WorldWideScience

Sample records for small-scale chp plant

  1. Small-scale biomass CHP using gasa turbines: a scoping study

    International Nuclear Information System (INIS)

    James, D.W.; Landen, R.

    1996-01-01

    Various options for small-scale (up to 250 KWe) Combined Heat and Power (CHP) plants evaluated in this scoping study. Plants using small gas turbines, and able to use biomass fuels when available are included. Three detailed case studies of small-scale biomass CHP plants are compared to match specific technical options with customer requirements. The commercial development of such biomass-fired CHP units, using gas turbines, is shown to be economically viable depending on fuel costs and the continuation of existing financial incentives. (UK)

  2. Increased power to heat ratio of small scale CHP plants using biomass fuels and natural gas

    International Nuclear Information System (INIS)

    Savola, Tuula; Fogelholm, Carl-Johan

    2006-01-01

    In this paper, we present a systematic study of process changes for increased power production in 1-20 MW e combined heat and power (CHP) plants. The changes are simulated, and their economic feasibility evaluated by using existing small scale CHP case plants. Increasing power production in decentralised CHP plants that operate according to a certain heat demand could reduce the fuel consumption and CO 2 emissions per power unit produced and improve the feasibility of CHP plant investments. The CHP plant process changes were simulated under design and off design conditions and an analysis of power and heat production, investment costs and CO 2 emissions was performed over the whole annual heat demand. The results show that using biomass fuels, there are profitable possibilities to increase the current power to heat ratios, 0.23-0.48, of the small scale CHP plants up to 0.26-0.56, depending on the size of the plant. The profitable changes were a two stage district heat exchanger and the addition of a steam reheater and a feed water preheater. If natural gas is used as an additional fuel, the power to heat ratio may be increased up to 0.35-0.65 by integrating a gas engine into the process. If the CO 2 savings from the changes are also taken into account, the economic feasibility of the changes increases. The results of this work offer useful performance simulation and investment cost knowledge for the development of more efficient and economically feasible small scale CHP processes

  3. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    International Nuclear Information System (INIS)

    Lund, H.; Andersen, A.N.

    2005-01-01

    Combined Heat and Power production (CHP) are essential for implementation of the climate change response objectives in many countries. In an introduction period, small CHP plants have typically been offered fixed electricity prices, but in many countries, such pricing conditions are now being replaced by spot market prices. Consequently, new methodologies and tools for the optimisation of small CHP plant designs are needed. The small CHP plants in Denmark are already experienced in optimising their electricity production against the triple tariff, which has existed for almost 10 years. Consequently, the CHP plants have long term experience in organising when to switch on and off the CHP units in order to optimise their profit. Also, the CHP owners have long term experience in designing their plants. For instance, small CHP plants in Denmark have usually invested in excess capacity on the CHP units in combination with heat storage capacity. Thereby, the plants have increased their performance in order to optimise revenues. This paper presents the Danish experience with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff. Moreover, the changes in such methodologies and tools in order to optimise performance in a market with fluctuating electricity prices are presented and discussed

  4. A microeconomic analysis of decentralized small scale biomass based CHP plants—The case of Germany

    International Nuclear Information System (INIS)

    Wittmann, Nadine; Yildiz, Özgür

    2013-01-01

    Alternative energy sources, such as biomass CHP plants, have recently gained significantly in importance and action is due both on the large scale corporate level and on the small scale. Hence, making the scope and economic outline of such projects easily intelligible without losing relevant details seems a key factor to further promote the necessary developments. The model setup presented in this paper may therefore serve as a starting point for generating numerical results based on real life cases or scenarios. Its focus lies on the economic analysis of decentralized biomass CHP plants. It presents a new approach to analyzing the economic aspects of biomass CHP plants implementing a formal microeconomic approach. As Germany claims a leading role in the market for renewable energy production, the paper also takes a closer look on the effects of German energy policy with respect to biomass CHP plants. - Highlights: • A formal microeconomic model is used to analyse a decentralized biomass CHP plant. • Model setup is used to generate numerical results based on real life scenarios. • Nested CES production function is a new approach to model economics of biomass CHP. • Analysis presents insight into microeconomics and cost drivers of biomass CHP. • Evaluation of energy policy design with respect to environmental policy goals

  5. Small scale CHP: Alternative integration forms in the Danish energy system

    International Nuclear Information System (INIS)

    Boeg, Rasmus; Gatautis, Ramunas; Engberg Pedersen, Thomas; Schmidt, Rune; Ravn, Hans F.

    2003-01-01

    In Denmark, introduction of small scale combined heat and power (CHP) plants were part of the energy policy during the 1990's. Thus, the installed electricity capacity on this type of units multiplied approximately ten times during this decade, to constitute more than 2000 MW in 2000, or around 20% of total installed electricity capacity. The motivation for this development was mainly energy savings due to the relatively high thermal efficiency in combined production, and the associated reduction of emissions. The remuneration for the electricity delivered to the electrical network was in part based on a feed in tariff. The construction of the tariff reflected estimated benefits to the electrical system. With the liberalisation of the electricity markets this arrangement has been questioned, and it has been suggested that the differentiated payment to local CHP should be based on electricity market prising. For Denmark this would imply that the local CHP should trade the electricity on the Nordpool electricity spot market. This paper analyses parts of these two alternative ways of economic arrangements in relation to small scale CHP. First it describes the development and status till now. Then it analyses the production patterns and associated economic consequences of a change from the tariff based system to a market system. (BA)

  6. Small-scale CHP Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels- Development, Technology and Operating Experiences

    DEFF Research Database (Denmark)

    Obernberger, I.; Carlsen, Henrik; Biedermann, F.

    2003-01-01

    ) process and the Stirling engine process. The ORC process represents an economically interesting technology for small-scale biomass-fired combined heat and power plants in a power range between 400 and 1,500 kWel. A newly developed ORC technology with a nominal electric capacity of 1,000 kW was implemented...... in the biomass CHP plant Lienz (A) in the framework of an EU demonstration project. This plant was put in operation in February 2002. Stirling engines are a promising solution for installations with nominal electric capacities between 10 and 150 kW. A biomass CHP pilot plant based on a 35 kWel-Stirling engine...

  7. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    DEFF Research Database (Denmark)

    Lund, Henrik; Andersen, A.N.

    2005-01-01

    The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff.......The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff....

  8. Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels

    DEFF Research Database (Denmark)

    Biedermann, F.; Carlsen, Henrik; Schoech, M.

    2003-01-01

    Within the scope of the RD&D project presented a small-scale CHP plant with a hermetic four cylinder Stirling engine for biomass fuels was developed and optimised in cooperation with the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GesmbH, an Austrian biomass furnace and boiler...... exchanger of the Stirling engine, of the air preheater and of the entire combustion system. Furthermore, the optimisation of the pneumatic cleaning system to reduce ash deposition in the hot heat exchanger is of great relevance....... manufacturer, and BIOS BIOENERGIESYSTEME GmbH, an Austrian development and engineering company. Based on the technology developed, a pilot plant was designed and erected in Austria. The nominal electric power output of the plant is 35 kWel and the nominal thermal output amounts to approx. 220 kWth. The plant...

  9. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  10. Small-Scale Combined Heat and Power Plants Using Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Salomon-Popa, Marianne [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-11-01

    In this time period where energy supply and climate change are of special concern, biomass-based fuels have attracted much interest due to their plentiful supply and favorable environmental characteristics (if properly managed). The effective capture and continued sustainability of this renewable resource requires a new generation of biomass power plants with high fuel energy conversion. At the same time, deregulation of the electricity market offers new opportunities for small-scale power plants in a decentralized scheme. These two important factors have opened up possibilities for small-scale combined heat and power (CHP) plants based on biofuels. The objective of this pre-study is to assess the possibilities and technical limitations for increased efficiency and energy utilization of biofuels in small size plants (approximately 10 MWe or lower). Various energy conversion technologies are considered and proven concepts for large-scale fossil fuel plants are an especially important area. An analysis has been made to identify the problems, technical limitations and different possibilities as recognized in the literature. Beyond published results, a qualitative survey was conducted to gain first-hand, current knowledge from experts in the field. At best, the survey results together with the results of personal interviews and a workshop on the role of small-scale plants in distributed generation will serve a guideline for future project directions and ideas. Conventional and novel technologies are included in the survey such as Stirling engines, combustion engines, gas turbines, steam turbines, steam motors, fuel cells and other novel technologies/cycles for biofuels. State-of-the-art heat and power plants will be identified to clarify of the advantages and disadvantages as well as possible obstacles for their implementation.

  11. Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis

    International Nuclear Information System (INIS)

    Saari, Jussi; Sermyagina, Ekaterina; Kaikko, Juha; Vakkilainen, Esa; Sergeev, Vitaly

    2016-01-01

    Wood-fired combined heat and power (CHP) plants are a proven technology for producing domestic, carbon-neutral heat and power in Nordic countries. One drawback of CHP plants is the low capacity factors due to varying heat loads. In the current economic environment, uncertainty over energy prices creates also uncertainty over investment profitability. Hydrothermal carbonization (HTC) is a promising thermochemical conversion technology for producing an improved, more versatile wood-based fuel. Integrating HTC with a CHP plant allows simplifying the HTC process and extending the CHP plant operating time. An integrated polygeneration plant producing three energy products is also less sensitive to price changes in any one product. This study compares three integration cases chosen from the previous paper, and the case of separate stand-alone plants. The best economic performance is obtained using pressurized hot water from the CHP plant boiler drum as HTC process water. This has the poorest efficiency, but allows the greatest cost reduction in the HTC process and longest CHP plant operating time. The result demonstrates the suitability of CHP plants for integration with a HTC process, and the importance of economic and operational analysis considering annual load variations in sufficient detail. - Highlights: • Integration of wood hydrothermal carbonization with a small CHP plant studied. • Operation and economics of three concepts and stand-alone plants are compared. • Sensitivity analysis is performed. • Results show technical and thermodynamic analysis inadequate and misleading alone. • Minimizing HTC investment, extending CHP operating time important for profitability.

  12. Optimization of operation for combined heat and power plants - CHP plants - with heat accumulators using a MILP formulation

    Energy Technology Data Exchange (ETDEWEB)

    Grue, Jeppe; Bach, Inger [Aalborg Univ. (Denmark). Inst. of Energy Technology]. E-mails: jeg@iet.auc.dk; ib@iet.auc.dk

    2000-07-01

    The power generation system in Denmark is extensively based on small combined heat and power plants (CHP plants), producing both electricity and district heating. This project deals with smaller plants spread throughout the country. Often a heat accumulator is used to enable electricity production, even when the heat demand is low. This system forms a very complex problem, both for sizing, designing and operation of CHP plants. The objective of the work is the development of a tool for optimisation of the operation of CHP plants, and to even considering the design of the plant. The problem is formulated as a MILP-problem. An actual case is being tested, involving CHP producing units to cover the demand. The results from this project show that it is of major importance to consider the operation of the plant in detail already in the design phase. It is of major importance to consider the optimisation of the plant operation, even at the design stage, as it may cause the contribution margin to rise significantly, if the plant is designed on the basis of a de-tailed knowledge of the expected operation. (author)

  13. Assessment of the implementation issues for fuel cells in domestic and small scale stationary power generation and CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Graham, G.; Cruden, A.; Hart, J.

    2002-07-01

    This report discusses implementation issues associated with the use of fuel cells in <10 kW domestic, small-scale power generation and combined heat and power (CHP) operations in the UK. The report examines the key issues (fuel cell system standards and certification, fuel infrastructure, commercial issues and competing CHP technologies), before discussing non-technical issues including finance, ownership, import and export configuration, pricing structure, customer acceptability, installation, operation and training of servicing and commissioning personnel. The report goes on to discuss market and technical drivers, grid connection issues and solutions, operations and maintenance. Recommendations for the future are made.

  14. The design of Chp plants

    International Nuclear Information System (INIS)

    Tomassetti, G.

    2001-01-01

    Chp is considered with a bottom-up view, as the most efficient way to satisfy the needs of the users. In order to achieve optimal results a particular care must be used in analyzing the thermal and electrical loads and their interactions. On this basis and taking into account the relationships among the user and the suppliers of electricity, fuels and heat, the energy market structure, the cost of energy and the tax assessment it is possible to properly design Chp plants with benefits for the users [it

  15. Should a small combined heat and power plant (CHP) open to its regional power and heat networks? Integrated economic, energy, and emergy evaluation of optimization plans for Jiufa CHP

    International Nuclear Information System (INIS)

    Peng, T.; Lu, H.F.; Wu, W.L.; Campbell, D.E.; Zhao, G.S.; Zou, J.H.; Chen, J.

    2008-01-01

    The development of industrial ecology has led company managers to increasingly consider their company's niche in the regional system, and to develop optimization plans. We used emergy-based, ecological-economic synthesis to evaluate two optimization plans for the Jiufa Combined Heat and Power (CHP) Plant, Shandong China. In addition, we performed economic input-output analysis and energy analysis on the system. The results showed that appropriately incorporating a firm with temporary extra productivity into its regional system will help maximize the total productivity and improve ecological-economic efficiency and benefits to society, even without technical optimization of the firm itself. In addition, developing a closer relationship between a company and its regional system will facilitate the development of new optimization opportunities. Small coal-based CHP plants have lower-energy efficiency, higher environmental loading, and lower sustainability than large fossil fuel and renewable energy-based systems. The emergy exchange ratio (EER) proved to be an important index for evaluating the vitality of highly developed ecological-economic systems

  16. Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania

    International Nuclear Information System (INIS)

    Lund, H.; Siupsinskas, G.; Martinaitis, V.

    2005-01-01

    Within five years from now, Lithuania is going to close down Ignalina, the only nuclear-power plant in the country. Since Ignalina generates more than 75% of the Lithuanian electricity production, new generation capacities are needed. Traditional steam-turbines, fuelled with fossil fuels, would mean further imports of fuel as well as a rise in CO 2 emissions. At the same time, several small district-heating companies one suffering from high heating-prices. Typically, the price in small towns is 20-50% higher than the price in large urban areas. Consequently, alternative strategies should be considered. This article analyses the conditions for one such strategy, namely the replacement of boilers in the existing district-heating supplies with combined heat-and-power production (CHP). Compared with new power stations, fuel can be saved and CO 2 -emissions reduced. Also this strategy can be used to level the difference between low heating prices in the large urban areas and high prices in small towns and villages. (Author)

  17. Large-scale integration of off-shore wind power and regulation strategies of cogeneration plants in the Danish electricity system

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply......The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply...

  18. Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis

    International Nuclear Information System (INIS)

    Westner, Günther; Madlener, Reinhard

    2012-01-01

    In this paper, we apply a spread-based real options approach to analyze the decision-making problem of an investor who has the choice between an irreversible investment in a condensing power plant without heat utilization and a plant with combined heat-and-power (CHP) generation. Our investigation focuses on large-scale fossil-fueled generation technologies and is based on a stochastic model that uses copula functions to provide the input parameters of the real options model. We define the aggregated annual spread as assessment criteria for our investigation since it contains all relevant volatile input parameters that have an impact on the evaluation of investment decisions. We show that the specific characteristics of CHP plants, such as additional revenues from heat sales, promotion schemes, specific operational features, and a beneficial allocation of CO 2 allowances, have a significant impact on the option value and therefore on the optimal timing for investment. For the two fossil-fueled CHP technologies investigated (combined-cycle gas turbine and steam turbine), we conclude from our analysis that a high share of CHP generation reduces the risk exposure for the investor. The maximal possible CHP generation depends significantly on the local heat demand in the surroundings of the power plant. Considering this, the size of the heat sink available could gain more relevance in the future selection process of sites for new large-scale fossil power plants.

  19. Modeling work of a small scale gasifier/SOFC CHP system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Aravind, P.V.; Qu, Z.; Woudstra, N.; Verkooijen, A.H.M. [Delft University of Technology (Netherlands). Dept. of Mechanical Engineering], Emails: ming.liu@tudelft.nl, p.v.aravind@tudelft.nl, z.qu@tudelft.nl, n.woudstra@tudelft.nl, a. h. m. verkooijen@tudelft.nl; Cobas, V.R.M. [Federal University of Itajuba (UNIFEI), Pinheirinhos, MG (Brazil). Dept. of Mechanical Engineering], E-mail: vlad@unifei.edu.br

    2009-07-01

    For a highly efficient biomass gasification/Solid Oxide Fuel Cell (SOFC) Combined Heat and Power (CHP) generation system, the gasifier, the accompanying gas cleaning technologies and the CHP unit must be carefully designed as an integrated unit. This paper describes such a system involving a two-stage fixed-bed down draft gasifier, a SOFC CHP unit and a gas cleaning system. A gas cleaning system with both low temperature and high temperature sections is proposed for coupling the gasifier and the SOFC. Thermodynamic modeling was carried out for the gasifier/SOFC system with the proposed gas cleaning system. The net AC electrical efficiency of this system is around 30% and the overall system efficiency is around 60%. This paper also describes various exergy losses in the system and the future plans for integrated gasifier-GCU-SOFC experiments from which the results will be used to validate the modeling results of this system. (author)

  20. CHP plant Legionowo Poland. Description of the electricity market in Poland/CHP-feasibility analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    In 1997, a new energy law was passed in Poland. An important element of the law is that local energy is made obligatory. The law describes obligatory tasks and procedures for the Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for energy supply plans in the three municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continued/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the combined cycle type should be investigated. The present report describes the electricity market in Poland, the market in which a CHP plant in Legionowo will have to operate. Furthermore the report presents the results of the feasibility analysis carried out for a new CHP plant in Legionowo. (BA)

  1. New CHP plant for a rubber products manufacturer

    International Nuclear Information System (INIS)

    Vila, R.; Martí, C.

    2016-01-01

    At the end of 2014 the company Industrias de Hule Galgo decided to undertake the installation project of an efficient CHP plant for its production plant, with the aim of bringing down energy costs and improving the company’s competitive position in the market. The new plant has already started its first operational phase. The project has comprised the installation of a single cycle with gas-powered gensets providing a total electrical capacity of 6.6 MW. This provides the necessary thermal oil for the production plant; covers 100% of the electrical power consumed by the industrial complex; and also generates cooling water, giving improved production capacity by supercooling the extrusion system. To execute these works, Industrias de Hule Galgo contracted the services of engineering company AESA to provide the engineering, procurement and construction of the CHP plant. (Author)

  2. Utilization of straw in district heating and CHP plants

    International Nuclear Information System (INIS)

    Nikolaisen, L.

    1993-01-01

    In Denmark 64 straw-fired district heating plants and 6 decentral CHP plants have been built since 1980 which are completely or partly straw-fired. The annual straw consumption in the district heating plants is 275,000 tons and in the decentral plants about 200,000 tons. The size of the district heating plants amounts to 0.5 MW - 10 MW and that of the CHP plants to 7 MW - 67 MW heat flow rate. Either whole bales or cut/scarified straw is used for firing. Hesston bales of about 450 kg control the market. The Centre of Biomass Technology is an activity supported 100 % by the Danish Energy Agency with the purpose of increasing the use of straw and wood in the energy supply (orig.)

  3. CHP plant Legionowo Poland - Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-01

    In 1997, a new Energy Law was passed in Poland. An important element of the law is that local energy planning is made obligatory. The law describes obligatory tasks and procedures for Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law of 1997, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for the Energy Supply Plans in these municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continues/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the Combined Cycle type should be investigated. The present report is the final Master Plan based on the following reports: Master Plan for Legionowo - Status Report; Master Plan for Legionowo - Hydraulic Analysis; CHP Plant Legionowo Poland - CHP Feasibility Analysis. The final Master Plan describes the status in the DH Company in Legionowo, possible improvements and an investment plan for the selected scenario. (BA)

  4. Cost of electricity from small scale co-generation of electricity and heat

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern

    2012-07-15

    There is an increasing interest in Sweden for using also small heat loads for cogeneration of electricity and heat. Increased use of small CHP-plants with heat supply capacities from a few 100 kW(h) up to 10 MW(h) cannot change the structure of the electricity supply system significantly, but could give an important contribution of 2 - 6 TWh(e) annually. The objective of this study was to clarify under what conditions electricity can be generated in small wood fired CHP-plants in Sweden at costs that can compete with those for plants using fossil fuels or nuclear energy. The capacity range studied was 2 - 10 MW(h). The results should facilitate decisions about the meaningfulness of considering CHP as an option when new heat supply systems for small communities or sawmills are planned. At the price for green certificates in Sweden, 250 - 300 SEK/MWh(e), generation costs in small wood fired CHP-plants should be below about 775 SEK/MWh(e) to compete with new nuclear power plants and below about 925 SEK/MWh(e) to compete with generation using fossil fuels.

  5. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...

  6. Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification

    International Nuclear Information System (INIS)

    Ziębik, Andrzej; Malik, Tomasz; Liszka, Marcin

    2015-01-01

    Integration of a CHP steam plant with an installation of coal gasification and gas turbine leads to an IGCC-CHP (integrated gasification combined cycle-combined heat and power). Two installations of coal gasification have been analyzed, i.e. pressurized entrained flow gasifier – case 1 and pressurized fluidized bed gasifier with CO_2 recirculation – case 2. Basing on the results of mathematical modelling of an IGCC-CHP plant, the algorithms of calculating typical energy indices have been derived. The following energy indices are considered, i.e. coefficient of heat performance and relative savings of chemical energy of fuels. The results of coefficients of heat performance are contained between 1.87 and 2.37. Values exceeding 1 are thermodynamically justified because the idea of cogeneration of heat and electricity based on combining cycles of the heat engine and heat pump the efficiency of which exceeds 1. Higher values concerning waste heat replace more thermodynamically effective sources of heat in CHP plants. Relative savings of the chemical energy of fuels are similar in both cases of IGCC-CHP plants and are contained between the lower value of the CHP (combined heat and power) plants fuelled with coal and higher value of CHP plants fired with natural gas. - Highlights: • Energy savings of fuel is an adequate measure of cogeneration. • Relative energy savings of IGCC-CHP is near the result of a gas and steam CHP. • COHP (coefficient of heat performance) can help to divide fuel between heat fluxes. • Higher values of COHP in the case of waste heat recovery result from the lower thermal parameters.

  7. Is micro-CHP price controllable under price signal controlled Virtual Power Plants?

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2011-01-01

    As micro-combined heat and power (micro-CHP) systems move towards mass deployment together with other kinds of distributed energy resources (DER), an increasing emphasis has been placed on how to coordinate such a large diversified DER portfolio in an efficient way by the Virtual Power Plant (VPP...... for three different micro-CHP systems to investigate the feasibility of being controlled by price. Such analysis is relevant for both controller designs for micro-CHP systems and VPP related operations. The results indicate that controlling the micro-CHP systems by price is feasible but could result...

  8. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  9. Micro scale CHP based on biomass intelligent heat transfer with thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.; Aigenbauer, S.; Heckmann, M.; Friedl, G. (Austrian Bioenergy Centre GmbH, Wieselburg (Austria)); Hofbauer, H. (Institute of Chemical Engineering, Vienna University of Technology (Austria))

    2007-07-01

    Pellet burners need auxiliary electrical power to provide CO{sub 2} balanced heat in a comfortable and environment friendly way. The idea is to produce this and some extra electricity within the device in order to save resources and to gain operation reliability and independency. An option for micro scale CHP is the usage of thermoelectric generators (TEGs). They allow direct conversion of heat into electrical power. They have the advantage of a long maintenance free durability and noiseless operation without moving parts or any working fluid. The useful heat remains almost unaffected and can still be used for heating. TEGs are predestined for the use in micro scale CHP based on solid biomass. In this paper the first results from the fully integrated prototype are presented. The performance of the TEG was observed for different loads and operating conditions in order to realise an optimised micro scale CHP based on solid biomass. (orig.)

  10. Decentralised CHP in a competitive market

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article agues that decentralised CHP plants is an important part of energy supply in Denmark.......The article agues that decentralised CHP plants is an important part of energy supply in Denmark....

  11. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    , and they contribute significantly to the electricity production. CHP is, together with the wind power, the almost exclusive distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas system and the electricity system. In particular, the relationship between the peak hour......Local combined heat and power (CHP) plants in Denmark constitute an important part of the national energy conversion capacity. In particular they supply a large share of the district heating networks with heat. At the same time they are important consumers as seen from the gas network system...... characteristics of the electricity and gas systems will be investigated. The point is here that the two systems will tend to have peak demand during the same hours. This is the typical situation, since load is high during the same hours of the day and of the year. Moreover, the random variations in the load...

  12. Grid Interaction of MV-connected CHP-plants during disturbances

    NARCIS (Netherlands)

    Coster, E.J.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    Nowadays the amount of distributed generation (DG) units is increasing rapidly. Most dominant are combined heat and power (CHP) plants and wind turbines. At this moment, in most systems, there are no requirements defined for short-circuit behavior of such generators connected to the medium voltage

  13. Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo; Järvinen, Mika; Fogelholm, Carl-Johan

    2013-01-01

    Highlights: ► We simulate CHP-integrated production of wood pellets, torrefied wood pellets and pyrolysis slurry. ► Integration increases operation hours and district heat output by up to 38% and 22%. ► Additionally installed equipment reduces yearly power generation by up to 7%. ► Wood pellet production performs best energetically and environmentally. ► Integrated concepts substantially reduce fuel consumption and CO 2 emissions. - Abstract: In order to react on future expected increased competition on restricted biomass resources, communal combined heat and power (CHP) plants can be integrated with biomass upgrading processes that add valuable products to the portfolio. In this paper, outgoing from a base case, the retrofit integration of production of wood pellets (WPs), torrefied wood pellets (TWPs) and wood fast pyrolysis slurry (PS) with an existing wood-fired CHP plant was simulated. Within the integration concept, free boiler capacity during times of low district heat demands is used to provide energy for the upgrading processes. By detailed part-load modelling, critical process parameters are discussed. With help of a multiperiod model of the heat duration curve, the work further shows the influence of the integration on plant operating hours, electricity production and biomass throughput. Environmental and energetic performance is assessed according to European standard EN 15603 and compared to the base case as well as to stand-alone production in two separate units. The work shows that all three integration options are well possible within the operational limits of the CHP plant. Summarising, this work shows that integration of WP, TWP and PS production from biomass with a CHP plant by increasing the yearly boiler workload leads to improved primary energy efficiency, reduced CO 2 emissions, and, when compared to stand-alone production, also to substantial fuel savings

  14. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, A.; Baky, A.; Bernesson, S.; Noren, O.; Hansson, P.-A.

    2011-01-01

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  15. On the Analysis and Fault-Diagnosis Tools for Small-Scale Heat and Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Arriagada, Jaime

    2003-12-01

    The deregulation of the electricity market drives utilities and independent power producers to operate heat and power plants as profit centers. In order to keep the economic margins on the credit side, the preferred measures have been to improve the electrical efficiency through changes in the hardware and boost the overall efficiency through e.g. combined heat and power (CHP) generation. The better understanding of global environmental issues is also pushing the development toward more advanced power plant technology that at the introduction stage may represent a risky option for the plant owner. Recently, there is a growing interest in improving the plant operation instead, and therefore the focus has been put on aspects related to the RAM (reliability-availability-maintenance) of the plants. Small- and mid-scale CHP plants, especially natural gas- and biomass-fueled, have been identified to be important to satisfy the needs of the energy market and help to mitigate the environmental factors in the short- and middle-term. One of the major challenges that these types of plants will face is attaining good RAM at the same time that they cannot support big O and M costs and a lot of personnel. Therefore the implementation of cheap and reliable IT-based tools that help to achieve this goal is essential. Most power plants today are equipped with modern distributed control systems that through a considerable number of sensors deliver large amounts of data to the control room. This paves the way to the introduction of intelligent tools - derived from the artificial intelligence technology - such as artificial neural networks (ANNs) and genetic algorithms (GA). ANNs have a learning ability that makes them useful for the construction of powerful non-physical models based on data from the process, while GA has shown to be a robust optimization method based on the principle of the 'survival-of-the-fittest'. Principally ANNs, but also to a lesser extent GA, have

  16. Small-scale power plant potential in Finland

    International Nuclear Information System (INIS)

    Helynen, S.

    1993-01-01

    The presentation discusses the small-scale power plant potential in Finland. The study of the potential is limited to W-scale power plants producing both electric power and heat using solid fuels. The basic power plant dimensioning and electric power load determination is based on traditional boiler and gas turbine technology. The possible sites for power plants are communities using district heating, and industrialized sites needing process steam or heat. In 1990 70 % (17 TWh) of district heat was produced by gas turbines. Ten communities have an own back-pressure power plant, and 40 communities buy heat from industrial plants, owing back-pressure power generation. Additionally about 40 communes buy district heat from companies, owned by power companies and industry. Estimates of small-scale power plant potential has been made plant wise on the basis of district heat loads and industrial heat needs. The scale of the plants has been limited to scale 3 MWe or more. The choosing of the fuel depends on the local conditions. The cheapest indigenous fuels in many communes are industrial wood wastes, and both milled and sod peat. The potential of steam technology based small-scale power plants has been estimated to be about 50 plants in 1992/1993, the total power of which is 220-260 MW. The largest estimate is base situation, in which there would be energy cooperation between the communes and industry. The fuel used by the power plants would be about 5.4-6.6 TWh/a corresponding to 270-330 million FIM/a. The total investment costs of the plants would be about 2.0 billion FIM. The plants would employ about 250 persons, and the fuel supply (wood or peat) about 100 persons

  17. Multi-Objective Analysis of a CHP Plant Integrated Microgrid in Pakistan

    Directory of Open Access Journals (Sweden)

    Asad Waqar

    2017-10-01

    Full Text Available In developing countries like Pakistan, the capacity shortage (CS of electricity is a critical problem. The frequent natural gas (NG outages compel consumers to use electricity to fulfill the thermal loads, which ends up as an increase in electrical load. In this scenario, the authors have proposed the concept of a combined heat & power (CHP plant to be a better option for supplying both electrical and thermal loads simultaneously. A CHP plant-based microgrid comprising a PV array, diesel generators and batteries (operating in grid-connected as well as islanded modes has been simulated using the HOMER Pro software. Different configurations of distributed generators (DGs with/without batteries have been evaluated considering multiple objectives. The multiple objectives include the minimization of the total net present cost (TNPC, cost of generated energy (COE and the annual greenhouse gas (GHG emissions, as well as the maximization of annual waste heat recovery (WHR of thermal units and annual grid sales (GS. These objectives are subject to the constraints of power balance, battery operation within state of charge (SOC limits, generator operation within capacity limits and zero capacity shortage. The simulations have been performed on six cities including Islamabad, Lahore, Karachi, Peshawar, Quetta and Gilgit. The simulation results have been analyzed to find the most optimal city for the CHP plant integrated microgrid.

  18. Small scale combined woodgas power plant

    International Nuclear Information System (INIS)

    Gulbis, V.

    2003-01-01

    As a first attempt to introduce biomass gasification technology in Latvia at the Faculty of Engineering of Latvia University of Agriculture an integral small scale combined heat and power (CHP) system based on a used Russian-made diesel-alternator set with electrical output 100 kWe was developed. The diesel is converted to dual fuel gas engine, using producer gas as the main fuel and gas oil as pilot fuel. To get sufficiently clean (tar content ≤ 250 mg/m 3 ) woodgas for using in IC engine a downdraft type of gasifier was chosen designed and constructed on the IMBERT gasifier principles. The test runs of the first experimental model showed that the engine does not develop expected power because of high resistance of gasifier and gas cleaning system does not work sufficiently enough. There was rather high level of tar content in woodgas because the temperature in the reduction zone was low. Calculations were carried out and new technological scheme of gasification system was worked out, introducing innovative ideas aimed on improving the working parameters (author)

  19. Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2014-01-01

    Energy investments in Poland are currently focused on supercritical coal-fired unit technology. It is likely, that in the future, these units are to be integrated with carbon capture and storage (CCS) installations, which enable a significant reduction of greenhouse gas emissions into the atmosphere. A significant share of the energy market in Poland is constituted by coal-fired combined heat and power (CHP) plants. The integration of these units with CCS installation can be economically inefficient. However, the lack of such integration enhances the investment risk due to the possibility of appearing on the market in the near future high prices of emission allowances. The aforementioned factors and additional favorable conditions for the development of cogeneration can cause one to consider investing in large supercritical CHP plants. This paper presents the results of an economic analysis aimed at comparing three cases of CHP plants, one without an integrated CCS installation and two with such installations. The same steam cycle structure for all variants was adopted. The cases of integrated CHP plants differ from each other in the manner in which they recover heat. For the evaluation of the respective solutions, the break-even price of electricity and avoided emission cost were used. - Highlights: • The simulations of operation of CHP plants under changing load have been realized. • For analyzed cases sensitivity analyses of economic indices have been conducted. • Conditions of competitiveness for integration with CCS units have been identified. • Integration can be profitable if prices of allowance will reach high values, exceeding 50 €/MgCO 2 . • Others important factors are the investment costs and operation and maintenance costs

  20. Performance study of an innovative natural gas CHP system

    International Nuclear Information System (INIS)

    Fu, Lin; Zhao, Xiling; Zhang, Shigang; Li, Yan; Jiang, Yi; Li, Hui; Sun, Zuoliang

    2011-01-01

    In the last decade, technological innovation and changes in the economic and regulatory environment have resulted in increased attention to distributed energy systems (DES). Combined cooling heating and power (CHP) systems based on the gas-powered internal combustion engine (ICE) are increasingly used as small-scale distribution co-generators. This paper describes an innovative ICE-CHP system with an exhaust-gas-driven absorption heat pump (AHP) that has been set up at the energy-saving building in Beijing, China. The system is composed of an ICE, an exhaust-gas-driven AHP, and a flue gas condensation heat exchanger (CHE), which could recover both the sensible and latent heat of the flue gas. The steady performance and dynamic response of the innovative CHP system with different operation modes were tested. The results show that the system's energy utilization efficiency could reach above 90% based on lower heating value (LHV) of natural gas; that is, the innovative CHP system could increase the heat utilization efficiency 10% compared to conventional CHP systems, and the thermally activated components of the system have much more thermal inertia than the electricity generation component. The detailed test results provide important insight into CHP performance characteristics and could be valuable references for the control of CHP systems. The novel CHP system could take on a very important role in the CHP market. (author)

  1. Flue gas condensation in straw fired CHP plants; Roeggaskondensation i halmfyrede kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-15

    The high price of straw and a general demand for increased use of straw in power and heat production are expected to result in an increased need for efficient fuel utilization. The use of flue gas condensation in straw fired CHP plants can contribute to a higher exploitation of energy, and at the same time open of the possibility of utilization of wet (cheaper) fuels without energy loss. Furthermore flue gas condensation can contribute to the flue gas cleaning process through removal of HCl and SO{sub 2} as well as in particle cleaning in wet cleaning processes. With starting point in a straw fired CHP plant the technical and economic consequences of installation of a flue gas condensation system are investigated. Fuel exploitation and power/heat production distribution is included in the investigation. (BA)

  2. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    International Nuclear Information System (INIS)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying; Duh, Yih-Shing

    2012-01-01

    Highlights: ► We analyzed fire and explosion incidents in a plant producing CHP and DCPO. ► Data from calorimeters reveal causes and phenomena associated with the incidents. ► The credible worst scenario was thermal explosion. ► Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile–butadiene–styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  3. In-situ corrosion investigation at Masnedø CHP plant - a straw-fired power plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Various austenitic and ferritic steels were exposed on a water-cooled probe in the superheater area of a straw-fired CHP plant. The temperature of the probe ranged from 450-600°C and the period of exposure was 1400 hours. The rate of corrosion was assessed based on unattacked metal remaining...

  4. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying [Department of Occupational Safety and Health, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC (China); Duh, Yih-Shing, E-mail: yihshingduh@yahoo.com.tw [Department of Safety, Health and Environmental Engineering, National United University, No. 1 Lien-Da, Miaoli, Taiwan, ROC (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer We analyzed fire and explosion incidents in a plant producing CHP and DCPO. Black-Right-Pointing-Pointer Data from calorimeters reveal causes and phenomena associated with the incidents. Black-Right-Pointing-Pointer The credible worst scenario was thermal explosion. Black-Right-Pointing-Pointer Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  5. Innovative Hybrid CHP systems for high temperature heating plant in existing buildings

    NARCIS (Netherlands)

    de Santoli, Livio; Lo Basso, Gianluigi; Nastasi, B.; d’Ambrosio Alfano, Francesca R.; Mazzarella and Piercarlo, Livio

    2017-01-01

    This paper deals with the potential role of new hybrid CHP systems application providing both electricity and heat which are compatible with the building architectural and landscape limitations. In detail, three different plant layout options for high temperature heat production along with the

  6. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 - Emission factors and emission inventory for decentralised CHP production

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, M.

    2010-06-15

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity < 25MWe have been estimated based on project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines combusting residual oil and reciprocating engines combusting biomass producer gas based on wood. The emission factors for MSW incineration plants are much lower than the emission factors that were estimated for year 2000. The considerable reduction in the emission factors is a result of lower emission limit values in Danish legislation since 2006 that has lead to installation of new and improved flue gas cleaning systems in most MSW incineration plants. For CHP plants combusting wood or straw no major technical improvements have been implemented. The emission factors for natural gas fuelled reciprocating engines have been reduced since year 2000 as a result of technical improvements that have been carried out due to lower emission limit values in Danish legislation. The NO{sub x} emission factor for natural gas fuelled gas turbines has decreased 62 % since year 2000. This is a result of installation of low-NO{sub x} burners in almost all gas turbines that has been necessary to meet new emission limits in Danish legislation. The emission measurements programme included screening of the emissions of HCB, PCB, PCDD/-F and PBDD/-F. Compared to the Danish national emission decentralized CHP plants are major emission sources for CH{sub 4}, NO{sub x}, SO{sub 2}, heavy metals and HCB. (author)

  7. Evaluation of an alkaline fuel cell system as a micro-CHP

    International Nuclear Information System (INIS)

    Verhaert, Ivan; Mulder, Grietus; De Paepe, Michel

    2016-01-01

    Highlights: • Sensitivity analysis on system configuration of the AFC as a micro-CHP. • Flow rate in the secondary heating circuit can be used to control water management. • Part load behavior of fuel cells is compared to other micro-CHP technologies. • For future energy demand in buildings fuel cells have the best performance. - Abstract: Micro-cogeneration is an emerging technology to reduce the non-renewable energy demand in buildings and reduce peak load in the grid. Fuel cell based cogeneration (CHP) has interesting prospects for building applications, even at relatively low heat demand. This is due to their partial load behavior which is completely different, compared to other micro-CHP technologies. Within the fuel cell technologies suitable for small scale CHP or micro-CHP, the existing configuration of an alkaline fuel cell system is analyzed. This analysis is based on validated models and offers a control strategy to optimize both water management and energy performance of the alkaline fuel cell system. Finally, the model of the alkaline fuel cell system with optimized control strategy is used to compare its part load behavior to other micro-CHP technologies.

  8. Profitability and sustainability of small - medium scale palm biodiesel plant

    Science.gov (United States)

    Solikhah, Maharani Dewi; Kismanto, Agus; Raksodewanto, Agus; Peryoga, Yoga

    2017-06-01

    The mandatory of biodiesel application at 20% blending (B20) has been started since January 2016. It creates huge market for biodiesel industry. To build large-scale biodiesel plant (> 100,000 tons/year) is most favorable for biodiesel producers since it can give lower production cost. This cost becomes a challenge for small - medium scale biodiesel plants. However, current biodiesel plants in Indonesia are located mainly in Java and Sumatra, which then distribute biodiesel around Indonesia so that there is an additional cost for transportation from area to area. This factor becomes an opportunity for the small - medium scale biodiesel plants to compete with the large one. This paper discusses the profitability of small - medium scale biodiesel plants conducted on a capacity of 50 tons/day using CPO and its derivatives. The study was conducted by performing economic analysis between scenarios of biodiesel plant that using raw material of stearin, PFAD, and multi feedstock. Comparison on the feasibility of scenarios was also conducted on the effect of transportation cost and selling price. The economic assessment shows that profitability is highly affected by raw material price so that it is important to secure the source of raw materials and consider a multi-feedstock type for small - medium scale biodiesel plants to become a sustainable plant. It was concluded that the small - medium scale biodiesel plants will be profitable and sustainable if they are connected to palm oil mill, have a captive market, and are located minimally 200 km from other biodiesel plants. The use of multi feedstock could increase IRR from 18.68 % to 56.52 %.

  9. CHP in Switzerland from 1990 to 1998. Thermal power generation including combined heat and power

    International Nuclear Information System (INIS)

    Kaufmann, U.

    1999-01-01

    The results of a study on thermal power generation in Switzerland show that combined heat and power (CHP) systems have grown rapidly. Statistics are presented on the development of CHP-based power and also on thermal power stations without waste heat usage. Figures are given for gas and steam turbine installations, combined gas and steam turbine stations and motor-driven CHP units. Power production is categorised, separating small and large (over 1 Megawatt electrical) power generation facilities. On-site, distributed power generation at consumers' premises and the geographical distribution of plant is described

  10. EFFICIENCY OF THE USE OF HEAT PUMPS ON THE CHP PLANTS

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2007-04-01

    Full Text Available The work is dedicated to the calculus of the efficiency of the use of heat pumps on the CHP plants. There are presented the interdependences between the pay-back period and NPV of heat pump and the price of 1 kWt of thermal power of heat pump and of the tariff of electricity.

  11. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, Marianne

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been...... estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines...

  12. Spatial distribution of pollutants in the area of the former CHP plant

    Science.gov (United States)

    Cichowicz, Robert

    2018-01-01

    The quality of atmospheric air and level of its pollution are now one of the most important issues connected with life on Earth. The frequent nuisance and exceedance of pollution standards often described in the media are generated by both low emission sources and mobile sources. Also local organized energy emission sources such as local boiler houses or CHP plants have impact on air pollution. At the same time it is important to remember that the role of local power stations in shaping air pollution immission fields depends on the height of emitters and functioning of waste gas treatment installations. Analysis of air pollution distribution was carried out in 2 series/dates, i.e. 2 and 10 weeks after closure of the CHP plant. In the analysis as a reference point the largest intersection of streets located in the immediate vicinity of the plant was selected, from which virtual circles were drawn every 50 meters, where 31 measuring points were located. As a result, the impact of carbon dioxide, hydrogen sulfide and ammonia levels could be observed and analyzed, depending on the distance from the street intersection.

  13. Strandby Harbour on solar cooling. Demonstration of 8.000 m{sup 2} solar collectors combined with flue gas cooling with a absorption cooling system; Combined heat and power plant (CHP); Strandby havn paa solkoeling. Demonstration af 8.000 m{sup 2} solfangere kombineret med roeggaskoeling med absorptionskoeleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Flemming (Strandby Varmevaerk, Strandby (Denmark)); Soerensen, Per Alex (PlanEnergi, Skoerping (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Sloth, H. (Houe and Olsen, Thisted (Denmark))

    2010-04-15

    The aim of the project was to demonstrate 1) high solar heating ratio (18% annually) at a decentralized natural gas combined heat and power plant; 2) increased efficiency (5% of the heat consumption) in a natural gas CHP by using an extra flue gas cooler and an absorption heat pump; 3) a double tank system where a new tank during winter is used for cooling/ heat storage for the absorption heat pump and during summer for solar heat storage in serial operation with the old tank. The concept of combining solar power, absorption cooling and natural gas-fired small-scale CHP in Strandby met expectations and could be replicated in other CHP plants. However, it is important to note that if major construction modifications in the flue gas condensation system in the boiler or engine are required, the operating hours must not be reduced significantly in the amortisation period for the conversion. (ln)

  14. Operational Strategies for a Portfolio of Wind Farms and CHP Plants in a Two-Price Balancing Market

    DEFF Research Database (Denmark)

    Hellmers, Anna; Zugno, Marco; Skajaa, Anders

    2015-01-01

    In this paper we explore the portfolio effect of a system consisting of a Combined Heat and Power (CHP) plant and a wind farm. The goal is to increase the overall profit of the portfolio by reducing imbalances, and consequently their implicit penalty in a two-price balancing market for electricity......-horizon fashion, so that forecasts for heat demand, wind power production and market prices are updated at each iteration. We conclude that the portfolio strategy is the most profitable due to the two-price structure of the balancing market. This encourages producers to handle their imbalances outside the market........ We investigate two different operational strategies, which differ in whether the CHP plant and the wind farm are operated jointly or independently, and we evaluate their economic performance on a real case study based on a CHP-wind system located in the western part of Denmark. We present...

  15. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  16. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  17. A family of serine proteases of Clavibacter michiganensis subsp. michiganensis: chpC plays a role in colonization of the host plant tomato.

    Science.gov (United States)

    Stork, Ines; Gartemann, Karl-Heinz; Burger, Annette; Eichenlaub, Rudolf

    2008-09-01

    Genes for seven putative serine proteases (ChpA-ChpG) belonging to the trypsin subfamily and homologous to the virulence factor pat-1 were identified on the chromosome of Clavibacter michiganensis subsp. michiganensis (Cmm) NCPPB382. All proteases have signal peptides indicating export of these proteins. Their putative function is suggested by two motifs and an aspartate residue typical for serine proteases. Furthermore, six cysteine residues are located at conserved positions. The genes are clustered in a chromosomal region of about 50 kb with a significantly lower G + C content than common for Cmm. The genes chpA, chpB and chpD are pseudogenes as they contain frame shifts and/or in-frame stop codons. The genes chpC and chpG were inactivated by the insertion of an antibiotic resistance cassette. The chpG mutant was not impaired in virulence. However, in planta the titre of the chpC mutant was drastically reduced and only weak disease symptoms were observed. Complementation of the chpC mutant by the wild-type allele restored full virulence. ChpC is the first chromosomal gene of Cmm identified so far that affects the interaction of the pathogen with the host plant.

  18. Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China

    International Nuclear Information System (INIS)

    Liao, Chunhui; Ertesvåg, Ivar S.; Zhao, Jianing

    2013-01-01

    The efficiencies of coal-fired CHP (combined heat and power) plants used in the district heating systems of China were analyzed with a thermodynamic model in the Hysys program. The influences of four parameters were evaluated by the Taguchi method. The results indicated that the extraction steam flow rate and extraction steam pressure are the most important parameters for energetic and exergetic efficiencies, respectively. The relations between extraction steam flow rate, extraction steam pressure and the energetic and exergetic efficiencies were investigated. The energetic and exergetic efficiencies were compared to the RPES (relative primary energy savings) and the RAI (relative avoided irreversibility). Compared to SHP (separate heat and power) generation, the CHP systems save fuel energy when extraction ratio is larger than 0.15. In the analysis of RAI, the minimum extraction ratio at which CHP system has advantages compared with SHP varies between 0.25 and 0.6. The higher extraction pressure corresponds to a higher value. Two of the examined plants had design conditions giving RPES close to zero and negative RAI. The third had both positive RPES and RAI at design conditions. The minimum extraction ratio can be used as an indicator to design or choose CHP plant for a given district heating system. - Highlights: • Extraction flow rate and extraction pressure are the most important parameters. • The exergetic efficiency depends on the energy to exergy ratio and system boundary. • The minimum extraction ratio is a key indicator for CHP plants. • Program Hysys and Taguchi method are used in this research

  19. The role of combined heat and power (CHP) in energy and climate policy

    International Nuclear Information System (INIS)

    Conrad, F.

    1993-03-01

    In the energy- and environment context CHP is said to be especially energy saving and climate preserving. This report shows that from the standpoint of energy economics as well as under technical aspects this judgement holds true only under special conditions. Depending on the technical parameters, the concrete circumstances of operation and the characteristics of the power plants and heating systems compared to CHP-plants the range of realistic energy savings turns out to be very large. Related overstimations are to a good extend caused by the traditional practice of granting the energetic advantage of CHP exclusively to the district heating. If this advantage is credited to heat and power as equal shares space heating with cogenerated power of 80% efficiency reveals to be very energy conserving. The uno actu utilization of cogenerated heat and power, for the same purpose could facilitate the expansion of CHP, since the problems related to the feeding of cogenerated power into the grid for general purposes would disappear. The second main issue of this report concerns the abatement of CO 2 -emissions with the aid of CHP. Fuelled with natural gas, CHP-plants are attractive instruments for climate policy. This is especially true if CHP is compared to old coal-based power plants and oil-fuelled old heating systems. In the FRG, however, hard coal, and not natural gas, will be the main fuel for future CHP, lowering its CO 2 -advantage considerably. On the other hand high efficient combi-power plants (gas turbine plus condensing turbine) and gas heating systems have to be included in the comparative analyse. Compared to these advanced systems the CO 2 -characteristics of CHP are inferior. Moreover, the specific CO 2 -advantage of natural gas is better used by such modern mono systems rather than CHP-plants. (orig.) [de

  20. A general technoeconomic and environmental procedure for assessment of small-scale cogeneration scheme installations: Application to a local industry operating in Thrace, Greece, using microturbines

    International Nuclear Information System (INIS)

    Katsigiannis, P.A.; Papadopoulos, D.P.

    2005-01-01

    The present paper describes a proposed general systematic procedure for small-scale combined heat and power (CHP) exploitation (where 'small-scale CHP' refers to CHP installations with electric capacities up to 1 MW). The mentioned systematic procedure is implemented through a developed computer code and may be applied to any such small-scale project in order to assess its suitability based on technoeconomic and environmental considerations. A dynamic database based on small-scale CHP units (available in the world market) and their pertinent technical, economical and environmental features is created and, in conjunction with the developed program, is used for determination of a suitable CHP unit (or system) size and the selection of the associated proper prime mover type for any project of interest. Using well-known economic criteria, the economic analysis is performed, including the sensitivity analysis of the considered project based on the main key system parameters. In terms of the socioeconomic analysis, a carbon tax (CT) scenario is considered, and its effect on the economic behavior of the project is investigated. Last, with respect to environmental considerations, the program calculates, for any such project, the avoided main pollutants and the fuel savings when a CHP system is applied. As a case study, a small textile industry operating in the Eastern Macedonia-Thrace Region of Greece is considered, and its associated (electrical and thermal) data are used as input data to the proposed computer program. In this application, two microturbine units are selected and thoroughly evaluated, and the pertinent simulation results are presented and discussed accordingly

  1. Methodology for evaluation of industrial CHP production

    International Nuclear Information System (INIS)

    Pavlovic, Nenad V.; Studovic, Milovan

    2000-01-01

    At the end of the century industry switched from exclusive power consumer into power consumer-producer which is one of the players on the deregulated power market. Consequently, goals of industrial plant optimization have to be changed, making new challenges that industrial management has to be faced with. In the paper is reviewed own methodology for evaluation of industrial power production on deregulated power market. The methodology recognizes economic efficiency of industrial CHP facilities as a main criterion for evaluation. Energy and ecological efficiency are used as additional criteria, in which implicit could be found social goals. Also, methodology recognizes key and limit factors for CHP production in industry. It could be successful applied, by use of available commercial software for energy simulation in CHP plants and economic evaluation. (Authors)

  2. Kyoto commitments: CHP will help the UK

    International Nuclear Information System (INIS)

    Knowles, Michael

    1998-01-01

    In order to meet the United Kingdom's targets for carbon dioxide emissions reduction, agreed at the Kyoto Summit, the UK Government is promoting the use of combined heat and power (CHP) plants. Such schemes need to offer over 70% efficiency, have on-site or nearby heat uses, and allow flexibility for the export of electricity where this is appropriate. Electricity trading arrangements will need to be re-organised in line with similar commodities, in order to facilitate and promote the growth of CHP and renewable energy schemes. Financial incentives and regulation of electricity prices will also contribute to the promotion of CHP schemes, ultimately leading to reduced CO 2 pollution as a result of the growth in the UK's CHP capacity. (UK)

  3. MicroCHP: Overview of selected technologies, products and field test results

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Vollrad [Berliner Energieagentur GmbH, Franzoesische Strasse 23, 10117 Berlin (Germany); Klemes, Jiri; Bulatov, Igor [Centre for Process Integration, CEAS, The University of Manchester, P.O. Box 88, M60 1QD Manchester (United Kingdom)

    2008-11-15

    This paper gives an overview on selected microCHP technologies and products with the focus on Stirling and steam machines. Field tests in Germany, the UK and some other EC countries are presented, assessed and evaluated. Test results show the overall positive performance with differences in sectors (domestic vs. small business). Some negative experiences have been received, especially from tests with the Stirling engines and the free-piston steam machine. There are still obstacles for market implementation. Further projects and tests of microCHP are starting in various countries. When positive results will prevail and deficiencies are eliminated, a way to large-scale production and market implementation could be opened. (author)

  4. Fuel cell power plants for decentralised CHP applications

    International Nuclear Information System (INIS)

    Ohmer, Martin; Mattner, Katja

    2015-01-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO 2 and other emissions (NO x , SO x and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  5. A CSP plant combined with biomass CHP using ORC-technology in Bronderslev Denmark

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Yuan, Guofeng

    2017-01-01

    A new CSP plant combined with biomass CHP, using ORC technology, will be built and taken into operation in Bronderslev, Denmark during spring 2017. The price for Biomass is expected to increase with more and more use of this very limited energy source and then CSP will be cost effective in the long...... run, also in the Danish climate. Oil is used as heat transfer fluid instead of steam giving several advantages in this application for district heating at high latitudes. Total efficiencies and costs, competitive to PV plants. are expected....

  6. Electric Energy Consumption of the Full Scale Research Biogas Plant “Unterer Lindenhof”: Results of Longterm and Full Detail Measurements

    Directory of Open Access Journals (Sweden)

    Thomas Jungbluth

    2012-12-01

    Full Text Available This work thoroughly evaluates the electric power consumption of a full scale, 3 × 923 m3 complete stirred tank reactor (CSTR research biogas plant with a production capacity of 186 kW of electric power. The plant was fed with a mixture of livestock manure and renewable energy crops and was operated under mesophilic conditions. This paper will provide an insight into precise electric energy consumption measurements of a full scale biogas plant over a period of two years. The results showed that a percentage of 8.5% (in 2010 and 8.7% (in 2011 of the produced electric energy was consumed by the combined heat and power unit (CHP, which was required to operate the biogas plant. The consumer unit agitators with 4.3% (in 2010 and 4.0% (in 2011 and CHP unit with 2.5% (in 2010 and 2011 accounted for the highest electrical power demand, in relation to the electric energy produced by the CHP unit. Calculations show that 51% (in 2010 and 46% (in 2011 of the total electric energy demand was due to the agitators. The results finally showed the need for permanent measurements to identify and quantify the electric energy saving potentials of full scale biogas plants.

  7. Alternative depreciation policies for promoting combined heat and power (CHP) development in Brazil

    International Nuclear Information System (INIS)

    Soares, Jeferson Borghetti; Szklo, Alexandre Salem; Tolmasquim, Mauricio Tiomno

    2006-01-01

    This paper assessed the economic impact of alternative depreciation methods on the development of combined heat-and-power (CHP) systems in the Brazilian industrial sector. Alternative depreciation methods were proposed and the case study of a Brazilian chemical plant showed that the most effective depreciation method for the promotion of CHP plants in Brazil was the Matheson method with an accelerated depreciation schedule of 7 years. This alternative method was then applied to the Brazilian chemical industry as a whole, increasing its installed capacity in CHP systems by 24%. Therefore, fiscal incentives can be an interesting tool for promoting energy efficiency in the Brazilian industrial sector, promoting the expansion of CHP plants. It reduces government fiscal revenues, but it also induces the technological reposition and improves the feasibility of ventures that are not installed without this kind of incentive

  8. New CHP plant for a rubber products manufacturer; Nueva planta e cogeneración para un fabricante de productos de hule

    Energy Technology Data Exchange (ETDEWEB)

    Vila, R.; Martí, C.

    2016-07-01

    At the end of 2014 the company Industrias de Hule Galgo decided to undertake the installation project of an efficient CHP plant for its production plant, with the aim of bringing down energy costs and improving the company’s competitive position in the market. The new plant has already started its first operational phase. The project has comprised the installation of a single cycle with gas-powered gensets providing a total electrical capacity of 6.6 MW. This provides the necessary thermal oil for the production plant; covers 100% of the electrical power consumed by the industrial complex; and also generates cooling water, giving improved production capacity by supercooling the extrusion system. To execute these works, Industrias de Hule Galgo contracted the services of engineering company AESA to provide the engineering, procurement and construction of the CHP plant. (Author)

  9. High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles

    OpenAIRE

    Costante Mario Invernizzi; Nadeem Ahmed Sheikh

    2018-01-01

    Small-CHP (Combined Heat and Power) systems are generally considered a valuable technological option to the conventional boilers, in a technology developed context. If small-CHP systems are associated with the use of renewable energies (biomass, for example) they could play an important role in distributed generation even in developing countries or, in any case, where there are no extensive electricity networks. Traditionally the considered heat engines for micro- or mini-CHP are: the gas eng...

  10. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    International Nuclear Information System (INIS)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku

    2010-01-01

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO 2 -intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO 2 -intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  11. Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The objective of the project ''Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization'' was to combine the Danish experiences with the Stirling engine and updraft gasification with the application of the FLOX gas burner technology for developing and demonstrating a flexible biomass-based small scale CHP plant with 75 kW electrical output, high power efficiency and low emissions. Further, the project has aimed at increasing the technology's reliability and decreasing the need for service. Also, the project has included the development of a control and communication system for unmanned start-up and operation of the plant. During the project the objective was altered and so the development of a new Stirling engine design was done on the 4-cylindred 35 kWe Stirling engine instead of the 8-cylindred 75 kWe Stirling engine. Focus has been on designing a more durable engine designed for easy and fast service. Cold test of the engine has been successful and now full-scale hot tests are to be performed. In the project Stirling DK has also in cooperation with project partner Danish gas Technology Centre developed the Stirling Engine with Diluted Oxidation (SEDIOX) concept which is a combustion technology based on the diluted oxidation principle. A trademark is obtained and also a patent application is filed and pending regarding the SEDIOX combustion chamber concept. All components for the Stirling gasification plant were produced and installed at Svanholm Estate. The plant consisted of one conventional combustion chamber and one SD3E-type Stirling engine. The plant was commissioned in June 2009 and 1,472 hours of operation and 43 MWh of electricity production was achieved before the plant was de-commissioned in February 2010 due to divergences between Svanholm Estate and Stirling DK. During operation the control system including remote access was tested thoroughly and with great success. The new overall

  12. THE BREAKEVEN POINT GIVEN LIMIT COST USING BIOMASS CHP PLANT

    Directory of Open Access Journals (Sweden)

    Paula VOICU

    2015-06-01

    Full Text Available Biomass is a renewable source, non-fossil, from which can be obtained fuels, which can be used in power generation systems. The main difference of fossil fuels is the availability biomass in nature and that it is in continue "reproduction". The use its enable the use of materials that could be destined destruction, as a source of energy "renewable", though result with many ecological values. In this paper we will study, applying a calculation model in view optimal sizing of the cogeneration plant based on biomass, biomass cost limit for the net present value is zero. It will consider that in cogeneration systems and in heating peak systems using biomass. After applying the mathematical model for limit value of biomass cost will determine the nominal optimal coefficient of cogeneration, for which discounted net revenue value is zero. Optimal sizing of CHP plants based on using biomass will be given by optimum coefficient of cogeneration determined following the application of the proposed mathematical model.

  13. Benefits of CHP Partnership

    Science.gov (United States)

    Learn about the benefits of being a EPA CHP Partner, which include expert advice and answers to questions, CHP news, marketing resources, publicity and recognition, and being associated with EPA through a demonstrated commitment to CHP.

  14. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  15. Optimal fuel-mix in CHP plants under a stochastic permit price: Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli, E-mail: pauli.lappi@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikka, Kimmo, E-mail: kimmo.ollikka@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikainen, Markku, E-mail: markku.ollikainen@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion.

  16. Micro-CHP systems for residential applications

    International Nuclear Information System (INIS)

    Paepe, Michel de; D'Herdt, Peter; Mertens, David

    2006-01-01

    Micro-CHP systems are now emerging on the market. In this paper, a thorough analysis is made of the operational parameters of 3 types of micro-CHP systems for residential use. Two types of houses (detached and terraced) are compared with a two storey apartment. For each building type, the energy demands for electricity and heat are dynamically determined. Using these load profiles, several CHP systems are designed for each building type. Data were obtained for two commercially available gas engines, two Stirling engines and a fuel cell. Using a dynamic simulation, including start up times, these five system types are compared to the separate energy system of a natural gas boiler and buying electricity from the grid. All CHP systems, if well sized, result in a reduction of primary energy use, though different technologies have very different impacts. Gas engines seem to have the best performance. The economic analysis shows that fuel cells are still too expensive and that even the gas engines only have a small internal rate of return (<5%), and this only occurs in favourable economic circumstances. It can, therefore, be concluded that although the different technologies are technically mature, installation costs should at least be reduced by 50% before CHP systems become interesting for residential use. Condensing gas boilers, now very popular in new homes, prove to be economically more interesting and also have a modest effect on primary energy consumption

  17. Assessment of advanced small-scale combined heat and power production

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, J. [Joanneum Research (Austria)

    1996-12-31

    To increase the share of renewable energy sources, bioenergy has to be used for electricity generation, preferably in combined heat and power (CHP) production systems, besides its traditional use in space heating. The need for small-scale, i.e. below 5 MW{sub el}, CHP production arises from the fact that a considerable portion of the available solid biofuels may not be transported over long distances for economic reasons and that in many cases the heat demand is below 10 MW{sub el} in district heating schemes in communities with less than 10 000 inhabitants. The available technical options have to be assessed with respect to performance, reliability and economy. Such an assessment has been performed in a study where the following options have been compared: Gasification - combustion engine or gas turbine; Combustion - steam turbine/engine; Combustion - hot air turbine; Combustion - Stirling engine. While conventional steam cycle systems are available and reliable they are generally not economical in the power range under consideration. Among the other systems, which are not yet commercially available, the Stirling engine system seems to be attractive in the power range below 500 kW{sub el} and the hot air system could close the gap to the steam cycle systems, i.e. cover the power range between 0.5 and 5.0 MW{sub el}. Gasification schemes seem less suitable: The power generation part (combustion engine and gas turbine) is well established for natural gas, with the combustion engine in the lower (<5 MW{sub el}) and the gas turbine in the higher (>5MW{sub el}) power range. However, the gas quality needed for the operation of a combustion engine requires expensive pre-treatment of the gas from wood gasification so that this scheme is less attractive for the power range under consideration. These conclusions lead to R and D efforts in Austria in two directions: Hot air turbine: A utility demonstration plant is under construction with a power of 1 600 kW{sub el

  18. Assessment of advanced small-scale combined heat and power production

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, J [Joanneum Research (Austria)

    1997-12-31

    To increase the share of renewable energy sources, bioenergy has to be used for electricity generation, preferably in combined heat and power (CHP) production systems, besides its traditional use in space heating. The need for small-scale, i.e. below 5 MW{sub el}, CHP production arises from the fact that a considerable portion of the available solid biofuels may not be transported over long distances for economic reasons and that in many cases the heat demand is below 10 MW{sub el} in district heating schemes in communities with less than 10 000 inhabitants. The available technical options have to be assessed with respect to performance, reliability and economy. Such an assessment has been performed in a study where the following options have been compared: Gasification - combustion engine or gas turbine; Combustion - steam turbine/engine; Combustion - hot air turbine; Combustion - Stirling engine. While conventional steam cycle systems are available and reliable they are generally not economical in the power range under consideration. Among the other systems, which are not yet commercially available, the Stirling engine system seems to be attractive in the power range below 500 kW{sub el} and the hot air system could close the gap to the steam cycle systems, i.e. cover the power range between 0.5 and 5.0 MW{sub el}. Gasification schemes seem less suitable: The power generation part (combustion engine and gas turbine) is well established for natural gas, with the combustion engine in the lower (<5 MW{sub el}) and the gas turbine in the higher (>5MW{sub el}) power range. However, the gas quality needed for the operation of a combustion engine requires expensive pre-treatment of the gas from wood gasification so that this scheme is less attractive for the power range under consideration. These conclusions lead to R and D efforts in Austria in two directions: Hot air turbine: A utility demonstration plant is under construction with a power of 1 600 kW{sub el

  19. Integration of torrefaction in CHP plants – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Tomas Aparicio, Elena; Li, Hailong; Dotzauer, Erik

    2015-01-01

    Highlights: • We model the integration of a torrefaction reactor in a CHP plant. • Techno-economic analysis for the system is performed. • Flue gas integration of torrefaction show better performance. • Heat or electricity production is not compromised in the proposed system. - Abstract: Torrefied biomass shows characteristics that resemble those of coal. Therefore, torrefied biomass can be co-combusted with coal in existing coal mills and burners. This paper presents simulation results of a case study where a torrefaction reactor was integrated in an existing combined heat and power plant and sized to replace 25%, 50%, 75% or 100% of the fossil coal in one of the boilers. The simulations show that a torrefaction reactor can be integrated with existing plants without compromising heat or electricity production. Economic and sensitivity analysis show that the additional cost for integrating a torrefaction reactor is low which means that with an emission allowance cost of 37 €/ton CO 2 , the proposed integrated system can be profitable and use 100% renewable fuels. The development of subsidies will affect the process economy. The determinant parameters are electricity and fuel prices

  20. Villacidro solar demo plant: Integration of small-scale CSP and biogas power plants in an industrial microgrid

    Science.gov (United States)

    Camerada, M.; Cau, G.; Cocco, D.; Damiano, A.; Demontis, V.; Melis, T.; Musio, M.

    2016-05-01

    The integration of small scale concentrating solar power (CSP) in an industrial district, in order to develop a microgrid fully supplied by renewable energy sources, is presented in this paper. The plant aims to assess in real operating conditions, the performance, the effectiveness and the reliability of small-scale concentrating solar power technologies in the field of distributed generation. In particular, the potentiality of small scale CSP with thermal storage to supply dispatchable electricity to an industrial microgrid will be investigated. The microgrid will be realized in the municipal waste treatment plant of the Industrial Consortium of Villacidro, in southern Sardinia (Italy), which already includes a biogas power plant. In order to achieve the microgrid instantaneous energy balance, the analysis of the time evolution of the waste treatment plant demand and of the generation in the existing power systems has been carried out. This has allowed the design of a suitable CSP plant with thermal storage and an electrochemical storage system for supporting the proposed microgrid. At the aim of obtaining the expected energy autonomy, a specific Energy Management Strategy, which takes into account the different dynamic performances and characteristics of the demand and the generation, has been designed. In this paper, the configuration of the proposed small scale concentrating solar power (CSP) and of its thermal energy storage, based on thermocline principle, is initially described. Finally, a simulation study of the entire power system, imposing scheduled profiles based on weather forecasts, is presented.

  1. Community-Weighted Mean Plant Traits Predict Small Scale Distribution of Insect Root Herbivore Abundance.

    Directory of Open Access Journals (Sweden)

    Ilja Sonnemann

    Full Text Available Small scale distribution of insect root herbivores may promote plant species diversity by creating patches of different herbivore pressure. However, determinants of small scale distribution of insect root herbivores, and impact of land use intensity on their small scale distribution are largely unknown. We sampled insect root herbivores and measured vegetation parameters and soil water content along transects in grasslands of different management intensity in three regions in Germany. We calculated community-weighted mean plant traits to test whether the functional plant community composition determines the small scale distribution of insect root herbivores. To analyze spatial patterns in plant species and trait composition and insect root herbivore abundance we computed Mantel correlograms. Insect root herbivores mainly comprised click beetle (Coleoptera, Elateridae larvae (43% in the investigated grasslands. Total insect root herbivore numbers were positively related to community-weighted mean traits indicating high plant growth rates and biomass (specific leaf area, reproductive- and vegetative plant height, and negatively related to plant traits indicating poor tissue quality (leaf C/N ratio. Generalist Elaterid larvae, when analyzed independently, were also positively related to high plant growth rates and furthermore to root dry mass, but were not related to tissue quality. Insect root herbivore numbers were not related to plant cover, plant species richness and soil water content. Plant species composition and to a lesser extent plant trait composition displayed spatial autocorrelation, which was not influenced by land use intensity. Insect root herbivore abundance was not spatially autocorrelated. We conclude that in semi-natural grasslands with a high share of generalist insect root herbivores, insect root herbivores affiliate with large, fast growing plants, presumably because of availability of high quantities of food. Affiliation of

  2. Amplification of Marzagao small scale hydroelectric power plant; Ampliacao da PCH de Marzagao

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, A.R.; Porto, D.S.; Pinto, F.S. [Leme Engenharia, MG (Brazil); Melo, A.U.; Almeida, A.M.; Pereira, D.R. [Fertiligas Industria e Comercio Ltda., MG (Brazil)

    1991-12-31

    This work presents the modernization and power augmentation of Marzagao small scale hydroelectric power plant. In order that the costs of the project be compatible to the total of investments in the project, it was necessary the adoption of methodologies and time scales different from those used for large and medium scale hydroelectric power plants 5 figs.

  3. Combustion Turbine CHP System for Food Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    This factsheet describes a combined heat and power (CHP) demonstration project that reduces the energy costs and environmental impact of a plant while easing congestion on the constrained Northeast power grid.

  4. Biomass gasification for CHP with dry gas cleaning and regenerative heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Small scale CHP plants based on biomass gasification technologies are generally expensive and not very efficient due to gas quality problems which increase operation and maintenance cost as well as breakdown. To overcome this situation the team has developed, integrated and tested a complete biomass gasification combine heat and power prototype plant of 250 kWth equipped with a specifically developed dry gas cleaning and heat recovery system. The dry gas cleaning device is a simple dry gas regenerative heat exchanger where tars are stopped by condensation but working at a temperature above due point in order to avoid water condensation. Two types of heat particles separation devices have been tested in parallel multi-cyclone and ceramic filters. After several month spent on modelling design, construction and optimisation, a full test campaign of 400 hours continuous monitoring has been done where all working parameters has been monitored and gas cleaning device performances has been assessed. Results have shown: Inappropriateness of the ceramic filters for the small scale unit due to operation cost and too high sensibility of the filters to the operation conditions fluctuating in a wide range, despite a very high particle separation efficiency 99 %; Rather good efficiency of the multi-cyclone 72% but not sufficient for engine safety. Additional conventional filters where necessary for the finest part; Inappropriateness of the dry gas heat exchanger device for tar removal partly due to a low tar content of the syngas generated, below 100 mg/Nm{sup 3} , but also due to their composition which would have imposed, to be really efficient, a theoretical condensing temperature of 89 C below the water condensation temperature. These results have been confirmed by laboratory tests and modelling. However the tar cracking phase have shown very interesting results and proved the feasibility of thermal cracking with full cleaning of the heat exchanger without further mechanical

  5. Modelling Danish local CHP on market conditions

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla

    2004-01-01

    with the liberalisation process of the energy sectors of the EU countries, it is however anticipated that Danish local CHP are to begin operating on market conditions within the year 2005. This means that the income that the local CHPs previously gained from selling electricity at the feed-in tariff is replaced in part...... the consequences of acting in a liberalised market for a given CHP plant, based on the abovementioned bottom-up model. The key assumption determining the bottom line is the electricity spot price. The formation of the spot price in the Nordic area depends heavily upon the state of the water reservoirs in Norway...

  6. Cost and primary energy efficiency of small-scale district heating systems

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed minimum-cost options for small-scale DHSs under different contexts. • District heat production cost increases with reduced DHS scales. • Fewer technical options are suitable for small-scale DHSs. • Systems with combined technologies are less sensitive to changes in fuel prices. - Abstract: Efficient district heat production systems (DHSs) can contribute to achieving environmental targets and energy security for countries that have demands for space and water heating. The optimal options for a DHS vary with the environmental and social-political contexts and the scale of district heat production, which further depends on the size of the community served and the local climatic conditions. In this study, we design a small-scale, minimum-cost DHS that produces approximately 100 GWh heat per year and estimate the yearly production cost and primary energy use of this system. We consider conventional technologies, such as heat-only boilers, electric heat pumps and combined heat and power (CHP) units, as well as emerging technologies, such as biomass-based organic Rankine cycle (BORC) and solar water heating (SWH). We explore how different environmental and social-political situations influence the design of a minimum-cost DHS and consider both proven and potential technologies for small-scale applications. Our calculations are based on the real heat load duration curve for a town in southern Sweden. We find that the district heat production cost increases and that the potential for cogeneration decreases with smaller district heat production systems. Although the selection of technologies for a minimum-cost DHS depends on environmental and social-political contexts, fewer technical options are suitable for small-scale systems. Emerging technologies such as CHP-BORC and SWH improve the efficiency of primary energy use for heat production, but these technologies are more costly than conventional heat-only boilers. However, systems with

  7. Risk analysis for CHP decision making within the conditions of an open electricity market

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad; Kozuh, Mitja

    2007-01-01

    Decision making under uncertainty is a difficult task in most areas. Investment decisions for combined heat and power production (CHP) are certainly one of the areas where it is difficult to find an optimal solution since the payback period is several years and parameters change due to different perturbing factors of economic and mostly political nature. CHP is one of the most effective measures for saving primary energy and reduction of greenhouse gas emissions. The implementation of EU directives on the promotion of cogeneration based on useful heat demand in the internal energy market will accelerate CHP installation. The expected number of small CHP installations will be very high in the near future. A quick, reliable and simple tool for economic evaluation of small CHP systems is required. Since evaluation is normally made by sophisticated economic computer models which are rather expensive, a simple point estimate economic model was developed which was later upgraded by risk methodology to give more informative results for better decision making. This paper presents a reliable computer model entitled 'Computer program for economic evaluation analysis of CHP' as a tool for analysis and economic evaluation of small CHP systems with the aim of helping the decision maker. The paper describes two methods for calculation of the sensitivity of the economic results to changes of input parameters and the uncertainty of the results: the classic/static method and the risk method. The computer program uses risk methodology by applying RISK software on an existing conventional economic model. The use of risk methodology for economic evaluation can improve decisions by incorporating all possible information (knowledge), which cannot be done in the conventional economic model due to its limitations. The methodology was tested on the case of a CHP used in a smaller hospital

  8. Environmental sustainability analysis of UK whole-wheat bioethanol and CHP systems

    International Nuclear Information System (INIS)

    Martinez-Hernandez, Elias; Ibrahim, Muhammad H.; Leach, Matthew; Sinclair, Phillip; Campbell, Grant M.; Sadhukhan, Jhuma

    2013-01-01

    The UK whole-wheat bioethanol and straw and DDGS-based combined heat and power (CHP) generation systems were assessed for environmental sustainability using a range of impact categories or characterisations (IC): cumulative primary fossil energy (CPE), land use, life cycle global warming potential over 100 years (GWP 100 ), acidification potential (AP), eutrophication potential (EP) and abiotic resources use (ARU). The European Union (EU) Renewable Energy Directive's target of greenhouse gas (GHG) emission saving of 60% in comparison to an equivalent fossil-based system by 2020 seems to be very challenging for stand-alone wheat bioethanol system. However, the whole-wheat integrated system, wherein the CHP from the excess straw grown in the same season and from the same land is utilised in the wheat bioethanol plant, can be demonstrated for potential sustainability improvement, achieving 85% emission reduction and 97% CPE saving compared to reference fossil systems. The net bioenergy from this system and from 172,370 ha of grade 3 land is 12.1 PJ y −1 providing land to energy yield of 70 GJ ha −1 y −1 . The use of DDGS as an animal feed replacing soy meal incurs environmental emission credit, whilst its use in heat or CHP generation saves CPE. The hot spots in whole system identified under each impact category are as follows: bioethanol plant and wheat cultivation for CPE (50% and 48%), as well as for ARU (46% and 52%). EP and GWP 100 are distributed among wheat cultivation (49% and 37%), CHP plant (26% and 30%) and bioethanol plant (25%, and 33%), respectively. -- Highlights: ► UK whole-wheat energy system can achieve 85% GHG emission reduction. ► UK whole-wheat energy system can achieve 97% primary energy saving. ► The land to energy yield of the UK whole-wheat system is 70 GJ ha −1 y −1 . ► Fertiliser production is the hotspot. ► DDGS and straw-based CHP system integration to wheat bioethanol is feasible

  9. Increased electrical efficiency in biofueled CHP plants by biomass drying; Oekat elutbyte i biobraensleeldade kraftvaermeanlaeggningar med hjaelp av foertorkning

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Mikael; Thorson, Ola; Wennberg, Olle

    2010-09-15

    In this report, integrated biofuel drying has been studied for two cases. One is the existing CHP plant at ENA Energi AB in Enkoeping and the other is a theoretical case. The thought plant is assumed to have a steam generating performance that is probable for a future CHP plant optimised for power production. The CHP plant at ENA Energi with its integrated bed drying system has been used as a model in this study. The plant has a grate fired boiler with the capacity to co-produce 24 MW electricity and 55 MW heat. It is designed to use biofuel with moisture content between 40 and 55 %. However, the boiler is able to manage even dryer fuels with the moisture content of about 35 % without complications. Since the boiler operates on part load during most of the season, there are free capacity which can be used for delivering heat to the drying system. The increased power production is a result of mainly two factors: Increased demand of heat as the dryer uses district heating and thus improved possibility to produce steam; and, The season of operation can be extended, since the point where the minimum load of the boiler occurs can be pushed forward as a result of increased demand of heat. For future CHP plants, an optimised plant has been used as a model. The steam data is assumed to be 170 bar and 540 deg C with reheating. For this plant, both on-site and offsite drying have been studied. The case study comprises a whole season of operation and the fuel is assumed to be dried from 50 to 10 %. The size of the optimised plant is as to fit the dimension of a main production unit in a district heating net equal to the tenth largest in Sweden. Heat delivery is assumed to be 896 GWh/year and the maximum heat delivery of district heating is 250 MW. The sizing of the boiler is made to maximise the production of electricity, and thus dependent of the drying strategy used. Flue gas condensation is assumed to be used as much as possible. It decreases the basis for power production

  10. IVO`s CHP know-how: experience, inventions, patents

    Energy Technology Data Exchange (ETDEWEB)

    Aeijaelae, M.; Ohtonen, V. [ed.

    1997-11-01

    IVO can justly claim mastery in the co-generation of district heat and electricity - CHP. As well as looking at the issue from the viewpoint of planners, builders and operators, IVO`s engineers also view power plants through the eyes of the product developer and inventor. This approach has resulted in successful power plant configurations, inventions and patents and visions

  11. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karl Mayer

    2010-03-31

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical

  12. Modelling the dynamics of the cogeneration power plant gas-air duct

    Directory of Open Access Journals (Sweden)

    Аnatoliy N. Bundyuk

    2014-12-01

    Full Text Available Introducing into wide practice the cogeneration power plants (or CHP is one of promising directions of the Ukrainian small-scale power engineering development. Thermal and electric energy generation using the same fuel kind can increase the overall plant efficiency. That makes it appropriate to use CHPs at compact residential areas, isolated industrial enterprises constituting one complex with staff housing area, at sports complexes, etc. The gas-air duct of the cogeneration power plant has been considered as an object of the diesel-generator shaft velocity control. The developed GAD mathematical model, served to analyze the CHP dynamic characteristics as acceleration curves obtained under different external disturbances in the MathWorks MATLAB environment. According to the electric power generation technology requirements a convenient transition process type has been selected, with subsequent identification of the diesel-generator shaft rotation speed control law.

  13. Design report small-scale fuel alcohol plant. Volume 2: Detailed construction information

    Science.gov (United States)

    1980-12-01

    The objectives are to provide potential alcohol producers with a reference design and provide a complete, demonstrated design of a small scale fuel alcohol plant. The plant has the capability for feedstock preparation, cooking, saccharification, fermentation, distillation, by-product dewatering, and process steam generation. An interesting feature is an instrumentation and control system designed to allow the plant to run 24 hours per day with only four hours of operator attention.

  14. Advanced circulating fluidised bed technology (CFB) for large-scale solid biomass fuel firing power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jaentti, Timo; Zabetta, Edgardo Coda; Nuortimo, Kalle [Foster Wheeler Energia Oy, Varkaus (Finland)

    2013-04-01

    Worldwide the nations are taking initiatives to counteract global warming by reducing their greenhouse gas emissions. Efforts to increase boiler efficiency and the use of biomass and other solid renewable fuels are well in line with these objectives. Circulating fluidised bed boilers (CFB) are ideal for efficient power generation, capable to fire a broad variety of solid biomass fuels from small CHP plants to large utility power plants. Relevant boiler references in commercial operation are made for Finland and Poland.

  15. Factors that are influencing the economical efficiency of the CHP plants

    International Nuclear Information System (INIS)

    Ruieneanu, Liviu; Ion, Mircea

    2004-01-01

    This paper presents some factors that might influence the economical efficiency of a cogeneration plant. These factors are: the understanding of the fuel economy at consumers; - the influence of the electricity production efficiency; - the influence of exergy losses. The statistical data for different countries of Europe show that under the conditions of a deregulated liberalized market of energy the cogeneration plants have numerous financial difficulties. Even if the use of cogeneration ensures a fuel saving, if this economy it is not obvious for the consumers, those consumers might prefer for the production of heat the use of a heat only generating plant. This trend might spread rapidly if the increase of the electricity will not be present immediately in the bill of the consumers that renounce to the heat produced by the CHP plant. The method used for cost allocation on both types of energy has also a great importance, because it might facilitate the rehabilitation measures and doing so it might allow lower prices for both types of energy. Perhaps the most important factor for the economical efficiency of the plant are the exergy losses. The analysis presented above shows two things, namely: - that the electricity production has a very high price, and this cost might be lowered down by some rehabilitation measures (for example repowering); - and that the heat only plants (boilers) are not affected by the exergy losses and that's why if we analyse only the heat production, the use of cogeneration might seem inappropriate

  16. Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Cioccolanti, Luca; Renzi, Massimiliano

    2014-01-01

    This study investigates the potential of energy efficiency, renewables, and micro-cogeneration to reduce household consumption in a medium Italian town and analyses the scope for municipal local policies. The study also investigates the effects of tourist flows on town's energy consumption by modelling energy scenarios for permanent and summer homes. Two long-term energy scenarios (to 2030) were modelled using the MarkAL-TIMES generator model: BAU (business as usual), which is the reference scenario, and EHS (exemplary household sector), which involves targets of penetration for renewables and micro-cogeneration. The analysis demonstrated the critical role of end-use energy efficiency in curbing residential consumption. Cogeneration and renewables (PV (photovoltaic) and solar thermal panels) were proven to be valuable solutions to reduce the energetic and environmental burden of the household sector (−20% in 2030). Because most of household energy demand is ascribable to space-heating or hot water production, this study finds that micro-CHP technologies with lower power-to-heat ratios (mainly, Stirling engines and microturbines) show a higher diffusion, as do solar thermal devices. The spread of micro-cogeneration implies a global reduction of primary energy but involves the internalisation of the primary energy, and consequently CO 2 emissions, previously consumed in a centralised power plant within the municipality boundaries. - Highlights: • Energy consumption in permanent homes can be reduced by 20% in 2030. • High efficiency appliances have different effect according to their market penetration. • Use of electrical heat pumps shift consumption from natural gas to electricity. • Micro-CHP entails a global reduction of energy consumption but greater local emissions. • The main CHP technologies entering the residential market are Stirling and μ-turbines

  17. Large-scale heat pumps in sustainable energy systems: System and project perspectives

    Directory of Open Access Journals (Sweden)

    Blarke Morten B.

    2007-01-01

    Full Text Available This paper shows that in support of its ability to improve the overall economic cost-effectiveness and flexibility of the Danish energy system, the financially feasible integration of large-scale heat pumps (HP with existing combined heat and power (CHP plants, is critically sensitive to the operational mode of the HP vis-à-vis the operational coefficient of performance, mainly given by the temperature level of the heat source. When using ground source for low-temperature heat source, heat production costs increases by about 10%, while partial use of condensed flue gasses for low-temperature heat source results in an 8% cost reduction. Furthermore, the analysis shows that when a large-scale HP is integrated with an existing CHP plant, the projected spot market situation in The Nordic Power Exchange (Nord Pool towards 2025, which reflects a growing share of wind power and heat-supply constrained power generation electricity, further reduces the operational hours of the CHP unit over time, while increasing the operational hours of the HP unit. In result, an HP unit at half the heat production capacity as the CHP unit in combination with a heat-only boiler represents as a possibly financially feasible alternative to CHP operation, rather than a supplement to CHP unit operation. While such revised operational strategy would have impacts on policies to promote co-generation, these results indicate that the integration of large-scale HP may jeopardize efforts to promote co-generation. Policy instruments should be designed to promote the integration of HP with lower than half of the heating capacity of the CHP unit. Also it is found, that CHP-HP plant designs should allow for the utilization of heat recovered from the CHP unit’s flue gasses for both concurrent (CHP unit and HP unit and independent operation (HP unit only. For independent operation, the recovered heat is required to be stored. .

  18. Investigation of small scale sphere-pac fuel fabrication plant with external gelation process

    International Nuclear Information System (INIS)

    Maekawa, Kazuhiko; Yoshimura, Tadahiro; Kikuchi, Toshiaki; Hoshino, Yasushi; Munekata, Hideki; Shimizu, Makoto

    2005-02-01

    In feasibility studies on commercialized FBR cycle system, comprehensive system investigation and properties evaluation for candidate FBR cycle systems have been implemented through view point of safety, economics, environmental burden reduction, non-proliferation resistivity, etc. As part of these studies, an investigation of small scale sphere-pac fuel fabrication plant with external gelation process was conducted. Until last fiscal year, equipment layout in cells and overall layout design of the 200t-HM/y scale fuel fabrication plant were conducted as well as schematical design studies on main equipments in gelation and reagent recovery processes of the plant. System property data concerning economics and environmental burden reduction of fuel fabrication plant was also acquired. In this fiscal year, the processes from vibropacking to fuel assemblies storage were added to the investigation range, and a conceptual design of whole fuel fabrication plant was studied as well as deepening the design study on main equipments. The conceptual design study was mainly conducted for small 50t-HM/y scale plant and a revising investigation was done for 200t-HM/y scale plant. Taking the planed comparative evaluation with pellet fuel fabrication system into account, design of equipments which should be equivalent with pellet system, especially in post-vibropacking processes, were standardized in each system. Based on these design studies, system properties data concerning economics and environmental burden reduction of the plant was also acquired. In comparison with existing design, the cell height was lowered on condition that plug type pneumatic system was adopted and fuel fabrication building was downsized by applying rationalized layout design of pellet system to post-vibropacking processes. Reduction of reagent usage at gelation process and rationalization of sintering and O/M controlling processes etc., are foremost tasks. (author)

  19. Development of a CHP/DH system for the new town of Parand: An opportunity to mitigate global warming in Middle East

    International Nuclear Information System (INIS)

    Mostafavi Tehrani, S. Saeed; Saffar-Avval, M.; Mansoori, Z.; Behboodi Kalhori, S.; Abbassi, A.; Dabir, B.; Sharif, M.

    2013-01-01

    As a result of the worldwide concern about global warming, projects that target reduction of greenhouse gas emissions have gained a lot of interest. The idea of this paper is to recover exhaust hot gases of an existing gas turbine power plant to meet dynamic thermal energy requirements of a residential area (the new town of Parand) situated in the suburb of Tehran, and also use the rest of the heat source potential to feed a steam turbine cycle. In close proximity to this town, there are two GT plants: Parand (954 MW e ) and Rudeshur (790 MW e ). For handling the CHP/STC/DH plant, two methods are considered along with thermal load following operation strategy: maximum power generation (MPG) and minimum fuel consumption (MFC). Then, the alternatives are compared in terms of annual PES, CO 2 abatement and NPV. For the best design from environmental viewpoint (Parand CHP-B), PES, CO 2 abatement and NPV are calculated to be 27.31%, 2.56 million tons and 1491 million dollar, respectively. -- Highlights: • To propose a technical and financial methodology to evaluate CHP/DH projects. • To address environmental advantages of CHPs with conventional plants. • To present practical operation strategies to increase benefits of CHP/DH plants. • To report/compare benefits of various CHP/DH alternatives for a case study in Iran. • To conduct a comprehensive energy analysis of proposed CHP/DH design options

  20. Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Vicidomini, Maria; Scarpellino, Marco

    2015-01-01

    Highlights: • A novel small scale solar power plant was designed and simulated. • The system is based on evacuated solar thermal collectors and an ORC system. • An average electric efficiency of 10% was found for the ORC. • The efficiency of solar collectors was found to be high in summer (>50%). • Pay-back periods lower than 5 years were estimated, in case of public funding. - Abstract: This paper presents a dynamic simulation model of a novel prototype of a 6 kW e solar power plant. The system is based on the coupling of innovative solar thermal collectors with a small Organic Rankine Cycle (ORC), simultaneously producing electric energy and low temperature heat. The novelty of the proposed system lies in the solar collector field, which is based on stationary evacuated flat-plate solar thermal collectors capable to achieve the operating temperatures typical of the concentrating solar thermal collectors. The solar field consists of about 73.5 m 2 of flat-plate evacuated solar collectors, heating a diathermic oil up to a maximum temperature of 230 °C. A diathermic oil storage tank is employed in order to mitigate the fluctuations due to the variability of solar energy availability. The hot diathermic oil exiting from the tank passes through an auxiliary gas-fired burner which provides eventual additional thermal energy. The inlet temperature of the diathermic oil entering the ORC system varies as a function of the availability of solar energy, also determining an oscillating response of the ORC. The ORC was simulated in Engineering Equation Solver (EES), using zero-dimensional energy and mass balances. The ORC model was subsequently implemented in a more general TRNSYS model, including all the remaining components of the system. The model was used to evaluate the energy and economic performance of the solar CHP system under analysis, in different climatic conditions. The results show that the efficiency of the ORC does not significantly vary during the

  1. Energy policy responses to the climate change challenge: The consistency of European CHP, renewables and energy efficiency policies

    International Nuclear Information System (INIS)

    Grohnheit, P.E.

    1999-09-01

    This report is Volume 14 of individual reports of the Shared Analysis Project prepared for the European Commission, Directorate General for Energy. The three major objectives of the project were: to design a common framework of energy analysis that aimed to involve all Member States and the experts of industrial research groups (the shared approach to energy analysis); To analyse generic EU-wide issues important for energy policy and for future energy demand and production, putting particular emphasis on world energy market trends, strategic energy policy responses to the Kyoto process, and evaluation of response strategies to increasing energy import dependence and to climate change activities; to carry out quantitative analyses of energy trends and scenarios as an input for discussion. The present volume considers three main issues concerning energy policy responses to the climate change challenge: the penetration of CHP and renewables according to official objectives, focusing on infrastructure and institutions rather than technology; the consistency of promotion of CHP, renewables and energy savings at the same time; consumers' choices and priorities in a liberalised market. The volume describes examples of policies in several Member States for these technologies with emphasis on CHP for both large-scale and small-scale district heating systems. The penetration of CHP technologies is analysed quantitatively using a traditional optimisation model approach for stylised regions with heat markets suitable for CHP and facing a competitive European market for electricity. The Joint Final Report of the project, titled 'Economic Foundations for Energy Policy' is published as a Special Issue of Energy in Europe, December 1999. All reports are available on the Internet, www.shared-analysis.fhg.de/ The project started in January 1998, involving about 100 months of scientific labour. The project consortium consisted of nine member institutes co-ordinated by the Fraunhofer

  2. Interactive economic analysis of small-scale heating plant

    Energy Technology Data Exchange (ETDEWEB)

    Landen, R.A.; Sanders, D.L.; Douglas, B.H.

    1998-11-01

    This report contains the work that has been undertaken by LRZ Limited in pursuance of this agreement. The potential for small-scale biomass heating systems is identified, and surrounding issues relating to acceptance are discussed. Such systems are described, and the origins of capital and running costs examined. A full review of the calculation methods for boiler plant size and fuel consumption is made, and subsequently expounded in four varying case studies. The results of this work are discussed, and the final development of the computer models is reviewed, incorporating further refinements to the method. Finally, data not contained in the text is incorporated in comprehensive appendices. (author)

  3. Review of CHP projections tp 2010

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, W.

    2003-07-01

    This report summarises the findings of a study examining market conditions for combined heat and power since 2000 and assessing the commercial position of cogeneration (CHP) in order to provide advice on likely distributed generation in relation to technology, location and commissioning timetables. Details are given of the modelling of the development of 'good quality' CHP by Cambridge Econometrics (CE), and the work carried out by ILEX updating the CE study. Modelling assumptions, market conditions for CHP since the CE study, the effect of market conditions on CE modelling assumptions, justified changes in assumptions, and evaluation of likely CHP capacity to 2010 are discussed.

  4. A Stochastic Unit Commitment Model for a Local CHP Plant

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla

    2005-01-01

    Local CHP development in Denmark has during the 90’s been characterised by large growth primarily due to government subsidies in the form of feed-in tariffs. In line with the liberalisation process in the EU, Danish local CHPs of a certain size must operate on market terms from 2005. This paper...

  5. Multi-period MINLP model for optimising operation and structural changes to CHP plants in district heating networks with long-term thermal storage

    International Nuclear Information System (INIS)

    Tveit, Tor-Martin; Savola, Tuula; Gebremedhin, Alemayehu; Fogelholm, Carl-Johan

    2009-01-01

    By using thermal storages it is possible to decouple the generation of power and heat, and it can also lead to an reduction in investments, as the storage can be used to cover the peak load periods. This work presents a MINLP model that can be used for analysing new investments and the long-term operation of CHP plants in a district heating network with long-term thermal storage. The model presented in this work includes the non-linear off-design behaviour of the CHP plants as well as a generic mathematical model of the thermal storage, without the need to fix temperatures and pressure. The model is formulated in such a way that it is suitable for deterministic MINLP solvers. The model is non-convex, and subsequently global optimality cannot be guaranteed with local solvers. In order to reduce the chance of obtaining a poor local optimum compared to the global optimum, the model should be solved many times with the initial values varying randomly. It is possible to extract a lot of results from the model, for instance total annual profit, the optimal selection of process options, mass flow through the plant, and generated power from each plant. The formulation of the model makes it suitable for deterministic MINLP solvers

  6. Deployment of FlexCHP System

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David [Gas Technology Inst., Des Plaines, IL (United States)

    2015-11-01

    The Gas Technology Institute (GTI), along with its partner Integrated CHP Systems Corporation, has developed and demonstrated an Ultra-Low-Nitrogen Oxide (ULN) Flexible Combined Heat and Power (FlexCHP) system that packages a state-of-the-art Capstone C65 gas microturbine and Johnston PFXX100 boiler with an innovative natural gas-fired supplemental burner. Supplemental burners add heat as needed in response to facility demand, which increases energy efficiency, but typically raises exhaust NOx levels, degrading local air quality unless a costly and complicated catalytic treatment system is added. The FlexCHP system increases energy efficiency and achieves the 2007 California Air Resource Board (CARB) distributed generation emissions standards for Nitrogen oxides (NOx), Carbon Monoxide (CO), and Total Hydrocarbons (THC) without catalytic exhaust gas treatment. The key to this breakthrough performance is a simple and reliable burner design which utilizes staged combustion with engineered internal recirculation. This ULN burner system successfully uses turbine exhaust as an oxidizer, while achieving high efficiencies and low emissions. In tests at its laboratory facilities in Des Plaines, Illinois, GTI validated the ability of the system to achieve emissions of NOx, CO, and THC below the CARB criteria of 0.07, 0.10, and 0.02 lb/MW-h respectively. The FlexCHP system was installed at the field demonstration site, Inland Empire Foods, in Riverside, California to verify performance of the technology in an applied environment. The resulting Combined Heat and Power (CHP) package promises to make CHP implementation more attractive, mitigate greenhouse gas emissions, and improve the reliability of electricity supply.

  7. Islanded house operation using a micro CHP

    NARCIS (Netherlands)

    Molderink, Albert; Bakker, Vincent; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2007-01-01

    The µCHP is expected as the successor of the conventional high-efficiency boiler producing next to heat also electricity with a comparable overall efficiency. A µCHP appliance saves money and reduces greenhouse gas emission. An additional functionality of the µCHP is using the appliance as a

  8. Thermodynamic, ecological and economic aspects of the use of the gas turbine for heat supply to the stripping process in a supercritical CHP plant integrated with a carbon capture installation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2014-01-01

    Highlights: • Variants of integration of CHP plant with CCS and gas turbine unit were analyzed. • The simulations of operation of plants under changing load were realized. • Conditions of competitiveness for all solutions were identified. • Integration can be profitable if prices of allowance will reach values >60 €/MgCO 2 . - Abstract: This paper presents the results of thermodynamic and economic analyses for eight variants of a combined heat and power (CHP) plant fuelled with coal working under supercritical steam parameters and integrated with a CO 2 capture installation and a gas turbine system. The motivation behind using a gas turbine in the system was to generate steam to supply heat for the stripping process that occurs in the separation installation to regenerate the sorbent. Additional analyses were conducted for the reference case, a CHP unit in which the CO 2 separation process was not conducted, to enable an economic evaluation of the integration of a CHP unit with a CO 2 separation installation according to the variants proposed. The break-even price of electricity and avoided emission costs were used to evaluate the respective solutions. In this paper, the results of the sensitivity analysis of the economic evaluation indicators in terms of the change in the annual operation time, price of emission allowance and heat demand rate for the realization of the stripping process for all cases are presented

  9. Analysis of the location for peak heating in CHP based combined district heating systems

    International Nuclear Information System (INIS)

    Wang, Haichao; Lahdelma, Risto; Wang, Xin; Jiao, Wenling; Zhu, Chuanzhi; Zou, Pinghua

    2015-01-01

    Combined heat and power (CHP) is the main technology for providing the base load of district heating in China. However, CHP is not efficient for providing the peak load; instead, a peak boiler with high efficiency could be used to compensate the peak load. This paper studies how the location of the peak boiler can affect the energy efficiency and economic performance of such CHP based combined district heating system. Firstly, the connection mode and the control strategy for different peak heating locations are analyzed. Then the effect of the peak boiler's location on the initial investment of the network and the cost for distributing heat is studied. The objective is to place the peak boiler in a location where the overall costs are the smallest. Following this rule, the results indicate that the peak boiler should be located at the CHP plant if that allows using cheaper ‘self-use electricity’ in CHP for distributing the heat. However, if the market electricity price is used everywhere, or if energy efficiency is more emphasized, the location of the peak boiler should be closer to the users with dense heat loads. - Highlights: • Location for peak heating in the CHP based combined DH system is studied. • Regulation or control strategies for combined DH are summarized. • The heat load duration curve for combined DH is demonstrated. • Network design for combined DH with peak boiler outside of the CHP is analyzed

  10. Design of Biomass Combined Heat and Power (CHP Systems based on Economic Risk using Minimax Regret Criterion

    Directory of Open Access Journals (Sweden)

    Ling Wen Choong

    2018-01-01

    Full Text Available It is a great challenge to identify optimum technologies for CHP systems that utilise biomass and convert it into heat and power. In this respect, industry decision makers are lacking in confidence to invest in biomass CHP due to economic risk from varying energy demand. This research work presents a linear programming systematic framework to design biomass CHP system based on potential loss of profit due to varying energy demand. Minimax Regret Criterion (MRC approach was used to assess maximum regret between selections of the given biomass CHP design based on energy demand. Based on this, the model determined an optimal biomass CHP design with minimum regret in economic opportunity. As Feed-in Tariff (FiT rates affects the revenue of the CHP plant, sensitivity analysis was then performed on FiT rates on the selection of biomass CHP design. Besides, design analysis on the trend of the optimum design selected by model was conducted. To demonstrate the proposed framework in this research, a case study was solved using the proposed approach. The case study focused on designing a biomass CHP system for a palm oil mill (POM due to large energy potential of oil palm biomass in Malaysia.

  11. Analysis and optmization of CHP, CCHP, CHP-ORC, and CCHP-ORC systems

    Science.gov (United States)

    Hueffed, Anna Kathrine

    Increased demand for energy, rising energy costs, and heightened environmental concerns are driving forces that continually press for the improvement and development of new technologies to promote energy savings and emissions reduction. Combined heating and power (CHP), combined cooling, heating, and power (CCHP), and organic Rankine cycles (ORC) are a few of the technologies that promise to reduce primary energy consumption (PEC), cost, and emissions. CHP systems generate electricity at or near the place of consumption using a prime mover, e.g. a combustion engine or a turbine, and utilize the accompanying exhaust heat that would otherwise be wasted to satisfy the building's thermal demand. In the case of CCHP systems, exhaust heat also goes to satisfy a cooling load. An organic Rankine cycle (ORC) combined with a CHP or CCHP system can generate electricity from any surplus low-grade heat, thereby reducing the total primary energy, cost, and emissions.

  12. Experimental development, 1D CFD simulation and energetic analysis of a 15 kw micro-CHP unit based on reciprocating internal combustion engine

    International Nuclear Information System (INIS)

    Muccillo, M.; Gimelli, A.

    2014-01-01

    Cogeneration is commonly recognized as one of the most effective solutions to achieve the increasingly stringent reduction in primary energy consumption and greenhouse emissions. This characteristic led to the adoption of specific directives promoting this technique. In addition, a strategic role in power reliability is recognized to distributed generation. The study and prototyping of cogeneration plants, therefore, has involved many research centres. This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant based on a LPG reciprocating engine designed, built and grid connected. The plant consists of a heat recovery system characterized by a single water circuit recovering heat from exhaust gases, from engine coolant and from the energy radiated by the engine within the shell hosting the plant. Some tests were carried out at whole open throttle and the experimental data were collected. However it was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. As the heat actually recovered depends on the user's thermal load, particularly from the required temperature's level, a comparison of the results for six types of users were performed: residential, hospital, office, commercial, sports, hotel. Both Italian legislative indexes IRE and LT were evaluated, as defined by A.E.E.G resolution n. 42/02 and subsequent updates, as well as the plant's total Primary Energy Saving. - Highlights: • This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant. • The 15 kW micro-CHP plant is based on a GPL reciprocating engine designed, built and grid connected. • Some tests were carried out at whole open throttle and the experimental data were collected. • It was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. • The analysed solution is particularly suited for

  13. Elimination of restraints on the propagation of combined heat and power (CHP) generation systems in Switzerland

    International Nuclear Information System (INIS)

    Rieder, S.; Landis, F.; Lienhard, A.; Marti Locher, F.; Krummenacher, S.

    2009-04-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the results of study initiated by the SFOE that was to investigate the reasons for the low level of proliferation of CHP technology in Switzerland. The two main questions asked - which factors inhibit the use of CHP in particular application areas and which energy-policy measures can remove such obstacles - are discussed. The use of CHP in various areas of application from waste incineration plants through to units used in residential buildings is analysed and commented on. Recommendations on measures that can be taken to enhance the use of CHP are discussed. Three strategy variants available to the public services area are presented and discussed. It is noted that a consensus between players in the technical and political areas is necessary

  14. Micro CHP: implications for energy companies

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Jeremy [EA Technology (United Kingdom); Kolin, Simon; Hestevik, Svein [Sigma Elektroteknisk A/S (Norway)

    2000-08-01

    This article explains how micro combined heat and power (CHP) technology may help UK energy businesses to maintain their customer base in the current climate of liberalisation and competition in the energy market The need for energy companies to adopt new technologies and adapt to changes in the current aggressive environment, the impact of privatisation, and the switching of energy suppliers by customers are discussed. Three potential routes to success for energy companies are identified, namely, price reductions, branding and affinity marketing, and added value services. Details are given of the implementation of schemes to encourage energy efficiency, the impact of the emissions targets set at Kyoto, the advantages of micro CHP generation, business opportunities for CHP, business threats from existing energy companies and others entering the field, and the commercial viability of micro CHP.

  15. Ecological assessment of new CHP systems and their combination; Oekologische Bewertung neuer WKK-Systeme und Systemkombinationen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Primas, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reports on new developments in the Combined Heat and Power (CHP) generation area. The objective of this study is an ecological and technical evaluation of various CHP systems and system combinations. These also include suitable combinations with other technologies. Systems for five different temperature levels are quantified according to their environmental impact. Various possible applications are compared with a highly efficient reference system using separate heat and power generation - a combined-cycle plant and a heat pump. For chilled water production a combination of the CHP system with an absorption chiller is investigated. The results of the investigations are presented and commented on. Also, advantageous applications of CHP systems are noted.

  16. Dynamic analysis of PEMFC-based CHP systems for domestic application

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.; Ottaviano, A.

    2012-01-01

    Highlights: ► Dynamic model of a CHP energy system based on a PEM fuel cell was developed. ► The CHP system behavior at variable electrical and thermal load was investigated. ► The optimal RH value was assessed maximizing PEMFC performance through simulations. ► The system best operating conditions are characterized by a RH value equal to 50%. -- Abstract: Fuel cell-based CHP systems for distributed residential power generation represent an interesting alternative to traditional thermoelectric plants. This is mainly due to the high efficiency obtainable in the production of electricity and heat in a decentralised, quiet and environmental friendly way. The current paper focuses on the development, in Matlab®Simulink environment, of a complete dynamic model of a residential cogenerative (CHP) energy system consisting of the Proton Exchange Membrane fuel cell (PEMFC), fuel processor, heat exchangers, humidifier and auxiliary hot water boiler. The target of the study is the investigation through such a model of the behavior of CHP systems based on fuel cell (FC) at variable electrical and thermal load, in reference to typical load curves of residential users. With the aim to evaluate the system performance (efficiency, fuel consumption, hot water production, response time) and then to characterize its better operating conditions with particular attention to air relative humidity, suitable simulations were carried out. They are characterized by the following of a typical electrical load trend and in relation to two different thermal load profiles. The dynamic model presented in this paper has allowed to observe the fully functioning of the FC based system under variable loads and it has permitted to design appropriate control logics for this system.

  17. Combined Heat and Power (CHP) Partnership

    Science.gov (United States)

    The CHP Partnership seeks to reduce air pollution and water usage associated with electric power generation by promoting the use of CHP. The Partnership works to remove policy barriers and to facilitate the development of new projects.

  18. Potential for CHP in Africa

    International Nuclear Information System (INIS)

    Yameogo, Gabriel

    2000-01-01

    It is suggested that many industries in Africa could benefit from biomass-fired cogeneration so long as the correct structures and learning processes are put in place. The article discusses Africa's energy background and gives figures for generation sources and consumption. A profile of Sudan and its energy needs is presented. It is argued that although some barriers do exist, a move to cogeneration is essential. CHP should be particularly attractive for industries able to use thermal energy for drying, heating and cooling: typical areas would be pharmaceutical and chemical plants, textile factories, cement works and steel mills

  19. Environmental burdens over the entire life cycle of a biomass CHP plant

    International Nuclear Information System (INIS)

    Jungmeier, G.; Spitzer, J.; Resch, G.

    1998-01-01

    To increase the use of biomass for energy production it is important to know the possible and significant environmental effects. A life cycle inventory (LCI) was made on a 1.3 MW el biomass CHP plant located in Reuthe/Vorarlberg/Austria with the purpose of analysing the different environmental burdens over the entire life cycle. The plant is fired with coarse and small fuelwood (10,000 t/yr) from industrial waste and forest residues. The boiler for the steam process has a moving grate burner and a muffle burner. The annual production is 4700 MWh of electricity and 29,000 MWh of district heat. The methodology of the analysis is orientated on the ISO Committee Draft of the Series 13,600. The analysis was carried out for the different sections of the biomass plant over their entire life cycle-construction (1 yr), operation (20 yrs) and dismantling (1 yr). The plant in Reuthe, which is the first cogeneration system of this kind in Austria, is a model for other similar projects. The results are shown as environmental burdens of one year and of the entire life cycle. Some results of the life cycle inventory, like the mass and energy balances, selected emissions to air, allocation results and effects on carbon storage pools are given. The results demonstrate that depending on the stage and the period of life, different environmental burdens become significant, i.e. CO 2 emissions of fossil fuels during construction. NO x emission during operation, emissions to soil during dismantling. The different options for allocation the environmental burdens to electricity and heat show a wide range of possible results, depending on the choice of allocation parameters (energy, exergy, credits for heat or electricity, price) i.e. for the particles emissions: 161 mg/kWh el to minus 566 mg/kWh el , 0 mg/kWh th to 118 mg/kWh th . With the results of the analysis it is thus possible for future similar projects to know when and where significant environmental burdens might be further

  20. High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Costante Mario Invernizzi

    2018-04-01

    Full Text Available Small-CHP (Combined Heat and Power systems are generally considered a valuable technological option to the conventional boilers, in a technology developed context. If small-CHP systems are associated with the use of renewable energies (biomass, for example they could play an important role in distributed generation even in developing countries or, in any case, where there are no extensive electricity networks. Traditionally the considered heat engines for micro- or mini-CHP are: the gas engine, the gas turbine (with internal combustion, the steam engine, engine working according to the Stirling and to the Rankine cycles, the last with organic fluids. In principle, also fuel cells could be used. In this paper, we focus on small size Rankine cycles (10–15 k W with organic working fluids. The assumed heat source is hot combustion gases at high temperature (900–950 ∘ C and we assume to use only single stages axial turbines. The need to work at high temperatures, limits the choice of the right organic working fluids. The calculation results show the limitation in the performances of simple cycles and suggest the opportunity to resort to complex (binary cycle configurations to achieve high net conversion efficiencies (15–16%.

  1. Energy policy responses to the climate change challenge: The consistency of European CHP, renewables and energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Grohnheit, P.E.

    1999-09-01

    This report is Volume 14 of individual reports of the Shared Analysis Project prepared for the European Commission, Directorate General for Energy. The three major objectives of the project were: to design a common framework of energy analysis that aimed to involve all Member States and the experts of industrial research groups (the shared approach to energy analysis); To analyse generic EU-wide issues important for energy policy and for future energy demand and production, putting particular emphasis on world energy market trends, strategic energy policy responses to the Kyoto process, and evaluation of response strategies to increasing energy import dependence and to climate change activities; to carry out quantitative analyses of energy trends and scenarios as an input for discussion. The present volume considers three main issues concerning energy policy responses to the climate change challenge: the penetration of CHP and renewables according to official objectives, focusing on infrastructure and institutions rather than technology; the consistency of promotion of CHP, renewables and energy savings at the same time; consumers' choices and priorities in a liberalised market. The volume describes examples of policies in several Member States for these technologies with emphasis on CHP for both large-scale and small-scale district heating systems. The penetration of CHP technologies is analysed quantitatively using a traditional optimisation model approach for stylised regions with heat markets suitable for CHP and facing a competitive European market for electricity. The Joint Final Report of the project, titled 'Economic Foundations for Energy Policy' is published as a Special Issue of Energy in Europe, December 1999. All reports are available on the Internet, www.shared-analysis.fhg.de/ The project started in January 1998, involving about 100 months of scientific labour. The project consortium consisted of nine member institutes co-ordinated by

  2. Development, modelling and evaluation of a small-scale gas liquefaction plant

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Rothuizen, Erasmus Damgaard; Markussen, Wiebke Brix

    2017-01-01

    A small-scale gas liquefaction plant was developed and analysed based on process simulation tools and pilot tests. It will be installed in harbours, easing the penetration of liquefied natural gas (LNG) as a maritime fuel, in a sector facing more stringent environmental regulations. The proposed...... plant uses a multi-component refrigerant together with a propane precooling cycle and plate heat exchangers, to achieve a higher performance. This LNG production concept was modelled based on the Danish natural gas composition. Firstly, the total power consumption and heat transfer conductance were...... minimised by optimising the operating conditions and the refrigerant composition. The effects of varying feed and refrigerant compositions were analysed. Secondly, the system layouts were evaluated by conducting an exergetic assessment. Finally, the most promising layouts were validated by pilot plant...

  3. A Geothermal Energy Supported Gas-steam Cogeneration Unit as a Possible Replacement for the Old Part of a Municipal CHP Plant (TEKO

    Directory of Open Access Journals (Sweden)

    L. Böszörményi

    2001-01-01

    Full Text Available The need for more intensive utilization of local renewable energy sources is indisputable. Under the current economic circumstances their competitiveness in comparison with fossil fuels is rather low, if we do not take into account environmental considerations. Integrating geothermal sources into combined heat and power production in a municipal CHP plant would be an excellent solution to this problem. This concept could lead to an innovative type of power plant - a gas-steam cycle based, geothermal energy supported cogeneration unit.

  4. Fuel cell power plants for decentralised CHP applications; Brennstoffzellen-Kraftwerke fuer dezentrale KWK-Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Ohmer, Martin; Mattner, Katja [FuelCell Energy Solutions GmbH, Dresden (Germany)

    2015-06-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO{sub 2} and other emissions (NO{sub x}, SO{sub x} and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  5. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, David P [ORNL; McGervey, Joseph [SRA International, Inc.; Curran, Scott [ORNL

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making

  6. Effect of water purification process in radioactive content: analysis on small scale purification plants

    International Nuclear Information System (INIS)

    Lopez del Rio, H.; Quiroga S, J. C.; Davila R, J. I.; Mireles G, F.

    2009-10-01

    Water from small scale purification plants is a low cost alternative for consumers in comparison to the bottled commercial presentations. Because of its low cost per liter, the consumption of this product has increased in recent years, stimulating in turn the installation of purification systems for these small businesses. The purpose of this study was to estimate the efficiency of small scale purification systems located in the cities of Zacatecas and Guadalupe, Zacatecas, to reduce the radioactive content of water. It was measured the total alpha and beta activity in water samples of entry and exit to process, through the liquid scintillation technique. In general it was observed that the process is more efficient in removing alpha that beta activity. The fraction of total alpha activity removed varied between 27 and 100%, while between 0 and 77% of the total beta activity was removed by the analyzed plants. In all cases, the total radioactivity level was lower than the maximum permissible value settled by the official mexican standard for drinking water. (Author)

  7. Small-scale hydroelectric power plant of Passo do Inferno automation system; Sistema de automatizacao da PCH Passo do Inferno

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Luiz C. Lisboa; Moralles, Reni; Quadros, Carlos A.D.; Martiny, Raul; Moehlecke, Juarez E.; Costa, Nelson D. da; Cesar, Rogerio L.; Santos, Sergio S.; Basei, Eleu Natal [Companhia Estadual de Energia Eletrica do Estado do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    1993-12-31

    This work introduces the automation system brought into the 1,7 MVA small-scale hydroelectric power plant of Passo do Inferno, state of Rio Grande do Sul, Brazil. The following systems are presented: supervision, security and generation control, as well as the program and the controller. In this work, it is focused the generation control system, as a new outfitted system in small-scale hydroelectric power plants 3 figs.

  8. 330 kWe Packaged CHP System with Reduced Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Plahn, Paul [Cummins Power Generation, Minneapolis, MN (United States); Keene, Kevin [Cummins Power Generation, Minneapolis, MN (United States); Pendray, John [Cummins Power Generation, Minneapolis, MN (United States)

    2015-03-31

    The objective of this project was to develop a flexible, 330 kWe packaged Combined Heat and Power (CHP) system that can be deployed to commercial and light industrial applications at a lower total cost of ownership than current CHP solutions. The project resulted in a CHP system that is easy to use and inexpensive to install, offering world class customer support, while providing a low-emissions, higher-efficiency internal combustion engine for a CHP system of this size.

  9. Application of biogas for combined heat and power production in the rural region

    International Nuclear Information System (INIS)

    Kozak, T.; Majchrzycka, A.

    2009-01-01

    The paper discusses combined production of heat and power (CHP) from biogas in a small-scale power plant placed in the rural region. Based on power and heat demands of the rural region and biomass supply, the CHP system was selected. Keywords: biogas, cogeneration

  10. Dicty_cDB: CHP827 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP827 (Link to dictyBase) - - - Contig-U15898-1 - (Link to Or...iginal site) CHP827F 148 - - - - - - Show CHP827 Library CH (Link to library) Clone ID CHP827 (Link to dicty...Base) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15898-1 Original site URL http://dictycdb.b...ments: (bits) Value N AC116984 |AC116984.2 Dictyostelium discoideum chromosome 2 map 2567470-3108875 strain ...18q21 clone:RP11-866E20, WORKING DRAFT SEQUENCE, 18 unordered pieces. 42 0.073 4 CK406764 |CK406764.1 AUF_IfLvr_212_c09 Ict

  11. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA

    DEFF Research Database (Denmark)

    Christensen, S.K.; Pedersen, K.; Hansen, Flemming G.

    2003-01-01

    Prokaryotic chromosomes encode toxin-antitoxin loci, often in multiple copies. In most cases, the function of these genes is not known. The chpA (mazEF) locus of Escherichia coli has been described as a cell killing module that induces bacterial apoptosis during nutritional stress. However, we...... found recently that ChpAK (MazF) does not confer cell killing but rather, induces a bacteriostatic condition from which the cells could be resuscitated. Results presented here yield a mechanistic explanation for the detrimental effect on cell growth exerted by ChpAK and the homologous ChpBK protein of E......AK cleaved tmRNA in its coding region. Thus, ChpAK and ChpBK inhibit translation by a mechanism very similar to that of E. coli RelE. On the basis of these results, we propose a model that integrates TA loci into general prokaryotic stress physiology....

  12. Optimal integrated sizing and planning of hubs with midsize/large CHP units considering reliability of supply

    International Nuclear Information System (INIS)

    Moradi, Saeed; Ghaffarpour, Reza; Ranjbar, Ali Mohammad; Mozaffari, Babak

    2017-01-01

    Highlights: • New hub planning formulation is proposed to exploit assets of midsize/large CHPs. • Linearization approaches are proposed for two-variable nonlinear CHP fuel function. • Efficient operation of addressed CHPs & hub devices at contingencies are considered. • Reliability-embedded integrated planning & sizing is formulated as one single MILP. • Noticeable results for costs & reliability-embedded planning due to mid/large CHPs. - Abstract: Use of multi-carrier energy systems and the energy hub concept has recently been a widespread trend worldwide. However, most of the related researches specialize in CHP systems with constant electricity/heat ratios and linear operating characteristics. In this paper, integrated energy hub planning and sizing is developed for the energy systems with mid-scale and large-scale CHP units, by taking their wide operating range into consideration. The proposed formulation is aimed at taking the best use of the beneficial degrees of freedom associated with these units for decreasing total costs and increasing reliability. High-accuracy piecewise linearization techniques with approximation errors of about 1% are introduced for the nonlinear two-dimensional CHP input-output function, making it possible to successfully integrate the CHP sizing. Efficient operation of CHP and the hub at contingencies is extracted via a new formulation, which is developed to be incorporated to the planning and sizing problem. Optimal operation, planning, sizing and contingency operation of hub components are integrated and formulated as a single comprehensive MILP problem. Results on a case study with midsize CHPs reveal a 33% reduction in total costs, and it is demonstrated that the proposed formulation ceases the need for additional components/capacities for increasing reliability of supply.

  13. Optimal placement of combined heat and power scheme (cogeneration): application to an ethylbenzene plant

    International Nuclear Information System (INIS)

    Zainuddin Abd Manan; Lim Fang Yee

    2001-01-01

    Combined heat and power (CHP) scheme, also known as cogeneration is widely accepted as a highly efficient energy saving measure, particularly in medium to large scale chemical process plants. To date, CHP application is well established in the developed countries. The advantage of a CHP scheme for a chemical plant is two-fold: (i) drastically cut down on the electricity bill from on-site power generation (ii) to save the fuel bills through recovery of the quality waste heat from power generation for process heating. In order to be effective, a CHP scheme must be placed at the right temperature level in the context of the overall process. Failure to do so might render a CHP venture worthless. This paper discusses the procedure for an effective implementation of a CHP scheme. An ethylbenzene process is used as a case study. A key visualization tool known as the grand composite curves is used to provide an overall picture of the process heat source and heat sink profiles. The grand composite curve, which is generated based on the first principles of Pinch Analysis enables the CHP scheme to be optimally placed within the overall process scenario. (Author)

  14. CHP Partnership Partners

    Science.gov (United States)

    Partners of EPA's Combined Heat and Power Partnership include federal, state, and local government agencies and private organizations such as energy users, energy service companies, CHP project developers and consultants, and equipment manufacturers.

  15. Estimation of small-scale hydroelectric power plant costs

    International Nuclear Information System (INIS)

    Santos, Afonso Henriques Moreira; Silva, Benedito Claudio da; Magalhaes, Ricardo Nogueira

    2010-01-01

    Changes in Brazilian energy scenario through last years such as increase of demand and search for clean and economically feasible renewable energy sources, has stimulated investors to small hydro power plants (SHP) sector. Such characteristics together with several economic incentives, legal and regulatory mechanisms also, have helped and stimulated building of new plants of this kind and have attracted a great number of investors to this sector. Study of costs analysis and feasibility of investments is a study which has been used since long time in SHP business market as several preliminary studies previous to civil project have significant costs which lead us to count with a feasibility analysis from the very beginning of studies, exactly what is suggested in the present methodology. Such feasibility analysis, in the common patterns where basic unit costs of each input remain outstanding, would be very complex due to great difficulty in obtaining information at initial phase of project. In this direction this study brings a contribution for investors as well as for designers of small hydro power plants since it outlines a link between physical and energetic characteristics of small hydro power plant in its total cost. Such link is based in available physical characteristics in initial phase of the project, making possible a previous comparison between arrangements of a central or even the comparison of return of investment between different plants. The resulting benefit being the possibility of choosing centrals with greater economic feasibility disregarding bad undertakings or arrangements with more expressive cost. Final result gives a better delay in return of investment, helps in power, arrangements more optimized and in saving time as well, reducing costs of undertakings. Due to large number of SHP arrangements, we chose for this study the most common in Brazil, plant of medium and large fall, shunting line balance chimney and low pressure conduit. (author)

  16. Survey of controllability in decentralized CHP plants. Optimal operation of priority production units; Kortlaegning af decentrale kraftvarmevaerkers regulerbarhed. Optimal drift af prioriterede anlaeg - Teknologisk grundlag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    The present report presents results from two closely related projects, carried out in parallel, under the PSO-F and U 2002. The one project is 'Survey of controllability in de-centralized combined heat and power plants' project number PSO 4724 and is fully reported here. The other project: 'Optimal operation of priority production units, project number PSO 4712, only the part project 'Technological foundations is reported here. In project 4724 the technical conditions that matter regarding controllability of electricity production in de-centralized heat and power stations are surveyed. In this context the term controllability means how fast and to which extent the load factors of the plants can be changed. Also, is has been investigated which options are available for improving the controllability, their potentials and estimates on required investments associated. The investigation covers CHP plants having a production capacity of up to 30 MW of electricity. The main part of the de-centralized CHP plants are based on spark ignited internal combustion engines (Otto engines). Most of these engines are fuelled by natural gas and a smaller part by biogas. A minor number are gas turbines fuelled by natural gas and steam turbines in industrial applications, waste incineration plants or in combined cycle power plants. The mapping has among others consisted of a number of visits on selected different types of plants including interview with people responsible for the daily operation. From these interviews data on the actual operating strategy and technical data have been provided. In addition suppliers of engines and other equipment involved have been contacted for technical information or recommendations regarding possible changes in operation strategy. Searching the Internet has been widely used for identification of technical investigations concerning e.g. operation and maintenance of relevant equipment. Finally, substantial statistical data from

  17. Optimal design of CHP-based microgrids: Multiobjective optimisation and life cycle assessment

    International Nuclear Information System (INIS)

    Zhang, Di; Evangelisti, Sara; Lettieri, Paola; Papageorgiou, Lazaros G.

    2015-01-01

    As an alternative to current centralised energy generation systems, microgrids are adopted to provide local energy with lower energy expenses and gas emissions by utilising distributed energy resources (DER). Several micro combined heat and power technologies have been developed recently for applications at domestic scale. The optimal design of DERs within CHP-based microgrids plays an important role in promoting the penetration of microgrid systems. In this work, the optimal design of microgrids with CHP units is addressed by coupling environmental and economic sustainability in a multi-objective optimisation model which integrates the results of a life cycle assessment of the microgrids investigated. The results show that the installation of multiple CHP technologies has a lower cost with higher environmental saving compared with the case when only a single technology is installed in each site, meaning that the microgrid works in a more efficient way when multiple technologies are selected. In general, proton exchange membrane (PEM) fuel cells are chosen as the basic CHP technology for most solutions, which offers lower environmental impacts at low cost. However, internal combustions engines (ICE) and Stirling engines (SE) are preferred if the heat demand is high. - Highlights: • Optimal design of microgrids is addressed by coupling environmental and economic aspects. • An MILP model is formulated based on the ε-constraint method. • The model selects a combination of CHP technologies with different technical characteristics for optimum scenarios. • The global warming potential (GWP) and the acidification potential (AP) are determined. • The output of LCA is used as an input for the optimisation model

  18. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  19. Project final report: Energetic planning focusing small scale hydroelectric power plants; Relatorio final. Projeto planejamento energetico com enfase em pequenas centrais hidreletricas

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Yara dos Santos

    1994-12-31

    Considering the increasing need for a better utilization of the Brazilian hydric resources, a deeper analysis of small scale hydroelectric power plants has been demanding. This work presents a case study of energetic planning based upon small scale hydroelectric power plants in a district of Amazon state - North Brazil 8 refs., 11 figs., 19 tabs.

  20. Contribution of wind power and CHP to exports from Western Denmark during 2000-2004

    International Nuclear Information System (INIS)

    Mignard, D.; Harrison, G.P.; Pritchard, C.L.

    2007-01-01

    The experience of Denmark is used by the United Kingdom's anti-wind lobby to demonstrate that intermittency and inaccuracies in wind forecasting make wind power ineffective and expensive. A further assertion is that most of the power is 'unwanted' since up to 80% of it is exported. Here, available data for Danish energy production for 2000-2004 is used to assess the link between wind generation and exports and test the validity of these claims. Net exports in Western Denmark showed good correlation with wind production. However, they were more significantly correlated with the production from local combined heat and power (CHP) plants. In order to test the 80% export claim, a simple technique was devised to correlate and rank hourly net exports and generation from wind and local CHP. In the case where net exports were primarily attributed to (or blamed on) wind, 44-84% of annual wind production was deemed to be exported, with wind 'causing' 57-79% of net annual exports. For this extreme scenario, the percentage values are in line with those of critics. However, under the opposite extreme scenario in which exports are attributed to local CHP, 77-94% of exports were caused by CHP and only 4-32% of wind production was exported. Overall, this study shows that there is some degree of correlation between net exports and wind power, but that the claim that 80% is exported is unwarranted since it ignores the demonstrably stronger influence of local CHP. (author)

  1. Increasing the flexibility of operational scheduling for a large-scale CHP plant used for generating district heat and electricity in order to meet the varying market demands; Steigerung der Einsatzflexibilitaet einer grossen KWK-Anlage zur Fernwaerme- und Stromerzeugung gemaess aktueller Marktanforderungen

    Energy Technology Data Exchange (ETDEWEB)

    Meierer, Matthias; Krupp, Roland; Stork, Rolf [Grosskraftwerk Mannheim AG, Mannheim (Germany)

    2015-07-01

    The substantial changes in the structure of German power supply plants pose high demands on the flexibility of the operational scheduling of conventional thermal power plants. Grosskraftwerk Mannheim AG is a power plant company that is operating a plant for combined power and district heat generation. The paper describes some measures which have been taken to improve the plant's operational flexibility. In addition, the associated technical systems and their functions, as well as the state of ongoing projects are outlined. Special focus is placed on topics related to issues such as ''district-heat storage unit of the new unit 9, flexibility of operational scheduling, and efficient CHP plant operation''.

  2. New markets for small-scale hydro

    International Nuclear Information System (INIS)

    Maurer, E.A.

    1997-01-01

    The market for small and medium sized hydro-electric power plant is more attractive than ever. The boom in Europe has increasingly spread to the emerging countries, and here too small hydro plays an important ecological role. In addition to new plant rehabilitation of 'historical' plant is now a major factor. The last few years have seen a market shift from single machine components to complete plant and systems, requiring a strategy re-think on the part of larger companies. Following the influx of private capital into the power industry, business conditions have also undergone a thorough transformation. In place of 'fast money', hydro power offers the prospect of earning longer-term, sustainable money'. The term small-scale hydro-electric power (or simply 'small hydro') is used slightly differently depending on the country and market. Here, it is used to denote plant with turbines up to 10 MW. (Author)

  3. Watermill and Small-Scale Hydroelectric Power Plant Landscapes Assessed According to Ecological Aspects

    Directory of Open Access Journals (Sweden)

    Lilita Lazdāne

    2013-10-01

    Full Text Available Research of watermill and small-scale hydroelectric power plant (HPP landscapes in Latvia according to ecological aspects is a part of a more complex research. The aim of this research is to examine the existing situation of watermill and small-scale HPP landscapes in Latvia by applying the ecological assessment criteria, and then try to formulate a definition of common tendencies of the landscape character. This paper provides a landscape inventory matrix for research in the field stu­dies of landscape identification at the local planning level. The duration of the research was from 2010 to 2012. The research includes 42 territories starting with the three most densely developed areas in Latvia: in Latgale, Kurzeme and Vidzeme uplands distribution ranges. The research results reflect tendencies of the landscape features assessed according to the previously developed criteria of ecological aspects.

  4. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.

    Science.gov (United States)

    Zhang, Yifei; Kang, Jian

    2017-11-01

    The building of biomass combined heat and power (CHP) plants is an effective means of developing biomass energy because they can satisfy demands for winter heating and electricity consumption. The purpose of this study was to analyse the effect of the distribution density of a biomass CHP plant network on heat utilisation efficiency in a village-town system. The distribution density is determined based on the heat transmission threshold, and the heat utilisation efficiency is determined based on the heat demand distribution, heat output efficiency, and heat transmission loss. The objective of this study was to ascertain the optimal value for the heat transmission threshold using a multi-scheme comparison based on an analysis of these factors. To this end, a model of a biomass CHP plant network was built using geographic information system tools to simulate and generate three planning schemes with different heat transmission thresholds (6, 8, and 10 km) according to the heat demand distribution. The heat utilisation efficiencies of these planning schemes were then compared by calculating the gross power, heat output efficiency, and heat transmission loss of the biomass CHP plant for each scenario. This multi-scheme comparison yielded the following results: when the heat transmission threshold was low, the distribution density of the biomass CHP plant network was high and the biomass CHP plants tended to be relatively small. In contrast, when the heat transmission threshold was high, the distribution density of the network was low and the biomass CHP plants tended to be relatively large. When the heat transmission threshold was 8 km, the distribution density of the biomass CHP plant network was optimised for efficient heat utilisation. To promote the development of renewable energy sources, a planning scheme for a biomass CHP plant network that maximises heat utilisation efficiency can be obtained using the optimal heat transmission threshold and the nonlinearity

  5. Experimental study on a project with CHP system basing on absorption cycles

    International Nuclear Information System (INIS)

    Sun, Jian; Fu, Lin; Sun, Fangtian; Zhang, Shigang

    2014-01-01

    A new heat recovery system for the CHP (combined heating and power) is presented, and HRU (heat recovery unit) and AHE (absorption heat exchanger) are invented to improve the total energy efficiency of the conventional CHP system by more than 20%, which are installed at the thermal power plant and the heating substation separately. The HRU could recover the low grade heat of exhausted steam from the turbine directly, and the AHE could decrease the temperature of back water of primary pipe to a lower temperature than that of secondary pipe without changing the flow rate of secondary pipe. A large demonstration project employing this technology has been built in Datong of China. And experimental results of HRU and AHE are presented to evaluate this system. - Highlights: • The total energy efficiency of CHP could by increased by more than 20%. • Temperature of back water of primary pipe could be lower than that of secondary pipe. • Heating capacity of primary pipe could be increased significantly. • Low grade heat of exhausted steam from turbine could be recovered directly

  6. Marketing opportunities for CHP electricity in a virtual power plant. Direct and indirect marketing of flexibility; Vermarktungschancen fuer KWK-Strom im virtuellen Kraftwerk. Direkte und indirekte Flexibilitaetsvermarktung

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Achim; Baumgart, Bastian [Trianel GmbH, Aachen (Germany). Abt. Virtuelle Kraftwerke

    2013-07-15

    The increasingly fluctuating feed-in of electricity by means of a rapid expansion of renewable energies results in an increasing demand for flexible performance for the regulation of production and consumption. An important part of the necessary flexibility could be provided by CHP plants. Their potential of flexibility is not always fully exploited.

  7. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance.

    Science.gov (United States)

    Li, Cuiling; Lv, Jian; Zhao, Xin; Ai, Xinghui; Zhu, Xinlei; Wang, Mengcheng; Zhao, Shuangyi; Xia, Guangmin

    2010-09-01

    The plant response to abiotic stresses involves both abscisic acid (ABA)-dependent and ABA-independent signaling pathways. Here we describe TaCHP, a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene extracted from bread wheat (Triticum aestivum), is differentially expressed during abiotic stress between the salinity-sensitive cultivar Jinan 177 and its tolerant somatic hybrid introgression cultivar Shanrong No.3. TaCHP expressed in the roots of seedlings at the three-leaf stage, and the transcript localized within the cells of the root tip cortex and meristem. TaCHP transcript abundance was higher in Shanrong No.3 than in Jinan 177, but was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA. When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performance in the face of salinity stress was improved, and the ectopic expression of TaCHP in Arabidopsis (Arabidopsis thaliana) also improved the ability of salt tolerance. The expression level of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABI1) was raised in the transgenic lines in the presence of salinity stress, while that of AtMYB15, AtABA2, and AtAAO3 was reduced in its absence. The presence in the upstream region of the TaCHP open reading frame of the cis-elements ABRE, MYBRS, and MYCRS suggests that it is a component of the ABA-dependent and -independent signaling pathways involved in the plant response to abiotic stress. We suggest that TaCHP enhances stress tolerance via the promotion of CBF3 and DREB2A expression.

  8. Reducing the network load and optimization of the economic efficiency of CHP plants by forecast-guided control; Verringerung der Netzbelastung und Optimierung der Wirtschaftlichkeit von KWK-Anlagen durch prognosegefuehrte Steuerung

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Daniel; Adelhardt, Stefan [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Sensorik; beECO GmbH, Erlangen (Germany)

    2012-07-01

    Heat-guided combined heat and power (CHP) plants often cause large compensation energy amounts, additional costs to the operator respectively and another burden on the parent network. The balance energy is caused by errors in the production forecast whose quality heavily depends on the heat load performance. This paper identifies the forecasting problems with heat-guided CHP and reveals how the accompanying cost and the network burden can be reduced. This is achieved by an improvement of the forecast in conjunction with a forecast-guided control without affecting the heat supply. In addition, an outlook on further measures to the earnings with the system is presented. (orig.)

  9. The impact of small scale cogeneration on the gas demand at distribution level

    International Nuclear Information System (INIS)

    Vandewalle, J.; D’haeseleer, W.

    2014-01-01

    Highlights: • Impact on the gas network of a massive implementation of cogeneration. • Distributed energy resources in a smart grid environment. • Optimisation of cogeneration scheduling. - Abstract: Smart grids are often regarded as an important step towards the future energy system. Combined heat and power (CHP) or cogeneration has several advantages in the context of the smart grid, which include the efficient use of primary energy and the reduction of electrical losses through transmission. However, the role of the gas network is often overlooked in this context. Therefore, this work presents an analysis of the impact of a massive implementation of small scale (micro) cogeneration units on the gas demand at distribution level. This work shows that using generic information in the simulations overestimates the impact of CHP. Furthermore, the importance of the thermal storage tank capacity on the impact on the gas demand is shown. Larger storage tanks lead to lower gas demand peaks and hence a lower impact on the gas distribution network. It is also shown that the use of an economically led controller leads to similar results compared to classical heat led control. Finally, it results that a low sell back tariff for electricity increases the impact of cogeneration on the gas demand peak

  10. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator.

    Science.gov (United States)

    Kuroda, Masaharu; Ikenaga, Sachiko

    2015-01-01

    We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.

  11. Stockholm CHP potential - An opportunity for CO2 reductions?

    International Nuclear Information System (INIS)

    Danestig, Maria; Gebremehdin, Alemayehu; Karlsson, Bjoern

    2007-01-01

    The potential for combined heat and power (CHP) generation in Stockholm is large and a total heat demand of about 10 TWh/year can be met in a renewed large district heating system. This model of the Stockholm district heating system shows that CHP generation can increase from 8% in 2004 to 15.5% of the total electricity generation in Sweden. Increased electricity costs in recent years have awakened an interest to invest in new electricity generation. Since renewable alternatives are favoured by green certificates, bio-fuelled CHP is most profitable at low electricity prices. Since heat demand in the district heating network sets the limit for possible electricity generation, a CHP alternative with a high electricity to heat ratio will be more profitable at when electricity prices are high. The efficient energy use in CHP has the potential to contribute to reductions in carbon dioxide emissions in Europe, when they are required and the European electricity market is working perfectly. The potential in Stockholm exceeds Sweden's undertakings under the Kyoto protocol and national reduction goals. (author)

  12. CHP expansion strategy in North Rhine-Westphalia. A blueprint for other regions

    International Nuclear Information System (INIS)

    Holzapfel, Dominik; Schneider, Sabine

    2015-01-01

    The North Rhine-Westphalian state government intends to increase the share of combined heat and power (CHP) generation to at least 25 % by 2020. Since 2013, the campaign ''CHP.NRW - Power Meets Heat'' (''KWK.NRW - Strom trifft Waerme'') of the EnergyAgency.NRW, is has been running on behalf of the NRW Climate Protection Ministry, to publicise this technology and to promote its expansion. The campaign accompanies the State Government's CHP Stimulus Programme. The EnergyAgency.NRW has organised companies and research institutions, associations and interest groups under the umbrella of ''CHP.NRW - Power Meets Heat'', aiming at co-ordinated and intensified activities in the field of combined heat and power generation. The target of the initial-project ''roadmap/CHP.NRW'' of the ''Virtual Institute / CHP.NRW'' is to develop a guideline for the application and optimisation of CHP-systems.

  13. Micro-CHP Systems for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the

  14. Biomass CHP Catalog of Technologies

    Science.gov (United States)

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  15. Evaluation of the impact of the liberalisation of the European electricity market on the CHP, District heating and cooling sector; 'Save CHP/DHC'. Final report

    International Nuclear Information System (INIS)

    2000-08-01

    Improved energy efficiency will play a key role in meeting the EU Kyoto target economically. In addition to a significant positive environmental impact, improved energy efficiency will lead to a more sustainable energy policy and enhanced security of supply. The study: 1) Identifies and evaluates parameters and conditions which in relation to the liberalisation of the electricity market will have an impact on the CHP/DHC sector in EU15 and Poland. 2) Establishes an information base on CHP/DHC systems in EU15 and Poland. 3) Analyses the CHP/DHC sector and its ability to meet changing market conditions. 4) Assesses the effect of the liberalised electricity market on electricity production in relation to CHP/district heating and cooling. 5) Identifies threats for the viability of CHP/DHC in a liberalised market and evaluates means and measures to overcome such threats. The study brings forward the goals and commitments in respect of European energy and environmental policy and gives an overview of the present and expected future framework in which CHP/DHC is to operate. The study evaluates the viability of the sector at an overall level and for different groups/categories of CHP/DHC systems in different countries. The effects of existing or proposed national public measures are analysed. The analyses are essential to decision makers in the transition process towards a fully liberalised market. Recognised uncertainties in the market during the transition period may cause either a temporary or a permanent recession for the CHP/DHC sector. Improved understanding and recognition of threats and opportunities is important to all actors just now. The study can be considered a first step of a process to create a market situation, where the energy customers can make their choices under competition rules and where environmentally friendly and efficient CHP and DHC is considered an attractive business opportunity in competition with other energy supplies. (EHS)

  16. Optimal Design and Operation of A Syngas-fuelled SOFC Micro-CHP System for Residential Applications in Different Climate Zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Liso, Vincenzo; Zhao, Yingru

    2013-01-01

    heat-to-power load ratio. Therefore, the aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability of the micro-CHP to cover the heat and electricity demand of a 70m2...... demand. Numerical simulations are conducted in Matlab environment. System design trade-offs are discussed to determine the optimal match between the energy demand of the household for different climates across China and the energy supply of the micro-CHP during the whole year. Moreover, criteria...

  17. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems

    DEFF Research Database (Denmark)

    Chen, Min; Lund, Henrik; Rosendahl, Lasse

    2010-01-01

    benefits, together with the environmental impact of this deployment, will then be estimated. By using the Danish thermal energy system as a paradigm, this paper will consider the TEG application to district heating systems and power plants through the EnergyPLAN model, which has been created to design......High efficiency thermoelectric generators (TEG) can recover waste heat from both industrial and private sectors. Thus, the development and deployment of TEG may represent one of the main drives for technological change and fuel substitution. This paper will present an analysis of system efficiency...... configurations for combustion systems. The feasible deployment of TEG in various CHP plants will be examined in terms of heat source temperature range, influences on CHP power specification and thermal environment, as well as potential benefits. The overall conversion efficiency improvements and economic...

  18. Intensive land use drives small-scale homogenization of plant- and leafhopper communities and promotes generalists.

    Science.gov (United States)

    Chisté, Melanie N; Mody, Karsten; Kunz, Gernot; Gunczy, Johanna; Blüthgen, Nico

    2018-02-01

    The current biodiversity decline through anthropogenic land-use not only involves local species losses, but also homogenization of communities, with a few generalist species benefitting most from human activities. Most studies assessed community heterogeneity (β-diversity) on larger scales by comparing different sites, but little is known about impacts on β-diversity within each site, which is relevant for understanding variation in the level of α-diversity, the small-scale distribution of species and associated habitat heterogeneity. To obtain our dataset with 36,899 individuals out of 117 different plant- and leafhopper (Auchenorrhyncha) species, we sampled communities of 140 managed grassland sites across Germany by quantitative vacuum suction of five 1 m 2 plots on each site. Sites differed in land-use intensity as characterized by intensity of fertilization, mowing and grazing. Our results demonstrate a significant within-site homogenization of plant- and leafhopper communities with increasing land-use intensity. Correspondingly, density (- 78%) and γ-diversity (- 35%) declined, particularly with fertilization and mowing intensity. More than 34% of plant- and leafhopper species were significant losers and only 6% were winners of high land-use intensity, with abundant and widespread species being less affected. Increasing land-use intensity adversely affected dietary specialists and promoted generalist species. Our study emphasizes considerable, multifaceted effects of land-use intensification on species loss, with a few dominant generalists winning, and an emerging trend towards more homogenized assemblages. By demonstrating homogenization for the first time within sites, our study highlights that anthropogenic influences on biodiversity even occur on small scales.

  19. Multi-criteria evaluation for CHP system options

    International Nuclear Information System (INIS)

    Pilavachi, P.A.; Roumpeas, C.P.; Minett, S.; Afgan, N.H.

    2006-01-01

    Several Combined Heat and Power (CHP) system options have been considered for evaluation with respect to the end-user requirements. These included Internal Combustion Engines (Otto and Diesel), Gas Turbines, Steam Turbines and Combined Cycles covering a wide range of electrical output. Data have been obtained from literature and the CHP systems have been evaluated using different criteria such as overall efficiency, investment cost, fuel cost, electricity cost, heat cost, CO 2 production and footprint. A multi-criteria method is used with an agglomeration function based on the statistical evaluation of weight factors. The technical, economic and social aspects of each system have been evaluated in an integrated manner and the results have been compared by means of the Sustainability Index. Based on the above criteria and depending on the user requirements, the best CHP system options have been established

  20. CHP systems to save money and cut carbon.

    Science.gov (United States)

    Hopkins, Ian

    2014-10-01

    According to Ian Hopkins, a director of ENER-G Combined Power--which has delivered more than 50 CHP-led energy services contracts within the healthcare sector, having, for the past 30 years, designed and manufactured CHP systems at its global headquarters and R&D centre in Salford--'the energy cost and carbon-saving benefits of combined heat and power are difficult to match where there is a large heating/cooling demand over extended periods'. In this article, he explains how hospitals and other busy healthcare facilities thus 'make ideal bedfellows' for CHP, and outlines the key criteria and considerations, such as sizing, for healthcare engineers, when looking to specify such a system.

  1. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo

    2014-01-01

    under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability...... of the micro-CHP to cover the heat and electricity demand of a 70 m2 single-family apartment with an average number of occupants of 3 is evaluated. A detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. System design trade-offs are discussed...

  2. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    Energy Technology Data Exchange (ETDEWEB)

    Mago, Pedro [Mississippi State Univ., Mississippi State, MS (United States); Newell, LeLe [Mississippi State Univ., Mississippi State, MS (United States)

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  3. Experimental results and thermodynamic analysis of a natural gas small scale cogeneration plant for power and refrigeration purposes

    International Nuclear Information System (INIS)

    Bazzo, Edson; Nacif de Carvalho, Alvaro; Matelli, José Alexandre

    2013-01-01

    In this work, experimental results are reported for a small scale cogeneration plant for power and refrigeration purposes. The plant includes a natural gas microturbine and an ammonia/water absorption chiller fired by steam. The system was tested under different turbine loads, steam pressures and chiller outlet temperatures. An evaluation based on the 1st and 2nd Laws of Thermodynamics was also performed. For the ambient temperature around 24 °C and microturbine at full load, the plant is able to provide 19 kW of saturated steam at 5.3 bar (161 °C), corresponding to 9.2 kW of refrigeration at −5 °C (COP = 0.44). From a 2nd law point-of-view, it was found that there is an optimal chiller outlet temperature that maximizes the chiller exergetic efficiency. As expected, the microturbine presented the highest irreversibilities, followed by the absorption chiller and the HRSG. In order to reduce the plant exergy destruction, it is recommended a new design for the HRSG and a new insulation for the exhaust pipe. -- Highlights: • A small scale cogeneration plant for power and refrigeration is proposed and analyzed. • The plant is based on a microturbine and a modified absorption chiller. • The plant is analysed based on 1st and 2nd laws of thermodynamics. • Experimental results are found for different power and refrigeration conditions. • The plant proved to be technically feasible

  4. Fuzzy logic and its possibility using in automation of small-scale hydroelectric power plants regulation

    International Nuclear Information System (INIS)

    Puskajler, J.

    2004-01-01

    The paper explains how can computer understand and process inaccurate (indefinite) information. It is processing of terms like e.g. 'around in the middle of month' or 'not too big'. Fuzzy logic, fuzzy sets, operations with them, fuzzy rules and using of linguistics variables are explained. The possibilities of application of fuzzy systems in automation of regulation of small-scale hydro power plants are discussed. (author)

  5. The Hetex small-scale hydro plant

    International Nuclear Information System (INIS)

    Guentert, P.; Boller, F.; Wanner, A.

    2006-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the 400 kW small hydroelectric power plant (SHP) installed on the Aabach stream in Niederlenz, Switzerland. With a maximum water-flow of 4.5 m 3 /s, the turbine can produce about 1.5 GWh of electricity per year. In spring 2005, bearing damage necessitated substantial renovation to the turbine and the generator. This study examines the state of the rest of the plant noted during maintenance work. It also focuses on the feeding of the electricity produced into the grid, the effects of increased residual water-flow, the option of using the Hallwilersee lake as a buffer, upstream flood evacuation and the possibility of green electricity certification. The calculation of the amount of water available is discussed. Due to inconsistent data, a corrected flow-duration curve was used. For the local river authorities, the through passage for fish from the Aare river up to the Hallwilersee has a high priority. The Hetex SHP weir is one of nine barriers to a direct connection. The planning of a fish-pass to be built in 2006 is discussed

  6. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land: Case of Croatia

    International Nuclear Information System (INIS)

    Pfeifer, Antun; Dominković, Dominik Franjo; Ćosić, Boris; Duić, Neven

    2016-01-01

    Highlights: • Potential of unused agricultural land for biomass and fruit production is assessed. • Technical and energy potential of biomass from SRC and fruit pruning is calculated. • Economic feasibility of CHP plants utilizing biomass from SRC is presented for Croatia. • Sensitivity analysis and recommendations for shift toward feasibility are provided. - Abstract: In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused for food crops, represent significant potential for growing biomass that could be used for energy. This biomass could be used to supply power plants of up to 15 MW_e in accordance with heat demands of the chosen locations. The methodology for regional energy potential assessment was elaborated in previous work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10 PJ/year. The added value of fruit trees pruning biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost.

  7. An improved reactor system for small-scale fuel processing - the Optiformer concept

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Karlsson, Charlotte (Catator AB, Lund (Sweden))

    2008-08-15

    Catator AB (CAT) has evaluated a revised design of the previously described Ultraformer concept. In comparison to the original Ultraformer, the new reformer concept (Optiformer) shows enhanced performances with respect to thermo-mechanic durability and conversion efficiencies. The unit is also easy to manufacture and ordinary high-temperature steel alloys may be used. The new concept is based on a helix-shaped tubular heat-exchanger reactor designed by ICI Caldaie (ICI) fitted with CATs proprietary wire-mesh catalyst. The concept has currently been evaluated for production rates between 0.5 and 30 nm3/hr of hydrogen and this report describes a detailed study of a unit for small-scale CHP-applications. Such systems will involve a fuel processor together with a suitable fuel cell, e.g. a solid-oxide fuel cell (SOFC) or a high-temperature PEFC (HT-PEFC). The evaluations performed in this study indicate stable operation over a wide window of capacities with negligible emissions of hydrocarbons. Since it is possible to operate the redesigned unit at a higher temperature (>900 deg C) than the original Ultraformer unit (750- 800 deg C), the conversion degree is much higher for thermo-dynamical reasons. The redesigned unit contains all necessary structures for vaporization, recuperation, effect supply and gas purification in a highly integrated structure. Furthermore, the unit is equipped with an internal insulation and a cooling jacked to reduce the skin temperature of the unit. The reactor has undergone about 100 full thermal cycles without any thermo-mechanical issues or catalyst degradation. Natural gas and different kerosene qualities have so far been evaluated with respect to conversion degree and possible slip of hydrocarbons. The conversion degree at rated load (100%) was above 99%, which enable us to reach superior efficiencies. If the unit were to be used together with a SOFC, the WGS-step could be omitted, reducing the size and weight further from about 2.2 l

  8. ANALYSIS OF CHP POTENTIAL AT FEDERAL SITES

    Energy Technology Data Exchange (ETDEWEB)

    HADLEY, S.W.

    2002-03-11

    This document was prepared at the request of the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) under its Technical Guidance and Assistance and Project Financing Programs. The purpose was to provide an estimate of the national potential for combined heat and power (also known as CHP; cogeneration; or cooling, heating, and power) applications at federal facilities and the associated costs and benefits including energy and emission savings. The report provides a broad overview for the U.S. Department of Energy (DOE) and other agencies on when and where CHP systems are most likely to serve the government's best interest. FEMP's mission is to reduce the cost to and environmental impact of the federal government by advancing energy efficiency and water conservation, promoting the use of renewable energy, and improving utility management decisions at federal sites. FEMP programs are driven by its customers: federal agency sites. FEMP monitors energy efficiency and renewable energy technology developments and mounts ''technology-specific'' programs to make technologies that are in strong demand by agencies more accessible. FEMP's role is often one of helping the federal government ''lead by example'' through the use of advanced energy efficiency/renewable energy (EERE) technologies in its own buildings and facilities. CHP was highlighted in the Bush Administration's National Energy Policy Report as a commercially available technology offering extraordinary benefits in terms of energy efficiencies and emission reductions. FEMP's criteria for emphasizing a technology are that it must be commercially available; be proven but underutilized; have a strong constituency and momentum; offer large energy savings and other benefits of interest to federal sites and FEMP mission; be in demand; and carry sufficient federal market potential. As discussed in the report, CHP meets all

  9. Micro-CHP Technologies Roadmap: Meeting 21st Century Residential Energy Needs

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-12-01

    On June 11-12, 2003, at Greenbelt, Maryland, key stakeholders from industry, government agencies, universities, and others involved in combined heat and power and the residential buildings industry explores solutions to technical, institutional, and market barriers facing micro-combined heat and power systems (mCHP). Participants outlined a desired future for mCHP systems, identified specific interim technology cost and performance targets, and developed actions to achieve the interim targets and vision. This document, The Micro-CHP Technologies Roadmap, is a result of their deliberations. It outlines a set of actions that can be pursued by both the government and industry to develop mCHP appliances for creating a new approach for households to meet their energy needs.

  10. A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages

    International Nuclear Information System (INIS)

    He, Tianbiao; Ju, Yonglin

    2014-01-01

    The utilization of unconventional natural gas is still a great challenge for China due to its distribution locations and small reserves. Thus, liquefying the unconventional natural gas by using small-scale LNG plant in skid-mount packages is a good choice with great economic benefits. A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale plant in skid-mount packages has been proposed. It first designs a process configuration. Then, thermodynamic analysis of the process is conducted. Next, an optimization model with genetic algorithm method is developed to optimize the process. Finally, the flexibilities of the process are tested by two different feed gases. In conclusion, the proposed parallel nitrogen expansion liquefaction process can be used in small-scale LNG plant in skid-mount packages with high exergy efficiency and great economic benefits. - Highlights: • A novel design of parallel nitrogen expansion liquefaction process is proposed. • Genetic algorithm is applied to optimize the novel process. • The unit energy consumption of optimized process is 0.5163 kWh/Nm 3 . • The exergy efficiency of the optimized case is 0.3683. • The novel process has a good flexibility for different feed gas conditions

  11. CHP and District Cooling: An Assessment of Market and Policy Potential in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This report contains an assessment of India's CHP/DC status and recommendations for addressing barriers to allow India to meet its energy efficiency targets. Such barriers include a lack of governmental emphasis on CHP, the absence of a clear methodology for calculating CO2 emission reductions from CHP/DHC, and a tax and duty structure for CHP capital equipment that is not as attractive as for other renewable energy technologies.

  12. Thermodynamic Analysis of a Ship Power Plant Operating with Waste Heat Recovery through Combined Heat and Power Production

    Directory of Open Access Journals (Sweden)

    Mirko Grljušić

    2014-11-01

    Full Text Available The goal of this research is to study a cogeneration plant for combined heat & power (CHP production that utilises the low-temperature waste energy in the power plant of a Suezmax-size oil tanker for all heating and electricity requirements during navigation. After considering various configurations, a standard propulsion engine operating at maximum efficiency and a CHP Plant with R245fa fluid using a supercritical organic Rankine cycle (ORC is selected. All the ship heat requirements can be covered by energy of organic fluid after expansion in the turbine, except feeder-booster heating. Hence, an additional quantity of working fluid may be heated using an after Heat Recovery Steam Generator (HRSG directed to the feeder-booster module. An analysis of the obtained results shows that the steam turbine plant does not yield significant fuel savings. However, a CHP plant with R245fa fluid using supercritical ORC meets all of the demands for electrical energy and heat while burning only a small amount of additional fuel in HRSG at the main engine off-design operation.

  13. Optimization of Combine Heat and Power Plants in the Russian Wholesale Power Market Conditions

    Directory of Open Access Journals (Sweden)

    I. A. Chuchueva

    2015-01-01

    Full Text Available The paper concerns the relevant problem to optimize the combine heat and power (CHP plants in the Russian wholesale power market conditions. Since 1975 the CHP plants specialists faced the problem of fuel rate or fuel cost reduction while ensuring the fixed level of heat and power production. The optimality criterion was the fuel rate or fuel cost which has to be minimized. Produced heat and power was paid by known tariff. Since the power market started in 2006 the power payment scheme has essentially changed: produced power is paid by market price. In such condition a new optimality criterion the paper offers is a profit which has to be maximized for the given time horizon. Depending on the optimization horizon the paper suggests four types of the problem urgency, namely: long-term, mid-term, short-term, and operative optimization. It clearly shows that the previous problem of fuel cost minimization is a special case of profit maximization problem. To bring the problem to the mixed-integer linear programming problem a new linear characteristic curves of steam and gas turbine are introduced. Error of linearization is 0.6%. The formal statement of the problem of short-term CHP plants optimization in the market conditions is offered. The problem was solved with IRM software (OpenLinkInternational for seven power plants of JSC “Quadra”: Dyagilevskaya CHP, Kurskaya CHP-1, Lipetskaya CHP-2, Orlovskaya CHP, Kurskaya CHP NWR, Tambovskaya CHP, and Smolenskaya CHP-2.The conducted computational experiment showed that a potential profit is between 1.7% and 4.7% of the fuel cost of different CHP plants and depends on the power plant operation conditions. The potential profit value is 2–3 times higher than analogous estimations, which were obtained solving fuel cost minimization problem. The perspectives of the work are formalization of mid-term and long-term CHP plants optimization problem and development of domestic software for the new problem

  14. CHP as a Boiler Replacement Opportunity (Webinar) – April 30, 2013

    Science.gov (United States)

    This webinar provides information about the benefits of replacing a boiler with a CHP system, describes CHP project analysis and delivery processes, and highlights a case study at Penn State University.

  15. Performance and cost results from a DOE Micro-CHP demonstration facility at Mississippi State University

    International Nuclear Information System (INIS)

    Giffin, Paxton K.

    2013-01-01

    Highlights: ► We examine the cost and performance results of a Micro-CHP demonstration facility. ► Evaluation includes both summer and winter performance. ► Evaluation in comparison to a conventional HVAC system using grid power. ► Influence of improperly sized equipment. ► Influence of natural gas prices on the viability of CHP projects using that fuel. - Abstract: Cooling, Heating, and Power (CHP) systems have been around for decades, but systems that utilize 20 kW or less, designated as Micro-CHP, are relatively new. A demonstration site has been constructed at Mississippi State University (MSU) to show the advantages of these micro scale systems. This study is designed to evaluate the performance of a Micro-CHP system as opposed to a conventional high-efficiency Heating, Ventilation, and Air Conditioning (HVAC) system that utilizes electrical power from the existing power grid. Raw data was collected for 7 months to present the following results. The combined cycle efficiency from the demonstration site was averaged at 29%. The average combined boiler and engine cost was $1.8 h −1 of operation for heating season and $3.9 h −1 of operation for cooling season. The cooling technology used, an absorption chiller exhibited an average Coefficient of Performance (COP) of 0.27. The conventional high-efficiency system, during cooling season, had a COP of 4.7 with a combined cooling and building cost of $0.2 h −1 of operation. During heating mode, the conventional system had an efficiency of 47% with a fuel and building electrical cost of $0.28 h −1 of operation.

  16. Design of a Small Scale Pilot Biodiesel Production Plant and Determination of the Fuel Properties of Biodiesel Produced With This Plant

    Directory of Open Access Journals (Sweden)

    Tanzer Eryılmaz

    2014-09-01

    Full Text Available A small scale pilot biodiesel production plant that has a volume of 65 liters/day has been designed, constructed and tested. The plant was performed using oil mixture (50% wild mustard seed oil + 50% refined canola oil and methanol with sodium hydroxide (NaOH catalyst. The fuel properties of biodiesel indicated as density at 15oC (889.64 kg/m3, kinematic viscosity at 40oC (6.975 mm2/s, flash point (170oC, copper strip corrosion (1a, water content (499.87 mg/kg, and calorific value (39.555 MJ/kg, respectively.

  17. Results from tests of a Stirling engine and wood chips gasifier plant

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell; Werling, J.

    2002-01-01

    The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced....... Furthermore, the overall electric efficiency of the system can be improved. At the Technical University of Denmark a small CHP plant based on a Stirling engine and an updraft gasifier has been developed and tested successfully. The advantages of updraft gasifiers are the simplicity and that the amount...... of the Stirling engine reduces the problems with tar to a minor problem in the design of the burner. The Stirling engine, which has an electric power output of 35 kW, is specifically designed for utilisation of fuels with a content of particles. The gas burner for the engine is designed for low specific energy...

  18. Public and stakeholder perceptions of 2030 bioenergy scenarios for the Yorkshire and Humber region

    International Nuclear Information System (INIS)

    Upham, Paul; Shackley, Simon; Waterman, Holly

    2007-01-01

    This study develops contrasting 2030 bioenergy scenarios for the Yorkshire and Humber region of the UK, primarily for wood, and documents the associated opinions of policy stakeholders and members of the public with a practical interest in renewable energy. Use of the region's wood resource for small- and medium-sized CHP and heat plants was found to be more attractive to these groups than use of the same resource for large or small electric power plants. Key reasons mentioned by stakeholders and the informed public groups are the higher energetic efficiency of CHP and heat relative to electricity, and perceptions of better performance in terms of local employment, local environmental impact and associated social benefits. There was also a common feeling that small-scale electric power plants were, to date, less technologically proven

  19. The concept of system for chips production need to work demo CHP plant in company 'AGROSAVA' from Šimanovci

    Directory of Open Access Journals (Sweden)

    Dedić Aleksandar Đ.

    2014-01-01

    Full Text Available In this paper according to the calculation of chips productivity needs for gasification in the demo CHP plant for co-generation: electricity and heat, chippers were analyzed due to: the type of mobility, running for chipping and the method of delivering chips to temporary yard. The plant was planned to generate electricity power up to 200kWelec. First, in consideration were taken the chippers with medium capacity, which mainly served for chipping brushwood and leaves that remain after harvest plantations on mostly flat terrain and parks. Later, the comparative characteristics of the world's three largest manufacturers of machinery for the production of wood chips significantly larger amounts (up to 30m3/h were given. These chippers were particularly suitable for the higher density of crops and stationed yard, in which brushwood would be brought and chip. At the end, the types of convective dryers were analyzed that could be successfully used for drying wood chips (drum and pneumatic dryer and based on the calculation proposed the types of dryers that were available in the local market.

  20. A Study of a Diesel Engine Based Micro-CHP System

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP

  1. Screening of CHP Potential at Federal Sites in Select Regions of the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Energy Nexus Group, . .

    2002-02-25

    Combined Cooling Heat and Power (CHP) is a master term for onsite power generation technologies that sequentially produce electrical or mechanical energy and useful thermal energy. Some form of CHP has existed for more than 100 years and it is now achieving a greater level of acceptance due to an increasing need for reliable power service and energy cost management. Capturing and using the heat produced as a byproduct of generating electricity from fuel sources increases the usable energy that can be obtained from the original fuel source. CHP technologies have the potential to reduce energy consumption through increased efficiency--decreasing energy bills as well as pollution. The EPA recognizes CHP as a potent climate change mitigation measure. The U.S. Department of Energy (D.O.E.) Federal Energy Management Program (FEMP) is assisting Federal agencies to realize their energy efficiency goals. CHP is an efficiency measure that is receiving growing attention because of its sizable potential to provide efficiency, environmental, and reliability benefits. CHP therefore benefits the host facility, the electric infrastructure, and the U.S. society as a whole. This report and study seeks to make a preliminary inquiry into near term CHP opportunities for federal facilities in selected U.S. regions. It offers to help focus the attention of policy makers and energy facility managers on good candidate facilities for CHP. First, a ranked list of high potential individual sites is identified. Then, several classes of federal facilities are identified for the multiple opportunities they offer as a class. Recommendations are then offered for appropriate next steps for the evaluation and cost effective implementation of CHP. This study was designed to ultimately rank federal facilities in terms of their potential to take advantage of CHP economic and external savings in the near term. In order to best serve the purposes of this study, projections have been expressed in terms of

  2. Energy System Analysis of Large-Scale Integration of Wind Power

    International Nuclear Information System (INIS)

    Lund, Henrik

    2003-11-01

    The paper presents the results of two research projects conducted by Aalborg University and financed by the Danish Energy Research Programme. Both projects include the development of models and system analysis with focus on large-scale integration of wind power into different energy systems. Market reactions and ability to exploit exchange on the international market for electricity by locating exports in hours of high prices are included in the analyses. This paper focuses on results which are valid for energy systems in general. The paper presents the ability of different energy systems and regulation strategies to integrate wind power, The ability is expressed by three factors: One factor is the degree of electricity excess production caused by fluctuations in wind and CHP heat demands. The other factor is the ability to utilise wind power to reduce CO 2 emission in the system. And the third factor is the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50 per cent of the electricity demand is produced in CHP, a number of future energy systems with CO 2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and grid stability and investments in electric heating, heat pumps and heat storage capacity. Also the potential of energy management has been analysed. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power

  3. Analysis of a CHP plant in a municipal solid waste landfill in the South of Spain

    International Nuclear Information System (INIS)

    Chacartegui, Ricardo; Carvalho, Monica; Abrahão, Raphael; Becerra, José

    2015-01-01

    The most effective strategy to manage and treat solid urban residues, with the least environmental impact as well as lowest economic and energy costs, is a challenge for sustainability in current society, who actually pay for the final management of these residues. This manuscript analyzes the potential of biogas generation in an urban solid residue treatment plant, and the potential use for cogeneration in situ at the landfill. The objective is to identify the energy potential associated with the landfill and its potential use to accelerate the evaporation of leachate through the supply of heat, reducing the risks of exceeding the collection capacity of the leachate ponds. The change in legislation for generation within the special regime in Spain (2014) introduced a sudden change in the direction of energy policies, which affected significantly the profitability of these facilities. This manuscript analyzes the application of both legislations, previous (2007) and current (2014), for the case of a cogeneration system installed in this landfill. The results obtained indicate that even with a much more restrictive legislation in force, acceptable values are obtained for the evaluation of the investment – however, better results were obtained for the previous legislation that favored the special regime. The new regulation constrains the maximum and minimum annual operating hours for landfill cogeneration. It results in relevant periods with limited use of biogas for electricity generation. Biogas storage for delayed future consumption in the same installation and biogas selling for external use in boilers are proposed as options for this biogas in excess. They can reduce greenhouse gases emissions from the non-used biogas and can improve the economic results of the facility. - Highlights: • Analysis of biogas generation capacity in an existing landfill at South of Spain. • Analysis of the integration of gas engine for cogeneration. • CHP integration for

  4. Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste

    International Nuclear Information System (INIS)

    Mezzullo, William G.; McManus, Marcelle C.; Hammond, Geoff P.

    2013-01-01

    Highlights: ► Emissions from plant manufacture contributed little towards the lifecycle impacts. ► The use phase of the AD plant could have significant impacts. ► Production of biogas and fertiliser created significant impacts. ► The consequential displacement of kerosene showed a net-benefit. ► The study concluded that it is essential to cover the digestate storage tank. -- Abstract: This paper outlines the results of a comprehensive life cycle study of the production of energy, in the form of biogas, using a small scale farm based cattle waste fed anaerobic digestion (AD) plant. The life cycle assessment (LCA) shows that in terms of environmental and energy impact the plant manufacture contributes very little to the whole life cycle impacts. The results show that compared with alternative energy supply the production and use of biogas is beneficial in terms of greenhouse gases and fossil fuel use. This is mainly due to the replacement of the alternative, kerosene, and from fertiliser production from the AD process. However, these benefits come at a cost to ecosystem health and the production of respiratory inorganics. These were found to be a result of ammonia emissions during the production phase of the biogas. These damages can be significantly reduced if further emission control measures are undertaken.

  5. Biofiltration and electrochemical treatment for the production of service water from outflows of small-scaled sewage treatment plants; Biofiltration und elektrochemische Behandlung zur Brauchwassererzeugung aus Kleinklaeranlagenablaeufen

    Energy Technology Data Exchange (ETDEWEB)

    Ilian, Jens

    2010-12-14

    Up to the 1990s a mechanical partly biological wastewater treatment was performed at remote locations or collected in reservoirs without outflow. The currently valid legal regulations require a biological treatment of wastewater. Thus, biological small-scale sewage treatment plants experience a broad dissemination recently. Under this aspect, the author of the contribution under consideration reports on the bio filtration and electrochemical treatment in order to produce service water from outflows of small-scale sewage treatment plants. The author investigates the legal regulations, and supplements these regulations by own definitions and requirements on the consideration of a hygienic potential for damage. Additionally, investigations on the cleaning performance of properly operated small-scaled sewage treatment plants are performed. The hygienic risk potential as an inflow condition of a disinfection is determined.

  6. A novel design approach for small scale low enthalpy binary geothermal power plants

    International Nuclear Information System (INIS)

    Gabbrielli, Roberto

    2012-01-01

    Highlights: ► Off-design analysis of ORC geothermal power plants through the years and the days. ► Thermal degradation of the geothermal source reduces largely the plant performances. ► The plant capacity factor is low if the brine temperature is far from the design value. ► The performances through the life are more important than those at the design point. ► ORC geothermal power plants should be designed with the end-life brine temperature. - Abstract: In this paper a novel design approach for small scale low enthalpy binary geothermal power plants is proposed. After the suction, the hot water (brine) superheats an organic fluid (R134a) in a Rankine cycle and, then, is injected back underground. This fact causes the well-known thermal degradation of the geothermal resource during the years. Hence, the binary geothermal power plants have to operate with conditions that largely vary during their life and, consequently, the most part of their functioning is executed in off-design conditions. So, as the novel approach here proposed, the design temperature of the geothermal resource is selected between its highest and lowest values, that correspond to the beginning and the end of the operative life of the geothermal power plant, respectively. Hence, using a detailed off-design performance model, the optimal design point of the geothermal power plant is evaluated maximizing the total actualized cash flow from the incentives for renewable power generation. Under different renewable energy incentive scenarios, the power plant that is designed using the lowest temperature of the geothermal resource always results the best option.

  7. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    Science.gov (United States)

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright

  8. Technical and economical analyses of combined heat and power generation from distillers grains and corn stover in ethanol plants

    International Nuclear Information System (INIS)

    Wang, Lijun; Hanna, Milford A.; Weller, Curtis L.; Jones, David D.

    2009-01-01

    The technical and economical feasibilities of a novel integrated biomass gasification and fuel cell combined heat and power (CHP) system were analyzed for supplying heat and power in an ethanol plant from distillers grains (DG) and corn stover. In a current dry-grind plant with an annual production capacity of 189 million liters (50 million gallons) of ethanol, the energy cost for ethanol production using natural gas at a price of 6.47 US$/GJ for processing heat and commercial grid at a price of 0.062 US$/kWh for electrical power supply was 0.094 US$/liter. If the integrated CHP system using wet DG with 64.7% moisture on a wet basis at 105 US$/dry tonne and corn stover with 20% moisture at 30 US$/dry tonne as feedstock was used to supply heat and power in the ethanol plant, the energy costs for ethanol production would be 0.101 US$/liter and 0.070 US$/liter, which are 107% and 75% of the current energy cost for ethanol production, respectively. To meet the demand of processing heat and power in the ethanol plant, the integrated CHP system required 22.1 dry tonnes of corn stover with 20% moisture or 14.5 dry tonnes of DG with 64.7% moisture on a wet basis per hour, compared with the available 18.8 dry tonnes of DG per hour in the ethanol plant. High-value chemicals such as policosanols, phytosterols and free fatty acids can be extracted out of the raw DG to reduce the cost of DG as a feedstock of the integrated CHP system. The energy cost for ethanol production using the integrated CHP system with corn stover and DG as the feedstock for supplying heat and power can be reduced further by increasing ethanol production scale, decreasing the moisture content of biomass feedstock, and decreasing thermal energy to electricity output ratio of the CHP system. In terms of the energy efficiency of the integrated CHP system and the energy cost for ethanol production, the moisture content of the feedstock going into the integrated CHP should be lower than 70% on a wet basis

  9. Elimination of restraints on the propagation of combined heat and power (CHP) generation systems in Switzerland; Beseitigung von Hemmnissen bei der Verbreitung von Waermekraftkopplung (WKK) in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, S.; Landis, F. [Interface Politikstudien Forschung Beratung, Luzern (Switzerland); Lienhard, A.; Marti Locher, F. [Universitaet Bern, Kompetenzzentrum fuer Public Management (KPM), Bern (Switzerland); Krummenacher, S. [Enerprice Partners AG, Technopark Luzern, Root Laengenbold (Switzerland)

    2009-04-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the results of study initiated by the SFOE that was to investigate the reasons for the low level of proliferation of CHP technology in Switzerland. The two main questions asked - which factors inhibit the use of CHP in particular application areas and which energy-policy measures can remove such obstacles - are discussed. The use of CHP in various areas of application from waste incineration plants through to units used in residential buildings is analysed and commented on. Recommendations on measures that can be taken to enhance the use of CHP are discussed. Three strategy variants available to the public services area are presented and discussed. It is noted that a consensus between players in the technical and political areas is necessary

  10. Small-scale hybrid plant integrated with municipal energy supply system

    International Nuclear Information System (INIS)

    Bakken, B.H.; Fossum, M.; Belsnes, M.M.

    2001-01-01

    This paper describes a research program started in 2001 to optimize environmental impact and cost of a small-scale hybrid plant based on candidate resources, transportation technologies and conversion efficiency, including integration with existing energy distribution systems. Special attention is given to a novel hybrid energy concept fuelled by municipal solid waste. The commercial interest for the model is expected to be more pronounced in remote communities and villages, including communities subject to growing prosperity. To enable optimization of complex energy distribution systems with multiple energy sources and carriers a flexible and robust methodology must be developed. This will enable energy companies and consultants to carry out comprehensive feasibility studies prior to investment, including technological, economic and environmental aspects. Governmental and municipal bodies will be able to pursue scenario studies involving energy systems and their impact on the environment, and measure the consequences of possible regulation regimes on environmental questions. This paper describes the hybrid concept for conversion of municipal solid waste in terms of energy supply, as well as the methodology for optimizing such integrated energy systems. (author)

  11. Study on the combustion behavior of radiolytically generated hydrogen explosion in small scale annular vessels at the reprocessing plant

    International Nuclear Information System (INIS)

    Kudo, Tatsuya; Tamauchi, Yoshikazu; Arai, Nobuyuki; Dai, Wenbin; Sakaihara, Motohiro; Kanehira, Osamu

    2017-01-01

    Hydrogen is generated by radiolysis of water, etc. in process vessels in reprocessing plant. Usually, the hydrogen is scavenged by compressed air into vessels to prevent hydrogen explosion. When an earthquake beyond design based occurs, for example, the compressed air may stop and the hydrogen starts accumulating in the vessels, and under this condition, an ignition source might set off hydrogen explosion. Therefore, the explosion derived by the radiolytically generated hydrogen is designated as one of severe accidents on Rokkasho Reprocessing Plant in new regulatory requirements. It is important to understand the combustion behavior of hydrogen explosion inside a vessel for consideration of safety measures against the severe accident, because the influences of detonation are not considered in the design basis of vessels. Especially, the investigations about the combustion behavior which considered influence of interior obstacles inside the vessel are not performed yet. In order to investigate the combustion behavior comprehensively, explosion experiment, combustion analysis and structural analysis are carried out using the representative vessels (small scale annular vessel, small scale plate vessel, large scale annular vessel and large scale cylindrical vessel) selected from Rokkasho Reprocessing Plant. In this paper, the results of experiments and analysis of small scale annular vessel (as one of representative vessel, imitated a pulsed column in the reprocessing plant) are reported. As imitated vessels, three vessels are manufactured with different interior obstacle arrangements as follows, A) cylindrical obstacles are faithfully reproduced and are arranged based on the actual vessel, B) cylindrical obstacles are arranged more densely than the actual vessel, and C) there are no obstacles inside the vessel. Experiments of hydrogen explosion are performed under condition of stoichiometric hydrogen-air ratio (premixed hydrogen-air is used). As a result of

  12. A study on electricity export capability of the μCHP system with spot price

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2009-01-01

    of the muCHP unit, which influence the export capability of muCHP system, is firstly carried out in the intraday case study, followed by the annual case study which explores the annual system performance. The results show that the electricity export capability of a muCHP system is closely related to its...

  13. Micro CHP as a new business model. Trianel distribution system decentralised production; Mikro-BHKW als neues Geschaeftsmodell. Trianel-Netzwerk Dezentrale Erzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Michel [Trianel GmbH, Aachen (Germany)

    2013-04-29

    About four years ago, an energy distribution company in Hamburg (Federal Republic of Germany) reported on mini and micro CHP in the media. When it comes to a decentralized production of electricity and heat, however public utilities are the perfect partner: the decentralized power generation in flexible adjustable combined heat and power plants offers the opportunity to provide highly efficient heat and power directly at the place of consumption. In addition, regional and municipal utilities score with the theme mini and micro CHP for their customers due to the support on the way to more energy efficiency.

  14. Cost-benefit analysis for combined heat and power plant

    International Nuclear Information System (INIS)

    Sazdovski, Ace; Fushtikj, Vangel

    2004-01-01

    The paper presents a methodology and practical application of Cost-Benefit Analysis for Combined Heat and Power Plant (Cogeneration facility). Methodology include up-to-date and real data for cogeneration plant in accordance with the trends ill development of the CHP technology. As a case study a CHP plant that could be built-up in Republic of Macedonia is analyzed. The main economic parameters for project evaluation, such as NPV and IRR are calculated for a number of possible scenarios. The analyze present the economic outputs that could be used as a decision for CHP project acceptance for investment. (Author)

  15. design of a small scale wind generator for low wind speed areas

    African Journals Online (AJOL)

    USER

    Most small scale level wind turbine generators are directly driven system, variable speed, and partially ... the best solutions for small-scale wind power plants. Low-speed multi-pole PM generators ..... Designs of the Same Magnet Structure for.

  16. Economic performance of small scale hydroelectric power plants: `Results center`; Desempenho economico de PCH`s: centro de resultados

    Energy Technology Data Exchange (ETDEWEB)

    Cipoli, Jose Adolfo; Silva, Jose Paulo Mendes [Companhia Paulista de Forca e Luz (CPFL), Campinas, SP (Brazil)

    1995-12-31

    This work presents the experience concerning the creation of an imaginary company named `CPFL Generator`, composed by 20 small scale hydroelectric power plants. The main idea of the project is to analyse the economic performance of each unit individually and the group as a company, enabling to a better quality management 3 refs., 1 fig., 7 tabs.

  17. The Design, Construction, and Experimental Evaluation of a Compact Thermoacoustic-Stirling Engine Generator for Use in a micro-CHP Appliance

    Science.gov (United States)

    Wilcox, Douglas A., Jr.

    Micro combined heat and power or micro-CHP is the simultaneous generation of useful heat and electricity on a residential scale. The heat and electricity are produced at the point of use, avoiding the distribution losses associated with a centralized power plant. These appliances combine a conventional gas-fired condensing boiler with an electric power module capable of generating electricity from the heat of combustion. Currently, the leading power modules for micro-CHP appliances are free-piston Stirling engines (FPSEs) which can generate 1050 watts of electricity at a thermal-to-electric efficiency of 26%.[1] These external combustion engines have been under development for the last 25 years, with FPSE micro-CHP appliances only recently being introduced to the commercial market. Publications by developers assert unlimited service life and high efficiency, with low noise and emissions; but despite these claims, the actual reliability and cost of manufacturing has prevented their successful mass-market adoption. A Thermoacoustic-Stirling Engine Generator or TaSEG is one possible alternative to FPSE's. A TaSEG uses a thermoacoustic engine, or acoustic heat engine, which can efficiently convert high temperature heat into acoustic power while maintaining a simple design with fewer moving parts than traditional FPSE's. This simpler engine is coupled to an electrodynamic alternator capable of converting acoustic power into electricity. This thesis outlines the design, construction, and experimental evaluation of a TaSEG which is appropriate for integration with a gas burner inside of a residential micro- CHP appliance. The design methodology is discussed, focusing on how changes in the geometry affected the predicted performance. Details of its construction are given and the performance of the TaSEG is then outlined. The TaSEG can deliver 132 watts of electrical output power to an electric load with an overall measured thermal-to-electric (first law) efficiency of eta

  18. MICRO-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  19. Management of fluctuations in wind power and CHP comparing two possible Danish strategies

    International Nuclear Information System (INIS)

    Lund, H.; Clark, W.W.

    2002-01-01

    Both CHP (combined heat and power production) and wind power are important elements of Danish energy policy. Today, approximately 50% of both the Danish electricity and heat demand are produced in CHP and more than 15% of the electricity demand is produced by wind turbines. Both technologies are essential for the implementation of Danish climate change response objectives, and both technologies are intended for further expansion in the coming decade. Meanwhile, the integration of CHP and wind power is subject to fluctuations in electricity production. Wind turbines depend on the wind, and CHP depends on the heat demand. This article discusses and analyses two different national strategies for solving this problem. One strategy, which is the current official government policy known as the export strategy, proposes to take advantage of the Nordic and European markets for selling and buying electricity. In this case, surplus electricity from wind power and CHP simply will be sold to neighbouring countries. Another strategy, the self-supply strategy, runs the CHP units to meet both demand and the fluctuations in the wind scheduling. In this case, investments in heat storages are necessary and heat pumps have to be added to the CHP units. Based on official Danish energy policy and energy plans, this article quantifies the problem for the year 2015 in terms of the amount of surplus electricity, and investments in heat pumps, etc. needed to solve the problem are calculated. Based on these results between the two different strategies, the conclusion is that the self-supply strategy is recommended over the official export strategy. (author)

  20. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    International Nuclear Information System (INIS)

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-01-01

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications

  1. Scaling effects concerning the analysis of small break experiments

    International Nuclear Information System (INIS)

    Austregesilo Filho, H.

    1985-01-01

    Some scaling effects related to the experimental facilities as well as to the analytical models used for the design and safety analysis of nuclear power plants are discussed or the basis of phenomena expected to occur during small-break loss - of - coolant accidents. The results of isolated small-break experiments should not be directly extrapolated to the safety analysis of commercial reactors, due to the scaling distortions inherent to the test facilities. With respect to the analytical models used to simulate thermohydraulic processes in experimental facilities, their eventual dependence relative to the system dimension should be examined in order to assess their applicability to the safety analysis of commercial power plants. (Author) [pt

  2. Future market relevance of CHP installations with electrical ratings from 1 to 1000 kW

    International Nuclear Information System (INIS)

    Eicher, H.; Rigassi, R.

    2003-12-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the future market relevance of combined heat and power (CHP) installations with electrical ratings from 1 to 1000 kW. Developments over the past ten years are reviewed. Important reductions in the price of motor-driven CHP units and the price of the electrical power produced are noted and commented on. The technical market potential of CHP units and the degree to which this potential has been implemented are commented on. Work done, including CHP implementation in the industrial, commercial and residential areas, is commented on. Future developments both in the technical area as well as in commercial areas are commented on. Micro-gas-turbine based CHP systems are also discussed, as are fuel-cell based systems in both the higher and lower capacity power generation area. The prospects for CHP systems in general in the electricity generation area are discussed

  3. Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2005-01-01

    More than 2000 hours of gas engine operation with producer gas from biomass as fuel has been conducted on the gasification CHP demonstration and research plant, named “Viking” at the Technical University of Denmark. The gas engine is an integrated part of the entire gasification plant. The excess...... operates with varying excess of air due to variation in gas composition and thus stoichiometry, and a second where the excess of air in the exhaust gas is fixed and the flow rate of produced gas from the gasifier is varying. The interaction between the gas engine and the gasification system has been...... investigated. The engine and the plant are equipped with continuously data acquisition that monitors the operation including the composition of the producer gas and the flow. Producer gas properties and contaminations have been investigated. No detectable tar or particle content was observed...

  4. Evaluation of the environmental sustainability of a micro CHP system fueled by low-temperature geothermal and solar energy

    International Nuclear Information System (INIS)

    Ruzzenenti, Franco; Bravi, Mirko; Tempesti, Duccio; Salvatici, Enrica; Manfrida, Giampaolo; Basosi, Riccardo

    2014-01-01

    Highlights: • Binary, ORC technology avoids CO 2 , but raises questions about environmental impact. • We proposed a micro-size system that combines geothermal energy with solar energy. • The small scale and the solar energy input edges the energy profitability. • The system’s performance is appreciable if applied to existing wells. • The feasibility of exploiting abandoned wells is preliminarily evaluated. - Abstract: In this paper we evaluate the environmental sustainability of a small combined heat and power (CHP) plant operating through an Organic Rankine Cycle (ORC). The heat sources of the system are from geothermal energy at low temperature (90–95 °C) and solar energy. The designed system uses a solar field composed only of evacuated, non-concentrating solar collectors, and work is produced by a single turbine of 50 kW. The project addresses an area of Tuscany, but it could be reproduced in areas where geothermal energy is extensively developed. Therefore, the aim is to exploit existing wells that are either unfit for high-enthalpy technology, abandoned or never fully developed. Furthermore, this project aims to aid in downsizing the geothermal technology in order to reduce the environmental impact and better tailor the production system to the local demand of combined electric and thermal energy. The environmental impact assessment was performed through a Life Cycle Analysis and an Exergy Life Cycle Analysis. According to our findings the reservoir is suitable for a long-term exploitation of the designed system, however, the sustainability and the energy return of this latter is edged by the surface of the heat exchanger and the limited running hours due to the solar plant. Therefore, in order to be comparable to other renewable resources or geothermal systems, the system needs to develop existing wells, previously abandoned

  5. Economic dispatch of a single micro-gas turbine under CHP operation

    International Nuclear Information System (INIS)

    Rist, Johannes F.; Dias, Miguel F.; Palman, Michael; Zelazo, Daniel; Cukurel, Beni

    2017-01-01

    Highlights: •Economic dispatch of a micro gas turbine is considered for smart grid integration. •A detailed thermodynamic cycle analysis is conducted for variable load CHP operation. •Benefits are shown for case studies with real demand profiles and energy tariffs. •Optimal unit schedule can be electricity, heat, revenue or maintenance-cost driven. -- Abstract: This work considers the economic dispatch of a single micro-gas turbine under combined heat and power (CHP) operation. A detailed thermodynamic cycle analysis is conducted on a representative micro-gas turbine unit with non-constant component efficiencies and recuperator bypass. Based on partial and full load configurations, an accurate optimization model is developed for solving the economic dispatch problem of integrating the turbine into the grid. The financial benefit and viability of this approach is then examined on four detailed scenarios using real data on energy demand profiles and electricity tariffs. The analysis considers the optimal operation in a large hotel, a full-service restaurant, a small hotel, and a residential neighborhood during various seasons. The optimal schedule follows four fundamental economic drivers which are electricity, heat, revenue, and maintenance-cost driven.

  6. Power improvement and modernization of small scale hydroelectric power plants in Brazil; Recapacitacao e modernizacao de PCH`s no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Jose Guilherme Antioga do [Departamento Nacional de Aguas e Energia Eletrica (DNAEE), Brasilia, DF (Brazil); Amaral, Cristiano Abijaode [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    1995-12-31

    Several small scale hydroelectric power plants existing in Brazil have been abandoned due to recent projects of large scale units, however, some of than still present workable conditions. Due to that fact, several Brazilian electric power companies have been considering the possibility of modernizing such old units as an alternative for regional electric power generation. This work discusses the above mentioned issues 3 refs., 5 figs., 9 tabs.

  7. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  8. An energetic-exergetic analysis of a residential CHP system based on PEM fuel cell

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.; Ottaviano, A.

    2011-01-01

    Highlights: → A zero-dimensional of a micro cogenerative (CHP) energy system based on a Proton Exchange Membrane fuel cell (PEMFC) has been developed. → The electrochemical model has been validated with experimental data. → The performances of this CHP system have been evaluated through a series of simulations. → An energy/exergy analysis of the simulation results has allowed to define the PEMFC optimal operating conditions. → The PEMFC optimal operating conditions detected are: 1 atm, 353.15 K and 100% RH. -- Abstract: The use of fuel cell systems for distributed residential power generation represents an interesting alternative to traditional thermoelectric plants due to their high efficiency and the potential recovering of the heat generated by the internal electrochemical reactions. In this paper the study of a micro cogenerative (CHP) energy system based on a Proton Exchange Membrane fuel cell (PEMFC) is reported. With the aim to evaluate the performance and then the feasibility of this non-conventional energy system, in consideration of thermal and electrical basic demand of a multifamily apartment blocks, a zero-dimensional PEMFC model in Aspen Plus environment has been developed. A simulations sequence has been carried out at different operating conditions of the fuel cell (varying temperature, pressure and relative humidity). Subsequently, on the basis of the obtained results, an energy/exergy analysis has been conducted to define the optimal operating conditions of the PEMFC that ensures the most efficient use of the energy and exergy inputs.

  9. Contribution to a Danish action plan for development and demonstration of CHP from solid biomass; Oplaeg til en national handlingsplan for udvikling og demonstration indenfor kraftvarme fra fast biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Morten Tony

    2011-01-15

    The report is the contribution from the industry to an action plan for development and demonstration of CHP technology for solid biomass. The report aims to serve as inspiration and basis for administrators and applicants of Danish funding schemes for development and demonstration in future tenders. Although Danish-based cogeneration technologies for solid biofuels are advanced compared to the competitors in many areas there is a large need to continuously improve the technology by sustained development and demonstration activities. The aim is to overcome the technological barriers that this project has identified and thus maintain competitiveness. The industry currently has very strong focus on market deployment of especially technologies for cogeneration in small scale (up to 15 MW thermal power) and on the overall economy of these plants. Reference installations that displays many operational hours with a reasonable economy, are crucial for investors. Currently, no companies market commercial plants that have sufficiently low costs to operate under Danish conditions and few do for the conditions found internationally. Thus, from the industry perspective there is still a need for development and demonstration of CHP technology below 15 MW thermal. The analysis does not exclude any technology tracks, but the development and demonstration efforts should lead to improvements in conditions such as availability, efficiencies and operating and maintenance costs. Also technologies for large plants and systems need to be improved with respect to availability and efficiency and reduced operating and maintenance costs. For all technologies, there is a need to develop the use of special solid biofuels that on the one hand may have troublesome characteristics but on the other may help lower operating costs. The Danish-based companies have good opportunities to find support for the development and demonstration effort. A number of support programs and pools are in place and

  10. Satellite combined heat and power plants and their legal autonomy

    International Nuclear Information System (INIS)

    Loibl, Helmut

    2014-01-01

    Since the landmark decision by the German Court of Justice concerning the term ''plant'' in the context of biogas plants it should be clear beyond doubt that satellite combined heat and power plants (CHPs) are legally autonomous plants pursuant to Para. 3 No. 1 of the Renewable Energy Law (EEG). What has yet to be finally resolved are the conditions under which satellite CHPs are to be regarded as autonomous. This will be a question of distance on the one hand and of operation autonomy on the other. In the individual case both these factors will have to be assessed from the perspective of an average objective, informed citizen. To the extent that its heat and electricity are being utilised in a meaningful manner, the plant's autonomy will be beyond doubt, at least in operational terms. Regarding the remuneration to be paid for satellite CHPs the only case requiring special consideration is when a CHP falls under the EEG of 2012. In this case Para. 1 Section 1 Sentence 2 EEG provides that the remuneration for the CHP in question is to be calculated as if there was a single overall plant. To the extent that none of the CHPs fall under the EEG of 2012, the ruling remains that there is a separate entitlement to remuneration for each satellite CHP. This also holds in cases where satellite CHPs that were commissioned after 1 January 2012 are relocated. When a satellite CHP is replaced by a new one, the rate and duration of remuneration remain unchanged. However, when a new satellite CHP is added to an existing satellite CHP via a gas collector line it is to be treated according to the decisions of the Federal Court of Justice concerning biogas plant extensions: It falls under the law that applies to the existing CHP and has an entitlement to a new minimum remuneration period, albeit subject to the degression rate provided by the EEG version in question.

  11. Preliminary experimental investigation of a natural gas-fired ORC-based micro-CHP system for residential buildings

    International Nuclear Information System (INIS)

    Farrokhi, M.; Noie, S.H.; Akbarzadeh, A.A.

    2014-01-01

    The continual increases in energy demand and greenhouse gas emissions, call for efficient use of energy resources. Decentralized combined heat and power (CHP) technology provides an alternative for the world to meet and solve energy-related problems including energy shortages, energy supply security, emission control and conservation of energy. This paper presents the preliminary results of an experimental investigation of a natural gas-fired micro-CHP system for residential buildings based on an organic Rankine cycle (ORC). Isopentane was used as the ORC working fluid in consideration of several criteria including its environmentally-friendly characteristics. Experiments were conducted to evaluate the performance of the developed system at different heat source temperatures of nominally 85, 80, 75, 70, and 65 °C. The maximum electrical power output of 77.4 W was generated at heating water entry temperature of 84.1 °C, corresponding to net cycle electrical efficiency of 1.66%. Further work will be done with a view to increasing the cycle electrical efficiency by using more efficient components, in particular the expander and generator. - Highlights: •A natural gas-fired ORC-based micro-scale CHP system has been developed and tested. •The good agreement between the mechanical and gross power validates the assumptions. •A vane expander suits a micro-CHP system based on an organic Rankine cycle. •A vane expander does not suit power generation by a Trilateral Flash Cycle (TFC). •Domestic gas-fired ORC systems may reduce reliance on central power stations

  12. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2011-10-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.

  13. Modelling the adoption of industrial cogeneration in Japan using manufacturing plant survey data

    International Nuclear Information System (INIS)

    Bonilla, David; Akisawa, Atsushi; Kashiwagi, Takao

    2003-01-01

    Electric power deregulation in Japan opens opportunity for further penetration of on-site generation (cogeneration) otherwise known as distributed generation. In the paper the authors present a survey on Japanese industrial plants to fill existing gaps for the assessment of modern cogeneration (combined heat and power, CHP). The objective of the paper is to empirically examine CHP systems based on cross-sectional binary models; second to review diffusion trends of CHP by system vintage during the 1980-2000 period in the manufacturing sector. The econometric results point that the probabilities of embracing this technology increase, in declining importance, with on-site power consumption, and steam demand, operational hours as well as with payback period, purchased power. For example the survey shows that the CHP is used for the purpose of exporting power rather than meeting the plant's own consumption. Some of our results are in line with those of Dismukes and Kleit (Resource Energy Econ. 21 (1999) 153) as well with Rose and Macdonald (Energy J. 12(12) (1991) 47). We also find that a unit increase in satisfaction with CHP will lead to a 54% in CHP capacity. We find significant evidence on the cost effectiveness of CHP under conservative assumptions. Regarding the influence of satisfaction and performance indicators for the several plants, the survey threw some unexpected evidence on the nature of CHP

  14. Probabilistic production simulation including CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, H.V.; Palsson, H.; Ravn, H.F.

    1997-04-01

    A probabilistic production simulation method is presented for an energy system containing combined heat and power plants. The method permits incorporation of stochastic failures (forced outages) of the plants and is well suited for analysis of the dimensioning of the system, that is, for finding the appropriate types and capacities of production plants in relation to expansion planning. The method is in the tradition of similar approaches for the analysis of power systems, based on the load duration curve. The present method extends on this by considering a two-dimensional load duration curve where the two dimensions represent heat and power. The method permits the analysis of a combined heat and power system which includes all the basic relevant types of plants, viz., condensing plants, back pressure plants, extraction plants and heat plants. The focus of the method is on the situation where the heat side has priority. This implies that on the power side there may be imbalances between demand and production. The method permits quantification of the expected power overflow, the expected unserviced power demand, and the expected unserviced heat demand. It is shown that a discretization method as well as double Fourier series may be applied in algorithms based on the method. (au) 1 tab., 28 ills., 21 refs.

  15. ORC power plant for electricity production from forest and agriculture biomass

    International Nuclear Information System (INIS)

    Borsukiewicz-Gozdur, A.; Wiśniewski, S.; Mocarski, S.; Bańkowski, M.

    2014-01-01

    Highlights: • Results for three variants of CHP plant fuelled by sawmill biomass are presented. • Octamethyltrisiloxane, MDM, methanol and H 2 O working fluids was conducted in CHP. • CHP with internal regeneration and “dry” working fluid has the highest electric power. • Power output, drying heat and drying temperature depend on CHP variant and ORC fluid. - Abstract: The paper presents the calculation results for three variants of CHP plant fuelled by sawmill biomass. The plant shall produce electricity and heat for a drying chamber. An analysis of the system efficiency for four different working fluids was conducted: octamethyltrisiloxane, methylcyclohexane, methanol and water. The highest electric power was obtained for the system with internal regeneration and methylcyclohexane applied as the “dry” working fluid, the highest temperature to supply the drying chamber was obtained for the system with external regeneration and octamethyltrisiloxane applied as the working fluid. The results of the analysis indicate that, by proper choice of the working fluid and of the regeneration variant (internal or external), it is possible to “adjust” the work of the system to the needs and expectations of the plant investor (user)

  16. Annual energy balances of CHP-units supplying households; Jahresenergiebilanzen von KWK-Anlagen zur Hausenergieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, B.; Muehlbacher, H. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Energiewirtschaft und Anwendungstechnik

    2008-07-01

    A method to balance CHP-units for use in households on an annual basis has been developed. Seasonal as well as intraday fluctuations of the CHP-units are accounted for in the model. The results of this new method were validated in a test facility for certain days. Together with experimentally obtained data from a CHP-unit, the potential for technical improvements and a more favourable operational mode can be derived from the model. (orig.)

  17. Large combined heat and power plants in sustainable energy systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    2015-01-01

    . It is concluded that the CCGT CHP plant is the most feasible both from a technical analysis and a market economic analysis with electricity exchange. It is found that the current economic framework for large CHP plants in Denmark generates a mismatch between socio economy and business economy as well...

  18. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    Science.gov (United States)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  19. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net

  20. An updated assessment of the prospects for fuel cells in stationary power and CHP. An information paper

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, T.K. [Future Energy Solutions, Harwell (United Kingdom)

    2005-07-01

    This report presents updated conclusions of the Department of Trade and Industry's research and development programme to assess the commercial prospects for advanced fuel cells in stationary power and combined heat and power (CHP) systems. The programme has focussed on low temperature solid polymer fuel cells (SPFCs) for transport and combined heat and power (CHP)/distributed power and high temperature solid oxide fuel cells (SOFCs) for CHP/distributed power. As well as assessing the prospects for SPFCs and SOFCs in stationary power and CHP applications, the report examines those for molten carbonate fuel cells (MCFCs) and phosphoric acid fuel cells (PAFCs). The report provides an assessment of the status of technology development for these different types of fuel cells in terms of applications to stationary power and CHP, and offers estimates of market potential for SOFCs in CHP markets, SPFCs in CHP markets and SOFCs in distributed power generation markets. Both large SPFC and SOFC CHP systems require further development to deliver the necessary cost reductions in materials and manufacturing processes before pre-commercial sales can begin. The routes taken by different manufacturers and their choice of preferred technology are explained. A discussion of the prospects and barriers for fuel cell cars concludes that while cost reduction is a major barrier to the successful commercialisation of fuel cells, there are insufficient data available from operating fuel cells systems (other than PAFC) in stationary power and CHP applications to assess the economic attractiveness of fuel cells compared with existing systems. More field trials are required to confirm energy and environmental performance in such applications and to evaluate operational and economic performance under commercial operating conditions. Such field trials could also provide a focus for the required developments in fuel cells for stationary power/CHP systems.

  1. JOINT ECONOMIC AND ENVIRONMENTAL OPTIMIZATION OF HYBRID POWER SUPPLY FOR LARGE SCALE RO-DESALINATION PLANT: WITH AND WITHOUT CO2 SEQUESTRATION

    Directory of Open Access Journals (Sweden)

    EMAN A. TORA

    2016-07-01

    Full Text Available In this paper, a multi- objective optimization approach is introduced to define a hybrid power supply system for a large scale RO- desalination plant. The target is to integrate a number of locally available energy resources to generate the electricity demand of the RO- desalination plant with minimizing both the electricity generation cost and the greenhouse gas emissions whereby carbon dioxide sequestration may be an option. The considered energy resources and technologies are wind turbines, solar PV, combined cycles with natural gas turbines, combined cycles with coal gasification, pulverized coal with flue gas desulfurization, and biomass combined heat and power CHP. These variable energy resources are investigated under different constraints on the renewable energy contribution. Likewise, the effect of carbon dioxide sequestration is included. Accordingly, five scenarios have been analyzed. Trade- offs between the minimum electricity generation cost and the minimum greenhouse gas emissions have been determined and represented in Pareto curves using the constraint method (. The results highlight that among the studied fossil fuel technologies, the integrated combined cycle natural gas turbines can provide considerable fraction of the needed power supply. Likewise, wind turbines are the most effective technology among renewable energy options. When CO2 sequestration applied, the costs increase and significant changes in the optimum combination of renewable energy resources have been monitored. In that case, solar PV starts to appreciably compete. The optimum mix of energy resources extends to include biomass CHP as well.

  2. Small scale pelletizing equipment for agriculture; Smaaskalig pelleteringsanlaeggning foer lantbruket

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne (The Swedish Environmental Research Inst. Ltd., Stockholm (Sweden)); Wallin, Mikael (Sweden Powers Chippers AB, Boraas (Sweden))

    2009-06-15

    Refining agricultural raw materials is one way for farmers to increase the value of their products. For example, briquettes or pellets made from straw, reed canary grass or hemp can sell for a higher price than in loose or baled forms. The aim of this project was to develop and build a plant for small-scale production of pellets on the farm. Working together with the farmer, the plant would then be tested and adapted for small-scale production of pellets from straw, reed canary grass and hemp. The project also aimed to investigate and summarise suitable systems and solutions for breaking up bales in preparation for use in the pellets module. A pelleting system has been developed and built as a container module (measuring 6 x 2.80 x 2.50 m) by Sweden Power Chippers (SPC). The container system includes a fuel store with push floor, a grinder, an SPC pellet press (pp150, capacity 150 kg/hour for woodbased material), a conveyor belt and a cooling system. The practical operation of the plant was tested on two Swedish farms: Laattra gaard in Vingaaker and Ek gaard in Vara. The bales were broken up in preparation for pelleting using a straw mill of model Tomahawk 505M. The project has demonstrated that the SPC plant has the capacity to be used for agricultural pelleting of fuels from straw, canary reed grass and hemp. Some modification and continued adjustment of the feed system for the fuel remains to be done in order to optimise and ensure the reliability of the pelleting process. A certain amount of modifications to the plant is required to enable cost-effective transportation between different locations. Tests showed that each batch of fuel was unique, even from the same raw material, and that optimisation of the dies is necessary for each specific case. Training is required to run the plant. The farmers have been able to run the plant themselves, for example, starting up the plant, changing the sieve on the grinder, changing dies etc. In order for such small-scale

  3. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP Station Processing Plant Biomass

    Directory of Open Access Journals (Sweden)

    Justyna Szulc

    2017-01-01

    Full Text Available The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP. We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs. Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.. The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM. We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored.

  4. Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Hong, Sung Deok; Park, Hong Yoon

    2011-01-01

    The IHX (intermediate heat exchanger) of a VHTR (very high-temperature reactor) is a core component that transfers the high heat generated by the VHTR at 950 .deg. C to a hydrogen production plant. Korea Atomic Energy Research Institute manufactured a small-scale prototype of a PCHE (printed circuit heat exchanger) that was being considered as a candidate for the IHX. In this study, as a part of high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the small-scale PCHE prototype under small-scale gas-loop test conditions. The modeling and analysis were performed as a precedent study prior to the performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE. Moreover, these results will be used in the design of a medium-scale PCHE prototype

  5. The development of small-scale mechanization means positioning algorithm using radio frequency identification technology in industrial plants

    Science.gov (United States)

    Astafiev, A.; Orlov, A.; Privezencev, D.

    2018-01-01

    The article is devoted to the development of technology and software for the construction of positioning and control systems for small mechanization in industrial plants based on radio frequency identification methods, which will be the basis for creating highly efficient intelligent systems for controlling the product movement in industrial enterprises. The main standards that are applied in the field of product movement control automation and radio frequency identification are considered. The article reviews modern publications and automation systems for the control of product movement developed by domestic and foreign manufacturers. It describes the developed algorithm for positioning of small-scale mechanization means in an industrial enterprise. Experimental studies in laboratory and production conditions have been conducted and described in the article.

  6. SOFC/TEG hybrid mCHP system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-15

    The starting point for this project have been the challenge has been to develop a cost effective solution with long term stability. This is where a focused effort in a strong consortium covering material research, module development and manufacture as well as device design and optimization can make a real difference. In March 2010 the SOFTEG phase II project was initiated and a cooperation organization was established to implement the project as a development and demonstration project involving the staff from all project partners. The project is now completed with excellent and documented outcome. The final results by Alpcon have been demonstration as a TEG-based mCHP system calls CHP Dual Engine Power System, which will be applicable as both a standalone TEG-CHP hybrid system, but also as an auxiliary power unit and power booster for the SOFC system. However the SOFC system cannot cover the household's heat demand alone so it is necessary to combine a SOFC system together with a water heater/boiler system to cover the peak heat demand of a residential house or a complex building. The SOFTEG project partners achieved significant results that mainly can be outlined as following: 1) University of Aarhus has improved the thermal stability of ZnSb by optimizing the concentration of Nano composite material. 2) The grain size and its influence on the sintering process by spark plasma method are investigated by Aarhus University, but further work seems to be necessary. 3) The TE material is going to commercialization by Aarhus University. 4) Aalborg University has prepared simulation tools for complex thermoelectric simulation in non-steady state condition. 5) The new type DCDC interleaved converter using the MPPT system for optimal power tracing is designed, build and tested by Aalborg University in cooperation with Alpcon. This task is included overall system design, control system implementation and power electronic control design. 6) Full scale practical

  7. DEVELOPMENT OF THE CHP-THERMAL SCHEMES IN CONTEXTS OF THE CONSOLIDATED ENERGY SYSTEM OF BELARUS

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper deals with the structural specifics of the Belarus Consolidated Energy System capacities in view of their ongoing transfer to the combined-cycle technology, building the nuclear power plant and necessity for the generating capacity regulation in compliance with the load diagram. With the country’s economic complex energy utilization pattern being preserved, the generating capacities are subject to restructuring and the CHP characteristics undergo enhancement inter alia a well-known increase of the specific electricity production based on the heat consumption. Because of this the steam-turbine condensation units which are the traditional capacity regulators for the energy systems with heat power plants dominance are being pushed out of operation. In consequence of this complex of changes the issue of load diagram provision gains momentum which in evidence is relevant to the Consolidated Energy System of Belarus. One of the ways to alleviate acuteness of the problem could be the specific electric energy production cut on the CHP heat consumption with preserving the heat loads and without their handover to the heat generating capacities of direct combustion i.e. without fuel over-burning. The solution lies in integrating the absorption bromous-lithium heat pump units into the CHP thermal scheme. Through their agency low-temperature heat streams of the generator cooling, the lubrication and condensation heat-extraction of steam minimal passing to the condenser systems are utilized. As a case study the authors choose one of the CHPs in the conditions of which the corresponding employment of the said pumps leads to diminution of the fuel-equivalent specific flow-rate by 20−25 g for 1 kW⋅h production and conjoined electric energy generation capacity lowering. The latter will be handed over to other generating capacities, and the choice of them affects economic expediency of the absorption bromous-lithium heat pump-units installation

  8. Development of Next Generation micro-CHP System

    DEFF Research Database (Denmark)

    Arsalis, Alexandros

    Novel proposals for the modeling and operation of a micro-CHP (combined-heat-andpower) residential system based on HT-PEMFC (High Temperature-Proton Exchange Membrane Fuel Cell) technology are described and analyzed to investigate the technical feasibility of such systems. The proposed systems must...

  9. Co-generation and innovative heat storage systems in small-medium CSP plants for distributed energy production

    Science.gov (United States)

    Giaconia, Alberto; Montagnino, Fabio; Paredes, Filippo; Donato, Filippo; Caputo, Giampaolo; Mazzei, Domenico

    2017-06-01

    CSP technologies can be applied for distributed energy production, on small-medium plants (on the 1 MW scale), to satisfy the needs of local communities, buildings and districts. In this perspective, reliable, low-cost, and flexible small/medium multi-generative CSP plants should be developed. Four pilot plants have been built in four Mediterranean countries (Cyprus, Egypt, Jordan, and Italy) to demonstrate the approach. In this paper, the plant built in Italy is presented, with specific innovations applied in the linear Fresnel collector design and the Thermal Energy Storage (TES) system, based on a single the use of molten salts but specifically tailored for small scale plants.

  10. ChpK and MazF of the toxin-antitoxin modules are involved in the virulence of Leptospira interrogans during infection.

    Science.gov (United States)

    Komi, Komi Koukoura; Ge, Yu-Mei; Xin, Xiao-Yang; Ojcius, David M; Sun, Dexter; Hu, Wei-Lin; Zhao, Xin; Lin, Xu'ai; Yan, Jie

    2015-01-01

    Pathogenic Leptospira species are the causative agents of leptospirosis, a global zoonotic infectious disease. Toxin-antitoxin (TA) modules have been confirmed as stress-response elements that induce prokaryotic and eukaryotic cell-growth arrest or death, but their role in the virulence of Leptospira has not been reported. Here, we confirmed that all the tested leptospiral strains had the chpIK and mazEF TA modules with highly-conserved sequences. The transcription and expression of the chpI, chpK, mazE, and mazF genes of Leptospira interrogans strain Lai were significantly increased during infection of phorbol 12-myristate 13-acetate-induced human THP-1 macrophages. The toxic ChpK and MazF but not the antitoxic ChpI and MazE proteins were detectable in the cytoplasmic fraction of leptospire-infected THP-1 cells, indicating the external secretion of ChpK and MazF during infection. Transfection of the chpK or mazF gene caused decreased viability and necrosis in THP-1 cells, whereas the chpI or mazE gene transfection did not affect the viability of THP-1 cells but blocked the ChpK or MazF-induced toxicity. Deletion of the chpK or mazF gene also decreased the late-apoptotic and/or necrotic ratios of THP-1 cells at the late stages of infection. The recombinant protein MazF (rMazF) cleaved the RNAs but not the DNAs from Leptospira and THP-1 cells, and this RNA cleavage was blocked by rMazE. However, the rChpK had no RNA or DNA-degrading activity. All these findings indicate that the ChpK and MazF proteins in TA modules are involved in the virulence of L. interrogans during infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Monitoring of the energy performance of a district heating CHP plant based on biomass boiler and ORC generator

    International Nuclear Information System (INIS)

    Prando, Dario; Renzi, Massimiliano; Gasparella, Andrea; Baratieri, Marco

    2015-01-01

    More than seventy district heating (DH) plants based on biomass are operating in South Tyrol (Italy) and most of them supply heat to residential districts. Almost 20% of them are cogenerative systems, thus enabling primary energy savings with respect to the separate production of heat and power. However, the actual performance of these systems in real operation can considerably differ from the nominal one. The main objectives of this work are the assessment of the energy performance of a biomass boiler coupled with an Organic Rankine Cycle (i.e. ORC) generator under real operating conditions and the identification of its potential improvements. The fluxes of energy and mass of the plant have been measured onsite. This experimental evaluation has been supplemented with a thermodynamic model of the ORC generator, calibrated with the experimental data, which is capable to predict the system performance under different management strategies of the system. The results have highlighted that a decrease of the DH network temperature of 10 °C can improve the electric efficiency of the ORC generator of one percentage point. Moreover, a DH temperature reduction could decrease the main losses of the boiler, namely the exhaust latent thermal loss and the exhaust sensible thermal loss, which account for 9% and 16% of the boiler input power, respectively. The analysis of the plant has pointed out that the ORC pump, the flue gases extractor, the thermal oil pump and the condensation section fan are the main responsible of the electric self-consumption. Finally, the negative effect of the subsidisation on the performance of the plant has been discussed. - Highlights: • Energy performance of a biomass boiler coupled to an ORC turbine in real operation. • Potential improvements of a CHP plant connected to a DH network. • Performance prediction by means of a calibrated ORC thermodynamic model. • Influence of the DH temperature on the electric efficiency. • Impact of the

  12. Evaluation of small hydropower plants in Latin America and the Caribbean

    International Nuclear Information System (INIS)

    Pardo-Gomez, R.

    1991-01-01

    Latin America and the Caribbean Region has a long-standing tradition of small hydropower plant development. In the 1890s the first plants were installed in the Region, and in the first half of this century pioneering efforts were made to develop the technology. The major reason was the technical modernization of agriculture (coffee, cacao, sugar, etc.) and small-scale mining, which led to increased energy demand in isolated areas when the electrification process was just beginning in the region. However, interest in small hydropower plants (SHP) waned because of technological improvements, enhanced efficiency, lower purchase prices and installation costs of gasoline engines, and the expansion of interconnected power systems

  13. Small scale optics

    CERN Document Server

    Yupapin, Preecha

    2013-01-01

    The behavior of light in small scale optics or nano/micro optical devices has shown promising results, which can be used for basic and applied research, especially in nanoelectronics. Small Scale Optics presents the use of optical nonlinear behaviors for spins, antennae, and whispering gallery modes within micro/nano devices and circuits, which can be used in many applications. This book proposes a new design for a small scale optical device-a microring resonator device. Most chapters are based on the proposed device, which uses a configuration know as a PANDA ring resonator. Analytical and nu

  14. Modeling and simulation of a residential micro-CHP system based on HT-PEMFC technology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    Combined-heat-and-power (CHP) technology is a well known and proved method to produce simultaneously power and heat at high efficiencies. This can be further improved by the introduction of a novel micro-CHP residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC......). The HT-PEMFC (based on PBI-membrane technology) operates at temperatures near 200oC, and this can be an ideal match for cogeneration residential systems. The proposed system provides electric power, hot water, and space heating for a typical household (1-5 kWe, 5-10 kWth). The micro-CHP system...

  15. Process Intensification in Fuel Cell CHP Systems, the ReforCELL Project

    Directory of Open Access Journals (Sweden)

    José Luis Viviente

    2016-10-01

    Full Text Available This paper reports the findings of a FP7/FCH JU project (ReforCELL that developed materials (catalysts and membranes and an advance autothermal membrane reformer for a micro Combined Heat and Power (CHP system of 5 kWel based on a polymer electrolyte membrane fuel cell (PEMFC. In this project, an active, stable and selective catalyst was developed for the reactions of interest and its production was scaled up to kg scale (TRL5 (TRL: Technology Readiness Level. Simultaneously, new membranes for gas separation were developed. In particular, dense supported thin palladium-based membranes were developed for hydrogen separation from reactive mixtures. These membranes were successfully scaled up to TRL4 and used in lab-scale reactors for fluidized bed steam methane reforming (SMR and autothermal reforming (ATR and in a prototype reactor for ATR. Suitable sealing techniques able to integrate the different membranes in lab-scale and prototype reactors were also developed. The project also addressed the design and optimization of the subcomponents (BoP for the integration of the membrane reformer to the fuel cell system.

  16. Combined heat and power production planning in a waste-to-energy plant on a short-term basis

    International Nuclear Information System (INIS)

    Touš, Michal; Pavlas, Martin; Putna, Ondřej; Stehlík, Petr; Crha, Lukáš

    2015-01-01

    In many cases, WtE (waste-to-energy) plants are CHP (combined heat and power) producers. They are often integrated into a central heating system and they also export electricity to the grid. Therefore, they have to plan their operation on a long-term basis (months, years) as well as on a short-term basis (hours, days). Simulation models can effectively support decision making in CHP production planning. In general, CHP production planning on a short-term basis is a challenging task for WtE plants. This article presents a simulation based support. It is demonstrated on an example involving a real WtE plant. Most of the models of relevant WtE sub-systems (boilers, steam turbine) are developed using operational data and applying linear regression and artificial neural network technique. The process randomness given mainly by fluctuating heating value of waste leads to uncertainty in a calculation of CHP production and a stochastic approach is appropriate. The models of the sub-systems are, therefore, extended of a stochastic part and Monte-Carlo simulation is applied. Compared to the current planning strategy in the involved WtE plant, the stochastic simulation based planning provides increased CHP production resulting in better net thermal efficiency and increased revenue. This is demonstrated through a comparison using real operational data. - Highlights: • Introduction of a stochastic model of a CHP production in a waste-to-energy plant. • An application of the model for the next day CHP production planning. • Better net thermal efficiency and therefore increased revenue achieved.

  17. Small-scale hydropower in the Netherlands : problems and strategies of system builders

    NARCIS (Netherlands)

    Manders, T.N.; Höffken, J.I.; van der Vleuten, E.B.A.

    2016-01-01

    Small-scale hydroelectricity (hydel) currently receives worldwide attention as a clean, green, and socially just energy technology. People generally assume that downsizing hydel plants reduces harmful impacts. However, recent debates call for careful circumspection of small hydel’s environmental,

  18. Estimation of small-scale hydroelectric power plant costs; Estimacao de custos de PCH

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Afonso Henriques Moreira [MS Consultoria Ltda, Itajuba, MG (Brazil); Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Silva, Benedito Claudio da [IX Consultoria e Representacoes Ltda, Itajuba, MG (Brazil); Universidade Federal de Itajuba (UNIFEI), MG (Brazil); Magalhaes, Ricardo Nogueira [IX Consultoria e Representacoes Ltda, Itajuba, MG (Brazil)

    2010-07-01

    Changes in Brazilian energy scenario through last years such as increase of demand and search for clean and economically feasible renewable energy sources, has stimulated investors to small hydro power plants (SHP) sector. Such characteristics together with several economic incentives, legal and regulatory mechanisms also, have helped and stimulated building of new plants of this kind and have attracted a great number of investors to this sector. Study of costs analysis and feasibility of investments is a study which has been used since long time in SHP business market as several preliminary studies previous to civil project have significant costs which lead us to count with a feasibility analysis from the very beginning of studies, exactly what is suggested in the present methodology. Such feasibility analysis, in the common patterns where basic unit costs of each input remain outstanding, would be very complex due to great difficulty in obtaining information at initial phase of project. In this direction this study brings a contribution for investors as well as for designers of small hydro power plants since it outlines a link between physical and energetic characteristics of small hydro power plant in its total cost. Such link is based in available physical characteristics in initial phase of the project, making possible a previous comparison between arrangements of a central or even the comparison of return of investment between different plants. The resulting benefit being the possibility of choosing centrals with greater economic feasibility disregarding bad undertakings or arrangements with more expressive cost. Final result gives a better delay in return of investment, helps in power, arrangements more optimized and in saving time as well, reducing costs of undertakings. Due to large number of SHP arrangements, we chose for this study the most common in Brazil, plant of medium and large fall, shunting line balance chimney and low pressure conduit. (author)

  19. Emissions from small scale combustion of pelletized wood fuels

    International Nuclear Information System (INIS)

    Bachs, A.

    1998-01-01

    Combustion of wood pellets in small scale heating systems with an effect below 20 kW has increased. During the winter season 1995/96 1500 small plants for heating houses are estimated to be in operation. Stack emissions from three pellet burners and two pellet stoves have been studied at laboratory. Different pellet qualities were tested. When the fraction of fines increased also the NO x emissions increased with about 10 %. As reference fuel 8 mm pellets was used. Tests with 6 mm pellets gave, in most cases, significant lower emissions of CO and THC. Eleven stoves, burners and boilers were studied in a field test. The results show that all the plants generally have higher emissions in the field than during conditions when the plants are adjusted with a stack gas monitoring instrument. A conclusion is that it is difficult for the operator to adjust the plant without a monitoring instrument. The emissions from the tested plants give an estimation of stack gas emissions from small scale pellet plants. The difference between the 'best' and 'worst' technologies is big. The span of emissions with the best technology to the worst is given below. The interval is concerning normal combustion . During abnormal conditions the emissions are on a significant higher level: * CO 80-1 000 mg/MJ; * Tar 0,3-19 mg/MJ; * THC (as methane equivalents) 2-100 mg/MJ; * NO x 50-70 mg/W;, and * Dust emissions 20-40 mg/MJ. Emissions from pellets heating are lower than from wood combustion and the best technology is close to the emission from oil burners. Wood and pellets have the same origin but the conditions to burn them in an environmental friendly way differ. Combustion of pellets could be improved through improved control of the air and fuel ratio that will create more stable conditions for the combustion

  20. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales

    NARCIS (Netherlands)

    Aartsma, Y.S.Y.; Bianchi, F.J.J.A.; Werf, van der W.; Poelman, E.H.; Dicke, M.

    2017-01-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger

  1. Investigation of the prospect of energy self-sufficiency and technical performance of an integrated PEMFC (proton exchange membrane fuel cell), dairy farm and biogas plant system

    International Nuclear Information System (INIS)

    Guan, Tingting; Alvfors, Per; Lindbergh, Göran

    2014-01-01

    Highlights: • A PEMFC stack with a 40% of electrical efficiency will make the integrated PEMFC-CHP, biogas plant and dairy farm self-sufficient. • The quality of the reformate gas is good enough to support normal operation of the PEMFC-CHP. • The methane conversion rate and the content of the CH 4 in the biogas need to be balanced in order to obtain the best system performance. • Compared with a coal-fired CHP plant, the integrated system can avoid coal consumption and CO 2 emissions. - Abstract: A PEMFC fuelled with hydrogen is known for its high efficiency and low local emissions. However, the generation of hydrogen is always a controversial issue for the application of the PEMFC due to the use of fossil fuel and the possible carbon dioxide emissions. Presently, the PEMFC-CHP fed with renewable fuels, such as biogas, appears to be the most attractive energy converter–fuel combination. In this paper, an integrated PEMFC-CHP, a dairy farm and a biogas plant are studied. A PEMFC-CHP fed with reformate gas from the biogas plant generates electricity and heat to a dairy farm and a biogas plant, while the dairy farm delivers wet manure to the biogas plant as the feedstock for biogas production. This integrated system has been modelled for steady-state conditions by using Aspen Plus®. The results indicate that the wet manure production of a dairy farm with 300 milked cows can support a biogas plant to give 1280 MW h of biogas annually. Based on the biogas production, a PEMFC-CHP with a stack having an electrical efficiency of 40% generates 360 MW h electricity and 680 MW h heat per year, which is enough to cover the energy demand of the whole system while the total efficiency of the PEMFC-CHP system is 82%. The integrated PEMFC-CHP, dairy farm and biogas plant could make the dairy farm and the biogas plant self-sufficient in a sustainable way provided the PEMFC-CHP has the electrical efficiency stated above. The effect of the methane conversion rate and the

  2. Experience of Implementing a Distributed Control System for Thermal and Mechanical and Electrical Equipment at the South-West CHP

    Energy Technology Data Exchange (ETDEWEB)

    Babkin, K. V., E-mail: babkin@uztec.ru; Tsvetkov, M. S.; Kostyuk, R. I.; Chugin, A. V. [SC “South-West CHP” (Russian Federation); Bilenko, V. A.; Molchanov, K. A.; Fedunov, V. V. [JSC “Interautomatika” (Russian Federation)

    2015-01-15

    Results of implementing an SPPA-T3000-based unified distributed control system for thermal and mechanical and electrical equipment at the South-West CHP are discussed. Hardware solutions for integration with local control systems, control of electrical equipment in compliance with the standards IEC 61850, Modbus RTU, and communication between the plant control system and the System Operator of the Unified Power System are described.

  3. Experience of Implementing a Distributed Control System for Thermal and Mechanical and Electrical Equipment at the South-West CHP

    International Nuclear Information System (INIS)

    Babkin, K. V.; Tsvetkov, M. S.; Kostyuk, R. I.; Chugin, A. V.; Bilenko, V. A.; Molchanov, K. A.; Fedunov, V. V.

    2015-01-01

    Results of implementing an SPPA-T3000-based unified distributed control system for thermal and mechanical and electrical equipment at the South-West CHP are discussed. Hardware solutions for integration with local control systems, control of electrical equipment in compliance with the standards IEC 61850, Modbus RTU, and communication between the plant control system and the System Operator of the Unified Power System are described

  4. Studying effect of heating plant parameters on performances of a geothermal-fuelled series cogeneration plant based on Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Habka, Muhsen; Ajib, Salman

    2014-01-01

    Highlights: • We analyzed performances of a series ORC–CHP plant versus the heating plant parameters. • ORC–CHP power is destructed when raising the heat demand or the return temperature. • Only the high supply temperatures of the heating plant affect negatively the performances. • Reducing the return temperature optimizes both the energetic and exergetic criteria. • Increasing the heat demand improves the exergetic efficiency of the total CHP system. - Abstract: The present work aims to analyze the performance characteristics of the series Combined Heat and Power (CHP) system based on Organic Rankine Cycle (ORC) under influence of the heating plant parameters without considering the chemistry of the geothermal water considered as heat source. For evaluation, energetic and exergetic criteria along with the heat transfer capacities have been determined, and also the working fluid R134a has been used. The results showed that increasing the heat demand or the return temperature and only the high supply temperatures lead to destruct the net power generated by the ORC–CHP system. While, influence of the last parameters on the total exergy efficiency and losses is different; whereas raising the heat demands optimizes these exergetic indicators, variation of the supply temperature leads to an optimum for these performances. Since increasing the return temperature has purely negative impacts on all exergetic and energetic criteria, the latter can be improved by reducing this temperature with attention to the heat transfer capacities. Thus, reduction of the return temperature about 5 °C lowers the exhausted stream losses by app. 25% and enhances the power generation by app. 52% and the total exergy efficiency by 9%

  5. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    Science.gov (United States)

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  6. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    Science.gov (United States)

    Matysko, Robert; Mikielewicz, Jarosław; Ihnatowicz, Eugeniusz

    2014-03-01

    The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle) cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power) system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser) and the heat supply pump in failure conditions.

  7. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    Directory of Open Access Journals (Sweden)

    Matysko Robert

    2014-03-01

    Full Text Available The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser and the heat supply pump in failure conditions.

  8. The economic performance of combined heat and power from biogas produced from manure in Sweden – A comparison of different CHP technologies

    International Nuclear Information System (INIS)

    Lantz, Mikael

    2012-01-01

    Highlights: ► Interest in biogas from manure is increasing rapidly due to its climate benefits. ► Farm-scale production of CHP from manure-based biogas is not profitable in Sweden. ► Minor changes in energy prices or suggested production subsidies will make it profitable. ► Profitability is also affected by efficiency of scale and introduction of thermophilic conditions. -- Abstract: Interest in the generation of biogas from agricultural residues is increasing rapidly due to its climate benefits. In this study, an evaluation of the economic feasibility of various technologies, also on different scales, for the production of combined heat and power from manure-based biogas in Sweden is presented. The overall conclusion is that such production is not profitable under current conditions. Thus, the gap between the calculated biogas production cost and the acceptable cost for break-even must be bridged by, for example, different policy instruments. In general, efficiency of scale favors large-scale plants compared to individual farm-scale ones. However, a large, centralized biogas plant, using manure from numerous farms, is not always more cost efficient than a large, farm-scale plant treating manure from a few neighboring farms. The utilization of the produced heat, electricity prices, and political incentives, all have a significant impact on the economic outcome, whereas the value of the digestate as fertilizer is currently having a minor impact. Utilization of heat is, however, often limited by the lack of local heat sinks, in which case the implementation of a biogas process operating under thermophilic conditions could increase the profitability due to a more efficient utilization of reactor volume by using more process heat. The results from this study could be utilized by policy makers when implementing policy instruments considering biogas production from manure as well as companies involved in production and utilization of biogas.

  9. Techno, Economic and Environmental Assessment of a Combined Heat and Power (CHP System—A Case Study for a University Campus

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2018-05-01

    Full Text Available Universities in the United Kingdom that have installed Combined Heat and Power (CHP technology are making good moves towards achieving their CO2 reduction targets. However, CHP may not always be an economical option for a university campus due to numerous factors. Identification of such factors is highly important before making an investment decision. A detailed technical, economic, and environmental feasibility of CHP is, therefore, indispensable. This study aims to undertake a detailed assessment of CHP for a typical university campus and attempts to highlight the significance of such factors. Necessary data and information were collected through site visits, whereas the CHP sizing was performed using the London South Bank University (LSBU CHP model. The results suggest that there is a strong opportunity of installing a 230 kW CHP that will offset grid electricity and boilers thermal supply by 47% and 75%, respectively, and will generate financial and environmental yearly savings of £51k and 395 t/CO2, respectively. A wider spark gap decreases the payback period of the project and vice versa. The capital cost of the project could affect the project’s economics due to factors, such as unavailability of space for CHP, complex existing infrastructure, and unavailability of a gas connection.

  10. Fuel cells for stationary energy supply; Brennstoffzellen in der stationaeren Energieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Leprich, Uwe; Thiele, Andreas [Institut fuer ZukunftsEnergieSysteme (IZES), Saarbruecken (Germany)

    2005-06-15

    Starting point for this investigation was the question, whether the incentives, caused by the CHP law from March the 19th 2002, are short- and medium term adequate to introduce fuel cells as small CHP plants broadly on the market or rather develop them at least to a standard of market maturity. This has - based on our analysis - definitely to be answered in the negative: for this, the fixed bonus is too small to influence the costs for investment and running of a fuel cell plant lasting. One of the aims of the CHP law - the reduction of the yearly CO2-emissions in Germany by a broader introduction of the technology on the market - can actually not be reached. Although, fuel cells may obtain a quite important climate-political significance, if their economical availability will be secured and related basic conditions are set today. By the CHP law, the federal government however demonstrated publicly that it is willing to support the development of the fuel cell and its introduction on the market. This signal is not only supporting the industry to align its middle- and long term decisions but it is also helping users and operators of fuel cells by providing a legal security about the guarantee for grid connection and remuneration Based on the perspectives for an establishing of small CHP plants including fuel cells, the range of possible stimulating and supporting measures was investigated in a second step. While doing so, it was differentiated between a flanking of the existing CHP law, its further development and other alternative measures. By this, there are several starting points to realize changes or rather adaptations in the CHP law. According to this investigation and in the interest of an increased spreading of small CHP- and fuel cell plants, these possibilities should be made use of as fast as possible. The investigation was terminated by examinating selected technical, energy-economical as well as energy political chances and requirements for hydrogen

  11. Satellite combined heat and power plants and their legal autonomy; Satelliten-BHKW und deren rechtliche Eigenstaendigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Loibl, Helmut [Kanzlei Paluka Sobola Loibl und Partner, Regensburg (Germany). Abt. Erneuerbare Energien

    2014-04-15

    Since the landmark decision by the German Court of Justice concerning the term ''plant'' in the context of biogas plants it should be clear beyond doubt that satellite combined heat and power plants (CHPs) are legally autonomous plants pursuant to Para. 3 No. 1 of the Renewable Energy Law (EEG). What has yet to be finally resolved are the conditions under which satellite CHPs are to be regarded as autonomous. This will be a question of distance on the one hand and of operation autonomy on the other. In the individual case both these factors will have to be assessed from the perspective of an average objective, informed citizen. To the extent that its heat and electricity are being utilised in a meaningful manner, the plant's autonomy will be beyond doubt, at least in operational terms. Regarding the remuneration to be paid for satellite CHPs the only case requiring special consideration is when a CHP falls under the EEG of 2012. In this case Para. 1 Section 1 Sentence 2 EEG provides that the remuneration for the CHP in question is to be calculated as if there was a single overall plant. To the extent that none of the CHPs fall under the EEG of 2012, the ruling remains that there is a separate entitlement to remuneration for each satellite CHP. This also holds in cases where satellite CHPs that were commissioned after 1 January 2012 are relocated. When a satellite CHP is replaced by a new one, the rate and duration of remuneration remain unchanged. However, when a new satellite CHP is added to an existing satellite CHP via a gas collector line it is to be treated according to the decisions of the Federal Court of Justice concerning biogas plant extensions: It falls under the law that applies to the existing CHP and has an entitlement to a new minimum remuneration period, albeit subject to the degression rate provided by the EEG version in question.

  12. Small-scale hydro-power plant in Quinto - Preliminary project; Progetto minicentrale idroelettrica, Ri Secco - Quinto. Programma piccole centrali idrauliche. Progetto di massima

    Energy Technology Data Exchange (ETDEWEB)

    Dotti, R. [Reali e Guscetti SA, Ambri (Switzerland); Rosselli, P. [Celio Engineering SA, Ambri (Switzerland)

    2009-06-15

    This report for the Swiss Federal Office of Energy (SFOE) takes a look at a project for the realisation of a small hydro-power plant on the alpine stream 'Ri Secco' in the municipality of Quinto, southern Switzerland. The Ri Secco partly flows in a steep canyon. The elevation difference of 810 or 620 m (depending on the location of the water deviation from the stream) is favorable to the installation of a small-scale high-head power plant. The report presents details on the hydrological data and the dimensioning of the installation. Several variants are considered, which also include two possible penstock diameters for each weir location. The electricity production expected is discussed, as is the economic viability of the project.

  13. CHP expansion strategy in North Rhine-Westphalia. A blueprint for other regions; KWK-Ausbaustrategie in NRW. Eine Blaupause fuer andere Regionen

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, Dominik [EnergieAgentur.NRW, Duesseldorf (Germany); Schneider, Sabine [EnergieAgentur.NRW, Wuppertal (Germany)

    2015-10-01

    The North Rhine-Westphalian state government intends to increase the share of combined heat and power (CHP) generation to at least 25 % by 2020. Since 2013, the campaign ''CHP.NRW - Power Meets Heat'' (''KWK.NRW - Strom trifft Waerme'') of the EnergyAgency.NRW, is has been running on behalf of the NRW Climate Protection Ministry, to publicise this technology and to promote its expansion. The campaign accompanies the State Government's CHP Stimulus Programme. The EnergyAgency.NRW has organised companies and research institutions, associations and interest groups under the umbrella of ''CHP.NRW - Power Meets Heat'', aiming at co-ordinated and intensified activities in the field of combined heat and power generation. The target of the initial-project ''roadmap/CHP.NRW'' of the ''Virtual Institute / CHP.NRW'' is to develop a guideline for the application and optimisation of CHP-systems.

  14. 27 CFR 19.912 - Small plants.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Small plants. 19.912... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Distilled Spirits For Fuel Use Permits § 19.912 Small plants. Persons wishing to establish a small plant shall apply for a permit as provided in this...

  15. Operation reliability analysis of independent power plants of gas-transmission system distant production facilities

    Science.gov (United States)

    Piskunov, Maksim V.; Voytkov, Ivan S.; Vysokomornaya, Olga V.; Vysokomorny, Vladimir S.

    2015-01-01

    The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants) of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature) as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.

  16. The status of development of energy technologies to reduce greenhousegas emissions in Finland

    International Nuclear Information System (INIS)

    Salokoski, P.; Aeijaelae, M.

    1997-01-01

    In Finland there is a versatile energy production in which the combined heat and power production (CHP) plays a remarkable role. In the total power supply, the CHP production accounts for about 30 %. Biomass is also widely used. In all fuels, wood and peat accounts for 21 %, the largest share in Western Countries. The utilization of wood based fuels is also remarkable, about 16 %. The high rate of CHP production and the utilization of biomass have contributed to the lower CO 2 -emissions. In future, fossil fuels will probably be utilized in larger volumes because there are limits to the increasing of the capacity of the CHP production, biomass utilization, nuclear power and hydro power. Consequently added use of fossil fuels will increase the CO 2 -emissions. The methods with most potential in reducing CO 2 -emissions in Finland are an increased use of biomass, an expanding production of nuclear power, a larger number of CHP plants and an increase in the utilization of natural gas. Other important methods with a minor effect are technologies which increase the power/heat ratio or the efficiency. These technologies include the IGCC-technologies, the gasification-diesel or the diesel technology in general with small heat loads. These technologies will grow in importance if the substitutive fuel is biomass. Most of the technologies mentioned above are in use in Finland and, in our experience, can be recommended to other countries. Viable commercial technologies are, for example, the CHP techniques in both district heating and industrial processes, various small-scale power plants integrated to CHP or condensate power plants, the fluidized-bed technology in power production or heat production only the diesel technology; the cofiring of biomass and coal as well as the harvesting, handling, drying and utilization technologies of biomass. Technologies still in the developmental stage include the IGCC-technology for biomasses, the gasification-diesel, and the production

  17. System analysis of CO_2 sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability

    International Nuclear Information System (INIS)

    Hartmann, Claus

    2014-10-01

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO_2 sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO_2 sequestration'' refers to the process chain from CO_2 capture, CO_2 transport and CO_2 storage. While the use of biomass in combined heat and power plants is a common practice, CO_2 sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO_2 from the atmosphere as a future climate protection instrument by means of CO_2 neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO_2 emissions to be established until 2020, as well as the use of CO_2 as

  18. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Geuverink, Elzemiek; Olff, Han; Schmid, Bernhard

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  19. Large grazers modify effects of aboveground–belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G.F.; Geuverink, E.; Olff, H.

    2012-01-01

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  20. Large-scale integration of wind power into different energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    The paper presents the ability of different energy systems and regulation strategies to integrate wind power. The ability is expressed by the following three factors: the degree of electricity excess production caused by fluctuations in wind and Combined Heat and Power (CHP) heat demands......, the ability to utilise wind power to reduce CO2 emission in the system, and the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system...... and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and ancillary grid stability services and investments in electric heating, heat pumps and heat storage capacity. The results...

  1. Energetic and exergetic analysis of steam production for the extraction of coniferous essential oils

    International Nuclear Information System (INIS)

    Friso, Dario; Grigolato, Stefano; Cavalli, Raffaele

    2011-01-01

    Bioenergy production is optimal when the energy production process is both efficient and benefits from local resources. Energetic and exergetic analyses are applied to highlight efficiency differences between small-size systems that are based on the co-generation of heating and power (CHP) versus the co-generation of heating and power with steam production (CHP-S). Both systems use the Organic fluid Rankine Cycle (ORC). The recovery of heat from flue gases is considered to be a way of increasing energy efficiency. In the CHP-S case, steam (at low pressure) is used to extract essential oils from fresh twigs and needles of coniferous trees throughout a steam distillation process. When the systems work at a thermal combustion power of 1350 kW, energetic analysis shows that the energy efficiency of the CHP-S plant (89.4%) is higher than that of the CHP plant (77.9%). Exergetic analysis shows that the efficiency of the CHP-S plant is 2.2% higher than that of the CHP plant. -- Highlights: → Bioenergy production is optimal when the energy production process is efficient. → Energetic and exergetic analyses are applied to highlight efficiency differences between the co-generation of heating and power (CHP) versus the co-generation of heating and power with steam production (CHP-S). → The recovery of heat from flue gases is a way of increasing energy efficiency. → The energetic and exergetic analysis shows that the efficiency of the CHP-S plant is higher than that of the CHP plant.

  2. A feasible approach to implement a commercial scale CANDU fuel manufacturing plant in Egypt

    International Nuclear Information System (INIS)

    El-Shehawy, I.; El-Sharaky, M.; Yasso, K.; Selim, I.; Graham, N.; Newington, D.

    1995-01-01

    Many planning scenarios have been examined to assess and evaluate the economic estimates for implementing a commercial scale CANDU fuel manufacturing plant in Egypt. The cost estimates indicated strong influence of the annual capital costs on total fuel manufacturing cost; this is particularly evident in a small initial plant where the proposed design output is only sufficient to supply reload fuel for a single CANDU-6 reactor. A modular approach is investigated as a possible way, to reduce the capital costs for a small initial fuel plant. In this approach the plant would do fuel assembly operations only and the remainder of a plant would be constructed and equipped in the stages when high production volumes can justify the capital expenses. Such approach seems economically feasible for implementing a small scale CANDU fuel manufacturing plant in developing countries such as Egypt and further improvement could be achieved over the years of operation. (author)

  3. Demonstration Stirling Engine based Micro-CHP with ultra-low emissions

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, Rolf; Olsson, Fredrik [Carl Bro Energikonsult AB (Sweden); Paalsson, Magnus [Lund Inst. of Technology (Sweden)

    2004-03-01

    This project has been initiated in order to develop a new type of natural gas fired low emission combustion system for a Stirling engine CHP-unit, and to demonstrate and evaluate the unit with the newly developed combustion system in a CHP application. The Stirling engine technology is well developed, but mostly used in special applications and CHP-applications are scarce. The very low exhaust emissions with the new combustion system would make the Stirling engine very suitable for installation in as a CHP-unit in domestic areas. The Stirling engine used in the project has been a V161 engine produced by Solo Kleinmotoren GmbH in Sindelfingen. The unit has a nominal output of 7,5 kW{sub el} and 20 kW{sub heat} (Hot water). The new combustion system was developed at Lund University and the very strict emission targets that were set up could be achieved, both in the laboratory tests and during the site-testing period. Typical performance and emission figures measured at the site installation are: Generator output (kW): 7,3; Hot water output (kW): 15; El. efficiency (%): 25,4; Total efficiency (%): 77,8; NO{sub x} (ppm): 14; CO (ppm): 112; HC (ppm): < 1; O{sub 2} (%): 8,0; Noise level 1 m from the unit (dBA): 83. The NO{sub x} emissions were reduced with almost 97 % as compared to a standard Stirling combustion system. The emission figures are considerably lower than what could be achieved in an internal combustion engine of similar size with an oxidation catalyst (report SGC 106), while the performance figures are similar for the two technologies. The site testing was carried out during a period of 1,5 year at a site owned by Goeteborg Energi. The site comprises a building structure with workshops, offices etc. covering a ground area of 2,500 m{sup 2}. A gas fired boiler with an output of 250 kW supplies hot water to a local grid for heating and tap water. The annual heat demand is typically 285 MWh and the hot water temperatures are normally 60-80 deg C. The site

  4. Scheduling of Multiple Chillers in Trigeneration Plants

    Directory of Open Access Journals (Sweden)

    Chris Underwood

    2015-10-01

    Full Text Available The scheduling of both absorption cycle and vapour compression cycle chillers in trigeneration plants is investigated in this work. Many trigeneration plants use absorption cycle chillers only but there are potential performance advantages to be gained by using a combination of absorption and compression chillers especially in situations where the building electrical demand to be met by the combined heat and power (CHP plant is variable. Simulation models of both types of chillers are developed together with a simple model of a variable-capacity CHP engine developed by curve-fitting to supplier’s data. The models are linked to form an optimisation problem in which the contribution of both chiller types is determined at a maximum value of operating cost (or carbon emission saving. Results show that an optimum operating condition arises at moderately high air conditioning demands and moderately low power demand when the air conditioning demand is shared between both chillers, all recovered heat is utilised, and the contribution arising from the compression chiller results in an increase in CHP power generation and, hence, engine efficiency.

  5. High altitude artisanal small-scale gold mines are hot spots for Mercury in soils and plants

    International Nuclear Information System (INIS)

    Terán-Mita, Tania A.; Faz, Angel; Salvador, Flor; Arocena, Joselito M.; Acosta, Jose A.

    2013-01-01

    Mercury releases from artisanal and small-scale gold mines (ASGM) condense and settle on plants, soils and water bodies. We collected soil and plant samples to add knowledge to the likely transfer of Hg from soils into plants and eventually predict Hg accumulation in livestock around ASGM in Bolivia. Mean contents of Hg in soils range from 0.5 to 48.6 mg Hg kg −1 soil (5× to 60× more compared to control sites) and exceeded the soil Hg threshold levels in some European countries. The Hg contents ranged from 0.6 to 18 and 0.2 to 28.3 mg Hg kg −1 leaf and root, respectively. The high Hg in Poaceae and Rosaceae may elevate Hg accumulation into the food chain because llama and alpaca solely thrive on these plants for food. Erosion of soils around ASGM in Bolivia contributes to the Hg contamination in lower reaches of the Amazon basin. - Highlights: ► Hg in soils ranged from 0.5 to 48.6 mg Hg kg −1 soil, and at least 5× to 60× more than control sites. ► Plants near gold mines exceed the 0.1 mg Hg kg −1 plant material European limit for feed quality. ► Camelids feeding on plants with high Hg may elevate Hg levels in foods (meats) for the miners. ► Soils with high Hg can be significant Hg sources to the contamination of the Amazon basin. - Mean contents of Hg in soils were at least 5× to 60× more compared to Hg in control sites, and the high Hg in Poaceae and Rosaceae may elevate Hg into the food chain.

  6. Combined heat and power plants with parallel tandem steam turbines; Smaaskalig kraftvaerme med parallellkopplade tandemturbiner

    Energy Technology Data Exchange (ETDEWEB)

    Steinwall, Pontus; Norstroem, Urban; Pettersson, Camilla; Oesterlin, Erik

    2004-12-01

    We investigate the technical and economical conditions for a concept with parallel coupled tandem turbines in small scale combined heat and power plants fired with bio-fuel and waste. Performance and heat production costs at varying electricity prices for the concept with two smaller tandem coupled steam turbines has been compared to the traditional concept with one single multi-staged turbine. Three different types of plants have been investigated: - Bio fuelled CHP plant with thermal capacity of 15 MW{sub th}; - Waste fired CHP plant with thermal capacity of 20 MW{sub th}; - Bio fuelled CHP plant with thermal capacity of 25 MW{sub th}. The simple steam turbines (Curtis turbines) used in the tandem arrangement has an isentropic efficiency of about 49 to 53% compared to the multi-staged steam turbines with isentropic efficiency in the range of 59% to 81%. The lower isentropic efficiency for the single staged turbines is to some extent compensated at partial load when one of the two turbines can be shut down leading to better operational conditions for the one still in operation. For concepts with saturated steam at partial load below 50% the tandem arrangements presents higher electricity efficiency than the conventional single turbine alternative. The difference in annual production of electricity is therefore less than the difference in isentropic efficiency for the two concepts. Production of electricity is between 2% and 42% lower for the tandem arrangements in this study. Investment costs for the turbine island has been calculated for the two turbine concepts and when the costs for turbines, generator, power transmission, condensing system, piping system, buildings, assembling, commissioning and engineering has been added the sum is about the same for the two concepts. For the bio-fuelled plant with thermal capacity of 15 MW{sub th} the turbine island amount to about 10-12 MSEK and about 13-15 MSEK for the waste fired plant with a thermal capacity of 20 MW

  7. Power contracting between two different partners. Biogas combined heat and power plants; Energie-Contracting zweier unterschiedlicher Partner. Biogas-Blockheizkraftwerk

    Energy Technology Data Exchange (ETDEWEB)

    Lennartz, Marc Wilhelm

    2013-06-15

    An agricultural consortium in the Eifel (Federal Republic of Germany) has adopted a comprehensive supply of a 7,000 m{sup 2} comprising hotel complex with combined heat and power. The old oil-fired central heating plant has been replaced by a biogas-powered combined heat and power plant (CHP). The hotel was directly connected to the CHP plant by means of a new, approximately 300 m long local heating network including buffer storage. Overall, the hotel operator saves approximately 300,000 L of heating oil annually. The energy demand of the hotel operator will be covered by more than 90 % by means of CHP plants. Thus 20 % of the heating costs is saved.

  8. Requirements and operation of decentralised power plants in the changing power market

    International Nuclear Information System (INIS)

    Hoenings, Norbert; Hornig, Niels; Steinbach, Sebastian

    2014-01-01

    E.ON plans and realises distributed industrial power plants on the basis of contracting schemes. Target is to reduce energy costs without investment by the customer himself. Gas turbine CHP plants are very flexible and offer many possibilities for the operator to adjust optimally to a constantly changing energy market. This aspect is becoming increasingly important due to the increasing share of renewables. However, the economic situation for CHP plants has deteriorated significantly, due to the current market situation distorted by the subsidised renewable power generation. (orig.)

  9. Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Florian Heberle

    2014-07-01

    Full Text Available We present a thermo-economic analysis for a low-temperature Organic Rankine Cycle (ORC in a combined heat and power generation (CHP case. For the hybrid power plant, thermal energy input is provided by a geothermal resource coupled with the exhaust gases of a biogas engine. A comparison to alternative geothermal CHP concepts is performed by considering variable parameters like ORC working fluid, supply temperature of the heating network or geothermal water temperature. Second law efficiency as well as economic parameters show that hybrid power plants are more efficient compared to conventional CHP concepts or separate use of the energy sources.

  10. Optimized solar heat production in a liberalised electricity market. Demonstration of full-scale plant in Braedstrup; Optimeret solvarmeproduktion i et liberaliseret elmarked. Demonstration af fuldskalaanlaeg i Braedstrup

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, P.A. (PlanEnergi, Skoerping (Denmark)); Kristensen, Per (Braedstrup Fjernvarme, Braedstrup (Denmark)); Furbo, S. (Danmarks Tekniske Univ. DTU BYG, Kgs. Lyngby (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Holm, L. (Marstal Fjernvarme, Marstal (Denmark)); Schmidt, T. (Steinbeis-Research Institute for Solar and Sustainable Thermal Systems, Stuttgart (Denmark))

    2009-03-15

    The project demonstrates for the first time a combination between CHP and solar power systems. 8,019 m2 solar collectors producing 8% of the annual consumption in Braedstrup, Denmark, and nearly the total consumption on a good summer day were combined with a natural gas-fired CHP plant. An optimised ARCON HT2006 collector was developed for this purpose, and the control system was designed to ensure that supply-pipe temperature from solar collectors is always as low as possible and that the temperature in the existing water storage tank does not drop below 90 deg. C. (ln)

  11. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Mortensen, Paw Vestergård; Enkeshafi, Ali A.

    2011-01-01

    and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating...... the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business...

  12. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  13. Analysis of near optimum design for small and medium size nuclear power plants

    International Nuclear Information System (INIS)

    Ahmed, A.A.

    1977-01-01

    Market surveys in recent years have shown that a significant market would exist among the developing nations of the world for nuclear power plants that would be classified as small to medium sized, provided that these small plants could produce electricity at a unit price comparable to that of equivalent sized fossil fired plants. Nuclear plants in the range of 100 MWe to 500 MWe would fit more effectively into the relatively smaller grids of most developing nations than would the 900 MWe to 1300 MWe units now being constructed in the large industrial nations. Worldwide re-evaluation of the worth of fossil fuels has prompted a re-examination of the competitive position of small to medium sized nuclear generating units compared to comparable fossil fired units, especially in the context of units specifically optimized for the size range of interest, rather than of designs that are simply scaled down versions of the currently available larger units. Since the absolute cost of electricity is more sensitive to external factors such as cost of money, national inflation rate and time required for licensing and construction than to details of design or perhaps even to choice of fuels, and since the cost of electricity generated in small to medium sized fossil fired units is periodically compared to that of scaled down versions of conventional large nuclear units, the point of view taken here is one of comparing the relative generating costs of smaller nuclear units of optimum design with the corresponding costs of scaled down versions of current large nuclear generating units

  14. Small hydroelectric power plants

    International Nuclear Information System (INIS)

    Helgesen, Boerre

    2002-01-01

    Small hydroelectric power plants are power plants of 1 - 10 MW. For a supplier, this is an unnatural limit. A more natural limit involves compact engine design and simplified control system. The article discusses most of the engine and electrotechnical aspects in the development, construction and operation of such a plant

  15. Retrofitting the small-scale hydro power plant 'La Chocolatiere' in Echandens-Bussigny, Switzerland

    International Nuclear Information System (INIS)

    2008-05-01

    This report for the Swiss Federal Office of Energy (SFOE) is a project study for the retrofitting of a small-scale hydro power plant installed on the River Venoge, between the communities of Echandens and Bussigny, western Switzerland. At this site, hydro power is used since the 18 th century. A permanent license to use at most 3 m 3 /s is available. The study concludes that the maximum flow rate of 6 m 3 /s would be more advantageous, implying a 35 cm higher dam on the river. Two turbines could then be installed, leading to the maximum electric power of 177 kW and the power production of 727,000 kWh/y. From the detailed inventory of the retrofitting work and the installation of the new turbines - including a new fish ladder according to the legislation in force - the authors conclude that electricity could be generated at a cost amounting to about CHF 0.24/kWh. It is recommended to request the modification of the water use license in order to be able to use up to 6 m 3 /s.

  16. Evaluation of Combined Heat and Power (CHP Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS

    Directory of Open Access Journals (Sweden)

    Fausto Cavallaro

    2016-06-01

    Full Text Available Combined heat and power (CHP or cogeneration can play a strategic role in addressing environmental issues and climate change. CHP systems require less fuel than separate heat and power systems in order to produce the same amount of energy saving primary energy, improving the security of the supply. Because less fuel is combusted, greenhouse gas emissions and other air pollutants are reduced. If we are to consider the CHP system as “sustainable”, we must include in its assessment not only energetic performance but also environmental and economic aspects, presenting a multicriteria issue. The purpose of the paper is to apply a fuzzy multicriteria methodology to the assessment of five CHP commercial technologies. Specifically, the combination of the fuzzy Shannon’s entropy and the fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS approach will be tested for this purpose. Shannon’s entropy concept, using interval data such as the α-cut, is a particularly suitable technique for assigning weights to criteria—it does not require a decision-making (DM to assign a weight to the criteria. To rank the proposed alternatives, a fuzzy TOPSIS method has been applied. It is based on the principle that the chosen alternative should be as close as possible to the positive ideal solution and be as far as possible from the negative ideal solution. The proposed approach provides a useful technical–scientific decision-making tool that can effectively support, in a consistent and transparent way, the assessment of various CHP technologies from a sustainable point of view.

  17. Small Scale Hydrocarbon Fire Test Concept

    Directory of Open Access Journals (Sweden)

    Joachim Søreng Bjørge

    2017-11-01

    Full Text Available In the oil and gas industry, hydrocarbon process equipment was previously often thermally insulated by applying insulation directly to the metal surface. Fire protective insulation was applied outside the thermal insulation. In some cases, severe corrosion attacks were observed due to ingress of humidity and condensation at cold surfaces. Introducing a 25 mm air gap to prevent wet thermal insulation and metal wall contact is expected to solve the corrosion issues. This improved insulation methodology does, however, require more space that may not be available when refurbishing older process plants. Relocating structural elements would introduce much hot work, which should be minimized in live plants. It is also costly. The aim of the present study is therefore to develop a test concept for testing fire resistance of equipment protected with only air-gap and thermal insulation, i.e., without the fire-protective insulation. The present work demonstrates a conceptual methodology for small scale fire testing of mockups resembling a section of a distillation column. The mockups were exposed to a small-scale propane flame in a test configuration where the flow rate and the flame zone were optimized to give heat flux levels in the range 250–350 kW/m2. Results are presented for a mockup resembling a 16 mm thick distillation column steel wall. It is demonstrated that the modern distance insulation in combination with the heat capacity of the column wall indicates 30+ minutes fire resistance. The results show that this methodology has great potentials for low cost fire testing of other configurations, and it may serve as a set-up for product development.

  18. Researching of the possibility of using absorption heat exchangers for creating the low return temperature heat supply systems based on CHP generation

    Science.gov (United States)

    Yavorovsky, Y. V.; Malenkov, A. S.; Zhigulina, Y. V.; Romanov, D. O.; Kurzanov, S. Y.

    2017-11-01

    This paper deals with the variant of modernization of the heat point within urban heat supply network in order to create the system of heat and cold supply on its basis, providing the suppliers with heat in cold months and with heat and cold in warm months. However, in cold months in the course of heating system operation, the reverse delivery water temperature is maintained below 40 °C. The analysis of heat and power indicators of the heat and cold supply system under different operating conditions throughout the year was conducted. The possibility to use the existing heat networks for the cold supply needs was estimated. The advantages of the system over the traditional heat supply systems that use Combined Heat and Power (CHP) plant as a heat source as exemplified by heat supply system from CHP with ST-80 turbine were demonstrated.

  19. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    Energy Technology Data Exchange (ETDEWEB)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system

  20. Validation of a HT-PEMFC stack for CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasupathi, S.; Ulleberg, Oe. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Bujlo, P. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Electrotechnical Institute Wroclaw Division (Poland); Scholta, J. [Centre for Solar Energy and Hydrogen Research (ZSW) (Germany)

    2010-07-01

    Fuel cell systems are very attractive for stationary co-generation applications as they can produce heat and electricity efficiently in a decentralized and environmentally friendly manner. PEMFC stacks operating at temperatures above 120 C, specifically in the range of 140-180 C, are ideal for co-generation purposes. In this study, preliminary results from a HTPEMFC stack designed for CHP applications is presented and discussed. A short, five-cell, HT-PEMFC stack was assembled with Celtec- P-2100 MEAs and validated in terms of electrical performance. The stack was operated with hydrogen and air at 160 C and the utilization curves for anode and cathode were recorded for a wide range of gas utilization at a current density of 0.52 A/cm{sup 2}. The current voltage characteristic was measured at optimal utilization values at 160 C. A 1kW stack is assembled and is currently being validated for its performance under various operating conditions for use in CHP applications. (orig.)

  1. Micro-CHP for self-supply in the housing industry. Profitability and system integration; Mikro-BHKW zur Eigenversorgung in der Wohnungswirtschaft. Wirtschaftlichkeit und Systemintegration

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, Raphael; Buettner, Markus; Erge, Thomas; Wille-Haussmann, Bernhard; Wittwer, Christof [Fraunhofer-Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2011-07-01

    The use of micro-CHP units in multifamily buildings is particularly profitable if the produced electricity - coupled with the thermal energy production - is used directly by the operator or sold locally. To maximize the share of own consumption the use of thermal storages to operate the CHP at times of high electrical demand is necessary. By conducting a field test it is shown that the share of own consumption can be increased by predictive control of CHP with thermal storages. The approach increases the profitability of the CHP operation under today's conditions as well as the system integration of the CHP electricity. (orig.)

  2. Bt maize for small scale farmers: A case study | Keetch | African ...

    African Journals Online (AJOL)

    In South Africa, genetically modified (GM) white maize was approved for commercial production in 1998. To educate and inform small-scale farmers and to give them the opportunity to evaluate GM white maize for themselves, six demonstration plots were planted at strategic locations. This communications presents the ...

  3. Anti-diabetic effect of Cyclo-His-Pro (CHP)-enriched yeast ...

    African Journals Online (AJOL)

    Anti-diabetic effect of Cyclo-His-Pro (CHP)-enriched yeast hydrolysate in ... The present study was designed to investigate the hypoglycemic effects of the daily ... in the area under curve (AUC) value of YH supplemented groups as compared ...

  4. Integrated energy markets and varying degrees of liberalisation: price links, bundled sales and CHP production exemplified by Northern European experiences

    International Nuclear Information System (INIS)

    Jacobsen, H.K.; Fristrup, P.; Munksgaard, J.

    2006-01-01

    Liberalisation of energy markets has during the last 20 years been gradually introduced in many countries. The liberalisation has led to concerns regarding the markets' state of competition and fears that market power existence can result in less efficiency gains than what is expected from liberalisation. Concerns have also been raised as to whether specific consumer groups will be affected by limited competition in markets. Much of the concern has been concentrated on the electricity markets, but the development of energy sectors with integration of activities within natural gas, electricity and the oil sector creates the need to examine market power aspects across these markets. This paper examines the concentration trends in the Northern European markets for electricity and natural gas, combined with regional district heating aspects, especially with respect to the situation in Denmark. The situation with natural gas companies supplying to both small-scale CHP and to retail heat customers is discussed, for instance, which changes of regulatory regime for domestic heating customers should be considered when the natural gas market is being liberalised? The interlinked nature of the energy markets is described and examples of impacts from one market with limited competition to other markets with seemingly well-functioning competition are given. The specific case of large CHP production facilities with output on the regulated district heating market and the competitive Nordic electricity market is examined. How much of the fluctuations in price experienced in electricity markets should be reflected in the price of heating supplies? To which degree do the heating customers have to bear the burden of low-electricity market prices? Regulation of liberalised markets is discussed focusing on the interaction between one regulated market and the related energy markets that are liberalised. Existing regulation on the markets are compared to a situation where liberalisation

  5. Integrated energy markets and varying degrees of liberalisation: Price links, bundled sales and CHP production exemplified by Northern European experiences

    International Nuclear Information System (INIS)

    Klinge Jacobsen, Henrik; Fristrup, Peter; Munksgaard, Jesper

    2006-01-01

    Liberalisation of energy markets has during the last 20 years been gradually introduced in many countries. The liberalisation has led to concerns regarding the markets' state of competition and fears that market power existence can result in less efficiency gains than what is expected from liberalisation. Concerns have also been raised as to whether specific consumer groups will be affected by limited competition in markets. Much of the concern has been concentrated on the electricity markets, but the development of energy sectors with integration of activities within natural gas, electricity and the oil sector creates the need to examine market power aspects across these markets. This paper examines the concentration trends in the Northern European markets for electricity and natural gas, combined with regional district heating aspects, especially with respect to the situation in Denmark. The situation with natural gas companies supplying to both small-scale CHP and to retail heat customers is discussed, for instance, which changes of regulatory regime for domestic heating customers should be considered when the natural gas market is being liberalised? The interlinked nature of the energy markets is described and examples of impacts from one market with limited competition to other markets with seemingly well-functioning competition are given. The specific case of large CHP production facilities with output on the regulated district heating market and the competitive Nordic electricity market is examined. How much of the fluctuations in price experienced in electricity markets should be reflected in the price of heating supplies? To which degree do the heating customers have to bear the burden of low-electricity market prices? Regulation of liberalised markets is discussed focusing on the interaction between one regulated market and the related energy markets that are liberalised. Existing regulation on the markets are compared to a situation where liberalisation

  6. Carbon Debt Payback Time for a Biomass Fired CHP Plant—A Case Study from Northern Europe

    Directory of Open Access Journals (Sweden)

    Kristian Madsen

    2018-03-01

    Full Text Available The European Union (EU has experienced a large increase in the use of biomass for energy in the last decades. In 2015, biomass used to generate electricity, heat, and to a limited extent, liquid fuels accounted for 51% of the EU’s renewable energy production. Bioenergy use is expected to grow substantially to meet energy and climate targets for 2020 and beyond. This development has resulted in analyses suggesting the increased use of biomass for energy might initially lead to increased greenhouse gas (GHG emissions to the atmosphere, a so-called carbon debt. Here, we analyze carbon debt and payback time of substituting coal with forest residues for combined heat and power generation (CHP. The analysis is, in contrast to most other studies, based on empirical data from a retrofit of a CHP plant in northern Europe. The results corroborate findings of a carbon debt, here 4.4 kg CO2eq GJ−1. The carbon debt has a payback time of one year after conversion, and furthermore, the results show that GHG emissions are reduced to 50% relative to continued coal combustion after about 12 years. The findings support the use of residue biomass for energy as an effective means for climate change mitigation.

  7. Small-Scale Spray Releases: Additional Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the

  8. Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems

    International Nuclear Information System (INIS)

    Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał; Piotrowski, Robert

    2016-01-01

    Highlights: • New method for long distance heat transportation system effectivity evaluation. • Decision model formulation which reflects time and spatial structure of the problem. • Multi-criteria and complex approach to solving the decision-making problem. • Solver based on simulation-optimization approach with two-phase optimization method. • Sensitivity analysis of the optimization procedure elements. - Abstract: Cogeneration or Combined Heat and Power (CHP) for power plants is a method of putting to use waste heat which would be otherwise released to the environment. This allows the increase in thermodynamic efficiency of the plant and can be a source of environmental friendly heat for District Heating (DH). In the paper CHP for Nuclear Power Plant (NPP) is analyzed with the focus on heat transportation. A method for effectivity and feasibility evaluation of the long distance, high power Heat Transportation System (HTS) between the NPP and the DH network is proposed. As a part of the method the multi-criteria decision-making problem, having the structure of the mathematical programming problem, for optimized selection of design and operating parameters of the HTS is formulated. The constraints for this problem include a static model of HTS, that allows considerations of system lifetime, time variability and spatial topology. Thereby variation of annual heat demand within the DH area, variability of ground temperature, insulation and pipe aging and/or terrain elevation profile can be taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. In general, the analyzed optimization problem is multi-criteria, hybrid and nonlinear. The two-phase optimization based on optimization-simulation framework is proposed to solve the decision-making problem. The solver introduces a number of assumptions concerning the optimization process. Methods for problem decomposition

  9. Small scale structure on cosmic strings

    International Nuclear Information System (INIS)

    Albrecht, A.

    1989-01-01

    I discuss our current understanding of cosmic string evolution, and focus on the question of small scale structure on strings, where most of the disagreements lie. I present a physical picture designed to put the role of the small scale structure into more intuitive terms. In this picture one can see how the small scale structure can feed back in a major way on the overall scaling solution. I also argue that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small structure, which I argue in any case would be extremely valuable in filling the gaps in our resent understanding of cosmic string evolution. 24 refs., 8 figs

  10. Crystallization and preliminary crystallographic analysis of the human calcineurin homologous protein CHP2 bound to the cytoplasmic region of the Na+/H+ exchanger NHE1

    International Nuclear Information System (INIS)

    Ben Ammar, Youssef; Takeda, Soichi; Sugawara, Mitsuaki; Miyano, Masashi; Mori, Hidezo; Wakabayashi, Shigeo

    2005-01-01

    Crystallization of the human CHP2–NHE1 binding domain complex. Calcineurin homologous protein (CHP) is a Ca 2+ -binding protein that directly interacts with and regulates the activity of all plasma-membrane Na + /H + -exchanger (NHE) family members. In contrast to the ubiquitous isoform CHP1, CHP2 is highly expressed in cancer cells. To understand the regulatory mechanism of NHE1 by CHP2, the complex CHP2–NHE1 (amino acids 503–545) has been crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as precipitant. The crystals diffract to 2.7 Å and belong to a tetragonal space group, with unit-cell parameters a = b = 49.96, c = 103.20 Å

  11. Is the Korean public willing to pay for a decentralized generation source? The case of natural gas-based combined heat and power

    International Nuclear Information System (INIS)

    Kim, Hyo-Jin; Lim, Seul-Ye; Yoo, Seung-Hoon

    2017-01-01

    Natural gas (NG)-based combined heat and power (CHP) plants can be installed near electricity-consuming areas and do not require large-scale and long-distance power transmission facilities. This paper attempts to assess the public's additional willingness to pay (WTP) for substituting consumption of a unit of electricity generated from nuclear power plant, currently a dominant power generation source in Korea, with that produced from NG-based CHP plant in terms of decentralized generation using the contingent valuation (CV) method. To this end, a CV survey of 1,000 households was implemented. The results show that the mean additional WTP for substituting nuclear power plant by NG-based CHP plant is estimated to be KRW 55.3 (USD 0.047) per kWh of electricity, which is statistically significant at the 1% level. This value amounts to 44.7% of the average price for electricity, KRW 123.69 (USD 0.106) in 2015, which implies that the public are ready to shoulder a significant financial burden to achieve the substitution. Moreover, the value can be interpreted as an external cost of nuclear power generation relative to NG-based CHP generation, or as an external benefit of NG-based CHP generation relative to nuclear power generation with a view to decentralized generation. - Highlights: • Combined heat and power (CHP) is a representative decentralized generation source. • Nuclear power requires large-scale and long-distance power transmission facilities. • We assess people's additional willingness to pay (WTP) for CHP over nuclear power. • We conduct a contingent valuation survey of 1,000 households in Korea. • The mean additional WTP amounts to 44.2% of the average price for electricity.

  12. Economic, energy and GHG emissions performance evaluation of a WhisperGen Mk IV Stirling engine μ-CHP unit in a domestic dwelling

    International Nuclear Information System (INIS)

    Conroy, G.; Duffy, A.; Ayompe, L.M.

    2014-01-01

    Highlights: • The performance of a Stirling engine MK IV micro-CHP unit was evaluated in a domestic dwelling in Ireland. • The performance of the micro-CHP was compare to that of a condensing gas boiler. • The micro-CHP unit resulted in an annual cost saving of €180 compared to the condensing gas boiler. • Electricity imported from the grid decreased by 20.8% while CO 2 emissions decreased by 16.1%. • The micro-CHP unit used 2889 kW h of gas more than the condensing gas boiler during one year of operation. - Abstract: This paper presents an assessment of the energy, economic and greenhouse gas emissions performances of a WhisperGen Mk IV Stirling engine μ-CHP unit for use in a conventional house in the Republic of Ireland. The energy performance data used in this study was obtained from a field trial carried out in Belfast, Northern Ireland during the period June 2004–July 2005 by Northern Ireland Electricity and Phoenix Gas working in collaboration with Whispertech UK. A comparative performance analysis between the μ-CHP unit and a condensing gas boiler revealed that the μ-CHP unit resulted in an annual cost saving of €180 with an incremental simple payback period of 13.8 years when compared to a condensing gas boiler. Electricity imported from the grid decreased by 20.8% while CO 2 emissions decreased by 16.1%. The μ-CHP unit used 2889 kW h of gas more than the condensing gas boiler

  13. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  14. EPA's Air Quality Rules for Reciprocating Internal Combustion Engines (RICE) and their Application to CHP (Webinar) – June 24, 2014

    Science.gov (United States)

    This webinar discusses the effect of EPA's air quality regulations on CHP facilities and stationary RICE, and describes how CHP systems can comply with air quality regulations by using stationary RICE.

  15. More Electricity. Methodical survey of existing plants; Mer El. Metodisk genomgaang av befintliga anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Axby, Fredrik; Baafaelt, Martin [Carl Bro Energikonsult AB, Malmoe (Sweden); Ifwer, Karin; Svensson, Niclas; Oehrstroem, Anna [AaF-Process AB, Stockholm (Sweden); Johansson, Inge [S.E.P. Scandinavian Energy Project AB, Goeteborg (Sweden)

    2006-11-15

    The interest in production of electricity has increased the last years as a consequence of the increased price. A high production of electricity is of interest for all kinds of CHP-plants. For large biofuel fired CHP-plants typical electrical efficiency is 35 %, for incineration plants the electrical efficiency is about 28 %. A number of reasons why it is not higher, for example corrosion, fouling, erosion, limited and varying need for heat, flue gas condensation etc, exist. A number of these reasons have earlier been studied in different Vaermeforsk reports. The results from these studies give to some extent solutions and understanding for how the production of electricity can be increased. There is however no report that has the overall picture of what actions are realistic, most cost effective, what areas need more research and gives the most benefit of allocated funds. The aim of this report is to identify the technical limitations and propose measures for increased electricity production at CHP-plants using biofuel and waste. A method for identification of the most suitable actions for each plant is also presented. The idea is to take every conceivable factor that affects electricity production into consideration and to be able to make a relevant comparison of the factors. This report doesn't take new solutions/measures and means of control into consideration. The method used is called 'Weighted Sum Method'. Every action is assessed in the means of different criteria as for example how it affects the environment, if it is profitable, if it means more maintenance etc. An extensive checklist for different conceivable measures for increased electricity production has been created. The checklist includes measures from the fuel storage to the chimney and makes a good guidance when making a review of a biofuel or incineration CHP-plant. Some of the measures can be eliminated immediately at review since they not are applicable or have already been done

  16. Technical and economical studies on the modernization of small-scale hydroelectric power plants: difficulties and proposals; Estudo tecnico-economicos de mordernizacao de PCH`s: Dificuldades e propostas

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Antonio Tadeu Lyrio de; Beltrame, Eduardo; Santos, Afonso Henriques Moreira; Souza, Zulcy [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1989-12-31

    This work describes and analyses some technical alternatives to be used in re-designing or reforming small-scale hydroelectric power plants. In addition, some criteria are also presented in order to proceed a comparative evaluation based on economic feasibility 7 refs. 5 figs. 1 tab.

  17. Technical and economical studies on the modernization of small-scale hydroelectric power plants: difficulties and proposals; Estudo tecnico-economicos de mordernizacao de PCH`s: Dificuldades e propostas

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Antonio Tadeu Lyrio de; Beltrame, Eduardo; Santos, Afonso Henriques Moreira; Souza, Zulcy [Escola Federal de Engenharia de Itajuba, MG (Brazil)

    1990-12-31

    This work describes and analyses some technical alternatives to be used in re-designing or reforming small-scale hydroelectric power plants. In addition, some criteria are also presented in order to proceed a comparative evaluation based on economic feasibility 7 refs. 5 figs. 1 tab.

  18. Optimisation of Combined Cycle Gas Turbine Power Plant in Intraday Market: Riga CHP-2 Example

    Science.gov (United States)

    Ivanova, P.; Grebesh, E.; Linkevics, O.

    2018-02-01

    In the research, the influence of optimised combined cycle gas turbine unit - according to the previously developed EM & OM approach with its use in the intraday market - is evaluated on the generation portfolio. It consists of the two combined cycle gas turbine units. The introduced evaluation algorithm saves the power and heat balance before and after the performance of EM & OM approach by making changes in the generation profile of units. The aim of this algorithm is profit maximisation of the generation portfolio. The evaluation algorithm is implemented in multi-paradigm numerical computing environment MATLab on the example of Riga CHP-2. The results show that the use of EM & OM approach in the intraday market can be profitable or unprofitable. It depends on the initial state of generation units in the intraday market and on the content of the generation portfolio.

  19. Exergoeconomic analysis of small-scale biomass steam cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Sotomonte, Cesar Adolfo; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba, MG (Brazil)], e-mails: c.rodriguez32@unifei.edu.br, electo@unifei.edu.br; Venturini, Osvaldo Jose; Escobar, Jose Carlos [Universidad Federal de Itajuba, MG (Brazil)], e-mail: osvaldo@unifei.edu.br

    2010-07-01

    The principal objective of this work is to develop a calculation process, based on the second law of thermodynamics, for evaluating the thermoeconomic potential of a small steam cogeneration plant using waste from pulp processing and/or sawmills as fuel. Four different configurations are presented and assessed. The exergetic efficiency of the cycles that use condensing turbines is found to be around 11%, which has almost 3 percent higher efficiency than cycles with back pressure turbines. The thermoeconomic equations used in this paper estimated the production costs varying the fuel price. The main results show that present cost of technologies in a small-scale steam cycle cogeneration do not justify the implementation of more efficient systems for biomass prices less than 100 R$/t. (author)

  20. Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo P.; Järvinen, Mika P.

    2014-01-01

    Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO 2 emissions. - Highlights: • Part load simulation of a cogeneration plant integrated with biomas fast pyrolysis. • Analysis of energetic and environmental performance. • Assessment of different uses of the pyrolysis products

  1. Distributed Control in a Network of Households with microCHP

    NARCIS (Netherlands)

    Larsen, Gunn; Scherpen, Jacquelien M.A.; van Foreest, Nicolaas

    2011-01-01

    This is an application of a dynamic price mechanism to distributed optimization of a network of houses which are both producers and consumers of electricity. One possibility for domestic generation is the Micro Combined Heat Power system (µCHP). We use a pricing mechanism based on dual

  2. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    International Nuclear Information System (INIS)

    Lythcke-Jørgensen, Christoffer; Haglind, Fredrik; Clausen, Lasse R.

    2014-01-01

    Highlights: • We model a system where lignocellulosic ethanol production is integrated with a combined heat and power (CHP) plant. • We conduct an exergy analysis for the ethanol production in six different system operation points. • Integrated operation, district heating (DH) production and low CHP loads all increase the exergy efficiency. • Separate operation has the largest negative impact on the exergy efficiency. • Operation is found to have a significant impact on the exergy efficiency of the ethanol production. - Abstract: Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible, and a gas boiler is used as back-up when integration is not possible. The system was evaluated according to six operation points that alternate on the following three different operation parameters: Load in the CHP unit, integrated versus separate operation, and inclusion of district heating production in the ethanol facility. The calculated standard exergy efficiency of the ethanol facility varied from 0.564 to 0.855, of which the highest was obtained for integrated operation at reduced CHP load and full district heating production in the ethanol facility, and the lowest for separate operation with zero district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the

  3. Stochastic Programming for Fuel Supply Planning of Combined Heat and Power Plants

    DEFF Research Database (Denmark)

    Guericke, Daniela; Blanco, Ignacio; Morales González, Juan Miguel

    The consumption of biomass to produce power and heat has increased due to the carbon neutral policies. Combined heat and power (CHP) plants often combine biomass with other fuels, e.g., natural gas. The negotiation process for supply contracts involves many uncertainties due to the long planning...... horizon. The demand for biomass is uncertain, and heat demand and electricity prices vary during the planning period. We propose a method using stochastic optimization to support the biomass and natural gas supply planning for CHP plants including short-term decisions for optimal market participation....

  4. Comparing the life cycle costs of using harvest residue as feedstock for small- and large-scale bioenergy systems (part II)

    International Nuclear Information System (INIS)

    Cleary, Julian; Wolf, Derek P.; Caspersen, John P.

    2015-01-01

    In part II of our two-part study, we estimate the nominal electricity generation and GHG (greenhouse gas) mitigation costs of using harvest residue from a hardwood forest in Ontario, Canada to fuel (1) a small-scale (250 kW e ) combined heat and power wood chip gasification unit and (2) a large-scale (211 MW e ) coal-fired generating station retrofitted to combust wood pellets. Under favorable operational and regulatory conditions, generation costs are similar: 14.1 and 14.9 cents per kWh (c/kWh) for the small- and large-scale facilities, respectively. However, GHG mitigation costs are considerably higher for the large-scale system: $159/tonne of CO 2 eq., compared to $111 for the small-scale counterpart. Generation costs increase substantially under existing conditions, reaching: (1) 25.5 c/kWh for the small-scale system, due to a regulation mandating the continual presence of an operating engineer; and (2) 22.5 c/kWh for the large-scale system due to insufficient biomass supply, which reduces plant capacity factor from 34% to 8%. Limited inflation adjustment (50%) of feed-in tariff rates boosts these costs by 7% to 11%. Results indicate that policy generalizations based on scale require careful consideration of the range of operational/regulatory conditions in the jurisdiction of interest. Further, if GHG mitigation is prioritized, small-scale systems may be more cost-effective. - Highlights: • Generation costs for two forest bioenergy systems of different scales are estimated. • Nominal electricity costs are 14.1–28.3 cents/kWh for the small-scale plant. • Nominal electricity costs are 14.9–24.2 cents/kWh for the large-scale plant. • GHG mitigation costs from displacing coal and LPG are $111-$281/tonne of CO 2 eq. • High sensitivity to cap. factor (large-scale) and labor requirements (small-scale)

  5. Small scale combustion of solid biofuels; Smaaskalig foerbraenning av fasta biobraenslen

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-15

    The purpose of this assignment is to explore the need and the consequences of giving municipalities more power to intervene in the case of individual plants of local heating creates a nuisance in the surrounding areas as high emissions of hazardous air pollutants. The mission does not include an analysis of general instruments for small-scale combustion of biofuels

  6. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    OpenAIRE

    Stanisław Ledakowicz; Paweł Stolarek; A. Malinowski

    2016-01-01

    The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h ...

  7. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...

  8. A new small HTGR power plant concept with inherently safe features--An engineering and economic challenge

    International Nuclear Information System (INIS)

    McDonald, C.F.; Sonn, D.L.

    1983-01-01

    This paper outlines a small nuclear plant concept which is not meant to replace the large nuclear power plants that will continue to be needed by the industrialized nations, but rather recognizes the needs of the smaller energy user, both for special applications in the US and for the developing nations. The small High-Temperature Gas-Cooled Reactor (HTGR), whose introduction will be very dependent on market forces, represents only one approach to meet these needs. The design of a small power plant that could be inherently safer and that might have costs less than those indicated by the traditional reverse-economy-of-scale effect is discussed. Topics considered include power plant economics, the small steam cycle HTGR thermodynamic cycle, the reactor nuclear heat source layout, the reactor heat removal system (main loop cooling, a vessel cooling system with reactor pressurized, vessel cooling system with reactor depressurized), safety considerations, investment risk protection, the technology base, and applications for the small HTGR plant concept

  9. Exergy analysis of a combined heat and power plant with integrated lignocellulosic ethanol production

    DEFF Research Database (Denmark)

    Lythcke-Jørgensen, Christoffer Ernst; Haglind, Fredrik; Clausen, Lasse Røngaard

    2014-01-01

    production. An exergy analysis is carried out for a modelled polygeneration system in which lignocellulosic ethanol production based on hydrothermal pretreatment is integrated in an existing combined heat and power (CHP) plant. The ethanol facility is driven by steam extracted from the CHP unit when feasible...... district heating production in the ethanol facility. The results suggest that the efficiency of integrating lignocellulosic ethanol production in CHP plants is highly dependent on operation, and it is therefore suggested that the expected operation pattern of such polygeneration system is taken......Lignocellulosic ethanol production is often assumed integrated in polygeneration systems because of its energy intensive nature. The objective of this study is to investigate potential irreversibilities from such integration, and what impact it has on the efficiency of the integrated ethanol...

  10. Optimisation of Combined Cycle Gas Turbine Power Plant in Intraday Market: Riga CHP-2 Example

    Directory of Open Access Journals (Sweden)

    Ivanova P.

    2018-02-01

    Full Text Available In the research, the influence of optimised combined cycle gas turbine unit – according to the previously developed EM & OM approach with its use in the intraday market – is evaluated on the generation portfolio. It consists of the two combined cycle gas turbine units. The introduced evaluation algorithm saves the power and heat balance before and after the performance of EM & OM approach by making changes in the generation profile of units. The aim of this algorithm is profit maximisation of the generation portfolio. The evaluation algorithm is implemented in multi-paradigm numerical computing environment MATLab on the example of Riga CHP-2. The results show that the use of EM & OM approach in the intraday market can be profitable or unprofitable. It depends on the initial state of generation units in the intraday market and on the content of the generation portfolio.

  11. Crystallization and preliminary crystallographic analysis of the human calcineurin homologous protein CHP2 bound to the cytoplasmic region of the Na{sup +}/H{sup +} exchanger NHE1

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ammar, Youssef [Department of Molecular Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Takeda, Soichi [Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Sugawara, Mitsuaki; Miyano, Masashi [Structural Biophysics Laboratory, RIKEN Harima Institute at SPring-8, Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan); Mori, Hidezo [Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Wakabayashi, Shigeo, E-mail: wak@ri.ncvc.go.jp [Department of Molecular Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan)

    2005-10-01

    Crystallization of the human CHP2–NHE1 binding domain complex. Calcineurin homologous protein (CHP) is a Ca{sup 2+}-binding protein that directly interacts with and regulates the activity of all plasma-membrane Na{sup +}/H{sup +}-exchanger (NHE) family members. In contrast to the ubiquitous isoform CHP1, CHP2 is highly expressed in cancer cells. To understand the regulatory mechanism of NHE1 by CHP2, the complex CHP2–NHE1 (amino acids 503–545) has been crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as precipitant. The crystals diffract to 2.7 Å and belong to a tetragonal space group, with unit-cell parameters a = b = 49.96, c = 103.20 Å.

  12. Financing CHP Projects at Wastewater Treatment Facilities with Clean Water State Revolving Funds

    Science.gov (United States)

    This factsheet provides information about CHP at wastewater treatment facilities, including applications, financial challenges, and financial opportunities, such as the Clean Water State Revolving Fund.

  13. Mixed-power scaling of whole-plant respiration from seedlings to giant trees.

    Science.gov (United States)

    Mori, Shigeta; Yamaji, Keiko; Ishida, Atsushi; Prokushkin, Stanislav G; Masyagina, Oxana V; Hagihara, Akio; Hoque, A T M Rafiqul; Suwa, Rempei; Osawa, Akira; Nishizono, Tomohiro; Ueda, Tatsushiro; Kinjo, Masaru; Miyagi, Tsuyoshi; Kajimoto, Takuya; Koike, Takayoshi; Matsuura, Yojiro; Toma, Takeshi; Zyryanova, Olga A; Abaimov, Anatoly P; Awaya, Yoshio; Araki, Masatake G; Kawasaki, Tatsuro; Chiba, Yukihiro; Umari, Marjnah

    2010-01-26

    The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems. Our measurements include the roots, which have often been ignored. Rather than a single power-law relationship, our data are fit by a biphasic, mixed-power function. The allometric exponent varies continuously from 1 in the smallest plants to 3/4 in larger saplings and trees. Therefore, our findings support the recent findings of Reich et al. [Reich PB, Tjoelker MG, Machado JL, Oleksyn J (2006) Universal scaling of respiratory metabolism, size, and nitrogen in plants. Nature 439:457-461] and West, Brown, and Enquist [West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122 -126.]. The transition from linear to 3/4-power scaling may indicate fundamental physical and physiological constraints on the allocation of plant biomass between photosynthetic and nonphotosynthetic organs over the course of ontogenetic plant growth.

  14. Modeling and Experimental Study of a Small Scale Olive Pomace Gasifier for Cogeneration: Energy and Profitability Analysis

    Directory of Open Access Journals (Sweden)

    Domenico Borello

    2017-11-01

    Full Text Available A thermodynamic model of a combined heat and power (CHP plant, fed by syngas produced by dry olive pomace gasification is here presented. An experimental study is carried out to inform the proposed model. The plant is designed to produce electric power (200 kWel and hot-water by using a cogenerative micro gas turbine (micro GT. Before being released, exhausts are used to dry the biomass from 50% to 17% wb. The ChemCad software is used to model the gasification process, and input data to inform the model are taken from experimental tests. The micro GT and cogeneration sections are modeled assuming data from existing commercial plants. The paper analyzes the whole conversion process from wet biomass to heat and power production, reporting energy balances and costs analysis. The investment profitability is assessed in light of the Italian regulations, which include feed-in-tariffs for biomass based electricity generation.

  15. Analysis of the impact of Heat-to-Power Ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Brandon, Nigel

    2011-01-01

    In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single-family hous......In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single...... according to the summer energy demand. The winter energy demand shows a Heat-to-Power Ratio which cannot be covered by the mCHP unit alone. To ensure that the mCHP system meets both the thermal and electrical energy demand over the entire year, an auxiliary boiler and a hot water storage tank need...

  16. The impact of lignocellulosic ethanol yields in polygeneration with district heating – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Daianova, Lilia; Yan, Jinyue; Thorin, Eva; Dotzauer, Erik

    2012-01-01

    Highlights: ► We model a system with ethanol, power and district heating production. ► Different ethanol yields are investigated from an overall system perspective. ► Yields of ethanol production have less importance for the profitability of the plant. -- Abstract: The development towards high energy efficiency and low environmental impact from human interactions has led to changes at many levels of society. As a result of the introduction of penalties on carbon dioxide emissions and other economic instruments, the energy industry is striving to improve energy efficiency and climate mitigation by switching from fossil fuels to renewable fuels. Biomass-based combined heat and power (CHP) plants connected to district heating networks have a need to find uses for the excess heat they produce in summer when the heat demand is low. On the other hand, the transport sector makes a substantial contribution to the increasing CO 2 emissions, which have to be reduced. One promising alternative to address these challenging issues is the integration of vehicle fuel production with biomass-based CHP plants. This paper presents the configuration and operating profits in terms of electricity, heat and ethanol fuel from cellulosic biomass. A case study of a commercial small scale CHP plant was conducted using simulation and modeling tools. The results clearly show that electricity production can be increased when CHP production is integrated with cellulosic ethanol production. The findings also show that the economic benefits of the energy system can be realized with near-term commercially available technology, and that the benefits do not rely solely on ethanol yields.

  17. Brighter for small power plants

    International Nuclear Information System (INIS)

    Haaland, Leif

    2003-01-01

    The article presents a small tunnel drilling machine aimed at using for the construction of small hydroelectric power plants and mentions briefly some advantages economically and environmentally of both the machine and the power production solution

  18. Review of European regulatory and tariff experience with the sale of heat and electricity from combined heat and power plants

    International Nuclear Information System (INIS)

    Dyrelund, A.

    1991-12-01

    The Prince Edward Island Energy Corporation, Edmonton Power, Energy, Mines and Resources Canada and the Canadian Electrical Association commissioned a study to understand how electrical power and district heat from combined heat and power (CHP) plants is priced in Europe. Four northern European countries were investigated, Denmark, Germany, Sweden and Finland. These countries produce 45.8 TWh of power from combined heat and power plants, 7.1% of their annual consumption. In the case of Denmark, CHP accounts for 37.5% of its total power production. The energy situation in each country is reviewed using published statistics, and in particular the rapidly changing situation with regard to environmental and fuel taxes is examined. In order to obtain practical insights with regard to tariffs used by the various utilities, a series of generic examples were examined, supported by specific case studies. Technologies reviewed included: CHP from coal-fuelled extraction plant, CHP from coal-fuelled back pressure plant, waste heat from a municipal waste plant, and gas turbine with waste heat recovery. The benefits and risks associated with different tariff designs are discussed in detail including tariff formulae. This should enable interested parties to develop appropriate tariffs for combined heat and power plants in the context of current electrical utility policies. As a complement to the tariffs for combined heat and power plants, the design of district heating tariffs is also addressed. The typical concepts used in different countries are presented and discussed. 23 tabs

  19. The agnion Heatpipe-Reformer - operating experiences and evaluation of fuel conversion and syngas composition

    Energy Technology Data Exchange (ETDEWEB)

    Gallmetzer, Georg; Ackermann, Pascal [Highterm Research GmbH, Hettenshausen (Germany); Schweiger, Andreas; Kienberger, Thomas [Highterm Research GmbH, Graz (Austria); Groebl, Thomas; Walter, Heimo [Technische Universitaet Wien, Institut fuer Energietechnik und Thermodynamik, Wien (Austria); Zankl, Markus; Kroener, Martin [Agnion Technologies GmbH, Hettenshausen (Germany)

    2012-09-15

    Fluidized bed gasification of solid fuels is considered as one of the core technologies for future sustainable energy supply. Whereas autothermal oxygen-driven gasification is applied in large-scale substitute natural gas (SNG) and Fischer-Tropsch (FT) plants or small-scale combined heat and power (CHP) plants, the allothermal steam-reforming process of the agnion Heatpipe-Reformer is designed for cost- and fuel-efficient syngas generation at small scales for distributed applications. The Heatpipe-Reformer's pressurized syngas generation provides a number of benefits for SNG, biomass to liquid (BTL) and CHP applications. A modified gas engine concept uses the pressurized and hydrogen-rich syngas for increased performance and tar tolerance at decreased capital expenses. Agnion has installed and operated a 500-kW thermal input pilot plant in Pfaffenhofen, Germany, over the last 2 years, showing stable operation over a variety of operating points. The syngas composition has been measured at values expected by thermodynamic models. An influence of the steam-to-fuel ratio and reformer temperature was observed. Tar and sulphur contents have been monitored and correlated to operation parameters, showing influences on stoichiometry and carbon conversion. The mass and energy streams of the plant were balanced. One of the main observations in the monitoring programme is the fact that syngas output, efficiency and syngas quality correlate to high values if the carbon conversion is high. Carbon conversion rates and cold gas efficiencies are comparably high in respect to today's processes, promising economic and fuel-efficient operation of the Heatpipe-Reformer applications. (orig.)

  20. The effectiveness of heat pumps as part of CCGT-190/220 Tyumen CHP-1

    Directory of Open Access Journals (Sweden)

    Tretyakova Polina

    2017-01-01

    Full Text Available The article considers the possibility of increasing the energy efficiency of CCGT-190/220 Tyumen CHP-1 due to the utilization of low-grade heat given off in the condenser unit of the steam turbine. To assess the effectiveness of the proposed system, the indexes of thermal efficiency are given. As a result of a research the following conclusions are received: The heat-transfer agent heat pump, when heated uses low-grade heat TPP and increases heat output, but consumes the electricity. Using a heat pump is effective for a small temperature difference between the condenser and the evaporator. Good example is heating water before chemical treatment. This method is more efficient than using a replacement boiler and it is used in steam selection.

  1. Effect of arbuscular mycorrhizal fungi on the potential of three wild plant species for phytoextraction of mercury from small-scale gold mine tailings

    Directory of Open Access Journals (Sweden)

    A. Fiqri

    2016-04-01

    Full Text Available A study that was aimed to explore the effects of arbuscular mycorrhizal (AM fungi inoculation on the potential of wild plant species (Paspalum conjugatum, Cyperus kyllingia, and Lindernia crustacea for phytoextraction of mercury from small-scale gold mine tailings was conducted in a glasshouse. Each of the plant seedlings was planted in a plastic pot containing 10 kg of planting medium (mixture of tailings and compost; 50%: 50% by weight. Treatments tested were three plant species and doses of AM fungi inoculation, i.e. 0 and 30 spores/plant. At harvest of 63 days, plant shoot and root were analyzed for mercury concentration. The remaining planting media in the pots were used for growing maize for 84 days. The results showed that the most potential plant species for phytoextraction of mercury was Paspalum conjugatum, while the most mercury tolerant plant was Cyperus kyllingia. Without AM fungi inoculation, the highest accumulation of mercury (44.87 mg/kg was found in the root of Paspalum conjugatum. If AM fungi were inoculated, the highest accumulation of mercury (56.30 mg/kg was also found in the shoot of Paspalum conjugatum. Results of the second experiment proved that the growth and biomass production of maize after mycophytoextraction by the plant species were higher than those of maize grown on media without mycophytoextraction of mercury.

  2. STUDY ON BUILDING A SMALL-SCALE AQUAPONIC SYSTEM AND THE OUTSET OF IT

    Directory of Open Access Journals (Sweden)

    Radu Mihai Filep

    2016-07-01

    Full Text Available Building a small scale aquaponic system can be considered as a source of profit. On the same floor area two products could be yield: fish and plants (herbs, vegetables, salads, ornamentals. The small scale aquaponic system was built in the laboratory of Fisheries and Aquaculture of the Faculty of Animal Science of the University of Agronomic Sciences and Veterinary Medicine in Bucharest. It has two components, namely component of aquaculture and hydroponics component. The aquaculture component is represented by a tank with a volume of 450 l and the hydroponic component that is composed of a parallelepipedic box lined with PVC foil of 0.5 mm. PVC film’s purpose is to retain water in the hydroponic component. The parallelopipedic box was made of OSB with reinforcements made of pine timber. The substrate chosen for plant growth was river gravel with dimensions between 8 and 16 mm. The surface obtained for the plant growth was 1 m2. Water recirculation was done with a pump with adjustable flow of 300 to 1000 l / h. An aerator with two diffusers was used to assure the fish respiration and the nitrification processes. Construction costs, initialization and use of such a system are small and do not require special knowledge, tools or skills. This system can be built and used in spaces where there is no possibility of using soil for plant growth (balconies, terraces, etc.. This way one can have available herbs, vegetables and fresh fish, even in an apartments building.

  3. Requirements and operation of decentralised power plants in the changing power market; Anforderungen und Einsatz dezentraler Kraftwerke im veraenderten Strommarkt

    Energy Technology Data Exchange (ETDEWEB)

    Hoenings, Norbert; Hornig, Niels; Steinbach, Sebastian [E.ON Energy Projects GmbH, Muenchen (Germany)

    2014-08-01

    E.ON plans and realises distributed industrial power plants on the basis of contracting schemes. Target is to reduce energy costs without investment by the customer himself. Gas turbine CHP plants are very flexible and offer many possibilities for the operator to adjust optimally to a constantly changing energy market. This aspect is becoming increasingly important due to the increasing share of renewables. However, the economic situation for CHP plants has deteriorated significantly, due to the current market situation distorted by the subsidised renewable power generation. (orig.)

  4. Modular plants for small deposits

    International Nuclear Information System (INIS)

    Josa, J.M.; Moral, A.; Otero, J.L.; Suarez, E.

    1985-01-01

    The large investment required to recover uranium from small deposits is the greatest obstacle to their economic development. Various concepts (caravan mill, pure mill or semimobile mill) have been elaborated in different countries. Studies have also been made in Spain to develop a simple and economic flowsheet suitable for the beneficiation of small uranium deposits. An acid heap-leaching and solvent extraction process was chosen because there is already a great deal of experience of it in Spain. Modifications were necessary to make the equipment easy to transport and also to have a low and reusable investment when this flowsheet is used for small deposits. The aim was to develop a modular plant with all the elements fitted in compact units that needs little site preparation and little time and effort to connect the units. A standard small portable crushing plant can be borrowed and the mining operation and heap construction can be put to contract. There is a solvent extraction unit (150 m 3 /d) in continuous operation (24 h/d) and concentrate precipitation and handling facilities. The whole of the equipment is standard and as light as possible. Little civil engineering is required and the erection of the plant only needs a few months. The uranium capacity of these modular plants is between 35 and 50 t U 3 O 8 /a. Special consideration has been paid to regulations and the environmental aspects. (author)

  5. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  6. Impact of value chain governance on the development of small scale shrimp farmers in Vietnam

    Directory of Open Access Journals (Sweden)

    T. M. H. Ho

    2016-06-01

    Full Text Available Purpose of this paper is to identify the tendency of shrimp value chain development and impact of its governance on the small scale shrimp farmers in Vietnam. Design/methodology/approach - Data from the shrimp farmers surveys in Mekong delta, Vietnam from 2008-2010 with the update information in 2014 were taken to analyse by the value chain analysis method. Findings – Traditional governance type of the shrimp value chain in the early state (before 2004 showed the different levels of coordination of farmers with collectors, among collectors, and collectors with processing plants. In this type of governance, trust and linkages are inextricably linked. However, they are not strong. The processing plants determine shrimp prices and quality requirement in the market while many collectors do not seem to be highly responsible for the quality of their products. To avoid this limitation, with the governmental support policy to improve farmers’ income, the processing plants set up a direct buying from farmers under contracts. These contracts led to a new governance type with an expectation of improving farmers' position. However, this model was broken due to several reasons including un-controlled shrimp raw material from small scale and individual farmers. Consequently, processors now tend to establish their own raw material zone to comply shrimp quality assurance, and eject the existence of farmers. This will lead small scale farmers to very difficult problems in finding the market. Poverty and social problems of small scale farmers might appear. The result recommends a greater strengthening and tightening of the value chain. Re-organizing shrimp farmers into legal teams or groups that help farmers to re-participate in the game with others actor in the chain is crucial. Research limitations/implications - The research mainly follows inductive approach in w

  7. Small-scale hydropower plants and rare bryophytes and lichens. Knowledge and lack of knowledge; Smaakraftverk og sjeldne moser og lav. Kunnskap og kunnskapsmangler

    Energy Technology Data Exchange (ETDEWEB)

    Evju, Marianne; Hassel, Kristian; Hagen, Dagmar; Erikstad, Lars

    2011-08-15

    There is a large and increasing interest for the development of small-scale hydropower in Norway. Small-scale hydropower plants may impact the biological diversity negatively through destruction, degradation or fragmentation of habitats. Both the environmental investigations and the treatment of applications for small-scale hydropower plants put a great emphasis on red listed species, and in particular on red-listed bryophytes and lichens growing in stream ravines and in meadows and rock faces influenced by waterfalls. Bryophytes and lichens can be difficult to identify in the field, and knowledge of the species' ecology, distribution and population sizes is insufficient. A large review of environmental investigations of small-scale hydropower plants, documented that red-listed lichens were rarely recorded, and red-listed bryophytes were never recorded. In this report, we try to make visible the knowledge we have and the knowledge we lack of red listed bryophytes and lichens in areas in which the development of small-scale hydropower is relevant. Most focus is placed on bryophytes. The report is mainly a collation of existing knowledge. There is a great variation among stream ravines in the occurrence of species. Several factors, such as stability of moisture conditions, tree species composition and bedrock, interact to affect the occurrence of species. Red-listed bryophytes and lichens occur both in the forest and in affiliation with the stream. A reduction of local moisture, through e.g. logging of forest close to the stream or reduction of the water flow, will probably affect the species negatively. River regulation will change the frequency of flooding and affect the ice drift in the stream, which may negatively affect species living on dead wood in or close to the stream. Several species are vulnerable to deteriorated habitat quality and habitat fragmentation as their habitat requirements are narrow and their dispersal capacity is limited. However, we

  8. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...... work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10PJ/year. The added value of fruit trees pruning...... biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost....

  9. The Phenomenology of Small-Scale Turbulence

    Science.gov (United States)

    Sreenivasan, K. R.; Antonia, R. A.

    I have sometimes thought that what makes a man's work classic is often just this multiplicity [of interpretations], which invites and at the same time resists our craving for a clear understanding. Wright (1982, p. 34), on Wittgenstein's philosophy Small-scale turbulence has been an area of especially active research in the recent past, and several useful research directions have been pursued. Here, we selectively review this work. The emphasis is on scaling phenomenology and kinematics of small-scale structure. After providing a brief introduction to the classical notions of universality due to Kolmogorov and others, we survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, intermittency models, and the structure and kinematics of small-scale structure - the latter aspect coming largely from the direct numerical simulation of homogeneous turbulence in a periodic box.

  10. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales.

    Science.gov (United States)

    Aartsma, Yavanna; Bianchi, Felix J J A; van der Werf, Wopke; Poelman, Erik H; Dicke, Marcel

    2017-12-01

    Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Putney Basketville Site Biomass CHP Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  12. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    International Nuclear Information System (INIS)

    Mani, S.; Sokhansanj, S.; Tagore, S.; Turhollow, A.F.

    2010-01-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam 3 ). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  13. Endogenous small RNAs and antibacterial immunity in plants.

    Science.gov (United States)

    Jin, Hailing

    2008-08-06

    Small RNAs are non-coding regulatory RNA molecules that control gene expression by mediating mRNA degradation, translational inhibition, or chromatin modification. Virus-derived small RNAs induce silencing of viral RNAs and are essential for antiviral defense in both animal and plant systems. The role of host endogenous small RNAs on antibacterial immunity has only recently been recognized. Host disease resistance and defense responses are achieved by activation and repression of a large array of genes. Certain endogenous small RNAs in plants, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are induced or repressed in response to pathogen attack and subsequently regulate the expression of genes involved in disease resistance and defense responses by mediating transcriptional or post-transcriptional gene silencing. Thus, these small RNAs play an important role in gene expression reprogramming in plant disease resistance and defense responses. This review focuses on the recent findings of plant endogenous small RNAs in antibacterial immunity.

  14. Environmental certification for small hydropower plants

    International Nuclear Information System (INIS)

    Truffer, B.; Meier, W.; Vollenweider, S.; Seiler, B.; Dettli, R.

    2001-01-01

    This report for the Swiss Federal Institute for Environmental Science and Technology describes product-differentiation options for small hydropower plant in Switzerland and proposes a form of differentiation based on ecological characteristics as a promising market strategy. The labels created in various countries to assure customers of the environmental compatibility of 'green' power production are looked at. In particular, the implications for small hydropower plant associated with the Swiss green power labelling procedure introduced by the Association for the Promotion of Environmentally Sound Electricity (VUE) are discussed. The report proposes a simplified procedure for these small power stations and presents a sample calculation for the overall costs of certification. The report is rounded off with four detailed case studies in which the necessary upgrades to the plant and associated costs are discussed in detail

  15. Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Tichi, S.G.; Ardehali, M.M.; Nazari, M.E.

    2010-01-01

    The current subsidized energy prices in Iran are proposed to be gradually eliminated over the next few years. The objective of this study is to examine the effects of current and future energy price policies on optimal configuration of combined heat and power (CHP) and combined cooling, heating, and power (CCHP) systems in Iran, under the conditions of selling and not-selling electricity to utility. The particle swarm optimization algorithm is used for minimizing the cost function for owning and operating various CHP and CCHP systems in an industrial dairy unit. The results show that with the estimated future unsubsidized utility prices, CHP and CCHP systems operating with reciprocating engine prime mover have total costs of 5.6 and $2.9x10 6 over useful life of 20 years, respectively, while both systems have the same capital recovery periods of 1.3 years. However, for the same prime mover and with current subsidized prices, CHP and CCHP systems require 4.9 and 5.2 years for capital recovery, respectively. It is concluded that the current energy price policies hinder the promotion of installing CHP and CCHP systems and, the policy of selling electricity to utility as well as eliminating subsidies are prerequisites to successful widespread utilization of such systems.

  16. Response of pest control by generalist predators to local-scale plant diversity: a meta-analysis.

    Science.gov (United States)

    Dassou, Anicet Gbèblonoudo; Tixier, Philippe

    2016-02-01

    Disentangling the effects of plant diversity on the control of herbivores is important for understanding agricultural sustainability. Recent studies have investigated the relationships between plant diversity and arthropod communities at the landscape scale, but few have done so at the local scale. We conducted a meta-analysis of 32 papers containing 175 independent measures of the relationship between plant diversity and arthropod communities. We found that generalist predators had a strong positive response to plant diversity, that is, their abundance increased as plant diversity increased. Herbivores, in contrast, had an overall weak and negative response to plant diversity. However, specialist and generalist herbivores differed in their response to plant diversity, that is, the response was negative for specialists and not significant for generalists. While the effects of scale remain unclear, the response to plant diversity tended to increase for specialist herbivores, but decrease for generalist herbivores as the scale increased. There was no clear effect of scale on the response of generalist predators to plant diversity. Our results suggest that the response of herbivores to plant diversity at the local scale is a balance between habitat and trophic effects that vary according to arthropod specialization and habitat type. Synthesis and applications. Positive effects of plant diversity on generalist predators confirm that, at the local scale, plant diversification of agroecosystems is a credible and promising option for increasing pest regulation. Results from our meta-analysis suggest that natural control in plant-diversified systems is more likely to occur for specialist than for generalist herbivores. In terms of pest management, our results indicate that small-scale plant diversification (via the planting of cover crops or intercrops and reduced weed management) is likely to increase the control of specialist herbivores by generalist predators.

  17. Future market relevance of CHP installations with electrical ratings from 1 to 1000 kW; Zukuenftige Marktbedeutung von WKK-Anlagen mit 1 - 1000 kW elektrischer Leistung

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Rigassi, R.

    2003-12-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the future market relevance of combined heat and power (CHP) installations with electrical ratings from 1 to 1000 kW. Developments over the past ten years are reviewed. Important reductions in the price of motor-driven CHP units and the price of the electrical power produced are noted and commented on. The technical market potential of CHP units and the degree to which this potential has been implemented are commented on. Work done, including CHP implementation in the industrial, commercial and residential areas, is commented on. Future developments both in the technical area as well as in commercial areas are commented on. Micro-gas-turbine based CHP systems are also discussed, as are fuel-cell based systems in both the higher and lower capacity power generation area. The prospects for CHP systems in general in the electricity generation area are discussed

  18. Micro-scaled high-throughput digestion of plant tissue samples for multi-elemental analysis

    Directory of Open Access Journals (Sweden)

    Husted Søren

    2009-09-01

    Full Text Available Abstract Background Quantitative multi-elemental analysis by inductively coupled plasma (ICP spectrometry depends on a complete digestion of solid samples. However, fast and thorough sample digestion is a challenging analytical task which constitutes a bottleneck in modern multi-elemental analysis. Additional obstacles may be that sample quantities are limited and elemental concentrations low. In such cases, digestion in small volumes with minimum dilution and contamination is required in order to obtain high accuracy data. Results We have developed a micro-scaled microwave digestion procedure and optimized it for accurate elemental profiling of plant materials (1-20 mg dry weight. A commercially available 64-position rotor with 5 ml disposable glass vials, originally designed for microwave-based parallel organic synthesis, was used as a platform for the digestion. The novel micro-scaled method was successfully validated by the use of various certified reference materials (CRM with matrices rich in starch, lipid or protein. When the micro-scaled digestion procedure was applied on single rice grains or small batches of Arabidopsis seeds (1 mg, corresponding to approximately 50 seeds, the obtained elemental profiles closely matched those obtained by conventional analysis using digestion in large volume vessels. Accumulated elemental contents derived from separate analyses of rice grain fractions (aleurone, embryo and endosperm closely matched the total content obtained by analysis of the whole rice grain. Conclusion A high-throughput micro-scaled method has been developed which enables digestion of small quantities of plant samples for subsequent elemental profiling by ICP-spectrometry. The method constitutes a valuable tool for screening of mutants and transformants. In addition, the method facilitates studies of the distribution of essential trace elements between and within plant organs which is relevant for, e.g., breeding programmes aiming at

  19. Introduction of an energy efficiency tool for small scale biomass gasifiers – A thermodynamic approach

    International Nuclear Information System (INIS)

    Vakalis, S.; Patuzzi, F.; Baratieri, M.

    2017-01-01

    Highlights: • Analysis of plants for electricity, heat and materials production. • Thermodynamic analysis by using exergy, entransy and statistical entropy. • Extrapolation of a single efficiency index by combining the thermodynamic parameters. • Application of methodology for two monitored small scale gasifiers. - Abstract: Modern gasification plants, should be treated as poly-generation facilities because, alongside the production of electricity and heat, valuable or waste materials streams are generated. Thus, integrated methods should be introduced in order to account for the full range and the nature of the products. Application of conventional hybrid indicators that convert the output into monetary units or CO_2 equivalents are a source of bias because of the inconsistency of the conversion factors and unreliability of the available data. Therefore, this study introduces a novel thermodynamic-based method for assessing gasification plants performance by means of exergy, entransy and statistical entropy. A monitoring campaign has been implemented on two small scale gasifiers and the results have been applied on the proposed method. The energy plants are compared in respect to their individual thermodynamic parameters for energy production and materials distribution. In addition, the method returns one single value which is a resultant of all the investigated parameters and is a characteristic value of the overall performance of an energy plant.

  20. Are US utility standby rates inhibiting diffusion of customer-owned generating systems?

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2007-01-01

    New, small-scale electric generation technologies permit utility customers to generate some of their own electric power and to utilize waste heat for space heating and other applications at the building site. This combined heat and power (CHP) characteristic can provide significant energy-cost savings. However, most current US utility regulations leave CHP standby rate specification largely to utility discretion resulting in claims by CHP advocates that excessive standby rates are significantly reducing CHP-related savings and inhibiting CHP diffusion. The impacts of standby rates on the adoption of CHP are difficult to determine; however, because of the characteristically slow nature of new technology diffusion. This study develops an agent-based microsimulation model of CHP technology choice using cellular automata to represent new technology information dispersion and knowledge acquisition. Applying the model as an n-factorial experiment quantifies the impacts of standby rates on CHP technologies under alternative diffusion paths. Analysis of a sample utility indicates that, regardless of the likely diffusion process, reducing standby rates to reflect the cost of serving a large number of small, spatially clustered CHP systems significantly increases the adoption of these technologies

  1. Optimal control for power-off landing of a small-scale helicopter : a pseudospectral approach

    NARCIS (Netherlands)

    Taamallah, S.; Bombois, X.; Hof, Van den P.M.J.

    2012-01-01

    We derive optimal power-off landing trajectories, for the case of a small-scale helicopter UAV. These open-loop optimal trajectories represent the solution to the minimization of a cost objective, given system dynamics, controls and states equality and inequality constraints. The plant dynamics

  2. Production planning of combined heat and power plants with regards to electricity price spikes : A machine learning approach

    OpenAIRE

    Fransson, Nathalie

    2017-01-01

    District heating systems could help manage the expected increase of volatility on the Nordic electricity market by starting a combined heat and power production plant (CHP) instead of a heat only production plant when electricity prices are expected to be high. Fortum Värme is interested in adjusting the production planning of their district heating system more towards high electricity prices and in their system there is a peak load CHP unit that could be utilised for this purpose. The econom...

  3. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...... the two remaining can be located at positions with availability of high temperature sources by utilising the DH network to distribute the heat. A large amount of operational and economic constraints limit the applicability of HPs operated with natural working fluids, which may be the only feasible choice...... representation allows infeasible production. Using MIP or NLP optimisation, the number of operation hours and the total production of heat from HPs are significantly increased, as the HPs may be used to shave the load patterns of CHP units in significantly constrained energy systems. A MIP energy system model...

  4. Evaluating municipal energy efficiency in biorefinery integration

    International Nuclear Information System (INIS)

    Haikonen, Turo; Tuomaala, Mari; Holmberg, Henrik; Ahtila, Pekka

    2013-01-01

    In this study biomass-based energy production was introduced to an urban city area of Helsinki, Finland. The study compared two cases in integration with a municipality: (1) biomass fuelled small-scale CHP (combined heat and power)-plant and (2) a biorefinery. The comparison was made according to primary energy consumption, primary energy factors, CO 2 (carbon dioxide) emissions and the price of produced biowax. It was also studied how results are influenced by different assumptions. The results showed that the primary energy consumption and CO 2 emissions were higher in the biorefinery case in absolute amounts as more products i.e. biowax was produced. The results indicated the primary energy factors were almost the same for both cases. Additionally, the primary energy use was very low for district heat and electricity produced in the biorefinery, when the primary energy use of the biorefinery was allocated only to the biowax. The sensitivity analysis of biowax pricing showed that a biorefinery is a competitive alternative for a CHP-plant if the prices of biomass and market electricity are low and the price of CO 2 allowance is high. In terms of overall energy efficiency comparison, the comparison cannot be properly completed, because of the different end-products of the plants. - Highlights: • Primary energy consumption and CO 2 emissions in a municipality are studied. • Energy production in a biorefinery is compared to a conventional CHP-plant. • In the biorefinery CO 2 emission per produced energy unit (CO 2 /MWh) is the lowest. • The CHP-case benefits from low primary energy consumption and electricity demand. • More than one energy efficiency figure needs to be considered in analyses

  5. The Significance of a Building’s Energy Consumption Profiles for the Optimum Sizing of a Combined Heat and Power (CHP System—A Case Study for a Student Residence Hall

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2018-06-01

    Full Text Available University buildings, such as student residence halls with year-round consistent energy demands, offer strong opportunities for Combined Heat and Power (CHP systems. The economic and environmental feasibility of a CHP project is strongly linked with its optimum sizing. This study aims to undertake such an assessment for a CHP system for a student residence hall located in London, the United Kingdom (UK. The study also aims to undertake a sensitivity analysis to investigate the effect of different parameters on the project’s economics. Necessary data are collected via interviews with the University’s Energy Manager. Modeling of the CHP system is performed using the London South Bank University (LSBU, London, the UK CHP model. Results demonstrate that optimum sizing of CHP is crucial for achieving higher economic and environmental benefits and strongly depends on the authenticity of the energy consumption data, based on which the CHP is being sized. Use of incorrect energy data could result in an undersized or oversized CHP system, where an oversized system will result in higher negative results compared to an undersized system. Finally, Monto Carlo statistical analysis shows that electricity price is the significant factor that could affect the project’s economics. With an increasing spark gap, the payback period decreases, and vice versa.

  6. Morocco - Small-Scale Fisheries

    Data.gov (United States)

    Millennium Challenge Corporation — The final performance evaluation roadmap for the Small-Scale Fisheries Project (PPA-MCC) is developed using a grid constructed around indicators relating to Project...

  7. Development of small-scale peat production; Pienturvetuotannon kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Kallio, E. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The aim of the project is to develop production conditions, methods and technology of small-scale peat production to such a level that the productivity is improved and competitivity maintained. The aim in 1996 was to survey the present status of small-scale peat production, and research and development needs and to prepare a development plan for small-scale peat production for a continued project in 1997 and for the longer term. A questionnaire was sent to producers by mail, and its results were completed by phone interviews. Response was obtained from 164 producers, i.e. from about 75 - 85 % of small-scale peat producers. The quantity of energy peat produced by these amounted to 3.3 TWh and that of other peat to 265 000 m{sup 3}. The total production of energy peat (large- scale producers Vapo Oy and Turveruukki Oy included) amounted to 25.0 TWh in 1996 in Finland, of which 91 % (22.8 TWh) was milled peat and 9 % (2.2 TWh) of sod peat. The total production of peat other than energy peat amounted to 1.4 million m{sup 3}. The proportion of small-scale peat production was 13 % of energy peat, 11 % of milled peat and 38 % of sod peat. The proportion of small-scale producers was 18 % of other peat production. The results deviate clearly from those obtained in a study of small-scale production in the 1980s. The amount of small-scale production is clearly larger than generally assessed. Small-scale production focuses more on milled peat than on sod peat. The work will be continued in 1997. Based on development needs appeared in the questionnaire, the aim is to reduce environmental impacts and runoff effluents from small- scale production, to increase the efficiency of peat deliveries and to reduce peat production costs by improving the service value of machines by increasing co-operative use. (orig.)

  8. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe.

    Science.gov (United States)

    Hass, Annika L; Kormann, Urs G; Tscharntke, Teja; Clough, Yann; Baillod, Aliette Bosem; Sirami, Clélia; Fahrig, Lenore; Martin, Jean-Louis; Baudry, Jacques; Bertrand, Colette; Bosch, Jordi; Brotons, Lluís; Burel, Françoise; Georges, Romain; Giralt, David; Marcos-García, María Á; Ricarte, Antonio; Siriwardena, Gavin; Batáry, Péter

    2018-02-14

    Agricultural intensification is one of the main causes for the current biodiversity crisis. While reversing habitat loss on agricultural land is challenging, increasing the farmland configurational heterogeneity (higher field border density) and farmland compositional heterogeneity (higher crop diversity) has been proposed to counteract some habitat loss. Here, we tested whether increased farmland configurational and compositional heterogeneity promote wild pollinators and plant reproduction in 229 landscapes located in four major western European agricultural regions. High-field border density consistently increased wild bee abundance and seed set of radish ( Raphanus sativus ), probably through enhanced connectivity. In particular, we demonstrate the importance of crop-crop borders for pollinator movement as an additional experiment showed higher transfer of a pollen analogue along crop-crop borders than across fields or along semi-natural crop borders. By contrast, high crop diversity reduced bee abundance, probably due to an increase of crop types with particularly intensive management. This highlights the importance of crop identity when higher crop diversity is promoted. Our results show that small-scale agricultural systems can boost pollinators and plant reproduction. Agri-environmental policies should therefore aim to halt and reverse the current trend of increasing field sizes and to reduce the amount of crop types with particularly intensive management. © 2018 The Author(s).

  9. Competitive analysis of small hydroelectric power plants

    International Nuclear Information System (INIS)

    Assad, L.S.; Placido, R.

    1990-01-01

    The agreement between CPFL/UNICAMP/EFEI for developing energetic planning of Small Hydroelectric Power Plants construction is described. Some notions for showing the more economic alternative between decide by Small Hydroelectric Power Plants construction and continue supply the market by inter ligated system generation are shown in this stage of the agreement. (author)

  10. Plant trait detection with multi-scale spectrometry

    Science.gov (United States)

    Gamon, J. A.; Wang, R.

    2017-12-01

    Proximal and remote sensing using imaging spectrometry offers new opportunities for detecting plant traits, with benefits for phenotyping, productivity estimation, stress detection, and biodiversity studies. Using proximal and airborne spectrometry, we evaluated variation in plant optical properties at various spatial and spectral scales with the goal of identifying optimal scales for distinguishing plant traits related to photosynthetic function. Using directed approaches based on physiological vegetation indices, and statistical approaches based on spectral information content, we explored alternate ways of distinguishing plant traits with imaging spectrometry. With both leaf traits and canopy structure contributing to the signals, results exhibit a strong scale dependence. Our results demonstrate the benefits of multi-scale experimental approaches within a clear conceptual framework when applying remote sensing methods to plant trait detection for phenotyping, productivity, and biodiversity studies.

  11. Effects of increased small-scale biomass combustion on local air quality - A theoretical dispersion modelling study

    International Nuclear Information System (INIS)

    Boman, C.

    1997-01-01

    The decided phasing out of nuclear power and the goal of reducing CO 2 emissions from fossil fuels causes a substantial estimated increase in the use of biomass fuels for energy production. Thus, a significant shift from small scale heating generated by electricity or fuel oil to biomass fuels is desirable. If a drastic deterioration of the local air quality is to be avoided, a reduction of today's emission limits is necessary. The objective of this report was therefore to describe the use of biomass fuels and small scale pellet fuel combustion, to make a theoretical study of the effects of increased pellets heating on the air quality in a residential area, and to discuss necessary emission limits for small biomass fuel plants. The general description is based on literature studies. In the theoretical study, several different dispersion model calculations were performed using the computer program Dispersion 1.1.0. The contents of tar and total hydrocarbons (THC) in the air were calculated for different scenarios with conversion from electricity to pellets and with different pellet plant performance. A sensitivity analysis was performed with additional variables and dispersion calculations according to an underlying statistical experimental design. The modeling and design computer program MODDE was used to facilitate design, evaluation and illustration of the calculated results. The results show that a substantial increase in the use of small scale pellets heating with worst calculated plant performance, will lead to a drastic increase of the content of hydrocarbons in the air. Thus, with best available performance, the content only increases marginally. Conversion from electricity to pellets, plant performance and time of year were the most influential variables. Also conversion from wood to pellets showed a significant effect, despite the small number of wood heated houses within the studied area. If a significant deterioration of the air quality is to be avoided

  12. A Guide to Bundling Small-scale CDM Projects

    International Nuclear Information System (INIS)

    Mariyappan, J.; Bhardwaj, N.; De Coninck, H.; Van der Linden, N.

    2005-07-01

    Small-scale renewable energy and energy efficiency projects that fit the development needs of many developing countries, can potentially be supported via the Clean Development Mechanism (CDM), one of the Kyoto Protocol's flexible mechanisms for tackling climate change. However, there is concern that due to high transaction costs, as well as many existing barriers, very few investments will be made in small-scale projects, which are often the most suitable development option in countries such as India. In view of this, the 'bundling' together of appropriate small-scale projects on a regional basis has been proposed as a way in which funding can be leveraged from international sources and transaction costs reduced. IT Power, IT Power India and the Energy research Centre of the Netherlands (ECN) are carrying out a 2-year project to establish the capacity within India to enable individual small scale projects to be bundled as a single CDM project. Overall objectives are to develop the necessary institutional capabilities to formulate and implement small scale CDM projects in India; to provide a guide on how to bundle small scale projects under the CDM in developing countries; and to raise the awareness of the potential for investment in small scale energy projects which can gain funding through the CDM

  13. Energy conservation in methanol plant using CHP system

    International Nuclear Information System (INIS)

    Azadi, Marjan; Tahouni, Nassim; Panjeshahi, M. Hassan

    2016-01-01

    Highlights: • Feasibility of turbo expander integration with an industrial plant was studied. • Combined pinch-exergy analysis was used to achieve optimum performance of process. • Generation of power led to profitability of gas turbine integrated plant. - Abstract: Today, the efficient use of energy is a significant critical issue in various industries such as petrochemical industries. Hence, it seems essential to apply proper strategies to reduce energy consumption in such processes. A methanol production plant at a live Petrochemical Complex was selected as the case study in this research. The plant was first evaluated with combined pinch and exergy analysis from exergetic dissipation point of view. Owing to high temperature and pressure of reactor outlet stream, methanol synthesis reactor products contain considerable content of exergy. For the purpose of the present survey, the available content of exergy was used for power production by integrating a turbine expander with methanol reactor product. Utilization of reactor product’s high pressure in turbine reduces the temperature of turbine outlet stream to levels lower than those required for heating demands of existing streams in methanol synthesis cycle. Therefore, to keep the stream thermally balanced, the required hot utility of the process is increased and to compensate this increase, the heat exchanger network of the process was retrofitted based on pinch analysis concepts. The results showed that in gas turbine integrated scheme, approximately a net power of 7.5 MW is produced. Also, the total investment of turbine, compressor and heat exchangers area equals to 18.2 × 10 6 US$, and the annual saving value is about 6.1 × 10 6 US$/y. Based on economic data, payback period is estimated to be 3 years.

  14. Natural gas–biomass dual fuelled microturbines: Comparison of operating strategies in the Italian residential sector

    International Nuclear Information System (INIS)

    Pantaleo, Antonio M.; Camporeale, Sergio; Shah, Nilay

    2014-01-01

    This paper compares different operating strategies for small scale (100 kWe) combined heat and power (CHP) plants fired by natural gas and solid biomass to serve a residential energy demand. The focus is on a dual fuel micro gas turbine (MGT) cycle. Various biomass/natural gas energy input ratios are modelled, in order to assess the trade-offs between: (i) lower energy conversion efficiency and higher investment cost when increasing the biomass input rate; (ii) higher primary energy savings and revenues from feed-in tariff available for biomass electricity fed into the grid. The strategies of baseload (BL), heat driven (HD) and electricity driven (ED) plant operation are compared, for an aggregate of residential end-users in cold, average and mild climate conditions. On the basis of the results from thermodynamic assessment and simulation at partial load operation, CAPEX and OPEX estimates, and Italian energy policy scenario (incentives available for biomass electricity, on-site and high efficiency CHP), the maximum global energy efficiency, primary energy savings and investment profitability is found, as a function of biomass/natural gas ratio, plant operating strategy and energy demand typology. The thermal and electric conversion efficiency ranged respectively between 46 and 38% and 30 and 19% for the natural gas and biomass fired case studies. The IRR of the investment was highly influenced by the load/CHP thermal power ratio and by the operation mode. The availability of high heat demand levels was also a key factor, to avoid wasted cogenerated heat and maximize CHP sales revenues. BL operation presented the highest profitability because of the higher revenues from electricity sales. Climate area was another important factor, mainly in case of low load/CHP ratios. Moreover, at low load/CHP power ratio and for the BL operation mode, the dual fuel option presented the highest profitability. This is due to the lower cost of biomass fuel in comparison to natural

  15. Theory and evidence for using the economy-of-scale law in power plant economics

    International Nuclear Information System (INIS)

    Phung, D.L.

    1987-05-01

    This report compiles theory and evidence for the use of the economy-of-scale law in energy economics, particularly in the estimation of capital costs for coal-fired and nuclear power plants. The economy-of-scale law is widely used in its simplest form: cost is directly proportional to capacity raised to an exponent. An additive constant is an important component that is not generally taken into account. Also, the economy of scale is perforce valid only over a limited size range. The majority of engineering studies have estimated an economy of scale exponent of 0.7 to 0.9 for coal-fired plants and an exponent of 0.4 to 0.6 for nuclear plants in the capacity ranges of 400 to 1000 MWe. However, the majority of econometric analyses found little or no economy of scale for coal-fired plants and only a slight economy of scale for nuclear plants. This disparity is explained by the fact that economists have included regulatory and time-related costs in addition to the direct and indirect costs used by the engineers. Regulatory and time-related costs have become an increasingly larger portion of total costs during the last decade. In addition, these costs appeared to have either a very small economy of scale or to be increasing as the size of the power plant increased. We conclude that gains in economy of scale can only be made by reducing regulatory and time-related costs through design standardization and regulatory stability, in combination with more favorable economic conditions. 59 refs

  16. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...

  17. Development of a Wood Powder Fuelled 35 kW Stirling CHP Unit

    DEFF Research Database (Denmark)

    Pålsson, M.; Carlsen, Henrik

    2003-01-01

    For biomass fuelled CHP in sizes below 100 kW, Stirling engines are the only feasible alternative today. Using wood powder as fuel, the Stirling engine can be heated directly by the flame like when using a gaseous or liquid fuel burner. However, the combustion chamber will have to be much larger...... recirculation (CGR) a smaller air preheater can be used, while system efficiency will increase compared with using excess air for flame cooling. In a three-year project, a wood powder fuelled Stirling engine CHP unit will be developed and run in field test. The project will use the double-acting four......-cylinder Stirling engine SM3D with an electric output of 35 kW. This engine is a further development of the engine SM3B that has been developed at the Technical University of Denmark. The engine heater is being adapted for use with wood powder as fuel. During a two-year period a combustion system for this engine...

  18. Insight into economies of scale for waste packaging sorting plants

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Wenzel, Henrik; Maul, Anja

    2015-01-01

    of economies of scale and discussed complementary relations occurring between capacity size, technology level and operational practice. Processing costs (capital and operational expenditure) per unit waste input were found to decrease from above 100 € for small plants with a basic technology level to 60......This contribution presents the results of a techno-economic analysis performed for German Materials Recovery Facilities (MRFs) which sort commingled lightweight packaging waste (consisting of plastics, metals, beverage cartons and other composite packaging). The study addressed the importance......-70 € for large plants employing advanced process flows. Typical operational practice, often riddled with inadequate process parameters was compared with planned or designed operation. The former was found to significantly influence plant efficiency and therefore possible revenue streams from the sale of output...

  19. Economic potentials of CHP connected to district heat systems in Germany. Implementation of the EU Efficiency Directive

    International Nuclear Information System (INIS)

    Eikmeier, Bernd

    2015-01-01

    The EU Efficiency Directive (2012/27/EU) is requiring all member states to carry out an evaluation of the potential for highly efficient CHP and the efficient use of district heating and cooling by December 2015. The German Federal Ministry of Economic Affairs and Energy appointed this task to the Fraunhofer Institute for Manufacturing and Advanced Materials, division for Energy Systems Analysis (formerly Bremer Energie Institut) in conjunction with other partners. The results for the sector district- and communal heating with CHP, sub-sectors private households, trade and services industry, are presented in this article.

  20. Actual state and perspectives of the small hydroelectric plants in Colombia

    International Nuclear Information System (INIS)

    Torres Q, E.; Castillo C, J.J.

    1995-01-01

    In this article, the actual state of the small-scale hydroelectric power plants (PCHs, abbreviations in Spanish) in Colombia in aspects as: Statistic of the water in Colombia, a brief historical review and the characteristics of the PCHs in Colombia, is present. The development PCHs, the executing projects and the actions that has been develop by the INEA (Institute of Nuclear Sciences and the Alternative Energies) is described

  1. Small scale smugglers in Tamaulipas, Mexico

    Directory of Open Access Journals (Sweden)

    Simón Pedro Izcara Palacios

    2013-07-01

    Full Text Available Small-scale part-time smugglers are embedded in the migrant community itself. They work in the United States for several months before returning to their place of origin to organize, with the help of several assistants, a small group of migrants, who are transported where the coyotes themselves are going. This article analyses small-scale smuggling carried out by Tamaulipas' polleros, who transport to the United States, one or a few times per year, migrants from their hometowns or other neighboring areas in order to be employed in the farming sector.

  2. Effect of water purification process in radioactive content: analysis on small scale purification plants; Efecto del proceso de purificacion de agua en el contenido radiactivo: analisis en plantas purificadoras a pequena escala

    Energy Technology Data Exchange (ETDEWEB)

    Lopez del Rio, H.; Quiroga S, J. C.; Davila R, J. I.; Mireles G, F. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98000, Zacatecas (Mexico)], e-mail: hlopez@uaz.edu.mx

    2009-10-15

    Water from small scale purification plants is a low cost alternative for consumers in comparison to the bottled commercial presentations. Because of its low cost per liter, the consumption of this product has increased in recent years, stimulating in turn the installation of purification systems for these small businesses. The purpose of this study was to estimate the efficiency of small scale purification systems located in the cities of Zacatecas and Guadalupe, Zacatecas, to reduce the radioactive content of water. It was measured the total alpha and beta activity in water samples of entry and exit to process, through the liquid scintillation technique. In general it was observed that the process is more efficient in removing alpha that beta activity. The fraction of total alpha activity removed varied between 27 and 100%, while between 0 and 77% of the total beta activity was removed by the analyzed plants. In all cases, the total radioactivity level was lower than the maximum permissible value settled by the official mexican standard for drinking water. (Author)

  3. Design of a small scale stand-alone solar thermal co-generation plant for an isolated region in Egypt

    International Nuclear Information System (INIS)

    Abdelhady, Suzan; Borello, Domenico; Tortora, Eileen

    2014-01-01

    Highlights: • In the selected area, connection to the grid is very difficult and expensive. • The integrated unsteady CSP/ORC system, was modeled TRNSYS. • Assuming a CSP of 200,000 m 2 , 6 MW e and 21.5 MW th can be obtained. • The energy is sufficient to feed more than 3,300 rural users and two big factories. • PER = 1.43, LCOE = 1.25 USD/kW h and the GHG emissions are reduced of 7300 toe/year. - Abstract: Most of Egypt’s population is concentrated in the Nile Valley (5% of Egypt’s area), while the western desert occupies an area of 50% of the total area of Egypt with a small number of inhabitants. The New Valley is the largest governorates in Egypt which occupies 45.8% of the total area of the Country and 65% of the Western Desert and it is the least densely populated governorate in Egypt. However, New Valley has started to receive the migrated people from the Nile valley and Delta region and the demand for the energy is continuously increasing. However, the rural area in New Valley still suffers from lack of access to energy services. The very high transmission losses and costs are the main challenges for electrification in this area. Then, it is worth to investigate the opportunities for distributed energy generation. This area of Egypt receives some of the highest solar radiation in the world (up to 3000 kW h per square meters per year), making it a prime location for use of this resource. In this study, performance and economic assessment of a small scale stand-alone solar thermal co-generation plant using diathermic oil is presented. This configuration is considered as a promising and sustainable solution to provide electricity and heat to an isolated area satisfying the local loads. Parabolic trough plant has been modeled in TRNSYS simulation environment integrated with the Solar Thermal Electric Components (STEC) model library. Both solar and power cycle performances have been modeled based on the solar energy data of the plant site. The

  4. Small hydroelectric power plants - shelf goods or tailor-made?

    International Nuclear Information System (INIS)

    Aas, Trond R.

    2002-01-01

    If small hydroelectric power plants are defined to be hydroelectric power plants of up to a few 1000 kW, they should be shelf goods because of cost considerations. Design of small hydroelectric power plants is a many-sided optimization task, on a level with constructing larger hydro power plants. But the budget for a small hydro power plant does not permit any comprehensive evaluations. The most important costs are the one-time costs in the form of investments and the following annual costs in the form of operation and maintenance, and losses. Financing costs are not considered in this article

  5. An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom

    International Nuclear Information System (INIS)

    Kelly, Scott; Pollitt, Michael

    2010-01-01

    As global fuel reserves are depleted, alternative and more efficient forms of energy generation and delivery will be required. Combined heat and power with district heating (CHP-DH) provides an alternative energy production and delivery mechanism that is less resource intensive, more efficient and provides greater energy security than many popular alternatives. It will be shown that the economic viability of CHP-DH networks depends on several principles, namely (1) the optimisation of engineering and design principles; (2) organisational and regulatory frameworks; (3) financial and economic factors. It was found that in the long term DH is competitive with other energy supply and distribution technologies such as electricity and gas. However, in the short to medium term it is shown that economic risk, regulatory uncertainty and lock-in of existing technology are the most significant barriers to CHP-DH development. This research suggests that under the present regulatory and economic paradigm, the infrastructure required for DH networks remains financially prohibitive; the implementation of government policies are complicated and impose high transaction costs, while engineering solutions are frequently not implemented or economically optimised. If CHP-DH is going to play any part in meeting climate change targets then collaboration between public and private organisations will be required. It is clear from this analysis that strong local government involvement is therefore necessary for the co-ordination, leadership and infrastructural deployment of CHP-DH.

  6. Stirling Energy Module (SEM) as Micro-CHP; Stirling Energy Module (SEM) als Mini-BHKW

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, A.

    2006-07-01

    Since many years, a lot of effort is being put into the development of combined heat and power units (CHP) for the decentralised production of electric power. For long time, the main focus was on fuel cells. In the meantime, the Stirling technology, which is based upon classical mechanical engineering and innovative technical concepts, proceeded in its development as well. The following article describes the technology and the actual state of the development of the Stirling Energy Module (SEM) for the application as Micro-CHP in one-family-houses. SEM is based on a free-piston engine with a linear power generator, producing electric power while heating. The Stirling engine is planned the be introduced into the market as a replacement for the conventional heating systems within a couple of years. (author)

  7. Interactions between above- and belowground biota: importance for small-scale vegetation mosaics in a grassland ecosystem

    NARCIS (Netherlands)

    Blomqvist, M.M.; Olff, H.; Blaauw, M.B.; Bongers, T.; Van der Putten, W.H.

    2000-01-01

    Grasslands are often characterised by small-scale mosaics in plant community composition that contribute to their diversity. Although above- and belowground biota can both cause such mosaics, few studies have addressed their interacting effects. We studied multi-trophic interactions between

  8. Interactions between above- and belowground biota : importance for small-scale vegetation mosaics in a grassland ecosystem

    NARCIS (Netherlands)

    Blomqvist, N.M.; Olff, H.; Blaauw, M.B.; Bongers, T.; Putten, van der W.H.

    2000-01-01

    Grasslands are often characterised by small-scale mosaics in plant community composition that contribute to their diversity. Although above- and belowground biota can both cause such mosaics, few studies have addressed their interacting effects. We studied multi-trophic interactions between

  9. Small-scale household biogas digesters

    DEFF Research Database (Denmark)

    Bruun, Sander; Jensen, Lars Stoumann; Khanh Vu, Van Thi

    2014-01-01

    There are a number of advantages to small-scale biogas production on farms, including savings on firewood or fossil fuels and reductions in odour and greenhouse gas emissions. For these reasons, governments and development aid agencies have supported the installation of biogas digesters. However......, biogas digesters are often poorly managed and there is a lack of proper distribution systems for biogas. This results in methane being released inadvertently through leaks in digesters and tubing, and intentionally when production exceeds demand. As methane has a global warming potential 25 times greater......% of the produced biogas is released, depending on the type of fuel that has been replaced. The limited information available as regards methane leaking from small-scale biogas digesters in developing countries indicates that emissions may be as high as 40%. With the best estimates of global numbers of small...

  10. Small-scale eruptive filaments on the quiet sun

    International Nuclear Information System (INIS)

    Hermans, L.M.; Martin, S.F.

    1986-01-01

    A study of a little known class of eruptive events on the quiet sun was conducted. All of 61 small-scale eruptive filamentary structures were identified in a systematic survey of 32 days of H alpha time-lapse films of the quiet sun acquired at Big Bear Solar Observatory. When fully developed, these structures have an average length of 15 arc seconds before eruption. They appear to be the small-scale analog of large-scale eruptive filaments observed against the disk. At the observed rate of 1.9 small-scale eruptive features per field of view per average 7.0 hour day, the rate of occurence of these events on the sun were estimated to be greater than 600 per 24 hour day.. The average duration of the eruptive phase was 26 minutes while the average lifetime from formation through eruption was 70 minutes. A majority of the small-scale filamentary sturctures were spatially related to cancelling magnetic features in line-of-sight photospheric magnetograms. Similar to large-scale filaments, the small-scale filamentary structures sometimes divided opposite polarity cancelling fragments but often had one or both ends terminating at a cancellation site. Their high numbers appear to reflect the much greater flux on the quiet sun. From their characteristics, evolution, and relationship to photospheric magnetic flux, it was concluded that the structures described are small-scale eruptive filaments and are a subset of all filaments

  11. Potential Markets for Small Reactors. Annex XI

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-12-15

    The electricity cost of a small power generation plant is generally higher than that of a large scale power plant due to economies of scale. In order to survey the market for small nuclear power plants, the competitive object is not a large scale power plant but a small fossil fuel power generation plant. Large scale power generation plants are not required in all countries and regions of the world. There are many regions where the electricity cost is high because of the cost of fuel transport to remote places. Medium or small power generation plants could turn out to also be preferable from the viewpoints of electrical power demand and distribution cost. For example, the electricity costs in many small cities or towns of the Alaskan and Hawaiian Islands are higher than on the mainland. The electricity costs in the two peninsulas (Baja California and Yucatan) in Mexico are high because, owing to the limited power demand in these regions, small and medium sized fossil fuel power generation plants have been installed there, and the costs of fuel, fuel transport and power transmission appear to be relatively high. Owing to such situations, a market for small and medium sized nuclear reactors exists, and there are certain regions and areas in the world where such reactors can compete with the alternatives.

  12. Undermining the myths about small-scale mining

    NARCIS (Netherlands)

    Verbrugge, B.L.P.; Besmanos, B.

    2015-01-01

    Along with many other countries, in recent decades the Philippines –have witnessed a dramatic expansion of small-scale mining (SSM), mostly (but not exclusively)in the form of small-scale gold mining. As can be seen in the graph below (figure 1), official gold production fromSSM has

  13. Micro-scale energy valorization of grape marcs in winery production plants

    International Nuclear Information System (INIS)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia

    2015-01-01

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year −1 electrical and 8900 kW h year −1 thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective

  14. Isoelectric focusing of small non-covalent metal species from plants.

    Science.gov (United States)

    Köster, Jessica; Hayen, Heiko; von Wirén, Nicolaus; Weber, Günther

    2011-03-01

    IEF is known as a powerful electrophoretic separation technique for amphoteric molecules, in particular for proteins. The objective of the present work is to prove the suitability of IEF also for the separation of small, non-covalent metal species. Investigations are performed with copper-glutathione complexes, with the synthetic ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) and respective metal complexes (Fe, Ga, Al, Ni, Zn), and with the phytosiderophore 2'-deoxymugineic acid (DMA) and its ferric complex. It is shown that ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid and DMA species are stable during preparative scale IEF, whereas copper-glutathione dissociates considerably. It is also shown that preparative scale IEF can be applied successfully to isolate ferric DMA from real plant samples, and that multidimensional separations are possible by combining preparative scale IEF with subsequent HPLC-MS analysis. Focusing of free ligands and respective metal complexes with di- and trivalent metals results in different pIs, but CIEF is usually needed for a reliable estimation of pI values. Limitations of the proposed methods (preparative IEF and CIEF) and consequences of the results with respect to metal speciation in plants are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Impact of small-scale storage systems on the photovoltaic penetration potential at the municipal scale

    Science.gov (United States)

    Ramirez Camargo, Luis; Dorner, Wolfgang

    2016-04-01

    The yearly cumulated technical energy generation potential of grid-connected roof-top photovoltaic power plants is significantly larger than the demand of domestic buildings in sparsely populated municipalities in central Europe. However, an energy balance with cumulated annual values does not deliver the right picture about the actual potential for photovoltaics since these run on a highly variable energy source as solar radiation. The mismatch between the periods of generation and demand creates hard limitations for the deployment of the theoretical energy generation potential of roof-top photovoltaics. The actual penetration of roof-top photovoltaic is restricted by the energy quality requirements of the grid and/or the available storage capacity for the electricity production beyond the coverage of own demands. In this study we evaluate in how far small-scale storage systems can contribute to increment the grid-connected roof-top photovoltaic penetration in domestic buildings at a municipal scale. To accomplish this, we calculate, in a first step, the total technical roof-top photovoltaic energy generation potential of a municipality in a high spatiotemporal resolution using a procedure that relies on geographic information systems. Posteriorly, we constrain the set of potential photovoltaic plants to the ones that would be necessary to cover the total yearly demand of the municipality. We assume that photovoltaic plants with the highest yearly yield are the ones that should be installed. For this sub-set of photovoltaic plants we consider five scenarios: 1) no storage 2) one 7 kWh battery is installed in every building with a roof-top photovoltaic plant 3) one 10 kWh battery is installed in every building with a roof-top photovoltaic plant 4) one 7 kWh battery is installed in every domestic building in the municipality 5) one 10 kWh battery is installed in every domestic building in the municipality. Afterwards we evaluate the energy balance of the

  16. Analyzing Sustainable Energy Opportunities for a Small Scale Off-Grid Facility: A Case Study at Experimental Lakes Area (ELA), Ontario

    Science.gov (United States)

    Duggirala, Bhanu

    This thesis explored the opportunities to reduce energy demand and renewable energy feasibility at an off-grid science "community" called the Experimental Lakes Area (ELA) in Ontario. Being off-grid, ELA is completely dependent on diesel and propane fuel supply for all its electrical and heating needs, which makes ELA vulnerable to fluctuating fuel prices. As a result ELA emits a large amount of greenhouse gases (GHG) for its size. Energy efficiency and renewable energy technologies can reduce energy consumption and consequently energy cost, as well as GHG. Energy efficiency was very important to ELA due to the elevated fuel costs at this remote location. Minor upgrades to lighting, equipment and building envelope were able to reduce energy costs and reduce load. Efficient energy saving measures were recommended that save on operating and maintenance costs, namely, changing to LED lights, replacing old equipment like refrigerators and downsizing of ice makers. This resulted in a 4.8% load reduction and subsequently reduced the initial capital cost for biomass by 27,000, by 49,500 for wind power and by 136,500 for solar power. Many alternative energies show promise as potential energy sources to reduce the diesel and propane consumption at ELA including wind energy, solar heating and biomass. A biomass based CHP system using the existing diesel generators as back-up has the shortest pay back period of the technologies modeled. The biomass based CHP system has a pay back period of 4.1 years at 0.80 per liter of diesel, as diesel price approaches $2.00 per liter the pay back period reduces to 0.9 years, 50% the generation cost compared to present generation costs. Biomass has been successfully tried and tested in many off-grid communities particularly in a small-scale off-grid setting in North America and internationally. Also, the site specific solar and wind data show that ELA has potential to harvest renewable resources and produce heat and power at competitive

  17. The role of Carbon Capture and Storage in a future sustainable energy system

    DEFF Research Database (Denmark)

    Lund, Henrik; Mathiesen, Brian Vad

    2012-01-01

    systems, the number of utilisation hours of power and CHP plants will have to decrease substantially due to the energy efficiency measures in combination with the inclusion of renewable energy power inputs from wind and similar resources. Consequently, no power or CHP plants exist in future sustainable......This paper presents the results of adding a CCS(Carbon Capture and Storage) plant including an underground CO2 storage to a well described and well documented vision of converting the present Danish fossil based energy system into a future sustainable energy system made by the Danish Society...... huge construction costs with the expectation of long lifetimes. Consequently, the CCS has to operate as part of large-scale power or CHP plants with high utilisation hours for the CCS investment to come even close to being feasible. However, seen in the light of transforming to sustainable energy...

  18. A MATHEMATICAL MODEL OF CHP 2000 TYPE PROGRESSIVE GEAR

    Directory of Open Access Journals (Sweden)

    Paweł Lonkwic

    2016-12-01

    Full Text Available The project of CHP2000 type progressive gear has been presented in the article. The offered solution from its construction point of view differs from the existing solutions due to the application of Belleville springs packets supporting the braking roller cam and achieving a flexible range of the gear loading. The standard concept of the gear loading within a mathematical and a geometrical model has been presented in the article. The proposed solution can be used in the friction lifts with the loading capacity from 8500 up to 20000 N.

  19. The development for small scale soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Sun Kexu; Jiang Shaoen; Yi Rongqing; Cui Yanli

    2004-12-01

    For the development of small-scale soft X-ray spectrometer, first, some small-scale soft X-ray detection elements are developed, it is included GaAs irradiated with neutron, GaAs irradiated with proton, multi-layer mirror, plane mirror and small scale X-ray diode et al. Soft X-ray spectrometers built of multi-layer mirror-GaAs (with neutron irradiation), and plane mirror-small-scale XRD, and plane mirror-GaAs (with proton irradiation) are prepared. These spectrometers are examined in Shen Guang-II laser facility, and some external estimation are given. (authors)

  20. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    Directory of Open Access Journals (Sweden)

    S Hoyt Peckham

    2007-10-01

    Full Text Available Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna.30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS. We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1 observe two small-scale fleets that operated closest to the high use area and 2 through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge.Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in

  1. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    Science.gov (United States)

    Peckham, S Hoyt; Maldonado Diaz, David; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B; Nichols, Wallace J

    2007-10-17

    Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. 30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1), rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in partnership with small-scale

  2. Thermo-economic assessment of externally fired micro-gas turbine fired by natural gas and biomass: Applications in Italy

    International Nuclear Information System (INIS)

    Pantaleo, A.M.; Camporeale, S.M.; Shah, N.

    2013-01-01

    Highlights: • A thermo-economic analysis of natural gas/biomass fired microturbine is proposed. • Energy efficiency, capex, opex and electricity revenues trade-offs are assessed. • The optimal biomass energy input is 70% of total CHP consumption. • Industrial/tertiary heat demand and baseload/heat driven operation is assessed. • The main barriers of small scale CHP systems in Italy are overviewed. - Abstract: This paper proposes a thermo-economic assessment of small scale (100 kWe) combined heat and power (CHP) plants fired by natural gas and solid biomass. The focus is on dual fuel gas turbine cycle, where compressed air is heated in a high temperature heat exchanger (HTHE) using the hot gases produced in a biomass furnace, before entering the gas combustion chamber. The hot air expands in the turbine and then feeds the internal pre-heater recuperator, Various biomass/natural gas energy input ratios are modeled, ranging from 100% natural gas to 100% biomass. The research assesses the trade-offs between: (i) lower energy conversion efficiency and higher investment cost of high biomass input rate and (ii) higher primary energy savings and revenues from bio-electricity feed-in tariff in case of high biomass input rate. The influence of fuel mix and biomass furnace temperature on energy conversion efficiencies, primary energy savings and profitability of investments is assessed. The scenarios of industrial vs. tertiary heat demand and baseload vs. heat driven plant operation are also compared. On the basis of the incentives available in Italy for biomass electricity and for high efficiency cogeneration (HEC), the maximum investment profitability is achieved for 70% input biomass percentage. The main barriers of these embedded cogeneration systems in Italy are also discussed

  3. Rolling at small scales

    DEFF Research Database (Denmark)

    Nielsen, Kim L.; Niordson, Christian F.; Hutchinson, John W.

    2016-01-01

    The rolling process is widely used in the metal forming industry and has been so for many years. However, the process has attracted renewed interest as it recently has been adapted to very small scales where conventional plasticity theory cannot accurately predict the material response. It is well....... Metals are known to be stronger when large strain gradients appear over a few microns; hence, the forces involved in the rolling process are expected to increase relatively at these smaller scales. In the present numerical analysis, a steady-state modeling technique that enables convergence without...

  4. A multi scale model for small scale plasticity

    International Nuclear Information System (INIS)

    Zbib, Hussein M.

    2002-01-01

    Full text.A framework for investigating size-dependent small-scale plasticity phenomena and related material instabilities at various length scales ranging from the nano-microscale to the mesoscale is presented. The model is based on fundamental physical laws that govern dislocation motion and their interaction with various defects and interfaces. Particularly, a multi-scale model is developed merging two scales, the nano-microscale where plasticity is determined by explicit three-dimensional dislocation dynamics analysis providing the material length-scale, and the continuum scale where energy transport is based on basic continuum mechanics laws. The result is a hybrid simulation model coupling discrete dislocation dynamics with finite element analyses. With this hybrid approach, one can address complex size-dependent problems, including dislocation boundaries, dislocations in heterogeneous structures, dislocation interaction with interfaces and associated shape changes and lattice rotations, as well as deformation in nano-structured materials, localized deformation and shear band

  5. Canadian small-scale hydroelectric plant manual: Quebec region, feasibility study for domestic installations. Manuel canadien de centrale hydroelectrique a faible puissance: Region du Quebec, etude de faisabilite pour installations domestiques

    Energy Technology Data Exchange (ETDEWEB)

    Proulx, S; Tung, T

    1989-11-01

    A manual is presented for evaluating the feasibility of domestic-scale hydropower plants, with reference to Quebec conditions. Procedures are given for determining energy needs, and the flow conditions and electricity generating potential of a site. The laws which regulate small hydro plants in Quebec are outlined. The types of turbines and associated electrical equipment are discussed, along with criteria for their selection according to application. The economic analysis of a proposed project is then described, and a list of documents which need to be prepared is included, as well as a glossary. A case study of a 50-kW plant installed at a Quebec restaurant is illustrated. 6 refs., 24 figs., 1 tab.

  6. Small and medium-sized nuclear power plants

    International Nuclear Information System (INIS)

    Schmidt, R.

    1986-01-01

    Small and medium-sized nuclear power plants have long been under discussion as possible applications of nuclear power in countries with small transmission grid systems, in threshold countries and developing countries, and under special local supply conditions. IAEA has condensed and promoted this interest and tried to establish the demand, and possibilities of meeting it, in special events and campaigns. In recent years, considerable interest was registered even in industrialized countries, but here specially for heating and process heat generation applications and for special purposes and, in medium-sized units, also for combined supplies of electricity and heat. This corresponds to special reactor and plant concepts, some of which have already been developed to a stage at which construction work could begin. The analysis presented deals with necessary preconditions on the sides of the users and the vendors, with problems of economy, infrastructure and financing and with the market prospects of small nuclear power plants. (orig./HP) [de

  7. Small-scale dynamo at low magnetic Prandtl numbers

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S.

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓϑ, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm(1-ϑ)/(1+ϑ). We furthermore discuss the critical magnetic Reynolds number Rmcrit, which is required for small-scale dynamo action. The value of Rmcrit is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rmcrit provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  8. Small-scale dynamo at low magnetic Prandtl numbers.

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  9. Cogeneration plant in a pasta factory: Energy saving and environmental benefit

    International Nuclear Information System (INIS)

    Panno, Domenico; Messineo, Antonio; Dispenza, Antonella

    2007-01-01

    Italy produces approximately 4,520,000 tons of pasta annually, which is about 67% of its total productive potential. As factories need electric and thermal energy simultaneously, combined heat and power (CHP) systems are the most suitable. This paper describes a feasibility study of a CHP plant in a pasta factory in Italy while analyzing energy saving and environmental benefits. Commercially available CHP systems suitable for the power range of energy demand in pasta production use reciprocating engines or gas turbines. This study demonstrates how their use can reduce both energy costs and CO 2 equivalent greenhouse gas emission in the environment. An economic analysis was performed following the methodology set out by Italian National Agency for Technology, Energy and Environment (ENEA) based on a discounted cash flow (DCF) method called 'Valore Attuale Netto' (VAN), which uses a cash flow based on the saving of energy when using different energy processes

  10. Analysis of supply chain, scale factor, and optimum plant capacity for the production of ethanol from corn stover

    International Nuclear Information System (INIS)

    Leboreiro, Jose; Hilaly, Ahmad K.

    2013-01-01

    A detailed model is used to perform a thorough analysis on ethanol production from corn stover via the dilute acid process. The biomass supply chain cost model accounts for all steps needed to source corn stover including collection, transportation, and storage. The manufacturing cost model is based on work done at NREL; attainable conversions of key process parameters are used to calculate production cost. The choice of capital investment scaling function and scaling parameter has a significant impact on the optimum plant capacity. For the widely used exponential function, the scaling factors are functions of plant capacity. The pre-exponential factor decreases with increasing plant capacity while the exponential factor increases as the plant capacity increases. The use of scaling parameters calculated for small plant capacities leads to falsely large optimum plants; data from a wide range of plant capacities is required to produce accurate results. A mathematical expression to scale capital investment for fermentation-based biorefineries is proposed which accounts for the linear scaling behavior of bio-reactors (such as saccharification vessels and fermentors) as well as the exponential nature of all other plant equipment. Ignoring the linear scaling behavior of bio-reactors leads to artificially large optimum plant capacities. The minimum production cost is found to be in the range of 789–830 $ m −3 which is significantly higher than previously reported. Optimum plant capacities are in the range of 5750–9850 Mg d −1 . The optimum plant capacity and production cost are highly sensitive to farmer participation in biomass harvest for low participation rates. -- Highlights: •A detailed model is used to perform a technoeconomic analysis for the production of ethanol from corn stover. •The capital investment scaling factors were found to be a function of plant capacity. •Bio-reactors (such as saccharification vessels and fermentors) in large size

  11. Maturation processes and structures of small secreted peptides in plants

    Directory of Open Access Journals (Sweden)

    Ryo eTabata

    2014-07-01

    Full Text Available In the past decade, small secreted peptides have proven to be essential for various aspects of plant growth and development, including the maintenance of certain stem cell populations. Most small secreted peptides identified in plants to date are recognised by membrane-localized receptor kinases, the largest family of receptor proteins in the plant genome. This peptide-receptor interaction is essential for initiating intracellular signalling cascades. Small secreted peptides often undergo post-translational modifications and proteolytic processing to generate the mature peptides. Recent studies suggest that, in contrast to the situation in mammals, the proteolytic processing of plant peptides involves a number of complex steps. Furthermore, NMR-based structural analysis demonstrated that post-translational modifications induce the conformational changes needed for full activity. In this mini review, we summarise recent advances in our understanding of how small secreted peptides are modified and processed into biologically active peptides and describe the mature structures of small secreted peptides in plants.

  12. Small-scale soft-bodied robot with multimodal locomotion

    Science.gov (United States)

    Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin

    2018-02-01

    Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

  13. Design and operation of small-scale glass melters for immobilizing radioactive waste

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Chismar, P.H.

    1980-01-01

    A small-scale (3-kg), joule-heated, continuous melter has been designed to study vitrification of Savannah River Plant radioactive waste. The first melter built has been in nonradioactive service for nearly three years. This melter had Inconel 690 electrodes and uses Monofrax K-3 for the contact refractory. Several problems seem in this melter have had an impact on the design of a full-scale system. Problems include uncontrolled electric currents passing through the throat, and formation of a slag layer at the bottom of the melter. The performance of a similar melter in a low-maintenance, radioactive environment is also described. Problems such as halide refluxing, and hot streaking, first observed in this melter, are also discussed

  14. Micro-scale energy valorization of grape marcs in winery production plants

    Energy Technology Data Exchange (ETDEWEB)

    Fabbri, Andrea; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2015-02-15

    Highlights: • BioMethane Potential of grape marcs was investigated. • Grape marcs were characterized to realize a micro-scale energy recovery. • Comparative BMP batch-tests utilizing lab-scale reactors were performed. • Biogas valorization by grape marcs anaerobic digestion at small scale is evaluated. - Abstract: The BiochemicalMethanePotential (BMP) of winery organic waste, with reference to two Italian red and white grapes (i.e. Nero Buono and Greco) by-products was investigated. The study was carried out to verify the possibility to reduce the production impact in a green-waste-management-chain-perspective. The possibility to efficiently utilize wine-related-by-products for energy production at a micro-scale (i.e. small-medium scale winery production plant) was also verified. Results showed as a good correlation can be established between the percentage of COD removal and the biogas production, as the winery can produce, from its waste methanization, about 7800 kW h year{sup −1} electrical and 8900 kW h year{sup −1} thermal. A critical evaluation was performed about the possibility to utilize the proposed approach to realize an optimal biomass waste management and an energetic valorization in a local-energy-production-perspective.

  15. Study on a heat recovery system for the thermal power plant utilizing air cooling island

    International Nuclear Information System (INIS)

    Sun, Jian; Fu, Lin; Sun, Fangtian; Zhang, Shigang

    2014-01-01

    A new heat recovery system for CHP (combined heat and power) systems named HRU (heat recovery unit) is presented, which could recover the low grade heat of exhausted steam from the turbine at the thermal power plant directly. Heat recovery of exhausted steam is often accomplished by recovering the heat of cooling water in current systems. Therefore, two processes of heat transfer is needed at least. However, exhausted steam could be condensed in the evaporator of HRU directly, which reduce one process of heat transfer. A special evaporator is designed condense the exhausted steam directly. Simulated results are compared to experiments, which could include the calculation of heat transfer coefficients of different parts of HRU. It is found that about 25Mw of exhausted steam is recovered by this system. HRU could be promising for conventional CHP systems, which could increase the total energy efficiency obviously and enlarge the heating capacity of a built CHP system. - Highlights: • A new heat recovery system for thermal power plant is presented. • A mathematical model including heat transfer coefficients calculation is given. • This heat recovery system is experimented at a thermal power plant. • Performances of this system under different working conditions are simulated

  16. Small-scale, joule-heated melting of Savannah River Plant waste glass. I. Factors affecting large-scale vitrification tests

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Chismar, P.H.

    1979-10-01

    A promising method of immobilizing SRP radioactive waste solids is incorporation in borosilicate glass. In the reference vitrification process, called joule-heated melting, a mixture of glass frit and calcined waste is heated by passage of an electric current. Two problems observed in large-scale tests are foaming and formation of an insoluble slag. A small joule-heated melter was designed and built to study problems such as these. This report describes the melter, identifies factors involved in foaming and slag formation, and proposes ways to overcome these problems

  17. A novel small dynamic solar thermal desalination plant with a fluid piston converter

    International Nuclear Information System (INIS)

    Mahkamov, Khamid; Orda, Eugene; Belgasim, Basim; Makhkamova, Irina

    2015-01-01

    performance of the plant. The proposed novel system with greater fresh water production capacity has a simple design and is easy to manufacture using low cost materials and therefore can be mass deployed for small scale saline water pumping and desalination across different regions with the relatively high solar radiation and shortage in the drinking water supply

  18. A Novel Multicriteria Evaluation of Small-Scale LNG Supply Alternatives: The Case of Greece

    Directory of Open Access Journals (Sweden)

    Eleni Strantzali

    2018-04-01

    Full Text Available Natural gas as fuel for electricity production has significant advantages, such as the reduction of environmental emissions and the lower operational cost. Due to the flexibility of gas engines, the exploitation of renewable energy sources in an area, can be maximized. The main objective of the present study is to investigate the possibility of LNG supply for sustainable electricity production in insular small-scale electricity systems. A novel multicriteria evaluation model has been developed, based on the methods of Additive Value Model, PROMETHEE and Simos approach. A set of coherent criteria has been selected, that fits perfectly with the demands of this type of problem. The proposed methodology has been implemented in four Greek islands (as they are the most indicative examples and with future perspectives to use natural gas for electricity production and in one power plant in the mainland (as another typical example of small-scale electricity production. The evaluation process included four supply alternatives that cover the annual fuel demands of the examined regions. The obtaining ranking showed that the development of a network supplying individual small-scale terminals in a roundtrip is preferable, compared to the separate supply of each terminal.

  19. Trial operation of a phosphoric acid fuel cell (PC25) for CHP applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Uhrig, M.; Droste, W.; Wolf, D. [Ruhrgas AG, Dorsten (Germany)

    1996-12-31

    In Europe, ten 200 kW phosphoric acid fuel cells (PAFCs) produced by ONSI (PC25) are currently in operation. Their operators collaborate closely in the European Fuel Cell Users Group (EFCUG). The experience gained from trial operation by the four German operators - HEAG, HGW/HEW, Thyssengas and Ruhrgas - coincides with that of the other European operators. This experience can generally be regarded as favourable. With a view to using fuel cells in combined heat and power generation (CHP), the project described in this report, which was carried out in cooperation with the municipal utility of Bochum and Gasunie of the Netherlands, aimed at gaining experience with the PC 25 in field operation under the specific operating conditions prevailing in Europe. The work packages included heat-controlled operation, examination of plant behavior with varying gas properties and measurement of emissions under dynamic load conditions. The project received EU funding under the JOULE programme.

  20. Small-scale rural bakery; Maaseudun pienleipomo

    Energy Technology Data Exchange (ETDEWEB)

    Alkula, R.; Malin, A.; Reisbacka, A.; Rytkoenen, A.

    1997-12-31

    The purpose of the study was to clarify how running a small-scale bakery can provide a farming enterprise with its primary or secondary source of livelihood. A questionnaire and interviews were conducted to clarify the current situation concerning small-scale rural bakeries. The experimental part of the study looked into different manners of production, devices used in preparing and processing of doughs, and baking of different kinds of pastries in different types of ovens in laboratory conditions. Based on the results obtained, solutions serving as examples were formulated for small-scale bakeries run with various modes and methods of production. Additionally, market reviews were conducted concerning appropriate equipment for small-scale bakeries. Baking for commercial purposes on the farm is still something new as ca. 80 % of the enterprises covered by the study had operated for no more than five years. Many entrepreneurs (ca. 70 %) expressed a need for supplementary knowledge from some field related to baking. Rural bakeries are small-scale operations with one-person enterprises amounting to 69 % and two-person enterprises to 29 %. Women are primarily responsible for baking. On average, the enterprises baked seven different products, but the amounts baked were usually small. In the experimental part of the study, loaves of rye bread were baked using five different types and sizes of oven accommodating 5-22 loaves of rye bread at the one time. The oven type was found not to affect bread structure. The energy consumption for one ovenful varied between 2.4 and 7.0 kWh, i.e. 0.25-0.43 kWh per kilo. When baking rolls (30-140 rolls at a time), the power consumption varied between 1.2 and 3.5 kWh, i.e. 0.32-0.53 kWh per kilo. The other devices included in the comparative study were an upright deep-freezer, a multi-temperature cabinet and a fermenting cabinet. Furthermore, making rolls by hand was compared to using a machine for the same job, and likewise manual

  1. Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.

    Science.gov (United States)

    Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato

    2015-01-01

    Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.

  2. Small-scale integrated demonstration of high-level radioactive waste processing and vitrification using actual SRP waste

    International Nuclear Information System (INIS)

    Woolsey, G.B.; Baumgarten, P.K.; Eibling, R.E.; Ferguson, R.B.

    1981-01-01

    A small-scale pilot plant for chemical processing and vitrification of actual high-level waste has been constructed at the Savannah River Laboratory (SRL). This fully integrated facility has been constructed in six shielded cells and has eight major unit operations. Equipment performance and processing characteristics of the unit operations are reported

  3. CHP and Local Governments: Case Studies and EPA’s New Guide (Webinar) – September 30, 2014

    Science.gov (United States)

    This webinar presents two case studies of CHP development projects undertaken through cooperation between private companies and government entities, and introduces an EPA guide to assist local governments to reduce greenhouse gas (GHG) emissions.

  4. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment.

    Science.gov (United States)

    Rahman, Khondokar M; Melville, Lynsey; Fulford, David; Huq, Sm Imamul

    2017-10-01

    Calculations towards determining the greenhouse gas mitigation capacity of a small-scale biogas plant (3.2 m 3 plant) using cow dung in Bangladesh are presented. A general life cycle assessment was used, evaluating key parameters (biogas, methane, construction materials and feedstock demands) to determine the net environmental impact. The global warming potential saving through the use of biogas as a cooking fuel is reduced from 0.40 kg CO 2 equivalent to 0.064 kg CO 2 equivalent per kilogram of dung. Biomethane used for cooking can contribute towards mitigation of global warming. Prior to utilisation of the global warming potential of methane (from 3.2 m 3 biogas plant), the global warming potential is 13 t of carbon dioxide equivalent. This reduced to 2 t as a result of complete combustion of methane. The global warming potential saving of a bioenergy plant across a 20-year life cycle is 217 t of carbon dioxide equivalent, which is 11 t per year. The global warming potential of the resultant digestate is zero and from construction materials is less than 1% of total global warming potential. When the biogas is used as a fuel for cooking, the global warming potential will reduce by 83% compare with the traditional wood biomass cooking system. The total 80 MJ of energy that can be produced from a 3.2 m 3 anaerobic digestion plant would replace 1.9 t of fuel wood or 632 kg of kerosene currently used annually in Bangladesh. The digestate can also be used as a nutrient rich fertiliser substituting more costly inorganic fertilisers, with no global warming potential impact.

  5. Technologies for small scale wood-fueled combined heat and power systems

    Energy Technology Data Exchange (ETDEWEB)

    Houmann Jakobsen, H.; Houmoeller, S.; Thaaning Pedersen, L.

    1998-01-01

    The aim of this study is to describe and compare different technologies for small cogeneration systems (up to 2-3 MW{sub e}), based on wood as fuel. For decentralized cogeneration, i.e. for recovering energy from saw mill wood wastes or heat supply for small villages, it is vital to know the advantages and disadvantages of the different technologies. Also, for the decision-makers it is of importance to know the price levels of the different technologies. A typical obstacle for small wood cogeneration systems is the installation costs. The specific price (per kW) is usually higher than for larger plants or plants using fossil fuels. For a saw mill choosing between cogeneration and simple heat production, however, the larger installation costs are counter weighed by the sale of electricity, while the fuel consumption is the same. Whether it is profitable or not to invest in cogeneration is often hard to decide. For many years small wood cogeneration systems have been too expensive, leading to the construction of only heat producing systems due to too high price levels of small steam turbines. In recent years a great deal of effort has been put into research and developing of new technologies to replace this traditional steam turbine. Among these are: Steam engines; Stirling engines; Indirectly fired gas turbines; Pressurized down draft combustion. Along with the small scale traditional steam turbines, these technologies will be evaluated in this study. When some or all these technologies are fully developed and commercial, a strong means of reducing the strain on the environment and the greenhouse effect will be available, as the total efficiency is high (up to 90%) and wood is an energy source in balance with nature. (au) EFP-95. 19 refs.

  6. Vegetation structure and small-scale pattern in Miombo Woodland, Marondera, Zimbabwe

    Directory of Open Access Journals (Sweden)

    B. M. Campbell

    1995-10-01

    Full Text Available The aim ol this paper is to describe woodland structure and small-scale patterning of woody plants at a miombo site, and to relate these to past disturbance and soil properties. Brachystegia spiciformis Benth. and Julbemardia globiflora (Benth. Troupin were the most frequent woody plants at the five hectare site, with size-class distributions which were markedly skewed towards the smaller size classes. The vegetation structure at the site and the increase in basal area over the past thirty years point to considerable disturbance prior to the present protected status. Six woodland subtypes were identified, grouped into two structural types: open and closed woodland. The distribution of woodland subtypes related closely to certain soil properties. It was hypothesized that the distribution of open and closed woodland is stable and a positive feedback mechanism by which this occurs is postulated.

  7. Peat as Substrate for Small-Scale Constructed Wetlands Polishing Secondary Effluents from Municipal Wastewater Treatment Plant

    Directory of Open Access Journals (Sweden)

    Meng Jin

    2017-11-01

    Full Text Available With the recent development of constructed wetland technology, it has become a mainstream treatment technology for the mitigation of a variety of wastewaters. This study reports on the treatment performance and pH attenuation capacity of three different configurations of small-scale on-site surface flow constructed wetlands (SFCW: T1 (Peat + Typha latifolia, T2 (T. latifolia alone, and T3 (Peat alone treating secondary effluent from the Amherstview Water Pollution Control Plant (WPCP for two treatment periods (start-up period and operational period. The aim of this study was to compare the nutrients removal efficiencies between the different treatments, as well as to evaluate the effects of substrate and vegetation on the wetland system. For a hydraulic retention time of 2.5 days, the results showed that all treatment systems could attenuate the pH level during both the start-up and operational periods, while significant nutrient removal performance could only be observed during the operational period. Peat was noted to be a better SFCW substrate in promoting the removal of nitrate (NO3-N, total nitrogen (TN, and phosphorus. The addition of T. latifolia further enhanced NO3-N and TN removal efficiencies, but employing T. latifolia alone did not yield effluents that could meet the regulatory discharge limit (1.0 mg/L for phosphorus.

  8. Techno-economic performance analysis of bio-oil based Fischer-Tropsch and CHP synthesis platform

    International Nuclear Information System (INIS)

    Ng, Kok Siew; Sadhukhan, Jhuma

    2011-01-01

    The techno-economic potential of the UK poplar wood and imported oil palm empty fruit bunch derived bio-oil integrated gasification and Fischer-Tropsch (BOIG-FT) systems for the generation of transportation fuels and combined heat and power (CHP) was investigated. The bio-oil was represented in terms of main chemical constituents, i.e. acetic acid, acetol and guaiacol. The compositional model of bio-oil was validated based on its performance through a gasification process. Given the availability of large scale gasification and FT technologies and logistic constraints in transporting biomass in large quantities, distributed bio-oil generations using biomass pyrolysis and centralised bio-oil processing in BOIG-FT system are technically more feasible. Heat integration heuristics and composite curve analysis were employed for once-through and full conversion configurations, and for a range of economies of scale, 1 MW, 675 MW and 1350 MW LHV of bio-oil. The economic competitiveness increases with increasing scale. A cost of production of FT liquids of 78.7 Euro/MWh was obtained based on 80.12 Euro/MWh of electricity, 75 Euro/t of bio-oil and 116.3 million Euro/y of annualised capital cost. -- Highlights: → Biomass to liquid process and gas to liquid process synthesis. → Biorefinery economic analysis. → Pyrolysis oil to biofuel. → Gasification and Fischer-Tropsch. → Process integration, pinch analysis and energy efficiency.

  9. STATISTICAL EVALUATION OF SMALL SCALE MIXING DEMONSTRATION SAMPLING AND BATCH TRANSFER PERFORMANCE - 12093

    Energy Technology Data Exchange (ETDEWEB)

    GREER DA; THIEN MG

    2012-01-12

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS) has previously presented the results of mixing performance in two different sizes of small scale DSTs to support scale up estimates of full scale DST mixing performance. Currently, sufficient sampling of DSTs is one of the largest programmatic risks that could prevent timely delivery of high level waste to the WTP. WRPS has performed small scale mixing and sampling demonstrations to study the ability to sufficiently sample the tanks. The statistical evaluation of the demonstration results which lead to the conclusion that the two scales of small DST are behaving similarly and that full scale performance is predictable will be presented. This work is essential to reduce the risk of requiring a new dedicated feed sampling facility and will guide future optimization work to ensure the waste feed delivery mission will be accomplished successfully. This paper will focus on the analytical data collected from mixing, sampling, and batch transfer testing from the small scale mixing demonstration tanks and how those data are being interpreted to begin to understand the relationship between samples taken prior to transfer and samples from the subsequent batches transferred. An overview of the types of data collected and examples of typical raw data will be provided. The paper will then discuss the processing and manipulation of the data which is necessary to begin evaluating sampling and batch transfer performance. This discussion will also include the evaluation of the analytical measurement capability with regard to the simulant material used in the demonstration tests. The

  10. Application of Organic Matter to Enhance Phytoremediation of Mercury Contaminated Soils Using Local Plant Species: a Case Study on Small-scale Gold Mining Locations in Banyuwangi of East Java

    OpenAIRE

    Muddarisna, N; Siahaan, B C

    2014-01-01

    The discharge of small-scale gold mine tailing to agricultural lands at Pesanggaran village of Banyuwangi Regency caused soil degradation as indicated by reduced crop production. This soil degradation is mainly due to the toxicity of mercury contained in the tailing. The purpose of this study was to explore the potential of three local plant species, i.e. Lindernia crustacea, Digitaria radicosa, and Cyperus kyllingia for phytoremediation of agricultural land contaminated gold mine waste conta...

  11. Responsible and Sustainable Tourism : Strengthening Small-Scale ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Responsible and Sustainable Tourism : Strengthening Small-Scale ... to work with the Costa Rican association of small and medium tourism enterprises of the ... as the hub of a network of small service providers operating within the model. ... marketing and outreach, distance learning, and the integration of services that are ...

  12. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.

    1997-01-01

    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... communities probably due to more efficient light utilization and gas exchange in the terrestrial habitats. By contrast only small differences were found within different aquatic plant communities or within different terrestrial plant communities....... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in aquatic...

  13. Environmental certification for small hydropower plants; Umweltzertifizierung Kleinwasserkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Truffer, B.; Meier, W.; Vollenweider, S. [Eidgenoessische Anstalt fuer Wasserversorgung, Abwasserreinigung und Gewaesserschutz (EAWAG), Kastanienbaum (Switzerland); Seiler, B.; Dettli, R. [Econcept AG, Zuerich (Switzerland)

    2001-07-01

    This report for the Swiss Federal Institute for Environmental Science and Technology describes product-differentiation options for small hydropower plant in Switzerland and proposes a form of differentiation based on ecological characteristics as a promising market strategy. The labels created in various countries to assure customers of the environmental compatibility of 'green' power production are looked at. In particular, the implications for small hydropower plant associated with the Swiss green power labelling procedure introduced by the Association for the Promotion of Environmentally Sound Electricity (VUE) are discussed. The report proposes a simplified procedure for these small power stations and presents a sample calculation for the overall costs of certification. The report is rounded off with four detailed case studies in which the necessary upgrades to the plant and associated costs are discussed in detail.

  14. Operating of Small Wind Power Plants with Induction Generators

    OpenAIRE

    Jakub Nevrala; Stanislav Misak

    2008-01-01

    This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generator...

  15. Exergoeconomic performance optimization of an endoreversible intercooled regenerative Brayton combined heat and power plant coupled to variable-temperature heat reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Chen, Lingen; Sun, Fengrui [College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033 (China)

    2012-07-01

    An endoreversible intercooled regenerative Brayton combined heat and power (CHP) plant model coupled to variable-temperature heat reservoirs is established. The exergoeconomic performance of the CHP plant is investigated using finite time thermodynamics. The analytical formulae about dimensionless profit rate and exergy efficiency of the CHP plant with the heat resistance losses in the hot-, cold- and consumer-side heat exchangers, the intercooler and the regenerator are deduced. By taking the maximum profit rate as the objective, the heat conductance allocation among the five heat exchangers and the choice of intercooling pressure ratio are optimized by numerical examples, the characteristic of the optimal dimensionless profit rate versus corresponding exergy efficiency is investigated. When the optimization is performed further with respect to the total pressure ratio, a double-maximum profit rate is obtained. The effects of the design parameters on the double-maximum dimensionless profit rate and corresponding exergy efficiency, optimal total pressure ratio and optimal intercooling pressure ratio are analyzed in detail, and it is found that there exist an optimal consumer-side temperature and an optimal thermal capacitance rate matching between the working fluid and the heat reservoir, respectively, corresponding to a thrice-maximum dimensionless profit rate.

  16. Biofuels in Africa: growing small-scale opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Sulle, Emmanuel [Tanzania Natural Resources Forum (Tanzania, United Republic of); Fauveaud, Swan [Renewable Energy Group, Environment and Solidarity (France); Vermeulen, Sonja

    2009-11-15

    Global demand for climate-friendly transport fuels is driving vast commercial biofuels projects in developing countries. At the opposite end of the spectrum is small-scale bioenergy production. This offers a way for the poor to meet their energy needs and diversify their livelihoods without compromising food security or environmental integrity. Governments hope that it will be possible to combine the advantages of both large- and small-scale production of biofuels to generate energy security and GDP at the national level, while opening up local opportunities. In Africa, most governments are keen to attract foreign direct investment, and see big business as a strategic means of scaling up rural development. But there is a middle way. By encouraging business models that bridge large and small enterprise, African governments could show that commercial competition can go hand in hand with a range of real local benefits.

  17. Economic evaluation of biogas and natural gas co-firing in gas turbine combined heat and power systems

    International Nuclear Information System (INIS)

    Kang, Jun Young; Kang, Do Won; Kim, Tong Seop; Hur, Kwang Beom

    2014-01-01

    This study investigated the economics of co-firing biogas and natural gas within a small gas turbine combined heat and power (CHP) plant. The thermodynamic performance of the CHP plant was calculated with varying gas mixing ratios, forming the basis for the economic analysis. A cost balance equation was used to calculate the costs of electricity and heat. The methodology was validated, and parametric analyses were used to investigate the influence of gas mixing ratio and heat sales ratio on the costs of electricity and heat. The cost of electricity generation from the CHP plant was compared to that of a central combined cycle power plant, and an economical gas mixing ratio range were suggested for various heat sales ratios. It was revealed that the effect of the heat sales ratio on the cost of electricity becomes greater as the proportion of natural gas is increased. It was also demonstrated that the economic return from the installation of CHP systems is substantially affected by the gas mixing ratio and heat sales ratio. Sensitivity analysis showed that influence of economic factors on the CHP plant is greater when a higher proportion of natural gas is used. - Highlights: • An appropriate method to calculate the costs of electricity (COE) and heat (COH) was established. • Both COE and COH increase with increasing natural gas mixing ratio and decreasing heat sales ratio. • The effect of the heat sales ratio on the COE becomes greater as the mixing ratio increases. • The payback period is considerably dependent on the mixing ratio and heat sales ratio

  18. A small capacity co generative gas-turbine plant in factory AD 'Komuna' - Skopje (Macedonia)

    International Nuclear Information System (INIS)

    Dimitrov, Konstantin; Armenski, Slave; Tashevski, Done

    2000-01-01

    The factory AD 'Komuna' -Skopje (Macedonia), has two steam block boilers, type ST 800 for steam production for process and space heating. The factory satisfies the electricity needs from the national grid. By the use of natural gas like fuel it is possible to produce electrical energy in its own co generative gas turbine plant. In this article, a co generative plant with small-scale gas turbine for electricity production is analyzed . The gas from gas turbine have been introduce in the steam block boiler. Also, a natural gas consumption, the electricity production, total investment and payback period of investment are determined. (Authors)

  19. Health and Safety Management for Small-scale Methane Fermentation Facilities

    Science.gov (United States)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  20. Evaluation of process costs for small-scale nitrogen removal from natural gas. Topical report, January 1989-December 1989

    International Nuclear Information System (INIS)

    Echterhoff, L.W.; Pathak, V.K.

    1991-08-01

    The report establishes the cost of producing pipeline quality gas on a small scale from high nitrogen subquality natural gas. Three processing technologies are evaluated: cryogenic, Nitrotec Engineering Inc.'s pressure swing adsorption (PSA), and lean oil absorption. Comparison of the established costs shows that the cryogenic process exhibits the lowest total plant investment for nitrogen feed contents up to about 22%, above which the PSA process exhibits the lowest investment cost. The lean oil process exhibits the highest total plant investment at the 25% nitrogen feed studied. Opposite to the total plant investment for the cryogenic process, the total plant investment for the PSA process decreases with increasing nitrogen content primarily due to increasing product gas compression requirements. The cryogenic process exhibits the lowest gas processing costs for the nitrogen content range under study. However, the difference between the gas processing costs for the PSA and cryogenic processes narrows as the nitrogen content approaches 15-25%. The lean oil gas processing cost is very high compared to both the cryogenic and PSA processes. The report verifies that nitrogen removal from natural gas is expensive, especially for small-scale applications, and several avenues are identified for improving the cryogenic and PSA technologies

  1. Economic evaluation of externally fired gas turbine cycles for small-scale biomass cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Anheden, Marie [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2001-01-01

    In this conceptual study, externally fired gas turbine (EFGT) cycles in combination with a biomass-fueled, atmospheric circulating fluidized bed (CFB) furnace are investigated for small scale heat and power production ({approx} 8 MW fuel input). Three cycle configurations are considered: closed cycle, with nitrogen, helium, and a helium/carbon dioxide mixture as working fluids; open cycle operating in parallel to the CFB system; and open cycle with a series connection to the CFB system. Intercooling, postcooling, and recuperation are employed with the goal of maximizing efficiency. Aside from a thermodynamic performance analysis, the study includes an economic analysis of both the closed and open externally fired gas turbine configurations, and comparisons are made with existing and emerging alternatives for small-scale biomass cogeneration. Simulation results show that thermodynamic performance varies slightly between the different configurations and working fluids, with electrical efficiencies of 31-38% (LHV) and total efficiency of 85-106% (LHV). The economic evaluation shows that the turbomachinery and the CFB furnace dominate the total plant cost, with each contributing about 1/3 of the total installed equipment cost. The specific capital cost for installation in Sweden in 1998 currency is calculated as 26-31 kSEK/kW{sub e} which is equivalent to 3 200-3 900 USD/kW{sub e} or 2 700-3 300 EUR/kW{sub e} .The cost of electricity, COE, is estimated to 590-670 SEK/MWh{sub e} (equivalent to 73-84 USD/MWh{sub e} or 62-71 EUR/MWh{sub e}) for 4 000 full load hours per year in a cogeneration application. Comparing the economic results for the externally fired gas turbine cycles in a slightly larger scale (40-50 MW{sub f}) to the economics of conventional biomass fired steam turbine cycles shows that the cost of electricity for the two plant configurations are roughly the same with a COE of 300-350 SEK/MWh{sub e}. It is believed that the economic performance of the EFGT

  2. Beets as a future substrate for biogas plants. Results from a large-scale use in a biogas plant; Rueben als Zukunftssubstrat fuer Biogasanlagen. Ergebnisse aus der grosstechnischen Nutzung in einer Biogasanlage zur Optimierung der Rohbiogasproduktion zur Gaseinspeisung in das Erdgasnetz

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, Ralph [R and S ENERGY GmbH, Detmold (Germany); Liebetrau, Jan; Nelles, Michael; Scholwin, Frank

    2011-07-01

    The nuclear disaster in Fukushima prompted the German Federal Government on 30 May 2011 to implement a phase-out of the use of nuclear energy by 2022. The resulting shortfall in supply is mainly to be made up by the use of renewable energies and fossil fuels, especially natural gas (ethics K. 2011). In Germany there are now more than 5,900 biogas plants (DBFZ 2010) with an installed capacity of 2,300 megawatts of electrical power from biogas generation, but only 47 projects (Dena 2011) use biomethane to replace the use of natural gas. As of December 2010, the entire crude biogas capacity of these facilities amounted to 270 million cubic meters. This represents 0.4% of German natural gas consumption. This corresponds to about 4.5% of the expansion target for 2020 (GasNZV 2008, BNA 2011). Hence the challenge is to operate the biogas process as efficiently as possible in order to generate a large amount of biogas with a high quality from renewable resources. The investigated large-scale biogas plant, in which only renewable materials (corn, corn silage, forage rye, corn, beet) are processed, supplies two cogeneration plants (CHP) and a biogas conditioning plant. The crude biogas is processed into biomethane gas through a chemical absorption process using pressure-free amine scrubbing (Martens 2007). With the currently possible thermal energy production of 400 million MJ/a, the biogas plant supports the objective of the German Federal Government to increase the substitution of natural gas. (orig.)

  3. Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2012-01-01

    A high temperature-proton exchange membrane (HT-PEMFC)-based micro-combined-heat-and-power (CHP) residential system is designed and optimized, using a genetic algorithm (GA) optimization strategy. The proposed system consists of a fuel cell stack, steam methane reformer (SMR) reactor, water gas...

  4. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes.

    Science.gov (United States)

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik; Astrup, Thomas

    2012-12-18

    In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. For each, four conversion pathways were assessed against a fossil fuel reference: (I) anaerobic co-digestion with manure, (II) gasification, (III) combustion in small-to-medium scale biomass combined heat and power (CHP) plants and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow and Miscanthus co-firing, allowed for an improvement as compared with the reference (-82 and -45 t CO₂-eq. ha⁻¹, respectively). The indirect land use changes impact was quantified as 310 ± 170 t CO₂-eq. ha⁻¹, representing a paramount average of 41% of the induced greenhouse gas emissions. The uncertainty analysis confirmed the results robustness and highlighted the indirect land use changes uncertainty as the only uncertainty that can significantly change the outcome of the LCA results.

  5. Design of novel DME/methanol synthesis plants based on gasification of biomass

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    -scale DME plants based on gasification of torrefied biomass. 2. Small-scale DME/methanol plants based on gasification of wood chips. 3. Alternative methanol plants based on electrolysis of water and gasification of biomass. The plants were modeled by using the component based thermodynamic modeling...... why the differences, in biomass to DME/methanol efficiency, between the small-scale and the large-scale plants, showed not to be greater, was the high cold gas efficiency of the gasifier used in the small-scale plants (93%). By integrating water electrolysis in a large-scale methanol plant, an almost...... large-scale DME plant) to 63%, due to the relatively inefficient electrolyser....

  6. Large and small baseload power plants: Drivers to define the optimal portfolios

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro

    2011-01-01

    Despite the growing interest in Small Medium sized Power Plants (SMPP) international literature provides only studies related to portfolios of large plants in infinite markets/grids with no particular attention given to base load SMPP. This paper aims to fill this gap, investigating the attractiveness of SMPP portfolios respect to large power plant portfolios. The analysis includes nuclear, coal and combined cycle gas turbines (CCGT) of different plant sizes. The Mean Variance Portfolio theory (MVP) is used to define the best portfolio according to Internal Rate of Return (IRR) and Levelised Unit Electricity Cost (LUEC) considering the life cycle costs of each power plant, Carbon Tax, Electricity Price and grid dimension. The results show how large plants are the best option for large grids, while SMPP are as competitive as large plants in small grids. In fact, in order to achieve the highest profitability with the lowest risk it is necessary to build several types of different plants and, in case of small grids, this is possible only with SMPP. A further result is the application of the framework to European OECD countries and the United States assessing their portfolios. - Highlights: ► The literature about power plant portfolios does not consider small grids and IRR. ► We evaluated Base load portfolios respect to IRR and LUEC. ► We assessed the influence of grid and plant size, CO 2 cost and Electricity Price. ► Large plants are optimal for large markets even if small plants have similar IRR. ► Small plants are suitable to diversify portfolios in small grids reducing the risk.

  7. Farm scale production of combined heat and power from biogas; Gaardsbaserad och gaardsnaera produktion av kraftvaerme fraan biogas

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Mikael

    2010-08-15

    The Swedish agricultural sector accounts for a significant and unutilized part of the Swedish biogas potential. There is also considerable interest among Swedish farmers to increase the production and utilization of biogas. The purpose of this study is to analyze the prerequisites for the production of combined heat and power (CHP) from biogas based on manure in different scale and with different technologies. The purpose is also to present economic calculations and the conditions required to reach profitability. Based on current economic conditions and with the assumptions made in the assessment, it is difficult to achieve profitability with conventional production of biogas. Levels of investment and operating costs are greatly dependent of scale and a larger biogas plant is normally more profitable than a smaller. There are, however, only marginal differences between a large farm based biogas plant and a much larger plant treating manure from several farms. The reason is that the positive effects of scale regarding investments, comparing the two plants, are reduced by increased costs for transportation and sanitation. However, the sanitation unit adapted at the large plant enables the plant to receive different external substrates such as food industry waste etc. resulting in a much higher biogas production per amount of treated substrate. The following conclusions are drawn in this study: - to achieve profitability in the production of CHP from biogas based on manure it is required, in most cases, that some of the heat produced could be used externally and that the digestate is given an economic value; - there are clear positive effects of scale between the smaller and the larger farm based biogas plant. However, differences are marginal between a large farm based biogas plant and a larger plant treating manure from several farms; - thermophilic operation could improve the profitability if used to increase the amount of substrate treated and especially if it is

  8. The small-scale hydroelectric power plant project 'Les Esserts' in Boudry, Switzerland - Feasibility study and preliminary planning; Centrale des Esserts a Boudry. Etude de faisabilite et avant-projet detaille

    Energy Technology Data Exchange (ETDEWEB)

    Roelli, P; Croci, S; Ernst, J -R

    2004-07-01

    This report describes in details the project of the installation of a small-scale hydroelectric power plant on the river Areuse in Switzerland. Located on a 4 m high waterfall the plant includes a 10-13 m{sup 3}/s Kaplan turbine, which should deliver roughly 1.6 GWh/year for an installed power of about 500 kVA. The authors insist on the ecological aspect of the project. The plant will be built underground; the river track will be practically unchanged and the existing fish ladder maintained. The report includes maps and pictures of the site as well as technical drawings of the installation. An economic analysis of the project is presented and its viability is discussed. Finally, the authors state that the energy produced by this plant will certainly be certified under one of the Swiss labels 'naturemade star' or 'naturemade basic', in the framework of the federal government's promotion of renewable energy sources.

  9. Small-scale impacts as potential trigger for landslides on small Solar system bodies

    Science.gov (United States)

    Hofmann, Marc; Sierks, Holger; Blum, Jürgen

    2017-07-01

    We conducted a set of experiments to investigate whether millimetre-sized impactors impinging on a granular material at several m s-1 are able to trigger avalanches on small, atmosphereless planetary bodies. These experiments were carried out at the Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) drop tower facility in Bremen, Germany to facilitate a reduced gravity environment. Additional data were gathered at Earth gravity levels in the laboratory. As sample materials we used a ground Howardites, Eucrites and Diogenites (HED) meteorite and the Johnson Space Center (JSC) Mars-1 Martian soil simulant. We found that this type of small-scale impact can trigger avalanches with a moderate probability, if the target material is tilted to an angle close to the angle of repose. We additionally simulated a small-scale impact using the discrete element method code esys-particle. These simulations show that energy transfer from impactor to the target material is most efficient at low- and moderate-impactor inclinations and the transferred energy is retained in particles close to the surface due to a rapid dissipation of energy in lower material layers driven by inelastic collisions. Through Monte Carlo simulations we estimate the time-scale on which small-scale impacts with the observed characteristics will trigger avalanches covering all steep slopes on the surface of a small planetary body to be of the order 105 yr.

  10. Analysis of engineering cycles power, refrigerating and gas liquefaction plant

    CERN Document Server

    Haywood, R W

    1991-01-01

    Extensively revised, updated and expanded, the fourth edition of this popular text provides a rigorous analytical treatment of modern energy conversion plant. Notable for both its theoretical and practical treatment of conventional and nuclear power plant, and its studies of refrigerating and gas-liquefaction plant. This fourth edition now includes material on topics of increasing concern in the fields of energy 'saving' and reduction of environmental pollution. This increased coverage deals specifically with the following areas: CHP (cogeneration) plant, studies of both gas and coal burning p

  11. Comparison between full- and small-scale sensory assessments of air quality

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Sabikova, J.; Lagercrantz, Love Per

    2002-01-01

    Thirty-nine untrained subjects made small- and full-scale evaluations of the acceptability of the quality of air at 22 deg.C and 40% RH, polluted by either carpet, felt floor covering, painted gypsum board, linoleum or chipboard. Small-scale evaluations were made on the air extracted from 200-L......-scale sensory ratings of acceptability of air polluted by carpet and by linoleum were systematically better than small-scale assessments, but not for the other three materials. Calculated sensory emission rates from carpet and linoleum were significantly lower in full scale than in small scale. When modelling...

  12. Still Another Book of Small-Scale Motets

    OpenAIRE

    Rodríguez-Garcia, Esperanza

    2016-01-01

    UID/EAT/00693/2013 PTDC/CPC-MMU/0314/2014 ‘Still another book of small-scale motets: Sebastián Raval’s Motecta (1600)’ Lodovico Viadana’s Cento concerti ecclesiastici (Venice: Giacomo Vincenti, 1602), a collection of small-scale motets with basso continuo, is still considered ‘chronologically the first publication to include a basso continuo with sacred vocal music’. It has become the epitome of the advent of the Baroque in Italian sacred music. But, as has been argued in recent times, ...

  13. Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings

    International Nuclear Information System (INIS)

    Bianchi, Michele; Ferrari, Claudio; Melino, Francesco; Peretto, Antonio

    2012-01-01

    Highlights: ► The profitability of Thermo-Photo-Voltaic generator systems for a single-family dwelling is analyzed. ► Heat and electricity load profiles depending on hour of the day are considered for an entire year. ► The effect of Thermo-Photo-Voltaic generator size is evaluated for different household utilities. ► Results allow to identify the conditions for the energetic and economic convenience of Thermo-Photo-Voltaic system. -- Abstract: The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic gas furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

  14. Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments

    International Nuclear Information System (INIS)

    Burton, Jonathan; Hubacek, Klaus

    2007-01-01

    In its 2003 White Paper the UK government set ambitious renewable energy targets. Local governments and households have an increasing role in the overall energy system as consumers, suppliers of smaller-scale applications and citizens discussing energy projects. In this paper, we consider if small-scale or large-scale approaches to renewable energy provision can achieve energy targets in the most socially, economically and environmentally (SEE) effective way. We take a local case study of renewable energy provision in the Metropolitan Borough of Kirklees in Yorkshire, UK, and apply a multi-criteria decision analysis methodology to compare the small-scale schemes implemented in Kirklees with large-scale alternatives. The results indicate that small-scale schemes are the most SEE effective, despite large-scale schemes being more financially viable. The selection of the criteria on which the alternatives are assessed and the assigned weights for each criterion are of crucial importance. It is thus very important to include the relevant stakeholders to elicit this information

  15. Co-combustion of household waste in small-scale energy supply and waste disposal plants; Co-Verbrennung von Siedlungsabfaellen in Kleinanlagen zur dezentralen Energieversorgung und Abfallentsorgung

    Energy Technology Data Exchange (ETDEWEB)

    Schroeer, Ramona

    2012-07-01

    The studies described in this book demonstrate that the co-combustion of household waste in small-scale combustion plants constitutes an alternative disposal concept which facilitates the operation of decentralised waste disposal and heat supply systems. The basic idea of the concept is the co-combustion of different waste fractions in common household logwood heating systems. The experiments performed have shown that this is technically feasible using currently available technology without further modification and that these plants are capable of combusting various waste fractions at low emission levels. Several co-combustion systems were compared with basic oil, pellet and logwood heating systems in both economic and ecological respects. For this purpose cost-effectiveness calculations and a life cycle assessment were performed and brought together in an eco-efficiency analysis. The results show that the most cost-effective and eco-efficient solution is achieved when the co-combustion system is operated for high energy yield and simultaneous reduction of incombustible fractions.

  16. Risk management method for small photovoltaic plants

    Directory of Open Access Journals (Sweden)

    Kirova Milena

    2016-09-01

    Full Text Available Risk management is necessary for achieving the goals of the organization. There are many methods, approaches, and instruments in the literature concerning risk management. However, these are often highly specialized and transferring them to a different field can prove difficult. Therefore, managers often face situations where they have no tools to use for risk management. This is the case with small photovoltaic plants (according to a definition by the Bulgarian State Energy and Water Regulatory Commission small applies to systems with a total installed power of 200 kWp. There are some good practices in the energy field for minimizing risks, but they offer only partial risk prevention and are not sufficient. Therefore a new risk management method needs to be introduced. Small photovoltaic plants offer plenty of advantages in comparison to the other renewable energy sources which makes risk management in their case more important. There is no classification of risks for the exploitation of small photovoltaic systems in the available literature as well as to what degree the damages from those risks could spread. This makes risk analysis and evaluation necessary for obtaining information which could aid taking decisions for improving risk management. The owner of the invested capital takes a decision regarding the degree of acceptable risk for his organization and it must be protected depending on the goals set. Investors in small photovoltaic systems need to decide to what degree the existing risks can influence the goals previously set, the payback of the investment, and what is the acceptable level of damages for the investor. The purpose of this work is to present a risk management method, which currently does not exist in the Bulgaria, so that the risks and the damages that could occur during the exploitation of small photovoltaic plants could be identified and the investment in such technology – justified.

  17. SMALL HYDRO PLANTS IN LAND USE SYSTEM PLANNING IN POLAND

    Directory of Open Access Journals (Sweden)

    Anita Bernatek

    2014-10-01

    Full Text Available Small hydropower plants are present in the land use system planning in Poland. At the national level the important role of spatial planning in the development of renewable energy was highlighted, included small hydroplants. However, it seems that at the regional level this demand has not been realized. The necessity of developing small hydroplants as a renewable energy was highlighted, but negative environmental impact was not indicated. At local level legal instrument of small hydropower plants is specified.

  18. Potential advantages and disadvantages of sequentially building small nuclear units instead of a large nuclear plant

    International Nuclear Information System (INIS)

    Feretic, D.; Cavlina, N.; Grgic, D.

    2008-01-01

    Renewal of nuclear power programs in countries with modest electricity consumptions and weak electrical grid interconnections has raised the question of optimal nuclear power plants sizes for such countries. The same question would be also valid for isolated or weakly connected regions within a large country. Building large size nuclear power plant could be prevented by technical or financial limits. Research programs have been initiated in the International Atomic Energy Agency and in the USA (within the framework of the Global Nuclear Energy Partnership (GNEP) program) with the aim to inspect under which circumstances small and medium reactors could be the preferred option compared to large nuclear plants. The economy of scale is a clear advantage of large plants. This paper compares, by using probabilistic methods, the net cash flow of large and medium size plants, taking as example a large nuclear plant (around 1200 MW) and four sequentially built smaller plants (300 MW). Potential advantages and disadvantageous of both options have been considered. Main advantages of the sequential construction of several identical small units could be the reduced investor risk and reduced investment costs due to the learning effect. This analysis is a part of studies for the Croatian power generating system development. (orig.)

  19. An innovative ORC power plant layout for heat and power generation from medium- to low-temperature geothermal resources

    International Nuclear Information System (INIS)

    Fiaschi, Daniele; Lifshitz, Adi; Manfrida, Giampaolo; Tempesti, Duccio

    2014-01-01

    Highlights: • Explotation of medium temperature geothermal resource with ORC–CHP is investigated. • A new CHP configuration to provide higher temperature to thermal user is proposed. • Several organic fluids and wide range of heat demand are studied. • The system produces higher power (almost 55%) in comparison to typical layouts. • Optimal working fluids vary with the characteristics of the heat demand. - Abstract: Medium temperature (up to 170 °C), water dominated geothermal resources are the most widespread in the world. The binary geothermal-ORC power plants are the most suitable energy conversion systems for this kind of resource. Specifically, combined heat and power (CHP) systems have the potential to improve the efficiency in exploiting the geothermal resources by cascading the geothermal fluid heat carrier to successively lower temperature users, thus increasing first and second law efficiency of the entire power plant. However, geothermal CHPs usually extract heat from the geofluid either in parallel or in series to the ORC, and usually provide only low temperature heat, which is seldom suitable for industrial use. In this paper, a new CHP configuration, called Cross Parallel CHP, has been proposed and analyzed. It aims to provide higher temperature heat suitable for industrial use, allowing the exploitation of geothermal resources even in areas where district heating is not needed. The proposed CHP allows the reduction of the irreversibilities in the heat exchangers and the loss to the environment related to the re-injection of geofluid, thus producing higher electric power output while satisfying, at the same time, the heat demand of the thermal utility for a wide range of temperatures and mass flow rates (80–140 °C; 3–13 kg/s). Several organic fluids are investigated and the related optimizing working conditions are found by a built in procedure making use of genetic algorithms. The results show that the optimal working fluids and

  20. Small is beautiful: Marine small-scale fisheries catches from the South-West Maluku Regency

    Science.gov (United States)

    Hutubessy, BG; Mosse, JW; Hayward, P.

    2017-10-01

    The fisheries data supplied by fisheries agency have served as the primary tool for regional fisheries statistics. However, it is recognized these data are incomplete and often underestimate actual catches, particularly for small-scale fisheries. There is no widely accepted definition of small-scale fisheries or global data on number of small-scale fishers and their catches. This study reconstructed total marine catches from 1980 to 2015 for South-west Maluku (MBD) regency, by applying an established catch construction approach utilizing all available quantitative and qualitative data, combined with assumption-based estimations and interpolations. As newly established regency since 2009, there is lack of fisheries data available which is needed for fisheries management. Fishers’ knowledge is important information taken from to construct long-term fisheries data. Estimated total fish withdrawal from MBD waters was 86,849.66 tonnes during 1980 - 2015, dominated by pelagic fishes. Consistency of estimated total removal and total landings at MBD regency play important role in small-scale fisheries management and this method of visualizing the history of fishery from poor-data condition might be an optimistic effort.

  1. A price mechanism for supply demand matching in local grid of households with micro-CHP

    NARCIS (Netherlands)

    Larsen, G.K.H.; van Foreest, N.D.; Scherpen, J.M.A.

    2012-01-01

    This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household

  2. MOBIL CONTAINER UNIT FOR SEWAGE SLUDGE UTILIZATION FROM SMALL AND MEDIUM WASTWATER TREATMENT PLANTS

    Directory of Open Access Journals (Sweden)

    Stanisław Ledakowicz

    2016-06-01

    Full Text Available The most wastewater treatment plants in Poland are small and medium plants of flow capacity below 1000 m3/d. These plants are not able to build sludge incineration plants and the transportation costs to the nearest plants increase the total costs of wastewater treatment. Polish company Metal Expert together with the French company ETIA and Lodz University of Technology proposed mobile unit for integrated drying and pyrolysis of sewage sludge in a pilot bench scale with capacity of 100 kg/h of dewatered sludge. The pilot plant was mounted in a typical mobile container which could provide service to small and medium wastewater treatment plants offering thermal processing of sewage sludge. This unit consists of KENKI contact dryer and „Spirajoule”® pyrolyser supplied with electricity utilizing the Joule effect, and a boiler, wherein the pyrolysis gases and volatile products are burned producing steam sent to the contact dryer. The bio-char produced during sludge pyrolysis could be utilized for agriculture purposes. During preliminary experiments and short-term exploitation of the unit at Elbląg Wastewater Treatment Plant the obtained results allowed us to make a mass and energy balance depended on the process conditions in the pyrolysis temperature range of 400÷800 °C. Based on the obtained results a calculator was created in the Excel , which enables assessment of pyrolysis products content and making mass and energy balances depended on process parameters such as initial moisture of sludge, pyrolysis temperature and installation output.

  3. Modeling and parametric study of a 1 kWe HT-PEMFC-based residential micro-CHP system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    A detailed thermodynamic, kinetic and geometric model of a micro-CHP (Combined-Heatand-Power) residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC) technology is developed, implemented and validated. HT-PEMFC technology is investigated as a possible candidate...

  4. Chemical Transfer (Single Small-Scale) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Chemical Transfer Facility (CTF)  is the only U.S. single small-scale  facility, a single repository for the Army’s...

  5. Comparing centralised and decentralised anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production.

    Science.gov (United States)

    Drosg, B; Wirthensohn, T; Konrad, G; Hornbachner, D; Resch, C; Wäger, F; Loderer, C; Waltenberger, R; Kirchmayr, R; Braun, R

    2008-01-01

    A comparison of stillage treatment options for large-scale bioethanol plants was based on the data of an existing plant producing approximately 200,000 t/yr of bioethanol and 1,400,000 t/yr of stillage. Animal feed production--the state-of-the-art technology at the plant--was compared to anaerobic digestion. The latter was simulated in two different scenarios: digestion in small-scale biogas plants in the surrounding area versus digestion in a large-scale biogas plant at the bioethanol production site. Emphasis was placed on a holistic simulation balancing chemical parameters and calculating logistic algorithms to compare the efficiency of the stillage treatment solutions. For central anaerobic digestion different digestate handling solutions were considered because of the large amount of digestate. For land application a minimum of 36,000 ha of available agricultural area would be needed and 600,000 m(3) of storage volume. Secondly membrane purification of the digestate was investigated consisting of decanter, microfiltration, and reverse osmosis. As a third option aerobic wastewater treatment of the digestate was discussed. The final outcome was an economic evaluation of the three mentioned stillage treatment options, as a guide to stillage management for operators of large-scale bioethanol plants. Copyright IWA Publishing 2008.

  6. Economies of scale in biogas production and the significance of flexible regulation

    International Nuclear Information System (INIS)

    Skovsgaard, Lise; Jacobsen, Henrik Klinge

    2017-01-01

    Biogas production is characterised by economies of scale in capital and operational costs of the plant and diseconomies of scale from transport of input materials. We analyse biogas in a Danish setting where most biogas is based on manure, we use a case study with actual distances, and find that the benefits of scale in capital and operational costs dominate the diseconomies of increasing transport distances to collect manure. To boost the yield it is common to use co-substrates in the biogas production. We investigate how costs and income changes, when sugar beet is added in this case study, and demonstrate that transport cost can be critical in relation to co-substrates. Further we compare the new Danish support for upgraded biogas with the traditional support for biogas being used in Combined Heat and Power production in relation to scale economies. We argue that economies of scale is facilitated by the new regulation providing similar support to upgraded biogas fed into the natural gas grid, however in order to keep transport costs low, we suggest that the biogas plants should be allowed to use and combine as many co-substrates as possible, respecting the sustainability criteria regarding energy crops in Danish legislation. - Highlights: • For Denmark we find economies of scale in biogas production based on pure manure. • Adding sugar beet outweigh economy of scale due to increased transport costs. • We investigate the main risks associated with input prices, yield and output prices. • Biogas fed into the gas grid should receive similar support as directly used in CHP. • Regulation should allow large biogas plants with few restrictions on co-substrates.

  7. Technical efficiency of small-scale fishing households in Tanzanian ...

    African Journals Online (AJOL)

    This paper examines the technical efficiency of Tanzanian small-scale fishing households, based on data from two coastal villages located near Bagamoyo and Zanzibar, using a stochastic frontier model with technical inefficiency. The estimated mean technical efficiency of small-scale fishing households was 52%, showing ...

  8. The Influence of Small-Scale Power Plant Supporting Schemes on the Public Trader and Consumers

    Directory of Open Access Journals (Sweden)

    Renata Varfolomejeva

    2017-06-01

    Full Text Available The mechanism of support schemes for achieving the required share of renewable energy sources (RES was implemented into the energy sector. The issued amount of support requires state subsidies. The end-users of electricity are paying the mandatory procurement component taxes to cover these subsidies. The article examines the way of minimizing the influence of the existing RES supporting schemes on the consumers. The fixed purchased electricity price in the case of RES does not encourage producers to operate at hours of peak consumption or when the price is high. Modification of the RES support mechanisms at the legislative level, firstly, could minimize the influence of the mandatory procurement component on the end-users’ electricity price, and secondly, could provide a great opportunity for the public trader to forecast the operation of small power plants and their generation abilities. Numerical experiments with models of two types of power plants (biofuel and hydropower prove the existence of a problem and the presence of a solution. This problem constitutes the main subject of the present paper.

  9. Economic Analysis of Small Scale Fish Pond Production in Oguta ...

    African Journals Online (AJOL)

    What are the costs and returns of small-scale fishpond enterprises? What problems hinder the development of small-scale fishpond production? Data were collected with the aid of structured questionnaires and interviews. Descriptive statistics, gross margin and likert scale were employed in data analysis. Gross margin ...

  10. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  11. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F; Joergensen, P F [KanEnergi, Rud (Norway)

    1998-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  12. Small-Scale Spray Releases: Initial Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2013-05-29

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and

  13. Small-Scale Spray Releases: Initial Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2012-11-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  14. Methods for planning and operating decentralized combined heat and power plants

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, H.

    2000-02-01

    In recent years, the number of decentralized combined heat and power (DCHP) plants, which are typically located in small communities, has grown rapidly. These relatively small plants are based on Danish energy resources, mainly natural gas, and constitute an increasing part of the total energy production in Denmark. The topic of this thesis is the analysis of DCHP plants, with the purpose to optimize the operation of such plants. This involves the modelling of district heating systems, which are frequently connected to DCHP plants, as well as the use of heat storage for balancing between heat and power production. Furthermore, the accumulated effect from increasing number of DCHP plants on the total power production is considered. Methods for calculating dynamic temperature response in district heating (DH) pipes have been reviewed and analyzed numerically. Furthermore, it has been shown that a tree-structured DH network consisting of about one thousand pipes can be reduced to a simple chain structure of ten equivalent pipes without loosing much accuracy when temperature dynamics are calculated. A computationally efficient optimization method based on stochastic dynamic programming has been designed to find an optimum start-stop strategy for a DCHP plant with a heat storage. The method focuses on how to utilize heat storage in connection with CHP production. A model for the total power production in Eastern Denmark has been applied to the accumulated DCHP production. Probability production simulations have been extended from the traditional power-only analysis to include one or several heat supply areas. (au)

  15. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  16. Hydro-economic performances of streamflow withdrawal strategies: the case of small run-of-river power plants

    Science.gov (United States)

    Basso, Stefano; Lazzaro, Gianluca; Schirmer, Mario; Botter, Gianluca

    2014-05-01

    River flows withdrawals to supply small run-of-river hydropower plants have been increasing significantly in recent years - particularly in the Alpine area - as a consequence of public incentives aimed at enhancing energy production from renewable sources. This growth further raised the anthropic pressure in areas traditionally characterized by an intense exploitation of water resources, thereby triggering social conflicts among local communities, hydropower investors and public authorities. This brought to the attention of scientists and population the urgency for novel and quantitative tools for assessing the hydrologic impact of these type of plants, and trading between economic interests and ecologic concerns. In this contribution we propose an analytical framework that allows for the estimate of the streamflow availability for hydropower production and the selection of the run-of-river plant capacity, as well as the assessment of the related profitability and environmental impacts. The method highlights the key role of the streamflow variability in the design process, by showing the significance control of the coefficient of variation of daily flows on the duration of the optimal capacity of small run-of-river plants. Moreover, the analysis evidences a gap between energy and economic optimizations, which may result in the under-exploitation of the available hydropower potential at large scales. The disturbances to the natural flow regime produced between the intake and the outflow of run-of-river power plants are also estimated within the proposed framework. The altered hydrologic regime, described through the probability distribution and the correlation function of streamflows, is analytically expressed as a function of the natural regime for different management strategies. The deviations from pristine conditions of a set of hydrologic statistics are used, jointly with an economic index, to compare environmental and economic outcomes of alternative plant

  17. Engineering development for a small-scale recirculator experiment

    International Nuclear Information System (INIS)

    Newton, M.A.; Deadrick, F.J.; Hanks, R.L.; Hawkins, S.A.; Holm, K.A.; Kirbie, H.C.; Karpenko, V.P.; Nattrass, L.A.; Longinotti, D.B.

    1995-01-01

    Lawrence Livermore National Laboratory (LLNL) is evaluating the physics and technology of recirculating induction accelerators for heavy-ion inertial-fusion drivers. As part of this evaluation, the authors are building a small-scale recirculator to demonstrate the concept and to use as a test bed for the development of recirculator technologies. System designs have been completed and components are presently being designed and developed for the small-scale recirculator. This paper discusses results of the design and development activities that are presently being conducted to implement the small-scale recirculator experiments. An, overview of the system design is presented along with a discussion of the implications of this design on the mechanical and electrical hardware. The paper focuses primarily on discussions of the development and design of the half-lattice period hardware and the advanced solid-state modulator

  18. THE DEVELOPMENT OF SMALL-SCALE BUSINESS IN RUSSIA, TYPES OF FUNDING

    Directory of Open Access Journals (Sweden)

    Kirill O. Voronin

    2015-01-01

    Full Text Available In Russia small-scale business originated in the end of 1980s duringRestructuring. It has been developing as fast as Russian economics.Unlike large industrial companies, which just continued to run businessas they used to, small-scale businessmen had to start from scratch ordisaffiliate with large organizations. Basically, in 1990-s small-scale business as a financial institute was self-regulated due to its highcriminalization and nonpayment of tax.For a period of only 25 years small-scale business has improved muchand now provides well-being to the country. The improvement happeneddue to the following factors:- propitious economic and political climate of the country against thebackground of global economy and the years of restricting- important and useful measures for economic development were taken - important and useful measures for development of small-scale enterprises were takenThe development of this new financial institute is quite fast, but historyhas other examples of such phenomenon. In the 21st century RussianFederation adopted experience of advanced countries and imposed it onits historic experience. However, we can’t say that small-scale business is on its top of development in our country. Nowadays development of small-scale business is one of the priorities of the Russian government.

  19. Transaction Cost Of Borrowing Among Small Scale Farmers In ...

    African Journals Online (AJOL)

    The study examined transaction cost of borrowing among small scale farmers in Rivers State, Nigeria. Data was collected with the aid of structured questionnaire from 109 randomly selected small scale farmers in the study area. Data analysis was by frequency, percentage and mean. It was found that farmers mostly ...

  20. Small scale demand type neon liquefaction plant

    International Nuclear Information System (INIS)

    Dube, W.P.; Slifka, A.J.; Bitsy, R.M.; Sparks, L.L.; Johnson, K.B.

    1990-01-01

    Low-temperature measurement of the thermal conductivity of insulating materials is generally made using a boil-off calorimetry technique involving liquid hydrogen (LH2). Liquid neon (LNe) has nearly the same normal boiling point as LH2, but has a much larger heat of vaporization, allowing extended run times. The main drawback of using LNe has been its excessive cost; $170.00 versus $1.50/l for LH2 (1989 prices). A neon liquefaction plant has been designed and constructed to capture, purify, and refrigerate the neon boil-off from calorimetry experiments. Recycling the neon reduces operating costs to approximately $20/l. The system consists of a purification section, a heat exchanger, LNe and LH2 storage dewars, and a fully automated control system. After purification, neon is liquified in the heat exchanger by LH2 flowing countercurrently through stainless steel cooling coils. Hydrogen flow is automatically adjusted to keep the neon at its normal saturation temperature, 27 K. The liquid neon is then stored in a dewar placed directly below the heat exchanger

  1. Techno-Economic Feasibility Study of Renewable Power Systems for a Small-Scale Plasma-Assisted Nitric Acid Plant in Africa

    Directory of Open Access Journals (Sweden)

    Aikaterini Anastasopoulou

    2016-12-01

    Full Text Available The expected world population growth by 2050 is likely to pose great challenges in the global food demand and, in turn, in the fertilizer consumption. The Food and Agricultural Organization of the United Nations has forecasted that 46% of this projected growth will be attributed to Africa. This, in turn, raises further concerns about the sustainability of Africa’s contemporary fertilizer production, considering also its high dependence on fertilizer imports. Based on these facts, a novel “green” route for the synthesis of fertilizers has been considered in the context of the African agriculture by means of plasma technology. More precisely, a techno-economic feasibility study has been conducted for a small-scale plasma-assisted nitric acid plant located in Kenya and South Africa with respect to the electricity provision by renewable energy sources. In this study, standalone solar and wind power systems, as well as a hybrid system, have been assessed for two different electricity loads against certain economic criteria. The relevant simulations have been carried out in HOMER software and the optimized configurations of each examined renewable power system are presented in this study.

  2. Small watershed-scale research and the challenges ahead

    Science.gov (United States)

    Larsen, M. C.; Glynn, P. D.

    2008-12-01

    could not be detected until the recent increased sensitivity of modern techniques; 2) the recognition of changing climate and its effects on already-stressed water resources and ecosystems; 3) more integrated monitoring and modeling of ecosystem processes and quantification of ecosystem services. Historical hydrological and biogeochemical information available at USGS and other watershed-research and -monitoring sites can now be used in conjunction with active monitoring of biota and biological processes (especially those involving plants, invertebrates and microbes). The results will help provide a more nationally consistent framework for evaluating ecosystem health, and assessing ecosystem services, in the face of changing climate and land-use. These, and related science questions and societal issues are complex and require strong collaborations across disciplinary and organizational boundaries. Along with a well-funded national commitment to basic watershed research, the USGS continually seeks to strengthen its small-watershed and ecosystem-science programs through partnerships with NSF, State, and Federal agencies. Given the growing U.S. population, continual development in water-scarce regions, and general water- and soil-resource stress under competing national interests and priorities, the role of basic watershed-scale research and monitoring is essential because of its unique niche in the development of the improved environmental understanding and predictive models needed by resource managers.

  3. Tracing disinfection byproducts in full-scale desalination plants

    KAUST Repository

    Le Roux, Julien; Nada, Nabil A.; Khan, Muhammad; Croue, Jean-Philippe

    2015-01-01

    -scale desalination plants. One thermal multi-stage flash distillation (MSF) plant and two reverse osmosis (RO) plants located on the Red Sea coast of Saudi Arabia. DBPs formed during the prechlorination step were efficiently removed along the treatment processes (MSF

  4. Small signal gain measurements in a small scale HF overtone laser

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, C.F.; Hewett, K.B.; Manke, G.C. II; Hager, G.D. [Air Force Research Laboratory, Directed Energy Directorate, 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117-5776 (United States); Crowell, P.G. [Northrup Grumman Information Technology, Science and Technology Operating Unit, Advanced Technology Division, P.O. Box 9377, Albuquerque, NM 87119-9377 (United States); Truman, C.R. [Mechanical Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

    2003-07-01

    The overtone gain medium of a small-scale HF overtone laser was probed using a sub-Doppler tunable diode laser. Two-dimensional spatially resolved small signal gain and temperature maps were generated for several ro-vibrational transitions in the HF (v=2{yields}v=0) overtone band. Our results compare well with previous measurements of the overtone gain in a similar HF laser device. (orig.)

  5. A Compound Herbal Preparation (CHP) in the Treatment of Children with ADHD: A Randomized Controlled Trial

    Science.gov (United States)

    Katz, M.; Adar Levine, A.; Kol-Degani, H.; Kav-Venaki, L.

    2010-01-01

    Objective: Evaluation of the efficacy of a patented, compound herbal preparation (CHP) in improving attention, cognition, and impulse control in children with ADHD. Method: Design: A randomized, double-blind, placebo-controlled trial. Setting: University-affiliated tertiary medical center. Participants: 120 children newly diagnosed with ADHD,…

  6. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    The present paper presents overtopping measurements from small scale model test performed at the Haudraulic & Coastal Engineering Laboratory, Aalborg University, Denmark and large scale model tests performed at the Largde Wave Channel,Hannover, Germany. Comparison between results obtained from...... small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...

  7. Atomistic Simulations of Small-scale Materials Tests of Nuclear Materials

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2012-01-01

    Degradation of materials properties under neutron irradiation is one of the key issues affecting the lifetime of nuclear reactors. Evaluating the property changes of materials due to irradiations and understanding the role of microstructural changes on mechanical properties are required for ensuring reliable and safe operation of a nuclear reactor. However, high dose of neuron irradiation capabilities are rather limited and it is difficult to discriminate various factors affecting the property changes of materials. Ion beam irradiation can be used to investigate radiation damage to materials in a controlled way, but has the main limitation of small penetration depth in the length scale of micro meters. Over the past decade, the interest in the investigations of size-dependent mechanical properties has promoted the development of various small-scale materials tests, e.g. nanoindentation and micro/nano-pillar compression tests. Small-scale materials tests can address the issue of the limitation of small penetration depth of ion irradiation. In this paper, we present small-scale materials tests (experiments and simulation) which are applied to study the size and irradiation effects on mechanical properties. We have performed molecular dynamics simulations of nanoindentation and nanopillar compression tests. These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials

  8. Stirling co-generation plants - Is this the future?; Stirling-BHKWs - Zukunft oder...?

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, M.

    2000-07-01

    This article gives an overview of the history and main features of Stirling engines and their use in combined-cycle power generation. The principles behind the Stirling and its thermo-dynamic characteristics are discussed and compared with the internal combustion engine and other thermally-driven machines. The two main types of Stirling - the free-piston and the kinematic Stirling engines are discussed. Also, the important role played by the burner in the operation of Stirling engines is discussed. The use of Stirling engines as a basis for small combined heat and power (CHP) units to produce thermal heating power and electricity is examined. Three examples - the implementations made by the Solo, Whispergen and SIG companies - are looked at in detail and compared with alternative CHP-solutions using small gas engines and fuel cells. The advantages and disadvantages of these different solutions are listed.

  9. New scale-down methodology from commercial to lab scale to optimize plant-derived soft gel capsule formulations on a commercial scale.

    Science.gov (United States)

    Oishi, Sana; Kimura, Shin-Ichiro; Noguchi, Shuji; Kondo, Mio; Kondo, Yosuke; Shimokawa, Yoshiyuki; Iwao, Yasunori; Itai, Shigeru

    2018-01-15

    A new scale-down methodology from commercial rotary die scale to laboratory scale was developed to optimize a plant-derived soft gel capsule formulation and eventually manufacture superior soft gel capsules on a commercial scale, in order to reduce the time and cost for formulation development. Animal-derived and plant-derived soft gel film sheets were prepared using an applicator on a laboratory scale and their physicochemical properties, such as tensile strength, Young's modulus, and adhesive strength, were evaluated. The tensile strength of the animal-derived and plant-derived soft gel film sheets was 11.7 MPa and 4.41 MPa, respectively. The Young's modulus of the animal-derived and plant-derived soft gel film sheets was 169 MPa and 17.8 MPa, respectively, and both sheets showed a similar adhesion strength of approximately 4.5-10 MPa. Using a D-optimal mixture design, plant-derived soft gel film sheets were prepared and optimized by varying their composition, including variations in the mass of κ-carrageenan, ι-carrageenan, oxidized starch and heat-treated starch. The physicochemical properties of the sheets were evaluated to determine the optimal formulation. Finally, plant-derived soft gel capsules were manufactured using the rotary die method and the prepared soft gel capsules showed equivalent or superior physical properties compared with pre-existing soft gel capsules. Therefore, we successfully developed a new scale-down methodology to optimize the formulation of plant-derived soft gel capsules on a commercial scale. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Refurbishment of small hydropower plants in Romania; Sanierung von Kleinwasserkraftwerken in Rumaenien

    Energy Technology Data Exchange (ETDEWEB)

    Gmeinbauer, Joerg [Wien Energie GmbH, Wien (Austria)

    2010-07-01

    In 2008 Wien Energie subsidiary Wienstrom GmbH participated in three public auctions of Hidroelectrica S.A. for the sale of old small hydro power plants in Romania. Together with strategic partners Wienstrom could successfully compete against local and international competition and acquired 31 small hydro power plants with a total installed capacity of around 20 MW. The plants were integrated into the newly established Vienna Energy Forta Naturala Srl. and are being completely refurbished at the moment. Wien Energie consequently is already the third largest operator of small hydro power plants in Romania. (orig.)

  11. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2014-01-01

    Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120 kW e have been performed. Woodchips are used as gasification feedstock to produce syngas, which is then utilized to feed the anode side of the SOFC stacks. A thermal efficiency of 0.424 LHV (lower heating value) for the plant is found to use 89.4 kg/h of feedstock to produce the above mentioned electricity. Thermoeconomic analysis shows that the production price of electricity is 0.1204 $/kWh. Furthermore, hot water is considered as a by-product, and the cost of hot water is found to be 0.0214 $/kWh. When compared to other renewable systems of similar scales, this result shows that if both SOFC and Stirling engine technology enter the commercialization phase, then they can deliver electricity at a cost that is competitive with the corresponding renewable systems of the same size. - Highlights: • A 120 kW e integrated gasification SOFC–Stirling CHP is presented. • Effect of important parameters on plant characteristic and economy are studied. • A modest thermal efficiency of 0.41 is found after thermoeconomic optimization. • Reducing stack numbers cuts cost of electricity at expense of thermal efficiency. • The plant cost is estimated to be about 3433 $/kW when disposal costs are neglected

  12. Fair trade for coffee producing small-scale farmers in Mexico

    Directory of Open Access Journals (Sweden)

    Nam kwon Mun

    2012-10-01

    Full Text Available The agriculture played an important role in the industrialization process of Mexico. However, the agricultural policy of State has isolated small scale farmers, giving priority just to large agricultural exporters. This study analyzes the implications that can have fair trade for the Mexican small scale farmers. The fair trade tries to cover the production cost and basic necessities for the small scale farmers, making direct ties between producers and consumers. This type of linkage guarantees the minimum price and the extra social payment to the small scale farmers, grouped in cooperatives o associations.Coffee is one of the most known fair trade product, and Mexico is one of the most important coffer exporters of the world. The fair trade of coffee production where many small farmers work is carried out by cooperative like UCIRI (Unión de Comunidades Indígenas de la Región Istmo. The case study shows that fair trade cannot provide complete answers to the all problems that have small farmers. But, since fair trade tries to promote small farmers well-being and many small farmers could get rid of extreme poverty thanks to fair trade, it might be possible to say that fair trade can be one valuable option for the sustainable development of small farmers.

  13. Comparative analysis of organizational obstacles to CHP/DH

    Energy Technology Data Exchange (ETDEWEB)

    Ruedig, W.

    1986-04-01

    An explanation is given of the vast differences between the countries of Western Europe in the adoption of combined heat and power (CHP) for district heating (DH). The history of this technology in FR Germany and the UK is analysed in detail, and experiences of other countries are reviewed. It is concluded that the over centralization of the electricity supply industry is a major obstacle in the widespread adoption of combined heat and power and district heating. Significant improvements of energy efficiency would thus require organizational reforms giving greater powers to local energy organizations. This, however, should not imply total decentralization of energy supply. Instead, a two-tier system is proposed in which central organizations remain responsible for bulk supply but where local or regional bodies are in charge of all gas, electricity and heat supplies to the final user.

  14. Exposure of Small-Scale Gold Miners in Prestea to Mercury, Ghana, 2012.

    Science.gov (United States)

    Mensah, Ebenezer Kofi; Afari, Edwin; Wurapa, Frederick; Sackey, Samuel; Quainoo, Albert; Kenu, Ernest; Nyarko, Kofi Mensah

    2016-01-01

    Small-scale gold miners in Ghana have been using mercury to amalgamate gold for many years. Mercury is toxic even at low concentration. We assessed occupational exposure of small-scale gold miners to mercury in Prestea, a gold mining town in Ghana . We conducted a cross-sectional study in which we collected morning urine samples from 343 small-scale gold miners and tested for elemental mercury. Data on small-scale gold miner's socio-demographics, adverse health effects and occupational factors for mercury exposure were obtained and analyzed using SPSS Version 16 to determine frequency and percentage. Bivariate analysis was used to determine occupational factors associated with mercury exposure at 95% confidence level. The mean age of the small-scale gold miners was 29.5 ±9.6 years, and 323(94.20%) were males. One hundred and sixty (46.65%) of the small-scale gold miners had urine mercury above the recommended exposure limit (mercury exposure among those who have previously worked at other small-scale gold mines (χ 2 =4.96, p=0.03). The use of personal protective equipment among the small-scale gold miners was low. Retorts, which are globally recommended for burning amalgam, were not found at mining sites. A large proportion of small-scale gold miners in Prestea were having mercury exposure in excess of occupational exposure limits, and are at risk of experiencing adverse health related complications. Ghana Environmental Protection Agency should organize training for the miners.

  15. Smoke emissions in small-scale burning of wood

    International Nuclear Information System (INIS)

    Tuomi, S.

    1993-01-01

    The article is based on research carried out in Finland and Sweden on the subject of emissions of smoke in the small-scale burning of wood and the factors affecting it. Due to incomplete combustion, small-scale burning of wood is particularly typified by its emissions of solid particles, carbon monoxide, hydrocarbons and PAH compounds. Included among factors influencing the volume of emissions are the load imposed on the heating device, the manner in which the fuel is fed into the firebox, fuel quality, and heating device structure. Emissions have been found to be at their minimum in connection with heating systems based on accumulators. Emissions can be significantly reduced by employing state-of-the-art technology, appropriate ways of heating and by dry fuel. A six-year bioenergy research programme was launched early in 1993 in Finland. All leading research institutions and enterprises participate in this programme. Reduction of emissions has been set as the central goal in the part dealing with small-scale burning of wood. Application of catalytic combustion in Finnish-made heating devices is one of the programmes development targets. Up to this date, the emissions produced in the small-scale burning of wood are not mentioned in official regulations pertaining to approved heating devices. In Sweden tar emissions are applied as a measure of the environmental impact imposed by heating devices

  16. Small-scale microwave background anisotropies implied by large-scale data

    Science.gov (United States)

    Kashlinsky, A.

    1993-01-01

    In the absence of reheating microwave background radiation (MBR) anisotropies on arcminute scales depend uniquely on the amplitude and the coherence length of the primordial density fluctuations (PDFs). These can be determined from the recent data on galaxy correlations, xi(r), on linear scales (APM survey). We develop here expressions for the MBR angular correlation function, C(theta), on arcminute scales in terms of the power spectrum of PDFs and demonstrate their accuracy by comparing with detailed calculations of MBR anisotropies. We then show how to evaluate C(theta) directly in terms of the observed xi(r) and show that the APM data give information on the amplitude, C(O), and the coherence angle of MBR anisotropies on small scales.

  17. The small-scale hydroelectric power plant project 'Les Esserts' in Boudry, Switzerland - Feasibility study and preliminary planning; Centrale des Esserts a Boudry. Etude de faisabilite et avant-projet detaille

    Energy Technology Data Exchange (ETDEWEB)

    Roelli, P.; Croci, S.; Ernst, J.-R.

    2004-07-01

    This report describes in details the project of the installation of a small-scale hydroelectric power plant on the river Areuse in Switzerland. Located on a 4 m high waterfall the plant includes a 10-13 m{sup 3}/s Kaplan turbine, which should deliver roughly 1.6 GWh/year for an installed power of about 500 kVA. The authors insist on the ecological aspect of the project. The plant will be built underground; the river track will be practically unchanged and the existing fish ladder maintained. The report includes maps and pictures of the site as well as technical drawings of the installation. An economic analysis of the project is presented and its viability is discussed. Finally, the authors state that the energy produced by this plant will certainly be certified under one of the Swiss labels 'naturemade star' or 'naturemade basic', in the framework of the federal government's promotion of renewable energy sources.

  18. Scaling laws and technology development strategies for biorefineries and bioenergy plants.

    Science.gov (United States)

    Jack, Michael W

    2009-12-01

    The economies of scale of larger biorefineries or bioenergy plants compete with the diseconomies of scale of transporting geographically distributed biomass to a central location. This results in an optimum plant size that depends on the scaling parameters of the two contributions. This is a fundamental aspect of biorefineries and bioenergy plants and has important consequences for technology development as "bigger is better" is not necessarily true. In this paper we explore the consequences of these scaling effects via a simplified model of biomass transportation and plant costs. Analysis of this model suggests that there is a need for much more sophisticated technology development strategies to exploit the consequences of these scaling effects. We suggest three potential strategies in terms of the scaling parameters of the system.

  19. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens.

    Science.gov (United States)

    Olff, H; Hoorens, B; de Goede, R G M; van der Putten, W H; Gleichman, J M

    2000-10-01

    We analyzed the dynamics of dominant plant species in a grazed grassland over 17 years, and investigated whether local shifts in these dominant species, leading to vegetation mosaics, could be attributed to interactions between plants and soil-borne pathogens. We found that Festuca rubra and Carex arenaria locally alternated in abundance, with different sites close together behaving out of phase, resulting in a shifting mosaic. The net effect of killing all soil biota on the growth of these two species was investigated in a greenhouse experiment using gamma radiation, controlling for possible effects of sterilization on soil chemistry. Both plant species showed a strong net positive response to soil sterilization, indicating that pathogens (e.g., nematodes, pathogenic fungi) outweighed the effect of mutualists (e.g., mycorrhizae). This positive growth response towards soil sterilization appeared not be due to effects of sterilization on soil chemistry. Growth of Carex was strongly reduced by soil-borne pathogens (86% reduction relative to its growth on sterilized soil) on soil from a site where this species decreased during the last decade (and Festuca increased), while it was reduced much less (50%) on soil from a nearby site where it increased in abundance during the last decade. Similarly, Festuca was reduced more (67%) on soil from the site where it decreased (and Carex increased) than on soil from the site where it increased (55%, the site where Carex decreased). Plant-feeding nematodes showed high small-scale variation in densities, and we related this variation to the observed growth reductions in both plant species. Carex growth on unsterilized soil was significantly more reduced at higher densities of plant-feeding nematodes, while the growth reduction in Festuca was independent of plant-feeding nematode densities. At high plant-feeding nematode densities, growth of Carex was reduced more than Festuca, while at low nematode densities the opposite was found

  20. Small-Scale Renewable Energy Converters for Battery Charging

    Directory of Open Access Journals (Sweden)

    Mohd Nasir Ayob

    2018-03-01

    Full Text Available This paper presents two wave energy concepts for small-scale electricity generation. In the presented case, these concepts are installed on the buoy of a heaving, point-absorbing wave energy converter (WEC for large scale electricity production. In the studied WEC, developed by Uppsala University, small-scale electricity generation in the buoy is needed to power a tidal compensating system designed to increase the performance of the WEC in areas with high tides. The two considered and modeled concepts are an oscillating water column (OWC and a heaving point absorber. The results indicate that the OWC is too small for the task and does not produce enough energy. On the other hand, the results show that a hybrid system composed of a small heaving point absorber combined with a solar energy system would be able to provide a requested minimum power of around 37.7 W on average year around. The WEC and solar panel complement each other, as the WEC produces enough energy by itself during wintertime (but not in the summer, while the solar panel produces enough energy in the summer (but not in the winter.

  1. Empirical spatial econometric modelling of small scale neighbourhood

    Science.gov (United States)

    Gerkman, Linda

    2012-07-01

    The aim of the paper is to model small scale neighbourhood in a house price model by implementing the newest methodology in spatial econometrics. A common problem when modelling house prices is that in practice it is seldom possible to obtain all the desired variables. Especially variables capturing the small scale neighbourhood conditions are hard to find. If there are important explanatory variables missing from the model, the omitted variables are spatially autocorrelated and they are correlated with the explanatory variables included in the model, it can be shown that a spatial Durbin model is motivated. In the empirical application on new house price data from Helsinki in Finland, we find the motivation for a spatial Durbin model, we estimate the model and interpret the estimates for the summary measures of impacts. By the analysis we show that the model structure makes it possible to model and find small scale neighbourhood effects, when we know that they exist, but we are lacking proper variables to measure them.

  2. Prospects for city-scale combined heat and power in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, John [Finnpower, High Wycombe (United Kingdom); Amos, John [Hoare Lea and Partners, Bristol (United Kingdom); Hutchinson, David [London Research Centre (United Kingdom); Denman, Malcolm [Sheffield Hallam Univ. (United Kingdom). School of Engineering

    1996-07-01

    City-scale combined heat and power/district heating (CHP/DH) brings to a number of European countries major social and commercial benefits which have been almost totally overlooked in the UK. To bring CHP/DH to the UK, it is necessary first to convince people of the benefits and then to persuade the Government to introduce the necessary legislation to allow the establishment of true city energy utilities on European lines. Neither task will be easy because of the resultant effect on the British fuel industries. The necessary changes must inevitably be gradual and there would, in any case, be a substantial role for the fuel industries - which they must be made aware of. (author)

  3. Operating of Small Wind Power Plants with Induction Generators

    Directory of Open Access Journals (Sweden)

    Jakub Nevrala

    2008-01-01

    Full Text Available This paper describes different systems of small wind power plants with induction generators used in the Czech Republic. Problems of wind power plants running with induction generators are solved within partial target of the research project MSM 6198910007. For small wind power plants is used induction motor as a generator. Parameters of the name plate of motor must be resolved for generator running on measuring base. These generators are running as a separately working generators or generators connected to the power grid. Methods of control these systems as a separately working, directly connecting to power grid, control by frequency converter and wiring by synchronous cascade are confronted on the measuring base too.

  4. Formation and fate of marine snow: small-scale processes with large- scale implications

    Directory of Open Access Journals (Sweden)

    Thomas Kiørboe

    2001-12-01

    Full Text Available Marine snow aggregates are believed to be the main vehicles for vertical material transport in the ocean. However, aggregates are also sites of elevated heterotrophic activity, which may rather cause enhanced retention of aggregated material in the upper ocean. Small-scale biological-physical interactions govern the formation and fate of marine snow. Aggregates may form by physical coagulation: fluid motion causes collisions between small primary particles (e.g. phytoplankton that may then stick together to form aggregates with enhanced sinking velocities. Bacteria may subsequently solubilise and remineralise aggregated particles. Because the solubilization rate exceeds the remineralization rate, organic solutes leak out of sinking aggregates. The leaking solutes spread by diffusion and advection and form a chemical trail in the wake of the sinking aggregate that may guide small zooplankters to the aggregate. Also, suspended bacteria may enjoy the elevated concentration of organic solutes in the plume. I explore these small-scale formation and degradation processes by means of models, experiments and field observations. The larger scale implications for the structure and functioning of pelagic food chains of export vs. retention of material will be discussed.

  5. Mixing of Process Heels, Process Solutions and Recycle Streams: Small-Scale Simulant

    International Nuclear Information System (INIS)

    Kaplan, D.I.

    2001-01-01

    The overall objective of this small-scale simulant mixing study was to identify the processes within the Hanford Site River Protection Project - Waste Treatment Plant (RPP-WTP) that may generate precipitates and to identify the types of precipitates formed. This information can be used to identify where mixtures of various solutions will cause precipitation of solids, potentially causing operational problems such as fouling equipment or increasing the amount of High Level Waste glass produced. Having this information will help guide protocols for flushing or draining tanks, mixing internal recycle streams, and mixing waste tank supernates. This report contains the discussion and thermodynamic chemical speciation modeling of the raw data

  6. Advanced m-CHP fuel cell system based on a novel bio-ethanol fluidized bed membrane reformer

    NARCIS (Netherlands)

    Viviente, J.L.; Melendez Rey, J.; Pacheco Tanaka, D.A.; Gallucci, F.; Spallina, V.; Manzolini, G.; Foresti, S.; Palma, V.; Ruocco, C.; Roses, L.

    2017-01-01

    Distributed power generation via Micro Combined Heat and Power (m-CHP) systems, has been proven to over-come disadvantages of centralized generation since it can give savings in terms of Primary Energy consumption and energy costs. The FluidCELL FCH JU/FP7 project aims at providing the Proof of

  7. Market conditions for cogeneration plants. Ensuring efficiency; Marktbedingungen fuer KWK-Anlagen. Wirtschaftlichkeit sicherstellen

    Energy Technology Data Exchange (ETDEWEB)

    Ottersbach, Joerg; Otto, Falk; Schrader, Knut [BET Buero fuer Energiewirtschaft und Technische Planung GmbH, Aachen (Germany)

    2013-07-15

    Due to declining wholesale prices for electricity, the profitability of base load power and heat generation plants decreases significantly. Therefore, concepts such as the increased use of electricity or natural plant flexibility have to be developed. The improved framework conditions by means of the amended Combined Heat and Power Act are helpful. When modernising plants, it is even possible under favorable conditions and with a good concept to fully refinance the investment on the CHP surcharges.

  8. Large Combined Heat and Power Plants for Sustainable Energy System

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mathiesen, Brian Vad

    . CHP (combined heat and power) plants in Denmark will change their role from base load production to balancing the fluctuation in renewable energy supply, such as wind power and at the same time they have to change to renewable energy sources. Some solutions are already being planned by utilities...... in Denmark; conversion of pulverised fuel plants from coal to wood pellets and a circulating fluidised bed (CFB) plant for wood chips. From scientific research projects another solution is suggested as the most feasible; the combined cycle gas turbine (CCGT) plant. In this study a four scenarios...

  9. Small-Scale Experiments.10-gallon drum experiment summary

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, David M.

    2015-02-05

    A series of sub-scale (10-gallon) drum experiments were conducted to characterize the reactivity, heat generation, and gas generation of mixtures of chemicals believed to be present in the drum (68660) known to have breached in association with the radiation release event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014, at a scale expected to be large enough to replicate the environment in that drum but small enough to be practical, safe, and cost effective. These tests were not intended to replicate all the properties of drum 68660 or the event that led to its breach, or to validate a particular hypothesis of the release event. They were intended to observe, in a controlled environment and with suitable diagnostics, the behavior of simple mixtures of chemicals in order to determine if they could support reactivity that could result in ignition or if some other ingredient or event would be necessary. There is a significant amount of uncertainty into the exact composition of the barrel; a limited sub-set of known components was identified, reviewed with Technical Assessment Team (TAT) members, and used in these tests. This set of experiments was intended to provide a framework to postulate realistic, data-supported hypotheses for processes that occur in a “68660-like” configuration, not definitively prove what actually occurred in 68660.

  10. Standardized small diesel power plants for rural electrification in Tanzania

    International Nuclear Information System (INIS)

    Holmqvist, A.; Soerman, J.; Gullberg, M.; Kjellstroem, B.

    1993-01-01

    This study focuses on small townships where the forecasted power demand stays below 500 kW during the ten first years. Case study calculations were made where two hypothetical load centres form the base. Each load centre is assumed to be supplied by two alternative standardized diesel power plants. One option is a power plant consisting of two medium speed (750 rpm) generator sets, one always on stand-by. Alternatively, a power plant consisting of three high speed (1500 rpm) generator sets is evaluated for each hypothetical load centre. The calculations clearly show that the high speed, three unit option comes out cheaper than the two unit, medium speed option in all the considered cases. The fuel costs per kWh generated are almost the same in all the cases studied, i.e. between 6 and 7 US cents. The medium speed engine tends to consume more fuel per kWh generated than the high speed, as it runs more often on part load. Consequently, the fuel costs will be slightly higher for this option. It is also of interest to compare the plant failure rate of the two options. In this study no proper probability evaluation has been made, but some general reflections can be worth considering. The availability of spare parts in Tanzania is doubtful. Many small diesel power plants presently operating have to wait indefinitely, when a failure appears that requires spare parts. As long as the individual sets have the same, or nearly the same failure rate, a three unit plant has lower probability for total loss of generating capacity than a two unit plant. The main conclusion of this evaluation is that for electricity generation in rural Tanzanian villages, power plants with three small, high speed generator sets are preferable to plants with two, medium speed generator sets. A power plant made out of small sets requires less capital, consumes less fuel and is not as likely to loose its generating capacity totally. 16 refs, 10 figs, 21 tabs

  11. A simple and efficient method for isolating small RNAs from different plant species

    Directory of Open Access Journals (Sweden)

    de Folter Stefan

    2011-02-01

    Full Text Available Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Conclusion Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.

  12. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests

    Directory of Open Access Journals (Sweden)

    Queenborough Simon A

    2012-03-01

    Full Text Available Abstract Background Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. Results We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Conclusions Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially

  13. Palms, peccaries and perturbations: widespread effects of small-scale disturbance in tropical forests.

    Science.gov (United States)

    Queenborough, Simon A; Metz, Margaret R; Wiegand, Thorsten; Valencia, Renato

    2012-03-19

    Disturbance is an important process structuring ecosystems worldwide and has long been thought to be a significant driver of diversity and dynamics. In forests, most studies of disturbance have focused on large-scale disturbance such as hurricanes or tree-falls. However, smaller sub-canopy disturbances could also have significant impacts on community structure. One such sub-canopy disturbance in tropical forests is abscising leaves of large arborescent palm (Arececeae) trees. These leaves can weigh up to 15 kg and cause physical damage and mortality to juvenile plants. Previous studies examining this question suffered from the use of static data at small spatial scales. Here we use data from a large permanent forest plot combined with dynamic data on the survival and growth of > 66,000 individuals over a seven-year period to address whether falling palm fronds do impact neighboring seedling and sapling communities, or whether there is an interaction between the palms and peccaries rooting for fallen palm fruit in the same area as falling leaves. We tested the wider generalisation of these hypotheses by comparing seedling and sapling survival under fruiting and non-fruiting trees in another family, the Myristicaceae. We found a spatially-restricted but significant effect of large arborescent fruiting palms on the spatial structure, population dynamics and species diversity of neighbouring sapling and seedling communities. However, these effects were not found around slightly smaller non-fruiting palm trees, suggesting it is seed predators such as peccaries rather than falling leaves that impact on the communities around palm trees. Conversely, this hypothesis was not supported in data from other edible species, such as those in the family Myristicaceae. Given the abundance of arborescent palm trees in Amazonian forests, it is reasonable to conclude that their presence does have a significant, if spatially-restricted, impact on juvenile plants, most likely on the

  14. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...

  15. Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses

    Science.gov (United States)

    Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia

    2013-03-01

    Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.

  16. Renewables and CHP with District Energy in Support of Sustainable Communities

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Chris

    2010-09-15

    This paper addresses the powerful idea of connecting many energy users to environmentally optimum energy sources through integrated community energy systems. Such systems require piping networks for distributing thermal energy, i.e., district heating and cooling (DHC) systems. The possibilities and advantages of the application of integrated energy concepts are discussed, including the economic and environmental benefits of integrating localized electrical generating systems (CHP), transportation systems, industrial processes and other thermal energy requirements. Examples of a number of operating systems are provided. Some of the R and D carried out by the IEA Implementing Agreement on District Heating and Cooling is also described.

  17. The hazardous nature of small scale underground mining in Ghana

    Directory of Open Access Journals (Sweden)

    K.J. Bansah

    2016-01-01

    Full Text Available Small scale mining continues to contribute significantly to the growth of Ghana's economy. However, the sector poses serious dangers to human health and the environment. Ground failures resulting from poorly supported stopes have led to injuries and fatalities in recent times. Dust and fumes from drilling and blasting of ore present health threats due to poor ventilation. Four prominent small scale underground mines were studied to identify the safety issues associated with small scale underground mining in Ghana. It is recognized that small scale underground mining in Ghana is inundated with unsafe acts and conditions including stope collapse, improper choice of working tools, absence of personal protective equipment and land degradation. Inadequate monitoring of the operations and lack of regulatory enforcement by the Minerals Commission of Ghana are major contributing factors to the environmental, safety and national security issues of the operations.

  18. Energy versus economic effectiveness in CHP (combined heat and power) applications: Investigation on the critical role of commodities price, taxation and power grid mix efficiency

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Rossi, Mosè

    2016-01-01

    Starting from PES (primary energy saving) and CSR (cost saving ratio) definitions the work pinpoints a “grey area” in which CHP (combined heat and power – cogeneration) units can operate with profit and negative PES. In this case, CHP can be profitably operated with lower efficiency with respect to separate production of electrical and thermal energy. The work defines the R-index as the ratio between the cost of fuel and electricity. The optimal value of R-index for which CHP units operate with both environmental benefit (PES > 0) and economic profitability (CSR > 0) is the reference value of electrical efficiency, η_e_l_-_r_e_f, of separate production (national power grid mix). As a consequence, optimal R-index varies from Country to Country. The work demonstrates that the value of R corresponds to the minimum value of electrical efficiency for which any power generator operates with profit. The paper demonstrates that, with regard to the profitability of cogeneration, the ratio between the cost of commodities is more important than their absolute value so that different taxation of each commodity can be a good leverage for energy policy makers to promote high efficiency cogeneration, even in the absence of an incentive mechanism. The final part of the study presents an analysis on micro-CHP technologies payback times for different European Countries. - Highlights: • Investigation of the grey area where CHP profitably operates also with negative PES. • Study starts from definition of primary energy saving PES and cost saving ratio CSR. • Definition of the R-index as the ratio between the cost of fuel and electricity. • The optimal value of R for which the “grey area” disappears is R = η_e_l_-_r_e_f. • R is also the value of η_e_l for which any electric generator profitably operates.

  19. Policy for rekindling and re-powering of small scale hydroelectric power plants; Politica de rejuvenescimento e repotenciacao de PCH`s

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Wanderley I. de [Companhia Paulista de Forca e Luz (CPFL), Campinas, SP (Brazil). Div. de Geracao

    1997-12-31

    The demand of electric energy comes increasing gradually and the offer of energy with of growth of the market, becomes a product, a great concern. In this matter Small Hydroelectric Power Plant SHP`s can be fundamental to offer support to the electric section, but these small sources of energy need to be adapting rekindling and repowering, being used of new market technologies and of economic studies that can give reliability and speed in the evaluations of the processes. (author)

  20. Economic efficiency among small scale poultry farmers in Imo State ...

    African Journals Online (AJOL)

    ... household size and extension, were found to be the significant factors that account for the observed variation in efficiency among the small scale poultry farmers. Keywords: economic efficiency, small scale poultry farmers, stochastic frontier production model. International Journal of Agriculture and Rural Development Vol.