an airborne sensor (AIRSAR-TOPSAR) to measure flood extents, flood water surface profiles, and flood depths. We established a World Wide Web site (the Dartmouth Flood Observatory) for publishing remote sensing-based maps of contemporary floods worldwide; this is also an online "active archive" that presently constitutes the only global compilation of extreme flood events. We prepared an article for EOS concerning SAR imaging of the Mississippi Valley flood; an article for the International Journal of Remote Sensing on measurement of a river flood wave using ERS-2, began work on an article (since completed and published) on the Flood Observatory for a Geoscience Information Society Proceedings volume, and presented lectures at several Geol. Soc. of America Natl. Meetings, an Assoc. of Amer. Geographers Natl. Meeting, and a Binghamton Geomorphology Symposium (all on SAR remote sensing of the Mississippi Valley flood). We expanded in-house modeling capabilities by installing the latest version of the Army Corps of Engineers RMA two-dimensional hydraulics software and BYU Engineering Graphics Lab's Surface Water Modeling System (finite elements based pre- and post-processors for RMA work) and also added watershed modeling software. We are presently comparing the results of the 2-d flow models with SAR image data. The grant also supported several important upgrades of pc-based remote sensing infrastructure at Dartmouth. During work on this grant, we collaborated with several workers at the U.S. Army Corps of Engineers, Remote Sensing/GIS laboratory (for flood inundation mapping and modeling; particularly of the Illinois River using the AIRSAR/TOPSAR/ERS-2 combined data), with Dr

  19. An Adaptable System to Support Provenance Management for the Public Policy-Making Process in Smart Cities

    Directory of Open Access Journals (Sweden)

    Barkha Javed

    2018-01-01

    Full Text Available Government policies aim to address public issues and problems and therefore play a pivotal role in people’s lives. The creation of public policies, however, is complex given the perspective of large and diverse stakeholders’ involvement, considerable human participation, lengthy processes, complex task specification and the non-deterministic nature of the process. The inherent complexities of the policy process impart challenges for designing a computing system that assists in supporting and automating the business process pertaining to policy setup, which also raises concerns for setting up a tracking service in the policy-making environment. A tracking service informs how decisions have been taken during policy creation and can provide useful and intrinsic information regarding the policy process. At present, there exists no computing system that assists in tracking the complete process that has been employed for policy creation. To design such a system, it is important to consider the policy environment challenges; for this a novel network and goal based approach has been framed and is covered in detail in this paper. Furthermore, smart governance objectives that include stakeholders’ participation and citizens’ involvement have been considered. Thus, the proposed approach has been devised by considering smart governance principles and the knowledge environment of policy making where tasks are largely dependent on policy makers’ decisions and on individual policy objectives. Our approach reckons the human dimension for deciding and defining autonomous process activities at run time. Furthermore, with the network-based approach, so-called provenance data tracking is employed which enables the capture of policy process.

  20. Collaborative Educational Leadership: The Emergence of Human Interactional Sense-Making Process as a Complex System

    Science.gov (United States)

    Jäppinen, Aini-Kristiina

    2014-01-01

    The article aims at explicating the emergence of human interactional sense-making process within educational leadership as a complex system. The kind of leadership is understood as a holistic entity called collaborative leadership. There, sense-making emerges across interdependent domains, called attributes of collaborative leadership. The…

  1. A Smart Toy to Enhance the Decision-Making Process at Children’s Psychomotor Delay Screenings: A Pilot Study

    Science.gov (United States)

    2017-01-01

    agreement analysis (intraclass correlation 0.961, 95% CI 0.937-0.967), suggesting that the process was successful to separate different levels of performance. A factor analysis of collected data showed that three factors, trembling, speed, and accuracy, accounted for 76.79% of the total variance, but only two of them were predictors of performance in a regression analysis: accuracy (P=.001) and speed (P=.002). The other factor, trembling (P=.79), did not have a significant effect on this dependent variable. Conclusions The EDUCERE DDSS is ready to use the regression equation obtained for the dependent variable “performance” as an algorithm for the automatic detection of psychomotor developmental delays. The results of the factor analysis are valuable to simplify the design of the smart toy by taking into account only the significant variables in the collector module. The fine-tuning of the toy process module will be carried out by following the specifications resulting from the analysis of the data to improve the efficiency and effectiveness of the product. PMID:28526666

  2. A Smart Toy to Enhance the Decision-Making Process at Children's Psychomotor Delay Screenings: A Pilot Study.

    Science.gov (United States)

    Gutiérrez García, María Angeles; Martín Ruiz, María Luisa; Rivera, Diego; Vadillo, Laura; Valero Duboy, Miguel Angel

    2017-05-19

    .961, 95% CI 0.937-0.967), suggesting that the process was successful to separate different levels of performance. A factor analysis of collected data showed that three factors, trembling, speed, and accuracy, accounted for 76.79% of the total variance, but only two of them were predictors of performance in a regression analysis: accuracy (P=.001) and speed (P=.002). The other factor, trembling (P=.79), did not have a significant effect on this dependent variable. The EDUCERE DDSS is ready to use the regression equation obtained for the dependent variable "performance" as an algorithm for the automatic detection of psychomotor developmental delays. The results of the factor analysis are valuable to simplify the design of the smart toy by taking into account only the significant variables in the collector module. The fine-tuning of the toy process module will be carried out by following the specifications resulting from the analysis of the data to improve the efficiency and effectiveness of the product. ©María Angeles Gutiérrez García, María Luisa Martín Ruiz, Diego Rivera, Laura Vadillo, Miguel Angel Valero Duboy. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 19.05.2017.

  3. Study on algorithm of process neural network for soft sensing in sewage disposal system

    Science.gov (United States)

    Liu, Zaiwen; Xue, Hong; Wang, Xiaoyi; Yang, Bin; Lu, Siying

    2006-11-01

    A new method of soft sensing based on process neural network (PNN) for sewage disposal system is represented in the paper. PNN is an extension of traditional neural network, in which the inputs and outputs are time-variation. An aggregation operator is introduced to process neuron, and it makes the neuron network has the ability to deal with the information of space-time two dimensions at the same time, so the data processing enginery of biological neuron is imitated better than traditional neuron. Process neural network with the structure of three layers in which hidden layer is process neuron and input and output are common neurons for soft sensing is discussed. The intelligent soft sensing based on PNN may be used to fulfill measurement of the effluent BOD (Biochemical Oxygen Demand) from sewage disposal system, and a good training result of soft sensing was obtained by the method.

  4. Smart Sensing Methodology for Object Identification Using Circularly Polarized Luminescence from Coordination-Driven Self-Assembly.

    Science.gov (United States)

    Imai, Yuki; Nakano, Yuka; Kawai, Tsuyoshi; Yuasa, Junpei

    2018-05-21

    This work demonstrates a potential use of circularly polarized luminescence for object identification methodology in a sensor application. Towards this aim, we have developed new luminescence probes using pyrene derivatives as sensor luminophores. The probes [(R,R)- and (S,S)-Im2Py] contain two chiral imidazole moieties at 1,6-positions through ethynyl spacers (the angle between the spacers is close to 180°). The probe molecules spontaneously self-assemble into chiral stacks (P or M helicity) upon coordination to metal ions with tetrahedral coordination preference (e.g., Zn2+). The chiral probes display neither circular dichroism (CD) nor circularly polarized luminescence (CPL) in the absence of metal ions. However, [(R,R)- and (S,S)-Im2Py] begins to exhibit intense chiroptical activity (CD and CPL) upon self-assembly with Zn2+ ions. The unique chiroptical properties of [(R,R)- and (S,S)-Im2Py] with chemical stimuli-responsibility are capable of demonstrating the new sensing methodology using the CPL signal as detection output, enabling us to discriminate between a signal from the target analyte and that from non-target species. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Smart carbon nanotube/fiber and PVA fiber-reinforced composites for stress sensing and chloride ion detection

    Science.gov (United States)

    Hoheneder, Joshua

    Fiber reinforced composites (FRC) with polyvinyl alcohol (PVA) fibers and carbon nanofibers (CNF) had an excellent flexural strength in excess of 18.5 MPa compared to reference samples of 15.8 MPa. It was found that the developed, depending on applied stress and exposure to chloride solutions, composites exhibit some electrical conductivity, from 4.20×10 -4 (Ω-1m-1 to 4.13×10 -4 Ω-1m-1. These dependences can be characterized by piezioresistive and chemoresistive coefficients demonstrating that the material possesses self-sensing capabilities. The sensitivity to stain and chloride solutions can be enhanced by incorporating small amounts of carbon nanofibers (CNF) or carbon nanotube (CNT) into composite structure. Conducted research has demonstrated a strong dependency of electrical properties of composite on crack formation in moist environments. The developed procedure is scalable for industrial application in concrete structures that require nondestructive stress monitoring, integrity under high service loads and stability in harsh environments.

  6. On the Convergence of Implicit Iterative Processes for Asymptotically Pseudocontractive Mappings in the Intermediate Sense

    Directory of Open Access Journals (Sweden)

    Xiaolong Qin

    2011-01-01

    Full Text Available An implicit iterative process is considered. Strong and weak convergence theorems of common fixed points of a finite family of asymptotically pseudocontractive mappings in the intermediate sense are established in a real Hilbert space.

  7. Identification of food spoilage in the smart home based on neural and fuzzy processing of odour sensor responses.

    Science.gov (United States)

    Green, Geoffrey C; Chan, Adrian D C; Goubran, Rafik A

    2009-01-01

    Adopting the use of real-time odour monitoring in the smart home has the potential to alert the occupant of unsafe or unsanitary conditions. In this paper, we measured (with a commercial metal-oxide sensor-based electronic nose) the odours of five household foods that had been left out at room temperature for a week to spoil. A multilayer perceptron (MLP) neural network was trained to recognize the age of the samples (a quantity related to the degree of spoilage). For four of these foods, median correlation coefficients (between target values and MLP outputs) of R > 0.97 were observed. Fuzzy C-means clustering (FCM) was applied to the evolving odour patterns of spoiling milk, which had been sampled more frequently (4h intervals for 7 days). The FCM results showed that both the freshest and oldest milk samples had a high degree of membership in "fresh" and "spoiled" clusters, respectively. In the future, as advancements in electronic nose development remove the present barriers to acceptance, signal processing methods like those explored in this paper can be incorporated into odour monitoring systems used in the smart home.

  8. Smart assistants for smart homes

    OpenAIRE

    Rasch, Katharina

    2013-01-01

    The smarter homes of tomorrow promise to increase comfort, aid elderly and disabled people, and help inhabitants save energy. Unfortunately, smart homes today are far from this vision – people who already live in such a home struggle with complicated user interfaces, inflexible home configurations, and difficult installation procedures. Under these circumstances, smart homes are not ready for mass adoption. This dissertation addresses these issues by proposing two smart assistants for smart h...

  9. Smart Cities for Smart Children

    DEFF Research Database (Denmark)

    Rehm, Matthias; Jensen, Martin Lynge; Wøldike, Niels Peter

    This position paper presents the concept of smart cities for smart children before highlighting three concrete projects we are currently running in order to investigate different aspects of the underlying concept like social-relational interaction and situated and experiential learning.......This position paper presents the concept of smart cities for smart children before highlighting three concrete projects we are currently running in order to investigate different aspects of the underlying concept like social-relational interaction and situated and experiential learning....

  10. Detection of Social Interaction in Smart Spaces.

    Science.gov (United States)

    Cook, Diane J; Crandall, Aaron; Singla, Geetika; Thomas, Brian

    2010-02-01

    The pervasive sensing technologies found in smart environments offer unprecedented opportunities for monitoring and assisting the individuals who live and work in these spaces. An aspect of daily life that is important for one's emotional and physical health is social interaction. In this paper we investigate the use of smart environment technologies to detect and analyze interactions in smart spaces. We introduce techniques for collect and analyzing sensor information in smart environments to help in interpreting resident behavior patterns and determining when multiple residents are interacting. The effectiveness of our techniques is evaluated using two physical smart environment testbeds.

  11. REMOTE SENSING IMAGE QUALITY ASSESSMENT EXPERIMENT WITH POST-PROCESSING

    Directory of Open Access Journals (Sweden)

    W. Jiang

    2018-04-01

    Full Text Available This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.

  12. Electricity Markets, Smart Grids and Smart Buildings

    Science.gov (United States)

    Falcey, Jonathan M.

    A smart grid is an electricity network that accommodates two-way power flows, and utilizes two-way communications and increased measurement, in order to provide more information to customers and aid in the development of a more efficient electricity market. The current electrical network is outdated and has many shortcomings relating to power flows, inefficient electricity markets, generation/supply balance, a lack of information for the consumer and insufficient consumer interaction with electricity markets. Many of these challenges can be addressed with a smart grid, but there remain significant barriers to the implementation of a smart grid. This paper proposes a novel method for the development of a smart grid utilizing a bottom up approach (starting with smart buildings/campuses) with the goal of providing the framework and infrastructure necessary for a smart grid instead of the more traditional approach (installing many smart meters and hoping a smart grid emerges). This novel approach involves combining deterministic and statistical methods in order to accurately estimate building electricity use down to the device level. It provides model users with a cheaper alternative to energy audits and extensive sensor networks (the current methods of quantifying electrical use at this level) which increases their ability to modify energy consumption and respond to price signals The results of this method are promising, but they are still preliminary. As a result, there is still room for improvement. On days when there were no missing or inaccurate data, this approach has R2 of about 0.84, sometimes as high as 0.94 when compared to measured results. However, there were many days where missing data brought overall accuracy down significantly. In addition, the development and implementation of the calibration process is still underway and some functional additions must be made in order to maximize accuracy. The calibration process must be completed before a reliable

  13. Theory and applications of smart cameras

    CERN Document Server

    2016-01-01

    This book presents an overview of smart camera systems, considering practical applications but also reviewing fundamental aspects of the underlying technology.  It introduces in a tutorial style the principles of sensing and signal processing, and also describes topics such as wireless connection to the Internet of Things (IoT) which is expected to be the biggest market for smart cameras. It is an excellent guide to the fundamental of smart camera technology, and the chapters complement each other well as the authors have worked as a team under the auspice of GFP(Global Frontier Project), the largest-scale funded research in Korea.  This is the third of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies.  The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering significant improvements in information processi...

  14. Autonomous Multicamera Tracking on Embedded Smart Cameras

    Directory of Open Access Journals (Sweden)

    Bischof Horst

    2007-01-01

    Full Text Available There is currently a strong trend towards the deployment of advanced computer vision methods on embedded systems. This deployment is very challenging since embedded platforms often provide limited resources such as computing performance, memory, and power. In this paper we present a multicamera tracking method on distributed, embedded smart cameras. Smart cameras combine video sensing, processing, and communication on a single embedded device which is equipped with a multiprocessor computation and communication infrastructure. Our multicamera tracking approach focuses on a fully decentralized handover procedure between adjacent cameras. The basic idea is to initiate a single tracking instance in the multicamera system for each object of interest. The tracker follows the supervised object over the camera network, migrating to the camera which observes the object. Thus, no central coordination is required resulting in an autonomous and scalable tracking approach. We have fully implemented this novel multicamera tracking approach on our embedded smart cameras. Tracking is achieved by the well-known CamShift algorithm; the handover procedure is realized using a mobile agent system available on the smart camera network. Our approach has been successfully evaluated on tracking persons at our campus.

  15. Intelligent Sensing in Dynamic Environments Using Markov Decision Process

    Science.gov (United States)

    Nanayakkara, Thrishantha; Halgamuge, Malka N.; Sridhar, Prasanna; Madni, Asad M.

    2011-01-01

    In a network of low-powered wireless sensors, it is essential to capture as many environmental events as possible while still preserving the battery life of the sensor node. This paper focuses on a real-time learning algorithm to extend the lifetime of a sensor node to sense and transmit environmental events. A common method that is generally adopted in ad-hoc sensor networks is to periodically put the sensor nodes to sleep. The purpose of the learning algorithm is to couple the sensor’s sleeping behavior to the natural statistics of the environment hence that it can be in optimal harmony with changes in the environment, the sensors can sleep when steady environment and stay awake when turbulent environment. This paper presents theoretical and experimental validation of a reward based learning algorithm that can be implemented on an embedded sensor. The key contribution of the proposed approach is the design and implementation of a reward function that satisfies a trade-off between the above two mutually contradicting objectives, and a linear critic function to approximate the discounted sum of future rewards in order to perform policy learning. PMID:22346624

  16. Intelligent Sensing in Dynamic Environments Using Markov Decision Process

    Directory of Open Access Journals (Sweden)

    Asad M. Madni

    2011-01-01

    Full Text Available In a network of low-powered wireless sensors, it is essential to capture as many environmental events as possible while still preserving the battery life of the sensor node. This paper focuses on a real-time learning algorithm to extend the lifetime of a sensor node to sense and transmit environmental events. A common method that is generally adopted in ad-hoc sensor networks is to periodically put the sensor nodes to sleep. The purpose of the learning algorithm is to couple the sensor’s sleeping behavior to the natural statistics of the environment hence that it can be in optimal harmony with changes in the environment, the sensors can sleep when steady environment and stay awake when turbulent environment. This paper presents theoretical and experimental validation of a reward based learning algorithm that can be implemented on an embedded sensor. The key contribution of the proposed approach is the design and implementation of a reward function that satisfies a trade-off between the above two mutually contradicting objectives, and a linear critic function to approximate the discounted sum of future rewards in order to perform policy learning.

  17. From the manual meter reading to Smart Metering. Step by step migration concepts for smart technologies; Von der Handablesung zum Smart Metering. Migrationskonzepte zum schrittweisen Ausbau von smarten Technologien

    Energy Technology Data Exchange (ETDEWEB)

    Imholz, Urs [GWF MessSysteme AG, Luzern (Switzerland)

    2012-07-01

    Many Utility companies are planning the modification of their grid for the future demand of decentralized power production of renewable energy. This report is giving attention to the question how to invest already today step by step in smart technologies, based on the existing infrastructure. Multi Utility companies are also asking the question, how to deal with the integration of gas, water and heat into an automated meter reading system. A number of Swiss Utility companies are testing the process of Smart Metering and Smart Grid in pilot projects and field tests. In those tests, the Utility companies will not also cover the technical feasibility but also to check the financial aspects with a business assessment for smart technologies. The Industry is creating together with the Utility companies a sustainable development for the energy landscape of tomorrow. We all know, in the sense of energy distribution, the year 2050 will be the day after tomorrow. (orig.)

  18. Common and uncommon sense about erosional processes in mountain lands

    Science.gov (United States)

    R. M. Rice

    1981-01-01

    Current knowledge of erosional processes in mountainous watersheds is reviewed with emphasis on the west coast of the United States. Appreciation of the relative magnitude of erosional processes may be distorted by the tendency for researchers to study ""problems"" and by the relatively short time span of their records

  19. Crop status sensing system by multi-spectral imaging sensor, 1: Image processing and paddy field sensing

    International Nuclear Information System (INIS)

    Ishii, K.; Sugiura, R.; Fukagawa, T.; Noguchi, N.; Shibata, Y.

    2006-01-01

    The objective of the study is to construct a sensing system for precision farming. A Multi-Spectral Imaging Sensor (MSIS), which can obtain three images (G. R and NIR) simultaneously, was used for detecting growth status of plants. The sensor was mounted on an unmanned helicopter. An image processing method for acquiring information of crop status with high accuracy was developed. Crop parameters that were measured include SPAD, leaf height, and stems number. Both direct seeding variety and transplant variety of paddy rice were adopted in the research. The result of a field test showed that crop status of both varieties could be detected with sufficient accuracy to apply to precision farming

  20. A Parallel Processing Algorithm for Remote Sensing Classification

    Science.gov (United States)

    Gualtieri, J. Anthony

    2005-01-01

    A current thread in parallel computation is the use of cluster computers created by networking a few to thousands of commodity general-purpose workstation-level commuters using the Linux operating system. For example on the Medusa cluster at NASA/GSFC, this provides for super computing performance, 130 G(sub flops) (Linpack Benchmark) at moderate cost, $370K. However, to be useful for scientific computing in the area of Earth science, issues of ease of programming, access to existing scientific libraries, and portability of existing code need to be considered. In this paper, I address these issues in the context of tools for rendering earth science remote sensing data into useful products. In particular, I focus on a problem that can be decomposed into a set of independent tasks, which on a serial computer would be performed sequentially, but with a cluster computer can be performed in parallel, giving an obvious speedup. To make the ideas concrete, I consider the problem of classifying hyperspectral imagery where some ground truth is available to train the classifier. In particular I will use the Support Vector Machine (SVM) approach as applied to hyperspectral imagery. The approach will be to introduce notions about parallel computation and then to restrict the development to the SVM problem. Pseudocode (an outline of the computation) will be described and then details specific to the implementation will be given. Then timing results will be reported to show what speedups are possible using parallel computation. The paper will close with a discussion of the results.

  1. Application of smart BFRP bars with distributed fiber optic sensors into concrete structures

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei

    2010-04-01

    In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.

  2. Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review

    International Nuclear Information System (INIS)

    Song Gangbing; Gu Haichang; Mo Yilung

    2008-01-01

    This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator–sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime. (topical review)

  3. Report on achievements in fiscal 1998. Project of research and development of regional consortium (Development of energy saving type manufacturing process of smart material having electromagnetic wave absorbing function utilizing microwave-hydrothermal process); 1999 nendo micro ha - suinetsuho wo riyoshita denjiyha kyushu kino wo yusuru smart zairyo no sho energy gata seizo process no kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The present research is aimed at developing an energy saving manufacturing process of a smart material having electromagnetic wave absorbing function in conventionally undeveloped bands as high as 30 MHz to 60 GHz. The process is composed of design, synthesis and forming of hybrid electromagnetic wave absorbing materials in which such magnetically permeable substance and conductive substance as ferrite is covered on fabrics having large dielectric loss through controlling the particle diameters and membrane thickness by using the microwave-hydrothermal process. The following researches have been performed: (1) development of smart material design and hybrid process technology, (2) evaluation on the electromagnetic wave absorbing function, (3) development of a manufacturing process for a smart forming material, and (4) development of a process for processing fabric material surface utilizing ocean resources. In Item (1), electromagnetic wave shielding function of 30 dB or higher was found provided in 200 MHz to 2 GHz bands. Calcium silicate and ferrite were manufactured by using the microwave-hydrothermal process, and calcium silicate was formed with energy being saved by using the hydrothermal curing process. In Item (2), TR17301A made by the Advanced Corporation was used to structure a system to evaluate the field in the vicinity of electric field and magnetic field. In Item (3), a ferrite forming material manufacturing process was developed. In Item (4), an attempt was carried out on forming ferrite by using reactions of nickel salt and iron salt. (NEDO)

  4. A Secure, Intelligent, and Smart-Sensing Approach for Industrial System Automation and Transmission over Unsecured Wireless Networks.

    Science.gov (United States)

    Shahzad, Aamir; Lee, Malrey; Xiong, Neal Naixue; Jeong, Gisung; Lee, Young-Keun; Choi, Jae-Young; Mahesar, Abdul Wheed; Ahmad, Iftikhar

    2016-03-03

    In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB) is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design.

  5. A Secure, Intelligent, and Smart-Sensing Approach for Industrial System Automation and Transmission over Unsecured Wireless Networks

    Science.gov (United States)

    Shahzad, Aamir; Lee, Malrey; Xiong, Neal Naixue; Jeong, Gisung; Lee, Young-Keun; Choi, Jae-Young; Mahesar, Abdul Wheed; Ahmad, Iftikhar

    2016-01-01

    In Industrial systems, Supervisory control and data acquisition (SCADA) system, the pseudo-transport layer of the distributed network protocol (DNP3) performs the functions of the transport layer and network layer of the open systems interconnection (OSI) model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB) is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design. PMID:26950129

  6. A Secure, Intelligent, and Smart-Sensing Approach for Industrial System Automation and Transmission over Unsecured Wireless Networks

    Directory of Open Access Journals (Sweden)

    Aamir Shahzad

    2016-03-01

    Full Text Available In Industrial systems, Supervisory control and data acquisition (SCADA system, the pseudo-transport layer of the distributed network protocol (DNP3 performs the functions of the transport layer and network layer of the open systems interconnection (OSI model. This study used a simulation design of water pumping system, in-which the network nodes are directly and wirelessly connected with sensors, and are monitored by the main controller, as part of the wireless SCADA system. This study also intends to focus on the security issues inherent in the pseudo-transport layer of the DNP3 protocol. During disassembly and reassembling processes, the pseudo-transport layer keeps track of the bytes sequence. However, no mechanism is available that can verify the message or maintain the integrity of the bytes in the bytes received/transmitted from/to the data link layer or in the send/respond from the main controller/sensors. To properly and sequentially keep track of the bytes, a mechanism is required that can perform verification while bytes are received/transmitted from/to the lower layer of the DNP3 protocol or the send/respond to/from field sensors. For security and byte verification purposes, a mechanism needs to be proposed for the pseudo-transport layer, by employing cryptography algorithm. A dynamic choice security buffer (SB is designed and employed during the security development. To achieve the desired goals of the proposed study, a pseudo-transport layer stack model is designed using the DNP3 protocol open library and the security is deployed and tested, without changing the original design.

  7. Smart City and Smart Tourism: A Case of Dubai

    OpenAIRE

    M. Sajid Khan; Mina Woo; Kichan Nam; Prakash K. Chathoth

    2017-01-01

    Over the past decade, the advent of new technology has brought about the emergence of smart cities aiming to provide their stakeholders with technology-based solutions that are effective and efficient. Insofar as the objective of smart cities is to improve outcomes that are connected to people, systems and processes of businesses, government and other public- and private-sector entities, its main goal is to improve the quality of life of all residents. Accordingly, smart tourism has emerged o...

  8. A Non-Intrusive GMA Welding Process Quality Monitoring System Using Acoustic Sensing.

    Science.gov (United States)

    Cayo, Eber Huanca; Alfaro, Sadek Crisostomo Absi

    2009-01-01

    Most of the inspection methods used for detection and localization of welding disturbances are based on the evaluation of some direct measurements of welding parameters. This direct measurement requires an insertion of sensors during the welding process which could somehow alter the behavior of the metallic transference. An inspection method that evaluates the GMA welding process evolution using a non-intrusive process sensing would allow not only the identification of disturbances during welding runs and thus reduce inspection time, but would also reduce the interference on the process caused by the direct sensing. In this paper a nonintrusive method for weld disturbance detection and localization for weld quality evaluation is demonstrated. The system is based on the acoustic sensing of the welding electrical arc. During repetitive tests in welds without disturbances, the stability acoustic parameters were calculated and used as comparison references for the detection and location of disturbances during the weld runs.

  9. Smart mobility in smart cities

    Energy Technology Data Exchange (ETDEWEB)

    Baucells, Aleta N.

    2016-07-01

    Cities are currently undergoing a transformation into the Smart concept, like Smartphones or SmartTV. Many initiatives are being developed in the framework of the Smart Cities projects, however, there is a lack of consistent indicators and methodologies to assess, finance, prioritize and implement this kind of projects. Smart Cities projects are classified according to six axes: Government, Mobility, Environment, Economy, People and Living. (Giffinger, 2007). The main objective of this research is to develop an evaluation model in relation to the mobility concept as one of the six axes of the Smart City classification and apply it to the Spanish cities. The evaluation was carried out in the 62 cities that made up in September 2015 the Spanish Network of Smart Cities (RECI- Red Española de Ciudades Inteligentes). This research is part of a larger project about Smart Cities’ evaluation (+CITIES), the project evaluates RECI’s cities in all the axes. The analysis was carried out taking into account sociodemographic indicators such as the size of the city or the municipal budget per inhabitant. The mobility’s evaluation in those cities has been focused in: sustainability mobility urban plans and measures to reduce the number of vehicles. The 62 cities from the RECI have been evaluated according to their degree of progress in several Smart Cities’ initiatives related to smart mobility. The applied methodology has been specifically made for this project. The grading scale has different ranks depending on the deployment level of smart cities’ initiatives. (Author)

  10. Wavelet-Based Processing for Fiber Optic Sensing Systems

    Science.gov (United States)

    Hamory, Philip J. (Inventor); Parker, Allen R., Jr. (Inventor)

    2016-01-01

    The present invention is an improved method of processing conglomerate data. The method employs a Triband Wavelet Transform that decomposes and decimates the conglomerate signal to obtain a final result. The invention may be employed to improve performance of Optical Frequency Domain Reflectometry systems.

  11. Machine Vision and Advanced Image Processing in Remote Sensing

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg

    This paper describes the multivariate alteration detection (MAD) transformation which is based on the established canonical correlation analysis. It also proposes post-processing of the change detected by the MAD variates by means of maximum autocorrelation factor (MAF) analysis. As opposed to mo...

  12. Investigating the Prospective Sense of Agency: Effects of Processing Fluency, Stimulus Ambiguity, and Response Conflict

    Science.gov (United States)

    Sidarus, Nura; Vuorre, Matti; Metcalfe, Janet; Haggard, Patrick

    2017-01-01

    How do we know how much control we have over our environment? The sense of agency refers to the feeling that we are in control of our actions, and that, through them, we can control our external environment. Thus, agency clearly involves matching intentions, actions, and outcomes. The present studies investigated the possibility that processes of action selection, i.e., choosing what action to make, contribute to the sense of agency. Since selection of action necessarily precedes execution of action, such effects must be prospective. In contrast, most literature on sense of agency has focussed on the retrospective computation whether an outcome fits the action performed or intended. This hypothesis was tested in an ecologically rich, dynamic task based on a computer game. Across three experiments, we manipulated three different aspects of action selection processing: visual processing fluency, categorization ambiguity, and response conflict. Additionally, we measured the relative contributions of prospective, action selection-based cues, and retrospective, outcome-based cues to the sense of agency. Manipulations of action selection were orthogonally combined with discrepancy of visual feedback of action. Fluency of action selection had a small but reliable effect on the sense of agency. Additionally, as expected, sense of agency was strongly reduced when visual feedback was discrepant with the action performed. The effects of discrepant feedback were larger than the effects of action selection fluency, and sometimes suppressed them. The sense of agency is highly sensitive to disruptions of action-outcome relations. However, when motor control is successful, and action-outcome relations are as predicted, fluency or dysfluency of action selection provides an important prospective cue to the sense of agency. PMID:28450839

  13. Distributed Sensing and Processing Adaptive Collaboration Environment (D-SPACE)

    Science.gov (United States)

    2014-07-01

    RISC 525 Brooks Road Rome NY 13441-4505 10. SPONSOR/MONITOR’S ACRONYM(S) AFRL/RI 11. SPONSOR/MONITOR’S REPORT NUMBER AFRL-RI-RS-TR-2014-195 12...cloud” technologies are not appropriate for situation understanding in areas of denial, where computation resources are limited, data not easily...graph matching process. D-SPACE distributes graph exploitation among a network of autonomous computational resources, designs the collaboration policy

  14. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  15. Smart houses for a smart grid

    Energy Technology Data Exchange (ETDEWEB)

    Kok, J.K.; Warmer, C.J. [ECN Efficiency and Infrastructure, Petten (Netherlands); Karnouskos, S.; Weidlich, A. [SAP Research, Karlsruhe Institute of Technology, (Germany); Nestle, D.; Strauss, P. [The Institut fuer Solare Energieversorgungstechnik ISET, University of Kassel, Kassel (Germany); Dimeas, A.; Hatziargyriou, N. [Institute Computers Communications Systems ICCS, National Technical University of Athens NTUA, Athens (Greece); Buchholz, B.; Drenkard, S. [MVV Energie, Berlin (Germany); Lioliou, V. [Public Power Corporation PPC, Athens (Greece)

    2009-08-15

    Innovative technologies and concepts will emerge as we move towards a more dynamic, service-based, market-driven infrastructure, where energy efficiency and savings can be facilitated by interactive distribution networks. A new generation of fully interactive Information and Communication Technologies (ICT) infrastructure has to be developed to support the optimal exploitation of the changing, complex business processes and to enable the efficient functioning of the deregulated energy market for the benefit of citizens and businesses. The architecture of such distributed system landscapes must be designed and validated, standards need to be created and widely supported, and comprehensive, reliable IT applications will need to be implemented. The collaboration between a smart house and a smart grid is a promising approach which, with the help of ICT can fully unleash the capabilities of the smart electricity network.

  16. Named data networking-based smart home

    OpenAIRE

    Syed Hassan Ahmed; Dongkyun Kim

    2016-01-01

    Named data networking (NDN) treats content/data as a “first class citizen” of the network by giving it a “name”. This content “name” is used to retrieve any information, unlike in device-centric networks (i.e., the current Internet), which depend on physical IP addresses. Meanwhile, the smart home concept has been gaining attention in academia and industries; various low-cost embedded devices are considered that can sense, process, store, and communicate data autonomously. In this paper, we s...

  17. SENSE-MAKING TECHNIQUES IN EDUCATIONAL PROCESS AND THEIR IMPACT ON THE PERSONAL CHARACTERISTICS OF STUDENTS

    Directory of Open Access Journals (Sweden)

    Irina V. Abakumova

    2017-12-01

    Full Text Available This study looks into psychotechnics used in education and contributing to initiating logic among students, their personal growth and characterizes psychological features of “sense-deducting”. Here you will find a review of the sense-making techniques considering as one of the categories of psychotechnics. The described techniques are based on the human psychology, they improve the quality of instruction, create a favorable and unique system of values, take into account the individual characteristics of all types of education, and influence the sense-making process development among children. Sense-making techniques are stated in the author’s classification and extended by practical methods. The study of psychological features of influence of sense-making techniques on the personality of a student lets us see new patterns in personal, subjective and “meta-subjective” results of acquiring of the school program via transformation and development of value/logic consciousness of a child. The work emphasizes that the use of sense-making techniques is effective in the educational and after-school activities of the educational organization. The achieved results make it possible to understand, to substantiate the naturalness and relevance of the sense-technical approach according to personal and academic indicators of students. In the process of competent and correct use of the semantic techniques, we see the possibility of conveying the best, productive and quality pedagogical experience, as well as the perspective of innovative developments in the psychological and pedagogical sciences. For children and adolescents, information, thanks to sense-techniques, starts to be personal in nature, knowledge is objectified, learning activity becomes an individual need.

  18. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Methods and Applications

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    1998-01-01

    Thermal Infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning. The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of

  19. The smart - development and technology; Der smart - Entwicklung und Technik

    Energy Technology Data Exchange (ETDEWEB)

    Goppelt, G.

    1999-06-01

    The smart is the first representative of a radically new vehicle concept, with minimum space requirements and trend-setting in terms of ecology, safety, and individualism. The new design is not rooted in any tradition. The contribution describes the development process and constructional features of the smart. [Deutsch] Der smart ist der erste Vertreter eines voellig neuen Fahrzeugkonzepts. Bei kleinstem Raumbedarf soll er neue Massstaebe bei Oekologie, Sicherheit und Individualitaet setzen. Entstanden ist eine konsequente Neukonstruktion, die sich von bisherigen Traditionen loest. In diesem Beitrag sind der Entwicklungsprozess sowie die Konstruktionsmerkmale des smart beschrieben. (orig.)

  20. Smart Sensor Network for Aircraft Corrosion Monitoring

    Science.gov (United States)

    2010-02-01

    Network Elements – Hub, Network capable application processor ( NCAP ) – Node, Smart transducer interface module (STIM)  Corrosion Sensing and...software Transducer software Network Protocol 1451.2 1451.3 1451.5 1451.6 1451.7 I/O Node -processor Power TEDS Smart Sensor Hub ( NCAP ) IEEE 1451.0 and

  1. Recovery of Fermented Spinach (Amaranthus sp. Concentrate Through Ultrafiltration Membrane Process as Source of Folic Acid for Smart Food Formula

    Directory of Open Access Journals (Sweden)

    Aspiyanto Aspiyanto

    2017-11-01

    Full Text Available Fermentation process on spinach (Amaranthus sp. by Kombucha culture was done as an effort to recover naturally folic acid as bioactive components to increase smartness. The experimental activity was done by means of UF membrane (100,000 MWCO fitted in Stirred Ultrafiltration Cell (SUFC at stirrer rotation speed 200 and 400 rpm, room temperature, pressure 20 and 40 Psi for 30 min. Result of experimental activity showed that based on both selectivity and recovery of folic acid, process optimization of UF was reached at stirrer rotation speed 200 rpm and pressure 40 Psi. In the optimum condition, SUFC technique was able to recover folic acid in retentate 67.75% and in permeate 97.27% (63.19 µg/mL. Identification of monomer in permeate from the optimum process treatment was find out folic acid monomer with molecular weight (MW 441.39 and relative intensity 93% at mass spectra T2.32 between m/z 257–304 and glutamic acids monomer with MW 148.57 and relative intensity 0.22% at mass spectra T2.82 between m/z 415–470. Other dominant monomer were folic acid fraction.

  2. Autonomous control systems: applications to remote sensing and image processing

    Science.gov (United States)

    Jamshidi, Mohammad

    2001-11-01

    One of the main challenges of any control (or image processing) paradigm is being able to handle complex systems under unforeseen uncertainties. A system may be called complex here if its dimension (order) is too high and its model (if available) is nonlinear, interconnected, and information on the system is uncertain such that classical techniques cannot easily handle the problem. Examples of complex systems are power networks, space robotic colonies, national air traffic control system, and integrated manufacturing plant, the Hubble Telescope, the International Space Station, etc. Soft computing, a consortia of methodologies such as fuzzy logic, neuro-computing, genetic algorithms and genetic programming, has proven to be powerful tools for adding autonomy and semi-autonomy to many complex systems. For such systems the size of soft computing control architecture will be nearly infinite. In this paper new paradigms using soft computing approaches are utilized to design autonomous controllers and image enhancers for a number of application areas. These applications are satellite array formations for synthetic aperture radar interferometry (InSAR) and enhancement of analog and digital images.

  3. Smart Money

    DEFF Research Database (Denmark)

    Avital, Michel; Hedman, Jonas; Albinsson, Lars

    2017-01-01

    transaction costs by providing seamless real-time payments. In addition, digital legal tender that is based on blockchain technology can provide a foundation for customizable “smart money” which can be used to manage the appropriation of money and its use. In essence, the smart money is a customizable value...

  4. Smart grid: hope or hype?

    DEFF Research Database (Denmark)

    Lunde, Morten; Røpke, Inge; Heiskanen, Eva

    2016-01-01

    how their (intentional or unintentional) choices serve to create or maintain certain boundaries in smart grid development: for example, an exclusive focus on electricity within the broader context of a sustainable energy system. As serious investment starts being made in the smart grid, concepts like......The smart grid is an important but ambiguous element in the future transition of the European energy system. The current paper unpacks one influential national vision of the smart grid to identify what kinds of expectations guide the work of smart grid innovators and how the boundaries of the smart...... research and development and to attract new players into the field. A scenario process such as that demonstrated in this article can serve to articulate some of these implicit assumptions and help actors to navigate the ongoing transition. On the basis of our analysis, European policy makers might consider...

  5. SMART performance analysis methodology

    International Nuclear Information System (INIS)

    Lim, H. S.; Kim, H. C.; Lee, D. J.

    2001-04-01

    To ensure the required and desired operation over the plant lifetime, the performance analysis for the SMART NSSS design is done by means of the specified analysis methodologies for the performance related design basis events(PRDBE). The PRDBE is an occurrence(event) that shall be accommodated in the design of the plant and whose consequence would be no more severe than normal service effects of the plant equipment. The performance analysis methodology which systematizes the methods and procedures to analyze the PRDBEs is as follows. Based on the operation mode suitable to the characteristics of the SMART NSSS, the corresponding PRDBEs and allowable range of process parameters for these events are deduced. With the developed control logic for each operation mode, the system thermalhydraulics are analyzed for the chosen PRDBEs using the system analysis code. Particularly, because of different system characteristics of SMART from the existing commercial nuclear power plants, the operation mode, PRDBEs, control logic, and analysis code should be consistent with the SMART design. This report presents the categories of the PRDBEs chosen based on each operation mode and the transition among these and the acceptance criteria for each PRDBE. It also includes the analysis methods and procedures for each PRDBE and the concept of the control logic for each operation mode. Therefore this report in which the overall details for SMART performance analysis are specified based on the current SMART design, would be utilized as a guide for the detailed performance analysis

  6. SMART product innovation

    DEFF Research Database (Denmark)

    Cramer-Petersen, Claus L.; Ahmed-Kristensen, Saeema; Li, Xuemeng

    2016-01-01

    Among the inspirations for the SMART process is “design to customer value,” where products are modified based on a thorough understanding of customers that allows product developers to eliminate features that do not affect customer satisfaction while including only the elements and functionality...... that customers really appreciate. The SMART process includes methods to understand product value for the customer and the user; analyse the cost of components and processes; combine customer value and cost reduction potentials into feasible, high-value concepts; and generate prototypes that can be tested...... with users and customers....

  7. Frequency and Clinical Implication of the R450H Mutation in the Thyrotropin Receptor Gene in the Japanese Population Detected by Smart Amplification Process 2

    Science.gov (United States)

    Yanagawa, Yoshimaro; Aoki, Tomoyuki; Morimura, Tadashi; Araki, Osamu; Kimura, Takao; Ogiwara, Takayuki; Kotajima, Nobuo; Yanagawa, Masumi; Murakami, Masami

    2014-01-01

    In Japanese pediatric patients with thyrotropin (TSH) resistance, the R450H mutation in TSH receptor gene (TSHR) is occasionally observed. We studied the frequency and clinical implication of the R450H mutation in TSHR in the general population of Japanese adults using smart amplification process 2 (SmartAmp2). We designed SmartAmp2 primer sets to detect this mutation using a drop of whole blood. We analyzed thyroid function, antithyroid antibodies, and this mutation in 429 Japanese participants who had not been found to have thyroid disease. Two cases without antithyroid antibodies were heterozygous for the R450H mutation in TSHR. Thus, the prevalence of this mutation was 0.47% in the general population and 0.63% among those without antithyroid antibodies. Their serum TSH concentrations were higher than the average TSH concentration not only in subjects without antithyroid antibodies but also in those with antithyroid antibodies. The R450H mutation in TSHR is relatively common in the Japanese population and potentially affects thyroid function. The present study demonstrates that the SmartAmp2 method is useful to detect the R450H mutation in TSHR, which is one of the common causes of TSH resistance in the Japanese population. PMID:24895636

  8. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    Science.gov (United States)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-11-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete.

  9. A new type of smart basalt fiber-reinforced polymer bars as both reinforcements and sensors for civil engineering application

    International Nuclear Information System (INIS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Shen, Sheng

    2010-01-01

    In this paper, a new type of smart basalt fiber-reinforced polymer (BFRP) bar is developed and their sensing performance is investigated by using the Brillouin scattering-based distributed fiber optic sensing technique. The industrial manufacturing process is first addressed, followed by an experimental study on the strain, temperature and fundamental mechanical properties of the BFRP bars. The results confirm the superior sensing properties, in particular the measuring accuracy, repeatability and linearity through comparing with bare optical fibers. Results on the mechanical properties show stable elastic modulus and high ultimate strength. Therefore, the smart BFRP bar has potential applications for long-term structural health monitoring (SHM) as embedded sensors as well as strengthening and upgrading structures. Moreover the coefficient of thermal expansion for smart BFRP bars is similar to the value for concrete

  10. The role of sports in making sense of the process of growing old.

    Science.gov (United States)

    Eman, Josefin

    2012-12-01

    Drawing on interviews with 22 athletically active old men and women, the study explores whether and how the practice of sports can affect old adults' processes of sense-making about old age and the process of growing old in ways that challenge dominant constructions about old age. Thereto, the study will explore the possible impact of gender in this process. The results show that men and women who continue to practice competitive sports into old age make sense of the process of growing old by focusing primarily on their physical abilities, at least in the context of sports. This focus on capability age allows them partly, although not completely, to challenge the usual thinking about old age and the process of growing old. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Progress in Analysis to Remote Sensed Thermal Abnormity with Fault Activity and Seismogenic Process

    Directory of Open Access Journals (Sweden)

    WU Lixin

    2017-10-01

    Full Text Available Research to the remote sensed thermal abnormity with fault activity and seismogenic process is a vital topic of the Earth observation and remote sensing application. It is presented that a systematic review on the international researches on the topic during the past 30 years, in the respects of remote sensing data applications, anomaly analysis methods, and mechanism understanding. Firstly, the outlines of remote sensing data applications are given including infrared brightness temperature, microwave brightness temperature, outgoing longwave radiation, and assimilated data from multiple earth observations. Secondly, three development phases are summarized as qualitative analysis based on visual interpretation, quantitative analysis based on image processing, and multi-parameter spatio-temporal correlation analysis. Thirdly, the theoretical hypotheses presented for the mechanism understanding are introduced including earth degassing, stress-induced heat, crustal rock battery conversion, latent heat release due to radon decay as well as multi-spheres coupling effect. Finally, three key directions of future research on this topic are proposed:anomaly recognizing by remote sensing monitoring and data analysis for typical tectonic activity areas; anomaly mechanism understanding based on earthquake-related earth system responses; spatio-temporal correlation analysis of air-based, space-based and ground-based stereoscopic observations.

  12. Smart City and Smart Tourism: A Case of Dubai

    Directory of Open Access Journals (Sweden)

    M. Sajid Khan

    2017-12-01

    Full Text Available Over the past decade, the advent of new technology has brought about the emergence of smart cities aiming to provide their stakeholders with technology-based solutions that are effective and efficient. Insofar as the objective of smart cities is to improve outcomes that are connected to people, systems and processes of businesses, government and other public- and private-sector entities, its main goal is to improve the quality of life of all residents. Accordingly, smart tourism has emerged over the past few years as a subset of the smart city concept, aiming to provide tourists with solutions that address specific travel related needs. Dubai is an emerging tourism destination that has implemented smart city and smart tourism platforms to engage various stakeholders. The objective of this study is to identify best practices related to Dubai’s smart city and smart tourism. In so doing, Dubai’s mission and vision along with key dimensions and pillars are identified in relation to the advancements in the literature while highlighting key resources and challenges. A Smart Tourism Dynamic Responsive System (STDRS framework is proposed while suggesting how Dubai may able to enhance users’ involvement and their overall experience.

  13. FRP confined smart concrete/mortar

    Science.gov (United States)

    Xiao, Y.; Zhu, P. S.; Choi, K. G.; Wu, Y. T.; Huang, Z. Y.; Shan, B.

    2006-03-01

    In this study, fiber reinforced polymer (FRP) confined smart concrete/mortar sensors were invented and validated for significantly improved measurement range. Several trial mixes were made using cement mortar and micron-phase graphite powders at different mix proportions. Compressive loading tests were conducted on smart mortar cylinder specimens with or without FRP confinement. Two-probe method was used to detect the electrical resistance of the smart cement mortar specimens. Strong correlation was recognized between the stress and electric resistance of the smart mortar. The test results indicated that the FRP wrapping could significantly enlarge the range of such self-sensing property as a consequence of confinement.

  14. Wireless Sensing Based on RFID and Capacitive Technologies for Safety in Marble Industry Process Control

    Directory of Open Access Journals (Sweden)

    Fabrizio Iacopetti

    2013-01-01

    Full Text Available This paper presents wireless sensing systems to increase safety and robustness in industrial process control, particularly in industrial machines for marble slab working. The process is performed by abrasive or cutting heads activated independently by the machine controller when the slab, transported on a conveyer belt, is under them. Current slab detection systems are based on electromechanical or optical devices at the machine entrance stage, suffering from deterioration and from the harsh environment. Slab displacement or break inside the machine due to the working stress may result in safety issues and damages to the conveyer belt due to incorrect driving of the working tools. The experimented contactless sensing techniques are based on four RFID and two capacitive sensing technologies and on customized hardware/software. The proposed solutions aim at overcoming some limitations of current state-of-the-art detection systems, allowing for reliable slab detection, outside and/or inside the machine, while maintaining low complexity and at the same time robustness to industrial harsh conditions. The proposed sensing devices may implement a wireless or wired sensor network feeding detection data to the machine controller. Data integrity check and process control algorithms have to be implemented for the safety and reliability of the overall industrial process.

  15. Real-Time and Post-Processed Georeferencing for Hyperpspectral Drone Remote Sensing

    Science.gov (United States)

    Oliveira, R. A.; Khoramshahi, E.; Suomalainen, J.; Hakala, T.; Viljanen, N.; Honkavaara, E.

    2018-05-01

    The use of drones and photogrammetric technologies are increasing rapidly in different applications. Currently, drone processing workflow is in most cases based on sequential image acquisition and post-processing, but there are great interests towards real-time solutions. Fast and reliable real-time drone data processing can benefit, for instance, environmental monitoring tasks in precision agriculture and in forest. Recent developments in miniaturized and low-cost inertial measurement systems and GNSS sensors, and Real-time kinematic (RTK) position data are offering new perspectives for the comprehensive remote sensing applications. The combination of these sensors and light-weight and low-cost multi- or hyperspectral frame sensors in drones provides the opportunity of creating near real-time or real-time remote sensing data of target object. We have developed a system with direct georeferencing onboard drone to be used combined with hyperspectral frame cameras in real-time remote sensing applications. The objective of this study is to evaluate the real-time georeferencing comparing with post-processing solutions. Experimental data sets were captured in agricultural and forested test sites using the system. The accuracy of onboard georeferencing data were better than 0.5 m. The results showed that the real-time remote sensing is promising and feasible in both test sites.

  16. Making Sense of Conceptual Tools in Student-Generated Cases: Student Teachers' Problem-Solving Processes

    Science.gov (United States)

    Jahreie, Cecilie Flo

    2010-01-01

    This article examines the way student teachers make sense of conceptual tools when writing cases. In order to understand the problem-solving process, an analysis of the interactions is conducted. The findings show that transforming practical experiences into theoretical reflection is not a straightforward matter. To be able to elaborate on the…

  17. What is smart for retailing?

    NARCIS (Netherlands)

    Pantano, Eleonora; Timmermans, Harry

    2014-01-01

    While the last decade has seen increasing interest in the smart city phenomenon from both scholars and practitioners, little attention has been paid to what extent retailing might be considered as part of smart cities, with benefits for all the actors involved in the process. In fact, retailing is

  18. Data privacy for the smart grid

    CERN Document Server

    Herold, Rebecca

    2015-01-01

    The Smart Grid and PrivacyWhat Is the Smart Grid? Changes from Traditional Energy Delivery Smart Grid Possibilities Business Model Transformations Emerging Privacy Risks The Need for Privacy PoliciesPrivacy Laws, Regulations, and Standards Privacy-Enhancing Technologies New Privacy Challenges IOT Big Data What Is the Smart Grid?Market and Regulatory OverviewTraditional Electricity Business SectorThe Electricity Open Market Classifications of Utilities Rate-Making ProcessesElectricity Consumer

  19. Exploring potentials of sense-making theory for understanding social processes in public hearing

    DEFF Research Database (Denmark)

    Lyhne, Ivar

    authorities and the public in such planning often characterised by conflict. A sense-making framework is developed based on Karl Weick's theory to investigate how participants at the meeting change their understanding aspects like other actors' opinions and the infrastructure project. Through interviews...... and observations it is shown that participants' senses do not change except from a few aspects. The participants at the meeting thus seem stuck in their positions without interest in being open for other interpretations or arguments. The investigation leads to considerations about the benefit and role...... of such a public meeting and the importance of trust and openness in the social processes in a public hearing....

  20. ROME4EU: A web service-based process-aware system for smart devices

    NARCIS (Netherlands)

    Battista, Daniele; Leoni, de Massimiliano; Gaetanis, de Alessio; Mecella, Massimo; Pezzullo, Alessandro; Russo, Alessandro; Saponaro, Costantino; Bouguettaya, A.; Krüger, I.; Margaria, T.

    2008-01-01

    Nowadays, process-aware information systems (PAISs) are widely used for the management of "administrative" processes characterized by clear andwell-defined structure. Besides such scenarios, PAISs can be used also in mobile and pervasive scenarios, such as in coordinating operators during emergency

  1. Danish Act on Processing of Personal Data, in a Smart Cities Research Perspective

    DEFF Research Database (Denmark)

    Tureczek, Alexander Martin

    The Danish act on processing of personal data influences what data can be processed for. Data has been collected with consent from the data subject for a specific purpose. Any other use of the data violates the purpose and requires new consent from each data subject. But the law does include some...

  2. Research on distributed optical fiber sensing data processing method based on LabVIEW

    Science.gov (United States)

    Li, Zhonghu; Yang, Meifang; Wang, Luling; Wang, Jinming; Yan, Junhong; Zuo, Jing

    2018-01-01

    The pipeline leak detection and leak location problem have gotten extensive attention in the industry. In this paper, the distributed optical fiber sensing system is designed based on the heat supply pipeline. The data processing method of distributed optical fiber sensing based on LabVIEW is studied emphatically. The hardware system includes laser, sensing optical fiber, wavelength division multiplexer, photoelectric detector, data acquisition card and computer etc. The software system is developed using LabVIEW. The software system adopts wavelet denoising method to deal with the temperature information, which improved the SNR. By extracting the characteristic value of the fiber temperature information, the system can realize the functions of temperature measurement, leak location and measurement signal storage and inquiry etc. Compared with traditional negative pressure wave method or acoustic signal method, the distributed optical fiber temperature measuring system can measure several temperatures in one measurement and locate the leak point accurately. It has a broad application prospect.

  3. INTERACTIVE CHANGE DETECTION USING HIGH RESOLUTION REMOTE SENSING IMAGES BASED ON ACTIVE LEARNING WITH GAUSSIAN PROCESSES

    Directory of Open Access Journals (Sweden)

    H. Ru

    2016-06-01

    Full Text Available Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  4. Dubai: A Pioneer Smart City in the Arabian Territory

    Science.gov (United States)

    Virtudes, Ana; Abbara, Arwa; Sá, João

    2017-10-01

    Nowadays, one of the main issues that the cities are facing is related with how they are dealing with the challenges toward smartness, including infrastructures, economic, social and environmental aspects. In this sense, some of the current challenges on the global scale, trying to find solutions regarding urban societies, are based on the concept of “smart city”. Therefore, is clear that new ideas regarding the cities improvements, which are on the top of global agenda, could be found at the concept of “smart city”. As the literature reveals, this is a topic reason among the researchers, which is in a continuous development, in particular regarding societies, countries or regions where it is emerging, such as in the Arabian territories. Dubai, a city in the United Arab Emirates, is an example where in a short period of time, after the oil discovery in the decade of 1970, one small and badly known urban settlement became a pioneer reference in terms of smart cities requirements. Thus, this article presents background information about smart cities, their assets and key pillars, their smart infrastructures and features in cultural, social and environmental terms. The main goals are based on a theoretical approach, developed in order to get more details about smart cities, regarding the features of the Arabian territories. It argues around the case of Dubai, as a pioneer smart city in the Arab world. Among of the main conclusions, there is the idea that the urban transformation process in contemporary societies to secure the smartness, should apply to the use of ICT / information and communication technologies. This use will increase the efficiency concerns to the natural resources, and provide a high quality of life for citizens. The example of Dubai has shown that the decision-makers have built each sector and part of the city in a solid performance, in order to achieve the smart sustainability concept. This city is nowadays a reference on this matter, not

  5. TOPICAL REVIEW: Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review

    Science.gov (United States)

    Song, Gangbing; Gu, Haichang; Mo, Yi-Lung

    2008-06-01

    This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.

  6. Smart biomaterials

    CERN Document Server

    Ebara, Mitsuhiro; Narain, Ravin; Idota, Naokazu; Kim, Young-Jin; Hoffman, John M; Uto, Koichiro; Aoyagi, Takao

    2014-01-01

    This book surveys smart biomaterials, exploring the properties, mechanics and characterization of hydrogels, particles, assemblies, surfaces, fibers and conjugates. Reviews applications such as drug delivery, tissue engineering, bioseparation and more.

  7. Smart Houses and Uncomfortable Homes.

    Science.gov (United States)

    Alm, Norman; Arnott, John

    2015-01-01

    In order for smart houses to achieve acceptance from potential beneficiaries they will need to match the users' expectation that their house is also their home, with the sense of privacy and control that this implies. Designers of this technology will need to be aware of findings in this regard from fields such as architecture and design ethnography.

  8. Smart Low-Cost Electronic Module for Simultaneous Sensor and Process Faults Moni, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The detection and isolation of air vehicle process failures is difficult because air vehicle dynamics are nonlinear and the vehicle has many important and...

  9. Less Smart More City

    Directory of Open Access Journals (Sweden)

    Rocco Papa

    2015-07-01

    Full Text Available Smart is an expression used in recent years in science, and it refers to someone or something that shows a lively intelligence, with a quick learning curve and a fast response to external stimuli. The present scenario is dominated by the accelerated technological development that involves every aspect of life, enhancing the everyday tools through the use of information and digital processing: everything is smart, even cities. But when you pair the term smart to a complex organism such as the city the significance of the two together is open to a variety of interpretations, as shown by the vast and varied landscape of definitions that have occurred in recent years. Our contribution presents the results of research aimed at analyzing and interpreting this fragmented scene mainly, but not exclusively, through lexical analysis, applied to a textual corpus of 156 definitions of smart city. In particular, the study identified the main groups of stakeholders that have taken part in the debate, and investigated the differences and convergences that can be detected: Academic, Institutional, and Business worlds. It is undeniable that the term smart has been a veritable media vehicle that, on the one hand brought to the center of the discussion the issue of the city, of increasing strategic importance for the major challenges that humanity is going to face,  and on the other has been a fertile ground on which to pour the interests of different groups and individuals. In a nutshell we can say that from the analysis the different approaches that each group has used and supported emerge clearly and another, alarming, consideration occurs: of the smart part of “Smart City” we clearly grasp the tools useful to the each group of stakeholders, and of the city part, as a collective aspiration, there is often little or nothing.

  10. Synergistic linkage between remote sensing and biophysical models for estimating plant ecophysiological and ecosystem processes

    International Nuclear Information System (INIS)

    Inoue, Y.; Olioso, A.

    2004-01-01

    Abstract Information on the ecological and physiological status of crops is essential for growth diagnostics and yield prediction. Within-field or between-field spatial information is required, especially with the recent trend toward precision agriculture, which seeks the efficient use of agrochemicals, water, and energy. The study of carbon and nitrogen cycles as well as environmental management on local and regional scales requires assessment of the spatial variability of biophysical and ecophysiological variables, scaling up of which is also needed for scientific and decision-making purposes. Remote sensing has great potential for these applications because it enables wide-area non-destructive, and real-time acquisition of information about ecophysiological conditions of vegetation. With recent advances in sensor technology, a variety of electromagnetic signatures, such as hyperspectral reflectance, thermal-infrared temperature, and microwave backscattering coefficients, can be acquired for both plants and ecosystems using ground-based, airborne, and satellite platforms. Their spatial and temporal resolutions have both recently been improved. This article reviews the state of the art in the remote sensing of plant ecophysiological data, with special emphasis on the synergy between remote sensing signatures and biophysical and ecophysiological process models. Several case studies for the optical, thermal, and microwave domains have demonstrated the potential of this synergistic linkage. Remote sensing and process modeling methods complement each other when combined synergistically. Further research on this approach is needed f or a wide range of ecophysiological and ecosystem studies, as well as for practical crop management

  11. Geospatial Image Stream Processing: Models, techniques, and applications in remote sensing change detection

    Science.gov (United States)

    Rueda-Velasquez, Carlos Alberto

    Detection of changes in environmental phenomena using remotely sensed data is a major requirement in the Earth sciences, especially in natural disaster related scenarios where real-time detection plays a crucial role in the saving of human lives and the preservation of natural resources. Although various approaches formulated to model multidimensional data can in principle be applied to the inherent complexity of remotely sensed geospatial data, there are still challenging peculiarities that demand a precise characterization in the context of change detection, particularly in scenarios of fast changes. In the same vein, geospatial image streams do not fit appropriately in the standard Data Stream Management System (DSMS) approach because these systems mainly deal with tuple-based streams. Recognizing the necessity for a systematic effort to address the above issues, the work presented in this thesis is a concrete step toward the foundation and construction of an integrated Geospatial Image Stream Processing framework, GISP. First, we present a data and metadata model for remotely sensed image streams. We introduce a precise characterization of images and image streams in the context of remotely sensed geospatial data. On this foundation, we define spatially-aware temporal operators with a consistent semantics for change analysis tasks. We address the change detection problem in settings where multiple image stream sources are available, and thus we introduce an architectural design for the processing of geospatial image streams from multiple sources. With the aim of targeting collaborative scientific environments, we construct a realization of our architecture based on Kepler, a robust and widely used scientific workflow management system, as the underlying computational support; and open data and Web interface standards, as a means to facilitate the interoperability of GISP instances with other processing infrastructures and client applications. We demonstrate our

  12. Smart driver monitoring : when signal processing meets human factors : in the driver's seat

    NARCIS (Netherlands)

    Aghaei, A.S.; Donmez, B.; Liu, C.C.; He, D.; Liu, G.; Plataniotis, K.N.; Chen, H.Y.W.; Sojoudi, Z.

    2016-01-01

    This article provides an interdisciplinary perspective on driver monitoring systems by discussing state-of-the-art signal processing solutions in the context of road safety issues identified in human factors research. Recently, the human factors community has made significant progress in

  13. Energy Center Structure Optimization by using Smart Technologies in Process Control System

    Science.gov (United States)

    Shilkina, Svetlana V.

    2018-03-01

    The article deals with practical application of fuzzy logic methods in process control systems. A control object - agroindustrial greenhouse complex, which includes its own energy center - is considered. The paper analyzes object power supply options taking into account connection to external power grids and/or installation of own power generating equipment with various layouts. The main problem of a greenhouse facility basic process is extremely uneven power consumption, which forces to purchase redundant generating equipment idling most of the time, which quite negatively affects project profitability. Energy center structure optimization is largely based on solving the object process control system construction issue. To cut investor’s costs it was proposed to optimize power consumption by building an energy-saving production control system based on a fuzzy logic controller. The developed algorithm of automated process control system functioning ensured more even electric and thermal energy consumption, allowed to propose construction of the object energy center with a smaller number of units due to their more even utilization. As a result, it is shown how practical use of microclimate parameters fuzzy control system during object functioning leads to optimization of agroindustrial complex energy facility structure, which contributes to a significant reduction in object construction and operation costs.

  14. Smart Metering. Technological, economic and legal aspects. 2. ed.; Smart Metering. Technologische, wirtschaftliche und juristische Aspekte des Smart Metering

    Energy Technology Data Exchange (ETDEWEB)

    Koehler-Schute, Christiana (ed.)

    2010-07-01

    Smart metering comprises more than just meter technology, and the use of information and communication technologies is indispensable. Processes, roles and business models must be reconsidered as further challenges arise in the context of smart metering. For one, there is the operator of the metering points. Secondly, there is the end user who is in the role of an active market partner. Further, there is smart metering as a basic technology, e.g. for smart grids and smart homes. In spite of the need for action, many utilities are reluctant to introduce smart metering. Reasons for this are the cost, a lack of defined standards, and an unclear legal situation. On the other hand, smart metering offers potential for grids and distribution that should be made use of. The authors discuss all aspects of the subject. The point out the chances and limitations of smart metering and present their own experience. [German] Smart Metering geht weit ueber die Zaehlertechnologie hinaus und der Einsatz von Informations- und Kommunikationstechnologien ist unabdingbar. Damit einhergehend muessen Prozesse, Rollen und auch Geschaeftsmodelle neu durchdacht werden. Denn weitere Herausforderungen stehen im direkten Zusammenhang mit Smart Metering. Das ist zum einen die Rolle des Messstellenbetreibers / Messdienstleisters. Das ist zum anderen der Endnutzer, dem die Rolle des aktiven Marktpartners zugedacht wird. Das ist des Weiteren das Smart Metering als Basistechnologie beispielsweise fuer Smart Grid und Smart Home. Trotz des Handlungsdrucks stehen viele Unternehmen der Energiewirtschaft dem Smart Metering zurueckhaltend gegenueber. Drei gewichtige Gruende werden ins Feld gefuehrt: die Kostenfrage, nicht definierte Standards und die in vielen Bereichen ungeklaerte Gesetzeslage. Demgegenueber bietet das Smart Metering Potenziale fuer Netz und Vertrieb, die es zu nutzen gilt. Die Autoren setzen sich in ihren Beitraegen mit diesen Themen auseinander, zeigen Chancen, aber auch Grenzen des

  15. Scalable Stream Processing with Quality of Service for Smart City Crowdsensing Applications

    Directory of Open Access Journals (Sweden)

    Paolo Bellavista

    2013-12-01

    Full Text Available Crowdsensing is emerging as a powerful paradigm capable of leveraging the collective, though imprecise, monitoring capabilities of common people carrying smartphones or other personal devices, which can effectively become real-time mobile sensors, collecting information about the physical places they live in. This unprecedented amount of information, considered collectively, offers new valuable opportunities to understand more thoroughly the environment in which we live and, more importantly, gives the chance to use this deeper knowledge to act and improve, in a virtuous loop, the environment itself. However, managing this process is a hard technical challenge, spanning several socio-technical issues: here, we focus on the related quality, reliability, and scalability trade-offs by proposing an architecture for crowdsensing platforms that dynamically self-configure and self-adapt depending on application-specific quality requirements. In the context of this general architecture, the paper will specifically focus on the Quasit distributed stream processing middleware, and show how Quasit can be used to process and analyze crowdsensing-generated data flows with differentiated quality requirements in a highly scalable and reliable way.

  16. Sensors Technology and Advanced Signal Processing Concepts for Layered Warfare/Layered Sensing

    Science.gov (United States)

    2010-04-01

    accurate model of the earth is a geoid defined as the shape of the gravitational equipotential of the earth’s surface . However, geoid models are often...processing framework is inadequate when confronted with complex surface target engagement applications being addressed by layered sensing. The...United States’ combat advantage in surface target engagement. Over the past 20+ years, the US has gathered a large quantity of information on the

  17. Metacognitive components in smart learning environment

    Science.gov (United States)

    Sumadyo, M.; Santoso, H. B.; Sensuse, D. I.

    2018-03-01

    Metacognitive ability in digital-based learning process helps students in achieving learning goals. So that digital-based learning environment should make the metacognitive component as a facility that must be equipped. Smart Learning Environment is the concept of a learning environment that certainly has more advanced components than just a digital learning environment. This study examines the metacognitive component of the smart learning environment to support the learning process. A review of the metacognitive literature was conducted to examine the components involved in metacognitive learning strategies. Review is also conducted on the results of study smart learning environment, ranging from design to context in building smart learning. Metacognitive learning strategies certainly require the support of adaptable, responsive and personalize learning environments in accordance with the principles of smart learning. The current study proposed the role of metacognitive component in smart learning environment, which is useful as the basis of research in building environment in smart learning.

  18. Research Advance in Smart Metamaterials

    Directory of Open Access Journals (Sweden)

    YU Xiang-long

    2016-07-01

    Full Text Available Metamaterials, man-made materials, enable us to design our own "atoms", and thereby to create materials with unprecedented effective properties that have not yet been found in nature. Smart metamaterial is one of those that is an intelligent perceptive to the changes from external environments and simultaneously having the capability to respond to thermal and mechanical stimuli. This paper can provide a review on these smart metamaterials in perspective of science, engineering and industrial products. We divide smart metamaterials according to what they are tuning into: optical, mechanical, thermal and coupled smart metamaterials. The rest of two techniques we addressed are modelling/simulation and fabrication/gene engineering. All of these types smart materials presented here are associated with at least five fundamental research: coupled mechanism of multi-physics fields, man-made design for atom/molecular, metamaterials coupled with natural materials, tunability of metamaterials, and mechanism of sensing metamaterials. Therefore, we give a systematic overview of various potential smart metamaterials together with the upcoming challenges in the intriguing and promising research field.

  19. Simple, heart-smart substitutions

    Science.gov (United States)

    Coronary artery disease - heart smart substitutions; Atherosclerosis - heart smart substitutions; Cholesterol - heart smart substitutions; Coronary heart disease - heart smart substitutions; Healthy diet - heart ...

  20. Understanding Forest Health with Remote Sensing -Part I—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics

    Directory of Open Access Journals (Sweden)

    Angela Lausch

    2016-12-01

    Full Text Available Anthropogenic stress and disturbance of forest ecosystems (FES has been increasing at all scales from local to global. In rapidly changing environments, in-situ terrestrial FES monitoring approaches have made tremendous progress but they are intensive and often integrate subjective indicators for forest health (FH. Remote sensing (RS bridges the gaps of these limitations, by monitoring indicators of FH on different spatio-temporal scales, and in a cost-effective, rapid, repetitive and objective manner. In this paper, we provide an overview of the definitions of FH, discussing the drivers, processes, stress and adaptation mechanisms of forest plants, and how we can observe FH with RS. We introduce the concept of spectral traits (ST and spectral trait variations (STV in the context of FH monitoring and discuss the prospects, limitations and constraints. Stress, disturbances and resource limitations can cause changes in FES taxonomic, structural and functional diversity; we provide examples how the ST/STV approach can be used for monitoring these FES characteristics. We show that RS based assessments of FH indicators using the ST/STV approach is a competent, affordable, repetitive and objective technique for monitoring. Even though the possibilities for observing the taxonomic diversity of animal species is limited with RS, the taxonomy of forest tree species can be recorded with RS, even though its accuracy is subject to certain constraints. RS has proved successful for monitoring the impacts from stress on structural and functional diversity. In particular, it has proven to be very suitable for recording the short-term dynamics of stress on FH, which cannot be cost-effectively recorded using in-situ methods. This paper gives an overview of the ST/STV approach, whereas the second paper of this series concentrates on discussing in-situ terrestrial monitoring, in-situ RS approaches and RS sensors and techniques for measuring ST/STV for FH.

  1. Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Andres Hernandez

    2015-07-01

    Full Text Available Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV. The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1 the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU sensors and image processing; (2 a method to build a 3D map using information obtained from a regular camera; and (3 the design and implementation of a path-following control algorithm using model predictive control (MPC. Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.

  2. Towards the Development of a Smart Flying Sensor: Illustration in the Field of Precision Agriculture.

    Science.gov (United States)

    Hernandez, Andres; Murcia, Harold; Copot, Cosmin; De Keyser, Robin

    2015-07-10

    Sensing is an important element to quantify productivity, product quality and to make decisions. Applications, such as mapping, surveillance, exploration and precision agriculture, require a reliable platform for remote sensing. This paper presents the first steps towards the development of a smart flying sensor based on an unmanned aerial vehicle (UAV). The concept of smart remote sensing is illustrated and its performance tested for the task of mapping the volume of grain inside a trailer during forage harvesting. Novelty lies in: (1) the development of a position-estimation method with time delay compensation based on inertial measurement unit (IMU) sensors and image processing; (2) a method to build a 3D map using information obtained from a regular camera; and (3) the design and implementation of a path-following control algorithm using model predictive control (MPC). Experimental results on a lab-scale system validate the effectiveness of the proposed methodology.

  3. Design and implementation of a smart card based billing system for ...

    African Journals Online (AJOL)

    A smart card based billing system for petroleum dispenser is just one of the many ways in which smart cards can be employed to make commerce efficient. It incorporates the use of smart card as its legal tender and a smart card reader embedded into the filling station dispenser design. The smart card reader processes the ...

  4. Smart Card

    Directory of Open Access Journals (Sweden)

    Floarea NASTASE

    2006-01-01

    Full Text Available Reforms in electronic business have presented new opportunities to use smart card technology as an enabling tool. The network-centric applications, where resources are located throughout the Internet and access to them is possible from any location, require authenticated access and secured transactions. Smart cards represent an ideal solution: they offers an additional layer of electronic security and information assurance for user authentication, confidentiality, non-repudiation, information integrity, physical access control to facilities, and logical access control to an computer systems.

  5. Application of remote sensing methods and GIS in erosive process investigations

    Directory of Open Access Journals (Sweden)

    Mustafić Sanja

    2007-01-01

    Full Text Available Modern geomorphologic investigations of condition and change of the intensity of erosive process should be based on application of remote sensing methods which are based on processing of aerial and satellite photographs. Using of these methods is very important because it enables good possibilities for realizing regional relations of the investigated phenomenon, as well as the estimate of spatial and temporal variability of all physical-geographical and anthropogenic factors influencing given process. Realizing process of land erosion, on the whole, is only possible by creating universal data base, as well as by using of appropriate software, more exactly by establishing uniform information system. Geographical information system, as the most effective one, the most complex and the most integral system of information about the space enables unification as well as analytical and synthetically processing of all data.

  6. Smart nanomaterials for biomedics.

    Science.gov (United States)

    Choi, Soonmo; Tripathi, Anuj; Singh, Deepti

    2014-10-01

    Nanotechnology has become important in various disciplines of technology and science. It has proven to be a potential candidate for various applications ranging from biosensors to the delivery of genes and therapeutic agents to tissue engineering. Scaffolds for every application can be tailor made to have the appropriate physicochemical properties that will influence the in vivo system in the desired way. For highly sensitive and precise detection of specific signals or pathogenic markers, or for sensing the levels of particular analytes, fabricating target-specific nanomaterials can be very useful. Multi-functional nano-devices can be fabricated using different approaches to achieve multi-directional patterning in a scaffold with the ability to alter topographical cues at scale of less than or equal to 100 nm. Smart nanomaterials are made to understand the surrounding environment and act accordingly by either protecting the drug in hostile conditions or releasing the "payload" at the intended intracellular target site. All of this is achieved by exploiting polymers for their functional groups or incorporating conducting materials into a natural biopolymer to obtain a "smart material" that can be used for detection of circulating tumor cells, detection of differences in the body analytes, or repair of damaged tissue by acting as a cell culture scaffold. Nanotechnology has changed the nature of diagnosis and treatment in the biomedical field, and this review aims to bring together the most recent advances in smart nanomaterials.

  7. Smart Beta or Smart Alpha

    DEFF Research Database (Denmark)

    Winther, Kenneth Lillelund; Steenstrup, Søren Resen

    2016-01-01

    that smart beta investing probably will do better than passive market capitalization investing over time, we believe many are coming to a conclusion too quickly regarding active managers. Institutional investors are able to guide managers through benchmarks and risk frameworks toward the same well......Smart beta has become the flavor of the decade in the investment world with its low fees, easy access to rewarded risk premiums, and appearance of providing good investment results relative to both traditional passive benchmarks and actively managed funds. Although we consider it well documented......-documented smart beta risk premiums and still motivate active managers to avoid value traps, too highly priced small caps, defensives, etc. By constructing the equity portfolios of active managers that resemble the most widely used risk premiums, we show that the returns and risk-adjusted returns measures...

  8. Smart material screening machines using smart materials and controls

    Science.gov (United States)

    Allaei, Daryoush; Corradi, Gary; Waigand, Al

    2002-07-01

    The objective of this product is to address the specific need for improvements in the efficiency and effectiveness in physical separation technologies in the screening areas. Currently, the mining industry uses approximately 33 billion kW-hr per year, costing 1.65 billion dollars at 0.05 cents per kW-hr, of electrical energy for physical separations. Even though screening and size separations are not the single most energy intensive process in the mining industry, they are often the major bottleneck in the whole process. Improvements to this area offer tremendous potential in both energy savings and production improvements. Additionally, the vibrating screens used in the mining processing plants are the most costly areas from maintenance and worker health and safety point of views. The goal of this product is to reduce energy use in the screening and total processing areas. This goal is accomplished by developing an innovative screening machine based on smart materials and smart actuators, namely smart screen that uses advanced sensory system to continuously monitor the screening process and make appropriate adjustments to improve production. The theory behind the development of Smart Screen technology is based on two key technologies, namely smart actuators and smart Energy Flow ControlT (EFCT) strategies, developed initially for military applications. Smart Screen technology controls the flow of vibration energy and confines it to the screen rather than shaking much of the mass that makes up the conventional vibratory screening machine. Consequently, Smart Screens eliminates and downsizes many of the structural components associated with conventional vibratory screening machines. As a result, the surface area of the screen increases for a given envelope. This increase in usable screening surface area extends the life of the screens, reduces required maintenance by reducing the frequency of screen change-outs and improves throughput or productivity.

  9. Smart roadside.

    Science.gov (United States)

    2012-01-01

    Smart Roadside is a system envisioned to be deployed at strategic points along commercial vehicle routes to : improve the safety, mobility, and efficiency of truck movement and operations on the roadway. It is a concept : where private- and public-se...

  10. Smart Surroundings

    NARCIS (Netherlands)

    Havinga, Paul J.M.; Jansen, P.G.; Lijding, M.E.M.; Scholten, Johan

    2004-01-01

    Ambient systems are networked embedded systems integrated with everyday environments and supporting people in their activities. These systems will create a Smart Surrounding for people to facilitate and enrich daily life and increase productivity at work. Such systems will be quite different from

  11. Fabrication of Porous Silicon Based Humidity Sensing Elements on Paper

    Directory of Open Access Journals (Sweden)

    Tero Jalkanen

    2015-01-01

    Full Text Available A roll-to-roll compatible fabrication process of porous silicon (pSi based sensing elements for a real-time humidity monitoring is described. The sensing elements, consisting of printed interdigitated silver electrodes and a spray-coated pSi layer, were fabricated on a coated paper substrate by a two-step process. Capacitive and resistive responses of the sensing elements were examined under different concentrations of humidity. More than a three orders of magnitude reproducible decrease in resistance was measured when the relative humidity (RH was increased from 0% to 90%. A relatively fast recovery without the need of any refreshing methods was observed with a change in RH. Humidity background signal and hysteresis arising from the paper substrate were dependent on the thickness of sensing pSi layer. Hysteresis in most optimal sensing element setup (a thick pSi layer was still noticeable but not detrimental for the sensing. In addition to electrical characterization of sensing elements, thermal degradation and moisture adsorption properties of the paper substrate were examined in connection to the fabrication process of the silver electrodes and the moisture sensitivity of the paper. The results pave the way towards the development of low-cost humidity sensors which could be utilized, for example, in smart packaging applications or in smart cities to monitor the environment.

  12. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  13. Online Bridge Crack Monitoring with Smart Film

    Directory of Open Access Journals (Sweden)

    Benniu Zhang

    2013-01-01

    Full Text Available Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed.

  14. Influence of Fabricating Process on Gas Sensing Properties of ZnO Nanofiber-Based Sensors

    International Nuclear Information System (INIS)

    Xu Lei; Wang Rui; Liu Yong; Dong Liang

    2011-01-01

    ZnO nanofibers are synthesized by an electrospinning method and characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). Two types of gas sensors are fabricated by loading these nanofibers as the sensing materials and their performances are investigated in detail. Compared with the sensors based on traditional ceramic tubes with Au electrodes (traditional sensors), the sensors fabricated by spinning ZnO nanofibers on ceramic planes with Ag-Pd electrodes (plane sensors) exhibit much higher sensing properties. The sensitivity for the plane sensors is about 30 to 100 ppm ethanol at 300°C, while the value is only 13 for the traditional sensors. The response and recovery times are about 2 and 3s for the plane sensors and are 3 and 6s for the traditional sensors, respectively. Lower minimum-detection-limit is also found for the plane sensors. These improvements are explained by considering the morphological damage in the fabricating process for traditional sensors. The results suggest that the plane sensors are more suitable to sensing investigation for higher veracity. (general)

  15. Optical fibre multi-parameter sensing with secure cloud based signal capture and processing

    Science.gov (United States)

    Newe, Thomas; O'Connell, Eoin; Meere, Damien; Yuan, Hongwei; Leen, Gabriel; O'Keeffe, Sinead; Lewis, Elfed

    2016-05-01

    Recent advancements in cloud computing technologies in the context of optical and optical fibre based systems are reported. The proliferation of real time and multi-channel based sensor systems represents significant growth in data volume. This coupled with a growing need for security presents many challenges and presents a huge opportunity for an evolutionary step in the widespread application of these sensing technologies. A tiered infrastructural system approach is adopted that is designed to facilitate the delivery of Optical Fibre-based "SENsing as a Service- SENaaS". Within this infrastructure, novel optical sensing platforms, deployed within different environments, are interfaced with a Cloud-based backbone infrastructure which facilitates the secure collection, storage and analysis of real-time data. Feedback systems, which harness this data to affect a change within the monitored location/environment/condition, are also discussed. The cloud based system presented here can also be used with chemical and physical sensors that require real-time data analysis, processing and feedback.

  16. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Xiaohui [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Chen, Changlong, E-mail: chem.chencl@hotmail.com [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Han, Liuyuan [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China); Shao, Baiqi [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Wei, Yuling [Instrumental Analysis Center, Qilu University of Technology, Jinan 250353, Shandong (China); Liu, Qinglong; Zhu, Peihua [Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-15

    Highlights: • In{sub 2}O{sub 3} octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In{sub 2}O{sub 3} octahedrons could significantly enhance room temperature NO{sub 2} gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO{sub 2} gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on.

  17. Indium oxide octahedrons based on sol–gel process enhance room temperature gas sensing performance

    International Nuclear Information System (INIS)

    Mu, Xiaohui; Chen, Changlong; Han, Liuyuan; Shao, Baiqi; Wei, Yuling; Liu, Qinglong; Zhu, Peihua

    2015-01-01

    Highlights: • In 2 O 3 octahedron films are prepared based on sol–gel technique for the first time. • The preparation possesses merits of low temperature, catalyst-free and large production. • It was found that the spin-coating process in film fabrication was key to achieve the octahedrons. • The In 2 O 3 octahedrons could significantly enhance room temperature NO 2 gas sensing performance. - Abstract: Indium oxide octahedrons were prepared on glass substrates through a mild route based on sol–gel technique. The preparation possesses characteristics including low temperature, catalyst-free and large production, which is much distinguished from the chemical-vapor-deposition based methods that usually applied to prepare indium oxide octahedrons. Detailed characterization revealed that the indium oxide octahedrons were single crystalline, with {1 1 1} crystal facets exposed. It was found that the spin-coating technique was key for achieving the indium oxide crystals with octahedron morphology. The probable formation mechanism of the indium oxide octahedrons was proposed based on the experiment results. Room temperature NO 2 gas sensing measurements exhibited that the indium oxide octahedrons could significantly enhance the sensing performance in comparison with the plate-like indium oxide particles that prepared from the dip-coated gel films, which was attributed to the abundant sharp edges and tips as well as the special {1 1 1} crystal facets exposed that the former possessed. Such a simple wet-chemical based method to prepare indium oxide octahedrons with large-scale production is promising to provide the advanced materials that can be applied in wide fields like gas sensing, solar energy conversion, field emission, and so on

  18. Understanding Modern Banking Ledgers through Blockchain Technologies: Future of Transaction Processing and Smart Contracts on the Internet of Money

    OpenAIRE

    Peters, Gareth William; Panayi, Efstathios

    2015-01-01

    In this chapter we provide an overview of the concept of blockchain technology and its potential to disrupt the world of banking through facilitating global money remittance, smart contracts, automated banking ledgers and digital assets. In this regard, we first provide a brief overview of the core aspects of this technology, as well as the second-generation contract-based developments. From there we discuss key issues that must be considered in developing such ledger based technologies in a ...

  19. The Sweet-Home project: audio processing and decision making in smart home to improve well-being and reliance.

    Science.gov (United States)

    Vacher, Michel; Chahuara, Pedro; Lecouteux, Benjamin; Istrate, Dan; Portet, Francois; Joubert, Thierry; Sehili, Mohamed; Meillon, Brigitte; Bonnefond, Nicolas; Fabre, Sébastien; Roux, Camille; Caffiau, Sybille

    2013-01-01

    The Sweet-Home project aims at providing audio-based interaction technology that lets the user have full control over their home environment, at detecting distress situations and at easing the social inclusion of the elderly and frail population. This paper presents an overview of the project focusing on the implemented techniques for speech and sound recognition as context-aware decision making with uncertainty. A user experiment in a smart home demonstrates the interest of this audio-based technology.

  20. Combining machine learning and remotely sensed bandratios to investigate chlorophyll content and photosynthetic processes

    Science.gov (United States)

    Gholizadeh, Hamed

    Photosynthesis in aquatic and terrestrial ecosystems is the key component of the food chain and the most important driver of the global carbon cycle. Therefore, estimation of photosynthesis at large spatial scales is of great scientific importance and can only practically be achieved by remote sensing data and techniques. In this dissertation, remotely sensed information and techniques, as well as field measurements, are used to improve current approaches of assessing photosynthetic processes. More specifically, three topics are the focus here: (1) investigating the application of spectral vegetation indices as proxies for terrestrial chlorophyll in a mangrove ecosystem, (2) evaluating and improving one of the most common empirical ocean-color algorithms (OC4), and (3) developing an improved approach based on sunlit-to-shaded scaled photochemical reflectance index (sPRI) ratios for detecting drought signals in a deciduous forest at eastern United States. The results indicated that although the green normalized difference vegetation index (GNDVI) is an efficient proxy for terrestrial chlorophyll content, there are opportunities to improve the performance of vegetation indices by optimizing the band weights. In regards to the second topic, we concluded that the parameters of the OC4 algorithm and similar empirical models should be tuned regionally and the addition of sea-surface temperature makes the global ocean-color approaches more valid. Results obtained from the third topic showed that considering shaded and sunlit portions of the canopy (i.e., two-leaf models instead of single big leaf models) and taking into account the divergent stomatal behavior of the species (i.e. isohydric and anisohydric) can improve the capability of sPRI in detecting drought. In addition to investigating the photosynthetic processes, the other common theme of the three research topics is the evaluation of "off- the-shelf" solutions to remote-sensing problems. Although widely used

  1. A Fresh Look at Spatio-Temporal Remote Sensing Data: Data Formats, Processing Flow, and Visualization

    Science.gov (United States)

    Gens, R.

    2017-12-01

    With increasing number of experimental and operational satellites in orbit, remote sensing based mapping and monitoring of the dynamic Earth has entered into the realm of `big data'. Just the Landsat series of satellites provide a near continuous archive of 45 years of data. The availability of such spatio-temporal datasets has created opportunities for long-term monitoring diverse features and processes operating on the Earth's terrestrial and aquatic systems. Processes such as erosion, deposition, subsidence, uplift, evapotranspiration, urbanization, land-cover regime shifts can not only be monitored and change can be quantified using time-series data analysis. This unique opportunity comes with new challenges in management, analysis, and visualization of spatio-temporal datasets. Data need to be stored in a user-friendly format, and relevant metadata needs to be recorded, to allow maximum flexibility for data exchange and use. Specific data processing workflows need to be defined to support time-series analysis for specific applications. Value-added data products need to be generated keeping in mind the needs of the end-users, and using best practices in complex data visualization. This presentation systematically highlights the various steps for preparing spatio-temporal remote sensing data for time series analysis. It showcases a prototype workflow for remote sensing based change detection that can be generically applied while preserving the application-specific fidelity of the datasets. The prototype includes strategies for visualizing change over time. This has been exemplified using a time-series of optical and SAR images for visualizing the changing glacial, coastal, and wetland landscapes in parts of Alaska.

  2. In-database processing of a large collection of remote sensing data: applications and implementation

    Science.gov (United States)

    Kikhtenko, Vladimir; Mamash, Elena; Chubarov, Dmitri; Voronina, Polina

    2016-04-01

    Large archives of remote sensing data are now available to scientists, yet the need to work with individual satellite scenes or product files constrains studies that span a wide temporal range or spatial extent. The resources (storage capacity, computing power and network bandwidth) required for such studies are often beyond the capabilities of individual geoscientists. This problem has been tackled before in remote sensing research and inspired several information systems. Some of them such as NASA Giovanni [1] and Google Earth Engine have already proved their utility for science. Analysis tasks involving large volumes of numerical data are not unique to Earth Sciences. Recent advances in data science are enabled by the development of in-database processing engines that bring processing closer to storage, use declarative query languages to facilitate parallel scalability and provide high-level abstraction of the whole dataset. We build on the idea of bridging the gap between file archives containing remote sensing data and databases by integrating files into relational database as foreign data sources and performing analytical processing inside the database engine. Thereby higher level query language can efficiently address problems of arbitrary size: from accessing the data associated with a specific pixel or a grid cell to complex aggregation over spatial or temporal extents over a large number of individual data files. This approach was implemented using PostgreSQL for a Siberian regional archive of satellite data products holding hundreds of terabytes of measurements from multiple sensors and missions taken over a decade-long span. While preserving the original storage layout and therefore compatibility with existing applications the in-database processing engine provides a toolkit for provisioning remote sensing data in scientific workflows and applications. The use of SQL - a widely used higher level declarative query language - simplifies interoperability

  3. The Simple Concurrent Online Processing System (SCOPS) - An open-source interface for remotely sensed data processing

    Science.gov (United States)

    Warren, M. A.; Goult, S.; Clewley, D.

    2018-06-01

    Advances in technology allow remotely sensed data to be acquired with increasingly higher spatial and spectral resolutions. These data may then be used to influence government decision making and solve a number of research and application driven questions. However, such large volumes of data can be difficult to handle on a single personal computer or on older machines with slower components. Often the software required to process data is varied and can be highly technical and too advanced for the novice user to fully understand. This paper describes an open-source tool, the Simple Concurrent Online Processing System (SCOPS), which forms part of an airborne hyperspectral data processing chain that allows users accessing the tool over a web interface to submit jobs and process data remotely. It is demonstrated using Natural Environment Research Council Airborne Research Facility (NERC-ARF) instruments together with other free- and open-source tools to take radiometrically corrected data from sensor geometry into geocorrected form and to generate simple or complex band ratio products. The final processed data products are acquired via an HTTP download. SCOPS can cut data processing times and introduce complex processing software to novice users by distributing jobs across a network using a simple to use web interface.

  4. Smart governance for smart city

    Science.gov (United States)

    Mutiara, Dewi; Yuniarti, Siti; Pratama, Bambang

    2018-03-01

    Some of the local government in Indonesia claimed they already created a smart city. Mostly the claim based of IT utilization for their governance. In general, a smart city definition is to describe a developed urban area that creates sustainable economic development and high quality of life by excelling in multiple key; economy, mobility, environment, people, living, and government. For public services, the law guarantees good governance by setting the standard for e-government implicitly including for local government or a city. Based on the arguments, this research tries to test the condition of e-government of the Indonesian city in 34 provinces. The purpose is to map e-government condition by measuring indicators of smart government, which are: transparent governance and open data for the public. This research is departing from public information disclosure law and to correspond with the existence law. By examining government transparency, the output of the research can be used to measure the effectiveness of public information disclosure law and to determine the condition of e-government in local government in which as part of a smart city.

  5. GET SMART: EPA'S SMARTE INITIATIVE

    Science.gov (United States)

    The EPA's Office of Research and Development with the assistance of the U.S.-German Bilateral Working Group and the Interstate Technology Regulatory Council (ITRC), is developing Site-specific Management Approaches and Revitalization Tools (SMART) that will help stakeholders over...

  6. Development of regulatory policy for SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. H.; Lee, Y. H.; Moo, Philip; Koh, B. J.; Son, M. K.; Han, G. H.; Kim, D. H. [Korea Association for Nuclear Technology, Daejeon (Korea, Republic of)

    2004-06-15

    KAERI promoted the construction of a research reactor, SMART-P, the reduced scale of SMART, with intent to demonstrate the safety and performance of SMART. According to this progress, the development of regulatory process for SMART-P became necessary. The establishment of regulatory policy, based on the current regulatory guidelines as well as technical aspect, became essential matters. Considering the on-going small and medium size reactors in near future, the selection of the appropriate measure in the existing regulatory process to SMART-P is very important. Thus the schematic study for the applicable licensing procedure and regulatory requirements suitable for SMART-P is required.

  7. Development of regulatory policy for SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. H.; Moon, S. H.; Lee, Y. H.; Son, M. K.; Han, K. H.; Kim, D. H. [Korea Association for Nuclear Technology, Taejon (Korea, Republic of)

    2003-06-15

    KAERI promoted the construction of a research reactor, SMART-P, the reduced scale of SMART, with intent to demonstrate the safety and performance of SMART. According to this progress, the development of regulatory process for SMART-P became necessary. The establishment of regulatory policy, based on the current regulatory guidelines as well as technical aspect, became essential matters. Considering the on-going small and medium size reactors m near future, the selection of the appropriate measure in the existing regulatory process to SMART-P is very important. Thus the schematic study for the applicable licensing procedure and regulatory requirements suitable for SMART-P is required.

  8. PROCESSING BIG REMOTE SENSING DATA FOR FAST FLOOD DETECTION IN A DISTRIBUTED COMPUTING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    A. Olasz

    2017-07-01

    Full Text Available The Earth observation (EO missions of the space agencies and space industry (ESA, NASA, national and commercial companies are evolving as never before. These missions aim to develop and launch next-generation series of satellites and sensors and often provide huge amounts of data, even free of charge, to enable novel monitoring services. The wide geospatial sector is targeted to handle new challenges to store, process and visualize these geospatial data, reaching the level of Big Data by their volume, variety, velocity, along with the need of multi-source spatio-temporal geospatial data processing. Handling and analysis of remote sensing data has always been a cumbersome task due to the ever-increasing size and frequency of collected information. This paper presents the achievements of the IQmulus EU FP7 research and development project with respect to processing and analysis of geospatial big data in the context of flood and waterlogging detection.

  9. Spatial service delivery system for smart licensing & enforcement management

    Science.gov (United States)

    Wahap, N. A.; Ismail, N. M.; Nor, N. M.; Ahmad, N.; Omar, M. F.; Termizi, A. A. A.; Zainal, D.; Noordin, N. M.; Mansor, S.

    2016-06-01

    Spatial information has introduced a new sense of urgency for a better understanding of the public needs in term of what, when and where they need services and through which devices, platform or physical locations they need them. The objective of this project is to value- add existing license management process for business premises which comes under the responsibility of Local Authority (PBT). Manipulation of geospatial and tracing technology via mobile platform allows enforcement officers to work in real-time, use a standardized system, improve service delivery, and optimize operation management. This paper will augment the scope and capabilities of proposed concept namely, Smart Licensing/Enforcement Management (SLEm). It will review the current licensing and enforcement practice of selected PBT in comparison to the enhanced method. As a result, the new enhanced system is expected to offer a total solution for licensing/enforcement management whilst increasing efficiency and transparency for smart city management and governance.

  10. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    International Nuclear Information System (INIS)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-01-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications. (paper)

  11. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications

    Science.gov (United States)

    Wei, Yang; Torah, Russel; Yang, Kai; Beeby, Steve; Tudor, John

    2013-07-01

    Free-standing cantilevers have been fabricated by screen printing sacrificial and structural layers onto a standard polyester cotton fabric. By printing additional conductive layers, a complete capacitive motion sensor on fabric using only screen printing has been fabricated. This type of free-standing structure cannot currently be fabricated using conventional fabric manufacturing processes. In addition, compared to conventional smart fabric fabrication processes (e.g. weaving and knitting), screen printing offers the advantages of geometric design flexibility and the ability to simultaneously print multiple devices of the same or different designs. Furthermore, a range of active inks exists from the printed electronics industry which can potentially be applied to create many types of smart fabric. Four cantilevers with different lengths have been printed on fabric using a five-layer structure with a sacrificial material underneath the cantilever. The sacrificial layer is subsequently removed at 160 °C for 30 min to achieve a freestanding cantilever above the fabric. Two silver electrodes, one on top of the cantilever and the other on top of the fabric, are used to capacitively detect the movement of the cantilever. In this way, an entirely printed motion sensor is produced on a standard fabric. The motion sensor was initially tested on an electromechanical shaker rig at a low frequency range to examine the linearity and the sensitivity of each design. Then, these sensors were individually attached to a moving human forearm to evaluate more representative results. A commercial accelerometer (Microstrain G-link) was mounted alongside for comparison. The printed sensors have a similar motion response to the commercial accelerometer, demonstrating the potential of a printed smart fabric motion sensor for use in intelligent clothing applications.

  12. Hadoop Oriented Smart Cities Architecture

    Science.gov (United States)

    Bologa, Ana-Ramona; Bologa, Razvan

    2018-01-01

    A smart city implies a consistent use of technology for the benefit of the community. As the city develops over time, components and subsystems such as smart grids, smart water management, smart traffic and transportation systems, smart waste management systems, smart security systems, or e-governance are added. These components ingest and generate a multitude of structured, semi-structured or unstructured data that may be processed using a variety of algorithms in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in many ways. This enables architects and developers to choose a stack according to their needs and skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is also very dynamic; things can change very quickly, and many new frameworks, products and options continue to emerge as others decline. To construct an optimized, modern architecture, we discuss and compare various products and engines based on a process that takes into consideration how the products perform and scale, as well as the reusability of the code, innovations, features, and support and interest in online communities. PMID:29649172

  13. Hadoop Oriented Smart Cities Architecture

    Directory of Open Access Journals (Sweden)

    Vlad Diaconita

    2018-04-01

    Full Text Available A smart city implies a consistent use of technology for the benefit of the community. As the city develops over time, components and subsystems such as smart grids, smart water management, smart traffic and transportation systems, smart waste management systems, smart security systems, or e-governance are added. These components ingest and generate a multitude of structured, semi-structured or unstructured data that may be processed using a variety of algorithms in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in many ways. This enables architects and developers to choose a stack according to their needs and skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is also very dynamic; things can change very quickly, and many new frameworks, products and options continue to emerge as others decline. To construct an optimized, modern architecture, we discuss and compare various products and engines based on a process that takes into consideration how the products perform and scale, as well as the reusability of the code, innovations, features, and support and interest in online communities.

  14. Hadoop Oriented Smart Cities Architecture.

    Science.gov (United States)

    Diaconita, Vlad; Bologa, Ana-Ramona; Bologa, Razvan

    2018-04-12

    A smart city implies a consistent use of technology for the benefit of the community. As the city develops over time, components and subsystems such as smart grids, smart water management, smart traffic and transportation systems, smart waste management systems, smart security systems, or e-governance are added. These components ingest and generate a multitude of structured, semi-structured or unstructured data that may be processed using a variety of algorithms in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in many ways. This enables architects and developers to choose a stack according to their needs and skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is also very dynamic; things can change very quickly, and many new frameworks, products and options continue to emerge as others decline. To construct an optimized, modern architecture, we discuss and compare various products and engines based on a process that takes into consideration how the products perform and scale, as well as the reusability of the code, innovations, features, and support and interest in online communities.

  15. Smart Factory

    DEFF Research Database (Denmark)

    Bilberg, Arne; Radziwon, Agnieszka; Grube Hansen, David

    2017-01-01

    their innovation and competitive advantage by focusing at their competences, strengths and opportunities. The project suggests innovative solutions and business models through collaboration and use of new technologies. In the Smart Factory, SMEs should be able to collaborate on new products, markets and production......, and to target their challenges and ensure sustainable growth and business in these enterprises. Therefore the focus of the Smart Factory project was to support the growth and sustainable development of the small and medium sized manufacturing industry in Denmark. The project focused on SMEs and how to improve......A large part of Danish Industry is based on Small and Medium Sized Enterprises (SMEs), which account for –99% of the companies in Denmark and about two third of the job positions (source: statistikbanken.dk) . That is why, it is so important also to focus research and development at SMEs...

  16. Integrating the Smart Home into the Digital Calendar

    OpenAIRE

    Mennicken, Sarah; Kim, David; Huang, Elaine May

    2016-01-01

    With the growing adoption of smart home technologies, inhabitants are faced with the challenge of making sense of the data that their homes can collect to configure automated behaviors that benefit their routines. Current commercial smart home interfaces usually provide information on individual devices instead of a more comprehensive overview of a home’s behavior. To reduce the complexity of smart home data and integrate it better into inhabitants’ lives, we turned to the familiar metaphor o...

  17. Smart Growth and Transportation

    Science.gov (United States)

    Describes the relationship between smart growth and transportation, focusing smart and sustainable street design, transit-oriented development, parking management, sustainable transportation planning, and related resources.

  18. Metrics for smart security awareness

    CSIR Research Space (South Africa)

    Labuschagne, William A

    2017-06-01

    Full Text Available informing the response teams for reparations. These capabilities are possible by collecting data from the environment and ensuring intelligence is developed to react automatically without human intervention. The concept of smart cities has also been.... The data would be transported to a centralized situational awareness capability for analyses and create the appropriate response in the form of remedial action. The use of threat intelligence feeds could automatically sense the existence of a new threat...

  19. Reshaping an enduring sense of self: the process of recovery from a first episode of schizophrenia.

    Science.gov (United States)

    Romano, Donna M; McCay, Elizabeth; Goering, Paula; Boydell, Katherine; Zipursky, Robert

    2010-08-01

    Although advances in the treatment of schizophrenia have been made, little is known about the process of recovery from first episode of schizophrenia (FES). To date, the study of recovery in the field of mental health has focused on long-term mental illness. This qualitative study addresses ways in which individuals with FES describe their process of recovery and how identified individuals (e.g. family members) describe their perceptions of and roles in the participant's process of recovery. Charmaz's constructivist grounded theory methodology was used to interview 10 young adults twice who self-identified as recovering from FES. In addition, 10 individuals were identified who had influenced their recovery and were interviewed once, for a total of 30 interviews. Data collection sources included in-depth semi-structured interviews. Data analysis methods were consistent with Charmaz's methodology and included coding, and constant comparison of data. The results provide a substantive theory of the process of recovery from FES that is comprised of the following phases: 'Who they were prior to the illness', 'Lives interrupted: Encountering the illness', 'Engaging in services and supports', 'Re-engaging in life', 'Envisioning the future'; and the core category, 'Re-shaping an enduring sense of self', that occurred throughout all phases. A prominent feature of this model is that participants' enduring sense of self were reshaped rather than reconstructed throughout their recovery. This model of recovery from FES is unique, and as such, provides implications for clinical care, research and policy development for these young adults and their families.

  20. Smart Pricing for Smart Grid

    OpenAIRE

    Wang, Zhimin

    2014-01-01

    Flat-rate electricity tariffs in Great Britain, which have no price variation throughout a day or a year, have been ongoing for decades to recover the cost of energy production and delivery. However, this type of electricity tariff has little incentives to encourage customers to modify their demands to suit the condition of the power supply system. Hence, it is challenged in the new smart grid environment, where demand side responses have important roles to play to encourage conventional ener...

  1. Semantic connections: exploring and manipulating connections in smart spaces

    NARCIS (Netherlands)

    Vlist, van der B.J.J.; Niezen, G.; Hu, J.; Feijs, L.M.G.

    2010-01-01

    In envisioned smart environments, enabled by ubiquitous computing technologies, electronic objects will be able to interconnect and interoperate. How will users of such smart environments make sense of the connections that are made and the information that is exchanged? This Internet of Things could

  2. Soft-sensing Modeling Based on MLS-SVM Inversion for L-lysine Fermentation Processes

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-06-01

    Full Text Available A modeling approach 63 based on multiple output variables least squares support vector machine (MLS-SVM inversion is presented by a combination of inverse system and support vector machine theory. Firstly, a dynamic system model is developed based on material balance relation of a fed-batch fermentation process, with which it is analyzed whether an inverse system exists or not, and into which characteristic information of a fermentation process is introduced to set up an extended inversion model. Secondly, an initial extended inversion model is developed off-line by the use of the fitting capacity of MLS-SVM; on-line correction is made by the use of a differential evolution (DE algorithm on the basis of deviation information. Finally, a combined pseudo-linear system is formed by means of a serial connection of a corrected extended inversion model behind the L-lysine fermentation processes; thereby crucial biochemical parameters of a fermentation process could be predicted on-line. The simulation experiment shows that this soft-sensing modeling method features very high prediction precision and can predict crucial biochemical parameters of L-lysine fermentation process very well.

  3. A New Tool for Intelligent Parallel Processing of Radar/SAR Remotely Sensed Imagery

    Directory of Open Access Journals (Sweden)

    A. Castillo Atoche

    2013-01-01

    Full Text Available A novel parallel tool for large-scale image enhancement/reconstruction and postprocessing of radar/SAR sensor systems is addressed. The proposed parallel tool performs the following intelligent processing steps: image formation, for the application of different system-level effects of image degradation with a particular remote sensing (RS system and simulation of random noising effects, enhancement/reconstruction by employing nonparametric robust high-resolution techniques, and image postprocessing using the fuzzy anisotropic diffusion technique which incorporates a better edge-preserving noise removal effect and faster diffusion process. This innovative tool allows the processing of high-resolution images provided with different radar/SAR sensor systems as required by RS endusers for environmental monitoring, risk prevention, and resource management. To verify the performance implementation of the proposed parallel framework, the processing steps are developed and specifically tested on graphic processing units (GPU, achieving considerable speedups compared to the serial version of the same techniques implemented in C language.

  4. Aging and the number sense: preserved basic non-symbolic numerical processing and enhanced basic symbolic processing

    Directory of Open Access Journals (Sweden)

    Jade Eloise eNorris

    2015-07-01

    Full Text Available Aging often leads to general cognitive decline in domains such as memory and attention. The effect of aging on numerical cognition, particularly on foundational numerical skills known as the Number Sense, is not well known. Early research focused on the effect of aging on arithmetic. Recent studies have begun to investigate the impact of healthy aging on basic numerical skills, but focused on non-symbolic quantity discrimination alone. Moreover, contradictory findings have emerged. The current study aimed to further investigate the impact of aging on basic non-symbolic and symbolic numerical skills. A group of 25 younger (18-25 and 25 older adults (60-77 participated in non-symbolic and symbolic numerical comparison tasks. Mathematical and spelling abilities were also measured. Results showed that aging had no effect on foundational non-symbolic numerical skills, as both groups performed similarly (RTs, accuracy and Weber fractions (w. All participants showed decreased non-symbolic acuity (accuracy and w in trials requiring inhibition. However, aging appears to be associated with a greater decline in discrimination speed in such trials. Furthermore, aging seems to have a positive impact on mathematical ability and basic symbolic numerical processing, as older participants attained significantly higher mathematical achievement scores, and performed significantly better on the symbolic comparison task than younger participants. The findings suggest that aging and its lifetime exposure to numbers may lead to better mathematical achievement and stronger basic symbolic numerical skills. Our results further support the observation that basic non-symbolic numerical skills are resilient to aging, but that aging may exacerbate poorer performance on trials requiring inhibitory processes. These findings lend further support to the notion that preserved basic numerical skills in aging may reflect the preservation of an innate, primitive and embedded Number

  5. Educating the smart city: Schooling smart citizens through computational urbanism

    Directory of Open Access Journals (Sweden)

    Ben Williamson

    2015-11-01

    Full Text Available Coupled with the ‘smart city’, the idea of the ‘smart school’ is emerging in imaginings of the future of education. Various commercial, governmental and civil society organizations now envisage education as a highly coded, software-mediated and data-driven social institution. Such spaces are to be governed through computational processes written in computer code and tracked through big data. In an original analysis of developments from commercial, governmental and civil society sectors, the article examines two interrelated dimensions of an emerging smart schools imaginary: (1 the constant flows of digital data that smart schools depend on and the mobilization of analytics that enable student data to be used to anticipate and shape their behaviours; and (2 the ways that young people are educated to become ‘computational operatives’ who must ‘learn to code’ in order to become ‘smart citizens’ in the governance of the smart city. These developments constitute an emerging educational space fabricated from intersecting standards, technologies, discourses and social actors, all infused with the aspirations of technical experts to govern the city at a distance through both monitoring young people as ‘data objects’ and schooling them as active ‘computational citizens’ with the responsibility to compute the future of the city.

  6. Developing a Data Driven Process-Based Model for Remote Sensing of Ecosystem Production

    Science.gov (United States)

    Elmasri, B.; Rahman, A. F.

    2010-12-01

    Estimating ecosystem carbon fluxes at various spatial and temporal scales is essential for quantifying the global carbon cycle. Numerous models have been developed for this purpose using several environmental variables as well as vegetation indices derived from remotely sensed data. Here we present a data driven modeling approach for gross primary production (GPP) that is based on a process based model BIOME-BGC. The proposed model was run using available remote sensing data and it does not depend on look-up tables. Furthermore, this approach combines the merits of both empirical and process models, and empirical models were used to estimate certain input variables such as light use efficiency (LUE). This was achieved by using remotely sensed data to the mathematical equations that represent biophysical photosynthesis processes in the BIOME-BGC model. Moreover, a new spectral index for estimating maximum photosynthetic activity, maximum photosynthetic rate index (MPRI), is also developed and presented here. This new index is based on the ratio between the near infrared and the green bands (ρ858.5/ρ555). The model was tested and validated against MODIS GPP product and flux measurements from two eddy covariance flux towers located at Morgan Monroe State Forest (MMSF) in Indiana and Harvard Forest in Massachusetts. Satellite data acquired by the Advanced Microwave Scanning Radiometer (AMSR-E) and MODIS were used. The data driven model showed a strong correlation between the predicted and measured GPP at the two eddy covariance flux towers sites. This methodology produced better predictions of GPP than did the MODIS GPP product. Moreover, the proportion of error in the predicted GPP for MMSF and Harvard forest was dominated by unsystematic errors suggesting that the results are unbiased. The analysis indicated that maintenance respiration is one of the main factors that dominate the overall model outcome errors and improvement in maintenance respiration estimation

  7. Smart cities of the future

    Science.gov (United States)

    Batty, M.; Axhausen, K. W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y.

    2012-11-01

    Here we sketch the rudiments of what constitutes a smart city which we define as a city in which ICT is merged with traditional infrastructures, coordinated and integrated using new digital technologies. We first sketch our vision defining seven goals which concern: developing a new understanding of urban problems; effective and feasible ways to coordinate urban technologies; models and methods for using urban data across spatial and temporal scales; developing new technologies for communication and dissemination; developing new forms of urban governance and organisation; defining critical problems relating to cities, transport, and energy; and identifying risk, uncertainty, and hazards in the smart city. To this, we add six research challenges: to relate the infrastructure of smart cities to their operational functioning and planning through management, control and optimisation; to explore the notion of the city as a laboratory for innovation; to provide portfolios of urban simulation which inform future designs; to develop technologies that ensure equity, fairness and realise a better quality of city life; to develop technologies that ensure informed participation and create shared knowledge for democratic city governance; and to ensure greater and more effective mobility and access to opportunities for urban populations. We begin by defining the state of the art, explaining the science of smart cities. We define six scenarios based on new cities badging themselves as smart, older cities regenerating themselves as smart, the development of science parks, tech cities, and technopoles focused on high technologies, the development of urban services using contemporary ICT, the use of ICT to develop new urban intelligence functions, and the development of online and mobile forms of participation. Seven project areas are then proposed: Integrated Databases for the Smart City, Sensing, Networking and the Impact of New Social Media, Modelling Network Performance

  8. Development of Personalized Urination Recognition Technology Using Smart Bands

    Directory of Open Access Journals (Sweden)

    Sung-Jong Eun

    2017-04-01

    Full Text Available Purpose This study collected and analyzed activity data sensed through smart bands worn by patients in order to resolve the clinical issues posed by using voiding charts. By developing a smart band-based algorithm for recognizing urination activity in patients, this study aimed to explore the feasibility of urination monitoring systems. Methods This study aimed to develop an algorithm that recognizes urination based on a patient’s posture and changes in posture. Motion data was obtained from a smart band on the arm. An algorithm that recognizes the 3 stages of urination (forward movement, urination, backward movement was developed based on data collected from a 3-axis accelerometer and from tilt angle data. Real-time data were acquired from the smart band, and for data corresponding to a certain duration, the absolute value of the signals was calculated and then compared with the set threshold value to determine the occurrence of vibration signals. In feature extraction, the most essential information describing each pattern was identified after analyzing the characteristics of the data. The results of the feature extraction process were sorted using a classifier to detect urination. Results An experiment was carried out to assess the performance of the recognition technology proposed in this study. The final accuracy of the algorithm was calculated based on clinical guidelines for urologists. The experiment showed a high average accuracy of 90.4%, proving the robustness of the proposed algorithm. Conclusions The proposed urination recognition technology draws on acceleration data and tilt angle data collected via a smart band; these data were then analyzed using a classifier after comparative analyses with standardized feature patterns.

  9. WPS-based technology for client-side remote sensing data processing

    Science.gov (United States)

    Kazakov, E.; Terekhov, A.; Kapralov, E.; Panidi, E.

    2015-04-01

    Server-side processing is principal for most of the current Web-based geospatial data processing tools. However, in some cases the client-side geoprocessing may be more convenient and acceptable. This study is dedicated to the development of methodology and techniques of Web services elaboration, which allow the client-side geoprocessing also. The practical objectives of the research are focused on the remote sensing data processing, which are one of the most resource-intensive data types. The idea underlying the study is to propose such geoprocessing Web service schema that will be compatible with the current serveroriented Open Geospatial Consortium standard (OGC WPS standard), and additionally will allow to run the processing on the client, transmitting processing tool (executable code) over the network instead of the data. At the same time, the unity of executable code must be preserved, and the transmitted code should be the same to that is used for server-side processing. This unity should provide unconditional identity of the processing results that performed using of any schema. The appropriate services are pointed by the authors as a Hybrid Geoprocessing Web Services (HGWSs). The common approaches to architecture and structure of the HGWSs are proposed at the current stage as like as a number of service prototypes. For the testing of selected approaches, the geoportal prototype was implemented, which provides access to created HGWS. Further works are conducted on the formalization of platform independent HGWSs implementation techniques, and on the approaches to conceptualization of theirs safe use and chaining possibilities. The proposed schema of HGWSs implementation could become one of the possible solutions for the distributed systems, assuming that the processing servers could play the role of the clients connecting to the service supply server. The study was partially supported by Russian Foundation for Basic Research (RFBR), research project No. 13

  10. Smart grid business case for private homes

    DEFF Research Database (Denmark)

    Villefrance, Rasmus; Brandt, Jonas; Eriksen, Poul Svante

    2013-01-01

    We describe and consider how the potential of energy savings may drive the penetration of smart grid technology into private homes. We assess the sociological processes which lead to energy savings when the residents have access to smart grid technology. We propose a way to establish a cash flow...... from consumers via electrical distribution companies to smart grid technology providers on the Danish market. Finally, we assess the impact of such a business development on the society, as well as relating the penetration of smart grid technology in private homes to the societal goal of 100% renewable...

  11. NAMMA SMART-COMMIT MOBILE LABORATORIES V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NAMMA SMART-COMMIT Mobile Laboratories dataset consists of data obtained from a suite of in situ and remote sensing instruments which measure parameters that...

  12. Fiber sensing based on new structures and post-processing enhancement

    Science.gov (United States)

    Ferreira, Marta Sofia dos Anjos

    The work described in this PhD Thesis focuses on the post-processing of optical fibers and their enhancement as sensing element. Since the majority of sensors presented are based in Fabry-Perot interferometers, an historical overview of this category of optical fiber sensors is firstly presented. This review considers the works published since the early years, in the beginning of the 1980s, until the middle of 2015. The incorporation of microcavities at the tip of a single mode fiber was extensively studied, particularly for the measurement of nitrogen and methane gas pressure. These cavities were fabricated using hollow core silica tubes and a hollow core photonic crystal fiber. Following a different approach, the microcavities were incorporated between two sections of single mode fiber. In this case, the low sensitivity to temperature makes these microcavities highly desirable for the measurement of strain at high temperatures. Competences in post-processing techniques such as the chemical etching and the writing of periodical structures in the fiber core by means of an excimer or a femtosecond laser were also acquired in the course of the PhD programme. One of the works consisted in the design and manufacturing of a double clad optical fiber. The refractive index of the inner cladding was higher than the one of the outer cladding and the core. Thus, light was guided in the inner cladding instead of propagating in the core. This situation was overcome by applying chemical etching, thus removing the inner cladding. The core, surrounded by air, was then able to guide light. Two different applications were found for this fiber, as a temperature sensor and as an optical refractometer. In the last, the optical phase changes with the liquid refractive index. Two different types of fiber Bragg gratings were characterized in strain and temperature. Sensing structures obtained through the phase mask technique at the tip of an optical fiber were subjected to chemical

  13. Recent developments in smart freezing technology applied to fresh foods.

    Science.gov (United States)

    Xu, Ji-Cheng; Zhang, Min; Mujumdar, Arun S; Adhikari, Benu

    2017-09-02

    Due to the increased awareness of consumers in sensorial and nutritional quality of frozen foods, the freezing technology has to seek new and innovative technologies for better retaining the fresh like quality of foods. In this article, we review the recent developments in smart freezing technology applied to fresh foods. The application of these intelligent technologies and the associated underpinning concepts have greatly improved the quality of frozen foods and the freezing efficiency. These technologies are able to automatically collect the information in-line during freezing and help control the freezing process better. Smart freezing technology includes new and intelligent technologies and concepts applied to the pretreatment of the frozen product, freezing processes, cold chain logistics as well as warehouse management. These technologies enable real-time monitoring of quality during the freezing process and help improve product quality and freezing efficiency. We also provide a brief overview of several sensing technologies used to achieve automatic control of individual steps of freezing process. These sensing technologies include computer vision, electronic nose, electronic tongue, digital simulation, confocal laser, near infrared spectroscopy, nuclear magnetic resonance technology and ultrasound. Understanding of the mechanism of these new technologies will be helpful for applying them to improve the quality of frozen foods.

  14. Generalization of the Wide-Sense Markov Concept to a Widely Linear Processing

    International Nuclear Information System (INIS)

    Espinosa-Pulido, Juan Antonio; Navarro-Moreno, Jesús; Fernández-Alcalá, Rosa María; Ruiz-Molina, Juan Carlos; Oya-Lechuga, Antonia; Ruiz-Fuentes, Nuria

    2014-01-01

    In this paper we show that the classical definition and the associated characterizations of wide-sense Markov (WSM) signals are not valid for improper complex signals. For that, we propose an extension of the concept of WSM to a widely linear (WL) setting and the study of new characterizations. Specifically, we introduce a new class of signals, called widely linear Markov (WLM) signals, and we analyze some of their properties based either on second-order properties or on state-space models from a WL processing standpoint. The study is performed in both the forwards and backwards directions of time. Thus, we provide two forwards and backwards Markovian representations for WLM signals. Finally, different estimation recursive algorithms are obtained for these models

  15. Smart Markets for Water Resources

    Science.gov (United States)

    Raffensperger, John

    2017-04-01

    Commercial water users often want to trade water, but their trades can hurt other users and the environment. So government has to check every transaction. This checking process is slow and expensive. That's why "free market" water trading doesn't work, especially with trading between a single buyer and a single seller. This talk will describe a water trading mechanism designed to solve these problems. The trading mechanism is called a "smart market". A smart market allows simultaneous many-to-many trades. It can reduce the transaction costs of water trading, while improving environmental outcomes. The smart market depends on a combination of recent technologies: hydrology simulation, computer power, and the Internet. Our smart market design uses standard hydrological models, user bids from a web page, and computer optimization to maximize the economic value of water while meeting all environmental constraints. Before the smart market can be implemented, however, users and the water agency must meet six critical prerequisites. These prerequisites may be viewed as simply good water management that should be done anyway. I will describe these prerequisites, and I will briefly discuss common arguments against water markets. This talk will be an abstract of a forthcoming book, "Smart Markets for Water Resources: A Manual for Implementation," by John F. Raffensperger and Mark W. Milke, from Springer Publishing.

  16. Smart Money

    DEFF Research Database (Denmark)

    Avital, Michel; Hedman, Jonas; Albinsson, Lars

    2017-01-01

    Legal tender in the form of coins and banknotes is expected to be replaced at one point in the future by digital legal tender. This transformation is an opportunity for central banks to rethink the idea of money and overhaul the prevailing payment systems. Digital legal tender is expected to reduce...... exchange instrument that relies on computer protocols to facilitate, verify, and enforce certain conditions for its appropriation as payment, e.g. who may use the money, where, and for what. If we believe that digital legal tender will become ubiquitous, then the emergence and diffusion of smart money...

  17. Engineering the smart factory

    Science.gov (United States)

    Harrison, Robert; Vera, Daniel; Ahmad, Bilal

    2016-10-01

    The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.

  18. Smart Toys Designed for Detecting Developmental Delays.

    Science.gov (United States)

    Rivera, Diego; García, Antonio; Alarcos, Bernardo; Velasco, Juan R; Ortega, José Eugenio; Martínez-Yelmo, Isaías

    2016-11-20

    In this paper, we describe the design considerations and implementation of a smart toy system, a technology for supporting the automatic recording and analysis for detecting developmental delays recognition when children play using the smart toy. To achieve this goal, we take advantage of the current commercial sensor features (reliability, low consumption, easy integration, etc.) to develop a series of sensor-based low-cost devices. Specifically, our prototype system consists of a tower of cubes augmented with wireless sensing capabilities and a mobile computing platform that collect the information sent from the cubes allowing the later analysis by childhood development professionals in order to verify a normal behaviour or to detect a potential disorder. This paper presents the requirements of the toy and discusses our choices in toy design, technology used, selected sensors, process to gather data from the sensors and generate information that will help in the decision-making and communication of the information to the collector system. In addition, we also describe the play activities the system supports.

  19. Smart Toys Designed for Detecting Developmental Delays

    Directory of Open Access Journals (Sweden)

    Diego Rivera

    2016-11-01

    Full Text Available In this paper, we describe the design considerations and implementation of a smart toy system, a technology for supporting the automatic recording and analysis for detecting developmental delays recognition when children play using the smart toy. To achieve this goal, we take advantage of the current commercial sensor features (reliability, low consumption, easy integration, etc. to develop a series of sensor-based low-cost devices. Specifically, our prototype system consists of a tower of cubes augmented with wireless sensing capabilities and a mobile computing platform that collect the information sent from the cubes allowing the later analysis by childhood development professionals in order to verify a normal behaviour or to detect a potential disorder. This paper presents the requirements of the toy and discusses our choices in toy design, technology used, selected sensors, process to gather data from the sensors and generate information that will help in the decision-making and communication of the information to the collector system. In addition, we also describe the play activities the system supports.

  20. Application of smart transmitter technology in nuclear engineering measurements with level detection algorithm

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun

    1994-01-01

    In this study a programmable smart transmitter is designed and applied to the nuclear engineering measurements. In order to apply the smart transmitter technology to nuclear engineering measurements, the water level detection function is developed and applied in this work. In the real time system, the application of level detection algorithm can make the operator of the nuclear power plant sense the water level more rapidly. Furthermore this work can simplify the data communication between the level-sensing thermocouples and the main signal processor because the level signal is determined at field. The water level detection function reduces the detection time to about 8.3 seconds by processing the signal which has the time constant 250 seconds and the heavy noise signal

  1. Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging

    Science.gov (United States)

    Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin

    2014-06-01

    Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging.

  2. Losing Control in Social Situations: How the Presence of Others Affects Neural Processes Related to Sense of Agency.

    Science.gov (United States)

    Beyer, Frederike; Sidarus, Nura; Fleming, Stephen; Haggard, Patrick

    2018-01-01

    Social contexts substantially influence individual behavior, but little is known about how they affect cognitive processes related to voluntary action. Previously, it has been shown that social context reduces participants' sense of agency over the outcomes of their actions and outcome monitoring. In this fMRI study on human volunteers, we investigated the neural mechanisms by which social context alters sense of agency. Participants made costly actions to stop inflating a balloon before it burst. On "social" trials, another player could act in their stead, but we analyzed only trials in which the other player remained passive. We hypothesized that mentalizing processes during social trials would affect decision-making fluency and lead to a decreased sense of agency. In line with this hypothesis, we found increased activity in the bilateral temporo-parietal junction (TPJ), precuneus, and middle frontal gyrus during social trials compared with nonsocial trials. Activity in the precuneus was, in turn, negatively related to sense of agency at a single-trial level. We further found a double dissociation between TPJ and angular gyrus (AG): activity in the left AG was not sensitive to social context but was negatively related to sense of agency. In contrast, activity in the TPJ was modulated by social context but was not sensitive to sense of agency.

  3. Losing Control in Social Situations: How the Presence of Others Affects Neural Processes Related to Sense of Agency

    Science.gov (United States)

    Fleming, Stephen

    2018-01-01

    Social contexts substantially influence individual behavior, but little is known about how they affect cognitive processes related to voluntary action. Previously, it has been shown that social context reduces participants’ sense of agency over the outcomes of their actions and outcome monitoring. In this fMRI study on human volunteers, we investigated the neural mechanisms by which social context alters sense of agency. Participants made costly actions to stop inflating a balloon before it burst. On “social” trials, another player could act in their stead, but we analyzed only trials in which the other player remained passive. We hypothesized that mentalizing processes during social trials would affect decision-making fluency and lead to a decreased sense of agency. In line with this hypothesis, we found increased activity in the bilateral temporo-parietal junction (TPJ), precuneus, and middle frontal gyrus during social trials compared with nonsocial trials. Activity in the precuneus was, in turn, negatively related to sense of agency at a single-trial level. We further found a double dissociation between TPJ and angular gyrus (AG): activity in the left AG was not sensitive to social context but was negatively related to sense of agency. In contrast, activity in the TPJ was modulated by social context but was not sensitive to sense of agency. PMID:29527568

  4. Application of ion beam analysis to the selective sublimation processing of thin films for gas sensing

    International Nuclear Information System (INIS)

    Vomiero, A.; Scian, C.; Della Mea, G.; Guidi, V.; Martinelli, G.; Schiffrer, G.; Comini, E.; Ferroni, M.; Sberveglieri, G.

    2006-01-01

    Ion beam analysis was successfully applied to a novel technique, named selective sublimation process (SSP), for deposition of nanostructured gas-sensing films through reactive sputtering. The method consists of the co-deposition of a mixed oxide, one of which has a relatively low sublimation temperature. Annealing at suitable temperature causes the sublimation of the most volatile compound, leaving a layer with adjustable composition. The appropriate choice of thermal treatments and the consequent tailoring of the composition play a crucial role in the determination of the microstructural properties. We developed a model based on diffusion equations that provides a useful guide to control the deposition and processing parameters and we applied the model on the systems TiO 2 -WO 3 and TiO 2 -MoO 3 . Rutherford backscattering (RBS) was demonstrated to be effective for the characterization of the diffusion and sublimation processes during SSP. Experimental results fully agree with theoretical prediction, and allowed the calculation of all the parameters involved in SSP

  5. Fiber‐optic distributed temperature sensing: A new tool for assessment and monitoring of hydrologic processes

    Science.gov (United States)

    Lane, John W.; Day-Lewis, Frederick D.; Johnson, Carole D.; Dawson, Cian B.; Nelms, David L.; Miller, Cheryl; Wheeler, Jerrod D.; Harvey, Charles F.; Karam, Hanan N.

    2008-01-01

    Fiber‐optic distributed temperature sensing (FO DTS) is an emerging technology for characterizing and monitoring a wide range of important earth processes. FO DTS utilizes laser light to measure temperature along the entire length of standard telecommunications optical fibers. The technology can measure temperature every meter over FO cables up to 30 kilometers (km) long. Commercially available systems can measure fiber temperature as often as 4 times per minute, with thermal precision ranging from 0.1 to 0.01 °C depending on measurement integration time. In 2006, the U.S. Geological Survey initiated a project to demonstrate and evaluate DTS as a technology to support hydrologic studies. This paper demonstrates the potential of the technology to assess and monitor hydrologic processes through case‐study examples of FO DTS monitoring of stream‐aquifer interaction on the Shenandoah River near Locke's Mill, Virginia, and on Fish Creek, near Jackson Hole, Wyoming, and estuary‐aquifer interaction on Waquoit Bay, Falmouth, Massachusetts. The ability to continuously observe temperature over large spatial scales with high spatial and temporal resolution provides a new opportunity to observe and monitor a wide range of hydrologic processes with application to other disciplines including hazards, climate‐change, and ecosystem monitoring.

  6. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  7. A Scalable Smart Meter Data Generator Using Spark

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Liu, Xiufeng; Danalachi, Sergiu

    2017-01-01

    Today, smart meters are being used worldwide. As a matter of fact smart meters produce large volumes of data. Thus, it is important for smart meter data management and analytics systems to process petabytes of data. Benchmarking and testing of these systems require scalable data, however, it can ...

  8. Functional electronic screen printing – electroluminescent smart fabric watch

    OpenAIRE

    de Vos, Marc; Torah, Russel; Beeby, Steve; Tudor, John

    2013-01-01

    Motivation for screen printed smart fabrics.Introduce functional electronic screen printing on fabrics.Printed smart fabric watch design.Printing process for electroluminescent watch.Demonstration video.Conclusions and further work.Examples of other screen printed smart fabrics.

  9. Smart energy and smart energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik; Østergaard, Poul Alberg; Connolly, David

    2017-01-01

    In recent years, the terms “Smart Energy” and “Smart Energy Systems” have been used to express an approach that reaches broader than the term “Smart grid”. Where Smart Grids focus primarily on the electricity sector, Smart Energy Systems take an integrated holistic focus on the inclusion of more...... sectors (electricity, heating, cooling, industry, buildings and transportation) and allows for the identification of more achievable and affordable solutions to the transformation into future renewable and sustainable energy solutions. This paper first makes a review of the scientific literature within...... the field. Thereafter it discusses the term Smart Energy Systems with regard to the issues of definition, identification of solu- tions, modelling, and integration of storage. The conclusion is that the Smart Energy System concept represents a scientific shift in paradigms away from single-sector thinking...

  10. The Search for a Convergent Option to Deploy Smart Grids on IoT Scenario

    Directory of Open Access Journals (Sweden)

    Hamilton da Gama Schroder Filho

    2017-06-01

    Full Text Available Smart city projects are quickly evolving in several countries as a feasible solution to the urban organization to provide sustainable socioeconomic growth and solve problems that arise as the populations of these cities grow. In this sense, technology application plays an important role in enabling automation of processes, improving the citizen’s quality of life and reducing the costs of public services for municipalities and enterprises. However, automation initiatives of services such as electricity, water, and gas which materialize by the so-called smart grids, have emerged earlier than smart city projects, and are consolidating in several countries. Although smart grid initiatives have arisen earlier to projects of smart cities it represents a subset of the great scenario of IoT that is the vision in which the smart city projects are based. The time difference from developments between these two initiatives made the alternatives of communication technologies for infrastructures construction of communication followed different paths. However, in view of the great scenery of IoT is desirable to determine technologies that provide convergence of a single urban communication infrastructure capable of supporting all applications, whether they are typically IoT or traditional smart grid applications. This work is a review which presents and discusses the two main technologies which are currently best positioned to play this role of convergence that is RF Mesh and LoRaWAN. The strengths and weaknesses of each one of them are also presented and propose that in actuality LoRaWAN is a promising option to offer the required conditions to take on this convergent position.

  11. Soft Mobility as a Smart Condition in a Mountain City

    Science.gov (United States)

    Virtudes, Ana; Azevedo, Henrique; Abbara, Arwa; Sá, João

    2017-10-01

    Nowadays soft mobility is a crucial issue towards a most sustainable urban environment. Not only because it promotes a less polluted atmosphere among the always dense and busy urban fabric, but also because it avoids several traffic problems. The use of bicycles, or mechanic mechanisms to support the pedestrian mobility is an emerging requirement of cities’ quality. In this sense, this article aims to discuss the soft mobility as a requirement of smart cities having as a case study one mountain urban area. It refers to the urban area of Covilhã on the highest mountain of Portugal with nearly two thousand meters high. During the last decades, this city’s transformation process has driven to an urban sprawl to the suburbs, increasing the efforts in terms of transportation required by the commuters. In fact, the number of inhabitants living in the city centre is decreasing in favour of the peripheral neighbourhoods. At the same time a set of several mechanic mechanisms such as public lifts, has been built in order to promote a soft pedestrian mobility. However, in many cases, because of the lack of connection and continuity of pedestrian paths in between these mechanisms, they are not allowing a pedestrian mobility network at the city scale. Thus, this paper aims to present a set of good practices in terms of pedestrian mobility network at the city scale, in order to promote a smarter urban environment. The principal results are that soft mobility is a key issue in order to turn cities smarter, among several other factors such as smart economy, smart people, smart governance or smart living. The major conclusions show that the concerns with mobility are key tools to achieve the smart city sustainability, providing and efficient and flexible traveling across the urban fabric, boosting the use of non-polluting ways of mobility. At the same time, there is the conclusion that the underlying areas of development for a smart city, despite its cultural or territorial

  12. THERMAL AND VISIBLE SATELLITE IMAGE FUSION USING WAVELET IN REMOTE SENSING AND SATELLITE IMAGE PROCESSING

    Directory of Open Access Journals (Sweden)

    A. H. Ahrari

    2017-09-01

    Full Text Available Multimodal remote sensing approach is based on merging different data in different portions of electromagnetic radiation that improves the accuracy in satellite image processing and interpretations. Remote Sensing Visible and thermal infrared bands independently contain valuable spatial and spectral information. Visible bands make enough information spatially and thermal makes more different radiometric and spectral information than visible. However low spatial resolution is the most important limitation in thermal infrared bands. Using satellite image fusion, it is possible to merge them as a single thermal image that contains high spectral and spatial information at the same time. The aim of this study is a performance assessment of thermal and visible image fusion quantitatively and qualitatively with wavelet transform and different filters. In this research, wavelet algorithm (Haar and different decomposition filters (mean.linear,ma,min and rand for thermal and panchromatic bands of Landast8 Satellite were applied as shortwave and longwave fusion method . Finally, quality assessment has been done with quantitative and qualitative approaches. Quantitative parameters such as Entropy, Standard Deviation, Cross Correlation, Q Factor and Mutual Information were used. For thermal and visible image fusion accuracy assessment, all parameters (quantitative and qualitative must be analysed with respect to each other. Among all relevant statistical factors, correlation has the most meaningful result and similarity to the qualitative assessment. Results showed that mean and linear filters make better fused images against the other filters in Haar algorithm. Linear and mean filters have same performance and there is not any difference between their qualitative and quantitative results.

  13. Rupture process of the 2013 Okhotsk deep mega earthquake from iterative backprojection and compress sensing methods

    Science.gov (United States)

    Qin, W.; Yin, J.; Yao, H.

    2013-12-01

    On May 24th 2013 a Mw 8.3 normal faulting earthquake occurred at a depth of approximately 600 km beneath the sea of Okhotsk, Russia. It is a rare mega earthquake that ever occurred at such a great depth. We use the time-domain iterative backprojection (IBP) method [1] and also the frequency-domain compressive sensing (CS) technique[2] to investigate the rupture process and energy radiation of this mega earthquake. We currently use the teleseismic P-wave data from about 350 stations of USArray. IBP is an improved method of the traditional backprojection method, which more accurately locates subevents (energy burst) during earthquake rupture and determines the rupture speeds. The total rupture duration of this earthquake is about 35 s with a nearly N-S rupture direction. We find that the rupture is bilateral in the beginning 15 seconds with slow rupture speeds: about 2.5km/s for the northward rupture and about 2 km/s for the southward rupture. After that, the northward rupture stopped while the rupture towards south continued. The average southward rupture speed between 20-35 s is approximately 5 km/s, lower than the shear wave speed (about 5.5 km/s) at the hypocenter depth. The total rupture length is about 140km, in a nearly N-S direction, with a southward rupture length about 100 km and a northward rupture length about 40 km. We also use the CS method, a sparse source inversion technique, to study the frequency-dependent seismic radiation of this mega earthquake. We observe clear along-strike frequency dependence of the spatial and temporal distribution of seismic radiation and rupture process. The results from both methods are generally similar. In the next step, we'll use data from dense arrays in southwest China and also global stations for further analysis in order to more comprehensively study the rupture process of this deep mega earthquake. Reference [1] Yao H, Shearer P M, Gerstoft P. Subevent location and rupture imaging using iterative backprojection for

  14. Smarter energy from smart metering to the smart grid

    CERN Document Server

    Sun, Hongjian; Poor, H Vincent; Carpanini, Laurence; Fornié, Miguel Angel Sánchez

    2016-01-01

    This book presents cutting-edge perspectives and research results in smart energy spanning multiple disciplines across four main topics: smart metering, smart grid modeling, control and optimisation, and smart grid communications and networking.

  15. The process of dissemination of kung fu in west – between sense of loss and inevitability loss of sense

    Directory of Open Access Journals (Sweden)

    Fernando Dandoro Castilho Ferreira

    2017-07-01

    Full Text Available In this paper, we discuss aspects of the development process of Kung Fu in China and its subsequent spread to the West in the light of sociological theory of Norbert Elias. To meet this goal, we have structured the text into three parts. In the first, we present some elements of theory of Elias that are useful to study Kung Fu. In the second part of the article, in turn, bring some evidence about the Kung Fu diffusion process to the West, taking as a reading aid work “Shaolin Monastery” of Meir Shahar. The third and final part of the text, we suggest that the reception of Kung Fu in the West engenders a social process that combines elements of Chinese tradition and capitalist modernity, giving the practice a hybrid and ambiguous character.

  16. Cognitive Radio for Smart Grid: Theory, Algorithms, and Security

    Directory of Open Access Journals (Sweden)

    Raghuram Ranganathan

    2011-01-01

    Full Text Available Recently, cognitive radio and smart grid are two areas which have received considerable research impetus. Cognitive radios are intelligent software defined radios (SDRs that efficiently utilize the unused regions of the spectrum, to achieve higher data rates. The smart grid is an automated electric power system that monitors and controls grid activities. In this paper, the novel concept of incorporating a cognitive radio network as the communications infrastructure for the smart grid is presented. A brief overview of the cognitive radio, IEEE 802.22 standard and smart grid, is provided. Experimental results obtained by using dimensionality reduction techniques such as principal component analysis (PCA, kernel PCA, and landmark maximum variance unfolding (LMVU on Wi-Fi signal measurements are presented in a spectrum sensing context. Furthermore, compressed sensing algorithms such as Bayesian compressed sensing and the compressed sensing Kalman filter is employed for recovering the sparse smart meter transmissions. From the power system point of view, a supervised learning method called support vector machine (SVM is used for the automated classification of power system disturbances. The impending problem of securing the smart grid is also addressed, in addition to the possibility of applying FPGA-based fuzzy logic intrusion detection for the smart grid.

  17. Smart Houses

    Science.gov (United States)

    1987-01-01

    GWS takes plans for a new home and subjects them to intensive computerized analysis that does 10,000 calculations relative to expected heat loss and heat gain, then provides specifications designed specifically for each structure as to heating, cooling, ventilation and insulation. As construction progresses, GWS inspects the work of the electrical, plumbing and insulation contractors and installs its own Smart House Radiant Barrier. On completion of the home, GWS technicians use a machine that creates a vacuum in the house and enables computer calculation of the air exchanged, a measure of energy efficiency. Key factor is the radiant barrier, borrowed from the Apollo program. This is an adaptation of a highly effective aluminized heat shield as a radiation barrier holding in or keeping out heat, cold air and water vapor.

  18. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  19. Smart Grid: Smart Customer Policy Needs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    In September 2010, the International Energy Agency (IEA) held a workshop on the regulatory, market and consumer policies necessary to ensure that smart grids are deployed with adequate consideration of their risks and benefits to all stakeholders. This was one of several workshops that brought together energy providers, network operators, technology developers, regulators, customers and government policy makers to discuss smart grid technology and policy. The Smart Grid - Smart Customer Policies workshop allowed stakeholders to: gain a perspective on key issues and barriers facing early deployment of smart grids; hear expert opinion on regulatory, consumer and market challenges to smart grids; discuss smart grid-smart customer policy priorities; and build consensus on the technology and policy ingredients needed for customer-friendly smart grid deployments. Drawing on workshop discussions, the following paper lays out a logical framework to maximise the benefits and minimise the risks that smart grids pose for customers. The paper also describes key policy research questions that will guide future IEA research on this topic.

  20. The Smart Grid Impact on the Danish DSOs’ Business Model

    DEFF Research Database (Denmark)

    Ma, Zheng; Sommer, Simon; Jørgensen, Bo Nørregaard

    2016-01-01

    The transformation progress of the smart grid challenges the market players' business models. One of those market players is the Distribution System Operators (DSOs). This paper aims to elaborate how smart grid influences the DSOs' business models with case studies of two Danish DSOs — Energi......Fyn and TREFOR. The main findings indicate that the Danish smart grid transformation process influences the Danish DSOs' business models via four smart grid related factors: (1) smart meters, (2) Distributed Energy Resources (DERs), (3) Bidirectional electricity flow, and (4) R&D. Therefore, the results show...... that the smart grid incrementally not revolutionary influences the Danish DSOs' business models, and the smart grid transformation of the Danish electricity grid is slower than the agenda of the official Danish smart grid development strategy....

  1. Spatial Indexing for Data Searching in Mobile Sensing Environments

    Directory of Open Access Journals (Sweden)

    Yuchao Zhou

    2017-06-01

    Full Text Available Data searching and retrieval is one of the fundamental functionalities in many Web of Things applications, which need to collect, process and analyze huge amounts of sensor stream data. The problem in fact has been well studied for data generated by sensors that are installed at fixed locations; however, challenges emerge along with the popularity of opportunistic sensing applications in which mobile sensors keep reporting observation and measurement data at variable intervals and changing geographical locations. To address these challenges, we develop the Geohash-Grid Tree, a spatial indexing technique specially designed for searching data integrated from heterogeneous sources in a mobile sensing environment. Results of the experiments on a real-world dataset collected from the SmartSantander smart city testbed show that the index structure allows efficient search based on spatial distance, range and time windows in a large time series database.

  2. Spatial Indexing for Data Searching in Mobile Sensing Environments.

    Science.gov (United States)

    Zhou, Yuchao; De, Suparna; Wang, Wei; Moessner, Klaus; Palaniswami, Marimuthu S

    2017-06-18

    Data searching and retrieval is one of the fundamental functionalities in many Web of Things applications, which need to collect, process and analyze huge amounts of sensor stream data. The problem in fact has been well studied for data generated by sensors that are installed at fixed locations; however, challenges emerge along with the popularity of opportunistic sensing applications in which mobile sensors keep reporting observation and measurement data at variable intervals and changing geographical locations. To address these challenges, we develop the Geohash-Grid Tree, a spatial indexing technique specially designed for searching data integrated from heterogeneous sources in a mobile sensing environment. Results of the experiments on a real-world dataset collected from the SmartSantander smart city testbed show that the index structure allows efficient search based on spatial distance, range and time windows in a large time series database.

  3. Design of the smart scenic spot service platform

    Science.gov (United States)

    Yin, Min; Wang, Shi-tai

    2015-12-01

    With the deepening of the smart city construction, the model "smart+" is rapidly developing. Guilin, the international tourism metropolis fast constructing need smart tourism technology support. This paper studied the smart scenic spot service object and its requirements. And then constructed the smart service platform of the scenic spot application of 3S technology (Geographic Information System (GIS), Remote Sensing (RS) and Global Navigation Satellite System (GNSS)) and the Internet of things, cloud computing. Based on Guilin Seven-star Park scenic area as an object, this paper designed the Seven-star smart scenic spot service platform framework. The application of this platform will improve the tourists' visiting experience, make the tourism management more scientifically and standardly, increase tourism enterprises operating earnings.

  4. 基于CMOS摄像头的智能车图像处理%On Image Processing of Smart Car Based on CMOS Camera

    Institute of Scientific and Technical Information of China (English)

    张淑珍; 李泽元; 赵培; 袁小龙

    2017-01-01

    Based on the 11th NXP Cup National University Students Intelligent Car Race, a research was conducted on processing images of the smart car.Taking the MC9SXS128 single chip microcomputer as the smart car controller and the CMOS camera as the image information acquisition module, this research proposed the solutions of using the adaptive median filtering algorithm to denoise and using the automatic threshold algorithm to reduce the influence of light intensity on the threshold value calculation;And with the help of the MATLAB software, the threshold value under different light intensity was simulated and calculated.Due to the line discarding at the boundary line of the curve, the method of adjusting the fixed track width was used to add line to the boundary line.Through the experiment, it is observed that the smart car can run forward smoothly and rapidly without jitter, which verifies the rationality of the algorithm and the method used.%以第十一届全国大学生"恩智浦"杯智能汽车比赛为背景,对智能车的图像处理进行研究.以MC9SXS128型单片机作为智能车控制器,CMOS摄像头作为图像信息采集模块,提出了自适应中值滤波算法去噪、自动阈值算法解决光照强度对阈值计算的影响,采用并借助MATLAB软件仿真计算不同光照强度下的阈值.应用在弯道处边界线存在丢线,研究了加减固定赛道宽度的方法对边界线进行补线.通过小车实验,观察到小智能车能够平稳、无抖动、快速的前行,验证所使用的算法和方法的合理性.

  5. The Design of Smart Product-Service Systems (PSSs) : An Exploration of Design Characteristics

    NARCIS (Netherlands)

    Valencia Cardona, A.M.; Mugge, R.; Schoormans, J.P.L.; Schifferstein, H.N.J.

    2015-01-01

    Smart Product-Service Systems (Smart PSSs) integrate smart products and e-services into single solutions. Smart products make use of information and communication technology (ICT) to collect, process and produce information, while e-services are web portals, apps and means alike, which facilitate

  6. Correlation of neural activity with behavioral kinematics reveals distinct sensory encoding and evidence accumulation processes during active tactile sensing.

    Science.gov (United States)

    Delis, Ioannis; Dmochowski, Jacek P; Sajda, Paul; Wang, Qi

    2018-03-23

    Many real-world decisions rely on active sensing, a dynamic process for directing our sensors (e.g. eyes or fingers) across a stimulus to maximize information gain. Though ecologically pervasive, limited work has focused on identifying neural correlates of the active sensing process. In tactile perception, we often make decisions about an object/surface by actively exploring its shape/texture. Here we investigate the neural correlates of active tactile decision-making by simultaneously measuring electroencephalography (EEG) and finger kinematics while subjects interrogated a haptic surface to make perceptual judgments. Since sensorimotor behavior underlies decision formation in active sensing tasks, we hypothesized that the neural correlates of decision-related processes would be detectable by relating active sensing to neural activity. Novel brain-behavior correlation analysis revealed that three distinct EEG components, localizing to right-lateralized occipital cortex (LOC), middle frontal gyrus (MFG), and supplementary motor area (SMA), respectively, were coupled with active sensing as their activity significantly correlated with finger kinematics. To probe the functional role of these components, we fit their single-trial-couplings to decision-making performance using a hierarchical-drift-diffusion-model (HDDM), revealing that the LOC modulated the encoding of the tactile stimulus whereas the MFG predicted the rate of information integration towards a choice. Interestingly, the MFG disappeared from components uncovered from control subjects performing active sensing but not required to make perceptual decisions. By uncovering the neural correlates of distinct stimulus encoding and evidence accumulation processes, this study delineated, for the first time, the functional role of cortical areas in active tactile decision-making. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Development of Wireless Smart Sensor for Structure and Machine Monitoring

    Directory of Open Access Journals (Sweden)

    Ismoyo Haryanto

    2013-07-01

    Full Text Available Vibration based condition monitoring is a method used for determining the condition of a system. The condition of mechanical or a structural system can be determined from the vibration. The vibration that is produced by the system indicates the condition of a system and possibly used to calculate the lifetime of a system or even used to take early action before fatal failure occurred. This paper explains how the wireless smart sensor can be used to identify the health condition of a system by monitoring the vibration parameters. The wireless smart sensor would continously  senses the vibration parameters of the system in a real-time systems and then data will be transmitted wirelessly  to a base station which is a host PC used for digital signal processing, from there the vibration will be plotted as a graph which used to analyzed the condition of the system. Finally, several tested performed to the real system to verify the accuracy of a smart sensor and the method of condition based monitoring.

  8. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  9. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  10. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  11. Remote Sensing Image Enhancement Based on Non-subsampled Shearlet Transform and Parameterized Logarithmic Image Processing Model

    Directory of Open Access Journals (Sweden)

    TAO Feixiang

    2015-08-01

    Full Text Available Aiming at parts of remote sensing images with dark brightness and low contrast, a remote sensing image enhancement method based on non-subsampled Shearlet transform and parameterized logarithmic image processing model is proposed in this paper to improve the visual effects and interpretability of remote sensing images. Firstly, a remote sensing image is decomposed into a low-frequency component and high frequency components by non-subsampled Shearlet transform.Then the low frequency component is enhanced according to PLIP (parameterized logarithmic image processing model, which can improve the contrast of image, while the improved fuzzy enhancement method is used to enhance the high frequency components in order to highlight the information of edges and details. A large number of experimental results show that, compared with five kinds of image enhancement methods such as bidirectional histogram equalization method, the method based on stationary wavelet transform and the method based on non-subsampled contourlet transform, the proposed method has advantages in both subjective visual effects and objective quantitative evaluation indexes such as contrast and definition, which can more effectively improve the contrast of remote sensing image and enhance edges and texture details with better visual effects.

  12. Smart grid security

    CERN Document Server

    Goel, Sanjay; Papakonstantinou, Vagelis; Kloza, Dariusz

    2015-01-01

    This book on smart grid security is meant for a broad audience from managers to technical experts. It highlights security challenges that are faced in the smart grid as we widely deploy it across the landscape. It starts with a brief overview of the smart grid and then discusses some of the reported attacks on the grid. It covers network threats, cyber physical threats, smart metering threats, as well as privacy issues in the smart grid. Along with the threats the book discusses the means to improve smart grid security and the standards that are emerging in the field. The second part of the b

  13. Smart dental practice: capitalising on smart mobile technology.

    Science.gov (United States)

    Plangger, K; Bredican, J; Mills, A J; Armstrong, J

    2015-08-14

    To keep pace with consumer adoption of smart mobile devices, such as smartphones and tablets, and the applications ('apps') developed for these devices, dental professionals should consider how this technology could be used to simultaneously improve both patient service experiences and dental practice management. Using U-Commerce as a theoretical lens, this article discusses the potential value of smart mobile technology to the dental practice context, with a particular focus on the unique and customisable capabilities of apps. To take full advantage of this technology, a process is outlined for identifying and designing bespoke dental apps that takes into account the unique advantages of these devices. Dental practices, with increasing financial and competitive pressures, may improve the efficiency and profitability of operations and better manage patients, employees and stakeholders by integrating smart mobile technology.

  14. Environmental sensing with optical fiber sensors processed with focused ion beam and atomic layer deposition

    Science.gov (United States)

    Flores, Raquel; Janeiro, Ricardo; Dahlem, Marcus; Viegas, Jaime

    2015-03-01

    We report an optical fiber chemical sensor based on a focused ion beam processed optical fiber. The demonstrated sensor is based on a cavity formed onto a standard 1550 nm single-mode fiber by either chemical etching, focused ion beam milling (FIB) or femtosecond laser ablation, on which side channels are drilled by either ion beam milling or femtosecond laser irradiation. The encapsulation of the cavity is achieved by optimized fusion splicing onto a standard single or multimode fiber. The empty cavity can be used as semi-curved Fabry-Pérot resonator for gas or liquid sensing. Increased reflectivity of the formed cavity mirrors can be achieved with atomic layer deposition (ALD) of alternating metal oxides. For chemical selective optical sensors, we demonstrate the same FIB-formed cavity concept, but filled with different materials, such as polydimethylsiloxane (PDMS), poly(methyl methacrylate) (PMMA) which show selective swelling when immersed in different solvents. Finally, a reducing agent sensor based on a FIB formed cavity partially sealed by fusion splicing and coated with a thin ZnO layer by ALD is presented and the results discussed. Sensor interrogation is achieved with spectral or multi-channel intensity measurements.

  15. From Smart Rooms to Smart Hotels

    OpenAIRE

    Petrevska, Biljana; Cingoski, Vlatko; Gelev, Saso

    2016-01-01

    This paper gives an overview of a potential path that new hotels have to satisfy to improve their status from a hotel with smart rooms towards a full-scale smart hotel facility. It presents a possible transitional way including innovative applications based on modern information technology for ambient settings in the domain of hotel industry that aims to improve the quality of offered services towards clients, starting from the present level of smart rooms. The main objective i...

  16. Smart Metering. Synergies within medium voltage automation; Synergien durch Smart Metering. Automatisierung auf Mittelspannungsebene

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Peter [IDS GmbH, Ettlingen (Germany)

    2010-11-15

    Transparent interdivisional system solutions are an indispensable and decisive precondition for the optimization of business processes. The implementation of a Smart Metering solution does not only provide data for billing purposes, but also renders important data for network operation. Synergies can be achieved through the use of a common infrastructure which covers both the needs of Smart Metering and network operation. An open architecture of the solution allows for the future integration of further services of the domains Smart Grid and Smart Home. (orig.)

  17. Smart Landscape. The architecture of the "micro smart grid" as a resilience strategy for landscape

    OpenAIRE

    Garbarini, Giulia

    2018-01-01

    Smart Landscape”, starting from energy devices for the management and distribution of electricity resources, tends to define a possible vision of landscape. The main structure and process are based on the architecture of a “micro smart grid”, which is generally associated with urban energy grids and districts, but may become a figurative reference for new forms of landscape, such as “Smart Landscape”. The output of the research would be to show how the main strategies of “Smart Landsc...

  18. Geospatial Information from Satellite Imagery for Geovisualisation of Smart Cities in India

    Science.gov (United States)

    Mohan, M.

    2016-06-01

    In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  19. GEOSPATIAL INFORMATION FROM SATELLITE IMAGERY FOR GEOVISUALISATION OF SMART CITIES IN INDIA

    Directory of Open Access Journals (Sweden)

    M. Mohan

    2016-06-01

    Full Text Available In the recent past, there have been large emphasis on extraction of geospatial information from satellite imagery. The Geospatial information are being processed through geospatial technologies which are playing important roles in developing of smart cities, particularly in developing countries of the world like India. The study is based on the latest geospatial satellite imagery available for the multi-date, multi-stage, multi-sensor, and multi-resolution. In addition to this, the latest geospatial technologies have been used for digital image processing of remote sensing satellite imagery and the latest geographic information systems as 3-D GeoVisualisation, geospatial digital mapping and geospatial analysis for developing of smart cities in India. The Geospatial information obtained from RS and GPS systems have complex structure involving space, time and presentation. Such information helps in 3-Dimensional digital modelling for smart cities which involves of spatial and non-spatial information integration for geographic visualisation of smart cites in context to the real world. In other words, the geospatial database provides platform for the information visualisation which is also known as geovisualisation. So, as a result there have been an increasing research interest which are being directed to geospatial analysis, digital mapping, geovisualisation, monitoring and developing of smart cities using geospatial technologies. However, the present research has made an attempt for development of cities in real world scenario particulary to help local, regional and state level planners and policy makers to better understand and address issues attributed to cities using the geospatial information from satellite imagery for geovisualisation of Smart Cities in emerging and developing country, India.

  20. Basic design report of SMART

    International Nuclear Information System (INIS)

    Chang, M. H.; Yeo, J. W.; Zee, Q. S.; Lee, D. J.; Park, K. B.; Koo, I. S.; Kim, H. C.; Kim, J. I.

    2002-03-01

    KAERI has been developing a 330MWt integral reactor, SMART and its application system since 1997. SMART is being developed for use as an energy source for small-scale power generation and seawater desalination. The SMART system can produce portable water of 40.000m 3 /day using the MED-TVC desalination process and about 90MW of electricity. Although the design of SMART is based on the current pressurized water reactor technology, new technologies such as inherent safety and passive safety have been applied, and system simplification and modularization, innovations in manufacturing and installation technologies have been implemented culminating in a design that has enhanced safety and economy, and is environment-friendly. The objective of this design report is to provide the overall information on the basic design of SMART NSSS, and the applied technologies. The information covers mainly NSSS design with some information on the desalination system. For the secondary system, only the information directly related to the coupling with NSSS are covered

  1. Compressive sensing-based electrostatic sensor array signal processing and exhausted abnormal debris detecting

    Science.gov (United States)

    Tang, Xin; Chen, Zhongsheng; Li, Yue; Yang, Yongmin

    2018-05-01

    When faults happen at gas path components of gas turbines, some sparsely-distributed and charged debris will be generated and released into the exhaust gas. The debris is called abnormal debris. Electrostatic sensors can detect the debris online and further indicate the faults. It is generally considered that, under a specific working condition, a more serious fault generates more and larger debris, and a piece of larger debris carries more charge. Therefore, the amount and charge of the abnormal debris are important indicators of the fault severity. However, because an electrostatic sensor can only detect the superposed effect on the electrostatic field of all the debris, it can hardly identify the amount and position of the debris. Moreover, because signals of electrostatic sensors depend on not only charge but also position of debris, and the position information is difficult to acquire, measuring debris charge accurately using the electrostatic detecting method is still a technical difficulty. To solve these problems, a hemisphere-shaped electrostatic sensors' circular array (HSESCA) is used, and an array signal processing method based on compressive sensing (CS) is proposed in this paper. To research in a theoretical framework of CS, the measurement model of the HSESCA is discretized into a sparse representation form by meshing. In this way, the amount and charge of the abnormal debris are described as a sparse vector. It is further reconstructed by constraining l1-norm when solving an underdetermined equation. In addition, a pre-processing method based on singular value decomposition and a result calibration method based on weighted-centroid algorithm are applied to ensure the accuracy of the reconstruction. The proposed method is validated by both numerical simulations and experiments. Reconstruction errors, characteristics of the results and some related factors are discussed.

  2. A Webgis Framework for Disseminating Processed Remotely Sensed on Land Cover Transformations

    Science.gov (United States)

    Caradonna, Grazia; Novelli, Antonio; Tarantino, Eufemia; Cefalo, Raffaela; Fratino, Umberto

    2016-06-01

    Mediterranean regions have experienced significant soil degradation over the past decades. In this context, careful land observation using satellite data is crucial for understanding the long-term usage patterns of natural resources and facilitating their sustainable management to monitor and evaluate the potential degradation. Given the environmental and political interest on this problem, there is urgent need for a centralized repository and mechanism to share geospatial data, information and maps of land change. Geospatial data collecting is one of the most important task for many users because there are significant barriers in accessing and using data. This limit could be overcome by implementing a WebGIS through a combination of existing free and open source software for geographic information systems (FOSS4G). In this paper we preliminary discuss methods for collecting raster data in a geodatabase by processing open multi-temporal and multi-scale satellite data aimed at retrieving indicators for land degradation phenomenon (i.e. land cover/land use analysis, vegetation indices, trend analysis, etc.). Then we describe a methodology for designing a WebGIS framework in order to disseminate information through maps for territory monitoring. Basic WebGIS functions were extended with the help of POSTGIS database and OpenLayers libraries. Geoserver was customized to set up and enhance the website functions developing various advanced queries using PostgreSQL and innovative tools to carry out efficiently multi-layer overlay analysis. The end-product is a simple system that provides the opportunity not only to consult interactively but also download processed remote sensing data.

  3. Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives

    Science.gov (United States)

    Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard

    2017-09-01

    Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.

  4. Highly Sensitive and Selective Sensing of Free Bilirubin Using Metal-Organic Frameworks-Based Energy Transfer Process.

    Science.gov (United States)

    Du, Yaran; Li, Xiqian; Lv, Xueju; Jia, Qiong

    2017-09-13

    Free bilirubin, a key biomarker for jaundice, was detected with a newly designed fluorescent postsynthetically modified metal organic framework (MOF) (UIO-66-PSM) sensor. UiO-66-PSM was prepared based on the aldimine condensation reaction of UiO-66-NH 2 with 2,3,4-trihydroxybenzaldehyde. The fluorescence of UIO-66-PSM could be effectively quenched by free bilirubin via a fluorescent resonant energy transfer process, thus achieving its recognition of free bilirubin. It was the first attempt to design a MOF-based fluorescent probe for sensing free bilirubin. The probe exhibited fast response time, low detection limit, wide linear range, and high selectivity toward free bilirubin. The sensing system enabled the monitor of free bilirubin in real human serum. Hence, the reported free bilirubin sensing platform has potential applications for clinical diagnosis of jaundice.

  5. Smart hydrogel functional materials

    CERN Document Server

    Chu, Liang-Yin; Ju, Xiao-Jie

    2014-01-01

    This book systematically introduces smart hydrogel functional materials with the configurations ranging from hydrogels to microgels. It serves as an excellent reference for designing and fabricating artificial smart hydrogel functional materials.

  6. Approach for smart application to desalination and power generation

    International Nuclear Information System (INIS)

    Chang Moon Hee; Kim Si-Hwan

    1998-01-01

    A 330 MWt integral reactor, SMART, and an integrated nuclear seawater desalination system coupled with SMART are currently under conceptual development at KAERI. The SMART will provide energy to the desalination system either in the form of heat or electricity, or both. The integrated nuclear desalination system aims to produce about 40,000 m 3 /day potable water from seawater for demonstration purposes. The remaining energy produced by SMART will be converted into electrical energy. Several important factors are especially considered in the process of SMART and its application system development. The development emphasizes the adoption of technically proven and advanced technology, measures to secure the safety and reliability of the reactor system, consideration of the desalination process for coupling with SMART, a licensing strategy for SMART and the integrated nuclear desalination system, and international cooperation for promoting nuclear desalination with the SMART development program. The current effort to establish the concept of SMART and its application for desalination is being pursued intensively to secure the safety and reliability of SMART, to prove the implemented concepts/technology considering the coupling with the desalination process, and to formulate an optimum licensing approach. This paper aims to present the technical and strategic approach of SMART and its application system. (author)

  7. Smart Home Wireless Sensor Nodes

    DEFF Research Database (Denmark)

    Lynggaard, Per

    . This paper introduces an approach that considerably lowers the wireless sensor node power consumption and the amount of transmitted sensor events. It uses smart objects that include artificial intelligence to efficiently process the sensor event on location and thereby saves the costly wireless...

  8. Performance testing framework for smart grid communication network

    International Nuclear Information System (INIS)

    Quang, D N; See, O H; Chee, L L; Xuen, C Y; Karuppiah, S

    2013-01-01

    Smart grid communication network is comprised of different communication mediums and technologies. Performance evaluation is one of the main concerns in smart grid communication system. In any smart grid communication implementation, to determine the performance factor of the network, a testing of an end-to-end process flow is required. Therefore, an effective and coordinated testing procedure plays a crucial role in evaluating the performance of smart grid communications. In this paper, a testing framework is proposed as a guideline to analyze and assess the performance of smart grid communication network.

  9. Smart Cities and the Idea of Smartness in Urban Development - A Critical Review

    Science.gov (United States)

    Husár, Milan; Ondrejička, Vladimír; Ceren Varış, Sıla

    2017-10-01

    The concept of smart cities is becoming another mantra for both developing and developed cities. For instance, Indian government in 2015 announced its objective to build one hundred smart cities all over the country. They clearly stated that they are choosing smart development as the underlying concept for their future growth as a way to foster economic development in smart way to avoid the paths of rapid industrialization and pollution of cities as it took place in Europe and United States. The first of these smart cities, Dholera, is already under construction and it attracts journalists and urban planners from all over the world. The aim of this paper is to critically discuss the theoretical backgrounds and the practices of smart cities and examine the ways the concept is implemented. The paper is based on thorough study of literature and examining the two case studies of Dholera (India) and Songdo (South Korea). Smart city is a contested concept without a unified definition. It stems from the idea of digital and information city promoted using information and communication technologies (ICT) to develop cities. By installation of ICT municipalities obtain large sets of data which are then transformed into effective urban policies. One of the pilot projects of this kind was Rio de Janeiro and building the Center of Operations by IBM Company. City made a great investment into the smart information system before two huge events took place - FIFA World Cup in 2014 and Olympic Games in 2016. The project raised many questions including whether and how it improved the life of its citizens and in what way it made the city smart. The other definition of smart city is the idea of smartness in city development in broader sense. It focuses on smart use of resources, smart and effective management and smart social inclusion. Within this view, the ICTs are one component of the concept, by no means its bread and butter. Technologies can be used in a variety of ways. Problem

  10. CMOS compatible fabrication process of MEMS resonator for timing reference and sensing application

    Science.gov (United States)

    Huynh, Duc H.; Nguyen, Phuong D.; Nguyen, Thanh C.; Skafidas, Stan; Evans, Robin

    2015-12-01

    Frequency reference and timing control devices are ubiquitous in electronic applications. There is at least one resonator required for each of this device. Currently electromechanical resonators such as crystal resonator, ceramic resonator are the ultimate choices. This tendency will probably keep going for many more years. However, current market demands for small size, low power consumption, cheap and reliable products, has divulged many limitations of this type of resonators. They cannot be integrated into standard CMOS (Complement metaloxide- semiconductor) IC (Integrated Circuit) due to material and fabrication process incompatibility. Currently, these devices are off-chip and they require external circuitries to interface with the ICs. This configuration significantly increases the overall size and cost of the entire electronic system. In addition, extra external connection, especially at high frequency, will potentially create negative impacts on the performance of the entire system due to signal degradation and parasitic effects. Furthermore, due to off-chip packaging nature, these devices are quite expensive, particularly for high frequency and high quality factor devices. To address these issues, researchers have been intensively studying on an alternative for type of resonator by utilizing the new emerging MEMS (Micro-electro-mechanical systems) technology. Recent progress in this field has demonstrated a MEMS resonator with resonant frequency of 2.97 GHz and quality factor (measured in vacuum) of 42900. Despite this great achievement, this prototype is still far from being fully integrated into CMOS system due to incompatibility in fabrication process and its high series motional impedance. On the other hand, fully integrated MEMS resonator had been demonstrated but at lower frequency and quality factor. We propose a design and fabrication process for a low cost, high frequency and a high quality MEMS resonator, which can be integrated into a standard

  11. Smart grid security

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, Jorge (ed.) [Siemens AG, Muenchen (Germany). Corporate Technology

    2013-11-01

    The engineering, deployment and security of the future smart grid will be an enormous project requiring the consensus of many stakeholders with different views on the security and privacy requirements, not to mention methods and solutions. The fragmentation of research agendas and proposed approaches or solutions for securing the future smart grid becomes apparent observing the results from different projects, standards, committees, etc, in different countries. The different approaches and views of the papers in this collection also witness this fragmentation. This book contains the following papers: 1. IT Security Architecture Approaches for Smart Metering and Smart Grid. 2. Smart Grid Information Exchange - Securing the Smart Grid from the Ground. 3. A Tool Set for the Evaluation of Security and Reliability in Smart Grids. 4. A Holistic View of Security and Privacy Issues in Smart Grids. 5. Hardware Security for Device Authentication in the Smart Grid. 6. Maintaining Privacy in Data Rich Demand Response Applications. 7. Data Protection in a Cloud-Enabled Smart Grid. 8. Formal Analysis of a Privacy-Preserving Billing Protocol. 9. Privacy in Smart Metering Ecosystems. 10. Energy rate at home Leveraging ZigBee to Enable Smart Grid in Residential Environment.

  12. Smart City project

    KAUST Repository

    Al Harbi, Ayman

    2018-01-24

    A \\'smart city\\' is an urban region that is highly advanced in terms of overall infrastructure, sustainable real estate, communications and market viability. It is a city where information technology is the principal infrastructure and the basis for providing essential services to residents. Yanbu Industrial City- Smart City Project - First large scale smart city in The kingdom.

  13. 2017 SmartWay Logistics Tool Demonstration

    Science.gov (United States)

    This EPA presentation provides information on the SmartWay Logistics Carrier Tool: its background and development, participation in the program, application process, emission metrics, tool demonstration, data collection, and schedule for 2017.

  14. Regional assessment of boreal forest productivity using an ecological process model and remote sensing parameter maps.

    Science.gov (United States)

    Kimball, J. S.; Keyser, A. R.; Running, S. W.; Saatchi, S. S.

    2000-06-01

    An ecological process model (BIOME-BGC) was used to assess boreal forest regional net primary production (NPP) and response to short-term, year-to-year weather fluctuations based on spatially explicit, land cover and biomass maps derived by radar remote sensing, as well as soil, terrain and daily weather information. Simulations were conducted at a 30-m spatial resolution, over a 1205 km(2) portion of the BOREAS Southern Study Area of central Saskatchewan, Canada, over a 3-year period (1994-1996). Simulations of NPP for the study region were spatially and temporally complex, averaging 2.2 (+/- 0.6), 1.8 (+/- 0.5) and 1.7 (+/- 0.5) Mg C ha(-1) year(-1) for 1994, 1995 and 1996, respectively. Spatial variability of NPP was strongly controlled by the amount of aboveground biomass, particularly photosynthetic leaf area, whereas biophysical differences between broadleaf deciduous and evergreen coniferous vegetation were of secondary importance. Simulations of NPP were strongly sensitive to year-to-year variations in seasonal weather patterns, which influenced the timing of spring thaw and deciduous bud-burst. Reductions in annual NPP of approximately 17 and 22% for 1995 and 1996, respectively, were attributed to 3- and 5-week delays in spring thaw relative to 1994. Boreal forest stands with greater proportions of deciduous vegetation were more sensitive to the timing of spring thaw than evergreen coniferous stands. Similar relationships were found by comparing simulated snow depth records with 10-year records of aboveground NPP measurements obtained from biomass harvest plots within the BOREAS region. These results highlight the importance of sub-grid scale land cover complexity in controlling boreal forest regional productivity, the dynamic response of the biome to short-term interannual climate variations, and the potential implications of climate change and other large-scale disturbances.

  15. Net primary productivity of China's terrestrial ecosystems from a process model driven by remote sensing.

    Science.gov (United States)

    Feng, X; Liu, G; Chen, J M; Chen, M; Liu, J; Ju, W M; Sun, R; Zhou, W

    2007-11-01

    The terrestrial carbon cycle is one of the foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, China's terrestrial NPP was simulated using the Boreal Ecosystem Productivity Simulator (BEPS), a carbon-water coupled process model based on remote sensing inputs. For these purposes, a national-wide database (including leaf area index, land cover, meteorology, vegetation and soil) at a 1 km resolution and a validation database were established. Using these databases and BEPS, daily maps of NPP for the entire China's landmass in 2001 were produced, and gross primary productivity (GPP) and autotrophic respiration (RA) were estimated. Using the simulated results, we explore temporal-spatial patterns of China's terrestrial NPP and the mechanisms of its responses to various environmental factors. The total NPP and mean NPP of China's landmass were 2.235 GtC and 235.2 gCm(-2)yr(-1), respectively; the total GPP and mean GPP were 4.418 GtC and 465 gCm(-2)yr(-1); and the total RA and mean RA were 2.227 GtC and 234 gCm(-2)yr(-1), respectively. On average, NPP was 50.6% of GPP. In addition, statistical analysis of NPP of different land cover types was conducted, and spatiotemporal patterns of NPP were investigated. The response of NPP to changes in some key factors such as LAI, precipitation, temperature, solar radiation, VPD and AWC are evaluated and discussed.

  16. Smart Chips for Smart Surroundings -- 4S

    NARCIS (Netherlands)

    Schuler, Eberhard; König, Ralf; Becker, Jürgen; Rauwerda, G.K.; van de Burgwal, M.D.; Smit, Gerardus Johannes Maria; Cardoso, João M.P.; Hübner, Michael

    2011-01-01

    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it

  17. Integrative solutions for intelligent energy management. Smart metering, smart home, smart grid; Integrative Loesungsansaetze fuer ein intelligentes Energiemanagement. Smart Metering, Smart Home and Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Jungfleisch, Achim [Hager Vertriebsgesellschaft mbH und Co. KG, Blieskastel (Germany). Marketing

    2011-07-01

    Smart Metering, Smart Home, Smart Grid - these key words significantly determine the current debate about intelligent energy management, or new energy concepts. The author of the contribution under consideration describes the interactions between Smart Metering, Smart Home and Smart Grids and the technical connection of these interactions. Thus, the compact tebis KNX demovea server connects Windows computer and the Internet with the building automation based on KNX. The technically simple combination of smart metering and smart home via Hager radio tower of the building automation provides an access to key energy data for an intelligent load management.

  18. Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance.

    Science.gov (United States)

    Qin, Yiheng; Alam, Arif U; Pan, Si; Howlader, Matiar M R; Ghosh, Raja; Selvaganapathy, P Ravi; Wu, Yiliang; Deen, M Jamal

    2016-01-01

    Highly sensitive, easy-to-fabricate, and low-cost pH sensors with small dimensions are required to monitor human bodily fluids, drinking water quality and chemical/biological processes. In this study, a low-temperature, solution-based process is developed to prepare palladium/palladium oxide (Pd/PdO) thin films for pH sensing. A precursor solution for Pd is spin coated onto pre-cleaned glass substrates and annealed at low temperature to generate Pd and PdO. The percentages of PdO at the surface and in the bulk of the electrodes are correlated to their sensing performance, which was studied by using the X-ray photoelectron spectroscope. Large amounts of PdO introduced by prolonged annealing improve the electrode's sensitivity and long-term stability. Atomic force microscopy study showed that the low-temperature annealing results in a smooth electrode surface, which contributes to a fast response. Nano-voids at the electrode surfaces were observed by scanning electron microscope, indicating a reason for the long-term degradation of the pH sensitivity. Using the optimized annealing parameters of 200°C for 48 h, a linear pH response with sensitivity of 64.71±0.56 mV/pH is obtained for pH between 2 and 12. These electrodes show a response time shorter than 18 s, hysteresis less than 8 mV and stability over 60 days. High reproducibility in the sensing performance is achieved. This low-temperature solution-processed sensing electrode shows the potential for the development of pH sensing systems on flexible substrates over a large area at low cost without using vacuum equipment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Post-Processing Approach for Refining Raw Land Cover Change Detection of Very High-Resolution Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Zhiyong Lv

    2018-03-01

    Full Text Available In recent decades, land cover change detection (LCCD using very high-spatial resolution (VHR remote sensing images has been a major research topic. However, VHR remote sensing images usually lead to a large amount of noises in spectra, thereby reducing the reliability of the detected results. To solve this problem, this study proposes an object-based expectation maximization (OBEM post-processing approach for enhancing raw LCCD results. OBEM defines a refinement of the labeling in a detected map to enhance its raw detection accuracies. Current mainstream change detection (preprocessing techniques concentrate on proposing a change magnitude measurement or considering image spatial features to obtain a change detection map. The proposed OBEM approach is a new solution to enhance change detection accuracy by refining the raw result. Post-processing approaches can achieve competitive accuracies to the preprocessing methods, but in a direct and succinct manner. The proposed OBEM post-processing method synthetically considers multi-scale segmentation and expectation maximum algorithms to refine the raw change detection result. Then, the influence of the scale of segmentation on the LCCD accuracy of the proposed OBEM is investigated. Four pairs of remote sensing images, one of two pairs (aerial image with 0.5 m/pixel resolution which depict two landslide sites on Landtau Island, Hong Kong, China, are used in the experiments to evaluate the effectiveness of the proposed approach. In addition, the proposed approach is applied, and validated by two case studies, LCCD in Tianjin City China (SPOT-5 satellite image with 2.5 m/pixel resolution and Mexico forest fire case (Landsat TM images with 30 m/pixel resolution, respectively. Quantitative evaluations show that the proposed OBEM post-processing approach can achieve better performance and higher accuracies than several commonly used preprocessing methods. To the best of the authors’ knowledge, this type

  20. Fully Roll-to-Roll Gravure Printable Wireless (13.56 MHz) Sensor-Signage Tags for Smart Packaging

    Science.gov (United States)

    Kang, Hwiwon; Park, Hyejin; Park, Yongsu; Jung, Minhoon; Kim, Byung Chul; Wallace, Gordon; Cho, Gyoujin

    2014-01-01

    Integration of sensing capabilities with an interactive signage through wireless communication is enabling the development of smart packaging wherein wireless (13.56 MHz) power transmission is used to interlock the smart packaging with a wireless (13.56 MHz) reader or a smart phone. Assembly of the necessary componentry for smart packaging on plastic or paper foils is limited by the manufacturing costs involved with Si based technologies. Here, the issue of manufacturing cost for smart packaging has been obviated by materials that allow R2R (roll-to-roll) gravure in combination with R2R coating processes to be employed. R2R gravure was used to print the wireless power transmission device, called rectenna (antenna, diode and capacitor), and humidity sensor on poly(ethylene terephtalate) (PET) films while electrochromic signage units were fabricated by R2R coating. The signage units were laminated with the R2R gravure printed rectenna and sensor to complete the prototype smart packaging. PMID:24953037

  1. Considerations and techniques for incorporating remotely sensed imagery into the land resource management process.

    Science.gov (United States)

    Brooner, W. G.; Nichols, D. A.

    1972-01-01

    Development of a scheme for utilizing remote sensing technology in an operational program for regional land use planning and land resource management program applications. The scheme utilizes remote sensing imagery as one of several potential inputs to derive desired and necessary data, and considers several alternative approaches to the expansion and/or reduction and analysis of data, using automated data handling techniques. Within this scheme is a five-stage program development which includes: (1) preliminary coordination, (2) interpretation and encoding, (3) creation of data base files, (4) data analysis and generation of desired products, and (5) applications.

  2. Smart Cities - Smart Homes and Smart Home Technology

    OpenAIRE

    Faanes, Erlend Kydland

    2014-01-01

    This master’s thesis consists of two articles where the first article is theoretical and the second is the empirical study. Article I The purpose with this paper is to explore and illuminate how smart home and smart home technology can contribute to enhance health and Quality of Life in elderly citizens and allow them to live longer in their home. The paper provides a brief introduction to health promotion and highlights the thesis theoretical framework and foundation of Aaron Antonov...

  3. ASPIE: A Framework for Active Sensing and Processing of Complex Events in the Internet of Manufacturing Things

    Directory of Open Access Journals (Sweden)

    Shaobo Li

    2018-03-01

    Full Text Available Rapid perception and processing of critical monitoring events are essential to ensure healthy operation of Internet of Manufacturing Things (IoMT-based manufacturing processes. In this paper, we proposed a framework (active sensing and processing architecture (ASPIE for active sensing and processing of critical events in IoMT-based manufacturing based on the characteristics of IoMT architecture as well as its perception model. A relation model of complex events in manufacturing processes, together with related operators and unified XML-based semantic definitions, are developed to effectively process the complex event big data. A template based processing method for complex events is further introduced to conduct complex event matching using the Apriori frequent item mining algorithm. To evaluate the proposed models and methods, we developed a software platform based on ASPIE for a local chili sauce manufacturing company, which demonstrated the feasibility and effectiveness of the proposed methods for active perception and processing of complex events in IoMT-based manufacturing.

  4. SmartCampusAAU

    DEFF Research Database (Denmark)

    Hansen, Rene; Thomsen, Bent; Thomsen, Lone Leth

    2013-01-01

    This paper describes SmartCampusAAU - an open, extendable platform that supports the easy creation of indoor location based systems. SmartCampusAAU offers an app and backend that can be used to enable indoor positioning and navigation in any building. The SmartCampusAAU app is available on all ma...... major mobile platforms (Android, iPhone and Windows Phone) and supports both device- and infrastructure-based positioning. SmartCampusAAU also offers a publicly available OData backend that allows researchers to share radio map and location tracking data.......This paper describes SmartCampusAAU - an open, extendable platform that supports the easy creation of indoor location based systems. SmartCampusAAU offers an app and backend that can be used to enable indoor positioning and navigation in any building. The SmartCampusAAU app is available on all...

  5. SMART-ITEM: IoT-Enabled Smart Living

    OpenAIRE

    Kor, A; Pattinson, C; Yanovsky, M; Kharchenko, V

    2017-01-01

    The main goal of this proposed project is to harness the emerging IoT technology to empower elderly population to self-manage their own health, stay active, healthy, and independent as long as possible within a smart and secured living environment. An integrated open-sourced IoT ecosystem will be developed. It will encompass the entire data lifecycle which involves the following processes: data acquisition, data transportation; data integration, processing, manipulation and computation; visua...

  6. Switchable Materials for Smart Windows.

    Science.gov (United States)

    Wang, Yang; Runnerstrom, Evan L; Milliron, Delia J

    2016-06-07

    This article reviews the basic principles of and recent developments in electrochromic, photochromic, and thermochromic materials for applications in smart windows. Compared with current static windows, smart windows can dynamically modulate the transmittance of solar irradiation based on weather conditions and personal preferences, thus simultaneously improving building energy efficiency and indoor human comfort. Although some smart windows are commercially available, their widespread implementation has not yet been realized. Recent advances in nanostructured materials provide new opportunities for next-generation smart window technology owing to their unique structure-property relations. Nanomaterials can provide enhanced coloration efficiency, faster switching kinetics, and longer lifetime. In addition, their compatibility with solution processing enables low-cost and high-throughput fabrication. This review also discusses the importance of dual-band modulation of visible and near-infrared (NIR) light, as nearly 50% of solar energy lies in the NIR region. Some latest results show that solution-processable nanostructured systems can selectively modulate the NIR light without affecting the visible transmittance, thus reducing energy consumption by air conditioning, heating, and artificial lighting.

  7. Image Processing Tools for Improved Visualization and Analysis of Remotely Sensed Images for Agriculture and Forest Classifications

    OpenAIRE

    SINHA G. R.

    2017-01-01

    This paper suggests Image Processing tools for improved visualization and better analysis of remotely sensed images. There are methods already available in literature for the purpose but the most important challenge among the limitations is lack of robustness. We propose an optimal method for image enhancement of the images using fuzzy based approaches and few optimization tools. The segmentation images subsequently obtained after de-noising will be classified into distinct information and th...

  8. Integrated Sensing and Processing (ISP) Phase II: Demonstration and Evaluation for Distributed Sensor Netowrks and Missile Seeker Systems

    Science.gov (United States)

    2007-02-28

    National Industrial Security Program Operating Manual (NISPOM), Chapter 5, Section 7, or DOD 5200.1-R, Information Security Program Regulation...Sensing and Processing (ISP) Phase II: Demonstration and Evaluation for Distributed Sensor Netowrks and Missile Seeker Systems 5a. CONTRACT NUMBER 5b... SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 41 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT

  9. Photonic crystal fiber as lab-in-fiber optofluidic platform for sensing and process monitoring

    Science.gov (United States)

    Tian, Fei

    The ability to design and fabricate photonic crystal fiber (PCF) of vastly different microstructural and optical characteristics is arguably one of the most significant recent advances in the field of fiber optics. This dissertation aims to advance the PCF research frontier by exploring long-period fiber gratings (LPG) inscribed in PCF for sensing and process monitoring via combined numerical and experimental investigation. Specifically, a mode solver based on the Finite Element Method (FEM) has been employed to calculate the mode field distribution, the phase matching condition, and the dispersive characteristics associated with LPG-induced coupling of the fundamental core mode (LP01) to various cladding modes (LPmn, m=0,1; n=2,3, ...) in an endlessly single mode PCF. The numerical results have been used to guide the design and fabrication of LPG in PCF by CO2 laser inscription to maximize index sensitivity in gas or liquid medium. Cascaded PCF-LPG has been fabricated and shown to exhibit record sensitivity in excess of 1700 nm/RIU with high resolution for index measurements of gas phase. The inherent interference fringes in the transmission spectrum of cascaded PCF-LPG have been utilized to analyze mode coupling behaviour. In addition, we have developed and implemented a reflective mirror-aided method to allow symmetrical CO2 laser irradiation of PCF during LPG inscription. Both numerical analysis and experimental measurements have shown significantly improved mode coupling behaviour, mode field distribution, as well as reproducibility in LPG fabrication, critical for practical exploitation of the PCF-LPG platform. We have further exploited the high index sensitivity of PCF-LPG to monitor layer-by-layer (LbL) self-assembly of poly(vinyl pyrrolidone) (PVPON) and poly(methacrylic acid) (PMAA) polyelectrolyte layers as well as the pH responsiveness of the cross-linked PMAA hydrogel films. A shift of ˜1.625 nm in the resonance wavelength per polyelectrolyte layer

  10. Emergency end of life operations for CNES remote sensing satellites—Management and operational process

    Science.gov (United States)

    Bertrand, Régis; Alby, Fernand; Costes, Thierry; Dejoie, Joël; Delmas, Dominique-Roland; Delobette, Damien; Gibek, Isabelle; Gleyzes, Alain; Masson, Françoise; Meyer, Jean-Renaud; Moreau, Agathe; Perret, Lionel; Riclet, François; Ruiz, Hélène; Schiavon, Françoise; Spizzi, Pierre; Viallefont, Pierre; Villaret, Colette

    2012-10-01

    The French Space Agency (CNES) is currently operating thirteen satellites among which five remote sensing satellites. This fleet is composed of two civilian (SPOT) and three military (HELIOS) satellites and it has been recently completed by the first PLEIADES satellite which is devoted to both civil and military purposes. The CNES operation board decided to appoint a Working Group (WG) in order to anticipate and tackle issues related to the emergency End Of Life (EOL) operations due to unexpected on-board events affecting the satellite. This is of particular interest in the context of the French Law on Space Operations (LSO), entered in force on Dec. 2010, which states that any satellite operator must demonstrate its capability to control the space vehicle whatever the mission phase from the launch up to the EOL. Indeed, after several years in orbit the satellites may be affected by on-board anomalies which could damage the implementation of EOL operations, i.e. orbital manoeuvres or platform disposal. Even if automatic recovery actions ensure autonomous reconfigurations on redundant equipment, i.e. setting for instance the satellite into a safe mode, it is crucial to anticipate the consequences of failures of every equipment and functions necessary for the EOL operations. For this purpose, the WG has focused on each potential anomaly by analysing: its emergency level, as well as the EOL operations potentially inhibited by the failure and the needs of on-board software workarounds… The main contribution of the WG consisted in identifying a particular satellite configuration called "minimal Withdrawal From Service (WFS) configuration". This configuration corresponds to an operational status which involves a redundancy necessary for the EOL operations. Therefore as soon as a satellite reaches this state, a dedicated steering committee is activated and decides of the future of the satellite with respect to three options: a/. the satellite is considered safe and can

  11. Integration of coral reef ecosystem process studies and remote sensing: Chapter 5

    Science.gov (United States)

    Brook, John; Yates, Kimberly; Halley, Robert

    2006-01-01

    anthropogenic causes (Brown, 1988). Models of coral reef ecosystems, parameterized by process measurements and scaled in time-space using remote sensing, have the potential to address pressing research questions that are central to devising valid management strategies (Grigg el al., 1984; Hatcher, 1997b). To attain this goal, ecosystem-level models that integrate studies of physical and chemical forcing with observed biological and geological responses are required. This interdisciplinary approach to understanding reef biogeochemical dynamics can allow investigations that integrate the scales of time and space (Hatcher, 1997a), thereby enabling prediction of coral reef change (Andréfouët and Payri, 2001). In turn, prediction of holistic ecosystem function within various environmental focusing scenarios has substantial promise in mitigating future disturbance. Indeed, management of coral reefs at the ecosystem level has been suggested as the only meaningful approach to preserving coral reefs (Bohnsack and Ault, 1996; Christensen et al., 1996).

  12. Smart Sensors Enable Smart Air Conditioning Control

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2014-06-01

    Full Text Available In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It’s also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  13. EMERGInG RISKS In SMART PROCESS InDUSTRY CRAnES SURVEY: SAF€RA RESEARCH PROJECT SPRInCE

    Directory of Open Access Journals (Sweden)

    Vesna Spasojević Brkić

    2015-11-01

    Full Text Available Current accident theories show that the solution to avoid human error cannot be based on focusing only on the correction of operators’ behavior, but needs certain innovation that will help to keep an error away. Since, as evidenced by several incident surveys, cranes are the most dangerous equipment in industrial and construction sites and human error is the most frequent cause of accidents, in this frame the crane navigation system is an important and challenging component, with a great potential for safety improvement. However, as the emerging and rapid development of new technologies aims improving the working conditions and environment through solutions regarding existing well-known problems in occupational safety, their implementation also could lead to emerging hazards and risks that must be taken into account and managed. Based on these facts, SPRINCE (Smart PRocess INdustry CranEs project aims implementing a real-time object detection solution, which deals with cranes’ tracking systems and incorporates visual feedback, developing and implementing an innovative tool for evaluation of organizational and human (operator-specific factors. These factors will be included in the risk indicators of the implemented real-time object detection solution using case studies approach.

  14. Environmental and Landscape Remote Sensing Using Free and Open Source Image Processing Tools

    Science.gov (United States)

    As global climate change and human activities impact the environment, there is a growing need for scientific tools to monitor and measure environmental conditions that support human and ecological health. Remotely sensed imagery from satellite and airborne platforms provides a g...

  15. Sensing and controlling resin-layer thickness in additive manufacturing processes

    NARCIS (Netherlands)

    Kozhevnikov, A.

    2017-01-01

    This AM-TKI project in collaboration with TNO focusses on the sensing and control of resin-layer thickness in AM applications. Industrial Additive Manufacturing is considered to be a potential breakthrough production technology for many applications. A specific AM implementation is VAT photo

  16. Ubiquitous Wireless Smart Sensing and Control

    Science.gov (United States)

    Wagner, Raymond

    2013-01-01

    Need new technologies to reliably and safely have humans interact within sensored environments (integrated user interfaces, physical and cognitive augmentation, training, and human-systems integration tools). Areas of focus include: radio frequency identification (RFID), motion tracking, wireless communication, wearable computing, adaptive training and decision support systems, and tele-operations. The challenge is developing effective, low cost/mass/volume/power integrated monitoring systems to assess and control system, environmental, and operator health; and accurately determining and controlling the physical, chemical, and biological environments of the areas and associated environmental control systems.

  17. Model-driven methodology for rapid deployment of smart spaces based on resource-oriented architectures.

    Science.gov (United States)

    Corredor, Iván; Bernardos, Ana M; Iglesias, Josué; Casar, José R

    2012-01-01

    Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT) and Web of Things (WoT) are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i) to integrate sensing and actuating functionalities into everyday objects, and (ii) to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD) methodology based on the Model Driven Architecture (MDA). This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.

  18. Model-Driven Methodology for Rapid Deployment of Smart Spaces Based on Resource-Oriented Architectures

    Directory of Open Access Journals (Sweden)

    José R. Casar

    2012-07-01

    Full Text Available Advances in electronics nowadays facilitate the design of smart spaces based on physical mash-ups of sensor and actuator devices. At the same time, software paradigms such as Internet of Things (IoT and Web of Things (WoT are motivating the creation of technology to support the development and deployment of web-enabled embedded sensor and actuator devices with two major objectives: (i to integrate sensing and actuating functionalities into everyday objects, and (ii to easily allow a diversity of devices to plug into the Internet. Currently, developers who are applying this Internet-oriented approach need to have solid understanding about specific platforms and web technologies. In order to alleviate this development process, this research proposes a Resource-Oriented and Ontology-Driven Development (ROOD methodology based on the Model Driven Architecture (MDA. This methodology aims at enabling the development of smart spaces through a set of modeling tools and semantic technologies that support the definition of the smart space and the automatic generation of code at hardware level. ROOD feasibility is demonstrated by building an adaptive health monitoring service for a Smart Gym.

  19. Assessing Climate-Induced Change in River Flow Using Satellite Remote Sensing and Process Modeling in High Mountain Asia

    Science.gov (United States)

    McDonald, K. C.

    2017-12-01

    Snow- and glacier-fed river systems originating from High Mountain Asia (HMA) support diverse ecosystems and provide the basis for food and energy production for more than a billion people living downstream. Climate-driven changes in the melting of snow and glaciers and in precipitation patterns are expected to significantly alter the flow of the rivers in the HMA region at various temporal scales, which in turn could heavily affect the socioeconomics of the region. Hence, climate change effects on seasonal and long-term hydrological conditions may have far reaching economic impact annually and over the century. We are developing a decision support tool utilizing integrated microwave remote sensing datasets, process modeling and economic models to inform water resource management decisions and ecosystem sustainability as related to the High Mountain Asia (HMA) region's response to climate change. The availability of consistent time-series microwave remote sensing datasets from Earth-orbiting scatterometers, radiometers and synthetic aperture radar (SAR) imagery provides the basis for the observational framework of this monitoring system. We discuss the assembly, processing and application of scatterometer and SAR data sets from the Advanced Scatterometer (ASCAT) and Sentinal-1 SARs, and the enlistment of these data to monitor seasonal melt and thaw status of glacier-dominated and surrounding regions. We present current status and future plans for this effort. Our team's study emphasizes processes and economic modeling within the Trishuli basin; our remote sensing analysis supports analyses across the HiMAT domain.

  20. Microencapsulation of Corrosion Indicators for Smart Coatings

    Science.gov (United States)

    Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.

    2011-01-01

    A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint

  1. Fiber-wireless for smart grid: A survey

    Science.gov (United States)

    Radzi, NAM; Ridwan, MA; Din, NM; Abdullah, F.; Mustafa, IS; l-Mansoori, MH

    2017-11-01

    Smart grid allows two-way communication between power utility companies and their customers while having the ability to sense along the transmission lines. However, the downside is such, when the smart devices are transmitting data simultaneously, it results in network congestion. Fiber wireless (FiWi) network is one of the best congestion solutions for smart grid up to date. In this paper, a survey of current literature on FiWi for smart grid will be reviewed and a testbed to test the protocols and algorithms for FiWi in smart grid will be proposed. The results of number of packets received and delay vs packet transmitted obtained via the testbed are compared with the results obtained via simulation and they show that they are in line with each other, validating the accuracy of the testbed.

  2. Towards smart environments using smart objects.

    Science.gov (United States)

    Sedlmayr, Martin; Prokosch, Hans-Ulrich; Münch, Ulli

    2011-01-01

    Barcodes, RFID, WLAN, Bluetooth and many more technologies are used in hospitals. They are the technological bases for different applications such as patient monitoring, asset management and facility management. However, most of these applications exist side by side with hardly any integration and even interoperability is not guaranteed. Introducing the concept of smart objects inspired by the Internet of Things can improve the situation by separating the capabilities and functions of an object from the implementing technology such as RFID or WLAN. By aligning technological and business developments smart objects have the power to transform a hospital from an agglomeration of technologies into a smart environment.

  3. Becoming 'ward smart' medical students.

    Science.gov (United States)

    Walker, Beth; Wallace, Deirdre; Mangera, Zaheer; Gill, Deborah

    2017-10-01

    A small number of medical students elect to work as health care assistants (HCAs) during or prior to their undergraduate training. There is a significant body of evidence in the literature regarding the impact of HCA experience on student nurses; however, little research has examined the effects of such experience on medical students. All fourth-year medical students with self-declared experience as HCAs from a single UK medical school were invited to participate in focus groups to explore their experiences and perceptions. Ten students from the year group took part. Participants felt that their experience as HCAs enhanced their learning in the workplace through becoming 'ward smart', helping them to become socialised into the world of health care, providing early meaningful and humanised patient interaction, and increasing their understanding of multidisciplinary team (MDT) members' roles. Little research has examined the effects of [HCA] experience on medical students DISCUSSION: Becoming 'ward smart' and developing a sense of belonging are central to maximising learning in, from and through work on the ward. Experience as a HCA provides a range of learning and social opportunities for medical students, and legitimises their participation within clinical communities. HCA experience also seems to benefit in the 'hard to reach' dimensions of medical training: empathy; humanisation of patient care; professional socialisation; and providing a sense of belonging within health care environments. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  4. Assessment of SMART Capability for Multiple Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Han Ok; Kim, Young In; Kim, Keung Koo; Zee, Sung Kyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Cogeneration has become an attractive for a wide range of non-electric application, including seawater desalination, district heating, district cooling, and other industrial process heat applications. From 2009 to 2012, the SMART Technology Validation and the Standard Design Approval Project was carried out. After one and half years of intensive licensing review, the SDA for SMART was officially issued on July 4{sup th}, 2012 by the NSSC, in compliance with Article 12 of the Nuclear Safety Act. This is the first license for an integral reactor in the world. SMART has beneficial advantages of a reactor safety and economics by an easy implementation of advanced design concepts and technology. Owing to its native characteristics, the SMART can be easily applicable not only to a small scale electricity generation but also to non-electricity applications such as sea water desalination and a district heating. The capability of SMART for the application of sea water desalination and a district heating are assessed through modifying the existing secondary system for electricity generation in this study. SMART can be a good engine for seawater desalination and district heating. Power generation system can be safely and effectively coupled with MEDTVC desalination system using steam transformer. District heating application will increase the cycle efficiency of SMART significantly. Introduction of desalination system doesn't have adverse effect on reactor safety.

  5. Mining structural and behavioral patterns in smart malware

    OpenAIRE

    Suárez de Tangil Rotaeche, Guillermo Nicolás

    2016-01-01

    Mención Internacional en el título de doctor Funcas. Premio Enrique Fuentes Quintana 2016. Smart devices equipped with powerful sensing, computing and networking capabilities have proliferated lately, ranging from popular smartphones and tablets to Internet appliances, smart TVs, and others that will soon appear (e.g., watches, glasses, and clothes). One key feature of such devices is their ability to incorporate third-party apps from a variety of markets. This poses strong ...

  6. The Salient Map Analysis for Research and Teaching (SMART) method: Powerful potential as a formative assessment in the biomedical sciences

    Science.gov (United States)

    Cathcart, Laura Anne

    This dissertation consists of two studies: 1) development and characterization of the Salient Map Analysis for Research and Teaching (SMART) method as a formative assessment tool and 2) a case study exploring how a paramedic instructor's beliefs about learners affect her utilization of the SMART method and vice versa. The first study explored: How can a novel concept map analysis method be designed as an effective formative assessment tool? The SMART method improves upon existing concept map analysis methods because it does not require hierarchically structured concept maps and it preserves the rich content of the maps instead of reducing each map down to a numerical score. The SMART method is performed by comparing a set of students' maps to each other and to an instructor's map. The resulting composite map depicts, in percentages and highlighted colors, the similarities and differences between all of the maps. Some advantages of the SMART method as a formative assessment tool include its ability to highlight changes across time, problematic or alternative conceptions, and patterns of student responses at a glance. Study two explored: How do a paramedic instructor's beliefs about students and learning affect---and become affected by---her use of the SMART method as a formative assessment tool? This case study of Angel, an expert paramedic instructor, begins to address a gap in the emergency medical services (EMS) education literature, which contains almost no research on teachers or pedagogy. Angel and I worked together as participant co-researchers (Heron & Reason, 1997) exploring the affordances of the SMART method. This study, based on those interactions with Angel, involved using open coding to identify themes (Strauss & Corbin, 1998) from Angel's views of students and use of the SMART method. Angel views learning as a sense-making process. She has a multi-faceted view of her students as novices and invests substantial time trying to understand their concept

  7. Internet of Things based on smart objects technology, middleware and applications

    CERN Document Server

    Trunfio, Paolo

    2014-01-01

    The Internet of Things (IoT) usually refers to a world-wide network of interconnected heterogeneous objects (sensors, actuators, smart devices, smart objects, RFID, embedded computers, etc) uniquely addressable, based on standard communication protocols. Beyond such a definition, it is emerging a new definition of IoT seen as a loosely coupled, decentralized system of cooperating smart objects (SOs). A SO is an autonomous, physical digital object augmented with sensing/actuating, processing, storing, and networking capabilities. SOs are able to sense/actuate, store, and interpret information created within themselves and around the neighbouring external world where they are situated, act on their own, cooperate with each other, and exchange information with other kinds of electronic devices and human users. However, such SO-oriented IoT raises many in-the-small and in-the-large issues involving SO programming, IoT system architecture/middleware and methods/methodologies for the development of SO-based applica...

  8. Thermal Infrared Remote Sensing for Analysis of Landscape Ecological Processes: Current Insights and Trends. Chapter 3

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.

    2014-01-01

    NASA or NOAA Earth-observing satellites are not the only space-based TIR platforms. The European Space Agency (ESA), the Chinese, and other countries have in orbit or plan to launch TIR remote sensing systems. Satellite remote sensing provides an excellent opportunity to study land-atmosphere energy exchanges at the regional scale. A predominant application of TIR data has been in inferring evaporation, evapotranspiration (ET), and soil moisture. In addition to using TIR data for ET and soil moisture analysis over vegetated surfaces, there is also a need for using these data for assessment of drought conditions. The concept of ecological thermodynamics provides a quantification of surface energy fluxes for landscape characterization in relation to the overall amount of energy input and output from specific land cover types.

  9. Optical-based smart structures for tamper-indicating applications

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Simmons, K.L.; Undem, H.A.

    1996-11-01

    This report is a compilation of several related projects performed from 1991 through 1996 concerning the design, construction, and application of optical-based smart structure to tamper-indicating and sensing secure containers. Due to several influences, the projects were carried through to varying degrees of completion. Cancellation of the overall project at the client level motivated the authors to gather all of the technology and ideas about smart structures developed during these several projects, whether completed or just conceptualized, into one document. Although each section individually discusses a specific project, the overall document is written chronologically with each successive section showing how increased smart structure complexity was integrated into the container

  10. Smart House IS model analysis and development

    OpenAIRE

    Vaitkevičiūtė, Kristina

    2004-01-01

    Only after information system implementation it is possible to ensure effective and save computerisation and automation for smart house, which gives possibilities for remote devices or subsystems manage. Information system must ensure effective information collection, processing, monitoring or presentation measures. Changeable functional and information requirements are intrinsic for smart house information systems. Such a system must be flexible for new objects or systems integration. The fl...

  11. Smart infrastructure design for Smart Cities

    OpenAIRE

    OTA, Kaoru; KUMRAI, Teerawat; DONG, Mianxiong; KISHIGAMI, Jay (Junichi); GUO, Minyi

    2017-01-01

    Intelligent Transportation Systems (ITS) is one of the keywords to describe smart cities, aiming at efficient public transport, smart parking, enhanced road safety, intelligent traffic management, onvehicle entertainment, and so on. In ITS, Roadside Unit (RSU) deployment should be well-designed due to it serves as a service provider and a gateway to the Internet for vehicular users. In this article, we propose an RSU deployment strategy which maximizes the communication coverage and reduces t...

  12. 78 FR 9678 - Multi-stakeholder Process To Develop a Voluntary Code of Conduct for Smart Grid Data Privacy

    Science.gov (United States)

    2013-02-11

    ... providing consumer energy use services. DATES: Tuesday, February 26, 2013 (9:30 a.m. to 4:30 p.m., Eastern... Privacy and Promoting Innovation in the Global Digital Economy \\2\\ (Privacy Blueprint). The Privacy Blueprint outlines a multi-stakeholder process for developing voluntary codes of conduct that, if adopted by...

  13. Unpacking Big Systems -- Natural Language Processing Meets Network Analysis. A Study of Smart Grid Development in Denmark

    DEFF Research Database (Denmark)

    Jurowetzki, Roman

    and contained technological trajectories on a national level using a combination of methods from statistical natural language processing, vector space modelling and network analysis. The proposed approach does not aim at replacing the researcher or expert but rather offers the possibility to algorithmically...... in Denmark. Results show that in the explored case it is not mainly new technologies and applications that are driving change but innovative re-combinations of old and new technologies....

  14. Comprehensive Smart Grid Planning in a Regulated Utility Environment

    Science.gov (United States)

    Turner, Matthew; Liao, Yuan; Du, Yan

    2015-06-01

    This paper presents the tools and exercises used during the Kentucky Smart Grid Roadmap Initiative in a collaborative electric grid planning process involving state regulators, public utilities, academic institutions, and private interest groups. The mandate of the initiative was to assess the existing condition of smart grid deployments in Kentucky, to enhance understanding of smart grid concepts by stakeholders, and to develop a roadmap for the deployment of smart grid technologies by the jurisdictional utilities of Kentucky. Through involvement of many important stakeholder groups, the resultant Smart Grid Deployment Roadmap proposes an aggressive yet achievable strategy and timetable designed to promote enhanced availability, security, efficiency, reliability, affordability, sustainability and safety of the electricity supply throughout the state while maintaining Kentucky's nationally competitive electricity rates. The models and methods developed for this exercise can be utilized as a systematic process for the planning of coordinated smart grid deployments.

  15. Synergisms between smart metering and smart grid; Synergien zwischen Smart Metering und Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Peter [IDS GmbH, Ettlingen (Germany)

    2010-04-15

    With the implementation of a smart metering solution, it is not only possible to acquire consumption data for billing but also to acquire relevant data of the distribution grid for grid operation. There is still a wide gap between the actual condition and the target condition. Synergies result from the use of a common infrastructure which takes account both of the requirements of smart metering and of grid operation. An open architecture also enables the future integration of further applications of the fields of smart grid and smart home. (orig.)

  16. Smart Location Database - Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Smart Location Database (SLD) summarizes over 80 demographic, built environment, transit service, and destination accessibility attributes for every census block...

  17. Smart space technology innovations

    CERN Document Server

    Chen, Mu-Yen

    2013-01-01

    Recently, ad hoc and wireless communication technologies have made available the device, service and information rich environment for users. Smart Space and ubiquitous computing extend the ""Living Lab"" vision of everyday objects and provide context-awareness services to users in smart living environments. This ebook investigates smart space technology and its innovations around the Living Labs. The final goal is to build context-awareness smart space and location-based service applications that integrate information from independent systems which autonomously and securely support human activ

  18. Conceptualizing smart service systems

    DEFF Research Database (Denmark)

    Beverungen, Daniel; Müller, Oliver; Matzner, Martin

    2017-01-01

    Recent years have seen the emergence of physical products that are digitally networked with other products and with information systems to enable complex business scenarios in manufacturing, mobility, or healthcare. These “smart products”, which enable the co-creation of “smart service” that is b......Recent years have seen the emergence of physical products that are digitally networked with other products and with information systems to enable complex business scenarios in manufacturing, mobility, or healthcare. These “smart products”, which enable the co-creation of “smart service......” that is based on monitoring, optimization, remote control, and autonomous adaptation of products, profoundly transform service systems into what we call “smart service systems”. In a multi-method study that includes conceptual research and qualitative data from in-depth interviews, we conceptualize “smart...... service” and “smart service systems” based on using smart products as boundary objects that integrate service consumers’ and service providers’ resources and activities. Smart products allow both actors to retrieve and to analyze aggregated field evidence and to adapt service systems based on contextual...

  19. The People's Smart Sculpture

    OpenAIRE

    Koplin, Martin; Nedelkovski, Igor; Salo, Kari

    2016-01-01

    The People’s Smart Sculpture (PS2) panel discusses future oriented approaches in smart media-art, developed, designed and exploited for artistic and public participation in the change and re-design of our living environment. The actual debate about a smart future is not taking into account any idea of media art as an instrument for to realize the social sculpture, mentioned by Beuys [1] or as social sculpture itself. The People’s Smart Sculpture is the only large scale Creative Europe media-a...

  20. Smart Location Database - Download

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Smart Location Database (SLD) summarizes over 80 demographic, built environment, transit service, and destination accessibility attributes for every census block...

  1. Parallel Algorithm for GPU Processing; for use in High Speed Machine Vision Sensing of Cotton Lint Trash

    Directory of Open Access Journals (Sweden)

    Mathew G. Pelletier

    2008-02-01

    Full Text Available One of the main hurdles standing in the way of optimal cleaning of cotton lint isthe lack of sensing systems that can react fast enough to provide the control system withreal-time information as to the level of trash contamination of the cotton lint. This researchexamines the use of programmable graphic processing units (GPU as an alternative to thePC’s traditional use of the central processing unit (CPU. The use of the GPU, as analternative computation platform, allowed for the machine vision system to gain asignificant improvement in processing time. By improving the processing time, thisresearch seeks to address the lack of availability of rapid trash sensing systems and thusalleviate a situation in which the current systems view the cotton lint either well before, orafter, the cotton is cleaned. This extended lag/lead time that is currently imposed on thecotton trash cleaning control systems, is what is responsible for system operators utilizing avery large dead-band safety buffer in order to ensure that the cotton lint is not undercleaned.Unfortunately, the utilization of a large dead-band buffer results in the majority ofthe cotton lint being over-cleaned which in turn causes lint fiber-damage as well assignificant losses of the valuable lint due to the excessive use of cleaning machinery. Thisresearch estimates that upwards of a 30% reduction in lint loss could be gained through theuse of a tightly coupled trash sensor to the cleaning machinery control systems. Thisresearch seeks to improve processing times through the development of a new algorithm forcotton trash sensing that allows for implementation on a highly parallel architecture.Additionally, by moving the new parallel algorithm onto an alternative computing platform,the graphic processing unit “GPU”, for processing of the cotton trash images, a speed up ofover 6.5 times, over optimized code running on the PC’s central processing

  2. 77 FR 40586 - Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter...

    Science.gov (United States)

    2012-07-10

    ...-01] Draft NIST Interagency Report (NISTIR) 7823, Advanced Metering Infrastructure Smart Meter... Technology (NIST) seeks comments on Draft NISTIR 7823, Advanced Metering Infrastructure Smart Meter... conformance test requirements for the firmware upgradeability process for the Advanced Metering Infrastructure...

  3. Smart electromechanical systems

    CERN Document Server

    2016-01-01

    This carefully edited book introduces the latest achievements of the scientists of the Russian Academy of Sciences in the field of theory and practice of Smart Electromechanical Systems (SEMS). The book also focuses on methods of designing and modeling of SEMS based on the principles of adaptability, intelligence, biomorphism of parallel kinematics and parallelism in information processing and control computation. The book chapters are dedicated to the following points of interest: - methods of design of SEMS modules and intelligent robots based on them; - synthesis of neural systems of automatic control over SEMS modules; - mathematical and computer modeling of SEMS modules and Cyber Physical Systems based on them; - vitality control and reliability analysis based on logic-and-probabilistic and logic-and-linguistic forecasting; - methods of optimization of SEMS control systems based on mathematical programming methods in ordinal scale and generalized mathematical programming; - information-measuring software...

  4. Emerging Themes and Lessons Learned: The First Year of Smart Start.

    Science.gov (United States)

    Maxwell, Kelly; Bryant, Donna; Adkins, Amee; McCadden, Brian; Noblit, George

    Smart Start is North Carolina's partnership between state government and local leaders, service providers, and families to better serve children under 6 years of age and their families. A formative evaluation of the Smart Start process, to inform the current state-level decision-making processes for future Smart Start efforts, was devised from a…

  5. Data processing of remotely sensed airborne hyperspectral data using the Airborne Processing Library (APL): Geocorrection algorithm descriptions and spatial accuracy assessment

    Science.gov (United States)

    Warren, Mark A.; Taylor, Benjamin H.; Grant, Michael G.; Shutler, Jamie D.

    2014-03-01

    Remote sensing airborne hyperspectral data are routinely used for applications including algorithm development for satellite sensors, environmental monitoring and atmospheric studies. Single flight lines of airborne hyperspectral data are often in the region of tens of gigabytes in size. This means that a single aircraft can collect terabytes of remotely sensed hyperspectral data during a single year. Before these data can be used for scientific analyses, they need to be radiometrically calibrated, synchronised with the aircraft's position and attitude and then geocorrected. To enable efficient processing of these large datasets the UK Airborne Research and Survey Facility has recently developed a software suite, the Airborne Processing Library (APL), for processing airborne hyperspectral data acquired from the Specim AISA Eagle and Hawk instruments. The APL toolbox allows users to radiometrically calibrate, geocorrect, reproject and resample airborne data. Each stage of the toolbox outputs data in the common Band Interleaved Lines (BILs) format, which allows its integration with other standard remote sensing software packages. APL was developed to be user-friendly and suitable for use on a workstation PC as well as for the automated processing of the facility; to this end APL can be used under both Windows and Linux environments on a single desktop machine or through a Grid engine. A graphical user interface also exists. In this paper we describe the Airborne Processing Library software, its algorithms and approach. We present example results from using APL with an AISA Eagle sensor and we assess its spatial accuracy using data from multiple flight lines collected during a campaign in 2008 together with in situ surveyed ground control points.

  6. Remote Sensing:From Trained Professionals to General Public

    Directory of Open Access Journals (Sweden)

    SHAN Jie

    2017-10-01

    Full Text Available Influenced by the growing popularity of smart phones and the rapid development of open science, remote sensing is being developed and applied more by general public than by trained professionals. This trend is mainly embodied in the democratized data collection, democratized data processing and democratized data usage. This paper discusses and analyzes the three aforementioned characteristics, introduces some recent representative work and progress. It also lists numerous international open data processing tools, including photogrammetry processing, laser scanning processing, machine learning, and spatial information management. In addition, the article makes a detailed description of the benefits of open data, and lists a number of global data programs and experimental data sets for scientific research. At the end of this paper, it is pointed out that the democratization of remote sensing will not only produce great economic benefits, but also bring about great social benefits, and finally change the landscape of industry and the life style of people.

  7. Spending Smart

    Science.gov (United States)

    Grush, Mary

    2009-01-01

    There is no doubt that eProcurement technology has turned cumbersome paper-based processes into highly connected online systems. The most basic parameters of eProcurement range from shopping for or sourcing goods, to creating purchase requisitions and getting them approved, to placing orders with suppliers, to receiving invoices--all…

  8. Singularity Analysis: a powerful image processing tool in remote sensing of the oceans

    Science.gov (United States)

    Turiel, A.; Umbert, M.; Hoareau, N.; Ballabrera-Poy, J.; Portabella, M.

    2012-04-01

    The study of fully developed turbulence has given rise to the development of new methods to describe real data of scalars submitted to the action of a turbulent flow. The application of this brand of methodologies (known as Microcanonical Multifractal Formalism, MMF) on remote sensing ocean maps open new ways to exploit those data for oceanographic purposes. The main technique in MMF is that of Singularity Analysis (SA). By means of SA a singularity exponents is assigned to each point of a given image. The singularity exponent of a given point is a dimensionless measure of the regularity or irregularity of the scalar at that point. Singularity exponents arrange in singularity lines, which accurately track the flow streamlines from any scalar, as we have verified with remote sensing and simulated data. Applications of SA include quality assessment of different products, the estimation of surface velocities, the development of fusion techniques for different types of scalars, comparison with measures of ocean mixing, and improvement in assimilation schemes.

  9. Longitudinal associations between marital stress and externalizing behavior: Does parental sense of competence mediate processes?

    Science.gov (United States)

    van Eldik, Willemijn M; Prinzie, Peter; Deković, Maja; de Haan, Amaranta D

    2017-06-01

    Ecological theories emphasize associations between children and elements within their family system, such as the marital relationship. Within a developmental perspective, we longitudinally examined (a) dynamic associations between marital stress and children's externalizing behavior, (b) mediation of these associations by parental sense of competence, and (c) the extent to which associations are similar for mothers and fathers. The sample consisted of 369 two-parent families (46.1% boys; Mage at Time 1 = 7.70 years; 368 mothers, 355 fathers). Marital stress related to having a child, children's externalizing behavior, and perceived parental competence were assessed three times across 8 years. Multigroup analyses were used to examine models for both parents simultaneously and test for similarity in associations across spouses. A bivariate latent growth model indicated positive associated change between marital stress and externalizing behavior, supporting the idea of codevelopment. The cross-lagged panel model revealed a reciprocal relation between marital stress and perceived parental competence across a time interval of 6 years. Additionally, two elicitation effects appeared during adolescence, showing that parents who reported higher externalizing problems in early adolescence reported more marital stress and a lower sense of competence two years later. Similar associations were found for mothers and fathers. Overall, this study indicates that marital stress and externalizing behavior codevelop over time and supports literature on developmental differences regarding interrelations between subsystems and individuals within the family system. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Smart and Intelligent Sensors

    Science.gov (United States)

    Lansaw, John; Schmalzel, John; Figueroa, Jorge

    2009-01-01

    John C. Stennis Space Center (SSC) provides rocket engine propulsion testing for NASA's space programs. Since the development of the Space Shuttle, every Space Shuttle Main Engine (SSME) has undergone acceptance testing at SSC before going to Kennedy Space Center (KSC) for integration into the Space Shuttle. The SSME is a large cryogenic rocket engine that uses Liquid Hydrogen (LH2) as the fuel. As NASA moves to the new ARES V launch system, the main engines on the new vehicle, as well as the upper stage engine, are currently base lined to be cryogenic rocket engines that will also use LH2. The main rocket engines for the ARES V will be larger than the SSME, while the upper stage engine will be approximately half that size. As a result, significant quantities of hydrogen will be required during the development, testing, and operation of these rocket engines.Better approaches are needed to simplify sensor integration and help reduce life-cycle costs. 1.Smarter sensors. Sensor integration should be a matter of "plug-and-play" making sensors easier to add to a system. Sensors that implement new standards can help address this problem; for example, IEEE STD 1451.4 defines transducer electronic data sheet (TEDS) templates for commonly used sensors such as bridge elements and thermocouples. When a 1451.4 compliant smart sensor is connected to a system that can read the TEDS memory, all information needed to configure the data acquisition system can be uploaded. This reduces the amount of labor required and helps minimize configuration errors. 2.Intelligent sensors. Data received from a sensor be scaled, linearized; and converted to engineering units. Methods to reduce sensor processing overhead at the application node are needed. Smart sensors using low-cost microprocessors with integral data acquisition and communication support offer the means to add these capabilities. Once a processor is embedded, other features can be added; for example, intelligent sensors can make

  11. Humor techniques: from real world and game environments to smart environments

    NARCIS (Netherlands)

    Nijholt, Antinus; Streitz, Norbert; Markopoulos, Panos

    In this paper we explore how future smart environments can be given a sense of humor. Humor requires smartness. Entering witty remarks in a conversation requires understanding of the conversation, the conversational partner, the context and the history of the conversation. We can try to model

  12. Findings from a participatory evaluation of a smart home application for older adults.

    Science.gov (United States)

    Demiris, George; Oliver, Debra Parker; Dickey, Geraldine; Skubic, Marjorie; Rantz, Marilyn

    2008-01-01

    The aim of this paper is to present a participatory evaluation of an actual "smart home" project implemented in an independent retirement facility. Using the participatory evaluation process, residents guided the research team through development and implementation of the initial phase of a smart home project designed to assist residents to remain functionally independent and age in place. We recruited nine residents who provided permission to install the technology in their apartments. We conducted a total of 75 interviews and three observational sessions. Residents expressed overall positive perceptions of the sensor technologies and did not feel that these interfered with their daily activities. The process of adoption and acceptance of the sensors included three phases, familiarization, adjustment and curiosity, and full integration. Residents did not express privacy concerns. They provided detailed feedback and suggestions that were integrated into the redesign of the system. They also reported a sense of control resulting from their active involvement in the evaluation process. Observational sessions confirmed that the sensors were not noticeable and residents did not change their routines. The participatory evaluation approach not only empowers end-users but it also allows for the implementation of smart home systems that address residents' needs.

  13. Where's the smartness of learning in smart territories ?

    Directory of Open Access Journals (Sweden)

    Carlo Giovannella

    2014-11-01

    Full Text Available In the future smarter territories are expected to induce transformations of many aspects of the learning processes, but how their smartness is and will be related to that of the learning ecosystems ? In this paper, by means of Principal Component Analysis, we critically analyse methods presently used to benchmark and produce University rankings, by focusing on the case study of the Italian Universities. The outcomes of such analysis allow us to demonstrate the existence of a strong correlation between smart cities' and universities' rankings, i.e. between learning ecosystems and their territories of reference. Present benchmarking approaches, however, need to take in more consideration people feelings and expectations. Accordingly we suggest an innovative point of view on the benchmarking of learning ecosystems based, also, on the so called flow.

  14. Process evaluation of the systematic medical appraisal, referral and treatment (SMART) mental health project in rural India.

    Science.gov (United States)

    Tewari, Abha; Kallakuri, Sudha; Devarapalli, Siddhardha; Jha, Vivekanand; Patel, Anushka; Maulik, Pallab K

    2017-12-04

    Availability of basic mental health services is limited in rural areas of India. Health system and individual level factors such as lack of mental health professionals and infrastructure, poor awareness about mental health, stigma related to help seeking, are responsible for poor awareness and use of mental health services. We implemented a mental health services delivery model that leveraged technology and task sharing to facilitate identification and treatment of common mental disorders (CMDs) such as stress, depression, anxiety and suicide risk in rural areas of the state of Andhra Pradesh, India. The intervention was delivered by lay village health workers (Accredited Social Health Activists - ASHAs) and primary care doctors. An anti-stigma campaign was implemented prior to this activity. This paper reports the process evaluation of the intervention using mixed methods. A mixed methods pre-post evaluation assessed the intervention using quantitative service usage analytics from the server, and qualitative interviews with different stakeholders. Barriers and facilitators in implementing the intervention were identified. Health service use increased significantly at post-intervention, ASHAs could followup 78.6% of those who had screened positive, and 78.6% of the 1243 Interactive Voice Response System calls made, were successful. Most respondents were aware of the intervention. They indicated that knowledge received through the intervention empowered them to approach ASHAs and share their mental health symptoms. ASHAs and doctors opined that EDSS was useful and easy to use. Medical camps organized in villages to increase access to the doctor were received positively by all. However, some aspects or facilitators of the intervention need to be improved, including network connectivity, booster training, anti-stigma campaigns, quality of mental health services provided by doctors, provision of psychotropic medications at primary health centers and frequency of health

  15. Smart SDHW systems

    DEFF Research Database (Denmark)

    Andersen, Elsa

    2000-01-01

    The aim of the project is to develop smart solar domestic hot water (SDHW) systems. A smart SDHW is a system in which the domestic water can bee heated both by solar collectors and by an auxiliary energy supply system. The auxiliary energy supply system heats up the hot-water tank from the top an...

  16. Making Smart Food Choices

    Science.gov (United States)

    ... turn JavaScript on. Feature: Healthy Aging Making Smart Food Choices Past Issues / Winter 2015 Table of Contents Everyday ... NIH www.nia.nih.gov/Go4Life Making Smart Food Choices To maintain a healthy weight, balance the calories ...

  17. Playing the Smart Card.

    Science.gov (United States)

    Zuzack, Christine A.

    1997-01-01

    Enhanced magnetic strip cards and "smart cards" offer varied service options to college students. Enhanced magnetic strip cards serve as cash cards and provide access to services. Smart cards, which resemble credit cards but contain a microchip, can be used as phone cards, bus passes, library cards, admission tickets, point-of-sale debit…

  18. SMART Boards Rock

    Science.gov (United States)

    Giles, Rebecca M.; Shaw, Edward L.

    2011-01-01

    SMART Board is a technology that combines the functionality of a whiteboard, computer, and projector into a single system. The interactive nature of the SMART Board offers many practical uses for providing an introduction to or review of material, while the large work area invites collaboration through social interaction and communication. As a…

  19. Smart grid in China

    DEFF Research Database (Denmark)

    Sommer, Simon; Ma, Zheng; Jørgensen, Bo Nørregaard

    2015-01-01

    China is planning to transform its traditional power grid in favour of a smart grid, since it allows a more economically efficient and a more environmentally friendly transmission and distribution of electricity. Thus, a nationwide smart grid is likely to save tremendous amounts of resources...

  20. Smart Icon Cards

    Science.gov (United States)

    Dunbar, Laura

    2015-01-01

    Icons are frequently used in the music classroom to depict concepts in a developmentally appropriate way for students. SmartBoards provide music educators yet another way to share these manipulatives with students. This article provides a step-by-step tutorial to create Smart Icon Cards using the folk song "Lucy Locket."

  1. Planning in Smart Grids

    NARCIS (Netherlands)

    Bosman, M.G.C.

    2012-01-01

    The electricity supply chain is changing, due to increasing awareness for sustainability and an improved energy efficiency. The traditional infrastructure where demand is supplied by centralized generation is subject to a transition towards a Smart Grid. In this Smart Grid, sustainable generation

  2. Smart Fabrics Technology Development

    Science.gov (United States)

    Simon, Cory; Potter, Elliott; Potter, Elliott; McCabe, Mary; Baggerman, Clint

    2010-01-01

    Advances in Smart Fabrics technology are enabling an exciting array of new applications for NASA exploration missions, the biomedical community, and consumer electronics. This report summarizes the findings of a brief investigation into the state of the art and potential applications of smart fabrics to address challenges in human spaceflight.

  3. Analysis of a Lipid/Polymer Membrane for Bitterness Sensing with a Preconditioning Process

    Directory of Open Access Journals (Sweden)

    Rui Yatabe

    2015-09-01

    Full Text Available It is possible to evaluate the taste of foods or medicines using a taste sensor. The taste sensor converts information on taste into an electrical signal using several lipid/polymer membranes. A lipid/polymer membrane for bitterness sensing can evaluate aftertaste after immersion in monosodium glutamate (MSG, which is called “preconditioning”. However, we have not yet analyzed the change in the surface structure of the membrane as a result of preconditioning. Thus, we analyzed the change in the surface by performing contact angle and surface zeta potential measurements, Fourier transform infrared spectroscopy (FTIR, X-ray photon spectroscopy (XPS and gas cluster ion beam time-of-flight secondary ion mass spectrometry (GCIB-TOF-SIMS. After preconditioning, the concentrations of MSG and tetradodecylammonium bromide (TDAB, contained in the lipid membrane were found to be higher in the surface region than in the bulk region. The effect of preconditioning was revealed by the above analysis methods.

  4. Logistics Road map for Smart SeaPorts

    Directory of Open Access Journals (Sweden)

    Khaled Gaber EL Sakty

    2016-12-01

    Full Text Available In the digital world, a smart concept became an essential feature for port organizations to serve as intelligent hubs in the world transport networks.  Smart ports are the trend for the future long-term strategies. Henceforth, ports aims at contributing to sustainable growth by establishing the appropriate conditions for the adoption of new management energy models based on low environmental impact and triggering innovation of both technologies and processes. The scope of this paper is to examine three main issues of smart ports; smart port arctic logistics roadmap, smart port challenges and obstacles in arctic port areas, and the criteria and Key Performance Indicators guiding the assessment of ports against this concept. The main purpose is to develop a smart arctic logistics road map for the future.

  5. The Development of Wireless Body Area Network for Motion Sensing Application

    Science.gov (United States)

    Puspitaningayu, P.; Widodo, A.; Yundra, E.; Ramadhany, F.; Arianto, L.; Habibie, D.

    2018-04-01

    The information era has driven the society into the digitally-controlled lifestyle. Wireless body area networks (WBAN) as the specific scope of wireless sensor networks (WSN) is consistently growing into bigger applications. Currently, people are able to monitor their medical parameters by simply using small electronics devices attached to their body and connected to the authorities. On top of that, this time, smart phones are typically equipped with sensors such as accelerometer, gyroscope, barometric pressure, heart rate monitor, etc. It means that the sensing yet the signal processing can be performed by a single device. Moreover, Android opens lot wider opportunities for new applications as the most popular open-sourced smart phone platform. This paper is intended to show the development of motion sensing application which focused on analysing data from accelerometer and gyroscope. Beside reads the sensors, this application also has the ability to convert the sensors’ numerical value into graphs.

  6. Efficient logistics enabled by smart solutions in tunneling

    Directory of Open Access Journals (Sweden)

    Zakaria Dakhli

    2017-12-01

    Full Text Available While logistics comprises an important part of tunneling costs, it is generally not considered a lever of performance but rather a constraint to a project's progress. This study presents some insights on how smart technology can impact the tunneling industry. The impact is even greater because of the complexity of the tunneling supply chain, and smart technology could help support this process. Finally, we discuss how the nature of the tunneling industry invites stakeholders to develop a common understanding of the project prior to construction to successfully deploy smart technology during the use or maintenance phase. Keywords: Smart technology, Logistics, Underground space, Supply chain, Construction, Lean construction

  7. LOCATION ANALYSIS ON SMART HOUSE USING PROJECTIVE TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    Galih Andi Pradana

    2014-08-01

    Full Text Available In this paper, a method of location analysis for smart house is proposed. The proposed method uses projective transformation to process the input from visual sensor for determining coordinate of resident and also the entire device inside the smart house. With a good calculated coordinate, each device function in the smart house can be optimized for the good of the resident. From the experiment results, the proposed method successfully maps all coordinates of any device in the smart house up to 81% accuracy.

  8. Breakout 404 : a smart space implementation for lighting services in the office domain

    NARCIS (Netherlands)

    Offermans, S.A.M.; Kota Gopalakrishna, A.; Essen, van H.A.; Ozcelebi, T.

    2012-01-01

    Smart spaces provide enhanced user experience through sensing and adaptation to changing context. Hence, they allow distributed applications to show intelligent, autonomous and interactive behavior. Two important research topics within this field are machine learning and human-system interaction.

  9. Smart City Planning

    DEFF Research Database (Denmark)

    Ekman, Ulrik

    2018-01-01

    This article reflects on the challenges for urban planning posed by the emergence of smart cities in network societies. In particular, it reflects on reductionist tendencies in existing smart city planning. Here the concern is with the implications of prior reductions of complexity which have been...... undertaken by placing primacy in planning on information technology, economical profit, and top-down political government. Rather than pointing urban planning towards a different ordering of these reductions, this article argues in favor of approaches to smart city planning via complexity theory....... Specifically, this article argues in favor of approaching smart city plans holistically as topologies of organized complexity. Here, smart city planning is seen as a theory and practice engaging with a complex adaptive urban system which continuously operates on its potential. The actualizations in the face...

  10. Smart Sustainable Islands VS Smart Sustainable Cities

    Science.gov (United States)

    Pantazis, D. N.; Moussas, V. C.; Murgante, B.; Daverona, A. C.; Stratakis, P.; Vlissidis, N.; Kavadias, A.; Economou, D.; Santimpantakis, K.; Karathanasis, B.; Kyriakopoulou, V.; Gadolou, E.

    2017-09-01

    This paper has several aims: a) the presentation of a critical analysis of the terms "smart sustainable cities" and "smart sustainable islands" b) the presentation of a number of principles towards to the development methodological framework of concepts and actions, in a form of a manual and actions guide, for the smartification and sustainability of islands. This kind of master plan is divided in thematic sectors (key factors) which concern the insular municipalities c) the creation of an island's smartification and sustainability index d) the first steps towards the creation of a portal for the presentation of our smartification actions manual, together with relative resources, smart applications examples, and, in the near future the first results of our index application in a number of Greek islands and e) the presentation of some proposals of possible actions towards their sustainable development and smartification for the municipalities - islands of Paros and Antiparos in Greece, as case studies.

  11. OpenSHS: Open Smart Home Simulator

    Directory of Open Access Journals (Sweden)

    Nasser Alshammari

    2017-05-01

    Full Text Available This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS.

  12. OpenSHS: Open Smart Home Simulator.

    Science.gov (United States)

    Alshammari, Nasser; Alshammari, Talal; Sedky, Mohamed; Champion, Justin; Bauer, Carolin

    2017-05-02

    This paper develops a new hybrid, open-source, cross-platform 3D smart home simulator, OpenSHS, for dataset generation. OpenSHS offers an opportunity for researchers in the field of the Internet of Things (IoT) and machine learning to test and evaluate their models. Following a hybrid approach, OpenSHS combines advantages from both interactive and model-based approaches. This approach reduces the time and efforts required to generate simulated smart home datasets. We have designed a replication algorithm for extending and expanding a dataset. A small sample dataset produced, by OpenSHS, can be extended without affecting the logical order of the events. The replication provides a solution for generating large representative smart home datasets. We have built an extensible library of smart devices that facilitates the simulation of current and future smart home environments. Our tool divides the dataset generation process into three distinct phases: first design: the researcher designs the initial virtual environment by building the home, importing smart devices and creating contexts; second, simulation: the participant simulates his/her context-specific events; and third, aggregation: the researcher applies the replication algorithm to generate the final dataset. We conducted a study to assess the ease of use of our tool on the System Usability Scale (SUS).

  13. Smart antennas for nuclear instruments

    International Nuclear Information System (INIS)

    Jain, Ranjan Bala; Singhi, B.M.

    2005-01-01

    The advances in the field of computer and communications are leading to the development of smart embedded nuclear instruments. These instruments have highly sophisticated signal-processing algorithms based on FPGA and ASICS, provisions of present day connectivity and user interfaces. The developments in the connectivity, standards and bus technologies have made possible to access these instruments on LAN and WAN with suitable reliability and security. To get rid of wires i.e. in order to access these instruments, without wires at any place, wireless technology has evolved and become integral part of day-to-day activities. The environment monitoring can be done remotely, if smart antennas are incorporated on these instruments

  14. Information security of Smart Factories

    Science.gov (United States)

    Iureva, R. A.; Andreev, Y. S.; Iuvshin, A. M.; Timko, A. S.

    2018-05-01

    In several years, technologies and systems based on the Internet of things (IoT) will be widely used in all smart factories. When processing a huge array of unstructured data, their filtration and adequate interpretation are a priority for enterprises. In this context, the correct representation of information in a user-friendly form acquires special importance, for which the market today presents advanced analytical platforms designed to collect, store and analyze data on technological processes and events in real time. The main idea of the paper is the statement of the information security problem in IoT and integrity of processed information.

  15. Authentication techniques for smart cards

    International Nuclear Information System (INIS)

    Nelson, R.A.

    1994-02-01

    Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thorough understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system

  16. Combining Multi-Source Remotely Sensed Data and a Process-Based Model for Forest Aboveground Biomass Updating.

    Science.gov (United States)

    Lu, Xiaoman; Zheng, Guang; Miller, Colton; Alvarado, Ernesto

    2017-09-08

    Monitoring and understanding the spatio-temporal variations of forest aboveground biomass (AGB) is a key basis to quantitatively assess the carbon sequestration capacity of a forest ecosystem. To map and update forest AGB in the Greater Khingan Mountains (GKM) of China, this work proposes a physical-based approach. Based on the baseline forest AGB from Landsat Enhanced Thematic Mapper Plus (ETM+) images in 2008, we dynamically updated the annual forest AGB from 2009 to 2012 by adding the annual AGB increment (ABI) obtained from the simulated daily and annual net primary productivity (NPP) using the Boreal Ecosystem Productivity Simulator (BEPS) model. The 2012 result was validated by both field- and aerial laser scanning (ALS)-based AGBs. The predicted forest AGB for 2012 estimated from the process-based model can explain 31% ( n = 35, p forest AGBs, respectively. However, due to the saturation of optical remote sensing-based spectral signals and contribution of understory vegetation, the BEPS-based AGB tended to underestimate/overestimate the AGB for dense/sparse forests. Generally, our results showed that the remotely sensed forest AGB estimates could serve as the initial carbon pool to parameterize the process-based model for NPP simulation, and the combination of the baseline forest AGB and BEPS model could effectively update the spatiotemporal distribution of forest AGB.

  17. Reducing uncertainty for estimating forest carbon stocks and dynamics using integrated remote sensing, forest inventory and process-based modeling

    Science.gov (United States)

    Poulter, B.; Ciais, P.; Joetzjer, E.; Maignan, F.; Luyssaert, S.; Barichivich, J.

    2015-12-01

    Accurately estimating forest biomass and forest carbon dynamics requires new integrated remote sensing, forest inventory, and carbon cycle modeling approaches. Presently, there is an increasing and urgent need to reduce forest biomass uncertainty in order to meet the requirements of carbon mitigation treaties, such as Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we describe a new parameterization and assimilation methodology used to estimate tropical forest biomass using the ORCHIDEE-CAN dynamic global vegetation model. ORCHIDEE-CAN simulates carbon uptake and allocation to individual trees using a mechanistic representation of photosynthesis, respiration and other first-order processes. The model is first parameterized using forest inventory data to constrain background mortality rates, i.e., self-thinning, and productivity. Satellite remote sensing data for forest structure, i.e., canopy height, is used to constrain simulated forest stand conditions using a look-up table approach to match canopy height distributions. The resulting forest biomass estimates are provided for spatial grids that match REDD+ project boundaries and aim to provide carbon estimates for the criteria described in the IPCC Good Practice Guidelines Tier 3 category. With the increasing availability of forest structure variables derived from high-resolution LIDAR, RADAR, and optical imagery, new methodologies and applications with process-based carbon cycle models are becoming more readily available to inform land management.

  18. Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring.

    Science.gov (United States)

    Lin, Xiaoyou; Seet, Boon-Chong

    2017-04-01

    This paper presents a new design of a wearable plantar pressure monitoring system in the form of a smart sock for sensing abnormal relative pressure changes. One advantage of this approach is that with a battery-free design, this system can be powered solely by radio frequency (RF) energy harvested from a radio frequency identification (RFID) reader unit hosted on a smartphone of the wearer. At the same time, this RFID reader can read foot pressure values from an embedded sensor-tag in the sock. A pressure sensing matrix made of conductive fabric and flexible piezo-resistive material is integrated into the sock during the knitting process. Sensed foot pressures are digitized and stored in the memory of a sensor-tag, thus allowing relative foot pressure values to be tracked. The control unit of the smart sock is assembled on a flexible printed circuit board (FPC) that can be strapped to the lower limb and detached easily when it is not in use. Experiments show that the system can operate reliably in both tasks of RF energy harvesting and pressure measurement.

  19. Building an Elastic Parallel OGC Web Processing Service on a Cloud-Based Cluster: A Case Study of Remote Sensing Data Processing Service

    Directory of Open Access Journals (Sweden)

    Xicheng Tan

    2015-10-01

    Full Text Available Since the Open Geospatial Consortium (OGC proposed the geospatial Web Processing Service (WPS, standard OGC Web Service (OWS-based geospatial processing has become the major type of distributed geospatial application. However, improving the performance and sustainability of the distributed geospatial applications has become the dominant challenge for OWSs. This paper presents the construction of an elastic parallel OGC WPS service on a cloud-based cluster and the designs of a high-performance, cloud-based WPS service architecture, the scalability scheme of the cloud, and the algorithm of the elastic parallel geoprocessing. Experiments of the remote sensing data processing service demonstrate that our proposed method can provide a higher-performance WPS service that uses less computing resources. Our proposed method can also help institutions reduce hardware costs, raise the rate of hardware usage, and conserve energy, which is important in building green and sustainable geospatial services or applications.

  20. Contribution of Shape Memory Alloys Elements in Designing Underwater Smart Structures

    Directory of Open Access Journals (Sweden)

    Daniel Amariei

    2007-10-01

    Full Text Available Shape memory alloys (SMA have generated a lot of new ideas in engineering. Application is however so far limited to clamps and springs. With respect to smart structures sensing as well as control has to be included. While sensing looks to be relatively feasible control is the big challenge. This paper describes some related a smart structure idea using SMAs and discusses the challenges which need to be solved before these ideas can be realised.

  1. Soft Sensing of Key State Variables in Fermentation Process Based on Relevance Vector Machine with Hybrid Kernel Function

    Directory of Open Access Journals (Sweden)

    Xianglin ZHU

    2014-06-01

    Full Text Available To resolve the online detection difficulty of some important state variables in fermentation process with traditional instruments, a soft sensing modeling method based on relevance vector machine (RVM with a hybrid kernel function is presented. Based on the characteristic analysis of two commonly-used kernel functions, that is, local Gaussian kernel function and global polynomial kernel function, a hybrid kernel function combing merits of Gaussian kernel function and polynomial kernel function is constructed. To design optimal parameters of this kernel function, the particle swarm optimization (PSO algorithm is applied. The proposed modeling method is used to predict the value of cell concentration in the Lysine fermentation process. Simulation results show that the presented hybrid-kernel RVM model has a better accuracy and performance than the single kernel RVM model.

  2. Smart grid for comfort; Smart grid voor comfort

    Energy Technology Data Exchange (ETDEWEB)

    Zeiler, W.; Van der Velden, J.A.J. [Kropman, Rijswijk (Netherlands); Vissers, D.R.; Maaijen, H.N. [Faculteit Bouwkunde, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Kling, W.L. [Faculteit Electrical Engineering, Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands); Larsen, J.P. [Sense Observation Systems, Rotterdam (Netherlands)

    2012-04-15

    A new control strategy was developed based on the application of wireless sensor network with the connection to a smart grid to investigate if it is possible to save energy on the level of the user under the condition of maintaining the same or even improved level of individual comfort. By using different scenarios, for individual comfort and energy consumption, agents provide the steering of the process control This forms the basis of a new approach to optimize the energy consumption, after which the effect of it can be used on the level of residential building to optimize the interaction with the electrical infrastructure, the smart grid. [Dutch] Er vindt onderzoek plaats naar een nieuwe regelstrategie gebaseerd op de toepassing van een draadloos sensor netwerk dat is gekoppeld aan het smart grid. Doel van deze regelstrategie is om op gebruikersniveau energie te kunnen besparen met behoud of zelfs verbetering van het individueel comfort. Er zijn verschillende scenario's voor individueel comfort en energiegebruik van apparatuur met behulp van agents die voor de aansturing kunnen zorgen. Zo wordt de kern van de energievraag geoptimaliseerd. De doorwerking hiervan tot op het niveau van woninggebouw en de koppeling met het externe elektriciteitsnet kan vervolgens worden geoptimaliseerd.

  3. From smart specialisation to smart experimentation: Towards a new theoretical framework for EU regional policy

    OpenAIRE

    Benner, Maximilian

    2013-01-01

    The idea of smart specialisation has gained high prominence in the discourse about EU regional policy. In the coming program period from 2014 to 2020 it is expected to be a major pillar of EU structural funds. The notion of smart specialisation incorporates some basic principles of evolutionary economics and centers on the idea of an entrepreneurial discovery process of new trajectories on the regional level. It does not, however, sufficiently take into account the relevance of in...

  4. Wide sense one-dependent processes with embedded Harris chains and their applications in inventory management

    NARCIS (Netherlands)

    E.M. Bazsa-Oldenkamp; P. den Iseger

    2003-01-01

    textabstractIn this paper we consider stochastic processes with an embedded Harris chain. The embedded Harris chain describes the dependence structure of the stochastic process. That is, all the relevant information of the past is contained in the state of the embedded Harris chain. For these

  5. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms.

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-10

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone's LED flash, while the light from the end faces of the lead-out fibers is detected by the phone's camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  6. Data-driven Regulation and Governance in Smart Cities

    NARCIS (Netherlands)

    Ranchordás, Sofia; Klop, Abram; Mak, Vanessa; Berlee, Anna; Tjong Tjin Tai, Eric

    2018-01-01

    This chapter discusses the concept of data-driven regulation and governance in the context of smart cities by describing how these urban centres harness these technologies to collect and process information about citizens, traffic, urban planning or waste production. It describes how several smart

  7. Towards a smart home framework

    OpenAIRE

    Alam, Muddasser; Alan, Alper; Rogers, Alex; Ramchurn, Sarvapali D.

    2013-01-01

    We present our Smart Home Framework (SHF) which simplifies the modelling, prototyping and simulation of smart infrastructure (i.e., smart home and smart communities). It provides the buildings blocks (e.g., home appliances) that can be extended and assembled together to build a smart infrastructure model to which appropriate AI techniques can be applied. This approach enables rapid modelling where new research initiatives can build on existing work.

  8. Annotating smart environment sensor data for activity learning.

    Science.gov (United States)

    Szewcyzk, S; Dwan, K; Minor, B; Swedlove, B; Cook, D

    2009-01-01

    The pervasive sensing technologies found in smart homes offer unprecedented opportunities for providing health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to monitor the functional health of smart home residents, we need to design technologies that recognize and track the activities that people perform at home. Machine learning techniques can perform this task, but the software algorithms rely upon large amounts of sample data that is correctly labeled with the corresponding activity. Labeling, or annotating, sensor data with the corresponding activity can be time consuming, may require input from the smart home resident, and is often inaccurate. Therefore, in this paper we investigate four alternative mechanisms for annotating sensor data with a corresponding activity label. We evaluate the alternative methods along the dimensions of annotation time, resident burden, and accuracy using sensor data collected in a real smart apartment.

  9. Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer.

    Science.gov (United States)

    Yang, Enlong; Xu, Zhe; Chur, Lucas K; Behroozfar, Ali; Baniasadi, Mahmoud; Moreno, Salvador; Huang, Jiacheng; Gilligan, Jules; Minary-Jolandan, Majid

    2017-07-19

    Smart textiles are envisioned to make a paradigm shift in wearable technologies to directly impart functionality into the fibers rather than integrating sensors and electronics onto conformal substrates or skin in wearable devices. Among smart materials, piezoelectric fabrics have not been widely reported, yet. Piezoelectric smart fabrics can be used for mechanical energy harvesting, for thermal energy harvesting through the pyroelectric effect, for ferroelectric applications, as pressure and force sensors, for motion detection, and for ultrasonic sensing. We report on mechanical and material properties of the plied nanofibrous piezoelectric yarns as a function of postprocessing conditions including thermal annealing and drawing (stretching). In addition, we used a continuous electrospinning setup to directly produce P(VDF-TrFE) nanofibers and convert them into twisted plied yarns, and demonstrated application of these plied yarns in woven piezoelectric fabrics. The results of this work can be an early step toward realization of piezoelectric smart fabrics.

  10. Smart Card Based Integrated Electronic Health Record System For Clinical Practice

    OpenAIRE

    N. Anju Latha; B. Rama Murthy; U. Sunitha

    2012-01-01

    Smart cards are used in information technologies as portable integrated devices with data storage and data processing capabilities. As in other fields, smart card use in health systems became popular due to their increased capacity and performance. Smart cards are used as a Electronic Health Record (EHR) Their efficient use with easy and fast data access facilities leads to implementation particularly widespread in hospitals. In this paper, a smart card based Integrated Electronic health Reco...

  11. Psychological Functions of Semiotic Borders in Sense-Making: Liminality of Narrative Processes.

    Science.gov (United States)

    De Luca Picione, Raffaele; Valsiner, Jaan

    2017-08-01

    In this paper we discuss the semiotic functions of the psychological borders that structure the flow of narrative processes. Each narration is always a contextual, situated and contingent process of sensemaking, made possible by the creation of borders, such as dynamic semiotic devices that are capable of connecting the past and the future, the inside and the outside, and the me with the non-me. Borders enable us to narratively construct one's own experiences using three inherent processes: contextualization, intersubjective positioning and setting of pertinence. The narrative process - as a subjective articulation of signs in a contingent social context - involves several functions of semiotic borders: separation, differentiation, distinction-making, connection, articulation and relation-enabling. The relevant psychological aspect highlighted here is that a border is a semiotic device which is required for both maintaining stability and inducing transformation at the same time. The peculiar dynamics and the semiotic structure of borders generate a liminal space, which is characterized by instability, by a blurred space-time distinction and by ambiguities in the semantic and syntactic processes of sensemaking. The psychological processes that occur in liminal space are strongly affectively loaded, yet it is exactly the setting and activation of liminality processes that lead to novelty and creativity and enable the creation of new narrative forms.

  12. Investigating impacts of natural and human-induced environmental changes on hydrological processes and flood hazards using a GIS-based hydrological/hydraulic model and remote sensing data

    Science.gov (United States)

    Wang, Lei

    Natural and human-induced environmental changes have been altering the earth's surface and hydrological processes, and thus directly contribute to the severity of flood hazards. To understand these changes and their impacts, this research developed a GIS-based hydrological and hydraulic modeling system, which incorporates state-of-the-art remote sensing data to simulate flood under various scenarios. The conceptual framework and technical issues of incorporating multi-scale remote sensing data have been addressed. This research develops an object-oriented hydrological modeling framework. Compared with traditional lumped or cell-based distributed hydrological modeling frameworks, the object-oriented framework allows basic spatial hydrologic units to have various size and irregular shape. This framework is capable of assimilating various GIS and remotely-sensed data with different spatial resolutions. It ensures the computational efficiency, while preserving sufficient spatial details of input data and model outputs. Sensitivity analysis and comparison of high resolution LIDAR DEM with traditional USGS 30m resolution DEM suggests that the use of LIDAR DEMs can greatly reduce uncertainty in calibration of flow parameters in the hydrologic model and hence increase the reliability of modeling results. In addition, subtle topographic features and hydrologic objects like surface depressions and detention basins can be extracted from the high resolution LiDAR DEMs. An innovative algorithm has been developed to efficiently delineate surface depressions and detention basins from LiDAR DEMs. Using a time series of Landsat images, a retrospective analysis of surface imperviousness has been conducted to assess the hydrologic impact of urbanization. The analysis reveals that with rapid urbanization the impervious surface has been increased from 10.1% to 38.4% for the case study area during 1974--2002. As a result, the peak flow for a 100-year flood event has increased by 20% and

  13. Diagonalizing sensing matrix of broadband RSE

    International Nuclear Information System (INIS)

    Sato, Shuichi; Kokeyama, Keiko; Kawazoe, Fumiko; Somiya, Kentaro; Kawamura, Seiji

    2006-01-01

    For a broadband-operated RSE interferometer, a simple and smart length sensing and control scheme was newly proposed. The sensing matrix could be diagonal, owing to a simple allocation of two RF modulations and to a macroscopic displacement of cavity mirrors, which cause a detuning of the RF modulation sidebands. In this article, the idea of the sensing scheme and an optimization of the relevant parameters will be described

  14. Alcohol sensing of tin oxide thin film prepared by sol–gel process

    Indian Academy of Sciences (India)

    Unknown

    variation of sensitivity and ethanol concentration has shown a linear relationship up to 1150 ppm and after ... The results obtained favour the sol–gel process as a low cost method for the preparation ... It was cleaned ultrasonically in methanol.

  15. WPS-based technology for client-side remote sensing data processing

    Directory of Open Access Journals (Sweden)

    E. Kazakov

    2015-04-01

    that the processing servers could play the role of the clients connecting to the service supply server. The study was partially supported by Russian Foundation for Basic Research (RFBR, research project No. 13-05-12079 ofi_m.

  16. Smart grids for smart cities: Smart energy management

    International Nuclear Information System (INIS)

    Kieny, Christophe

    2013-01-01

    Smart grids are currently a hot topic. Growing numbers of municipalities are experimenting with smart grids as the foundation for tomorrow's smart cities. And yet, end users are struggling to understand the innovative new energy distribution models just over the horizon. Our energy system is at a crossroads. And the coming years will tell us whether smart grids - whether they integrate renewable energy sources or not - will develop as a hybrid industry combining energy and IT or emerge as a full-fledged sector in and of itself. First and foremost, smart grids must be considered from a local, micro-economic standpoint, but one that also takes into account issues and interactions at the regional, national, EU, and global levels. Today, fighting climate change is a major challenge at both the national and global levels. The Kyoto Protocol and the Copenhagen Summit established a framework for crucial initiatives to combat climate change. The EU and France followed suit with their Climate and Energy Package and Grenelle de l'environnement environmental agenda. These policies set forth measures to fight climate change and to adapt to its impacts on people and the economy. France, for instance, set two basic targets to be achieved by 2020: - Make renewable energy a priority by promoting the development of energy from renewable sources to achieve the target of 23% renewables in the final energy mix. - Promote energy savings and increase energy efficiency by 20% and limit global warming to less than 2 deg. C over pre-industrial temperatures in industrialized nations by 2050 (around 1.2 deg. C above current temperatures). Tomorrow's grids will have to be smarter, which means incorporating information and communication technologies to provide the responsiveness and enhanced communication capabilities needed to meet the following challenges: - Integrating electricity from renewable sources; - Controlling demand; - Managing peak consumption; - Promoting widespread adoption of

  17. Smart Cities in Taiwan: A Perspective on Big Data Applications

    Directory of Open Access Journals (Sweden)

    Shiann Ming Wu

    2018-01-01

    Full Text Available In this paper, we discuss the concept of a smart city based on information and communication technology (ICT, analyze the objectives of smart city development in Taiwan, and explain the supporting technologies that make such development possible. Subsequently, we propose a hierarchical structure framework of smart city systems with levels of complexity ranging from low to high and interconnections and interactive relationships in five dimensions: the Internet of Things (IoT, cloud computing, Big Data, Mobile Network, and smart business. We integrate each key resource of the core operation systems of cities to promote the innovative operation of cities and further optimize city development. We then propose a Big Data platform data flow framework that uses information from ubiquitous sensor networks and information equipment to analyze the Big Data application process of smart cities and determine the resulting advantages and challenges. Additionally, we analyze the current state of development of smart cities in Taiwan. Finally, we discuss a new philosophy of smart city development and provide a practical blueprint for the formation, operation, and development of the smart cities with the aim of creating a bright future for the smart cities of Taiwan.

  18. Defining Smart City. A Conceptual Framework Based on Keyword Analysis

    Directory of Open Access Journals (Sweden)

    Farnaz Mosannenzadeh

    2014-05-01

    Full Text Available “Smart city” is a concept that has been the subject of increasing attention in urban planning and governance during recent years. The first step to create Smart Cities is to understand its concept. However, a brief review of literature shows that the concept of Smart City is the subject of controversy. Thus, the main purpose of this paper is to provide a conceptual framework to define Smart City. To this aim, an extensive literature review was done. Then, a keyword analysis on literature was held against main research questions (why, what, who, when, where, how and based on three main domains involved in the policy decision making process and Smart City plan development: Academic, Industrial and Governmental. This resulted in a conceptual framework for Smart City. The result clarifies the definition of Smart City, while providing a framework to define Smart City’s each sub-system. Moreover, urban authorities can apply this framework in Smart City initiatives in order to recognize their main goals, main components, and key stakeholders.

  19. Becoming a smart student

    DEFF Research Database (Denmark)

    Lundqvist, Ulla

    English abstract When teachers and students interact in everyday academic activities, some students are ascribed social roles as “smart”, which lead other students to contest these roles. Such struggles around what it means to be smart and which students come to be viewed as smart are a pertinent...... as smart and favoured by the teacher are at risk of being ostracized by peers, of encountering greater pressure for classroom performance and of suffering reduced learning opportunities. The study inspires teachers to create wiggle room for their students by becoming aware of the conventional definitions...

  20. Corporate Smart Phones

    DEFF Research Database (Denmark)

    Cavazotte, Flávia; Heloisa Lemos, Ana; Villadsen, Kaspar

    2014-01-01

    This article explores how the adoption of company sponsored smart phones inflicts upon the lives of professionals. Drawing upon qualitative interviews at a law firm in Brazil, the experiences of new smart phone users are reported upon in detail. Increased accessibility, accuracy and speed...... that negatively affected their private spheres, yet many of them paradoxically requested more efficient smart phone connectivity. The article focuses on the justifications, the different narrative strategies, employed by professionals for their conscious engagement in escalating work connectivity. It is suggested...

  1. Smart security proven practices

    CERN Document Server

    Quilter, J David

    2014-01-01

    Smart Security: Understanding and Contributing to the Business is a video presentation. Length: 68 minutes. In Smart Security: Understanding and Contributing to the Business, presenter J. David Quilter demonstrates the benefits of how a fully integrated security program increases business profits and delivers smart security practices at the same time. The presentation does away with the misconception that security is only an expense. In fact, a well-integrated security program can protect business interests, thereby enhancing productivity and net income. Quilter covers cost analysis and secu

  2. The active electric sense of weakly electric fish: from electric organ discharge to sensory processing and behaviour

    Directory of Open Access Journals (Sweden)

    Krahe Rüdiger

    2016-01-01

    Full Text Available Sensory systems have been shaped by evolution to extract information that is relevant for decision making. In order to understand the mechanisms used by sensory systems for filtering the incoming stream of sensory input, it is important to have a quantitative understanding of the natural sensory scenes that are to be processed. Weakly electric fish lead a rather cryptic nocturnal life in often turbid tropical rainforest streams. They produce electric discharges and sense perturbations of their selfgenerated electric field for prey detection and navigation, and also use their active sense for communication in the context of courtship and aggression. The fact that they produce their electric signals throughout day and night permits the use of electrode arrays to track the movements of multiple individual fish and monitor their communication interactions, thus offering a window into their electrosensory world. This approach yields unprecedented access to information on the biology of these fishes and also on the statistical properties of the sensory scenes that are to be processed by their electrosensory system. The electrosensory system shares many organizational features with other sensory systems, in particular, the use of multiple topographic maps. In fact, the sensory surface (the skin is represented in three parallel maps in the hindbrain, with each map covering the receptor organ array with six different cell types that project to the next higher level of processing. Thus, the electroreceptive body surface is represented a total of 18 times in the hindbrain, with each representation having its specific filter properties and degree of response plasticity. Thus, the access to the sensory world of these fish as well as the manifold filtering of the sensory input makes these fish an excellent model system for exploring the cell-intrinsic and network characteristics underlying the extraction of behaviourally relevant sensory information.

  3. An Approach for Smart Antenna Testbed

    Science.gov (United States)

    Kawitkar, R. S.; Wakde, D. G.

    2003-07-01

    The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing

  4. Design Features of the SMART Water Chemistry

    International Nuclear Information System (INIS)

    Byung Seon Choi; Seong Hoon Kim; Juhyeon Yoon; Doo Jeong Lee; Yoon Yeong Bae; Sung Kyun Zee

    2004-01-01

    The design features for the primary water chemistry for the SMART are introduced from the viewpoint of the system characteristics and the chemical design concept. The most essential differences in water chemistry between the commercially operating PWRs and SMART are characterized by the presence of boron in the water and the operating mode of the purification system. SMART is a soluble boron free reactor, and the ammonia is used as a pH reagent. The material for SMART steam generator is also different from the standard material of the commercially operating PWRs: titanium alloy for the steam generator tubes. In SMART hydrogen gas which suppresses a generation of oxidizing species by the radiolysis processes in the reactors is not added to the primary coolant, but is normally generated from the radiolysis of the ammonia as the coolant passes through the core. Ammonia is added once per shift because SMART reactor has no letdown and charging system during power operation. Because of these competing processes, the concentrations of hydrogen, nitrogen and ammonia in the primary coolant are in equilibrium, which depend on the decomposition and/or combination rate of the ammonia. The level of permissible oxygen concentration in the primary coolant can be ensured by both suppression of the water radiolysis through maintaining a high enough hydrogen concentration in the primary coolant and by a restriction of the oxygen ingress into the primary coolant with the makeup water. The ammonia chemistry in SMART reactor eliminates the need for hydrogen injection for the control of the dissolved oxygen in the primary coolant because of spontaneous generation of hydrogen and nitrogen produced by the reaction of the ammonia decomposition. (authors)

  5. Flexible Description Language for HPC based Processing of Remote Sense Data

    Science.gov (United States)

    Nandra, Constantin; Gorgan, Dorian; Bacu, Victor

    2016-04-01

    When talking about Big Data, the most challenging aspect lays in processing them in order to gain new insight, find new patterns and gain knowledge from them. This problem is likely most apparent in the case of Earth Observation (EO) data. With ever higher numbers of data sources and increasing data acquisition rates, dealing with EO data is indeed a challenge [1]. Geoscientists should address this challenge by using flexible and efficient tools and platforms. To answer this trend, the BigEarth project [2] aims to combine the advantages of high performance computing solutions with flexible processing description methodologies in order to reduce both task execution times and task definition time and effort. As a component of the BigEarth platform, WorDeL (Workflow Description Language) [3] is intended to offer a flexible, compact and modular approach to the task definition process. WorDeL, unlike other description alternatives such as Python or shell scripts, is oriented towards the description topologies, using them as abstractions for the processing programs. This feature is intended to make it an attractive alternative for users lacking in programming experience. By promoting modular designs, WorDeL not only makes the processing descriptions more user-readable and intuitive, but also helps organizing the processing tasks into independent sub-tasks, which can be executed in parallel on multi-processor platforms in order to improve execution times. As a BigEarth platform [4] component, WorDeL represents the means by which the user interacts with the system, describing processing algorithms in terms of existing operators and workflows [5], which are ultimately translated into sets of executable commands. The WorDeL language has been designed to help in the definition of compute-intensive, batch tasks which can be distributed and executed on high-performance, cloud or grid-based architectures in order to improve the processing time. Main references for further

  6. A Smart Home Center Platform Solution Based on Smart Mirror

    Directory of Open Access Journals (Sweden)

    Deng Xibo

    2017-01-01

    Full Text Available With the popularization of the concept of smart home, people have raised requirements on the experience of smart living. A smart home platform center solution is put forward in order to solve the intelligent interoperability and information integration of smart home, which enable people to have a more intelligent and convenient life experience. This platform center is achieved through the Smart Mirror. The Smart Mirror refers to a smart furniture, on the basis of the traditional concept of mirror, combining Raspberry Pi, the application of one-way mirror imaging principle, the touch-enabled design, voice and video interaction. Smart Mirror can provide a series of intelligent experience for the residents, such as controlling all the intelligent furniture through Smart Mirror; accessing and displaying the weather, time, news and other life information; monitoring the home environment; remote interconnection operation.

  7. Lightweight Hyperspectral Mapping System and a Novel Photogrammetric Processing Chain for UAV-based Sensing

    Science.gov (United States)

    Suomalainen, Juha; Franke, Jappe; Anders, Niels; Iqbal, Shahzad; Wenting, Philip; Becker, Rolf; Kooistra, Lammert

    2014-05-01

    We have developed a lightweight Hyperspectral Mapping System (HYMSY) and a novel processing chain for UAV based mapping. The HYMSY consists of a custom pushbroom spectrometer (range 450-950nm, FWHM 9nm, ~20 lines/s, 328 pixels/line), a consumer camera (collecting 16MPix raw image every 2 seconds), a GPS-Inertia Navigation System (GPS-INS), and synchronization and data storage units. The weight of the system at take-off is 2.0kg allowing us to mount it on a relatively small octocopter. The novel processing chain exploits photogrammetry in the georectification process of the hyperspectral data. At first stage the photos are processed in a photogrammetric software producing a high-resolution RGB orthomosaic, a Digital Surface Model (DSM), and photogrammetric UAV/camera position and attitude at the moment of each photo. These photogrammetric camera positions are then used to enhance the internal accuracy of GPS-INS data. These enhanced GPS-INS data are then used to project the hyperspectral data over the photogrammetric DSM, producing a georectified end product. The presented photogrammetric processing chain allows fully automated georectification of hyperspectral data using a compact GPS-INS unit while still producingin UAV use higher georeferencing accuracy than would be possible using the traditional processing method. During 2013, we have operated HYMSY on 150+ octocopter flights at 60+ sites or days. On typical flight we have produced for a 2-10ha area: a RGB orthoimagemosaic at 1-5cm resolution, a DSM in 5-10cm resolution, and hyperspectral datacube at 10-50cm resolution. The targets have mostly consisted of vegetated targets including potatoes, wheat, sugar beets, onions, tulips, coral reefs, and heathlands,. In this poster we present the Hyperspectral Mapping System and the photogrammetric processing chain with some of our first mapping results.

  8. FY 2000 report on the results of the regional consortium R and D project - Regional consortium energy field. Second year report. Development of the energy saving manufacturing process of smart materials having electromagnetic wave absorbing function using the microwave-hydrothermal method; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki contortium energy bun'ya. Micro ha - suinetsuho wo riyoshita denjiha kyushu kino wo yusuru smart zairyo no sho energy gata seizo process no kaihatsu (dai 2 nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The development was proceeded with of electromagnetic wave absorbing materials (board) which dispersed carbon fiber as conducting material and ferrite as magnetic material to matrices such as resin and cement. With the multi-layer structure as a basis, the material has wave absorbing ability in the area of 300MHz-60GHz band. The material is presumed to be applied to wall construction use materials and bodies of electronic equipment since it prevents the radio wave reflection caused by structures such as bridges. Ferrite was synthesized by microwave-hydrothermal method (500kPa, 2.54GHz). Further, carbon fiber was covered with ferrite for improvement of absorption characteristics. Studies were made in the following 5 fields: 1) design of smart materials and development of hybrid process technology; 2) study on the evaluation of wave absorbing function; 3) R and D of the manufacturing process of smart forming materials; 4) development of the fiber surface processing process using ocean resource; 5) comprehensive investigational study. In 1), study was conducted on relations among electromagnetic shielding characteristics of the ferrite-covering carbon fiber, fiber length and fiber content. (NEDO)

  9. Sustainable and Smart City Planning Using Spatial Data in Wallonia

    Science.gov (United States)

    Stephenne, N.; Beaumont, B.; Hallot, E.; Wolff, E.; Poelmans, L.; Baltus, C.

    2016-09-01

    Simulating population distribution and land use changes in space and time offer opportunities for smart city planning. It provides a holistic and dynamic vision of fast changing urban environment to policy makers. Impacts, such as environmental and health risks or mobility issues, of policies can be assessed and adapted consequently. In this paper, we suppose that "Smart" city developments should be sustainable, dynamic and participative. This paper addresses these three smart objectives in the context of urban risk assessment in Wallonia, Belgium. The sustainable, dynamic and participative solution includes (i) land cover and land use mapping using remote sensing and GIS, (ii) population density mapping using dasymetric mapping, (iii) predictive modelling of land use changes and population dynamics and (iv) risk assessment. The comprehensive and long-term vision of the territory should help to draw sustainable spatial planning policies, to adapt remote sensing acquisition, to update GIS data and to refine risk assessment from regional to city scale.

  10. Smart sensors for health and environment monitoring

    CERN Document Server

    2015-01-01

    This book covers two most important applications of smart sensors, namely bio-health sensing and environmental monitoring.   The approach taken is holistic and covers the complete scope of the subject matter from the principles of the sensing mechanism, through device physics, circuit and system implementation techniques, and energy issues  to wireless connectivity solutions. It is written at a level suitable mainly for post-graduate level researchers interested in practical applications. The chapters are independent but complementary to each other, and the book works within the wider perspective of essential smart sensors for the Internet of Things (IoT).   This is the second of three books based on the Integrated Smart Sensors research project, which describe the development of innovative devices, circuits, and system-level enabling technologies.  The aim of the project was to develop common platforms on which various devices and sensors can be loaded, and to create systems offering significant improve...

  11. Semantic service integration for smart grids

    CERN Document Server

    Rohjans, S

    2012-01-01

    The scope of the research presented includes semantic-based integration of data services in smart grids achieved through following the proposed (S²)In-approach developed corresponding to design science guidelines. This approach identifies standards and specifications, which are integrated in order to build the basis for the (S²)In-architecture. A process model is introduced in the beginning, which serves as framework for developing the target architecture. The first step of the process stipulates to define requirements for smart grid ICT-architectures being derived from established studies and

  12. The Business Model Evaluation Tool for Smart Cities: Application to SmartSantander Use Cases

    Directory of Open Access Journals (Sweden)

    Raimundo Díaz-Díaz

    2017-02-01

    Full Text Available New technologies open up the door to multiple business models applied to public services in smart cities. However, there is not a commonly adopted methodology for evaluating business models in smart cities that can help both practitioners and researchers to choose the best option. This paper addresses this gap introducing the Business Model Evaluation Tool for Smart Cities. This methodology is a simple, organized, flexible and the transparent system that facilitates the work of the evaluators of potential business models. It is useful to compare two or more business models and take strategic decisions promptly. The method is part of a previous process of content analysis and it is based on the widely utilized Business Model Canvas. The evaluation method has been assessed by 11 experts and, subsequently it has been validated applying it to the case studies of Santander’s waste management and street lighting systems, which take advantage of innovative technologies commonly used in smart cities.

  13. Making sense of intercultural interaction processes in international joint venture settings

    DEFF Research Database (Denmark)

    Dao, Li

    , i.e. competence building interaction, decision making interaction, and socializing interaction, which is consistent with the three major processes of learning, power bargaining, and relationship building as suggested by IJV literature. Second, interaction processes appear to be shaped by individual...... approach toward decision making, a mutual learning attitude, the appreciation and strategic utilization of emergent ties between individual members put together in work settings, the proper implementation of consensus-facilitating mechanisms like ISO standards, and a holistic view of knowledge transfer...... in terms of core skills as well as non-core yet critically supporting skills like decision making and project/ time management....

  14. Defense Dollars and Sense: A Common Cause Guide to the Defense Budget Process.

    Science.gov (United States)

    Rovner, Mark

    Designed to increase public awareness of military spending, this 5-part guide examines the process and problems of preparing the national defense budget. The publication begins with a brief overview of the 1984 defense budget. Major military programs, trends in budgeting, and key concerns in budget formulation are explored. Graphs and charts…

  15. Scene matching based on non-linear pre-processing on reference image and sensed image

    Institute of Scientific and Technical Information of China (English)

    Zhong Sheng; Zhang Tianxu; Sang Nong

    2005-01-01

    To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable.

  16. Benefits from remote sensing data utilization in urban planning processes and system recommendations

    Science.gov (United States)

    Mallon, H. J.; Howard, J. Y.

    1972-01-01

    The benefits of utilizing remote sensor data in the urban planning process of the Metropolitan Washington Council of Governments are investigated. An evaluation of sensor requirements, a description/ comparison of costs, benefits, levels of accuracy, ease of attainment, and frequency of update possible using sensor versus traditional data acquisition techniques are discussed.

  17. Optimization of chemical composition in the manufacturing process of flotation balls based on intelligent soft sensing

    Directory of Open Access Journals (Sweden)

    Dučić Nedeljko

    2016-01-01

    Full Text Available This paper presents an application of computational intelligence in modeling and optimization of parameters of two related production processes - ore flotation and production of balls for ore flotation. It is proposed that desired chemical composition of flotation balls (Mn=0.69%; Cr=2.247%; C=3.79%; Si=0.5%, which ensures minimum wear rate (0.47 g/kg during copper milling is determined by combining artificial neural network (ANN and genetic algorithm (GA. Based on the results provided by neuro-genetic combination, a second neural network was derived as an ‘intelligent soft sensor’ in the process of white cast iron production. The proposed ANN 12-16-12-4 model demonstrated favourable prediction capacity, and can be recommended as a ‘intelligent soft sensor’ in the alloying process intended for obtaining favourable chemical composition of white cast iron for production of flotation balls. In the development of intelligent soft sensor data from the two real production processes was used. [Projekat Ministarstva nauke Republike Srbije, br. TR35037 i br. TR35015

  18. How Do People with Learning Disabilities Experience and Make Sense of the Ageing Process?

    Science.gov (United States)

    Newberry, Gayle; Martin, Carol; Robbins, Lorna

    2015-01-01

    Background: Not enough is currently known about how people with learning disabilities experience and understand the ageing process. This is particularly important as the population of older people with learning disabilities is growing due to increased life expectancy. This article draws on the first author's doctoral research study, which aimed to…

  19. Remote-Sensing Data Distribution and Processing in the Cloud at the ASF DAAC

    Science.gov (United States)

    Stoner, C.; Arko, S. A.; Nicoll, J. B.; Labelle-Hamer, A. L.

    2016-12-01

    The Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) has been tasked to archive and distribute data from both SENTINEL-1 satellites and from the NASA-ISRO Synthetic Aperture Radar (NISAR) satellite in a cost effective manner. In order to best support processing and distribution of these large data sets for users, the ASF DAAC enhanced our data system in a number of ways that will be detailed in this presentation.The SENTINEL-1 mission comprises a constellation of two polar-orbiting satellites, operating day and night performing C-band Synthetic Aperture Radar (SAR) imaging, enabling them to acquire imagery regardless of the weather. SENTINEL-1A was launched by the European Space Agency (ESA) in April 2014. SENTINEL-1B is scheduled to launch in April 2016.The NISAR satellite is designed to observe and take measurements of some of the planet's most complex processes, including ecosystem disturbances, ice-sheet collapse, and natural hazards such as earthquakes, tsunamis, volcanoes and landslides. NISAR will employ radar imaging, polarimetry, and interferometry techniques using the SweepSAR technology employed for full-resolution wide-swath imaging. NISAR data files are large, making storage and processing a challenge for conventional store and download systems.To effectively process, store, and distribute petabytes of data in a High-performance computing environment, ASF took a long view with regard to technology choices and picked a path of most flexibility and Software re-use. To that end, this Software tools and services presentation will cover Web Object Storage (WOS) and the ability to seamlessly move from local sunk cost hardware to public cloud, such as Amazon Web Services (AWS). A prototype of SENTINEL-1A system that is in AWS, as well as a local hardware solution, will be examined to explain the pros and cons of each. In preparation for NISAR files which will be even larger than SENTINEL-1A, ASF has embarked on a number of cloud

  20. Technical Integration of SMART Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Park, P. H.; Noh, P. C. (and others)

    2006-12-15

    Preliminary experimental tests were carried out using the thermal-hydraulic integral test facility, VISTA (Experimental Verification by Integral Simulation of Transients and Accidents), which has been constructed to simulate the SMART-P. The VISTA facility is an integral test facility including the primary and secondary systems as well as safety-related Passive Residual heat removal (PRHR) systems. The integrated SMART desalination plant consists of Multi Effect Distillation Process combined with Thermal-Vapor Compressor(MED-TVC) and coupled with the extracted steam from turbine through the steam transformer. Steam transformer produces the main pressure steam and supplies to the MED-TVC unit. MED-TVC was selected as a desalination process coupled with SMART, since the thermal vapor compression is very effective where the steam is available at high temperature and pressure conditions than required in the evaporator. The standard design of the SMART desalination plant is under development as a part of the SMART project. This report describes design concept of these systems and their requirements.