WorldWideScience

Sample records for small-animal pet cancer

  1. The motivations and methodology for high-throughput PET imaging of small animals in cancer research.

    NARCIS (Netherlands)

    Aide, N.; Visser, E.P.; Lheureux, S.; Heutte, N.; Szanda, I.; Hicks, R.J.

    2012-01-01

    Over the last decade, small-animal PET imaging has become a vital platform technology in cancer research. With the development of molecularly targeted therapies and drug combinations requiring evaluation of different schedules, the number of animals to be imaged within a PET experiment has

  2. The motivations and methodology for high-throughput PET imaging of small animals in cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Aide, Nicolas [Francois Baclesse Cancer Centre, Nuclear Medicine Department, Caen Cedex (France); Caen University, BioTICLA team, EA 4656, IFR 146, Caen (France); Visser, Eric P. [Radboud University Nijmegen Medical Center, Nuclear Medicine Department, Nijmegen (Netherlands); Lheureux, Stephanie [Caen University, BioTICLA team, EA 4656, IFR 146, Caen (France); Francois Baclesse Cancer Centre, Clinical Research Unit, Caen (France); Heutte, Natacha [Francois Baclesse Cancer Centre, Clinical Research Unit, Caen (France); Szanda, Istvan [King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Hicks, Rodney J. [Peter MacCallum Cancer Centre, Centre for Molecular Imaging, East Melbourne (Australia)

    2012-09-15

    Over the last decade, small-animal PET imaging has become a vital platform technology in cancer research. With the development of molecularly targeted therapies and drug combinations requiring evaluation of different schedules, the number of animals to be imaged within a PET experiment has increased. This paper describes experimental design requirements to reach statistical significance, based on the expected change in tracer uptake in treated animals as compared to the control group, the number of groups that will be imaged, and the expected intra-animal variability for a given tracer. We also review how high-throughput studies can be performed in dedicated small-animal PET, high-resolution clinical PET systems and planar positron imaging systems by imaging more than one animal simultaneously. Customized beds designed to image more than one animal in large-bore small-animal PET scanners are described. Physics issues related to the presence of several rodents within the field of view (i.e. deterioration of spatial resolution and sensitivity as the radial and the axial offsets increase, respectively, as well as a larger effect of attenuation and the number of scatter events), which can be assessed by using the NEMA NU 4 image quality phantom, are detailed. (orig.)

  3. Importance of Attenuation Correction (AC) for Small Animal PET Imaging

    DEFF Research Database (Denmark)

    El Ali, Henrik H.; Bodholdt, Rasmus Poul; Jørgensen, Jesper Tranekjær

    2012-01-01

    was performed. Methods: Ten NMRI nude mice with subcutaneous implantation of human breast cancer cells (MCF-7) were scanned consecutively in small animal PET and CT scanners (MicroPETTM Focus 120 and ImTek’s MicroCATTM II). CT-based AC, PET-based AC and uniform AC methods were compared. Results: The activity...

  4. Small animal PET: aspects of performance assessment

    International Nuclear Information System (INIS)

    Weber, Simone; Bauer, Andreas

    2004-01-01

    Dedicated small animal positron emission tomography (PET) systems are increasingly prevalent in industry (e.g. for preclinical drug development) and biological research. Such systems permit researchers to perform animal studies of a longitudinal design characterised by repeated measurements in single animals. With the advent of commercial systems, scanners have become readily available and increasingly popular. As a consequence, technical specifications are becoming more diverse, making scanner systems less broadly applicable. The investigator has, therefore, to make a decision regarding which type of scanner is most suitable for the intended experiments. This decision should be based on gantry characteristics and the physical performance. The first few steps have been taken towards standardisation of the assessment of performance characteristics of dedicated animal PET systems, though such assessment is not yet routinely implemented. In this review, we describe current methods of evaluation of physical performance parameters of small animal PET scanners. Effects of methodologically different approaches on the results are assessed. It is underscored that particular attention has to be paid to spatial resolution, sensitivity, scatter fraction and count rate performance. Differences in performance measurement methods are described with regard to commercially available systems, namely the Concorde MicroPET systems P4 and R4 and the quad-HIDAC. Lastly, consequences of differences in scanner performance parameters are rated with respect to applications of small animal PET. (orig.)

  5. Technology challenges in small animal PET imaging

    International Nuclear Information System (INIS)

    Lecomte, Roger

    2004-01-01

    Positron Emission Tomography (PET) is a non-invasive nuclear imaging modality allowing biochemical processes to be investigated in vivo with sensitivity in the picomolar range. For this reason, PET has the potential to play a major role in the emerging field of molecular imaging by enabling the study of molecular pathways and genetic processes in living animals non-invasively. The challenge is to obtain a spatial resolution that is appropriate for rat and mouse imaging, the preferred animal models for research in biology, while achieving a sensitivity adequate for real-time measurement of rapid dynamic processes in vivo without violating tracer kinetic principles. An overview of the current state of development of dedicated small animal PET scanners is given, and selected applications are reported and discussed with respect to performance and significance to research in biology

  6. Molecular Imaging with Small Animal PET/CT

    DEFF Research Database (Denmark)

    Binderup, T.; El-Ali, H.H.; Skovgaard, D.

    2011-01-01

    is also described. In addition, the non-invasive nature of molecular imaging and the targets of these promising new tracers are attractive for other research areas as well, although these fields are much less explored. We present an example of an interesting research field with the application of small......Small animal positron emission tomography (PET) and computer tomography (CT) is an emerging field in pre-clinical imaging. High quality, state-of-the-art instruments are required for full optimization of the translational value of the small animal studies with PET and CT. However...... in this field of small animal molecular imaging with special emphasis on the targets for tissue characterization in tumor biology such as hypoxia, proliferation and cancer specific over-expression of receptors. The added value of applying CT imaging for anatomical localization and tumor volume measurements...

  7. A Very High Spatial Resolution Detector for Small Animal PET

    International Nuclear Information System (INIS)

    Kanai Shah, M.S.

    2007-01-01

    Positron Emission Tomography (PET) is an in vivo analog of autoradiography and has the potential to become a powerful new tool in imaging biological processes in small laboratory animals. PET imaging of small animals can provide unique information that can help in advancement of human disease models as well as drug development. Clinical PET scanners used for human imaging are bulky, expensive and do not have adequate spatial resolution for small animal studies. Hence, dedicated, low cost instruments are required for conducting small animal studies with higher spatial resolution than what is currently achieved with clinical as well as dedicated small animal PET scanners. The goal of the proposed project is to investigate a new all solid-state detector design for small animal PET imaging. Exceptionally high spatial resolution, good timing resolution, and excellent energy resolution are expected from the proposed detector design. The Phase I project was aimed at demonstrating the feasibility of producing high performance solid-state detectors that provide high sensitivity, spatial resolution, and timing characteristics. Energy resolution characteristics of the new detector were also investigated. The goal of the Phase II project is to advance the promising solid-state detector technology for small animal PET and determine its full potential. Detectors modules will be built and characterized and finally, a bench-top small animal PET system will be assembled and evaluated

  8. Small animal PET and its applications in biomedical research

    International Nuclear Information System (INIS)

    Qiu Feichan

    2004-01-01

    Positron emission tomography (PET) is a nuclear medical imaging technique that permits the use of positron-labeled molecular imaging probes for non-invasive assays of biochemical processes. As the leading technology in nuclear medicine, PET has extended its applications from the clinical field to the study of small laboratory animals. In recent years, the development of new detector technology has dramatically improved the spatial resolution and image quality of small animal PET scanner, which is being used increasingly as a basic tool in modern biomedical research. In particular, small animal PET will play an important role in drug discovery and development, in the study of small animal models of human diseases, in characterizing gene expression and in many other ways. (authors)

  9. Monte Carlo simulations in small animal PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Susana [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)], E-mail: susana.silva@fc.ul.pt; Jan, Sebastien [Service Hospitalier Frederic Joliot, CEA/DSV/DRM, Orsay (France); Almeida, Pedro [Universidade de Lisboa, Faculdade de Ciencias, Instituto de Biofisica e Engenharia Biomedica, Lisbon (Portugal)

    2007-10-01

    This work is based on the use of an implemented Positron Emission Tomography (PET) simulation system dedicated for small animal PET imaging. Geant4 Application for Tomographic Emission (GATE), a Monte Carlo simulation platform based on the Geant4 libraries, is well suited for modeling the microPET FOCUS system and to implement realistic phantoms, such as the MOBY phantom, and data maps from real examinations. The use of a microPET FOCUS simulation model with GATE has been validated for spatial resolution, counting rates performances, imaging contrast recovery and quantitative analysis. Results from realistic studies of the mouse body using {sup -}F and [{sup 18}F]FDG imaging protocols are presented. These simulations include the injection of realistic doses into the animal and realistic time framing. The results have shown that it is possible to simulate small animal PET acquisitions under realistic conditions, and are expected to be useful to improve the quantitative analysis in PET mouse body studies.

  10. The biological application of small animal PET imaging

    International Nuclear Information System (INIS)

    Myers, Ralph

    2001-01-01

    The short history of small animal PET is reviewed in the context of its application in the laboratory. Early work has demonstrated a role for the technique in both drug development and in the in vivo monitoring of neuroreceptor function with time. As spatial resolution approaches 1 mm, challenges in quantification remain. However, the ability to carry out animal PET studies that are analogous to human PET will form an important bridge between laboratory and clinical sciences

  11. Early evaluation of the effects of chemotherapy with longitudinal FDG small-animal PET in human testicular cancer xenografts: early flare response does not reflect refractory disease

    Energy Technology Data Exchange (ETDEWEB)

    Aide, Nicolas [GRECAN, EA 1772, IFR 146 ICORE, Caen University, Bioticla Unit, Caen (France); Francois Baclesse Comprehensive Cancer Centre, Nuclear Medicine Department, Caen (France); Centre Francois Baclesse, Service de Medecine Nucleaire, Caen Cedex 5 (France); Poulain, Laurent; Briand, Melanie; Dutoit, Soizic; Labiche, Alexandre; Gauduchon, Pascal [GRECAN, EA 1772, IFR 146 ICORE, Caen University, Bioticla Unit, Caen (France); Allouche, Stephane [University Hospital, Biochemistry Department, Caen (France); Ngo-Van Do, Aurelie; Nataf, Valerie; Talbot, Jean-Noel; Montravers, Francoise [Tenon Hospital and University Pierre et Marie Curie (Paris 6), LIMP, Paris (France); Batalla, Alain [Francois Baclesse Comprehensive Cancer Centre, Medical Physics Unit, Caen (France)

    2009-03-15

    We aimed to evaluate the usefulness of FDG PET in the early prediction of the effects of chemotherapy on human testicular cancer xenografts. Nude rats bearing subcutaneous human embryonal carcinoma xenografts received either cisplatin (5 mg/kg) or saline serum. Small-animal PET studies were performed on days 0, 2, 4 and 7 and compared to immunochemistry studies, flow cytometry studies and hexokinase assays. Cisplatin treatment resulted in biphasic FDG uptake evolution: a peak was observed on day 2, followed by a marked decrease on day 7 despite an insignificant change in tumour volume. Similarly, a peak in cyclin A immunostaining was observed on days 2 and 4, followed by a significant decrease on day 7. Flow cytometry showed that the cyclin A peak was not related to increased cell proliferation but was due to a transient S and G{sub 2}/M cell cycle arrest. A marked increase in cell apoptosis was observed from day 2 to day 7. GLUT-1 showed a significant decrease on day 7. Macrophagic infiltrate remained stable except for an increase observed on day 7. In control tumours, continuous growth was observed, all immunostaining markers remaining stable over time. Hexokinase activity was significantly lower on day 7 in treated tumours than in controls. FDG PET may be useful in the early evaluation of treatment in patients with testicular cancer. In our model, a very early increased [{sup 18}F]-FDG uptake was related to a transient cell cycle arrest and early stage apoptosis but did not reveal refractory disease. (orig.)

  12. Simulation of time curves in small animal PET using GATE

    International Nuclear Information System (INIS)

    Simon, Luc; Strul, Daniel; Santin, Giovanni; Krieguer, Magalie; Morel, Christian

    2004-01-01

    The ClearPET project of the Crystal Clear Collaboration (CCC) is building spin-off technology for high resolution small animal Positron Emission Tomography (PET). Monte Carlo simulation is essential for optimizing the specifications of these systems with regards to their most important characteristics, such as spatial resolution, sensitivity, or count rate performance. GATE, the Geant4 Application for Tomographic Emission simulates the passing of time during real acquisitions, allowing to handle dynamic systems such as decaying source distributions or moving detectors. GATE output is analyzed on an event-by-event basis. The time associated with each single event allows to sort coincidences and to model dead-time. This leads to the study of time curves for a prospective small animal PET scanner design. The count rates of true, and random coincidences are discussed together with the corresponding Noise Equivalent Count (NEC) rates as a function of some PET scanner specifications such as detector dead time, or coincidence time window

  13. Molecular imaging of small animals with dedicated PET tomographs

    International Nuclear Information System (INIS)

    Chatziioannou, A.F.

    2002-01-01

    Biological discovery has moved at an accelerated pace in recent years, with a considerable focus on the transition from in vitro to in vivo models. As a result, there has been a significant increase in the need to adapt clinical imaging methods, as well as for novel imaging technologies for biological research. Positron emission tomography (PET) is a clinical imaging modality that permits the use of positron-labeled molecular imaging probes for non-invasive assays of biochemical processes. The imaging procedure can be repeatedly performed before and after interventions, thereby allowing each animal to be used as its own control. Positron-labeled compounds that target a range of molecular targets have been and continue to be synthesized, with examples of biological processes ranging from receptors and synthesis of transmitters in cell communication, to metabolic processes and gene expression. In animal research, PET has been used extensively in the past for studies of non-human primates and other larger animals. New detector technology has improved spatial resolution, and has made possible PET scanning for the study of the most important modern molecular biology model, the laboratory mouse. This paper presents the challenges facing PET technology as applied to small animal imaging, provides a historical overview of the development of small animal PET systems, and discusses the current state of the art in small animal PET technology. (orig.)

  14. Semiautomated analysis of small-animal PET data.

    Science.gov (United States)

    Kesner, Adam L; Dahlbom, Magnus; Huang, Sung-Cheng; Hsueh, Wei-Ann; Pio, Betty S; Czernin, Johannes; Kreissl, Michael; Wu, Hsiao-Ming; Silverman, Daniel H S

    2006-07-01

    The objective of the work reported here was to develop and test automated methods to calculate biodistribution of PET tracers using small-animal PET images. After developing software that uses visually distinguishable organs and other landmarks on a scan to semiautomatically coregister a digital mouse phantom with a small-animal PET scan, we elastically transformed the phantom to conform to those landmarks in 9 simulated scans and in 18 actual PET scans acquired of 9 mice. Tracer concentrations were automatically calculated in 22 regions of interest (ROIs) reflecting the whole body and 21 individual organs. To assess the accuracy of this approach, we compared the software-measured activities in the ROIs of simulated PET scans with the known activities, and we compared the software-measured activities in the ROIs of real PET scans both with manually established ROI activities in original scan data and with actual radioactivity content in immediately harvested tissues of imaged animals. PET/atlas coregistrations were successfully generated with minimal end-user input, allowing rapid quantification of 22 separate tissue ROIs. The simulated scan analysis found the method to be robust with respect to the overall size and shape of individual animal scans, with average activity values for all organs tested falling within the range of 98% +/- 3% of the organ activity measured in the unstretched phantom scan. Standardized uptake values (SUVs) measured from actual PET scans using this semiautomated method correlated reasonably well with radioactivity content measured in harvested organs (median r = 0.94) and compared favorably with conventional SUV correlations with harvested organ data (median r = 0.825). A semiautomated analytic approach involving coregistration of scan-derived images with atlas-type images can be used in small-animal whole-body radiotracer studies to estimate radioactivity concentrations in organs. This approach is rapid and less labor intensive than are

  15. A new generation of PET scanners for small animal studies

    International Nuclear Information System (INIS)

    Hegyesi, G.; Imrek, J.; Kalinka, G.; Molnar, J.; Novak, D.; Valastyan, I.; Balkay, L.; Emri, M.; Kis, S.; Tron, L.

    2008-01-01

    Complete text of publication follows. Research on small animal PET scanners has been a hot topic in recent years. These devices are used in the preclinical phases of drug tests and during the development of new radiopharmaceuticals. They also provide a cost efficient way to test new materials, new design concepts and new technologies that later can be used to build more efficient human medical imaging devices. The development of a PET scanner requires expertise on different fields, therefore a consortium was formed that brought together Hungarian academic and industrial partners: the Nuclear Research Institute (which has experience in the development of nuclear detectors and data acquisition systems), the PET Center of the University of Debrecen (which has clinical experience in the application of nuclear imaging devices and background in image processing software), Mediso Ltd. (which has been developing, manufacturing, selling and servicing medical imaging devices since 1990) and other academic partners. This consortium has been working together since 2003: the knowledge base acquired during the development of our small animal PET scanners (miniPET-I and miniPET-II) is now being utilized to build a commercial multimodal human PET scanner. The operation of a PET scanner is based on the simultaneous detection ('coincidence') of two gamma photons originating from a positron annihilation. In traditional PET scanners coincidence is detected by a central unit during the measurement. In our system there is no such central module: all detected single gamma events are recorded (list mode data acquisition), and the list of events are processed using a computer cluster (built from PCs). The usage of independent detector modules and commercial components reduce both development and maintenance costs. Also, this mode of data acquisition is more suitable for development purposes, since once the data is collected and stored it can be used many times to test different signal

  16. Attenuation correction for the NIH ATLAS small animal PET scanner

    CERN Document Server

    Yao, Rutao; Liow, JeihSan; Seidel, Jurgen

    2003-01-01

    We evaluated two methods of attenuation correction for the NIH ATLAS small animal PET scanner: 1) a CT-based method that derives 511 keV attenuation coefficients (mu) by extrapolation from spatially registered CT images; and 2) an analytic method based on the body outline of emission images and an empirical mu. A specially fabricated attenuation calibration phantom with cylindrical inserts that mimic different body tissues was used to derive the relationship to convert CT values to (I for PET. The methods were applied to three test data sets: 1) a uniform cylinder phantom, 2) the attenuation calibration phantom, and 3) a mouse injected with left bracket **1**8F right bracket FDG. The CT-based attenuation correction factors were larger in non-uniform regions of the imaging subject, e.g. mouse head, than the analytic method. The two methods had similar correction factors for regions with uniform density and detectable emission source distributions.

  17. Small Animal [18F]FDG PET Imaging for Tumor Model Study

    International Nuclear Information System (INIS)

    Woo, Sang Keun; Kim, Kyeong Min; Cheon, Gi Jeong

    2008-01-01

    PET allows non-invasive, quantitative and repetitive imaging of biological function in living animals. Small animal PET imaging with [ 18 F]FDG has been successfully applied to investigation of metabolism, receptor, ligand interactions, gene expression, adoptive cell therapy and somatic gene therapy. Experimental condition of animal handling impacts on the biodistribution of [ 18 F]FDG in small animal study. The small animal PET and CT images were registered using the hardware fiducial markers and small animal contour point. Tumor imaging in small animal with small animal [ 18 F]FDG PET should be considered fasting, warming, and isoflurane anesthesia level. Registered imaging with small animal PET and CT image could be useful for the detection of tumor. Small animal experimental condition of animal handling and registration method will be of most importance for small lesion detection of metastases tumor model

  18. A small animal PET prototype based on Silicon Photomultipliers

    International Nuclear Information System (INIS)

    Marcatili, S; Belcari, N.; Bisogni, M.G.; Del Guerra, A.; Collazuol, G.; Pedreschi, E.; Spinella, F.; Sportelli, G.; Marzocca, C.

    2011-01-01

    Next generation PET scanners should full fill very high requirements in terms of spatial, energy and timing resolution. Modern scanner performances are inherently limited by the use of standard photomultiplier tubes. The use of Silicon Photomultiplier (Si P M) matrices is proposed for the construction of a small animal PET system consisting of two detector heads based on Lyso continuos crystals. The use of large area multi-pixel Silicon Photomultiplier (Si P M) detectors requires the development of a multichannel Digital Acquisition system (DAQ) as well as of a dedicated front-end in order not to degrade the intrinsic detector capabilities. At the University of Pisa and INFN Pisa we developed a DAQ board for the read-out of 2 64-pixel Si P M matrices in time coincidence for Positron Emission Tomography (PET) applications. The proof of principles is based on 64-pixel detectors, but the whole system has been conceived to be easily scalable to a higher number of channels. Here we describe the Group-V INFN DASi P M 2 (Development and Application of Si P M) project and related results.

  19. Design considerations and construction of a small animal PET prototype

    International Nuclear Information System (INIS)

    Tzanakos, G.; Nikolaou, M.; Drakoulakos, D.; Karamitros, D.; Kontaxakis, G.; Logaras, E.; Panayiotakis, G.; Pavlopoulos, S.; Skiadas, M.; Spyrou, G.; Thireou, T.; Vamvakas, D.

    2006-01-01

    We are developing a small animal PET scanner consisting of two block detectors, each made of 216 BGO crystals of dimensions 3.75 mmx3.75 mmx20 mm, cylindrically arranged and coupled to a position-sensitive photomultiplier tube (R2486 PSPMT). Our design was based on a very detailed Monte Carlo, that simulates the function of a PET scanner from the system level down to the individual γ-ray detectors. We have made laboratory measurements of the individual detector performance as well as measurements of characteristics of the PSPMTs. The two detector blocks which will form the basic tomographic unit have been assembled. We are developing electronics to individually process (amplify and digitize) anode signals, and use field programmable gate arrays (FPGAs) in the position determination and energy measurement of the γ-rays. At present, as an intermediate step, we are using the electronics supplied from Hamamatsu to study various aspects of the system and produce initial images

  20. Cancer screening tests for small animals.

    Science.gov (United States)

    Schleis, Stephanie E

    2014-09-01

    Cancer is increasingly more common. Several tests for the diagnosis and treatment of cancer in companion animals have been developed. Screening tests discussed include those for lymphoid neoplasia, hemangiosarcoma, and transitional cell carcinoma of the bladder. None of these tests should be used in isolation for diagnosis. Vincristine and doxorubicin are mainstays in the treatment of canine lymphoma. However, it is important and accepted practice to test individuals of predisposed breeds for this mutation before administering these drugs in a lymphoma protocol. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Geo-PET: A novel generic organ-pet for small animal organs and tissues

    Science.gov (United States)

    Sensoy, Levent

    Reconstructed tomographic image resolution of small animal PET imaging systems is improving with advances in radiation detector development. However the trend towards higher resolution systems has come with an increase in price and system complexity. Recent developments in the area of solid-state photomultiplication devices like silicon photomultiplier arrays (SPMA) are creating opportunities for new high performance tools for PET scanner design. Imaging of excised small animal organs and tissues has been used as part of post-mortem studies in order to gain detailed, high-resolution anatomical information on sacrificed animals. However, this kind of ex-vivo specimen imaging has largely been limited to ultra-high resolution muCT. The inherent limitations to PET resolution have, to date, excluded PET imaging from these ex-vivo imaging studies. In this work, we leverage the diminishing physical size of current generation SPMA designs to create a very small, simple, and high-resolution prototype detector system targeting ex-vivo tomographic imaging of small animal organs and tissues. We investigate sensitivity, spatial resolution, and the reconstructed image quality of a prototype small animal PET scanner designed specifically for imaging of excised murine tissue and organs. We aim to demonstrate that a cost-effective silicon photomultiplier (SiPM) array based design with thin crystals (2 mm) to minimize depth of interaction errors might be able to achieve sub-millimeter resolution. We hypothesize that the substantial decrease in sensitivity associated with the thin crystals can be compensated for with increased solid angle detection, longer acquisitions, higher activity and wider acceptance energy windows (due to minimal scatter from excised organs). The constructed system has a functional field of view (FoV) of 40 mm diameter, which is adequate for most small animal specimen studies. We perform both analytical (3D-FBP) and iterative (ML-EM) methods in order to

  2. SmartPET: Applying HPGe and pulse shape analysis to small-animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.J. [Department of Physics, University of Liverpool (United Kingdom)], E-mail: rjc@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cresswell, J.R.; Grint, A.N.; Mather, A.R.; Nolan, P.J.; Scraggs, D.P.; Turk, G. [Department of Physics, University of Liverpool (United Kingdom); Hall, C.J.; Lazarus, I. [CCLRC Daresbury Laboratory, Warrington, Cheshire (United Kingdom); Berry, A.; Beveridge, T.; Gillam, J.; Lewis, R.A. [School of Physics and Materials Engineering, Monash University, Melbourne (Australia)

    2007-08-21

    The SmartPET project is the development of a prototype small-animal imaging system based on the use of Hyperpure Germanium (HPGe) detectors. The use of digital electronics and application of Pulse Shape Analysis (PSA) techniques provide fine spatial resolution, while the excellent intrinsic energy resolution of HPGe detectors makes the system ideal for multi-nuclide imaging. As a result, the SmartPET system has the potential to function as a dual modality imager, operating as a dual-head Positron Emission Tomography (PET) camera or in a Compton Camera configuration for Single Photon Emission Computed Tomography (SPECT) imaging. In this paper, we discuss how the use of simple PSA techniques greatly improves the position sensitivity of the detector yielding improved spatial resolution in reconstructed images. The PSA methods presented have been validated by comparison to data from high-precision scanning of the detectors. Results from this analysis are presented along with initial images from the SmartPET system, which demonstrates the impact of these techniques on PET images.

  3. Comparison SPECT-CT with PET-CT in several applications of small-animal models

    International Nuclear Information System (INIS)

    Pan Yifan; Song Shaoli; Huang Gang

    2009-01-01

    With the development of medical science, monitoring dynamic biologic processes in small-animal models of diseases has become one of the most important approaches in medical studies. Important physiologic parameters that traditionally have been characterized by nuclear medicine imaging include blood flow, biochemical metabolism, and cellular receptors. Recently, nuclear medicine has been greatly facilitated by the newer development of dual-modality integrated imaging systems (SPECT-CT and PET-CT), which provide functional and anatomical images in the same scanning session, with the acquired images co-registered by means of the hardware. The purpose of this review is to compare SPECT-CT with PET-CT in several applications of small-animal models. Conclusicn: PET-CT for small animal modes in nledical research in the applications has great advantages, but SPECT-CT is still a very important role, and research low cost. (authors)

  4. Development of a PET Insert for simultaneously small animal PET/MRI

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yingjie; Zhang, Zhiming; Li, Daowu; Liu, Shuangquan; Wang, Peilin; Feng, Baotong; Chai, Pei; Wei, Long [Division of Nuclear Technology and Applications, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049 (China); Beijing Engineering Research Center of Radiographic Techniques and Equipment, Beijing, 100049 (China)

    2015-05-18

    PET/MR is a new multi-modality imaging system which provide both structural and functional information with good soft tissue imaging ability and no ionizing radiation. In recent years, PET/MR is under major progress because of the development of silicon photomultipliers (SiPM). The goal of this study is to develop a MRI compatible PET insert based on SiPM and LYSO scintillator. The PET system was constituted by the detector ring, electronics and software. The detector ring consists of 16 detector module. The inner diameter of the ring was 151 mm, the external diameter was 216 mm, which was big enough for small animal research, e.g. rat, rabbit and tupaia. The sensor of each module was 2*2 SensL SPMArraySL, coupled with an array of 14 x 14 LYSO crystals, each crystal measuring 2 mm x 2 mm 10 mm. The detector was encapsulated in a copper box for light and magnetic shielding. Resister charge multiplexing circuit was used in the front end electronics. Each detector output 8X and 8Y position signals. One summed timing signal was extracted from the common cathode of all 64 channels. All these signals were transmitted to digital electronic board by a 3 m long coaxial cable from inside of the MR to the outside. Each digital electronic board handled 8 detector modules based on FPGA to obtain the timing, position and energy information of a single event. And then these single events were sent to the coincidence processing board to produce coincidence packets which are prepared for further processing. A 0.2mCi 68Ge line source was used to do the preliminary imaging test. The image was reconstructed by 3D-OSEM algorithm. The initial result proved the system to be feasible as a PET. FDG phantom imaging and simultaneous PET/MR imaging are in progress.

  5. Automated analysis of small animal PET studies through deformable registration to an atlas

    NARCIS (Netherlands)

    Gutierrez, Daniel F.; Zaidi, Habib

    This work aims to develop a methodology for automated atlas-guided analysis of small animal positron emission tomography (PET) data through deformable registration to an anatomical mouse model. A non-rigid registration technique is used to put into correspondence relevant anatomical regions of

  6. Role of surgery in multimodal cancer therapy for small animals.

    Science.gov (United States)

    Boston, Sarah; Henderson, Ralph A

    2014-09-01

    Surgery is a critical component in the treatment of most solid tumors in small animals. Surgery is increasingly combined with adjuvant therapies such as chemotherapy and radiation so surgeons who are treating cancer must have a good understanding of surgical oncology principles, cancer biology, and the roles and potential interactions of surgery, radiation, and chemotherapy. The sequencing plan for these modalities should be determined before treatment is initiated. The surgical oncologist must have a working knowledge of chemotherapy agents and radiation and the effect of these treatments on the ability of tissues to heal and the outcome for the patient. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Development of a SiPM-based PET imaging system for small animals

    International Nuclear Information System (INIS)

    Lu, Yanye; Yang, Kun; Zhou, Kedi; Zhang, Qiushi; Pang, Bo; Ren, Qiushi

    2014-01-01

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development

  8. Development of a SiPM-based PET imaging system for small animals

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanye [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Yang, Kun, E-mail: yangkun9999@hotmail.com [Department of Control Technology and Instrumentation, College of Quality and Technical Supervision, Hebei University, Baoding, 071000 (China); Zhou, Kedi; Zhang, Qiushi; Pang, Bo [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China); Ren, Qiushi, E-mail: renqsh@coe.pku.edu.cn [Department of Biomedicine and Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2014-04-11

    Advances in small animal positron emission tomography (PET) imaging have been accelerated by many new technologies such as the successful incorporation of silicon photomultiplier (SiPM). In this paper, we have developed a compact, lightweight PET imaging system that is based on SiPM detectors for small animals imaging, which could be integrated into a multi-modality imaging system. This PET imaging system consists of a stationary detector gantry, a motor-controlled animal bed module, electronics modules, and power supply modules. The PET detector, which was designed as a multi-slice circular ring geometry of 27 discrete block detectors, is composed of a cerium doped lutetium–yttrium oxyorthosilicate (LYSO) scintillation crystal and SiPM arrays. The system has a 60 mm transaxial field of view (FOV) and a 26 mm axial FOV. Performance tests (e.g. spatial resolution, energy resolution, and sensitivity) and phantom and animal imaging studies were performed to evaluate the imaging performance of the PET imaging system. The performance tests and animal imaging results demonstrate the feasibility of an animal PET system based on SiPM detectors and indicate that SiPM detectors can be promising photodetectors in animal PET instrumentation development.

  9. Dynamic {sup 18}F-fluoride small animal PET to noninvasively assess renal function in rats

    Energy Technology Data Exchange (ETDEWEB)

    Schnoeckel, Uta; Stegger, Lars; Schaefers, Klaus P.; Hermann, Sven; Schober, Otmar; Schaefers, Michael [Klinik und Poliklinik fuer Nuklearmedizin, Muenster (Germany); Reuter, Stefan; Schlatter, Eberhard; Gabriels, Gert [Universitaetsklinikum Muenster, Medizinische Klinik und Poliklinik D, Experimentelle Nephrologie, Muenster (Germany)

    2008-12-15

    Renal function can be quantified by both laboratory and scintigraphic methods. In the case of small animal diagnostics, scintigraphic image-based methods are ideal since they can assess split renal function, work noninvasively, and can be repeated. The aim of this study is to validate a {sup 18}F-PET-based method to quantify renal function in rats. Fluoride clearance was calculated from a dynamic whole body listmode acquisition of 60 min length in a small animal PET scanner following an i.v. injection of 15 MBq {sup 18}F-fluoride. Volumes of interest (VOIs) were placed in the left ventricle and the bladder as well as traced around the kidney contours. The respective time-activity curves (TAC) were calculated. The renal {sup 18}F-clearance was calculated by the ratio of the total renal excreted activity (bladder VOI) and the integral of the blood TAC. PET-derived renal function was validated by intraindividual measurements of creatinine clearance (n=23), urea clearance (n=23), and tubular excretion rate (TER-MAG3). The split renal function was derived from the injection of the clinically available radionuclide {sup 99m}Tc-mercaptotriglycine by blood sampling and planar renography (n=8). In all animals studied, PET revealed high-quality TACs. PET-derived renal fluoride clearance was linearly correlated with intraindividual laboratory measures (PET vs. creatinine: r=0.78; PET vs. urea: r=0.73; PET vs. TER-MAG3: r=0.73). Split function was comparable ({sup 18}F-PET vs. MAG3-renography: r=0.98). PET-derived measures were highly reproducible. {sup 18}F-PET is able to noninvasively assess renal function in rats and provides a significant potential for serial studies in different experimental scenarios. (orig.)

  10. Dynamic 18F-fluoride small animal PET to noninvasively assess renal function in rats

    International Nuclear Information System (INIS)

    Schnoeckel, Uta; Stegger, Lars; Schaefers, Klaus P.; Hermann, Sven; Schober, Otmar; Schaefers, Michael; Reuter, Stefan; Schlatter, Eberhard; Gabriels, Gert

    2008-01-01

    Renal function can be quantified by both laboratory and scintigraphic methods. In the case of small animal diagnostics, scintigraphic image-based methods are ideal since they can assess split renal function, work noninvasively, and can be repeated. The aim of this study is to validate a 18 F-PET-based method to quantify renal function in rats. Fluoride clearance was calculated from a dynamic whole body listmode acquisition of 60 min length in a small animal PET scanner following an i.v. injection of 15 MBq 18 F-fluoride. Volumes of interest (VOIs) were placed in the left ventricle and the bladder as well as traced around the kidney contours. The respective time-activity curves (TAC) were calculated. The renal 18 F-clearance was calculated by the ratio of the total renal excreted activity (bladder VOI) and the integral of the blood TAC. PET-derived renal function was validated by intraindividual measurements of creatinine clearance (n=23), urea clearance (n=23), and tubular excretion rate (TER-MAG3). The split renal function was derived from the injection of the clinically available radionuclide 99m Tc-mercaptotriglycine by blood sampling and planar renography (n=8). In all animals studied, PET revealed high-quality TACs. PET-derived renal fluoride clearance was linearly correlated with intraindividual laboratory measures (PET vs. creatinine: r=0.78; PET vs. urea: r=0.73; PET vs. TER-MAG3: r=0.73). Split function was comparable ( 18 F-PET vs. MAG3-renography: r=0.98). PET-derived measures were highly reproducible. 18 F-PET is able to noninvasively assess renal function in rats and provides a significant potential for serial studies in different experimental scenarios. (orig.)

  11. Anesthesia condition for 18F-FDG imaging of lung metastasis tumors using small animal PET

    International Nuclear Information System (INIS)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun; Cheon, Gi Jeong; Choi, Chang Woon; Lim, Sang Moo

    2008-01-01

    Small animal positron emission tomography (PET) with 18 F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal 18 F-FDG PET. Methods: To determine the impact of anesthesia on 18 F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of 18 F-FDG in various tissues were evaluated. The 18 F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of 18 F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased 18 F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest 18 F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by 18 F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal 18 F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire 18 F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model

  12. FDG small animal PET permits early detection of malignant cells in a xenograft murine model

    International Nuclear Information System (INIS)

    Nanni, Cristina; Spinelli, Antonello; Trespidi, Silvia; Ambrosini, Valentina; Castellucci, Paolo; Farsad, Mohsen; Franchi, Roberto; Fanti, Stefano; Leo, Korinne di; Tonelli, Roberto; Pession, Andrea; Pettinato, Cinzia; Rubello, Domenico

    2007-01-01

    The administration of new anticancer drugs in animal models is the first step from in vitro to in vivo pre-clinical protocols. At this stage it is crucial to ensure that cells are in the logarithmic phase of growth and to avoid vascular impairment, which can cause inhomogeneous distribution of the drug within the tumour and thus lead to bias in the final analysis of efficacy. In subcutaneous xenograft murine models, positivity for cancer is visually recognisable 2-3 weeks after inoculation, when a certain amount of necrosis is usually already present. The aim of this study was to evaluate the accuracy of FDG small animal PET for the early detection of malignant masses in a xenograft murine model of human rhabdomyosarcoma. A second goal was to analyse the metabolic behaviour of this xenograft tumour over time. We studied 23 nude mice, in which 7 x 10 6 rhabdomyosarcoma cells (RH-30 cell line) were injected in the dorsal subcutaneous tissues. Each animal underwent four FDG PET scans (GE, eXplore Vista DR) under gas anaesthesia. The animals were studied 2, 5, 14 and 20 days after inoculation. We administered 20 MBq of FDG via the tail vein. Uptake time was 60 min, and acquisition time, 20 min. Images were reconstructed with OSEM 2D iterative reconstruction and the target to background ratio (TBR) was calculated for each tumour. Normal subcutaneous tissue had a TBR of 0.3. Necrosis was diagnosed when one or more cold areas were present within the mass. All the animals were sacrificed and histology was available to verify PET results. PET results were concordant with the findings of necropsy and histology in all cases. The incidence of the tumour was 69.6% (16/23 animals); seven animals did not develop a malignant mass. Ten of the 23 animals had a positive PET scan 2 days after inoculation. Nine of these ten animals developed a tumour; the remaining animal became negative, at the third scan. The positive predictive value of the early PET scan was 90% (9/10 animals

  13. Prototype design of singles processing unit for the small animal PET

    Science.gov (United States)

    Deng, P.; Zhao, L.; Lu, J.; Li, B.; Dong, R.; Liu, S.; An, Q.

    2018-05-01

    Position Emission Tomography (PET) is an advanced clinical diagnostic imaging technique for nuclear medicine. Small animal PET is increasingly used for studying the animal model of disease, new drugs and new therapies. A prototype of Singles Processing Unit (SPU) for a small animal PET system was designed to obtain the time, energy, and position information. The energy and position is actually calculated through high precison charge measurement, which is based on amplification, shaping, A/D conversion and area calculation in digital signal processing domian. Analysis and simulations were also conducted to optimize the key parameters in system design. Initial tests indicate that the charge and time precision is better than 3‰ FWHM and 350 ps FWHM respectively, while the position resolution is better than 3.5‰ FWHM. Commination tests of the SPU prototype with the PET detector indicate that the system time precision is better than 2.5 ns, while the flood map and energy spectra concored well with the expected.

  14. A 3D HIDAC-PET camera with sub-millimeter resolution for imaging small animals

    International Nuclear Information System (INIS)

    Jeavons, A.P.; Chandler, R.A.; Dettmar, C.A.R.

    1999-01-01

    A HIDAC-PET camera consisting essentially of 5 million 0.5 mm gas avalanching detectors has been constructed for small-animal imaging. The particular HIDAC advantage--a high 3D spatial resolution--has been improved to 0.95 mm fwhm and to 0.7 mm fwhm when reconstructing with 3D-OSEM methods incorporating resolution recovery. A depth-of-interaction resolution of 2.5 mm is implicit, due to the laminar construction. Scatter-corrected sensitivity, at 8.9 cps/kBq (i.e. 0.9%) from a central point source, or 7.2 cps/kBq (543 cps/kBq/cm 3 ) from a distributed (40 mm diameter, 60 mm long) source is now much higher than previous, and other, work. A field-of-view of 100 mm (adjustable to 200 mm) diameter by 210 mm axially permits whole-body imaging of small animals, containing typically 4MBqs of activity, at 40 kcps of which 16% are random coincidences, with a typical scatter fraction of 44%. Throughout the field-of-view there are no positional distortions and relative quantitation is uniform to ± 3.5%, but some variation of spatial resolution is found. The performance demonstrates that HIDAC technology is quite appropriate for small-animal PET cameras

  15. Efficient system modeling for a small animal PET scanner with tapered DOI detectors

    International Nuclear Information System (INIS)

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Qi, Jinyi; Rodríguez-Villafuerte, Mercedes

    2016-01-01

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement. (paper)

  16. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

    Science.gov (United States)

    Konik, Arda Bekir

    Positron emission tomography (PET) and single photon emission tomography (SPECT) are two nuclear emission-imaging modalities that rely on the detection of high-energy photons emitted from radiotracers administered to the subject. The majority of these photons are attenuated (absorbed or scattered) in the body, resulting in count losses or deviations from true detection, which in turn degrades the accuracy of images. In clinical emission tomography, sophisticated correction methods are often required employing additional x-ray CT or radionuclide transmission scans. Having proven their potential in both clinical and research areas, both PET and SPECT are being adapted for small animal imaging. However, despite the growing interest in small animal emission tomography, little scientific information exists about the accuracy of these correction methods on smaller size objects, and what level of correction is required. The purpose of this work is to determine the role of attenuation and scatter corrections as a function of object size through simulations. The simulations were performed using Interactive Data Language (IDL) and a Monte Carlo based package, Geant4 application for emission tomography (GATE). In IDL simulations, PET and SPECT data acquisition were modeled in the presence of attenuation. A mathematical emission and attenuation phantom approximating a thorax slice and slices from real PET/CT data were scaled to 5 different sizes (i.e., human, dog, rabbit, rat and mouse). The simulated emission data collected from these objects were reconstructed. The reconstructed images, with and without attenuation correction, were compared to the ideal (i.e., non-attenuated) reconstruction. Next, using GATE, scatter fraction values (the ratio of the scatter counts to the total counts) of PET and SPECT scanners were measured for various sizes of NEMA (cylindrical phantoms representing small animals and human), MOBY (realistic mouse/rat model) and XCAT (realistic human model

  17. A small animal PET based on GAPDs and charge signal transmission approach for hybrid PET-MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Hu, Wei; Jung, Jin Ho; Huh, Yoonsuk [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Kim, Byung-Tae, E-mail: ychoi.image@gmail.com [Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-Dong, Gangnam-Gu, Seoul 135-710 (Korea, Republic of)

    2011-08-15

    Positron emission tomography (PET) employing Geiger-mode avalanche photodiodes (GAPDs) and charge signal transmission approach was developed for small animal imaging. Animal PET contained 16 LYSO and GAPD detector modules that were arranged in a 70 mm diameter ring with an axial field of view of 13 mm. The GAPDs charge output signals were transmitted to a preamplifier located remotely using 300 cm flexible flat cables. The position decoder circuits (PDCs) were used to multiplex the PET signals from 256 to 4 channels. The outputs of the PDCs were digitized and further-processed in the data acquisition unit. The cross-compatibilities of the PET detectors and MRI were assessed outside and inside the MRI. Experimental studies of the developed full ring PET were performed to examine the spatial resolution and sensitivity. Phantom and mouse images were acquired to examine the imaging performance. The mean energy and time resolution of the PET detector were 17.6% and 1.5 ns, respectively. No obvious degradation on PET and MRI was observed during simultaneous PET-MRI data acquisition. The measured spatial resolution and sensitivity at the CFOV were 2.8 mm and 0.7%, respectively. In addition, a 3 mm diameter line source was clearly resolved in the hot-sphere phantom images. The reconstructed transaxial PET images of the mouse brain and tumor displaying the glucose metabolism patterns were imaged well. These results demonstrate GAPD and the charge signal transmission approach can allow the development of high performance small animal PET with improved MR compatibility.

  18. High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications

    International Nuclear Information System (INIS)

    Aide, Nicolas; Desmonts, Cedric; Agostini, Denis; Bardet, Stephane; Bouvard, Gerard; Beauregard, Jean-Mathieu; Roselt, Peter; Neels, Oliver; Beyer, Thomas; Kinross, Kathryn; Hicks, Rodney J.

    2010-01-01

    The objective of the study was to evaluate state-of-the-art clinical PET/CT technology in performing static and dynamic imaging of several mice simultaneously. A mouse-sized phantom was imaged mimicking simultaneous imaging of three mice with computation of recovery coefficients (RCs) and spillover ratios (SORs). Fifteen mice harbouring abdominal or subcutaneous tumours were imaged on clinical PET/CT with point spread function (PSF) reconstruction after injection of [18F]fluorodeoxyglucose or [18F]fluorothymidine. Three of these mice were imaged alone and simultaneously at radial positions -5, 0 and 5 cm. The remaining 12 tumour-bearing mice were imaged in groups of 3 to establish the quantitative accuracy of PET data using ex vivo gamma counting as the reference. Finally, a dynamic scan was performed in three mice simultaneously after the injection of 68 Ga-ethylenediaminetetraacetic acid (EDTA). For typical lesion sizes of 7-8 mm phantom experiments indicated RCs of 0.42 and 0.76 for ordered subsets expectation maximization (OSEM) and PSF reconstruction, respectively. For PSF reconstruction, SOR air and SOR water were 5.3 and 7.5%, respectively. A strong correlation (r 2 = 0.97, p 2 = 0.98; slope = 0.89, p 2 = 0.96; slope = 0.62, p 68 Ga-EDTA dynamic acquisition. New generation clinical PET/CT can be used for simultaneous imaging of multiple small animals in experiments requiring high throughput and where a dedicated small animal PET system is not available. (orig.)

  19. New design of a quasi-monolithic detector module with DOI capability for small animal pet

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Lee, Seung-Jae; Baek, Cheol-Ha; Choi, Yong

    2008-01-01

    We report a new design of a detector module with depth of interaction (DOI) based on a quasi-monolithic LSO crystal, a multi-channel sensor, and maximum-likelihood position-estimation (MLPE) algorithm. Light transport and detection were modeled in a quasi-monolithic crystal using DETECT2000 code, with lookup tables (LUTs) built by simulation. Events were well separated by applying the MLPE method within 2.0 mm spatial resolution in both trans-axial and DOI directions. These results demonstrate that the proposed detector provides dependable positioning capability for small animal positron emission tomography (PET)

  20. Development of a Si-PM-based high-resolution PET system for small animals

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi; Imaizumi, Masao; Watabe, Tadashi; Shimosegawa, Eku; Hatazawa, Jun; Watabe, Hiroshi; Kanai, Yasukazu

    2010-01-01

    A Geiger-mode avalanche photodiode (Si-PM) is a promising photodetector for PET, especially for use in a magnetic resonance imaging (MRI) system, because it has high gain and is less sensitive to a static magnetic field. We developed a Si-PM-based depth-of-interaction (DOI) PET system for small animals. Hamamatsu 4 x 4 Si-PM arrays (S11065-025P) were used for its detector blocks. Two types of LGSO scintillator of 0.75 mol% Ce (decay time: ∼45 ns; 1.1 mm x 1.2 mm x 5 mm) and 0.025 mol% Ce (decay time: ∼31 ns; 1.1 mm x 1.2 mm x 6 mm) were optically coupled in the DOI direction to form a DOI detector, arranged in a 11 x 9 matrix, and optically coupled to the Si-PM array. Pulse shape analysis was used for the DOI detection of these two types of LGSOs. Sixteen detector blocks were arranged in a 68 mm diameter ring to form the PET system. Spatial resolution was 1.6 mm FWHM and sensitivity was 0.6% at the center of the field of view. High-resolution mouse and rat images were successfully obtained using the PET system. We confirmed that the developed Si-PM-based PET system is promising for molecular imaging research.

  1. Model-Based Normalization of a Fractional-Crystal Collimator for Small-Animal PET Imaging.

    Science.gov (United States)

    Li, Yusheng; Matej, Samuel; Karp, Joel S; Metzler, Scott D

    2017-05-01

    Previously, we proposed to use a coincidence collimator to achieve fractional-crystal resolution in PET imaging. We have designed and fabricated a collimator prototype for a small-animal PET scanner, A-PET. To compensate for imperfections in the fabricated collimator prototype, collimator normalization, as well as scanner normalization, is required to reconstruct quantitative and artifact-free images. In this study, we develop a normalization method for the collimator prototype based on the A-PET normalization using a uniform cylinder phantom. We performed data acquisition without the collimator for scanner normalization first, and then with the collimator from eight different rotation views for collimator normalization. After a reconstruction without correction, we extracted the cylinder parameters from which we generated expected emission sinograms. Single scatter simulation was used to generate the scattered sinograms. We used the least-squares method to generate the normalization coefficient for each LOR based on measured, expected and scattered sinograms. The scanner and collimator normalization coefficients were factorized by performing two normalizations separately. The normalization methods were also verified using experimental data acquired from A-PET with and without the collimator. In summary, we developed a model-base collimator normalization that can significantly reduce variance and produce collimator normalization with adequate statistical quality within feasible scan time.

  2. PET performance evaluation of MADPET4: a small animal PET insert for a 7 T MRI scanner

    Science.gov (United States)

    Omidvari, Negar; Cabello, Jorge; Topping, Geoffrey; Schneider, Florian R.; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I.

    2017-11-01

    MADPET4 is the first small animal PET insert with two layers of individually read out crystals in combination with silicon photomultiplier technology. It has a novel detector arrangement, in which all crystals face the center of field of view transaxially. In this work, the PET performance of MADPET4 was evaluated and compared to other preclinical PET scanners using the NEMA NU 4 measurements, followed by imaging a mouse-size hot-rod resolution phantom and two in vivo simultaneous PET/MRI scans in a 7 T MRI scanner. The insert had a peak sensitivity of 0.49%, using an energy threshold of 350 keV. A uniform transaxial resolution was obtained up to 15 mm radial offset from the axial center, using filtered back-projection with single-slice rebinning. The measured average radial and tangential resolutions (FWHM) were 1.38 mm and 1.39 mm, respectively. The 1.2 mm rods were separable in the hot-rod phantom using an iterative image reconstruction algorithm. The scatter fraction was 7.3% and peak noise equivalent count rate was 15.5 kcps at 65.1 MBq of activity. The FDG uptake in a mouse heart and brain were visible in the two in vivo simultaneous PET/MRI scans without applying image corrections. In conclusion, the insert demonstrated a good overall performance and can be used for small animal multi-modal research applications.

  3. Programmable electronics for low-cost small animal PET/SPECT imaging

    International Nuclear Information System (INIS)

    Guerra, Pedro; Rubio, Jose L.; Kontaxakis, Georgios; Ortuno, Juan E.; Ledesma, Maria J.; Santos, Andres

    2006-01-01

    This work describes and characterizes the detector module of a novel positron/single photon emission (PET/SPECT) scanner for small animals. This detector consists of a YAP/LSO phoswich, a photomultiplier and acquisition front-end, and will be used as building block of a low-cost hybrid tomograph. The front-end processes data sampled at a fixed frequency, where a state-of-the-art programmable device estimates scintillation pulse parameters by means of digital algorithms. Finally, the estimated properties of the proposed detector module are used to model a rotating four-head scanner. The performance of the proposed PET/SPECT scanner is estimated and first results are promising in both modalities, deserving further research and optimization

  4. Implementation of Cascade Gamma and Positron Range Corrections for I-124 Small Animal PET

    Science.gov (United States)

    Harzmann, S.; Braun, F.; Zakhnini, A.; Weber, W. A.; Pietrzyk, U.; Mix, M.

    2014-02-01

    Small animal Positron Emission Tomography (PET) should provide accurate quantification of regional radiotracer concentrations and high spatial resolution. This is challenging for non-pure positron emitters with high positron endpoint energies, such as I-124: On the one hand the cascade gammas emitted from this isotope can produce coincidence events with the 511 keV annihilation photons leading to quantification errors. On the other hand the long range of the high energy positron degrades spatial resolution. This paper presents the implementation of a comprehensive correction technique for both of these effects. The established corrections include a modified sinogram-based tail-fitting approach to correct for scatter, random and cascade gamma coincidences and a compensation for resolution degradation effects during the image reconstruction. Resolution losses were compensated for by an iterative algorithm which incorporates a convolution kernel derived from line source measurements for the microPET Focus 120 system. The entire processing chain for these corrections was implemented, whereas previous work has only addressed parts of this process. Monte Carlo simulations with GATE and measurements of mice with the microPET Focus 120 show that the proposed method reduces absolute quantification errors on average to 2.6% compared to 15.6% for the ordinary Maximum Likelihood Expectation Maximization algorithm. Furthermore resolution was improved in the order of 11-29% depending on the number of convolution iterations. In summary, a comprehensive, fast and robust algorithm for the correction of small animal PET studies with I-124 was developed which improves quantitative accuracy and spatial resolution.

  5. Evaluation of 3D reconstruction algorithms for a small animal PET camera

    International Nuclear Information System (INIS)

    Johnson, C.A.; Gandler, W.R.; Seidel, J.

    1996-01-01

    The use of paired, opposing position-sensitive phototube scintillation cameras (SCs) operating in coincidence for small animal imaging with positron emitters is currently under study. Because of the low sensitivity of the system even in 3D mode and the need to produce images with high resolution, it was postulated that a 3D expectation maximization (EM) reconstruction algorithm might be well suited for this application. We investigated four reconstruction algorithms for the 3D SC PET camera: 2D filtered back-projection (FBP), 2D ordered subset EM (OSEM), 3D reprojection (3DRP), and 3D OSEM. Noise was assessed for all slices by the coefficient of variation in a simulated uniform cylinder. Resolution was assessed from a simulation of 15 point sources in the warm background of the uniform cylinder. At comparable noise levels, the resolution achieved with OSEM (0.9-mm to 1.2-mm) is significantly better than that obtained with FBP or 3DRP (1.5-mm to 2.0-mm.) Images of a rat skull labeled with 18 F-fluoride suggest that 3D OSEM can improve image quality of a small animal PET camera

  6. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Frohwein, Lynn J., E-mail: frohwein@uni-muenster.de; Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Hoerr, Verena; Faber, Cornelius [Department of Clinical Radiology, University Hospital of Münster, Münster 48149 (Germany)

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  7. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    International Nuclear Information System (INIS)

    Frohwein, Lynn J.; Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-01-01

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  8. Estimation of organ motion for gated PET imaging in small animal using artificial tumor

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Keun; Yu, Jung Woo; Lee, Yong Jin [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-10-15

    The image quality is lowered by reducing of contrast and signal due to breathing and heart motion when acquire Positron Emission Tomography (PET) image of small animal tumor. Therefore motion correction is required for betterment of quantitative estimation of tumor. The gated PET using external monitoring device is commonly used for motion correction. But that method has limitation by reason of detection from the outside. Therefore, we had devised the in-vivo motion assessment. In-vivo motion has been demonstrated in lung, liver and abdomen region of rats by coated molecular sieve. In PET image analysis, count and SNR were drawn in the target region. The motion compensation PET image for optimal gate number was confirmed by FWHM. Artificial motion evaluation of tumor using molecular sieve suggests possibility of motion correction modeling without external monitoring devices because it estimates real internal motion of lung, liver, and abdomen. The purpose of this study was to assess the optimal gates number for each region and to improve quantitative estimation of tumor

  9. Multi-modality image reconstruction for dual-head small-animal PET

    International Nuclear Information System (INIS)

    Huang, Chang-Han; Chou, Cheng-Ying

    2015-01-01

    The hybrid positron emission tomography/computed tomography (PET/CT) or positron emission tomography/magnetic resonance imaging (PET/MRI) has become routine practice in clinics. The applications of multi-modality imaging can also benefit research advances. Consequently, dedicated small-imaging system like dual-head small-animal PET (DHAPET) that possesses the advantages of high detection sensitivity and high resolution can exploit the structural information from CT or MRI. It should be noted that the special detector arrangement in DHAPET leads to severe data truncation, thereby degrading the image quality. We proposed to take advantage of anatomical priors and total variation (TV) minimization methods to reconstruct PET activity distribution form incomplete measurement data. The objective is to solve the penalized least-squares function consisted of data fidelity term, TV norm and medium root priors. In this work, we employed the splitting-based fast iterative shrinkage/thresholding algorithm to split smooth and non-smooth functions in the convex optimization problems. Our simulations studies validated that the images reconstructed by use of the proposed method can outperform those obtained by use of conventional expectation maximization algorithms or that without considering the anatomical prior information. Additionally, the convergence rate is also accelerated.

  10. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET

    Science.gov (United States)

    Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.

    2015-01-01

    Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm2 and the total size of the detector head is 47.8 × 46.3 mm2. Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can resolve

  11. Evaluation of Matrix9 silicon photomultiplier array for small-animal PET

    International Nuclear Information System (INIS)

    Du, Junwei; Schmall, Jeffrey P.; Yang, Yongfeng; Di, Kun; Roncali, Emilie; Mitchell, Gregory S.; Buckley, Steve; Jackson, Carl; Cherry, Simon R.

    2015-01-01

    Purpose: The MatrixSL-9-30035-OEM (Matrix9) from SensL is a large-area silicon photomultiplier (SiPM) photodetector module consisting of a 3 × 3 array of 4 × 4 element SiPM arrays (total of 144 SiPM pixels) and incorporates SensL’s front-end electronics board and coincidence board. Each SiPM pixel measures 3.16 × 3.16 mm 2 and the total size of the detector head is 47.8 × 46.3 mm 2 . Using 8 × 8 polished LSO/LYSO arrays (pitch 1.5 mm) the performance of this detector system (SiPM array and readout electronics) was evaluated with a view for its eventual use in small-animal positron emission tomography (PET). Methods: Measurements of noise, signal, signal-to-noise ratio, energy resolution, flood histogram quality, timing resolution, and array trigger error were obtained at different bias voltages (28.0–32.5 V in 0.5 V intervals) and at different temperatures (5 °C–25 °C in 5 °C degree steps) to find the optimal operating conditions. Results: The best measured signal-to-noise ratio and flood histogram quality for 511 keV gamma photons were obtained at a bias voltage of 30.0 V and a temperature of 5 °C. The energy resolution and timing resolution under these conditions were 14.2% ± 0.1% and 4.2 ± 0.1 ns, respectively. The flood histograms show that all the crystals in the 1.5 mm pitch LSO array can be clearly identified and that smaller crystal pitches can also be resolved. Flood histogram quality was also calculated using different center of gravity based positioning algorithms. Improved and more robust results were achieved using the local 9 pixels for positioning along with an energy offset calibration. To evaluate the front-end detector readout, and multiplexing efficiency, an array trigger error metric is introduced and measured at different lower energy thresholds. Using a lower energy threshold greater than 150 keV effectively eliminates any mispositioning between SiPM arrays. Conclusions: In summary, the Matrix9 detector system can

  12. Automated analysis of small animal PET studies through deformable registration to an atlas

    International Nuclear Information System (INIS)

    Gutierrez, Daniel F.; Zaidi, Habib

    2012-01-01

    This work aims to develop a methodology for automated atlas-guided analysis of small animal positron emission tomography (PET) data through deformable registration to an anatomical mouse model. A non-rigid registration technique is used to put into correspondence relevant anatomical regions of rodent CT images from combined PET/CT studies to corresponding CT images of the Digimouse anatomical mouse model. The latter provides a pre-segmented atlas consisting of 21 anatomical regions suitable for automated quantitative analysis. Image registration is performed using a package based on the Insight Toolkit allowing the implementation of various image registration algorithms. The optimal parameters obtained for deformable registration were applied to simulated and experimental mouse PET/CT studies. The accuracy of the image registration procedure was assessed by segmenting mouse CT images into seven regions: brain, lungs, heart, kidneys, bladder, skeleton and the rest of the body. This was accomplished prior to image registration using a semi-automated algorithm. Each mouse segmentation was transformed using the parameters obtained during CT to CT image registration. The resulting segmentation was compared with the original Digimouse atlas to quantify image registration accuracy using established metrics such as the Dice coefficient and Hausdorff distance. PET images were then transformed using the same technique and automated quantitative analysis of tracer uptake performed. The Dice coefficient and Hausdorff distance show fair to excellent agreement and a mean registration mismatch distance of about 6 mm. The results demonstrate good quantification accuracy in most of the regions, especially the brain, but not in the bladder, as expected. Normalized mean activity estimates were preserved between the reference and automated quantification techniques with relative errors below 10 % in most of the organs considered. The proposed automated quantification technique is

  13. Perceptions and opinions of Canadian pet owners about anaesthesia, pain and surgery in small animals.

    Science.gov (United States)

    Steagall, P V; Monteiro, B P; Ruel, H L M; Beauchamp, G; Luca, G; Berry, J; Little, S; Stiles, E; Hamilton, S; Pang, D

    2017-07-01

    The aim of this study was to evaluate the perceptions and opinions of Canadian pet owners about anaesthesia, pain and surgery in dogs and cats. Six Canadian veterinary hospitals participated. Each practice received 200 copies of a questionnaire that were distributed to pet owners. Questions regarding the use of analgesics, anaesthesia, surgery and onychectomy (cats) were included. Responses were transformed into ordinal scores and analysed with a Cochran-Mantel-Haenszel test. A total of 849 out of 1200 questionnaires were returned. Owners believed more frequently that analgesics are needed for surgical procedures than for the medical conditions. Owners rated as very important/important: "knowing what to expect during illness/injury/surgery" (99·3%), "being assured that all necessary analgesic drugs/techniques will be used" (98·6%), "being informed about procedures/risk" (98·5%), and having a board-certified anaesthesiologist (90·5%). Most owners agreed/partly agreed that pain impacts quality of life (94·2%), and affects their pet's behaviour (89·5%). Most respondents (69%) were women; they were significantly more concerned than men about anaesthesia, pain, cost and client-communication. Cat owners believed that analgesics were necessary for some procedures/conditions significantly more often than canine-only owners. Pet owners with previous surgery disagreed more frequently that "pain after surgery can be helpful" and that "pain in animals is easy to recognize" than those without previous surgery. Most owners think onychectomy should be banned in cats (56·4%). This study identified important areas of client communication regarding pain and its control in pets. © 2017 British Small Animal Veterinary Association.

  14. Evaluation of New Inorganic Scintillators for Application in a Prototype Small Animal PET Scanner

    CERN Document Server

    Kuntner, C

    2003-01-01

    In the study of new pharmaceuticals as well as brain and genetic research, Positron Emission Tomography (PET) is a useful method. It has also recently entered the clinical domain in cardiology and particularly in oncology. Small animals such as mice, are often used to validate sophisticated models of human disease. High spatial resolution PET instrumentation is therefore necessary due to the reduced dimensions of the organs. Inorganic scintillators are employed in most of the diagnostic imaging devices. The ultimate performance of the PET scanner is tightly bound to the scintillation properties of the crystals. In the last years there has been an effort to develop new scintillating materials characterized by high light output, high detection efficiency and fast decay time. The most studied systems are mainly Ce3+-doped crystals such as LSO:Ce, YAP:Ce, LuAP:Ce, and recently also mixed Lux(RE3+)1-xAlO3:Ce crystals. These crystals are very attractive for medical application because of their high density (with th...

  15. Development of Input Function Measurement System for Small Animal PET Study

    International Nuclear Information System (INIS)

    Kim, Jong Guk; Kim, Byung Su; Kim, Jin Su

    2010-01-01

    For quantitative measurement of radioactivity concentration in tissue and a validated tracer kinetic model, the high sensitive detection system has been required for blood sampling. With the accurate measurement of time activity curves (TACs) of labeled compounds in blood (plasma) enable to provide quantitative information on biological parameters of interest in local tissue. Especially, the development of new tracers for PET imaging requires knowledge of the kinetics of the tracer in the body and in arterial blood and plasma. Conventional approaches of obtaining an input function are to sample arterial blood sequentially by manual as a function of time. Several continuous blood sampling systems have been developed and used in nuclear medicine research field to overcome the limited temporal resolution in sampling by the conventional method. In this work, we developed the high sensitive and unique geometric design of GSO detector for small animal blood activity measurement

  16. First results in the application of silicon photomultiplier matrices to small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Llosa, G. [University of Pisa, Department of Physics, Pisa (Italy)], E-mail: gabriela.llosa@pi.infn.it; Belcari, N.; Bisogni, M.G. [University of Pisa, Department of Physics, Pisa (Italy); INFN Pisa (Italy); Collazuol, G. [University of Pisa, Department of Physics, Pisa (Italy); Scuola Normale Superiore, Pisa (Italy); Marcatili, S. [University of Pisa, Department of Physics, Pisa (Italy); INFN Pisa (Italy); Boscardin, M.; Melchiorri, M.; Tarolli, A.; Piemonte, C.; Zorzi, N. [FBK irst, Trento (Italy); Barrillon, P.; Bondil-Blin, S.; Chaumat, V.; La Taille, C. de; Dinu, N.; Puill, V.; Vagnucci, J-F. [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS, Orsay (France); Del Guerra, A. [University of Pisa, Department of Physics, Pisa (Italy); INFN Pisa (Italy)

    2009-10-21

    A very high resolution small animal PET scanner that employs matrices of silicon photomultipliers as photodetectors is under development at the University of Pisa and INFN Pisa. The first SiPM matrices composed of 16 (4x4)1mmx1mm pixel elements on a common substrate have been produced at FBK-irst, and are being evaluated for this application. The MAROC2 ASIC developed at LAL-Orsay has been employed for the readout of the SiPM matrices. The devices have been tested with pixelated and continuous LYSO crystals. The results show the good performance of the matrices and lead to the fabrication of matrices with 64 SiPM elements.

  17. First results in the application of silicon photomultiplier matrices to small animal PET

    International Nuclear Information System (INIS)

    Llosa, G.; Belcari, N.; Bisogni, M.G.; Collazuol, G.; Marcatili, S.; Boscardin, M.; Melchiorri, M.; Tarolli, A.; Piemonte, C.; Zorzi, N.; Barrillon, P.; Bondil-Blin, S.; Chaumat, V.; La Taille, C. de; Dinu, N.; Puill, V.; Vagnucci, J-F.; Del Guerra, A.

    2009-01-01

    A very high resolution small animal PET scanner that employs matrices of silicon photomultipliers as photodetectors is under development at the University of Pisa and INFN Pisa. The first SiPM matrices composed of 16 (4x4)1mmx1mm pixel elements on a common substrate have been produced at FBK-irst, and are being evaluated for this application. The MAROC2 ASIC developed at LAL-Orsay has been employed for the readout of the SiPM matrices. The devices have been tested with pixelated and continuous LYSO crystals. The results show the good performance of the matrices and lead to the fabrication of matrices with 64 SiPM elements.

  18. Improvement of semi-quantitative small-animal PET data with recovery coefficients: a phantom and rat study.

    Science.gov (United States)

    Aide, Nicolas; Louis, Marie-Hélène; Dutoit, Soizic; Labiche, Alexandre; Lemoisson, Edwige; Briand, Mélanie; Nataf, Valérie; Poulain, Laurent; Gauduchon, Pascal; Talbot, Jean-Noël; Montravers, Françoise

    2007-10-01

    To evaluate the accuracy of semi-quantitative small-animal PET data, uncorrected for attenuation, and then of the same semi-quantitative data corrected by means of recovery coefficients (RCs) based on phantom studies. A phantom containing six fillable spheres (diameter range: 4.4-14 mm) was filled with an 18F-FDG solution (spheres/background activity=10.1, 5.1 and 2.5). RCs, defined as measured activity/expected activity, were calculated. Nude rats harbouring tumours (n=50) were imaged after injection of 18F-FDG and sacrificed. The standardized uptake value (SUV) in tumours was determined with small-animal PET and compared to ex-vivo counting (ex-vivo SUV). Small-animal PET SUVs were corrected with RCs based on the greatest tumour diameter. Tumour proliferation was assessed with cyclin A immunostaining and correlated to the SUV. RCs ranged from 0.33 for the smallest sphere to 0.72 for the largest. A sigmoidal correlation was found between RCs and sphere diameters (r(2)=0.99). Small-animal PET SUVs were well correlated with ex-vivo SUVs (y=0.48x-0.2; r(2)=0.71) and the use of RCs based on the greatest tumour diameter significantly improved regression (y=0.84x-0.81; r(2)=0.77), except for tumours with important necrosis. Similar results were obtained without sacrificing animals, by using PET images to estimate tumour dimensions. RC-based corrections improved correlation between small-animal PET SUVs and tumour proliferation (uncorrected data: Rho=0.79; corrected data: Rho=0.83). Recovery correction significantly improves both accuracy of small-animal PET semi-quantitative data in rat studies and their correlation with tumour proliferation, except for largely necrotic tumours.

  19. 2D imaging simulations of a small animal PET scanner with DOI measurement. jPET-RD

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Hagiwara, Naoki

    2005-01-01

    We present a preliminary study on the design of a high sensitivity small animal depth of interaction (DOI)-PET scanner: jPET-RD (for Rodents with DOI detectors), which will contribute to molecular imaging. The 4-layer DOI block detector for the jPET-RD that consists of scintillation crystals (1.4 mm x 1.4 mm x 4.5 mm) and a flat panel position-sensitive photomultiplier tube (52 mm x 52 mm) was previously proposed. In this paper, we investigate imaging performance of the jPET-RD through numerical simulations. The scanner has a hexagonal geometry with a small diameter and a large axial aperture. Therefore DOI information is expected to improve resolution uniformity in the whole field of view (FOV). We simulate the scanner for various parameters of the number of DOI channels and the crystal length. Simulated data are reconstructed using the maximum likelihood expectation maximization with accurate system modeling. The trade-off results between background noise and spatial resolution show that only shortening the length of crystal does not improve the trade-off at all, and that 4-layer DOI information improves uniformity of spatial resolution in the whole FOV. Excellent performance of the jPET-RD can be expected based on the numerical simulation results. (author)

  20. Denoising of high resolution small animal 3D PET data using the non-subsampled Haar wavelet transform

    International Nuclear Information System (INIS)

    Ochoa Domínguez, Humberto de Jesús; Máynez, Leticia O.; Vergara Villegas, Osslan O.; Mederos, Boris; Mejía, José M.; Cruz Sánchez, Vianey G.

    2015-01-01

    PET allows functional imaging of the living tissue. However, one of the most serious technical problems affecting the reconstructed data is the noise, particularly in images of small animals. In this paper, a method for high-resolution small animal 3D PET data is proposed with the aim to reduce the noise and preserve details. The method is based on the estimation of the non-subsampled Haar wavelet coefficients by using a linear estimator. The procedure is applied to the volumetric images, reconstructed without correction factors (plane reconstruction). Results show that the method preserves the structures and drastically reduces the noise that contaminates the image

  1. Denoising of high resolution small animal 3D PET data using the non-subsampled Haar wavelet transform

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa Domínguez, Humberto de Jesús, E-mail: hochoa@uacj.mx [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Máynez, Leticia O. [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Vergara Villegas, Osslan O. [Departamento de Ingeniería Industrial, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico); Mederos, Boris; Mejía, José M.; Cruz Sánchez, Vianey G. [Departamento de Ingeniería Eléctrica y computación, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chih. (Mexico)

    2015-06-01

    PET allows functional imaging of the living tissue. However, one of the most serious technical problems affecting the reconstructed data is the noise, particularly in images of small animals. In this paper, a method for high-resolution small animal 3D PET data is proposed with the aim to reduce the noise and preserve details. The method is based on the estimation of the non-subsampled Haar wavelet coefficients by using a linear estimator. The procedure is applied to the volumetric images, reconstructed without correction factors (plane reconstruction). Results show that the method preserves the structures and drastically reduces the noise that contaminates the image.

  2. Performance of a DOI-encoding small animal PET system with monolithic scintillators

    International Nuclear Information System (INIS)

    Carles, M.; Lerche, Ch.W.; Sánchez, F.; Orero, A.; Moliner, L.; Soriano, A.; Benlloch, J.M.

    2012-01-01

    PET systems designed for specific applications require high resolution and sensitivity instrumentation. In dedicated system design smaller ring diameters and deeper crystals are widely used in order to increase the system sensitivity. However, this design increases the parallax error, which degrades the spatial image resolution gradually from the center to the edge of the field-of-view (FOV). Our group has designed a depth of interaction(DOI)-encoding small animal PET system based on monolithic crystals. In this work we investigate the restoration of radial resolution for transaxially off-center sources using the DOI information provided by our system. For this purpose we have designed a support for point like sources adapted to our system geometry that allows a spatial compression and resolution response study. For different point source radial positions along vertical and horizontal axes of a FOV transaxial plane we compare the results obtained by three methods: without DOI information, with the DOI provided by our system and with the assumption that all the γ-rays interact at half depth of the crystal thickness. Results show an improvement of the mean resolution of 10% with the half thickness assumption and a 16% achieved using the DOI provided by the system. Furthermore, a 10% restoration of the resolution uniformity is obtained using the half depth assumption and an 18% restoration using measured DOI.

  3. Impacts of Intelligent Automated Quality Control on a Small Animal APD-Based Digital PET Scanner

    Science.gov (United States)

    Charest, Jonathan; Beaudoin, Jean-François; Bergeron, Mélanie; Cadorette, Jules; Arpin, Louis; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean

    2016-10-01

    Stable system performance is mandatory to warrant the accuracy and reliability of biological results relying on small animal positron emission tomography (PET) imaging studies. This simple requirement sets the ground for imposing routine quality control (QC) procedures to keep PET scanners at a reliable optimal performance level. However, such procedures can become burdensome to implement for scanner operators, especially taking into account the increasing number of data acquisition channels in newer generation PET scanners. In systems using pixel detectors to achieve enhanced spatial resolution and contrast-to-noise ratio (CNR), the QC workload rapidly increases to unmanageable levels due to the number of independent channels involved. An artificial intelligence based QC system, referred to as Scanner Intelligent Diagnosis for Optimal Performance (SIDOP), was proposed to help reducing the QC workload by performing automatic channel fault detection and diagnosis. SIDOP consists of four high-level modules that employ machine learning methods to perform their tasks: Parameter Extraction, Channel Fault Detection, Fault Prioritization, and Fault Diagnosis. Ultimately, SIDOP submits a prioritized faulty channel list to the operator and proposes actions to correct them. To validate that SIDOP can perform QC procedures adequately, it was deployed on a LabPET™ scanner and multiple performance metrics were extracted. After multiple corrections on sub-optimal scanner settings, a 8.5% (with a 95% confidence interval (CI) of [7.6, 9.3]) improvement in the CNR, a 17.0% (CI: [15.3, 18.7]) decrease of the uniformity percentage standard deviation, and a 6.8% gain in global sensitivity were observed. These results confirm that SIDOP can indeed be of assistance in performing QC procedures and restore performance to optimal figures.

  4. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging

    International Nuclear Information System (INIS)

    Magota, Keiichi; Kubo, Naoki; Kuge, Yuji; Nishijima, Ken-ichi; Zhao, Songji; Tamaki, Nagara

    2011-01-01

    We investigated the performance of the Inveon small-animal PET/SPECT/CT system and compared the imaging capabilities of the SPECT and PET components. For SPECT, the energy resolution, tomographic spatial resolution and system sensitivity were evaluated with a 99m Tc solution using a single pinhole collimator. For PET, the spatial resolution, absolute sensitivity, scatter fraction and peak noise equivalent count were evaluated. Phantoms and a normal rat were scanned to compare the imaging capabilities of SPECT and PET. The SPECT spatial resolution was 0.84 mm full-width at half-maximum (FWHM) at a radius of rotation of 25 mm using a 0.5-mm pinhole aperture collimator, while the PET spatial resolution was 1.63 mm FWHM at the centre. The SPECT system sensitivity at a radius of rotation of 25 mm was 35.3 cps/MBq (4 x 10 -3 %) using the 0.5-mm pinhole aperture, while the PET absolute sensitivity was 3.2% for 350-650 keV and 3.432 ns. Accordingly, the volume sensitivity of PET was three orders of magnitude higher than that of SPECT. This integrated PET/SPECT/CT system showed high performance with excellent spatial resolution for SPECT and sensitivity for PET. Based on the tracer availability and system performance, SPECT and PET have complementary roles in multimodality small-animal imaging. (orig.)

  5. Scanning multiple mice in a small-animal PET scanner: Influence on image quality

    International Nuclear Information System (INIS)

    Siepel, Francoise J.; Lier, Monique G.J.T.B. van; Chen Mu; Disselhorst, Jonathan A.; Meeuwis, Antoi P.W.; Oyen, Wim J.G.; Boerman, Otto C.; Visser, Eric P.

    2010-01-01

    To achieve high throughput in small-animal positron emission tomography (PET), it may be advantageous to scan more than one animal in the scanner's field of view (FOV) at the same time. However, due to the additional activity and increase of Poisson noise, additional attenuating mass, extra photon scattering, and radial or axial displacement of the animals, a deterioration of image quality can be expected. In this study, the NEMA NU 4-2008 image quality (NU4IQ) phantom and up to three FDG-filled cylindrical 'mouse phantoms' were positioned in the FOV of the Siemens Inveon small-animal PET scanner to simulate scans with multiple mice. Five geometrical configurations were examined. In one configuration, the NU4IQ phantom was scanned separately and placed in the center of the FOV (1C). In two configurations, a mouse phantom was added with both phantoms displaced radially (2R) or axially (2A). In two other configurations, the NU4IQ phantom was scanned along with three mouse phantoms with all phantoms displaced radially (4R), or in a combination of radial and axial displacement (2R2A). Images were reconstructed using ordered subset expectation maximization in 2 dimensions (OSEM2D) and maximum a posteriori (MAP) reconstruction. Image quality parameters were obtained according to the NEMA NU 4-2008 guidelines. Optimum image quality was obtained for the 1C geometry. Image noise increased by the addition of phantoms and was the largest for the 4R configuration. Spatial resolution, reflected in the recovery coefficients for the FDG-filled rods, deteriorated by radial displacement of the NU4IQ phantom (2R, 2R2A, and 4R), most strongly for OSEM2D, and to a smaller extent for MAP reconstructions. Photon scatter, as indicated by the spill-over ratios in the non-radioactive water- and air-filled compartments, increased by the addition of phantoms, most strongly for the 4R configuration. Application of scatter correction substantially lowered the spill-over ratios, but caused an

  6. Attenuation correction for freely moving small animal brain PET studies based on a virtual scanner geometry

    International Nuclear Information System (INIS)

    Angelis, G I; Kyme, A Z; Ryder, W J; Fulton, R R; Meikle, S R

    2014-01-01

    Attenuation correction in positron emission tomography brain imaging of freely moving animals is a very challenging problem since the torso of the animal is often within the field of view and introduces a non negligible attenuating factor that can degrade the quantitative accuracy of the reconstructed images. In the context of unrestrained small animal imaging, estimation of the attenuation correction factors without the need for a transmission scan is highly desirable. An attractive approach that avoids the need for a transmission scan involves the generation of the hull of the animal’s head based on the reconstructed motion corrected emission images. However, this approach ignores the attenuation introduced by the animal’s torso. In this work, we propose a virtual scanner geometry which moves in synchrony with the animal’s head and discriminates between those events that traversed only the animal’s head (and therefore can be accurately compensated for attenuation) and those that might have also traversed the animal’s torso. For each recorded pose of the animal’s head a new virtual scanner geometry is defined and therefore a new system matrix must be calculated leading to a time-varying system matrix. This new approach was evaluated on phantom data acquired on the microPET Focus 220 scanner using a custom-made phantom and step-wise motion. Results showed that when the animal’s torso is within the FOV and not appropriately accounted for during attenuation correction it can lead to bias of up to 10% . Attenuation correction was more accurate when the virtual scanner was employed leading to improved quantitative estimates (bias < 2%), without the need to account for the attenuation introduced by the extraneous compartment. Although the proposed method requires increased computational resources, it can provide a reliable approach towards quantitatively accurate attenuation correction for freely moving animal studies. (paper)

  7. Characterization of dual layer phoswich detector performance for small animal PET using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chung, Yong Hyun; Choi, Yong; Cho, Gyuseong; Choe, Yearn Seong; Lee, Kyung-Han; Kim, Byung-Tae

    2004-01-01

    A positron emission tomograph dedicated to small animal imaging should have high spatial resolution and sensitivity, and dual layer scintillators have been developed for this purpose. In this study, simulations were performed to optimize the order and the length of each crystal of a dual layer phoswich detector, and to evaluate the possibility of measuring signals from each layer of the phoswich detector. A simulation tool GATE was used to estimate the sensitivity and resolution of a small PET scanner. The proposed scanner is based on dual layer phoswich detector modules arranged in a ring of 10 cm diameter. Each module is composed of 8 x 8 arrays of phoswich detectors consisting of LSO and LuYAP with a 2 mm x 2 mm sensitive area coupled to a Hamamatsu R7600-00-M64 PSPMT. The length of the front layer of the phoswich detector varied from 0 to 10 mm at 1 mm intervals, and the total length (LSO + LuYAP) was fixed at 20 mm. The order of the crystal layers of the phoswich detector was also changed. Radial resolutions were kept below 3.4 mm and 3.7 mm over 8 cm FOV, and sensitivities were 7.4% and 8.0% for LSO 5 mm-LuYAP 15 mm, and LuYAP 6 mm-LSO 14 mm phoswich detectors, respectively. Whereas, high and uniform resolutions were achieved by using the LSO front layer, higher sensitivities were obtained by changing the crystal order. The feasibilities for applying crystal identification methods to phoswich detectors consisting of LSO and LuYAP were investigated using simulation and experimentally derived measurements of the light outputs from each layer of the phoswich detector. In this study, the optimal order and lengths of the dual layer phoswich detector were derived in order to achieve high sensitivity and high and uniform radial resolution

  8. Anesthesia condition for {sup 18}F-FDG imaging of lung metastasis tumors using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang-Keun; Lee, Tae Sup; Kim, Kyeong Min; Kim, June-Youp; Jung, Jae Ho; Kang, Joo Hyun [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Cheon, Gi Jeong [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)], E-mail: larry@kcch.re.kr; Choi, Chang Woon; Lim, Sang Moo [Division of Nuclear Medicine and RI Application, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of); Department of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS), Nowon-Gu, Seoul 139-706 (Korea, Republic of)

    2008-01-15

    Small animal positron emission tomography (PET) with {sup 18}F-FDG has been increasingly used for tumor imaging in the murine model. The aim of this study was to establish the anesthesia condition for imaging of lung metastasis tumor using small animal {sup 18}F-FDG PET. Methods: To determine the impact of anesthesia on {sup 18}F-FDG distribution in normal mice, five groups were studied under the following conditions: no anesthesia, ketamine and xylazine (Ke/Xy), 0.5% isoflurane (Iso 0.5), 1% isoflurane (Iso 1) and 2% isoflurane (Iso 2). The ex vivo counting, standard uptake value (SUV) image and glucose SUV of {sup 18}F-FDG in various tissues were evaluated. The {sup 18}F-FDG images in the lung metastasis tumor model were obtained under no anesthesia, Ke/Xy and Iso 0.5, and registered with CT image to clarify the tumor region. Results: Blood glucose concentration and muscle uptake of {sup 18}F-FDG in the Ke/Xy group markedly increased more than in the other groups. The Iso 2 group increased {sup 18}F-FDG uptake in heart compared with the other groups. The Iso 0.5 anesthesized group showed the lowest {sup 18}F-FDG uptake in heart and chest wall. The small size of lung metastasis tumor (2 mm) was clearly visualized by {sup 18}F-FDG image with the Iso 0.5 anesthesia. Conclusion: Small animal {sup 18}F-FDG PET imaging with Iso 0.5 anesthesia was appropriate for the detection of lung metastasis tumor. To acquire {sup 18}F-FDG PET images with small animal PET, the type and level of anesthetic should be carefully considered to be suitable for the visualization of target tissue in the experimental model.

  9. Small animal simultaneous PET/MRI: initial experiences in a 9.4 T microMRI

    Energy Technology Data Exchange (ETDEWEB)

    Maramraju, Sri Harsha; Ravindranath, Bosky; Vaska, Paul; Schlyer, David J [Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY (United States); Smith, S David; Schulz, Daniela [Medical Department, Brookhaven National Laboratory, Upton, NY (United States); Junnarkar, Sachin S; Rescia, Sergio [Instrumentation Division, Brookhaven National Laboratory, Upton, NY (United States); Stoll, Sean; Purschke, Martin L; Woody, Craig L [Physics Department, Brookhaven National Laboratory, Upton, NY (United States); Southekal, Sudeepti [Brigham and Women' s Hospital, Boston, MA (United States); Pratte, Jean-Francois, E-mail: schlyer@bnl.gov [Universite de Sherbrooke, Sherbrooke, Quebec (Canada)

    2011-04-21

    We developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 x 8 array of lutetium oxyorthosilicate crystals (2.22 x 2.22 x 5 mm{sup 3}) coupled to a matching non-magnetic avalanche photodiode array. The detector blocks, housed in a plastic case, form a 38 mm inner diameter ring with an 18 mm axial extent. Custom-built MRI coils fit inside the positron-emission tomography (PET) device, operating in transceiver mode. The PET insert is integrated with a Bruker 9.4 T 210 mm clear-bore diameter MRI scanner. We acquired simultaneous PET/MR images of phantoms, of in vivo rat brain, and of cardiac-gated mouse heart using [{sup 11}C]raclopride and 2-deoxy-2-[{sup 18}F]fluoro-d-glucose PET radiotracers. There was minor interference between the PET electronics and the MRI during simultaneous operation, and small effects on the signal-to-noise ratio in the MR images in the presence of the PET, but no noticeable visual artifacts. Gradient echo and high-duty-cycle spin echo radio frequency (RF) pulses resulted in a 7% and a 28% loss in PET counts, respectively, due to high PET counts during the RF pulses that had to be gated out. The calibration of the activity concentration of PET data during MR pulsing is reproducible within less than 6%. Our initial results demonstrate the feasibility of performing simultaneous PET and MRI studies in adult rats and mice using the same PET insert in a small-bore 9.4 T MRI.

  10. Proof-of-principle study of a small animal PET/field-cycled MRI combined system using conventional PMT technology

    International Nuclear Information System (INIS)

    Peng Hao; Handler, William B.; Scholl, Timothy J.; Simpson, P.J.; Chronik, Blaine A.

    2010-01-01

    There are currently several approaches to the development of combined PET/MRI systems, all of which need to address adverse interactions between the two systems. Of particular relevance to the majority of proposed PET/MRI systems is the effect that static and dynamic magnetic fields have on the performance of PET detection systems based on photomultiplier tubes (PMTs). In the work reported in this paper, performance of two conventional PMTs has been systematically investigated and characterized as a function of magnetic field exposure conditions. Detector gain, energy resolution, time resolution, and efficiency were measured for static field exposures between 0 and 6.3 mT. Additionally, the short-term recovery and long-term stability of gain and energy resolution were measured in the presence of repeatedly applied dynamic magnetic fields changing at 4 T/s. It was found that the detectors recovered normal operation within several milliseconds following the end of large pulsed magnetic fields. In addition, the repeated applications of large pulsed magnetic fields did not significantly affect detector stability. Based on these results, we implemented a proof-of-principle PET/field-cycled MRI (FCMRI) system for small animal imaging using commercial PMT-based PET detectors. The first PET images acquired within the PET/FCMRI system are presented. The image quality, in terms of spatial resolution, was compared between standalone PET and the PET/FCMRI system. Finally, the relevance of these results to various aspects of PET/MRI system design is discussed.

  11. Imaging of lung metastasis tumor mouse model using [{sup 18}F]FDG small animal PET and CT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, June Youp; Woo, Sang Keun; Lee, Tae Sup [Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul (Korea, Republic of)] (and others)

    2007-02-15

    The purpose of this study is to image metastaic lung melanoma model with optimal pre-conditions for animal handling by using [{sup 18}F]FDG small animal PET and clinical CT. The pre-conditions for lung region tumor imaging were 16-22 h fasting and warming temperature at 30 .deg. C. Small animal PET image was obtained at 60 min postinjection of 7.4 MBq [{sup 18}F]FDG and compared pattern of [{sup 18}F]FDG uptake and glucose standard uptake value (SUVG) of lung region between Ketamine/Xylazine (Ke/Xy) and Isoflurane (Iso) anesthetized group in normal mice. Metastasis tumor mouse model to lung was established by intravenous injection of B16-F10 cells in C57BL/6 mice. In lung metastasis tumor model, [{sup 18}F]FDG image was obtained and fused with anatomical clinical CT image. Average blood glucose concentration in normal mice were 128.0 {+-} 22.87 and 86.0 {+-} 21.65 mg/dL in Ke/Xy group and Iso group, respectively. Ke/Xy group showed 1.5 fold higher blood glucose concentration than Iso group. Lung to Background ratio (L/B) in SUVG image was 8.6 {+-} 0.48 and 12.1 {+-}0.63 in Ke/Xy group and Iso group, respectively. In tumor detection in lung region, [{sup 18}F]FDG image of Iso group was better than that of Ke/Xy group, because of high L/B ratio. Metastatic tumor location in [{sup 18}F]FDG small animal PET image was confirmed by fusion image using clinical CT. Tumor imaging in small animal lung region with [{sup 18}F]FDG small animal PET should be considered pre-conditions which fasting, warming and an anesthesia during [{sup 18}F]FDG uptake. Fused imaging with small animal PET and CT image could be useful for the detection of metastatic tumor in lung region.

  12. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    International Nuclear Information System (INIS)

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-01-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance

  13. Time over threshold readout method of SiPM based small animal PET detector

    International Nuclear Information System (INIS)

    Valastyan, I.; Gal, J.; Hegyesi, G.; Kalinka, G.; Nagy, F.; Kiraly, B.; Imrek, J.; Molnar, J.

    2012-01-01

    Complete text of publication follows. The aim of the work was to design a readout concept for silicon photomultiplier (SiPM) sensor array used in small animal PET scanner. The detector module consist of LYSO 35x35 scintillation crystals, 324 SiPM sensors (arranged in 2x2 blocks and those quads in a 9x9 configuration) and FPGA based readout electronics. The dimensions of the SiPM matrix are area: 48x48 mm 2 and the size of one SiPM sensor is 1.95x2.2 mm 2 . Due to the high dark current of the SiPM, conventional Anger based readout method does not provide sufficient crystal position maps. Digitizing the 324 SiPM channels is a straightforward way to obtain proper crystal position maps. However handling hundreds of analogue input channels and the required DSP resources cause large racks of data acquisition electronics. Therefore coding of the readout channels is required. Proposed readout method: The coding of the 324 SiPMs consists two steps: Step 1) Reduction of the channels from 324 to 36: Row column readout, SiPMs are connected to each other in column by column and row-by row, thus the required channels are 36. The dark current of 18 connected SiPMs is small in off for identifying pulses coming from scintillating events. Step 2) Reduction of the 18 rows and columns to 4 channels: Comparators were connected to each rows and columns, and the level was set above the level of dark noise. Therefore only few comparators are active when scintillation light enters in the tile. The output of the comparator rows and columns are divided to two parts using resistor chains. Then the outputs of the resistor chains are digitized by a 4 channel ADC. However instead of the Anger method, time over threshold (ToT) was used. Figure 1 shows the readout concept of the SiPM matrix. In order to validate the new method and optimize the front-end electronics of the detector, the analogue signals were digitized before the comparators using a CAEN DT5740 32 channel digitizer, then the

  14. Optimization of LSO/LuYAP phoswich detector for small animal PET

    International Nuclear Information System (INIS)

    Jung, Jin Ho; Choi, Yong; Chung, Yong Hyun; Devroede, Olivier; Krieguer, Magalie; Bruyndonckx, Peter; Tavernier, Stefaan

    2007-01-01

    LSO/LuYAP phoswich detectors for small animal PET were developed to measure the depth of interaction (DOI), and to improve the spatial resolution at the edge of the field of view (FOV). The aim of this study was to optimize the optical coupling conditions between the crystal and photomultiplier tube (PMT) to maximize the light-collection efficiency, and to develop a method for rejecting scatter events by applying an equal energy window in each crystal layer. The light yields of the phoswich detector were estimated by changing the refractive index of the optical coupling material using a DETECT simulation. The accuracy of the DOI measurement on the phoswich detector, using an optical coupling material with the optimal light yield, were evaluated experimentally and compared with the air condition. The energy window for the photopeak events cannot be applied properly because the light outputs of LSO and LuYAP are different. The LSO/LuYAP photopeaks need to be superposed in order to effectively discriminate the scattered events by applying an equal energy window. The photopeaks of the LSO and LuYAP can be superposed by inserting a reflecting material between the crystals. The optimal coverage ratio of the inserting material was derived from a DETECT simulation, and its performance was investigated. In the simulation result, optimal refractive index of the optical coupling material was 1.7. The average DOI measurement errors of the LSO/LuYAP were 0.6%/3.4% and 4.9%/41.4% in the phoswich detector with and without an optical coupling material, respectively. The photopeaks of the LSO and LuYAP were superposed by covering 75% of the contact surface between the crystals with white Teflon. The DOI measurement errors of the LSO/LuYAP were 0.2%/2.4%. In this study, the optimal condition of the optical coupling material inserted between the crystal and PMT was derived to improve the accuracy of DOI measurement, and a photopeak superposition method of the LSO and LuYAP was

  15. Accuracy and Radiation Dose of CT-Based Attenuation Correction for Small Animal PET: A Monte Carlo Simulation Study

    International Nuclear Information System (INIS)

    Yang, Ching-Ching; Chan, Kai-Chieh

    2013-06-01

    -Small animal PET allows qualitative assessment and quantitative measurement of biochemical processes in vivo, but the accuracy and reproducibility of imaging results can be affected by several parameters. The first aim of this study was to investigate the performance of different CT-based attenuation correction strategies and assess the resulting impact on PET images. The absorbed dose in different tissues caused by scanning procedures was also discussed to minimize biologic damage generated by radiation exposure due to PET/CT scanning. A small animal PET/CT system was modeled based on Monte Carlo simulation to generate imaging results and dose distribution. Three energy mapping methods, including the bilinear scaling method, the dual-energy method and the hybrid method which combines the kVp conversion and the dual-energy method, were investigated comparatively through assessing the accuracy of estimating linear attenuation coefficient at 511 keV and the bias introduced into PET quantification results due to CT-based attenuation correction. Our results showed that the hybrid method outperformed the bilinear scaling method, while the dual-energy method achieved the highest accuracy among the three energy mapping methods. Overall, the accuracy of PET quantification results have similar trend as that for the estimation of linear attenuation coefficients, whereas the differences between the three methods are more obvious in the estimation of linear attenuation coefficients than in the PET quantification results. With regards to radiation exposure from CT, the absorbed dose ranged between 7.29-45.58 mGy for 50-kVp scan and between 6.61-39.28 mGy for 80-kVp scan. For 18 F radioactivity concentration of 1.86x10 5 Bq/ml, the PET absorbed dose was around 24 cGy for tumor with a target-to-background ratio of 8. The radiation levels for CT scans are not lethal to the animal, but concurrent use of PET in longitudinal study can increase the risk of biological effects. The

  16. Coincidence measurements on detectors for microPET II: A 1 mm3 resolution PET scanner for small animal imaging

    CERN Document Server

    Chatziioannou, A; Shao, Y; Doshi, N K; Silverman, B; Meadors, K; Cherry, SR

    2000-01-01

    We are currently developing a small animal PET scanner with a design goal of 1 mm3 image resolution. We have built three pairs of detectors and tested performance in terms of crystal identification, spatial, energy and timing resolution. The detectors consisted of 12 multiplied by 12 arrays of 1 multiplied by 1 multiplied by 10mm LSO crystals (1.15 mm pitch) coupled to Hamamatsu H7546 64 channel PMTs via 5cm long coherent glass fiber bundles. Optical fiber connection is necessary to allow high packing fraction in a ring geometry scanner. Fiber bundles with and without extramural absorber (EMA) were tested. The results demonstrated an intrinsic spatial resolution of 1.12 mm (direct coupled LSO array), 1.23 mm (bundle without EMA) and 1.27 mm (bundle with EMA) using a similar to 500 micron diameter Na-22 source. Using a 330 micron line source filled with F-18, intrinsic resolution for the EMA bundle improved to 1.05 mm. The respective timing and energy resolution values were 1.96 ns, 21% (direct coupled), 2.20 ...

  17. SiliPET: An ultra high resolution design of a small animal PET scanner based on double sided silicon strip detector stacks

    International Nuclear Information System (INIS)

    Zavattini, G.; Cesca, N.; Di Domenico, G.; Moretti, E.; Sabba, N.

    2006-01-01

    We investigated the capabilities of a small animal PET scanner, named SiliPET, based on four stacks of double sided silicon strips detectors. Each stack consists of 40 silicon detectors with dimension 60x60x1mm 3 . These are arranged to form a box 5x5x6cm 3 with minor sides opened; the box represents the maximal FOV of the scanner. The performance parameters of SiliPET scanner have been estimated, giving an intrinsic spatial resolution of 0.52mm and a sensitivity of 5.1% at the center of the system

  18. Preliminary assessment of the imaging capability of the YAP-(S)PET small animal scanner in neuroscience

    Energy Technology Data Exchange (ETDEWEB)

    Bartoli, Antonietta [Department of Physics ' E. Fermi' and Center of Excellence ' AmbiSEN' , University of Pisa, and INFN, Sezione di Pisa, Pisa I- 56127 (Italy)]. E-mail: bartoli@df.unipi.it; Belcari, Nicola [Department of Physics ' E. Fermi' and Center of Excellence ' AmbiSEN' , University of Pisa, and INFN, Sezione di Pisa, Pisa I- 56127 (Italy); Stark, Daniela [Institute of Nuclear Chemistry, University of Mainz, Mainz D-55099 (Germany); Hoehnemann, Sabine [Institute of Nuclear Chemistry, University of Mainz, Mainz D-55099 (Germany); Piel, Markus [Institute of Nuclear Chemistry, University of Mainz, Mainz D-55099 (Germany); Jennewein, Marc [Institute of Nuclear Chemistry, University of Mainz, Mainz D-55099 (Germany); Schmitt, Ulrich [Department of Psychiatry, University of Mainz, Mainz D-55099 (Germany); Tillmanns, Julia [Institute of Physiology and Pathophysiology, University of Mainz, Mainz D-55099 (Germany); Thews, Oliver [Institute of Physiology and Pathophysiology, University of Mainz, Mainz D-55099 (Germany); Hiemke, Christoph [Department of Psychiatry, University of Mainz, Mainz D-55099 (Germany); Roesch, Frank [Institute of Nuclear Chemistry, University of Mainz, Mainz D-55099 (Germany); Del Guerra, Alberto [Department of Physics ' E. Fermi' and Center of Excellence ' AmbiSEN' , University of Pisa, and INFN, Sezione di Pisa, Pisa I- 56127 (Italy)

    2006-12-20

    The new and fully engineered version of the YAP-(S)PET small animal scanner has been tested at the University of Mainz for preliminary assessment of its imaging capability for studies related to neuropharmacology and psychiatry. The main feature of the scanner is the capability to combine PET and SPECT techniques. It allows the development of new and interesting protocols for the investigation of many biological phenomena, more effectively than with PET or SPECT modalities alone. The scanner is made up of four detector heads, each one composed of a 4x4 cm{sup 2} of YAlO{sub 3}:Ce (or YAP:Ce) matrix, and has a field of view (FOV) of 4 cm axiallyx4 cm o transaxially. In PET mode, the volume resolution is less than 8 mm{sup 3} and is nearly constant over the whole FOV, while the sensitivity is about 2%. The SPECT performance is not so good, due to the presence of the multi-hole lead collimator in front of each head. Nevertheless, the YAP-PET scanner offers excellent resolution and sensitivity for performing on the availability of D2-like dopamine receptors on mice and rats in both PET and SPECT modalities.

  19. Preliminary assessment of the imaging capability of the YAP-(S)PET small animal scanner in neuroscience

    International Nuclear Information System (INIS)

    Bartoli, Antonietta; Belcari, Nicola; Stark, Daniela; Hoehnemann, Sabine; Piel, Markus; Jennewein, Marc; Schmitt, Ulrich; Tillmanns, Julia; Thews, Oliver; Hiemke, Christoph; Roesch, Frank; Del Guerra, Alberto

    2006-01-01

    The new and fully engineered version of the YAP-(S)PET small animal scanner has been tested at the University of Mainz for preliminary assessment of its imaging capability for studies related to neuropharmacology and psychiatry. The main feature of the scanner is the capability to combine PET and SPECT techniques. It allows the development of new and interesting protocols for the investigation of many biological phenomena, more effectively than with PET or SPECT modalities alone. The scanner is made up of four detector heads, each one composed of a 4x4 cm 2 of YAlO 3 :Ce (or YAP:Ce) matrix, and has a field of view (FOV) of 4 cm axiallyx4 cm o transaxially. In PET mode, the volume resolution is less than 8 mm 3 and is nearly constant over the whole FOV, while the sensitivity is about 2%. The SPECT performance is not so good, due to the presence of the multi-hole lead collimator in front of each head. Nevertheless, the YAP-PET scanner offers excellent resolution and sensitivity for performing on the availability of D2-like dopamine receptors on mice and rats in both PET and SPECT modalities

  20. Design and construction of a small animal PET/CT scanner combining scintillation Phoswich modules and hybrid pixels detectors

    International Nuclear Information System (INIS)

    Nicol, St.

    2010-07-01

    The pathway that has been followed by the imXgam team at CPPM was to combine on a single rotating device the detector modules of the small animal PET scanner ClearPET with a photon counting X-ray detector in order to perform simultaneous acquisition of images from the anatomy (X-ray CT) and from the metabolic function (PET) of the common field-of-view. A preliminary study of the hybrid imaging system ClearPET/XPAD3 carried out using Gate led us to form a new PET detection assembly based on 21 Phoswich modules, to fix the design of the PET/CT device, as well as to study and solve the difficulties arising from simultaneous hybrid imaging. Last but not least, the simulation tool also allowed us for thinking how well such a system could judiciously use the spatial and temporal correlations between anatomic and functional information. From an instrumentation point of view, we succeeded to set up the ClearPET/XPAD3 prototype. Once both imaging systems were operational individually, we demonstrated on one side that the ClearPET prototype was perfectly capable of performing correctly in simultaneous acquisition conditions, providing that the detector modules were appropriately shielded. On the other side, the new generation of the hybrid pixel camera using the XPAD3-S chip proved to be quite promising given the good quality of the first reconstructed images. Finally, the proof of concept of simultaneous PET/CT data acquisition was made using a sealed positron source and an X-ray tube. (author)

  1. Scanner calibration of a small animal PET camera based on continuous LSO crystals and flat panel PSPMTs

    International Nuclear Information System (INIS)

    Benlloch, J.M.; Carrilero, V.; Gonzalez, A.J.; Catret, J.; Lerche, Ch.W.; Abellan, D.; Garcia de Quiros, F.; Gimenez, M.; Modia, J.; Sanchez, F.; Pavon, N.; Ros, A.; Martinez, J.; Sebastia, A.

    2007-01-01

    We have constructed a small animal PET with four identical detector modules, each consisting of a continuous LYSO crystal attached to a Position Sensitive Photomultiplier Tube (PSPMT). The dimensions of the continuous crystal are 50x50 mm 2 and 10 mm thickness. The modules are separated 11 cm between each other in the scanner. In this paper we discuss the method used for the calibration of the camera for this special system with continuous detectors. We also present the preliminary values for the main performance parameters such as spatial and energy resolution, and sensitivity of the system

  2. Small animal PET imaging of HSV1-tk gene expression with {sup 124}IVDU in liver by the hydrodynamic injection

    Energy Technology Data Exchange (ETDEWEB)

    Song, I. H.; Lee, T. S.; Woo, S. G.; Jeong, J. H.; Kang, J. H.; Kim, K. M.; Chun, K. J.; Choi, C. W.; Lim, S. M. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2007-07-01

    The liver is an important target organ for gene transfer due to its capacity for synthesizing serum protein and its involvement in numerous genetic diseases. High level of foreign gene expression in liver can be achieved by a large-volume and high-speed intravenous injection of naked plasmid DNA (pDNA), so called hydrodynamic injection. This study is aimed to evaluate liver specific-gene expression of herpes simplex virus type 1 thymidine kinase(HSV1-tk) by hydrodynamic injection and image HSV1-tk expression using {sup 124}IVDU-PET. We constructed herpes simplex virus type 1 thymidine kinase (HSV1-tk)-expressing pDNA (pHSV1-tk) modified from pEGFP-N1. Hydrodynamic injection was performed using 40 {mu}g of plasmid (pEGFP/N1 or pHSV1-tk) in 2 ml of 0.85% saline solution for 20{approx}22g mice in 5 seconds intravenously. At 1 d post-hydrodynamic injection, biodistribution study was performed at 2 h post-injection of radiolabeled IVDU, fluorescence image was obtained using optical imager and small animal PET image was acquired with {sup 124}IVDU at 2 h post-injection. After PET imaging, digital whole body autoradiography (DWBA) was performed. Expression of HSV1-tk and EGFP was confirmed by RT-PCR in each liver tissue. In liver of pHSV1-tk and pEGFP/N1 injection groups, {sup 123}IVDU uptake was 5.65%ID/g and 0.98%ID/g, respectively. {sup 123}IVDU uptake in liver of pHSV1-tk injection group showed 5.7-fold higher than that of pEGFP/N1 injection group (p<0.01). On the other hand, the liver of pEGFP/N1 injection group showed fluorescence activity. In small animal PET images, {sup 124}IVDU uptake was selectively localized in liver of pHSV1-tk injection group and also checked in DWBA, but showed minimal uptake in liver of pEGFP/N1 injection mice. Hydrodynamic injection was effective to liver-specific delivery of plasmid DNA. Small animal PET image of {sup 124}IVDU could be used in the evaluation of noninvasive reporter gene imaging in liver.

  3. Position-Sensitive Detector with Depth-of-Interaction Determination for Small Animal PET

    CERN Document Server

    Fedorov, A; Kholmetsky, A L; Korzhik, M V; Lecoq, P; Lobko, A S; Missevitch, O V; Tkatchev, A

    2002-01-01

    Crystal arrays made of LSO and LuAP crystals 2x2x10 mm pixels were manufactured for evaluation of detector with depth-of-interaction (DOI) determination capability intended for small animal positron emission tomograph. Position-sensitive LSO/LuAP phoswich DOI detector based on crystal 8x8 arrays and HAMAMATSU R5900-00-M64 position-sensitive multi-anode photomultiplier tube was developed and evaluated. Time resolution was found to be not worse than 1.0 ns FWHM for both layers, and spatial resolution mean value was 1.5 mm FWHM for the center of field-of-view.

  4. Energy resolution of a four-layer depth of interaction detector block for small animal PET

    International Nuclear Information System (INIS)

    Tsuda, Tomoaki; Kawai, Hideyuki; Orita, Narimichi; Murayama, Hideo; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga; Omura, Tomohide

    2004-01-01

    We are now planning to develop a positron emission tomograph dedicated to small animals such as rats and mice which meets the demand for higher sensitivity. We proposed a new depth of interaction (DOI) detector arrangement to obtain DOI information by using a four-layer detector with all the same crystal elements. In this DOI detector, we control the behavior of scintillation photons by inserting the reflectors between crystal elements so that the DOI information of four layers can be extracted from one two-dimensional (2D) position histogram made by Anger-type calculation. In this work, we evaluate the energy resolution of this four-layer DOI detector. (author)

  5. Assessing Glomerular Filtration in Small Animals Using [68Ga]DTPA and [68Ga]EDTA with PET Imaging.

    Science.gov (United States)

    Gündel, Daniel; Pohle, Ulrike; Prell, Erik; Odparlik, Andreas; Thews, Oliver

    2018-06-01

    Determining the glomerular filtration rate (GFR) is essential for clinical medicine but also for pre-clinical animal studies. Functional imaging using positron emission tomography (PET) allows repetitive almost non-invasive measurements. The aim of the study was the development and evaluation of easily synthesizable PET tracers for GFR measurements in small animals. Diethylenetriaminepentaacetic acid (DTPA) and ethylenediaminetetraacetic acid (EDTA) were labeled with Ga-68. The binding to blood cells and plasma proteins was tested in vitro. The distribution of the tracers in rats was analyzed by PET imaging and ex vivo measurements. From the time-activity-curve of the blood compartment (heart) and the total tracer mass excreted by the kidney, the GFR was calculated. These values were compared directly with the inulin clearance in the same animals. Both tracers did not bind to blood cells. [ 68 Ga]DPTA but not [ 68 Ga]EDTA showed strong binding to plasma proteins. For this reason, [ 68 Ga]DPTA stayed much longer in the blood and only 30 % of the injected dose was eliminated by the kidney within 60 min whereas the excretion of [ 68 Ga]EDTA was 89 ± 1 %. The calculated GFR using [ 68 Ga]EDTA was comparable to the measured inulin clearance in the same animal. Using [ 68 Ga]-DPTA, the measurements led to values which were 80 % below the normal GFR. The results also revealed that definition of the volume of interest for the blood compartment affects the calculation and may lead to a slight overestimation of the GFR. [ 68 Ga]EDTA is a suitable tracer for GFR calculation from PET imaging in small animals. It is easy to be labeled, and the results are in good accordance with the inulin clearance. [ 68 Ga]DTPA led to a marked underestimation of GFR due to its strong binding to plasma proteins and is therefore not an appropriate tracer for GFR measurements.

  6. Simplified quantification of small animal [{sup 18}F]FDG PET studies using a standard arterial input function

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philipp T. [University Hospital Aachen, Department of Neurology, Aachen (Germany); Circiumaru, Valentina; Thomas, Daniel H. [University of Pennsylvania, Department of Radiology, Philadelphia (United States); Cardi, Christopher A.; Bal, Harshali; Acton, Paul D. [Thomas Jefferson University, Department of Radiology, Philadelphia (United States)

    2006-08-15

    Arterial input function (AIF) measurement for quantification of small animal PET studies is technically challenging and limited by the small blood volume of small laboratory animals. The present study investigated the use of a standard arterial input function (SAIF) to simplify the experimental procedure. Twelve [{sup 18}F]fluorodeoxyglucose ([{sup 18}F]FDG) PET studies accompanied by serial arterial blood sampling were acquired in seven male Sprague-Dawley rats under isoflurane anaesthesia without (every rat) and with additional (five rats) vibrissae stimulation. A leave-one-out procedure was employed to validate the use of a SAIF with individual scaling by one (1S) or two (2S) arterial blood samples. Automatic slow bolus infusion of [{sup 18}F]FDG resulted in highly similar AIF in all rats. The average differences of the area under the curve of the measured AIF and the individually scaled SAIF were 0.11{+-}4.26% and 0.04{+-}2.61% for the 1S (6-min sample) and the 2S (4-min/43-min samples) approach, respectively. The average differences between the cerebral metabolic rates of glucose (CMR{sub glc}) calculated using the measured AIF and the scaled SAIF were 1.31{+-}5.45% and 1.30{+-}3.84% for the 1S and the 2S approach, respectively. The use of a SAIF scaled by one or (preferably) two arterial blood samples can serve as a valid substitute for individual AIF measurements to quantify [{sup 18}F]FDG PET studies in rats. The SAIF approach minimises the loss of blood and should be ideally suited for longitudinal quantitative small animal [{sup 18}F]FDG PET studies. (orig.)

  7. Initial reconstruction results from a simulated adaptive small animal C shaped PET/MR insert

    Energy Technology Data Exchange (ETDEWEB)

    Efthimiou, Nikos [Technological Educational Institute of Athens (Greece); Kostou, Theodora; Papadimitroulas, Panagiotis [Technological Educational Institute of Athens (Greece); Department of Medical Physics, School of Medicine, University of Patras (Greece); Charalampos, Tsoumpas [Division of Biomedical Imaging, University of Leeds, Leeds (United Kingdom); Loudos, George [Technological Educational Institute of Athens (Greece)

    2015-05-18

    Traditionally, most clinical and preclinical PET scanners, rely on full cylindrical geometry for whole body as well as dedicated organ scans, which is not optimized with regards to sensitivity and resolution. Several groups proposed the construction of dedicated PET inserts for MR scanners, rather than the construction of new integrated PET/MR scanners. The space inside an MR scanner is a limiting factor which can be reduced further with the use of extra coils, and render the use of non-flexible cylindrical PET scanners difficult if not impossible. The incorporation of small SiPM arrays, can provide the means to design adaptive PET scanners to fit in tight locations, which, makes imaging possible and improve the sensitivity, due to the closer approximation to the organ of interest. In order to assess the performance of such a device we simulated the geometry of a C shaped PET, using GATE. The design of the C-PET was based on a realistic SiPM-BGO scenario. In order reconstruct the simulated data, with STIR, we had to calculate system probability matrix which corresponds to this non standard geometry. For this purpose we developed an efficient multi threaded ray tracing technique to calculate the line integral paths in voxel arrays. One of the major features is the ability to automatically adjust the size of FOV according to the geometry of the detectors. The initial results showed that the sensitivity improved as the angle between the detector arrays increases, thus better angular sampling the scanner's field of view (FOV). The more complete angular coverage helped in improving the shape of the source in the reconstructed images, as well. Furthermore, by adapting the FOV to the closer to the size of the source, the sensitivity per voxel is improved.

  8. Initial reconstruction results from a simulated adaptive small animal C shaped PET/MR insert

    International Nuclear Information System (INIS)

    Efthimiou, Nikos; Kostou, Theodora; Papadimitroulas, Panagiotis; Charalampos, Tsoumpas; Loudos, George

    2015-01-01

    Traditionally, most clinical and preclinical PET scanners, rely on full cylindrical geometry for whole body as well as dedicated organ scans, which is not optimized with regards to sensitivity and resolution. Several groups proposed the construction of dedicated PET inserts for MR scanners, rather than the construction of new integrated PET/MR scanners. The space inside an MR scanner is a limiting factor which can be reduced further with the use of extra coils, and render the use of non-flexible cylindrical PET scanners difficult if not impossible. The incorporation of small SiPM arrays, can provide the means to design adaptive PET scanners to fit in tight locations, which, makes imaging possible and improve the sensitivity, due to the closer approximation to the organ of interest. In order to assess the performance of such a device we simulated the geometry of a C shaped PET, using GATE. The design of the C-PET was based on a realistic SiPM-BGO scenario. In order reconstruct the simulated data, with STIR, we had to calculate system probability matrix which corresponds to this non standard geometry. For this purpose we developed an efficient multi threaded ray tracing technique to calculate the line integral paths in voxel arrays. One of the major features is the ability to automatically adjust the size of FOV according to the geometry of the detectors. The initial results showed that the sensitivity improved as the angle between the detector arrays increases, thus better angular sampling the scanner's field of view (FOV). The more complete angular coverage helped in improving the shape of the source in the reconstructed images, as well. Furthermore, by adapting the FOV to the closer to the size of the source, the sensitivity per voxel is improved.

  9. Image quality assesment using NEMA NU 4/2008 standards in small animal PET scanner

    International Nuclear Information System (INIS)

    Gontijo, Rodrigo M.G.; Ferreira, Andréa V.; Silva, Juliana B.; Mamede, Marcelo

    2017-01-01

    In Brazil, there are few micro PET in use and a quality control protocols standardization are needed to harmonize their use in the research field. Thus, the purpose of this study is to characterize the image quality performance of the micro PET scanner (Lab PET 4, GE healthcare Technologies, Waukesha, WI) using the NEMA NU 4/ 2008 standards and specific phantom. The NEMA image-quality (IQ) phantom consists of 3 different regions to analyze distinct characteristics: image noise (%SD), expressed as percentage SD in a uniform region (%SD), recovery coefficient (RC) and Spill-over (SOR) in air and water. The IQ phantom was filled with 18 F-FDG calibrated at the beginning of acquisition, placed in the center of the field-of-view (FOV) and measured with the typical whole body imaging protocol. The images were reconstructed with different reconstruction methods (FBP-2D; MLEM-3D and OSEM-3D); with and without high resolution (HR) when possible. The results were compared. The LabPET 4 system produces appropriate image and with performance according to the literature. The present study is an initial step to verify the NEMA NU 4/2008 use in the Brazilian scenario for further standardization. (author)

  10. Image quality assesment using NEMA NU 4/2008 standards in small animal PET scanner

    Energy Technology Data Exchange (ETDEWEB)

    Gontijo, Rodrigo M.G.; Ferreira, Andréa V.; Silva, Juliana B.; Mamede, Marcelo, E-mail: rodrigo.gontijo@cdtn.br, E-mail: rodrigogadelhagontijo1@hotmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    In Brazil, there are few micro PET in use and a quality control protocols standardization are needed to harmonize their use in the research field. Thus, the purpose of this study is to characterize the image quality performance of the micro PET scanner (Lab PET 4, GE healthcare Technologies, Waukesha, WI) using the NEMA NU 4/ 2008 standards and specific phantom. The NEMA image-quality (IQ) phantom consists of 3 different regions to analyze distinct characteristics: image noise (%SD), expressed as percentage SD in a uniform region (%SD), recovery coefficient (RC) and Spill-over (SOR) in air and water. The IQ phantom was filled with {sup 18}F-FDG calibrated at the beginning of acquisition, placed in the center of the field-of-view (FOV) and measured with the typical whole body imaging protocol. The images were reconstructed with different reconstruction methods (FBP-2D; MLEM-3D and OSEM-3D); with and without high resolution (HR) when possible. The results were compared. The LabPET 4 system produces appropriate image and with performance according to the literature. The present study is an initial step to verify the NEMA NU 4/2008 use in the Brazilian scenario for further standardization. (author)

  11. Demonstration of an Axial PET concept for brain and small animal imaging

    CERN Document Server

    Beltrame, P; Clinthorne, N; Meddi, F; Kagan, H; Braem, A; Pauss, F; Djambazov, L; Lustermann, W; Weilhammer, P; Nessi-Tedaldi, F; Dissertori, G; Renker, D; Schneider, T; Schinzel, D; De Leo, R; Bolle, E; Fanti, V; Rafecas, M; Rudge, A; Stapnes, S; Casella, C; Chesi, E; Seguinot, J; Solevi, P; Joram, C; Oliver, J F

    2011-01-01

    Standard Positron Emission Tomography (PET) cameras need to reach a compromise between spatial resolution and sensitivity. To overcome this limitation we developed a novel concept of PET. Our AX-PET demonstrator is made of LYSO crystals aligned along the z coordinate (patient's axis) and WLS strips orthogonally placed with respect to the crystals. This concept offers full 3D localization of the photon interaction inside the camera. Thus the spatial resolution and the sensitivity can be simultaneously improved and the reconstruction of Compton interactions inside the detector is also possible. Moreover, by means of G-APDs for reading out the photons, both from LYSO and WLS, the detector is insensitive to magnetic fields and it is then suitable to be used in a combined PET/MRI apparatus. A complete Monte Carlo simulation and dedicated reconstruction software have been developed. The two final modules, each composed of 48 crystals and 156 WLS strips, have been built and fully characterized in a dedicated test se...

  12. Optimization of a partially segmented block detector for MR-compatible small animal PET

    International Nuclear Information System (INIS)

    Hwang, Ji Yeon; Chung, Yong Hyun; Baek, Cheol-Ha; An, Su Jung; Kim, Hyun-Il; Kim, Kwang Hyun

    2011-01-01

    In recent years, there has been an increasing interest in the magnetic resonance (MR)-compatible positron emission tomography (PET) scanners for both clinical and preclinical practice. The aim of this study was to design a novel PET detector module using a segmented block crystal readout with an array of multi-pixel photon counters (MPPCs). A 16.5x16.5x10.0 mm 3 LSO block was segmented into an 11x11 array, and reflective material was used to fill in the cuts to optically isolate the elements. The block was attached to a 4x4 MPPC array (Hamamatsu S11064) of 3.0x3.0 mm 2 detectors to give a total effective area of 144 mm 2 . To visualize all the individual detector elements in this 11x11 detector module, the depth of the cuts was optimized by DETECT2000 simulations. The depth of the cuts determines the spread of scintillation light onto the MPPC array. The accuracy of positioning was evaluated by varying the depth of the cuts from 0.0 to 10.0 mm in steps of 0.5 mm. A spatial resolution of 1.5 mm was achieved using the optimized partially segmented block detector. The simulation results of this study can be used effectively as a guide for parameter optimization for the development of a partially segmented block detector for high-resolution MR-compatible PET scanners.

  13. Automatic cardiac gating of small-animal PET from list-mode data

    Energy Technology Data Exchange (ETDEWEB)

    Herraiz, J.L.; Udias, J.M. [Universidad Complutense de Madrid Univ. (Spain). Grupo de Fisica Nuclear; Vaquero, J.J.; Desco, M. [Universidad Carlos III de Madrid (Spain). Dept. de Bioingenieria e Ingenieria Aeroespacial; Cusso, L. [Hospital General Universitario Gregorio Maranon, Madrid (Spain). Unidad de Medicina y Cirugia Experimental

    2011-07-01

    This work presents a method to obtain automatically the cardiac gating signal in a PET study of rats, by employing the variation with time of the counts in the cardiac region, that can be extracted from list-mode data. In an initial step, the cardiac region is identified in the image space by backward-projecting a small fraction of the acquired data and studying the variation with time of the counts in each voxel inside said region, with frequencies within 2 and 8 Hz. The region obtained corresponds accurately to the left-ventricle of the heart of the rat. In a second step, the lines-of-response (LORs) connected with this region are found by forward-projecting this region. The time variation of the number of counts in these LORs contains the cardiac motion information that we want to extract. This variation of counts with time is band-pass filtered to reduce noise, and the time signal so obtained is used to create the gating signal. The result was compared with a cardiac gating signal obtained from an ECG acquired simultaneously to the PET study. Reconstructed gated images obtained from both gating information are similar. The method proposed demonstrates that valid cardiac gating signals can be obtained for rats from PET list-mode data. (orig.)

  14. In vivo fluorescence enhanced optical tomography reconstruction of lung cancer of non immersed small animals

    Science.gov (United States)

    Hervé, L.; Koenig, A.; Da Silva, A.; Berger, M.; Boutet, J.; Dinten, J. M.; Peltié, P.; Rizo, P.

    2007-02-01

    Fluorescence enhanced diffuse optical tomography (fDOT) is envisioned to be useful to collect functional information from small animal models. For oncology applications, cancer-targeted fluorescent markers can be used as a surrogate of the cancer activity. We are developing a continuous wave fDOT bench intended to be integrated in systems dedicated to whole body small animal fluorescence analyses. The focus is currently put on the reconstruction of non immersed small animals imaged by a CCD camera. The reconstruction stage already corrects the tissue heterogeneity artifacts through the computation of an optical heterogeneity map. We will show how this formalism coupled with the determination of the animal boundaries performed by a laser scanner, can be used to manage non contact acquisitions. The time of reconstruction for a 10 × 9 laser source positions, 45 × 40 detector elements and 14 × 11 × 14 mesh voxels is typically 10 minutes on a 3GHz PCs corresponding to the acquisition time allowing the two tasks to be performed in parallel. The system is validated on an in vivo experiment performed on three healthy nude mice and a mouse bearing a lung tumor at 10, 12 and 14 days after implantation allowing the follow up of the disease. The 3D fluorescence reconstructions of this mouse are presented and the total fluorescence amounts are compared.

  15. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    International Nuclear Information System (INIS)

    Nishikido, Fumihiko; Tsuda, Tomoaki; Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga; Kitamura, Keishi; Takahashi, Kei; Ohmura, Atsushi; Murayama, Hideo

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm

  16. Spatial resolution evaluation with a pair of two four-layer DOI detectors for small animal PET scanner: jPET-RD

    Energy Technology Data Exchange (ETDEWEB)

    Nishikido, Fumihiko [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)], E-mail: funis@nirs.go.jp; Tsuda, Tomoaki [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Yamaya, Taiga [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Kitamura, Keishi [Shimadzu Corporation, Nishinokyo Kuwabaracho 1 Nakagyo-ku, Kyoto-shi, Kyoto 604-8511 (Japan); Takahashi, Kei [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Science and Technology, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba-shi, Chiba 263-8522 (Japan); Ohmura, Atsushi [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan); Graduate School of Advanced Science and Engineering, Waseda University, Okubo 3-4-1, Shinjuku-ku, Tokyo 169-8555 (Japan); Murayama, Hideo [National Institute of Radiological Sciences, Anagawa 4-9-1 Inage-ku, Chiba-shi, Chiba 263-8555 (Japan)

    2008-01-01

    We are developing a small animal PET scanner, 'jPET-RD' to achieve high sensitivity as well as high spatial resolution by using four-layer depth-of-interaction (DOI) detectors. The jPET-RD is designed with two detector rings. Each detector ring is composed of six DOI detectors arranged hexagonally. The diameter of the field-of-view (FOV) is 8.8 cm, which is smaller than typical small animal PET scanners on the market now. Each detector module consists of a crystal block and a 256-channel flat panel position-sensitive photomultiplier tube. The crystal block, consisting of 32x32x4 crystal (4096 crystals, each 1.46 mmx1.46 mmx4.5 mm) and a reflector, is mounted on the 256ch FP-PMT. In this study, we evaluated the spatial resolution of reconstructed images with the evaluation system of two four-layer DOI detectors which consist of 32x32x4 LYSO (Lu: 98%, Y: 2%) crystals coupled on the 256ch FP-PMT by using RTV rubber. The spatial resolution of 1.5 mm was obtained at the center of the FOV by the filtered back projection. The spatial resolution, better than 2 mm in the whole FOV, was also achieved with DOI while the spatial resolution without DOI was degraded to 3.3 mm.

  17. A dual layer DOI GSO block detector for a small animal PET

    International Nuclear Information System (INIS)

    Yamamoto, Seiichi

    2009-01-01

    For a high resolution animal positron emission tomography (PET), depth-of-interaction (DOI) is a useful method to improve both spatial resolution and sensitivity. Gd 2 SiO 5 (GSO) with different amounts of Ce can provide different decay times and is ideal for DOI detector using pulse shape analysis. Dual layer DOI GSO block detectors using different amounts of Ce were developed for a new animal PET. The DOI GSO block detector employed two types of GSOs; one with 1.5 mol% Ce concentration (decay time: 35 ns) and the other with 0.5 mol% (decay time: 60 ns). These two GSO types were optically coupled in the DOI direction. The sizes of single GSOs were 1.9 mmx1.9 mmx6 mm and 1.9 mmx1.9 mmx9 mm, for 1.5 and 0.5 mol%, respectively. These GSO were arranged by 11x37 matrix and optically coupled to three position sensitive photomultiplier tubes (PSPMTs), where the PSPMTs used were Hamamatsu R8520U-00-C12. Different lengths of reflectors were used between crystals to increase the useful field-of-view (FOV) of the PSPMT and to avoid the dead areas between PSPMTs. With this configuration, almost all islands in a 2-D position histogram corresponding to GSO cells could be separated. The width of the GSO block was 22 mm in the transaxial direction and 74 mm in axial direction with no gaps. Also, two types of GSO of different decay time could be separated using dual integration method for pulse shape analysis. These results indicate that developed block detectors might be useful for a high resolution and high sensitivity animal PET with dual layer DOI detection capability, with no gaps in transaxial or axial directions.

  18. Hybrid image and blood sampling input function for quantification of small animal dynamic PET data

    International Nuclear Information System (INIS)

    Shoghi, Kooresh I.; Welch, Michael J.

    2007-01-01

    We describe and validate a hybrid image and blood sampling (HIBS) method to derive the input function for quantification of microPET mice data. The HIBS algorithm derives the peak of the input function from the image, which is corrected for recovery, while the tail is derived from 5 to 6 optimally placed blood sampling points. A Bezier interpolation algorithm is used to link the rightmost image peak data point to the leftmost blood sampling point. To assess the performance of HIBS, 4 mice underwent 60-min microPET imaging sessions following a 0.40-0.50-mCi bolus administration of 18 FDG. In total, 21 blood samples (blood-sampled plasma time-activity curve, bsPTAC) were obtained throughout the imaging session to compare against the proposed HIBS method. MicroPET images were reconstructed using filtered back projection with a zoom of 2.75 on the heart. Volumetric regions of interest (ROIs) were composed by drawing circular ROIs 3 pixels in diameter on 3-4 transverse planes of the left ventricle. Performance was characterized by kinetic simulations in terms of bias in parameter estimates when bsPTAC and HIBS are used as input functions. The peak of the bsPTAC curve was distorted in comparison to the HIBS-derived curve due to temporal limitations and delay in blood sampling, which affected the rates of bidirectional exchange between plasma and tissue. The results highlight limitations in using bsPTAC. The HIBS method, however, yields consistent results, and thus, is a substitute for bsPTAC

  19. Evaluation of anesthesia effects on [{sup 18}F]FDG uptake in mouse brain and heart using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Toyama, Hiroshi E-mail: htoyama@fujita-hu.ac.jp; Ichise, Masanori; Liow, Jeih-San; Vines, Douglass C.; Seneca, Nicholas M.; Modell, Kendra J.; Seidel, Jurgen; Green, Michael V.; Innis, Robert B

    2004-02-01

    This study evaluates effects of anesthesia on {sup 18}F-FDG (FDG) uptake in mouse brain and heart to establish the basic conditions of small animal PET imaging. Prior to FDG injection, 12 mice were anesthetized with isoflurane gas; 11 mice were anesthetized with an intraperitoneal injection of a ketamine/xylazine mixture; and 11 mice were awake. In isoflurane and ketamine/xylazine conditions, FDG brain uptake (%ID/g) was significantly lower than in controls. Conversely, in the isoflurane condition, %ID/g in heart was significantly higher than in controls, whereas heart uptake in ketamine/xylazine mice was significantly lower. Results suggest that anesthesia impedes FDG uptake in mouse brain and affects FDG uptake in heart; however, the effects in the brain and heart differ depending on the type of anesthesia used.

  20. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET

    International Nuclear Information System (INIS)

    Toyama, Hiroshi; Ichise, Masanori; Liow, Jeih-San; Vines, Douglass C.; Seneca, Nicholas M.; Modell, Kendra J.; Seidel, Jurgen; Green, Michael V.; Innis, Robert B.

    2004-01-01

    This study evaluates effects of anesthesia on 18 F-FDG (FDG) uptake in mouse brain and heart to establish the basic conditions of small animal PET imaging. Prior to FDG injection, 12 mice were anesthetized with isoflurane gas; 11 mice were anesthetized with an intraperitoneal injection of a ketamine/xylazine mixture; and 11 mice were awake. In isoflurane and ketamine/xylazine conditions, FDG brain uptake (%ID/g) was significantly lower than in controls. Conversely, in the isoflurane condition, %ID/g in heart was significantly higher than in controls, whereas heart uptake in ketamine/xylazine mice was significantly lower. Results suggest that anesthesia impedes FDG uptake in mouse brain and affects FDG uptake in heart; however, the effects in the brain and heart differ depending on the type of anesthesia used

  1. A computational pipeline for quantification of pulmonary infections in small animal models using serial PET-CT imaging.

    Science.gov (United States)

    Bagci, Ulas; Foster, Brent; Miller-Jaster, Kirsten; Luna, Brian; Dey, Bappaditya; Bishai, William R; Jonsson, Colleen B; Jain, Sanjay; Mollura, Daniel J

    2013-07-23

    Infectious diseases are the second leading cause of death worldwide. In order to better understand and treat them, an accurate evaluation using multi-modal imaging techniques for anatomical and functional characterizations is needed. For non-invasive imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), there have been many engineering improvements that have significantly enhanced the resolution and contrast of the images, but there are still insufficient computational algorithms available for researchers to use when accurately quantifying imaging data from anatomical structures and functional biological processes. Since the development of such tools may potentially translate basic research into the clinic, this study focuses on the development of a quantitative and qualitative image analysis platform that provides a computational radiology perspective for pulmonary infections in small animal models. Specifically, we designed (a) a fast and robust automated and semi-automated image analysis platform and a quantification tool that can facilitate accurate diagnostic measurements of pulmonary lesions as well as volumetric measurements of anatomical structures, and incorporated (b) an image registration pipeline to our proposed framework for volumetric comparison of serial scans. This is an important investigational tool for small animal infectious disease models that can help advance researchers' understanding of infectious diseases. We tested the utility of our proposed methodology by using sequentially acquired CT and PET images of rabbit, ferret, and mouse models with respiratory infections of Mycobacterium tuberculosis (TB), H1N1 flu virus, and an aerosolized respiratory pathogen (necrotic TB) for a total of 92, 44, and 24 scans for the respective studies with half of the scans from CT and the other half from PET. Institutional Administrative Panel on Laboratory Animal Care approvals were

  2. Performance characteristics of a small animal PET camera for molecular imaging

    International Nuclear Information System (INIS)

    Hastings, D.L.; Reader, A.J.; Julyan, P.J.; Zweit, J.; Jeavons, A.P.; Jones, T.

    2007-01-01

    The performance of a novel type of animal PET camera, the quad High-Density Avalanche Chamber (HIDAC) was assessed for a non-rotating 16-module system. Spatial resolution was 1.0 mm, and invariant within a standard deviation ≤5%. Absolute sensitivity was 0.95%, and the scatter-background corrected sensitivity was 0.75%. The count rate capability was linear at typical activities used in animal imaging, with a 20% loss at 11.5 MBq. The camera demonstrates small regions of radiotracer uptake with excellent detail in the mouse

  3. A prototype PET/SPECT/X-rays scanner dedicated for whole body small animal studies.

    Science.gov (United States)

    Rouchota, Maritina; Georgiou, Maria; Fysikopoulos, Eleftherios; Fragogeorgi, Eirini; Mikropoulos, Konstantinos; Papadimitroulas, Panagiotis; Kagadis, George; Loudos, George

    2017-01-01

    To present a prototype tri-modal imaging system, consisting of a single photon emission computed tomography (SPET), a positron emission tomography (PET), and a computed tomography (CT) subsystem, evaluated in planar mode. The subsystems are mounted on a rotating gantry, so as to be able to allow tomographic imaging in the future. The system, designed and constructed by our group, allows whole body mouse imaging of competent performance and is currently, to the best of our knowledge, unequaled in a national and regional level. The SPET camera is based on two Position Sensitive Photomultiplier Tubes (PSPMT), coupled to a pixilated Sodium Iodide activated with Thallium (NaI(Tl)) scintillator, having an active area of 5x10cm 2 . The dual head PET camera is also based on two pairs of PSPMT, coupled to pixelated berillium germanium oxide (BGO) scintillators, having an active area of 5x10cm 2 . The X-rays system consists of a micro focus X-rays tube and a complementary metal-oxide-semiconductor (CMOS) detector, having an active area of 12x12cm 2 . The scintigraphic mode has a spatial resolution of 1.88mm full width at half maximum (FWHM) and a sensitivity of 107.5cpm/0.037MBq at the collimator surface. The coincidence PET mode has an average spatial resolution of 3.5mm (FWHM) and a peak sensitivity of 29.9cpm/0.037MBq. The X-rays spatial resolution is 3.5lp/mm and the contrast discrimination function value is lower than 2%. A compact tri-modal system was successfully built and evaluated for planar mode operation. The system has an efficient performance, allowing accurate and informative anatomical and functional imaging, as well as semi-quantitative results. Compared to other available systems, it provides a moderate but comparable performance, at a fraction of the cost and complexity. It is fully open, scalable and its main purpose is to support groups on a national and regional level and provide an open technological platform to study different detector components and

  4. The Combination of In vivo 124I-PET and CT Small Animal Imaging for Evaluation of Thyroid Physiology and Dosimetry

    Directory of Open Access Journals (Sweden)

    Henrik H. El-Ali

    2012-06-01

    Full Text Available Objective: A thyroid rat model combining functional and anatomical information would be of great benefit for better modeling of thyroid physiology and for absorbed dose calculations. Our aim was to show that 124I-PET and CT small animal imaging are useful as a combined model for studying thyroid physiology and dose calculation. Methods: Seven rats were subjects for multiple thyroid 124I-imaging and CT-scans. S-values [mGy/MBqs] for different thyroid sizes were simulated. A phantom with spheres was designed for validation of performances of the small animal PET and CT imaging systems. Results: Small animal image-based measurements of the activity amount and the volumes of the spheres with a priori known volumes showed a good agreement with their corresponding actual volumes. The CT scans of the rats showed thyroid volumes from 34–70 mL. Conclusions: The wide span in volumes of thyroid glands indicates the importance of using an accurate volume-measuring technique such as the small animal CT. The small animal PET system was on the other hand able to accurately estimate the activity concentration in the thyroid volumes. We conclude that the combination of the PET and CT image information is essential for quantitative thyroid imaging and accurate thyroid absorbed dose calculation.

  5. A feasibility study of PETiPIX: an ultra high resolution small animal PET scanner

    Science.gov (United States)

    Li, K.; Safavi-Naeini, M.; Franklin, D. R.; Petasecca, M.; Guatelli, S.; Rosenfeld, A. B.; Hutton, B. F.; Lerch, M. L. F.

    2013-12-01

    PETiPIX is an ultra high spatial resolution positron emission tomography (PET) scanner designed for imaging mice brains. Four Timepix pixellated silicon detector modules are placed in an edge-on configuration to form a scanner with a field of view (FoV) 15 mm in diameter. Each detector module consists of 256 × 256 pixels with dimensions of 55 × 55 × 300 μm3. Monte Carlo simulations using GEANT4 Application for Tomographic Emission (GATE) were performed to evaluate the feasibility of the PETiPIX design, including estimation of system sensitivity, angular dependence, spatial resolution (point source, hot and cold phantom studies) and evaluation of potential detector shield designs. Initial experimental work also established that scattered photons and recoil electrons could be detected using a single edge-on Timepix detector with a positron source. Simulation results estimate a spatial resolution of 0.26 mm full width at half maximum (FWHM) at the centre of FoV and 0.29 mm FWHM overall spatial resolution with sensitivity of 0.01%, and indicate that a 1.5 mm thick tungsten shield parallel to the detectors will absorb the majority of non-coplanar annihilation photons, significantly reducing the rates of randoms. Results from the simulated phantom studies demonstrate that PETiPIX is a promising design for studies demanding high resolution images of mice brains.

  6. Non-invasive imaging of acute renal allograft rejection in rats using small animal F-FDG-PET.

    Directory of Open Access Journals (Sweden)

    Stefan Reuter

    Full Text Available BACKGROUND: At present, renal grafts are the most common solid organ transplants world-wide. Given the importance of renal transplantation and the limitation of available donor kidneys, detailed analysis of factors that affect transplant survival are important. Despite the introduction of new and effective immunosuppressive drugs, acute cellular graft rejection (AR is still a major risk for graft survival. Nowadays, AR can only be definitively by renal biopsy. However, biopsies carry a risk of renal transplant injury and loss. Most important, they can not be performed in patients taking anticoagulant drugs. METHODOLOGY/PRINCIPAL FINDINGS: We present a non-invasive, entirely image-based method to assess AR in an allogeneic rat renal transplantation model using small animal positron emission tomography (PET and (18F-fluorodeoxyglucose (FDG. 3 h after i.v. injection of 30 MBq FDG into adult uni-nephrectomized, allogeneically transplanted rats, tissue radioactivity of renal parenchyma was assessed in vivo by a small animal PET-scanner (post operative day (POD 1,2,4, and 7 and post mortem dissection. The mean radioactivity (cps/mm(3 tissue as well as the percent injected dose (%ID was compared between graft and native reference kidney. Results were confirmed by histological and autoradiographic analysis. Healthy rats, rats with acute CSA nephrotoxicity, with acute tubular necrosis, and syngeneically transplanted rats served as controls. FDG-uptake was significantly elevated only in allogeneic grafts from POD 1 on when compared to the native kidney (%ID graft POD 1: 0.54+/-0.06; POD 2: 0.58+/-0.12; POD 4: 0.81+/-0.06; POD 7: 0.77+/-0.1; CTR: 0.22+/-0.01, n = 3-28. Renal FDG-uptake in vivo correlated with the results obtained by micro-autoradiography and the degree of inflammatory infiltrates observed in histology. CONCLUSIONS/SIGNIFICANCE: We propose that graft FDG-PET imaging is a new option to non-invasively, specifically, early detect, and follow

  7. Optimization and performance evaluation of the microPET II scanner for in vivo small-animal imaging

    International Nuclear Information System (INIS)

    Yang Yongfeng; Tai Yuanchuan; Siegel, Stefan; Newport, Danny F; Bai, Bing; Li, Quanzheng; Leahy, Richard M; Cherry, Simon R

    2004-01-01

    MicroPET II is a newly developed PET (positron emission tomography) scanner designed for high-resolution imaging of small animals. It consists of 17 640 LSO crystals each measuring 0.975 x 0.975 x 12.5 mm 3 , which are arranged in 42 contiguous rings, with 420 crystals per ring. The scanner has an axial field of view (FOV) of 4.9 cm and a transaxial FOV of 8.5 cm. The purpose of this study was to carefully evaluate the performance of the system and to optimize settings for in vivo mouse and rat imaging studies. The volumetric image resolution was found to depend strongly on the reconstruction algorithm employed and averaged 1.1 mm (1.4 μl) across the central 3 cm of the transaxial FOV when using a statistical reconstruction algorithm with accurate system modelling. The sensitivity, scatter fraction and noise-equivalent count (NEC) rate for mouse- and rat-sized phantoms were measured for different energy and timing windows. Mouse imaging was optimized with a wide open energy window (150-750 keV) and a 10 ns timing window, leading to a sensitivity of 3.3% at the centre of the FOV and a peak NEC rate of 235 000 cps for a total activity of 80 MBq (2.2 mCi) in the phantom. Rat imaging, due to the higher scatter fraction, and the activity that lies outside of the field of view, achieved a maximum NEC rate of 24 600 cps for a total activity of 80 MBq (2.2 mCi) in the phantom, with an energy window of 250-750 keV and a 6 ns timing window. The sensitivity at the centre of the FOV for these settings is 2.1%. This work demonstrates that different scanner settings are necessary to optimize the NEC count rate for different-sized animals and different injected doses. Finally, phantom and in vivo animal studies are presented to demonstrate the capabilities of microPET II for small-animal imaging studies

  8. Dynamic {sup 11}C-methionine PET analysis has an additional value for differentiating malignant tumors from granulomas: an experimental study using small animal PET

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Songji; Zhao, Yan [Hokkaido University, Department of Nuclear Medicine, Graduate School of Medicine, Sapporo (Japan); Hokkaido University, Department of Tracer Kinetics and Bioanalysis, Graduate School of Medicine, Sapporo (Japan); Kuge, Yuji; Hatano, Toshiyuki [Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan); Yi, Min; Kohanawa, Masashi [Hokkaido University, Department of Advanced Medicine, Graduate School of Medicine, Sapporo (Japan); Magota, Keiichi; Tamaki, Nagara [Hokkaido University, Department of Nuclear Medicine, Graduate School of Medicine, Sapporo (Japan); Nishijima, Ken-ichi [Hokkaido University, Department of Molecular Imaging, Graduate School of Medicine, Sapporo (Japan)

    2011-10-15

    We evaluated whether the dynamic profile of L-{sup 11}C-methionine ({sup 11}C-MET) may have an additional value in differentiating malignant tumors from granulomas in experimental rat models by small animal positron emission tomography (PET). Rhodococcus aurantiacus and allogenic rat C6 glioma cells were inoculated, respectively, into the right and left calf muscles to generate a rat model bearing both granulomas and tumors (n = 6). Ten days after the inoculations, dynamic {sup 11}C-MET PET was performed by small animal PET up to 120 min after injection of {sup 11}C-MET. The next day, after overnight fasting, the rats were injected with {sup 18}F-2-deoxy-2-fluoro-D-glucose ({sup 18}F-FDG), and dynamic {sup 18}F-FDG PET was performed up to 180 min. The time-activity curves, static images, and mean standardized uptake value (SUV) in the lesions were calculated. {sup 11}C-MET uptake in the granuloma showed a slow exponential clearance after an initial distribution, while the uptake in the tumor gradually increased with time. The dynamic pattern of {sup 11}C-MET uptake in the granuloma was significantly different from that in the tumor (p < 0.001). In the static analysis of {sup 11}C-MET, visual assessment and SUV analysis could not differentiate the tumor from the granuloma in all cases, although the mean SUV in the granuloma (1.48 {+-} 0.09) was significantly lower than that in the tumor (1.72 {+-} 0.18, p < 0.01). The dynamic patterns, static images, and mean SUVs of {sup 18}F-FDG in the granuloma were similar to those in the tumor (p = NS). Dynamic {sup 11}C-MET PET has an additional value for differentiating malignant tumors from granulomatous lesions, which deserves further elucidation in clinical settings. (orig.)

  9. Dynamic 11C-methionine PET analysis has an additional value for differentiating malignant tumors from granulomas: an experimental study using small animal PET

    International Nuclear Information System (INIS)

    Zhao, Songji; Zhao, Yan; Kuge, Yuji; Hatano, Toshiyuki; Yi, Min; Kohanawa, Masashi; Magota, Keiichi; Tamaki, Nagara; Nishijima, Ken-ichi

    2011-01-01

    We evaluated whether the dynamic profile of L- 11 C-methionine ( 11 C-MET) may have an additional value in differentiating malignant tumors from granulomas in experimental rat models by small animal positron emission tomography (PET). Rhodococcus aurantiacus and allogenic rat C6 glioma cells were inoculated, respectively, into the right and left calf muscles to generate a rat model bearing both granulomas and tumors (n = 6). Ten days after the inoculations, dynamic 11 C-MET PET was performed by small animal PET up to 120 min after injection of 11 C-MET. The next day, after overnight fasting, the rats were injected with 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), and dynamic 18 F-FDG PET was performed up to 180 min. The time-activity curves, static images, and mean standardized uptake value (SUV) in the lesions were calculated. 11 C-MET uptake in the granuloma showed a slow exponential clearance after an initial distribution, while the uptake in the tumor gradually increased with time. The dynamic pattern of 11 C-MET uptake in the granuloma was significantly different from that in the tumor (p 11 C-MET, visual assessment and SUV analysis could not differentiate the tumor from the granuloma in all cases, although the mean SUV in the granuloma (1.48 ± 0.09) was significantly lower than that in the tumor (1.72 ± 0.18, p 18 F-FDG in the granuloma were similar to those in the tumor (p = NS). Dynamic 11 C-MET PET has an additional value for differentiating malignant tumors from granulomatous lesions, which deserves further elucidation in clinical settings. (orig.)

  10. SiliPET: Design of an ultra-high resolution small animal PET scanner based on stacks of semi-conductor detectors

    International Nuclear Information System (INIS)

    Cesca, N.; Auricchio, N.; Di Domenico, G.; Zavattini, G.; Malaguti, R.; Andritschke, R.; Kanbach, G.; Schopper, F.

    2007-01-01

    We studied with Monte Carlo simulations, using the EGSnrc code, a new scanner for small animal positron emission tomography (PET), based on stacks of double-sided semiconductor detectors. Each stack is composed of planar detectors with dimension 70x60x1 mm 3 and orthogonal strips on both sides with 500 μm pitch to read the two interaction coordinates, the third being the detector number in the stack. Multiple interactions in a stack are discarded. In this way, we achieve a precise determination of the first interaction point of the two 511 keV photons. The reduced dimensions of the scanner also improve the solid angle coverage resulting in a high sensitivity. Preliminary results of scanners based on Si planar detectors are presented and the initial tomographic reconstructions demonstrate very good spatial resolution limited only by the positron range. This suggests that, this is a promising new approach for small animal PET imaging. We are testing some double-sided silicon detectors, equipped with 128 orthogonal p and n strips on opposite sides using VATAGP3 ASIC by IDEAS

  11. Image-quality assessment for several positron emitters using the nema nu 4-2009 standards in the siemens inveon small-animal pet scanner

    NARCIS (Netherlands)

    Disselhorst, J.A.; Brom, M.; Laverman, P.; Slump, Cornelis H.; Boerman, O.C.; Oyen, W.J.G.; Gotthardt, M.; Visser, E.P.

    2010-01-01

    The positron emitters 18F, 68Ga, 124I, and 89Zr are all relevant in small-animal PET. Each of these radionuclides has different positron energies and ranges and a different fraction of single photons emitted. Average positron ranges larger than the intrinsic spatial resolution of the scanner (for

  12. Image-quality assessment for several positron emitters using the NEMA NU 4-2008 standards in the Siemens Inveon small-animal PET scanner.

    NARCIS (Netherlands)

    Disselhorst, J.A.; Brom, M.; Laverman, P.; Slump, C.H.; Boerman, O.C.; Oyen, W.J.G.; Gotthardt, M.; Visser, E.P.

    2010-01-01

    The positron emitters (18)F, (68)Ga, (124)I, and (89)Zr are all relevant in small-animal PET. Each of these radionuclides has different positron energies and ranges and a different fraction of single photons emitted. Average positron ranges larger than the intrinsic spatial resolution of the scanner

  13. Small-animal PET study of adenosine A(1) receptors in rat brain: blocking receptors and raising extracellular adenosine.

    Science.gov (United States)

    Paul, Soumen; Khanapur, Shivashankar; Rybczynska, Anna A; Kwizera, Chantal; Sijbesma, Jurgen W A; Ishiwata, Kiichi; Willemsen, Antoon T M; Elsinga, Philip H; Dierckx, Rudi A J O; van Waarde, Aren

    2011-08-01

    Activation of adenosine A(1) receptors (A(1)R) in the brain causes sedation, reduces anxiety, inhibits seizures, and promotes neuroprotection. Cerebral A(1)R can be visualized using 8-dicyclopropylmethyl-1-(11)C-methyl-3-propyl-xanthine ((11)C-MPDX) and PET. This study aims to test whether (11)C-MPDX can be used for quantitative studies of cerebral A(1)R in rodents. (11)C-MPDX was injected (intravenously) into isoflurane-anesthetized male Wistar rats (300 g). A dynamic scan of the central nervous system was obtained, using a small-animal PET camera. A cannula in a femoral artery was used for blood sampling. Three groups of animals were studied: group 1, controls (saline-treated); group 2, animals pretreated with the A(1)R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 mg, intraperitoneally); and group 3, animals pretreated (intraperitoneally) with a 20% solution of ethanol in saline (2 mL) plus the adenosine kinase inhibitor 4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-d] pyrimidine dihydrochloride (ABT-702) (1 mg). DPCPX is known to occupy cerebral A(1)R, whereas ethanol and ABT-702 increase extracellular adenosine. In groups 1 and 3, the brain was clearly visualized. High uptake of (11)C-MPDX was noted in striatum, hippocampus, and cerebellum. In group 2, tracer uptake was strongly suppressed and regional differences were abolished. The treatment of group 3 resulted in an unexpected 40%-45% increase of the cerebral uptake of radioactivity as indicated by increases of PET standardized uptake value, distribution volume from Logan plot, nondisplaceable binding potential from 2-tissue-compartment model fit, and standardized uptake value from a biodistribution study performed after the PET scan. The partition coefficient of the tracer (K(1)/k(2) from the model fit) was not altered under the study conditions. (11)C-MPDX shows a regional distribution in rat brain consistent with binding to A(1)R. Tracer binding is blocked by the selective A

  14. Evaluation of the P-glycoprotein- and breast cancer resistance protein-mediated brain penetration of 11C-labeled topotecan using small-animal positron emission tomography

    International Nuclear Information System (INIS)

    Yamasaki, Tomoteru; Fujinaga, Masayuki; Kawamura, Kazunori; Hatori, Akiko; Yui, Joji; Nengaki, Nobuki; Ogawa, Masanao; Yoshida, Yuichiro; Wakizaka, Hidekatsu; Yanamoto, Kazuhiko; Fukumura, Toshimitsu; Zhang Mingrong

    2011-01-01

    Introduction: Topotecan (TPT) is a camptothecin derivative and is an anticancer drug working as a topoisomerase-I-specific inhibitor. But TPT cannot penetrate through the blood-brain barrier. In this study, we synthesized a new positron emission tomography (PET) probe, [ 11 C]TPT, to evaluate the P-glycoprotein (Pgp)- and breast cancer resistance protein (BCRP)-mediated brain penetration of [ 11 C]TPT using small-animal PET. Methods: [ 11 C]TPT was synthesized by the reaction of a desmethyl precursor with [ 11 C]CH 3 I. In vitro study using [ 11 C]TPT was carried out in MES-SA and doxorubicin-resistant MES-SA/Dx5 cells in the presence or absence of elacridar, a specific inhibitor for Pgp and BCRP. The biodistribution of [ 11 C]TPT was determined using small-animal PET and the dissection method in mice. Results: The transport of [ 11 C]TPT to the extracellular side was determined in MES-SA/Dx5 cells exhibiting the expressions of Pgp and BCRP at high levels. This transport was inhibited by coincubation with elacridar. In Mdr1a/b -/- Bcrp1 -/- mice, PET results indicated that the brain uptake of [ 11 C]TPT was about two times higher than that in wild-type mice. Similarly, the brain penetration of [ 11 C]TPT in wild-type mice was increased by treatment with elacridar. The radioactivity in the brain of elacridar-treated mice was maintained at a certain level after the injection of [ 11 C]TPT, although the radioactivity in the blood decreased with time. Conclusions: We demonstrated the increase of brain penetration of [ 11 C]TPT by deficiency and inhibition of Pgp and BCRP functions using small-animal PET in mice.

  15. Performance evaluation of a rotatory dual-head PET system with 90o increments for small animal imaging

    Science.gov (United States)

    Meng, F.; Zhu, S.; Li, L.; Wang, J.; Cao, X.; Cao, X.; Chen, X.; Liang, J.

    2017-09-01

    A rotatory dual-head positron emission tomography (PET) system with 90o increments has been built up by our lab. In this study, a geometric calibration phantom was designed and then used to calibrate the geometric offset of the system. With the geometric calibration, the artifacts in the reconstructed images were greatly eliminated. Then, we measured the imaging performance including resolution, sensitivity and image quality. The results showed that the full width at half maximum (FWHMs) of the point source were about 1.1 mm in three directions. The peak absolute sensitivity in the center of the field of view varied from 5.66% to 3.17% when the time window was fixed to 10 ns and the energy window was changed from 200-800 keV to 350-650 keV. The recovery coefficients ranged from 0.13 with a standard deviation of 17.5% to 0.98 with a standard deviation of 15.76%. For the air-filled and water-filled chamber, the spill-over ratio was 14.48% and 15.38%, respectively. The in vivo mouse experiment was carried out and further demonstrated the potential of our system in small animal studies.

  16. Performance evaluation of a rotatory dual-head PET system with 90o increments for small animal imaging

    International Nuclear Information System (INIS)

    Meng, F.; Zhu, S.; Li, L.; Wang, J.; Cao, X.; Cao, X.; Chen, X.; Liang, J.

    2017-01-01

    A rotatory dual-head positron emission tomography (PET) system with 90 o increments has been built up by our lab. In this study, a geometric calibration phantom was designed and then used to calibrate the geometric offset of the system. With the geometric calibration, the artifacts in the reconstructed images were greatly eliminated. Then, we measured the imaging performance including resolution, sensitivity and image quality. The results showed that the full width at half maximum (FWHMs) of the point source were about 1.1 mm in three directions. The peak absolute sensitivity in the center of the field of view varied from 5.66% to 3.17% when the time window was fixed to 10 ns and the energy window was changed from 200-800 keV to 350–650 keV. The recovery coefficients ranged from 0.13 with a standard deviation of 17.5% to 0.98 with a standard deviation of 15.76%. For the air-filled and water-filled chamber, the spill-over ratio was 14.48% and 15.38%, respectively. The in vivo mouse experiment was carried out and further demonstrated the potential of our system in small animal studies.

  17. CT with a CMOS flat panel detector integrated on the YAP-(S)PET scanner for in vivo small animal imaging

    International Nuclear Information System (INIS)

    Di Domenico, Giovanni; Cesca, Nicola; Zavattini, Guido; Auricchio, Natalia; Gambaccini, Mauro

    2007-01-01

    Several research groups are pursuing multimodality simultaneous functional and morphological imaging. In this line of research the high resolution YAP-(S)PET small animal integrated PET-SPECT imaging system, constructed by our group of medical physics at the University of Ferrara, is being upgraded with a computed tomography (CT). In this way it will be possible to perform in vivo molecular and genomic imaging studies on small animals (such as mice and rats) and at the same time obtain morphological information necessary for both attenuation correction and accurate localization of the region under investigation. We have take simultaneous PET-CT and SPECT-CT images of phantoms obtained with a single scanner

  18. A useful PET probe [11C]BU99008 with ultra-high specific radioactivity for small animal PET imaging of I2-imidazoline receptors in the hypothalamus

    International Nuclear Information System (INIS)

    Kawamura, Kazunori; Shimoda, Yoko; Yui, Joji; Zhang, Yiding; Yamasaki, Tomoteru; Wakizaka, Hidekatsu; Hatori, Akiko; Xie, Lin; Kumata, Katsushi; Fujinaga, Masayuki; Ogawa, Masanao; Kurihara, Yusuke; Nengaki, Nobuki; Zhang, Ming-Rong

    2017-01-01

    Introduction: A positron emission tomography (PET) probe with ultra-high specific radioactivity (SA) enables measuring high receptor specific binding in brain regions by avoiding mass effect of the PET probe itself. It has been reported that PET probe with ultra-high SA can detect small change caused by endogenous or exogenous ligand. Recently, Kealey et al. developed [ 11 C]BU99008, a more potent PET probe for I 2 -imidazoline receptors (I 2 Rs) imaging, with a conventional SA (mean 76 GBq/μmol) showed higher specific binding in the brain. Here, to detect small change of specific binding for I 2 Rs caused by endogenous or exogenous ligand in an extremely small region, such as hypothalamus in the brain, we synthesized and evaluated [ 11 C]BU99008 with ultra-high SA as a useful PET probe for small-animal PET imaging of I 2 Rs. Methods: [ 11 C]BU99008 was prepared by [ 11 C]methylation of N-desmethyl precursor with [ 11 C]methyl iodide. Biodistribution, metabolite analysis, and brain PET studies were conducted in rats. Results: [ 11 C]BU99008 with ultra-high SA in the range of 5400–16,600 GBq/μmol were successfully synthesized (n = 7), and had appropriate radioactivity for in vivo study. In the biodistribution study, the mean radioactivity levels in all investigated tissues except for the kidney did not show significant difference between [ 11 C]BU99008 with ultra-high SA and that with conventional SA. In the metabolite analysis, the percentage of unchanged [ 11 C]BU99008 at 30 min after the injection of probes with ultra-high and conventional SA was similar in rat brain and plasma. In the PET study of rats' brain, radioactivity level (AUC 30–60 min ) in the hypothalamus of rats injected with [ 11 C]BU99008 with ultra-high SA (64 [SUV ∙ min]) was significantly higher than that observed for that with conventional SA (50 [SUV ∙ min]). The specific binding of [ 11 C]BU99008 with ultra-high SA (86% of total binding) for I 2 R was higher than that of

  19. Contribution of customised dosimetry for small animal to the treatments of cancers by metabolic radiotherapy

    International Nuclear Information System (INIS)

    Boutaleb, Samir

    2010-01-01

    This research thesis first reports a bibliographical study which addressed the use of ionizing radiations in cancer therapy (evolution from ionizing radiation to metabolic radiotherapy, biological and physical parameters, and absorbed dose in metabolic radiotherapy) and the role imagery has in customised dosimetry (absorbed dose calculation methods, determination of cumulative activity, dosimetric models for S factor calculation). Then, the author presents a software which has been specifically developed for the creation of dosimetric models, and reports its validation. He reports the comparison between different dosimetric models in the case of mice. He highlights two applications of the developed tool: radio-immunotherapy and metabolic radiotherapy. He finally proposes a general discussion on the impact of small animal dosimetry on metabolic radiotherapy [fr

  20. Improving PET Quantification of Small Animal [68Ga]DOTA-Labeled PET/CT Studies by Using a CT-Based Positron Range Correction.

    Science.gov (United States)

    Cal-Gonzalez, Jacobo; Vaquero, Juan José; Herraiz, Joaquín L; Pérez-Liva, Mailyn; Soto-Montenegro, María Luisa; Peña-Zalbidea, Santiago; Desco, Manuel; Udías, José Manuel

    2018-01-19

    Image quality of positron emission tomography (PET) tracers that emits high-energy positrons, such as Ga-68, Rb-82, or I-124, is significantly affected by positron range (PR) effects. PR effects are especially important in small animal PET studies, since they can limit spatial resolution and quantitative accuracy of the images. Since generators accessibility has made Ga-68 tracers wide available, the aim of this study is to show how the quantitative results of [ 68 Ga]DOTA-labeled PET/X-ray computed tomography (CT) imaging of neuroendocrine tumors in mice can be improved using positron range correction (PRC). Eighteen scans in 12 mice were evaluated, with three different models of tumors: PC12, AR42J, and meningiomas. In addition, three different [ 68 Ga]DOTA-labeled radiotracers were used to evaluate the PRC with different tracer distributions: [ 68 Ga]DOTANOC, [ 68 Ga]DOTATOC, and [ 68 Ga]DOTATATE. Two PRC methods were evaluated: a tissue-dependent (TD-PRC) and a tissue-dependent spatially-variant correction (TDSV-PRC). Taking a region in the liver as reference, the tissue-to-liver ratio values for tumor tissue (TLR tumor ), lung (TLR lung ), and necrotic areas within the tumors (TLR necrotic ) and their respective relative variations (ΔTLR) were evaluated. All TLR values in the PRC images were significantly different (p DOTA-labeled PET/CT imaging of mice with neuroendocrine tumors, hence demonstrating that these techniques could also ameliorate the deleterious effect of the positron range in clinical PET imaging.

  1. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals.

    Science.gov (United States)

    Kujawska, Tamara; Secomski, Wojciech; Byra, Michał; Postema, Michiel; Nowicki, Andrzej

    2017-04-01

    A technique using pulsed High Intensity Focused Ultrasound (HIFU) to destroy deep-seated solid tumors is a promising noninvasive therapeutic approach. A main purpose of this study was to design and test a HIFU transducer suitable for preclinical studies of efficacy of tested, anti-cancer drugs, activated by HIFU beams, in the treatment of a variety of solid tumors implanted to various organs of small animals at the depth of the order of 1-2cm under the skin. To allow focusing of the beam, generated by such transducer, within treated tissue at different depths, a spherical, 2-MHz, 29-mm diameter annular phased array transducer was designed and built. To prove its potential for preclinical studies on small animals, multiple thermal lesions were induced in a pork loin ex vivo by heating beams of the same: 6W, or 12W, or 18W acoustic power and 25mm, 30mm, and 35mm focal lengths. Time delay for each annulus was controlled electronically to provide beam focusing within tissue at the depths of 10mm, 15mm, and 20mm. The exposure time required to induce local necrosis was determined at different depths using thermocouples. Location and extent of thermal lesions determined from numerical simulations were compared with those measured using ultrasound and magnetic resonance imaging techniques and verified by a digital caliper after cutting the tested tissue samples. Quantitative analysis of the results showed that the location and extent of necrotic lesions on the magnetic resonance images are consistent with those predicted numerically and measured by caliper. The edges of lesions were clearly outlined although on ultrasound images they were fuzzy. This allows to conclude that the use of the transducer designed offers an effective noninvasive tool not only to induce local necrotic lesions within treated tissue without damaging the surrounding tissue structures but also to test various chemotherapeutics activated by the HIFU beams in preclinical studies on small animals

  2. A new 18F-labelled derivative of the MMP inhibitor CGS 27023A for PET: Radiosynthesis and initial small-animal PET studies

    International Nuclear Information System (INIS)

    Wagner, Stefan; Breyholz, Hans-Joerg; Hoeltke, Carsten; Faust, Andreas; Schober, Otmar; Schaefers, Michael; Kopka, Klaus

    2009-01-01

    The CGS 27023A derivative (R)-2-(N-((6-fluoropyridin-3-yl) methyl)-4-methoxyphenyl-sulphonamido)-N-hydroxy-3-methylbutanamide 1a was identified as a very potent matrix metalloproteinase inhibitor. Here, we describe a one-step radiosynthesis of the target compound [ 18 F]1a. The syntheses of [ 18 F]1a resulted in a radiochemical yield of 12.1±5.9% (decay-corrected), a radiochemical purity of 98.8±0.6%, and a specific activity of 39±27 GBq/μmol at the end of synthesis within 160±18 min from the end of radionuclide production (n=5). Initial small-animal PET studies in wild-type mice (C57/BL6) showed no unfavourable tissue accumulation of [ 18 F]1a

  3. SiliPET: An ultra-high resolution design of a small animal PET scanner based on stacks of double-sided silicon strip detector

    International Nuclear Information System (INIS)

    Di Domenico, Giovanni; Zavattini, Guido; Cesca, Nicola; Auricchio, Natalia; Andritschke, Robert; Schopper, Florian; Kanbach, Gottfried

    2007-01-01

    We investigated with Monte Carlo simulations, using the EGSNrcMP code, the capabilities of a small animal PET scanner based on four stacks of double-sided silicon strip detectors. Each stack consists of 40 silicon detectors with dimension of 60x60x1 mm 3 and 128 orthogonal strips on each side. Two coordinates of the interaction are given by the strips, whereas the third coordinate is given by the detector number in the stack. The stacks are arranged to form a box of 5x5x6 cm 3 with minor sides opened; the box represents the minimal FOV of the scanner. The performance parameters of the SiliPET scanner have been estimated giving a (positron range limited) spatial resolution of 0.52 mm FWHM, and an absolute sensitivity of 5.1% at the center of system. Preliminary results of a proof of principle measurement done with the MEGA advanced Compton imager using a ∼1 mm diameter 22 Na source, showed a focal ray tracing FWHM of 1 mm

  4. Instruments for radiation measurement in life sciences (5), ''Development of imaging technology in life sciences'' III. Development of small animal PET scanners

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Murayama, Hideo

    2006-01-01

    This paper summarizes the requisites for small animal PET scanners, present state of their market and of their development in National Institute of Radiological Sciences (NIRS). Relative to the apparatus clinically used, the requisites involve the high spatial resolution of 0.8-1.5 mm and high sensitivity of the equipment itself due to low dose of the tracer to be given to animals. At present, more than 20 institutions like universities, research facilities and companies are developing the PET equipment for small animals and about 10 machines are in the market. However, their resolution and sensitivity are not fully satisfactory and for their improvement, investigators are paying attention to the gamma ray measurement by depth-of-interaction (DOI) method. NIRS has been also developing the machine jPET-D4 and has proposed to manufacture jPET-RD having 4-layer DOI detectors with the absolute central sensitivity as high as 14.7%. jPET-RD is to have the spatial resolution as high as <1mm (central view) and -1.4 mm (periphery). (T.I.)

  5. High Dose MicroCT Does Not Contribute Toward Improved MicroPET/CT Image Quantitative Accuracy and Can Limit Longitudinal Scanning of Small Animals

    Directory of Open Access Journals (Sweden)

    Wendy A. McDougald

    2017-10-01

    Full Text Available Obtaining accurate quantitative measurements in preclinical Positron Emission Tomography/Computed Tomography (PET/CT imaging is of paramount importance in biomedical research and helps supporting efficient translation of preclinical results to the clinic. The purpose of this study was two-fold: (1 to investigate the effects of different CT acquisition protocols on PET/CT image quality and data quantification; and (2 to evaluate the absorbed dose associated with varying CT parameters.Methods: An air/water quality control CT phantom, tissue equivalent material phantom, an in-house 3D printed phantom and an image quality PET/CT phantom were imaged using a Mediso nanoPET/CT scanner. Collected data was analyzed using PMOD software, VivoQuant software and National Electric Manufactures Association (NEMA software implemented by Mediso. Measured Hounsfield Unit (HU in collected CT images were compared to the known HU values and image noise was quantified. PET recovery coefficients (RC, uniformity and quantitative bias were also measured.Results: Only less than 2 and 1% of CT acquisition protocols yielded water HU values < −80 and air HU values < −840, respectively. Four out of 11 CT protocols resulted in more than 100 mGy absorbed dose. Different CT protocols did not impact PET uniformity and RC, and resulted in <4% overall bias relative to expected radioactive concentration.Conclusion: Preclinical CT protocols with increased exposure times can result in high absorbed doses to the small animals. These should be avoided, as they do not contributed toward improved microPET/CT image quantitative accuracy and could limit longitudinal scanning of small animals.

  6. Sub-millimetre DOI detector based on monolithic LYSO and digital SiPM for a dedicated small-animal PET system

    International Nuclear Information System (INIS)

    Marcinkowski, Radosław; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan

    2016-01-01

    The mouse model is widely used in a vast range of biomedical and preclinical studies. Thanks to the ability to detect and quantify biological processes at the molecular level in vivo, PET has become a well-established tool in these investigations. However, the need to visualize and quantify radiopharmaceuticals in anatomic structures of millimetre or less requires good spatial resolution and sensitivity from small-animal PET imaging systems. In previous work we have presented a proof-of-concept of a dedicated high-resolution small-animal PET scanner based on thin monolithic scintillator crystals and Digital Photon Counter photosensor. The combination of thin monolithic crystals and MLE positioning algorithm resulted in an excellent spatial resolution of 0.7 mm uniform in the entire field of view (FOV). However, the limitation of the scanner was its low sensitivity due to small thickness of the lutetium-yttrium oxyorthosilicate (LYSO) crystals (2 mm). Here we present an improved detector design for a small-animal PET system that simultaneously achieves higher sensitivity and sustains a sub-millimetre spatial resolution. The proposed detector consists of a 5 mm thick monolithic LYSO crystal optically coupled to a Digital Photon Counter. Mean nearest neighbour (MNN) positioning combined with depth of interaction (DOI) decoding was employed to achieve sub-millimetre spatial resolution. To evaluate detector performance the intrinsic spatial resolution, energy resolution and coincidence resolving time (CRT) were measured. The average intrinsic spatial resolution of the detector was 0.60 mm full-width-at-half-maximum (FWHM). A DOI resolution of 1.66 mm was achieved. The energy resolution was 23% FWHM at 511 keV and CRT of 529 ps were measured. The improved detector design overcomes the sensitivity limitation of the previous design by increasing the nominal sensitivity of the detector block and retains an excellent intrinsic spatial resolution. (paper)

  7. The performance of silicon detectors for the SiliPET project: A small animal PET scanner based on stacks of silicon detectors

    International Nuclear Information System (INIS)

    Auricchio, Natalia; Domenico, Giovanni di; Zavattini, Guido; Milano, Luciano; Malaguti, Roberto

    2011-01-01

    We propose a new scanner for small animal Positron Emission Tomography (PET) based on stacks of double sided silicon detectors. Each stack is made of 40 planar detectors with dimension 60x60x1 mm 3 and 128 orthogonal strips on both sides to read the two coordinates of interaction, the third being the detector number in the stack. Multiple interactions in a stack are discarded by an exclusive OR applied between each detector plane of a stack. In this way we achieve a precise determination of the interaction point of the two 511 keV photons. The reduced dimensions of the scanner also improve the solid angle coverage resulting in a high sensitivity. Preliminary results were obtained with MEGA prototype tracker (11 double sided Si detector layers), divided into two stacks 2 cm apart made of, respectively, 5 and 6 prototype layers, placing a small spherical 22 Na source in different positions. We report on the results, spatial resolution, imaging and timing performances obtained with double sided silicon detectors, manufactured by ITC-FBK, having an active area of 3x3 cm 2 , thickness of 1 mm and a strip pitch of 500μm. Two different strip widths of 300 and 200μm equipped with 64 orthogonal p and n strips on opposite sides were read out with the VATAGP2.5 ASIC, a 128-channel 'general purpose' charge sensitive amplifier.

  8. Assessment of MR-compatibility of SiPM PET insert using short optical fiber bundles for small animal research

    International Nuclear Information System (INIS)

    Kang, H.G.; Hong, S.J.; Ko, G.B.; Yoon, H.S.; Lee, J.S.; Song, I.C.; Rhee, J.T.

    2015-01-01

    Simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) can provide new perspectives in human disease research because of their complementary in-vivo imaging techniques. Previously, we have developed an MR-compatible PET insert based on optical fibers using silicon photomultipliers (SiPM). However when echo planar imaging (EPI) sequence was performed, signal intensity was slowly decreased by −0.9% over the 5.5 minutes and significant geometrical distortion was observed as the PET insert was installed inside an MRI bore, indicating that the PET electronics and its shielding boxes might have been too close to an MR imaging object. In this paper, optical fiber bundles with a length of 54 mm instead of 31 mm were employed to minimize PET interference on MR images. Furthermore, the LYSO crystals with a size of 1.5 × 1.5 × 7.0 mm 3 were used instead of 2.47 × 2.74 × 20.0 mm 3 for preclinical PET/MR applications. To improve the MR image quality, two receive-only loop coils were used. The effects of the PET insert on the SNR of the MR image either for morphological or advanced MR pulse sequences such as diffusion weighted imaging (DWI), functional MRI (fMRI), and magnetic resonance spectroscopy (MRS) were investigated. The quantitative MR compatibility such as B 0 and B 1 field homogeneity without PET, with 'PET OFF', and with 'PET ON' was also evaluated. In conclusion, B 0 maps were not affected by the proposed PET insert whereas B 1 maps were significantly affected by the PET insert. The advanced MRI sequences such as DWI, EPI, and MRS can be performed without a significant MR image quality degradation

  9. Multi-tracer small animal PET imaging of the tumour response to the novel pan-Erb-B inhibitor CI-1033

    International Nuclear Information System (INIS)

    Dorow, Donna S.; Cullinane, Carleen; Conus, Nelly; Roselt, Peter; Binns, David; McCarthy, Timothy J.; McArthur, Grant A.; Hicks, Rodney J.

    2006-01-01

    This study was designed as ''proof of concept'' for a drug development model utilising multi-tracer serial small animal PET imaging to characterise tumour responses to molecularly targeted therapy. Mice bearing subcutaneous A431 human squamous carcinoma xenografts (n=6-8) were treated with the pan-Erb-B inhibitor CI-1033 or vehicle and imaged serially (days 0, 3 and 6 or 7) with [ 18 F]fluorodeoxyglucose, [ 18 F]fluoro-L-thymidine, [ 18 F]fluoro-azoazomycinarabinoside or [ 18 F]fluoromisonidazole. Separate cohorts (n=3) were treated identically and tumours were assessed ex vivo for markers of glucose metabolism, proliferation and hypoxia. During the study period, mean uptake of all PET tracers generally increased for control tumours compared to baseline. In contrast, tracer uptake into CI-1033-treated tumours decreased by 20-60% during treatment. Expression of the glucose transporter Glut-1 and cell cycle markers was unchanged or increased in control tumours and generally decreased with CI-1033 treatment, compared to baseline. Thymidine kinase activity was reduced in all tumours compared to baseline at day 3 but was sevenfold higher in control versus CI-1033-treated tumours by day 6 of treatment. Uptake of the hypoxia marker pimonidazole was stable in control tumours but was severely reduced following 7 days of CI-1033 treatment. CI-1033 treatment significantly affects tumour metabolism, proliferation and hypoxia as determined by PET. The PET findings correlated well with ex vivo biomarkers for each of the cellular processes studied. These results confirm the utility of small animal PET for evaluation of the effectiveness of molecularly targeted therapies and simultaneously definition of specific cellular processes involved in the therapeutic response. (orig.)

  10. Sci-Sat AM(1): Imaging-08: Small animal APD PET detector with submillimetric resolution for molecular imaging.

    Science.gov (United States)

    Bérard, P; Bergeron, M; Pepin, C M; Cadorette, J; Tétrault, M-A; Viscogliosi, N; Fontaine, R; Dautet, H; Davies, M; Lecomte, R

    2008-07-01

    Visualization and quantification of biological processes in mice, the preferred animal model in most preclinical studies, require the best possible spatial resolution in positron emission tomography (PET). A new 64-channel avalanche photodiode (APD) detector module was developed to achieve submillimeter spatial resolution for this purpose. The module consists of dual 4 × 8 APD arrays mounted in a custom ceramic holder. Individual APD pixels having an active area of 1.1 × 1.1 mm2 at a 1.2 mm pitch can be fitted to an 8 × 8 LYSO scintillator block designed to accommodate one-to-one coupling. An analog test board with four 16-channel preamplifier ASICs was designed to be interfaced with the existing LabPET digital processing electronics. At a standard APD operating bias, a mean energy resolution of 27.5 ± 0.6% was typically obtained at 511 keV with a relative standard deviation of 13.8% in signal amplitude for the 64 individual pixels. Crosstalk between pixels was found to be well below the typical lower energy threshold used for PET imaging applications. With two modules in coincidence, a global timing resolution of 5.0 ns FWHM was measured. Finally, an intrinsic spatial resolution of 0.8 mm FWHM was measured by sweeping a 22Na point source between two detector arrays. The proposed detector module demonstrates promising characteristics for dedicated mouse PET imaging at submillimiter resolution. © 2008 American Association of Physicists in Medicine.

  11. Assessment of myocardial metabolic rate of glucose by means of Bayesian ICA and Markov Chain Monte Carlo methods in small animal PET imaging

    Science.gov (United States)

    Berradja, Khadidja; Boughanmi, Nabil

    2016-09-01

    In dynamic cardiac PET FDG studies the assessment of myocardial metabolic rate of glucose (MMRG) requires the knowledge of the blood input function (IF). IF can be obtained by manual or automatic blood sampling and cross calibrated with PET. These procedures are cumbersome, invasive and generate uncertainties. The IF is contaminated by spillover of radioactivity from the adjacent myocardium and this could cause important error in the estimated MMRG. In this study, we show that the IF can be extracted from the images in a rat heart study with 18F-fluorodeoxyglucose (18F-FDG) by means of Independent Component Analysis (ICA) based on Bayesian theory and Markov Chain Monte Carlo (MCMC) sampling method (BICA). Images of the heart from rats were acquired with the Sherbrooke small animal PET scanner. A region of interest (ROI) was drawn around the rat image and decomposed into blood and tissue using BICA. The Statistical study showed that there is a significant difference (p corrupted with spillover.

  12. Studies oriented to optimize the image quality of the small animal PET: Clear PET, modifying some of the parameters of the reconstruction algorithm IMF-OSEM 3D on the data acquisition simulated with GAMOS

    International Nuclear Information System (INIS)

    Canadas, M.; Mendoza, J.; Embid, M.

    2007-01-01

    This report presents studies oriented to optimize the image quality of the small animal PET: Clear- PET. Certain figures of merit (FOM) were used to assess a quantitative value of the contrast and delectability of lesions. The optimization was carried out modifying some of the parameters in the reconstruction software of the scanner, imaging a mini-Derenzo phantom and a cylinder phantom with background activity and two hot spheres. Specifically, it was evaluated the incidence of the inter-update Metz filter (IMF) inside the iterative reconstruction algorithm 3D OSEM. The data acquisition was simulated using the GAMOS framework (Monte Carlo simulation). Integrating GAMOS output with the reconstruction software of the scanner was an additional novelty of this work, to achieve this, data sets were written with the list-mode format (LMF) of ClearPET. In order to verify the optimum values obtained, we foresee to make real acquisitions in the ClearPET of CIEMAT. (Author) 17 refs

  13. Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model

    International Nuclear Information System (INIS)

    Vandeputte, Caroline; Casteels, Cindy; Koole, Michel; Gerits, Anneleen; Struys, Tom; Veghel, Daisy van; Evens, Nele; Bormans, Guy; Dresselaers, Tom; Himmelreich, Uwe; Lambrichts, Ivo; Laere, Koen van

    2012-01-01

    Recent ex vivo and pharmacological evidence suggests involvement of the endocannabinoid system in the pathophysiology of stroke, but conflicting roles for type 1 and 2 cannabinoid receptors (CB 1 and CB 2 ) have been suggested. The purpose of this study was to evaluate CB 1 and CB 2 receptor binding over time in vivo in a rat photothrombotic stroke model using PET. CB 1 and CB 2 microPET imaging was performed at regular time-points up to 2 weeks after stroke using [ 18 F]MK-9470 and [ 11 C]NE40. Stroke size was measured using MRI at 9.4 T. Ex vivo validation was performed via immunostaining for CB 1 and CB 2 . Immunofluorescent double stainings were also performed with markers for astrocytes (GFAP) and macrophages/microglia (CD68). [ 18 F]MK-9470 PET showed a strong increase in CB 1 binding 24 h and 72 h after stroke in the cortex surrounding the lesion, extending to the insular cortex 24 h after surgery. These alterations were consistently confirmed by CB 1 immunohistochemical staining. [ 11 C]NE40 did not show any significant differences between stroke and sham-operated animals, although staining for CB 2 revealed minor immunoreactivity at 1 and 2 weeks after stroke in this model. Both CB 1 + and CB 2 + cells showed minor immunoreactivity for CD68. Time-dependent and regionally strongly increased CB 1 , but not CB 2 , binding are early consequences of photothrombotic stroke. Pharmacological interventions should primarily aim at CB 1 signalling as the role of CB 2 seems minor in the acute and subacute phases of stroke. (orig.)

  14. Small-animal PET imaging of the type 1 and type 2 cannabinoid receptors in a photothrombotic stroke model

    Energy Technology Data Exchange (ETDEWEB)

    Vandeputte, Caroline; Casteels, Cindy; Koole, Michel; Gerits, Anneleen [KU Leuven, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); Struys, Tom [Hasselt University, Laboratory of Histology, Biomedical Research Institute, Hasselt (Belgium); KU Leuven, Biomedical NMR Unit, Leuven (Belgium); Veghel, Daisy van; Evens, Nele; Bormans, Guy [KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); KU Leuven, Laboratory of Radiopharmacy, Leuven (Belgium); Dresselaers, Tom; Himmelreich, Uwe [KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); KU Leuven, Biomedical NMR Unit, Leuven (Belgium); Lambrichts, Ivo [Hasselt University, Laboratory of Histology, Biomedical Research Institute, Hasselt (Belgium); Laere, Koen van [KU Leuven, Division of Nuclear Medicine, Leuven (Belgium); KU Leuven, Molecular Small Animal Imaging Center, MoSAIC, Leuven (Belgium); UZ Leuven, Division of Nuclear Medicine, Leuven (Belgium)

    2012-11-15

    Recent ex vivo and pharmacological evidence suggests involvement of the endocannabinoid system in the pathophysiology of stroke, but conflicting roles for type 1 and 2 cannabinoid receptors (CB{sub 1} and CB{sub 2}) have been suggested. The purpose of this study was to evaluate CB{sub 1} and CB{sub 2} receptor binding over time in vivo in a rat photothrombotic stroke model using PET. CB{sub 1} and CB{sub 2} microPET imaging was performed at regular time-points up to 2 weeks after stroke using [{sup 18}F]MK-9470 and [{sup 11}C]NE40. Stroke size was measured using MRI at 9.4 T. Ex vivo validation was performed via immunostaining for CB{sub 1} and CB{sub 2}. Immunofluorescent double stainings were also performed with markers for astrocytes (GFAP) and macrophages/microglia (CD68). [{sup 18}F]MK-9470 PET showed a strong increase in CB{sub 1} binding 24 h and 72 h after stroke in the cortex surrounding the lesion, extending to the insular cortex 24 h after surgery. These alterations were consistently confirmed by CB{sub 1} immunohistochemical staining. [{sup 11}C]NE40 did not show any significant differences between stroke and sham-operated animals, although staining for CB{sub 2} revealed minor immunoreactivity at 1 and 2 weeks after stroke in this model. Both CB{sub 1} {sup +} and CB{sub 2} {sup +} cells showed minor immunoreactivity for CD68. Time-dependent and regionally strongly increased CB{sub 1}, but not CB{sub 2}, binding are early consequences of photothrombotic stroke. Pharmacological interventions should primarily aim at CB{sub 1} signalling as the role of CB{sub 2} seems minor in the acute and subacute phases of stroke. (orig.)

  15. Wavelet-based regularization and edge preservation for submillimetre 3D list-mode reconstruction data from a high resolution small animal PET system

    Energy Technology Data Exchange (ETDEWEB)

    Jesus Ochoa Dominguez, Humberto de, E-mail: hochoa@uacj.mx [Departamento de Ingenieria Eectrica y Computacion, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico); Ortega Maynez, Leticia; Osiris Vergara Villegas, Osslan; Gordillo Castillo, Nelly; Guadalupe Cruz Sanchez, Vianey; Gutierrez Casas, Efren David [Departamento de Ingenieria Eectrica y Computacion, Universidad Autonoma de Ciudad Juarez, Avenida del Charro 450 Norte, C.P. 32310 Ciudad Juarez, Chihuahua (Mexico)

    2011-10-01

    The data obtained from a PET system tend to be noisy because of the limitations of the current instrumentation and the detector efficiency. This problem is particularly severe in images of small animals as the noise contaminates areas of interest within small organs. Therefore, denoising becomes a challenging task. In this paper, a novel wavelet-based regularization and edge preservation method is proposed to reduce such noise. To demonstrate this method, image reconstruction using a small mouse {sup 18}F NEMA phantom and a {sup 18}F mouse was performed. Investigation on the effects of the image quality was addressed for each reconstruction case. Results show that the proposed method drastically reduces the noise and preserves the image details.

  16. Construction and tests of demonstrator modules for a 3-D axial PET system for brain or small animal imaging

    CERN Document Server

    Chesi, E; Clinthorne, N; Pauss, P; Meddi, F; Beltrame, P; Kagan, H; Braem, A; Casella, C; Djambazov, G; Smith, S; Johnson, I; Lustermann, W; Weilhammer, P; Nessi-Tedaldi, F; Dissertori, G; Renker, D; Schneider, T; Schinzel, D; Honscheid, K; De Leo, R; Bolle, E; Fanti, V; Rafecas, M; Cochran, E; Rudge, A; Stapnes, S; Huh, S; Seguinot, J; Solevi, P; Joram, C; Oliver, J F

    2011-01-01

    The design and construction of a PET camera module with high sensitivity, full 3-D spatial reconstruction and very good energy resolution is presented. The basic principle consists of an axial arrangement of long scintillation crystals around the Field Of View (FOV), providing a measurement of the transverse coordinates of the interacting 511 keV gamma ray. On top of each layer of crystals, an array of Wave-Length Shifter (WLS) strips, which collect the light leaving the crystals sideways, is positioned orthogonal to the crystal direction. The signals in the WLS strips allow a precise measurement of the z (axial) co-ordinate of the 511 keV gamma-ray gamma impact. The construction of two modules used for demonstration of the concept is described. First preliminary results on spatial and energy resolution from one full module will be shown. (C) 2010 Elsevier B.V. All rights reserved.

  17. Evaluation of the P-glycoprotein- and breast cancer resistance protein-mediated brain penetration of {sup 11}C-labeled topotecan using small-animal positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Yamasaki, Tomoteru; Fujinaga, Masayuki; Kawamura, Kazunori; Hatori, Akiko; Yui, Joji [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Nengaki, Nobuki; Ogawa, Masanao; Yoshida, Yuichiro [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); SHI Accelerator Service, Ltd., Tokyo 141-8686 (Japan); Wakizaka, Hidekatsu [Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Yanamoto, Kazuhiko [Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka 565-0871 (Japan); Fukumura, Toshimitsu [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Zhang Mingrong, E-mail: zhang@nirs.go.jp [Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan)

    2011-07-15

    Introduction: Topotecan (TPT) is a camptothecin derivative and is an anticancer drug working as a topoisomerase-I-specific inhibitor. But TPT cannot penetrate through the blood-brain barrier. In this study, we synthesized a new positron emission tomography (PET) probe, [{sup 11}C]TPT, to evaluate the P-glycoprotein (Pgp)- and breast cancer resistance protein (BCRP)-mediated brain penetration of [{sup 11}C]TPT using small-animal PET. Methods: [{sup 11}C]TPT was synthesized by the reaction of a desmethyl precursor with [{sup 11}C]CH{sub 3}I. In vitro study using [{sup 11}C]TPT was carried out in MES-SA and doxorubicin-resistant MES-SA/Dx5 cells in the presence or absence of elacridar, a specific inhibitor for Pgp and BCRP. The biodistribution of [{sup 11}C]TPT was determined using small-animal PET and the dissection method in mice. Results: The transport of [{sup 11}C]TPT to the extracellular side was determined in MES-SA/Dx5 cells exhibiting the expressions of Pgp and BCRP at high levels. This transport was inhibited by coincubation with elacridar. In Mdr1a/b{sup -/-}Bcrp1{sup -/-} mice, PET results indicated that the brain uptake of [{sup 11}C]TPT was about two times higher than that in wild-type mice. Similarly, the brain penetration of [{sup 11}C]TPT in wild-type mice was increased by treatment with elacridar. The radioactivity in the brain of elacridar-treated mice was maintained at a certain level after the injection of [{sup 11}C]TPT, although the radioactivity in the blood decreased with time. Conclusions: We demonstrated the increase of brain penetration of [{sup 11}C]TPT by deficiency and inhibition of Pgp and BCRP functions using small-animal PET in mice.

  18. Evaluation of brain SERT occupancy by resveratrol against MDMA-induced neurobiological and behavioral changes in rats: A 4-[¹⁸F]-ADAM/small-animal PET study.

    Science.gov (United States)

    Shih, Jui-Hu; Ma, Kuo-Hsing; Chen, Chien-Fu F; Cheng, Cheng-Yi; Pao, Li-Heng; Weng, Shao-Ju; Huang, Yuahn-Sieh; Shiue, Chyng-Yann; Yeh, Ming-Kung; Li, I-Hsun

    2016-01-01

    The misuse of 3,4-methylenedioxymethamphetamine (MDMA) has drawn a growing concern worldwide for its psychophysiological impacts on humans. MDMA abusers are often accompanied by long-term serotonergic neurotoxicity, which is associated with reduced density of cerebral serotonin transporters (SERT) and depressive disorders. Resveratrol (RSV) is a natural polyphenolic phytoalexin that has been known for its antidepressant and neuroprotective effects. However, biological targets of RSV as well as its neuroprotective effects against MDMA remained largely unknown. In this study, we examined binding potency of RSV and MDMA to SERT using small-animal positron emission tomography (PET) with the SERT radioligand, N,N-dimethyl-2-(2-amino-4-[(18)F]fluorophenylthio)benzylamine (4-[(18)F]-ADAM) and investigated the protection of RSV against the acute and long-term adverse effects of MDMA. We found that RSV exhibit binding potentials to SERT in vivo in a dose-dependent manner with variation among brain regions. When the MDMA-treated rats (10mg/kg, s.c.) were co-injected with RSV (20mg/kg, i.p.) twice daily for 4 consecutive days, MDMA-induced acute elevation in plasma corticosterone was significantly reduced. Further, 4-[(18)F]-ADAM PET imaging revealed that RSV protected against the MDMA-induced decrease in SERT availability in the midbrain and the thalamus 2 weeks following the co-treatment. The PET data were comparable to the observation from the forced swim test that RSV sufficiently ameliorated the depressive-like behaviors of the MDMA-treated rats. Together, these findings suggest that RSV is a potential antidepressant and may confer protection against neurobiological and behavioral changes induced by MDMA. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  19. Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography.

    Science.gov (United States)

    Toyama, Hiroshi; Ichise, Masanori; Liow, Jeih-San; Modell, Kendra J; Vines, Douglass C; Esaki, Takanori; Cook, Michelle; Seidel, Jurgen; Sokoloff, Louis; Green, Michael V; Innis, Robert B

    2004-08-01

    The purpose of this study was to evaluate the feasibility of absolute quantification of regional cerebral glucose utilization (rCMR(glc)) in mice by use of (18)F-FDG and a small animal PET scanner. rCMR(glc) determined with (18)F-FDG PET was compared with values determined simultaneously by the autoradiographic 2-(14)C-DG method. In addition, we compared the rCMR(glc) values under isoflurane, ketamine and xylazine anesthesia, and awake states. Immediately after injection of (18)F-FDG and 2-(14)C-DG into mice, timed arterial samples were drawn over 45 min to determine the time courses of (18)F-FDG and 2-(14)C-DG. Animals were euthanized at 45 min and their brain was imaged with the PET scanner. The brains were then processed for 2-(14)C-DG autoradiography. Regions of interest were manually placed over cortical regions on corresponding coronal (18)F-FDG PET and 2-(14)C-DG autoradiographic images. rCMR(glc) values were calculated for both tracers by the autoradiographic 2-(14)C-DG method with modifications for the different rate and lumped constants for the 2 tracers. Average rCMR(glc) values in cerebral cortex with (18)F-FDG PET under normoglycemic conditions (isoflurane and awake) were generally lower (by 8.3%) but strongly correlated with those of 2-(14)C-DG (r(2) = 0.95). On the other hand, under hyperglycemic conditions (ketamine/xylazine) average cortical rCMR(glc) values with (18)F-FDG PET were higher (by 17.3%) than those with 2-(14)C-DG. Values for rCMR(glc) and uptake (percentage injected dose per gram [%ID/g]) with (18)F-FDG PET were significantly lower under both isoflurane and ketamine/xylazine anesthesia than in the awake mice. However, the reductions of rCMR(glc) were markedly greater under isoflurane (by 57%) than under ketamine and xylazine (by 19%), whereas more marked reductions of %ID/g were observed with ketamine/xylazine (by 54%) than with isoflurane (by 37%). These reverse differences between isoflurane and ketamine/xylazine may be due to

  20. Preclinical Study on GRPR-Targeted (68)Ga-Probes for PET Imaging of Prostate Cancer

    DEFF Research Database (Denmark)

    Sun, Yao; Ma, Xiaowei; Zhang, Zhe

    2016-01-01

    Gastrin-releasing peptide receptor (GRPR) targeted positron emission tomography (PET) is a highly promising approach for imaging of prostate cancer (PCa) in small animal models and patients. Developing a GRPR-targeted PET probe with excellent in vivo performance such as high tumor uptake, high...

  1. Longitudinal Raman Spectroscopic Observation of Skin Biochemical Changes due to Chemotherapeutic Treatment for Breast Cancer in Small Animal Model

    Directory of Open Access Journals (Sweden)

    Myeongsu Seong

    2017-01-01

    Full Text Available The cancer field effect (CFE has been highlighted as one of indirect indications for tissue variations that are insensitive to conventional diagnostic techniques. In this research, we had a hypothesis that chemotherapy for breast cancer would affect skin biochemical compositions that would be reflected by Raman spectral changes. We used a fiber-optic probe-based Raman spectroscopy to perform preliminary animal experiments to validate the hypothesis. Firstly, we verified the probing depth of the fiber-optic probe (~800 μm using a simple intravenous fat emulsion-filled phantom having a silicon wafer at the bottom inside a cuvette. Then, we obtained Raman spectra during breast cancer treatment by chemotherapy from a small animal model in longitudinal manner. Our results showed that the treatment causes variations of biochemical compositions in the skin. For further validation, the Raman spectra will have to be collected from more populations and spectra will need to be compared with immunohistochemistry of the breast tissue.

  2. Influence of Co-57 and CT Transmission Measurements on the Quantification Accuracy and Partial Volume Effect of a Small Animal PET Scanner.

    Science.gov (United States)

    Mannheim, Julia G; Schmid, Andreas M; Pichler, Bernd J

    2017-12-01

    Non-invasive in vivo positron emission tomography (PET) provides high detection sensitivity in the nano- to picomolar range and in addition to other advantages, the possibility to absolutely quantify the acquired data. The present study focuses on the comparison of transmission data acquired with an X-ray computed tomography (CT) scanner or a Co-57 source for the Inveon small animal PET scanner (Siemens Healthcare, Knoxville, TN, USA), as well as determines their influences on the quantification accuracy and partial volume effect (PVE). A special focus included the impact of the performed calibration on the quantification accuracy. Phantom measurements were carried out to determine the quantification accuracy, the influence of the object size on the quantification, and the PVE for different sphere sizes, along the field of view and for different contrast ratios. An influence of the emission activity on the Co-57 transmission measurements was discovered (deviations up to 24.06 % measured to true activity), whereas no influence of the emission activity on the CT attenuation correction was identified (deviations influenced by the applied calibration factor and by the object size. The PVE demonstrated a dependency on the sphere size, the position within the field of view, the reconstruction and correction algorithms and the count statistics. Depending on the reconstruction algorithm, only ∼30-40 % of the true activity within a small sphere could be resolved. The iterative 3D reconstruction algorithms uncovered substantially increased recovery values compared to the analytical and 2D iterative reconstruction algorithms (up to 70.46 % and 80.82 % recovery for the smallest and largest sphere using iterative 3D reconstruction algorithms). The transmission measurement (CT or Co-57 source) to correct for attenuation did not severely influence the PVE. The analysis of the quantification accuracy and the PVE revealed an influence of the object size, the reconstruction

  3. Evaluation of Small-Animal PET Outcome Measures to Detect Disease Modification Induced by BACE Inhibition in a Transgenic Mouse Model of Alzheimer Disease.

    Science.gov (United States)

    Deleye, Steven; Waldron, Ann-Marie; Verhaeghe, Jeroen; Bottelbergs, Astrid; Wyffels, Leonie; Van Broeck, Bianca; Langlois, Xavier; Schmidt, Mark; Stroobants, Sigrid; Staelens, Steven

    2017-12-01

    In this study, we investigated the effects of chronic administration of an inhibitor of the β-site amyloid precursor protein-cleaving enzyme 1 (BACE1) on Alzheimer-related pathology by multitracer PET imaging in transgenic APPPS1-21 (TG) mice. Methods: Wild-type (WT) and TG mice received vehicle or BACE inhibitor (60 mg/kg) starting at 7 wk of age. Outcome measures of brain metabolism, neuroinflammation, and amyloid-β pathology were obtained through small-animal PET imaging with 18 F-FDG, 18 F-peripheral benzodiazepine receptor ( 18 F-PBR), and 18 F-florbetapir ( 18 F-AV45), respectively. Baseline scans were acquired at 6-7 wk of age and follow-up scans at 4, 7, and 12 mo. 18 F-AV45 uptake was measured at 8 and 13 mo of age. After the final scans, histologic measures of amyloid-β (4G8), microglia (ionized calcium binding adaptor molecule 1), astrocytes (glial fibrillary acidic protein), and neuronal nuclei were performed. Results: TG mice demonstrated significant age-associated increases in 18 F-AV45 uptake. An effect of treatment was observed in the cortex ( P = 0.0014), hippocampus ( P = 0.0005), and thalamus ( P treatment, TG mice demonstrated significantly lower 18 F-FDG uptake than WT mice in the thalamus ( P = 0.0004) and hippocampus ( P = 0.0332). Neuronal nucleus staining was lower in both TG groups in the thalamus and cortex. 18 F-PBR111 detected a significant age-related increase in TG mice ( P treatment-induced reduction in activated microglia as demonstrated by histology. Conclusion: Although 18 F-FDG, 18 F-PBR111, and 18 F-AV45 all detected pathologic alterations between TG and WT mice, only 18 F-AV45 could detect an effect of BACE inhibitor treatment. However, changes in WT binding of 18 F-AV45 undermine the specificity of this effect. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  4. Small animal radiotherapy research platforms

    Energy Technology Data Exchange (ETDEWEB)

    Verhaegen, Frank; Granton, Patrick [Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Tryggestad, Erik, E-mail: frank.verhaegen@maastro.nl [Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231 (United States)

    2011-06-21

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research. (topical review)

  5. Small animal radiotherapy research platforms

    Science.gov (United States)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  6. Small animal radiotherapy research platforms

    International Nuclear Information System (INIS)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-01-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research. (topical review)

  7. Non-Invasive in vivo Imaging in Small Animal Research

    Directory of Open Access Journals (Sweden)

    V. Koo

    2006-01-01

    Full Text Available Non-invasive real time in vivo molecular imaging in small animal models has become the essential bridge between in vitro data and their translation into clinical applications. The tremendous development and technological progress, such as tumour modelling, monitoring of tumour growth and detection of metastasis, has facilitated translational drug development. This has added to our knowledge on carcinogenesis. The modalities that are commonly used include Magnetic Resonance Imaging (MRI, Computed Tomography (CT, Positron Emission Tomography (PET, bioluminescence imaging, fluorescence imaging and multi-modality imaging systems. The ability to obtain multiple images longitudinally provides reliable information whilst reducing animal numbers. As yet there is no one modality that is ideal for all experimental studies. This review outlines the instrumentation available together with corresponding applications reported in the literature with particular emphasis on cancer research. Advantages and limitations to current imaging technology are discussed and the issues concerning small animal care during imaging are highlighted.

  8. Preparation of ⁶⁸Ga-labelled DOTA-peptides using a manual labelling approach for small-animal PET imaging.

    Science.gov (United States)

    Romero, Eduardo; Martínez, Alfonso; Oteo, Marta; García, Angel; Morcillo, Miguel Angel

    2016-01-01

    (68)Ga-DOTA-peptides are a promising PET radiotracers used in the detection of different tumours types due to their ability for binding specifically receptors overexpressed in these. Furthermore, (68)Ga can be produced by a (68)Ge/(68)Ga generator on site which is a very good alternative to cyclotron-based PET isotopes. Here, we describe a manual labelling approach for the synthesis of (68)Ga-labelled DOTA-peptides based on concentration and purification of the commercial (68)Ga/(68)Ga generator eluate using an anion exchange-cartridge. (68)Ga-DOTA-TATE was used to image a pheochromocytoma xenograft mouse model by a microPET/CT scanner. The method described provides satisfactory results, allowing the subsequent (68)Ga use to label DOTA-peptides. The simplicity of the method along with its implementation reduced cost, makes it useful in preclinical PET studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. PET or PET-CT with cancer screening

    International Nuclear Information System (INIS)

    Wang Taisong; Zhao Jinhua; Song Jianhua

    2007-01-01

    At present, cancer screening remains a lot of debate in contemporary medical practice. Many constitutes have done a lot of experiments in cancer screening. The same version is that recommendations and decisions regarding cancer screening should be based on reliable data, not self- approbation. Now, some institutes advocate 18 F-FDG PET or 18 F-FDG PET-CT for cancer screening, here, discussed status quo, potential financial, radiation safety and statistical data in 18 F-FDG PET or 18 F-FDG PET- CT cancer screening. (authors)

  10. PET Metabolic Biomarkers for Cancer

    Directory of Open Access Journals (Sweden)

    Etienne Croteau

    2016-01-01

    Full Text Available The body's main fuel sources are fats, carbohydrates (glucose, proteins, and ketone bodies. It is well known that an important hallmark of cancer cells is the overconsumption of glucose. Positron emission tomography (PET imaging using the glucose analog 18 F-fluorodeoxyglucose ( 18 F-FDG has been a powerful cancer diagnostic tool for many decades. Apart from surgery, chemotherapy and radiotherapy represent the two main domains for cancer therapy, targeting tumor proliferation, cell division, and DNA replication–-all processes that require a large amount of energy. Currently, in vivo clinical imaging of metabolism is performed almost exclusively using PET radiotracers that assess oxygen consumption and mechanisms of energy substrate consumption. This paper reviews the utility of PET imaging biomarkers for the detection of cancer proliferation, vascularization, metabolism, treatment response, and follow-up after radiation therapy, chemotherapy, and chemotherapy-related side effects.

  11. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    International Nuclear Information System (INIS)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-01

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with 99m Tc-MDP, DMSA, and 18 F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, 99m Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined 99 mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and 18 F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug

  12. Fabrication of transferrin functionalized gold nanoclusters/graphene oxide nanocomposite for turn-on near-infrared fluorescent bioimaging of cancer cells and small animals.

    Science.gov (United States)

    Wang, Yong; Chen, Jia-Tong; Yan, Xiu-Ping

    2013-02-19

    Transferrin (Tf)-functionalized gold nanoclusters (Tf-AuNCs)/graphene oxide (GO) nanocomposite (Tf-AuNCs/GO) was fabricated as a turn-on near-infrared (NIR) fluorescent probe for bioimaging cancer cells and small animals. A one-step approach was developed to prepare Tf-AuNCs via a biomineralization process with Tf as the template. Tf acted not only as a stabilizer and a reducer but also as a functional ligand for targeting the transferrin receptor (TfR). The prepared Tf-AuNCs gave intense NIR fluorescence that can avoid interference from biological media such as tissue autofluorescence and scattering light. The assembly of Tf-AuNCs and GO gave the Tf-AuNCs/GO nanocomposite, a turn-on NIR fluorescent probe with negligible background fluorescence due to the super fluorescence quenching property of GO. The NIR fluorescence of the Tf-AuNCs/GO nanocomposite was effectively restored in the presence of TfR, due to the specific interaction between Tf and TfR and the competition of TfR with the GO for the Tf in Tf-AuNCs/GO composite. The developed turn-on NIR fluorescence probe offered excellent water solubility, stability, and biocompatibility, and exhibited high specificity to TfR with negligible cytotoxicity. The probe was successfully applied for turn-on fluorescent bioimaging of cancer cells and small animals.

  13. PET imaging in breast cancer

    International Nuclear Information System (INIS)

    Bombardieri, E.; Crippa, F.

    2001-01-01

    The basis of tumour imaging with PET is a specific uptake mechanism of positron emitting radiopharmaceuticals. Among the potential tracers for breast cancer (fluorodeoxyglucose, methionine, tyrosine, fluoro-estradiol, nor-progesterone), 2-deoxy-2-fluoro-D-glucose labelled with fluorine (FDG) is the most widely used radiopharmaceutical because breast cancer is particularly avid of FDG and 18 F has the advantages of the a relatively long physical half-life. Mammography is the first choice examination in studying breast masses, due to its very good performances, an excellent compliance and the best value regarding the cost/effectiveness aspects. The FDG uptake in tissue correlates with the histological grade and potential aggressiveness of breast cancer and this may have prognostic consequences. Besides the evaluation of breast lesions, FDG-PET shows a great efficacy in staging lymph node involvement prior surgery and this could have a great value in loco-regional staging. Whole body PET provides also information with regard to metastasis localizations both in soft tissue and bone, and plays an important clinical role mainly in detecting recurrent metastatic disease. In fact for its metabolic characteristics PET visualizes regions of enhanced metabolic activity and can complete other imaging modalities based on structural anatomic changes. Even though CT and MRI show superior resolution characteristics, it has been demonstrated that PET provides more accurate information in discriminating between viable tumour, fibrotic scar or necrosis. These statements are coming from the examination of more than 2000 breast cancer detection

  14. Construction and evaluation of quantitative small-animal PET probabilistic atlases for [¹⁸F]FDG and [¹⁸F]FECT functional mapping of the mouse brain.

    Directory of Open Access Journals (Sweden)

    Cindy Casteels

    Full Text Available UNLABELLED: Automated voxel-based or pre-defined volume-of-interest (VOI analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([(18F]FDG and dopamine transporter ([(18F]FECT small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM mouse brain template and aligned them in space to the Paxinos co-ordinate system. In this way, ligand-specific templates for sensitive analysis and accurate anatomical localization were created. Next, using a pre-defined VOI approach, test-retest and intersubject variability of various quantification methods were evaluated. Also, the feasibility of mouse brain statistical parametric mapping (SPM was explored for [(18F]FDG and [(18F]FECT imaging of 6-hydroxydopamine-lesioned (6-OHDA mice. METHODS: Twenty-three adult C57BL6 mice were scanned with [(18F]FDG and [(18F]FECT. Registrations and affine spatial normalizations were performed using SPM8. [(18F]FDG data were quantified using (1 an image-derived-input function obtained from the liver (cMRglc, using (2 standardized uptake values (SUVglc corrected for blood glucose levels and by (3 normalizing counts to the whole-brain uptake. Parametric [(18F]FECT binding images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatch determination. RESULTS: Registration accuracy was between 0.21-1.11 mm. Regional intersubject variabilities of cMRglc ranged from 15.4% to 19.2%, while test-retest values were between 5.0% and 13.0%. For [(18F]FECT uptake in the caudate-putamen, these values were 13.0% and 10.3%, respectively. Regional values of cMRglc positively correlated to SUVglc measured within the 45-60 min time frame (spearman r = 0.71. Next, SPM analysis of 6-OHDA-lesioned mice showed hypometabolism in the bilateral caudate-putamen and cerebellum, and an

  15. [11C]PR04.MZ, a promising DAT ligand for low concentration imaging: synthesis, efficient 11C-O-methylation and initial small animal PET studies

    International Nuclear Information System (INIS)

    Riss, P.J.; Hooker, J.; Alexoff, D.; Kim, Sung-Won; Fowler, J.S.; Roesch, F.

    2009-01-01

    PR04.MZ was designed as a highly selective dopamine transporter inhibitor, derived from natural cocaine. Its binding profile indicates that [ 11 C]PR04.MZ may be suited as a PET radioligand for the non-invasive exploration of striatal and extrastriatal DAT populations. As a key feature, its structural design facilitates both, labelling with fluorine-18 at its terminally fluorinated butynyl moiety and carbon-11 at its methyl ester function. The present report concerns the efficient [ 11 C]MeI mediated synthesis of [ 11 C]PR04.MZ from an O-desmethyl precursor trifluoroacetic acid salt with Rb 2 CO 3 in DMF in up to 95 ± 5% labelling yield. A preliminary μPET-experiment demonstrates the reversible, highly specific binding of [ 11 C]PR04.MZ in the brain of a male Sprague-Dawley rat.

  16. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-15

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with {sup 99m}Tc-MDP, DMSA, and {sup 18}F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, {sup 99m}Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined {sup 99}mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and {sup 18}F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug.

  17. Design and Characteristics of a Multichannel Front-End ASIC Using Current-Mode CSA for Small-Animal PET Imaging.

    Science.gov (United States)

    Ollivier-Henry, N; Wu Gao; Xiaochao Fang; Mbow, N A; Brasse, D; Humbert, B; Hu-Guo, C; Colledani, C; Yann Hu

    2011-02-01

    This paper presents the design and characteristics of a front-end readout application-specific integrated circuit (ASIC) dedicated to a multichannel-plate photodetector coupled to LYSO scintillating crystals. In our configuration, the crystals are oriented in the axial direction readout on both sides by individual photodetector channels allowing the spatial resolution and the detection efficiency to be independent of each other. Both energy signals and timing triggers from the photodetectors are required to be read out by the front-end ASIC. A current-mode charge-sensitive amplifier is proposed for this application. This paper presents performance characteristics of a 10-channel prototype chip designed and fabricated in a 0.35-μm complementary metal-oxide semiconductor process. The main results of simulations and measurements are presented and discussed. The gain of the chip is 13.1 mV/pC while the peak time of a CR-RC pulse shaper is 280 ns. The signal-to-noise ratio is 39 dB and the rms noise is 300 μV/√(Hz). The nonlinearity is less than 3% and the crosstalk is about 0.2%. The power dissipation is less than 15 mW/channel. This prototype will be extended to a 64-channel circuit with integrated time-to-digital converter and analog-to-digital converter together for a high-sensitive small-animal positron emission tomography imaging system.

  18. Investigation of the imaging characteristics of the ALBIRA II small animal PET system for {sup 18}F, {sup 68}Ga and {sup 64}Cu

    Energy Technology Data Exchange (ETDEWEB)

    Attarwala, Ali Asgar; Hardiansyah, Deni [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Heidelberg Univ., Mannheim (Germany). Dept. of Radiation Oncology; Karanja, Yvonne Wanjiku; Romano, Chiara [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Roscher, Mareike; Waengler, Bjoern [Heidelberg Univ., Mannheim (Germany). Molecular Imaging and Radiochemistry; Glatting, Gerhard [Heidelberg Univ., Mannheim (Germany). Medical Radiation Physics/Radiation Protection; Ulm Univ. (Germany). Dept. of Nuclear Medicine

    2017-08-01

    In this study the performance characteristics of the Albira II PET sub-system and the response of the system for the following radionuclides {sup 18}F, {sup 68}Ga and {sup 64}Cu was analyzed. The Albira II tri-modal system (Bruker BioSpin MRI GmbH, Ettlingen, Germany) is a pre-clinical device for PET, SPECT and CT. The PET sub-system uses single continuous crystal detectors of lutetium yttrium orthosilicate (LYSO). The detector assembly consists of three rings of 8 detector modules. The transaxial field of view (FOV) has a diameter of 80 mm and the axial FOV is 148 mm. A NEMA NU-4 image quality phantom (Data Spectrum Corporation, Durham, USA) having five rods with diameters of 1, 2, 3, 4 and 5 mm and a uniform central region was used. Measurements with {sup 18}F, {sup 68}Ga and {sup 64}Cu were performed in list mode acquisition over 10 h. Data were reconstructed using a maximum-likelihood expectation-maximization (MLEM) algorithm with iteration numbers between 5 and 50. System sensitivity, count rate linearity, convergence and recovery coefficients were analyzed. The sensitivities for the entire FOV (non-NEMA method) for {sup 18}F, {sup 68}Ga and {sup 64}Cu were (3.78 ± 0.05)%, (3.97 ± 0.18)% and (3.79 ± 0.37)%, respectively. The sensitivity based on the NEMA protocol using the {sup 22}Na point source yielded (5.53 ± 0.06)%. Dead-time corrected true counts were linear for activities ≤7 MBq ({sup 18}F and {sup 68}Ga) and ≤17 MBq ({sup 64}Cu) in the phantom. The radial, tangential and axial full widths at half maximum (FWHMs) were 1.52, 1.47 and 1.48 mm. Recovery coefficients for the uniform region with a total activity of 8 MBq in the phantom were (0.97 ± 0.05), (0.98 ± 0.06), (0.98 ± 0.06) for {sup 18}F, {sup 68}Ga and {sup 64}Cu, respectively. The Albira II pre-clinical PET system has an adequate sensitivity range and the system linearity is suitable for the range of activities used for pre-clinical imaging. Overall, the system showed a favorable image

  19. Neurological examination in small animals

    Directory of Open Access Journals (Sweden)

    Viktor Paluš

    2014-03-01

    Full Text Available This clinical review about the neurological examination in small animals describes the basics about the first steps of investigation when dealing with neurological patients. The knowledge of how to perform the neurological examination is important however more important is how to correctly interpret these performed tests. A step-by-step approach is mandatory and examiners should master the order and the style of performing these tests. Neurological conditions can be sometimes very distressing for owners and for pets that might not be the most cooperating. The role of a veterinary surgeon, as a professional, is therefore to collect the most relevant history, to examine a patient in a professional manner and to give to owners an educated opinion about the further treatment and prognosis. However neurological examinations might look challenging for many. But it is only the clinical application of neuroanatomy and neurophysiology to an every-day situation for practicing veterinarians and it does not require any specific in-to-depth knowledge. This clinical review is aimed not only to provide the information on how to perform the neurological examination but it is also aimed to appeal on veterinarians to challenge their daily routine and to start practicing on neurologically normal patients. This is the best and only way to differentiate between the normal and abnormal in a real situation.

  20. Quantification accuracy and partial volume effect in dependence of the attenuation correction of a state-of-the-art small animal PET scanner

    International Nuclear Information System (INIS)

    Mannheim, Julia G; Judenhofer, Martin S; Schmid, Andreas; Pichler, Bernd J; Tillmanns, Julia; Stiller, Detlef; Sossi, Vesna

    2012-01-01

    Quantification accuracy and partial volume effect (PVE) of the Siemens Inveon PET scanner were evaluated. The influence of transmission source activities (40 and 160 MBq) on the quantification accuracy and the PVE were determined. Dynamic range, object size and PVE for different sphere sizes, contrast ratios and positions in the field of view (FOV) were evaluated. The acquired data were reconstructed using different algorithms and correction methods. The activity level of the transmission source and the total emission activity in the FOV strongly influenced the attenuation maps. Reconstruction algorithms, correction methods, object size and location within the FOV had a strong influence on the PVE in all configurations. All evaluated parameters potentially influence the quantification accuracy. Hence, all protocols should be kept constant during a study to allow a comparison between different scans. (paper)

  1. An improved optimization algorithm of the three-compartment model with spillover and partial volume corrections for dynamic FDG PET images of small animal hearts in vivo

    Science.gov (United States)

    Li, Yinlin; Kundu, Bijoy K.

    2018-03-01

    The three-compartment model with spillover (SP) and partial volume (PV) corrections has been widely used for noninvasive kinetic parameter studies of dynamic 2-[18F] fluoro-2deoxy-D-glucose (FDG) positron emission tomography images of small animal hearts in vivo. However, the approach still suffers from estimation uncertainty or slow convergence caused by the commonly used optimization algorithms. The aim of this study was to develop an improved optimization algorithm with better estimation performance. Femoral artery blood samples, image-derived input functions from heart ventricles and myocardial time-activity curves (TACs) were derived from data on 16 C57BL/6 mice obtained from the UCLA Mouse Quantitation Program. Parametric equations of the average myocardium and the blood pool TACs with SP and PV corrections in a three-compartment tracer kinetic model were formulated. A hybrid method integrating artificial immune-system and interior-reflective Newton methods were developed to solve the equations. Two penalty functions and one late time-point tail vein blood sample were used to constrain the objective function. The estimation accuracy of the method was validated by comparing results with experimental values using the errors in the areas under curves (AUCs) of the model corrected input function (MCIF) and the 18F-FDG influx constant K i . Moreover, the elapsed time was used to measure the convergence speed. The overall AUC error of MCIF for the 16 mice averaged  -1.4  ±  8.2%, with correlation coefficients of 0.9706. Similar results can be seen in the overall K i error percentage, which was 0.4  ±  5.8% with a correlation coefficient of 0.9912. The t-test P value for both showed no significant difference. The mean and standard deviation of the MCIF AUC and K i percentage errors have lower values compared to the previously published methods. The computation time of the hybrid method is also several times lower than using just a stochastic

  2. PET in cancer screening: a controversial imaging

    International Nuclear Information System (INIS)

    Su Minggang; Tan Tianzhi

    2012-01-01

    Malignancy has been one of the most dangerous threats to human health. Early diagnosis and treatment are key factors for improving prognosis. Cancer screening is an important way to detect early stage cancer and precancerous lesion. PET has been used increasingly in cancer screening in accordance with the requirement of the public. Though a great number of data show that PET can find some subclinical malignancy, yet as a cancer screening modality, PET is still controversial in contemporary medical practice. The aim of this article is to review the application status and existing problem of PET in cancer screening, and to offer some recognition and view about cancer srceening. (authors)

  3. Application of PET in breast cancer

    International Nuclear Information System (INIS)

    Noh, Dong Young

    2002-01-01

    Positron emission tomography (PET) is an imaging method that employs radionuclide and tomography techniques. Since 1995, we applied PET not only to the diagnosis of breast cancer but also to the detection of abnormalities in the augmented breast and to the detection of metastasis. Until 2001, we evaluated 242 breast cases by PET at PET center of Seoul National University Hospital. Our group has reported serially at the international journals. In the firtst report, PET showed high sensitivity for detecting breast cancer, both the primary and axillary node metastasis. A total of 27 patients underwent breast operations based on PET results at Seoul National University Hospital from 1995 to 1996. The diagnostic accuracy of PET were 97% for the primary tumor mass and 96% for axillary lymph node metastasis. In case of the breast augmented, PET also showed excellent diagnostic results for primary breast cancer and axillary lymph node metastasis where mammography and ultrasound could not diagnose properly. PET also had outstanding results in the detection of recurrent or metastatic breast cancer(sensitivity 94%, specificity 80%, accuracy 89%). In addition, our study gave some evidence that PET could be applied further to evaluate the growth rate of tumors by measuring SUV, and finally to prognosticated the disease. PET could also be applied to evaluate the response after chemotherapy to measure its metabolic rate and size. In conclsion, PET is a highly sensitive, accurate diagnostic tool for breast cancer of primary lesion in various conditions including metastasis

  4. Quantification in dynamic and small-animal positron emission tomography

    NARCIS (Netherlands)

    Disselhorst, Johannes Antonius

    2011-01-01

    This thesis covers two aspects of positron emission tomography (PET) quantification. The first section addresses the characterization and optimization of a small-animal PET/CT scanner. The sensitivity and resolution as well as various parameters affecting image quality (reconstruction settings, type

  5. Advances in Small Animal Imaging Systems

    International Nuclear Information System (INIS)

    Loudos, George K.

    2007-01-01

    The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to an increased interest in in vivo laboratory animal imaging during the past few years. For this purpose, new instrumentation, data acquisition strategies, and image processing and reconstruction techniques are being developed, researched and evaluated. The aim of this article is to give a short overview of the state of the art technologies for high resolution and high sensitivity molecular imaging techniques, primarily positron emission tomography (PET) and single photon emission computed tomography (SPECT). The basic needs of small animal imaging will be described. The evolution in instrumentation in the past two decades, as well as the commercially available systems will be overviewed. Finally, the new trends in detector technology and preliminary results from challenging applications will be presented. For more details a number of references are provided

  6. Cancer screening with FDG-PET

    International Nuclear Information System (INIS)

    Ide, M.

    2006-01-01

    Aim: This study is based on medical health check-up and cancer screening on of a medical health club using PET, MRI, spiral CT and other conventional examinations. Methods: Between October 1994 and June 2005, 9357 asymptomatic members of the health club participated in 24772 screening session (5693 men and 3664 women, mean age 52.2±10.4 years). Results: Malignant tumors were discovered in 296 of the 9357 participants (3.16%) and 24772 screening sessions (1.19%). The detection rate of our program is much higher than that of mass screening in Japan. The thyroid, lung, colon and breast cancers were PET positive, but the prostate, renal and bladder cancers were generally PET negative. Conclusion: FDG-PET has the potential to detect a wide variety of cancers at curable stages in asymptomatic individuals. To reduce false-positive and false-negative results of PET examination, there is a need of experienced radiologist and/or oncologists who had training in the wide aspect of FDG-PET. FDG-PET has limitations in the detection of urological cancers, cancers of low cell density, small cancers and hypo metabolic or FDG non-avid cancers. Therefore, conventional examinations and/or PET/CT are also needed for cancer screening in association with FDG-PET

  7. Utility of PET in gynecological cancer

    International Nuclear Information System (INIS)

    Choi, Chang Woon

    2002-01-01

    Clinical application of positron emission tomography (PET) is rapidly increasing for the detection and staging of cancer at whole-body studies performed with 2-[fluorine-18] fluoro-2-deoxy-D-glucose (FDG). Although many cancers can be detected by FDG-PET, there has been limited clinical experience with FDG-PET for the detection of gynecological cancers including malignancies in uterus and ovary. FDG-PET can show foci of metastatic disease that may not be apparent at conventional anatomic imaging and can aid in the characterization of indeterminate soft-tissue masses. Most gynecological cancers need to surgical management. FDG-PET can improve the selection of patients for surgical treatment and thereby reduce the morbidity and mortality associated with inappropriate surgery. FDG-PET is also useful for the early detection of recurrence and the monitoring of therapeutic effect. In this review, I discuss the clinical feasibility and imitations of this imaging modality in patients with gynecological cancers

  8. PET/MRI in cancer patients

    DEFF Research Database (Denmark)

    Kjær, Andreas; Loft, Annika; Law, Ian

    2013-01-01

    Combined PET/MRI systems are now commercially available and are expected to change the medical imaging field by providing combined anato-metabolic image information. We believe this will be of particular relevance in imaging of cancer patients. At the Department of Clinical Physiology, Nuclear...... described include brain tumors, pediatric oncology as well as lung, abdominal and pelvic cancer. In general the cases show that PET/MRI performs well in all these types of cancer when compared to PET/CT. However, future large-scale clinical studies are needed to establish when to use PET/MRI. We envision...... that PET/MRI in oncology will prove to become a valuable addition to PET/CT in diagnosing, tailoring and monitoring cancer therapy in selected patient populations....

  9. Trends in PET imaging

    International Nuclear Information System (INIS)

    Moses, William W.

    2000-01-01

    Positron Emission Tomography (PET) imaging is a well established method for obtaining information on the status of certain organs within the human body or in animals. This paper presents an overview of recent trends PET instrumentation. Significant effort is being expended to develop new PET detector modules, especially those capable of measuring depth of interaction. This is aided by recent advances in scintillator and pixellated photodetector technology. The other significant area of effort is development of special purpose PET cameras (such as for imaging breast cancer or small animals) or cameras that have the ability to image in more than one modality (such as PET / SPECT or PET / X-Ray CT)

  10. Advanced Small Animal Conformal Radiation Therapy Device.

    Science.gov (United States)

    Sharma, Sunil; Narayanasamy, Ganesh; Przybyla, Beata; Webber, Jessica; Boerma, Marjan; Clarkson, Richard; Moros, Eduardo G; Corry, Peter M; Griffin, Robert J

    2017-02-01

    We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made "gantry" and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.

  11. Studies oriented to optimize the image quality of the small animal PET: Clear PET, modifying some of the parameters of the reconstruction algorithm IMF-OSEM 3D on the data acquisition simulated with GAMOS; Estudios para la optimizaciOn de la calidad de imagen en el escaner ClearPET, modifi cando parametros del algoritmo IMF-OSEM 3D sobre adquisiciones simuladas con GAMOS

    Energy Technology Data Exchange (ETDEWEB)

    Canadas, M.; Mendoza, J.; Embid, M.

    2007-09-27

    This report presents studies oriented to optimize the image quality of the small animal PET: Clear- PET. Certain figures of merit (FOM) were used to assess a quantitative value of the contrast and delectability of lesions. The optimization was carried out modifying some of the parameters in the reconstruction software of the scanner, imaging a mini-Derenzo phantom and a cylinder phantom with background activity and two hot spheres. Specifically, it was evaluated the incidence of the inter-update Metz filter (IMF) inside the iterative reconstruction algorithm 3D OSEM. The data acquisition was simulated using the GAMOS framework (Monte Carlo simulation). Integrating GAMOS output with the reconstruction software of the scanner was an additional novelty of this work, to achieve this, data sets were written with the list-mode format (LMF) of ClearPET. In order to verify the optimum values obtained, we foresee to make real acquisitions in the ClearPET of CIEMAT. (Author) 17 refs.

  12. Clinical application of PET in abdominal cancers

    International Nuclear Information System (INIS)

    Choi, Chang Woon

    2002-01-01

    Clinical application of positron emission tomography (PET) is rapidly increasing for the detection and staging of cancer at whole-body studies performed with the glucose analogue tracer 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FG). Although FDG PET cannot match the anatomic resolution of conventional imaging techniques in the liver and the other abdominal organs, it is particularly useful for identification and characterization of the entire body simultaneously. FDG PET can show foci of metastatic disease that may not be apparent at conventional anatomic imaging and can aid in the characterizing of indeterminate soft-tissue masses. Most abdominal cancer requires surgical management. FGD PET can improve the selection of patients for surgical treatment and thereby reduce the morbidity and mortality associated with inappropriate surgery. FDG PET is also useful for the early detection of recurrence and the monitoring of therapeutic effect. The abdominal cancers, such as gastroesophageal cancer, colorectal cancer, liver cancer and pancreatic cancer, are common malignancies in Korea, and PET is one of the most promising and useful methodologies for the management of abdominal cancers

  13. FDG PET/CT in cancer

    DEFF Research Database (Denmark)

    Petersen, Henrik; Holdgaard, Paw Christian; Madsen, Poul Henning

    2016-01-01

    PURPOSE: The Region of Southern Denmark (RSD), covering 1.2 of Denmark's 5.6 million inhabitants, established a task force to (1) retrieve literature evidence for the clinical use of positron emission tomography (PET)/CT and provide consequent recommendations and further to (2) compare the actual...... use of PET/CT in the RSD with these recommendations. This article summarizes the results. METHODS: A Work Group appointed a professional Subgroup which made Clinician Groups conduct literature reviews on six selected cancers responsible for 5,768 (62.6 %) of 9,213 PET/CT scans in the RSD in 2012...... use of PET/CT and literature-based recommendations was high in the first five mentioned cancers in that 96.2 % of scans were made for grade A or B indications versus only 22.2 % in gynaecological cancers. CONCLUSION: Evidence-based usefulness was reported in five of six selected cancers; evidence...

  14. Detection of Cancer with PET and PET/CT in Asymptomatic Volunteers

    International Nuclear Information System (INIS)

    Chung, Ji In; Choi, Joon Young; Lee, Kyung Han; Kim, Byung Tae; Choi, Yoon Ho; Cho, Han Byoul; Shim, Jae Yong

    2009-01-01

    We retrospectively investigated the diagnostic performance of 18 F-fluorodeoxyglucose positron emission tomography (PET) and PET/CT for cancer detection in asymptomatic health-check examinees. This study consisted of 5091 PET or PET/CT conducted as part of annual health examination at one hospital from March 1998 to February 2008. To find the incidence of cancers, medical records of the subjects were thoroughly reviewed for a follow-up period of one year. The patterns of formal readings of PET and PET/CT were analyzed to assess the sensitivity and specificity for cancer detection. The histopathology and stage of the cancers were evaluated in relation to the results of PET. Eighty-six cancers (1.7%) were diagnosed within one year after PET or PET/CT. When PET and PET/CT results were combined, the sensitivity was 48.8% and specificity was 81.1% for cancer detection. PET only had a sensitivity of 46.2% and a specificity of 81.4%, and PET/CT only had a sensitivity of 75.0% and a specificity of 78.5% respectively. There were no significant differences in cancer site, stage and histopathology between PET positive and PET negative cancers. In 19.3% of formal readings of PET and PET/CT, further evaluation to exclude malignancy or significant disease was recommended. Head and neck area and upper gastrointestinal tract were commonly recommended sites for further evaluation. PET and PET/CT showed moderate performance for detecting cancers in asymptomatic adults in this study. More experience and further investigation are needed to overcome limitations of PET and PET/CT for cancer screening

  15. Health Examination by PET. (1) Cancer Examination

    International Nuclear Information System (INIS)

    Uno, Koichi

    2006-01-01

    Cancer examination by positron emission tomography (PET) started in Japan in 1994 and has been rapidly popularized. This paper describes author's experience of the examination in his hospital along the recent Japanese guideline for the PET cancer examination. Fluorodeoxyglucose (FDG) is intravenously injected at 3.7 (or 4.6, for diabetic patients) MBq/kg after 4-5 hr fasting and 40 min later, imaging is conducted with additional delayed scan at 2 hr to reduce the possible false positive. Image is taken by the equipment with PET-specific camera, of which quality assurance (QA) is maintained according to the guideline, and 3D image is constructed by the ordered subset expectation maximization method. Number of examinees during 4.5 years are 18,210 (M/F=9,735/8,475), and 236 (1.3%), together with use of other test measures like ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), biochemical marker and occult blood as well, are found to have cancer of thyroid, large bowel, lung, breast and others. The false negative rate by PET alone is 78/236 (33%) for cancer. PET examination has problems of image reading and specificity of organs, and tasks of informed consent, test cost, increased exchange of information and radiation exposure. However, PET cancer examination will be established as a routine diagnostic tool when the accumulated evidence of early cancer detection is shown useful for improving the survival rate and for reducing the medicare cost. (T.I.)

  16. Prompt gamma-ray imaging for small animals

    Science.gov (United States)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose

  17. Who wants cancer screening with PET?

    International Nuclear Information System (INIS)

    Yasunaga, Hideo

    2009-01-01

    Objectives: Cancer screening using whole-body fluorodeoxyglucose-positron emission tomography (FDG-PET) has gradually become popular in Japan. Although some studies have reported high cancer detection rates with PET screening, the justification for such an approach is still unclear, and no evidence has been provided to indicate that PET screening reduces cancer mortality. We measured the general public's willingness to pay (WTP) for this service using a contingent valuation method, after providing them with sufficient information regarding the efficacy and limitations of the service. Methods: A computer-assisted questionnaire survey was conducted on males and females in Japan aged between 40 and 59 years. The study participants (n = 390) were provided with sufficient information about the PET procedure, the high cancer detection rate, false-negatives/false-positives and the fact that the mortality-reducing effect of PET screening has not yet been demonstrated. The participants' WTP was ascertained by a double-bound dichotomous choice approach. Results: The average WTP among all the participants was $68.0 (95% confidence interval: $56.9-79.2). A Weibull regression analysis showed that income, degree of concern about health, and family history of cancer were significant factors affecting WTP. Conclusions: The actual charge for PET screening in Japan is approximately $1000 on average, which is significantly higher than the participants' WTP for the actual benefit obtained from the service. If the Japanese healthcare consumers are well-informed, most of them would avoid purchasing such a costly service.

  18. The application of PET and PET-CT in cervical cancer

    International Nuclear Information System (INIS)

    Huang Jianmin; Pan Liping; Li Dongxue

    2007-01-01

    Cervical cancer is the common malignancies in woman, 18 F-fluorodeoxyglucose ( 18 F-FDG) PET is a well-established method for detecting, staging, cancer recurrence, therapeutic response and prognosis of cervical cancer. PET-CT can accurately locate the anatomical sites of tracer uptake and improve the diagnostic accuraccy of PET. (authors)

  19. PET in management of breast cancer

    International Nuclear Information System (INIS)

    Lee, Myung-Chul

    2004-01-01

    Full text: PET provides useful information about tumor metabolism enabling accurate visualization of malignant lesions. Approximately 60-80% suspicious lesions on mammography have benign histology and about 10% of breast cancers with palpable mass are not identified in mammography. The key roles of PET technology in breast cancer are in: primary diagnosis, staging, recurrent diseases monitoring and prediction of therapy response. The sensitivity and specificity of FDG-PET for the diagnosis of breast cancer has been reported to be 68-100% and 83-100%, respectively. Considering the increasing number of small breast tumors detected by mammography and false negative results, the clinical relevance of FDG-PET for the primary diagnosis is limited. In selected patients, however, for example with dense breasts, breasts implants, augmented breast or after breast surgery, which can affect the accuracy of mammography, and in cases with equivocal mammography, FDG-PET can provide clinically relevant information. PET accurately determines the extent of disease, including the loco-regional lymph node status. Furthermore, whole-body PET imaging promises a high diagnostic accuracy for detecting recurrent or metastatic breast carcinoma with a high positive predictive value. We studied the usefulness of the FDG-PET in 42 preoperative patients with suspected breast cancer in differentiation of lesions. The diagnostic value of FDG-PET in terms of sensitivity and specificity was 95% and 77% respectively in primary mass while it was 73% and 100% for axillary lymph nodes. PET is much more accurate than other conventional modalities. The sensitivity of FDG-PET for correct staging of axillary nodal status is 84-100%. It has the potential to replace conventional procedures for the staging of distant metastases. We observed the sensitivity and the specificity of FDG-PET to be 96% and 85% to detect distant metastases. FDG-PET may become the method of choice for the early assessment of

  20. High-resolution dynamic imaging and quantitative analysis of lung cancer xenografts in nude mice using clinical PET/CT.

    Science.gov (United States)

    Wang, Ying Yi; Wang, Kai; Xu, Zuo Yu; Song, Yan; Wang, Chu Nan; Zhang, Chong Qing; Sun, Xi Lin; Shen, Bao Zhong

    2017-08-08

    Considering the general application of dedicated small-animal positron emission tomography/computed tomography is limited, an acceptable alternative in many situations might be clinical PET/CT. To estimate the feasibility of using clinical PET/CT with [F-18]-fluoro-2-deoxy-D-glucose for high-resolution dynamic imaging and quantitative analysis of cancer xenografts in nude mice. Dynamic clinical PET/CT scans were performed on xenografts for 60 min after injection with [F-18]-fluoro-2-deoxy-D-glucose. Scans were reconstructed with or without SharpIR method in two phases. And mice were sacrificed to extracting major organs and tumors, using ex vivo γ-counting as a reference. Strikingly, we observed that the image quality and the correlation between the all quantitive data from clinical PET/CT and the ex vivo counting was better with the SharpIR reconstructions than without. Our data demonstrate that clinical PET/CT scanner with SharpIR reconstruction is a valuable tool for imaging small animals in preclinical cancer research, offering dynamic imaging parameters, good image quality and accurate data quatification.

  1. PET scan for breast cancer

    Science.gov (United States)

    ... radioactive substance (called a tracer) to look for breast cancer. This tracer can help identify areas of cancer ... only after a woman has been diagnosed with breast cancer. It is done to see if the cancer ...

  2. PET/MRI in cancer patients

    DEFF Research Database (Denmark)

    Kjær, Andreas; Loft, Annika; Law, Ian

    2013-01-01

    Combined PET/MRI systems are now commercially available and are expected to change the medical imaging field by providing combined anato-metabolic image information. We believe this will be of particular relevance in imaging of cancer patients. At the Department of Clinical Physiology, Nuclear Me...

  3. Comparison of (18)F-FET and (18)F-FLT small animal PET for the assessment of anti-VEGF treatment response in an orthotopic model of glioblastoma

    DEFF Research Database (Denmark)

    Nedergaard, Mette Kjoelhede; Michaelsen, Signe Regner; Perryman, Lara

    2016-01-01

    was to compare FLT and FET PET for the assessment of anti-VEGF response in glioblastoma xenografts. METHODS: Xenografts with confirmed intracranial glioblastoma were treated with anti-VEGF therapy (B20-4.1) or saline as control. Weekly bioluminescence imaging (BLI), FLT and FET PET/CT were used to follow....... Furthermore, we found a significantly lower MVD in the anti-VEGF group as compared to the control group. However, we found no difference in the Ki67 proliferation index or mean survival time. CONCLUSION: FET appears to be a more sensitive tracer than FLT to measure early response to anti-VEGF therapy with PET...

  4. Application of PET and PET/CT imaging for cancer screening

    International Nuclear Information System (INIS)

    Chen Yenkung; Hu Fenglan; Shen Yehyou; Liao, A.C.; Hung, T.Z.; Su, Chentau; Chen Liangkuang

    2004-01-01

    The aim of this study was to evaluate the potential application of 18F-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) and PET/CT for cancer screening in asymptomatic individuals. Methods: The subjects consisted of 3631 physical check up examinees (1947 men, 1684 women; mean age ±SD, 52.1±8.2 y) with non-specific medical histories. Whole-body FDG PET (or PET/CT), ultrasound and tumor markers were performed on all patients. Focal hypermetabolic areas with intensities equal to or exceeding the level of FDG uptake in the brain and bladder were considered abnormal and interpreted as neoplasia. Follow-up periods were longer than one year. Results: Among the 3631 FDG PET (including 1687 PET/CT), ultrasound and tumor markers examinations, malignant tumors were discovered in 47 examinees (1.29%). PET findings were true-positive in 38 of the 47 cancers (80.9%). In addition, 32 of the 47 cancers were performed with the PET-CT scan. PET detected cancer lesions in 28 of the 32 examinees. However, the CT detected cancer lesions in only 15 of 32 examinees. Conclusion: The sensitivity of FDG PET in the detection of a wide variety of cancers is high. Most cancer can be detected with FDG PET in a resectable stage. CT of the PET/CT for localization and characteristics of the lesion shows an increased specificity of the PET scan. Using ultrasound and tumor markers may complement the PET scan in cancer screening for hepatic and urologic neoplasms. (authors)

  5. STTARR: a radiation treatment and multi-modal imaging facility for fast tracking novel agent development in small animal models

    International Nuclear Information System (INIS)

    Yeung, Ivan; McKee, Trevor; Jaffray, David; Hill, Richard

    2014-01-01

    Small animal models play a pivotal role in the pipeline development of novel agents and strategies in personalized cancer therapy. The Spatio-Temporal Targeting and Amplification of Radiation Response Program (STTARR) consists of an animal imaging and precision radiation facility designed to provide innovative biologic imaging and targeted radiation treatment strategies in small animals. The design is to mirror the imaging and radiation treatment facility in a modern cancer center. The STTARR features imaging equipment of small animal scale including CT, MRI, PET, SPECT, Optical devices as well as image guided irradiators. The fleet of imaging and irradiation equipment provides a platform for identification of biological targets of the specific molecular pathways that influence both tumor progression and a patient's response to radiation therapy. Examples will be given in the utilization of the imaging facilities for development in novel approaches in cancer therapy including a PET-FAZA study for hypoxia measurement in a pancreatic adenocarcinoma xenograft model. In addition, the cone-beam image guided small animal irradiator developed at our institute will also be described. The animal platform (couch) provides motion in 3 dimensions to position the animal to the isocentre of the beam. A pair of rotational arms supporting the X-ray/detector pair enables acquisition of cone-beam images of the animal which give rise to image guided precision of 0.5 mm. The irradiation energy ranges from 50 to 225 kVp at a dose rate from 10-400 cGy/min. The gantry is able to direct X-ray beam of different directions to give conformal radiation treatment to the animal. A dedicated treatment planning system is able to perform treatment planning and provide commonly used clinical metrics in the animal treatment plan. Examples will be given to highlight the use of the image guided irradiator for research of drug/irradiation regimen in animal models. (author)

  6. Transforming a Targeted Porphyrin Theranostic Agent into a PET Imaging Probe for Cancer

    Directory of Open Access Journals (Sweden)

    Jiyun Shi, Tracy W.B. Liu, Juan Chen, David Green, David Jaffray, Brian C. Wilson, Fan Wang, Gang Zheng

    2011-01-01

    Full Text Available Porphyrin based photosensitizers are useful agents for photodynamic therapy (PDT and fluorescence imaging of cancer. Porphyrins are also excellent metal chelators forming highly stable metallo-complexes making them efficient delivery vehicles for radioisotopes. Here we investigated the possibility of incorporating 64Cu into a porphyrin-peptide-folate (PPF probe developed previously as folate receptor (FR targeted fluorescent/PDT agent, and evaluated the potential of turning the resulting 64Cu-PPF into a positron emission tomography (PET probe for cancer imaging. Noninvasive PET imaging followed by radioassay evaluated the tumor accumulation, pharmacokinetics and biodistribution of 64Cu-PPF. 64Cu-PPF uptake in FR-positive tumors was visible on small-animal PET images with high tumor-to-muscle ratio (8.88 ± 3.60 observed after 24 h. Competitive blocking studies confirmed the FR-mediated tracer uptake by the tumor. The ease of efficient 64Cu-radiolabeling of PPF while retaining its favorable biodistribution, pharmacokinetics and selective tumor uptake, provides a robust strategy to transform tumor-targeted porphyrin-based photosensitizers into PET imaging probes.

  7. Clinical usefulness of PET in the management of oral cancer. Comparison between FDG-PET and MET-PET

    International Nuclear Information System (INIS)

    Kitagawa, Yoshimasa; Saitoh, Masaaki; Nakamura, Mikiko

    2007-01-01

    Inductive chemoradiotherapy has played an important role in preserving organs and functions in patients with oral squamous cell carcinoma (SCC). To determine whether a reduced form of surgery should be performed after chemoradiotherapy, accurate evaluation of residual tumor cells is essential. We investigated the clinical value of positron emission tomography with 18 F labeled fluorodeoxyglucose (FDG-PET) in the management of oral SCCs. Forty-five patients underwent two FDG-PET studies, one prior to and one at 6 weeks after the chemoradiotherapy. Pretreatment FDG-PET was useful in predicting the response to treatment. Posttreatment FDG-PET could evaluate residual viable cells and prognosis. Organ preservation may be feasible based on PET evaluation. Hence FDG-PET is a valuable tool in the treatment of oral cancer. 11 C-Methionine (MET) is another promising tracer for PET that can be used to assess metabolic demand for amino acids in cancer cells. A MET-PET and FDG-PET study was performed during the same period to investigate diagnostic accuracy in 40 oral malignancies. Sensitivity and positive predictive value of MET-PET were 95% and 100%, respectively, and were comparable with those of FDG-PET. Further study is required to determine the diagnostic significance of MET-PET in evaluating response to chemoradiotherapy. (author)

  8. 18F-fluorodeoxyglucose PET and PET-CT in early detection of cancer recurrent

    International Nuclear Information System (INIS)

    Xing Yan; Zhao Jinhua

    2007-01-01

    Early detection of recurrent can improve prognosis and survival of patients with cancer. 18 F- fluorodeoxyglucose( 18 F-FDG) PET can detect metabolic changes before structural changes. The fused imaging provided by PET-CT can precisely localize the foci and demonstrate the complementary roles of functional and anatomic assessments in the diagnosis of cancer recurrence. In addition to the accurate diagnosis and definition of the whole extent of recurrent cancer, 18 F-FDG PET and PET-CT can impact patients management. (authors)

  9. Clinical Applications of FDG PET and PET/CT in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Akram Al-Ibraheem

    2009-01-01

    Full Text Available 18F-FDG PET plays an increasing role in diagnosis and management planning of head and neck cancer. Hybrid PET/CT has promoted the field of molecular imaging in head and neck cancer. This modality is particular relevant in the head and neck region, given the complex anatomy and variable physiologic FDG uptake patterns. The vast majority of 18F-FDG PET and PET/CT applications in head and neck cancer related to head and neck squamous cell carcinoma. Clinical applications of 18F-FDG PET and PET/CT in head and neck cancer include diagnosis of distant metastases, identification of synchronous 2nd primaries, detection of carcinoma of unknown primary and detection of residual or recurrent disease. Emerging applications are precise delineation of the tumor volume for radiation treatment planning, monitoring treatment, and providing prognostic information. The clinical role of 18F-FDG PET/CT in N0 disease is limited which is in line with findings of other imaging modalities. MRI is usually used for T staging with an intense discussion concerning the preferable imaging modality for regional lymph node staging as PET/CT, MRI, and multi-slice spiral CT are all improving rapidly. Is this review, we summarize recent literature on 18F-FDG PET and PET/CT imaging of head and neck cancer.

  10. Comparison of the Intraperitoneal, Retroorbital and per Oral Routes for F 18 FDG Administration as Effective Alternatives to Intravenous Administration in Mouse Tumor Models Using Small Animal PET/CT Studies

    International Nuclear Information System (INIS)

    Kim, Chulhan; Kim, In Hye; Kim, Seo il; Kim, Young Sang; Kang, Se Hun; Moon, Seung Hwan; Kim, Tae Sung; Kim, Seok ki

    2011-01-01

    We compared alternative routes for 18F fluorodeoxyglucose (FDG) administration, such as the retroorbital (RO), intraperitoneal (IP) and per oral (PO) routes, with the intravenous (IV) route in normal tissues and tumors of mice. CRL 1642 (ATCC, Lewis lung carcinoma) cells were inoculated in female BALB/c nu/nu mice 6 to 10 weeks old. When the tumor grew to about 9mm in diameter, positron emission tomography (PET) scans were performed after FDG administration via the RO, IP, PO or IV route. Additional serial PET scans were performed using the RO, IV or IP route alternatively from 5 to 29 days after the tumor cell injection. There was no significant difference in the FDG uptake in normal tissues at 60 min after FDG administration via RO, IP and IV routes. PO administration, however, showed delayed distribution and unwanted high gastrointestinal uptake. Tumoral uptake of FDG showed a similar temporal pattern and increased until 60 min after FDG administration in the RO, IP and IV injection groups. In the PO administration group, tumoral uptake was delayed and reduced. There was no statistical difference among the RO, IP and IV administration groups for additional serial PET scans. RO administration is an effective alternative route to IV administration for mouse FDG PET scans using normal mice and tumor models. In addition, IP administration can be a practical alternative in the late phase, although the initial uptake is lower than those in the IV and RO groups.

  11. Comparison of 18F-FET and 18F-FLT small animal PET for the assessment of anti-VEGF treatment response in an orthotopic model of glioblastoma

    International Nuclear Information System (INIS)

    Nedergaard, Mette Kjoelhede; Michaelsen, Signe Regner; Perryman, Lara; Erler, Janine; Poulsen, Hans Skovgaard; Stockhausen, Marie-Thérése; Lassen, Ulrik; Kjaer, Andreas

    2016-01-01

    Background: The radiolabeled amino acid O-(2- 18 F-fluoroethyl)-L-tyrosine (FET) and thymidine analogue 3′-deoxy-3′- 18 F-fluorothymidine (FLT) are widely used for positron emission tomography (PET) brain tumor imaging; however, comparative studies are scarce. The aim of this study therefore was to compare FLT and FET PET for the assessment of anti-VEGF response in glioblastoma xenografts. Methods: Xenografts with confirmed intracranial glioblastoma were treated with anti-VEGF therapy (B20-4.1) or saline as control. Weekly bioluminescence imaging (BLI), FLT and FET PET/CT were used to follow treatment response. Tracer uptake of FLT and FET was quantified using maximum standardized uptake (SUV max ) values and tumor-to-background ratios (TBRs). Survival, the Ki67 proliferation index and micro-vessel density (MVD) were evaluated. Results: In contrast to FLT TBRs, FET TBRs were significantly lower as early as one week after treatment initiation in the anti-VEGF group as compared to the control group. Following two weeks of treatment, both FLT and FET TBRs were significantly lower in the anti-VEGF group. In contrast, no significant difference between the treatment groups was detected using BLI. Furthermore, we found a significantly lower MVD in the anti-VEGF group as compared to the control group. However, we found no difference in the Ki67 proliferation index or mean survival time. Conclusion: FET appears to be a more sensitive tracer than FLT to measure early response to anti-VEGF therapy with PET. Advances in knowledge and implications for patient care FET PET appears to be an early predictor of anti-VEGF efficacy. Confirmation of these results in clinical studies is needed.

  12. Choline-PET/CT for imaging prostate cancer; Cholin-PET/CT zur Bildgebung des Prostatakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Bernd Joachim [Klinik- und Poliklinik fuer Nuklearmedizin, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany); Treiber, U.; Schwarzenboeck, S.; Souvatzoglou, M. [Klinik fuer Urologie, Klinikum rechts der Isar, Technische Univ. Muenchen (Germany)

    2010-09-15

    PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives are increasingly being used for imaging of prostate cancer. The value of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in biochemical recurrence of prostate cancer has been examined in many studies and demonstrates an increasing importance. Primary prostate cancer can be detected with moderate sensitivity using PET and PET/CT using [{sup 11}C]- and [{sup 18}F]-labelled choline derivatives - the differentiation between benign prostatic hyperplasia, prostatitis or high-grade intraepithelial neoplasia (HGPIN) is not always possible. At the present time [{sup 11}C]choline PET/CT is not recommended in the primary setting but may be utilized in clinically suspected prostate cancer with repeatedly negative prostate biopsies, in preparation of a focused re-biopsy. Promising results have been obtained for the use of PET and PET/CT with [{sup 11}C]- and [{sup 18}F]-labelled choline derivates in patients with biochemical recurrence. The detection rate of choline PET and PET/CT for local, regional, and distant recurrence in patients with a biochemical recurrence shows a linear correlation with PSA values at the time of imaging and reaches about 75% in patients with PSA > 3 ng/mL. At PSA values below 1 ng/mL, the recurrence can be diagnosed with choline PET/CT in approximately 1/3 of the patients. PET and PET/CT with [{sup 11}C]- and [{sup 18}F]choline derivates can be helpful for choosing a therapeutic strategy in the sense of an individualized treatment: since an early diagnosis of recurrence is crucial to the choice of optimal treatment. The localization of the site of recurrence - local recurrence, lymph node metastasis or systemic dissemination - has important influence on the therapy regimen. (orig.)

  13. Gene-targeted radiation therapy mediated by radiation-sensitive promoter in lung adenocarcinoma and the feasibility of micro-PET / CT in evaluation of therapeutic effectiveness in small animals

    Institute of Scientific and Technical Information of China (English)

    徐昊平

    2014-01-01

    Objective To explore the combined anti-tumor effect of radiation therapy and gene-targeted suppression of tumor neovasculature in lung adenocarcinoma in vivo,and to explore the feasibility of micro-PET/CT in dynamic evaluation of treatment effectiveness.Methods Thirty5-6 week old male BALB/c nude mice were used in this study.The mouse models of xenotransplanted human

  14. How PET is changing the management of cancer with radiotherapy

    International Nuclear Information System (INIS)

    Mac Manus, M.

    2005-01-01

    Information from PET scanning is transforming the management of many malignancies and the impact of PET is likely to increase further as new indications are recognised. PET is of particular value in patients treated with radiotherapy (RT) with curative intent. These patients rarely undergo invasive surgical staging and therefore imaging is crucial in determining the extent of disease before treatment. More accurate staging with PET means that futile aggressive RT or chcmoRT can be avoided in patients with incurable extensive disease. FDG-PET is of proven value in the staging of common metabolically-active malignancies treated with radiotherapy. These include lung cancer, head and neck cancer, lymphomas and oesophageal carcinoma. It has been shown that PET can improve the selection of patients for radical surgery or radiotherapy in lung cancer and that PET-based staging more accurately predicts survival than conventional staging. For those patients that remain eligible for definitive RT after PET. treatment can be more accurately targeted at the tumour and involved regional nodes. The value of PET for treatment planning is enhanced significantly when PET and CT scans are acquired on a combined PET/CT scanner. Fused PET-CT images can be imported into the radiotherapy planning computer and used to accurately target tumour with the best beam arrangement. After treatment, response may be hard to assess with structural imaging. PET-rcsponse to chemotherapy or radiotherapy in non-small cell lung cancer (NSCLC) predicts survival in NSCLC more accurately than CT response. However, PET has much more potential than imaging with FDG alone can realise. Markers such as FLT can be used to image proliferation in tumours, misonidazole or FAZA can be used to image hypoxia and labeled metabolites of anti-cancer drugs such as 5-FU can be used to study pharmacokinetics. New combinations of radiation and drugs may emerge that can be selected based on biological characteristics of

  15. An update on the role of PET/CT and PET/MRI in ovarian cancer

    International Nuclear Information System (INIS)

    Khiewvan, Benjapa; Torigian, Drew A.; Emamzadehfard, Sahra; Paydary, Koosha; Salavati, Ali; Houshmand, Sina; Werner, Thomas J.; Alavi, Abass

    2017-01-01

    This review article summarizes the role of PET/CT and PET/MRI in ovarian cancer. With regard to the diagnosis of ovarian cancer, the presence of FDG uptake within the ovary of a postmenopausal woman raises the concern for ovarian cancer. Multiple studies show that FDG PET/CT can detect lymph node and distant metastasis in ovarian cancer with high accuracy and may, therefore, alter the management to obtain better clinical outcomes. Although PET/CT staging is superior for N and M staging of ovarian cancer, its role is limited for T staging. Additionally, FDG PET/CT is of great benefit in evaluating treatment response and has prognostic value in patients with ovarian cancer. FDG PET/CT also has value to detect recurrent disease, particularly in patients with elevated serum CA-125 levels and negative or inconclusive conventional imaging test results. PET/MRI may beneficial for tumor staging because MRI has higher soft tissue contrast and no ionizing radiation exposure compared to CT. Some non-FDG PET radiotracers such as 18 F-fluorothymidine (FLT) or 11 C-methionine (MET) have been studied in preclinical and clinical studies as well and may play a role in the evaluation of patients with ovarian cancer. (orig.)

  16. An update on the role of PET/CT and PET/MRI in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Khiewvan, Benjapa [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States); Mahidol University, Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine Siriraj Hospital, Bangkok (Thailand); Torigian, Drew A.; Emamzadehfard, Sahra; Paydary, Koosha; Salavati, Ali; Houshmand, Sina; Werner, Thomas J.; Alavi, Abass [Hospital of the University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States)

    2017-06-15

    This review article summarizes the role of PET/CT and PET/MRI in ovarian cancer. With regard to the diagnosis of ovarian cancer, the presence of FDG uptake within the ovary of a postmenopausal woman raises the concern for ovarian cancer. Multiple studies show that FDG PET/CT can detect lymph node and distant metastasis in ovarian cancer with high accuracy and may, therefore, alter the management to obtain better clinical outcomes. Although PET/CT staging is superior for N and M staging of ovarian cancer, its role is limited for T staging. Additionally, FDG PET/CT is of great benefit in evaluating treatment response and has prognostic value in patients with ovarian cancer. FDG PET/CT also has value to detect recurrent disease, particularly in patients with elevated serum CA-125 levels and negative or inconclusive conventional imaging test results. PET/MRI may beneficial for tumor staging because MRI has higher soft tissue contrast and no ionizing radiation exposure compared to CT. Some non-FDG PET radiotracers such as {sup 18}F-fluorothymidine (FLT) or {sup 11}C-methionine (MET) have been studied in preclinical and clinical studies as well and may play a role in the evaluation of patients with ovarian cancer. (orig.)

  17. Physical and biological dosimetry at the RA-3 facility for small animal irradiation: preliminary BNCT studies in an experimental model of oral cancer

    International Nuclear Information System (INIS)

    Pozzi, Emiliano; Miller, Marcelo; Thorp, Silvia I.; Heber, Elisa M.; Trivillin, Veronica A.; Zarza, Leandro; Estryk, Guillermo; Schwint, Amanda E.; Nigg, David W.

    2007-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality based on the capture reaction that occurs between thermal neutrons and boron-10 atoms that accumulate selectively in tumor tissue, emitting high linear energy transfer (LET), short range (5-9 microns) particles (alpha y 7 Li). Thus, BNCT would potentially target tumor tissue selectively, sparing normal tissue. Herein we evaluated the feasibility of treating experimental oral mucosa tumors with BNCT at RA-3 (CAE) employing the hamster cheek pouch oral cancer model and characterized the irradiation field at the RA-3 facility. We evaluated the therapeutic effect on tumor of BNCT mediated by BPA in the hamster cheek pouch oral cancer model and the potential radio toxic effects in normal tissue. We evidenced a moderate biological response in tumor, with no radio toxic effects in normal tissue following irradiations with no shielding for the animal body. Given the sub-optimal therapeutic response, we designed and built a 6 Li 2 CO 3 shielding for the body of the animal to increase the irradiation dose to tumor, without exceeding normal tissue radio tolerance. The measured absolute magnitude of thermal neutron flux and the characterization of the beam with and without the shielding in place, suggest that the irradiation facility in the thermal column of RA-3 would afford an excellent platform to perform BNCT studies in vitro and in vivo in small experimental animals. The present findings must be confirmed and extended by performing in vivo BNCT radiobiological studies in small experimental animals, employing the shielding device for the animal body. (author) [es

  18. Small animal imaging. Basics and practical guide

    Energy Technology Data Exchange (ETDEWEB)

    Kiessling, Fabian [Aachen Univ. (RWTH) (Germany). Chair of Experimental Molecular Imaging; Pichler, Bernd J. (eds.) [Tuebingen Univ. (Germany). Lab. for Preclinical Imaging and Imaging Technology of the Werner Siemens-Foundation

    2011-07-01

    Small animal imaging has been recognized as an important tool in preclinical research. Nevertheless, the results of non-invasive imaging are often disappointing owing to choice of a suboptimal imaging modality and/or shortcomings in study design, experimental setup, and data evaluation. This textbook is a practical guide to the use of non-invasive imaging in preclinical research. Each of the available imaging modalities is discussed in detail, with the assistance of numerous informative illustrations. In addition, many useful hints are provided on the installation of a small animal unit, study planning, animal handling, and the cost-effective performance of small animal imaging. Cross-calibration methods, data postprocessing, and special imaging applications are also considered in depth. This is the first book to cover all the practical basics in small animal imaging, and it will prove an invaluable aid for researchers, students, and technicians. (orig.)

  19. Antimicrobial stewardship in small animal veterinary practice

    DEFF Research Database (Denmark)

    Guardabassi, Luca; Prescott, John F

    2015-01-01

    Despite the increasing recognition of the critical role for antimicrobial stewardship in preventing the spread of multidrug-resistant bacteria, examples of effective antimicrobial stewardship programs are rare in small animal veterinary practice. This article highlights the basic requirements...

  20. Small animal imaging. Basics and practical guide

    International Nuclear Information System (INIS)

    Kiessling, Fabian; Pichler, Bernd J.

    2011-01-01

    Small animal imaging has been recognized as an important tool in preclinical research. Nevertheless, the results of non-invasive imaging are often disappointing owing to choice of a suboptimal imaging modality and/or shortcomings in study design, experimental setup, and data evaluation. This textbook is a practical guide to the use of non-invasive imaging in preclinical research. Each of the available imaging modalities is discussed in detail, with the assistance of numerous informative illustrations. In addition, many useful hints are provided on the installation of a small animal unit, study planning, animal handling, and the cost-effective performance of small animal imaging. Cross-calibration methods, data postprocessing, and special imaging applications are also considered in depth. This is the first book to cover all the practical basics in small animal imaging, and it will prove an invaluable aid for researchers, students, and technicians. (orig.)

  1. Frequency domain fluorescence diffuse tomography of small animals

    Science.gov (United States)

    Orlova, Anna G.; Turchin, Ilya V.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Balalaeva, Irina V.; Sergeeva, Ekaterina A.; Shirmanova, Marina V.; Kleshnin, Michail S.

    2007-05-01

    Fluorescent compounds for selective cancer cell marking are used for development of novel medical diagnostic methods, investigation of the influence of external factors on tumor growth, regress and metastasis. Only special tools for turbid media imaging, such as optical diffusion tomography permit noninvasive monitoring of fluorescent-labeled tumor alterations deep in animal tissue. In this work, the results of preliminary experiments utilizing frequency-domain fluorescent diffusion tomography (FD FDT) experimental setup in small animal are presented. Low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the wavelength of 532 nm was used in the setup. The transilluminative planar configuration was used in the setup. A series of model experiments has been conducted and show good agreement between theoretical and experimental fluorescence intensity. Models of deep tumors were created by two methods: (1) glass capsules containing fluorophore solution were inserted into esophagus of small animals to simulate marked tumors; (2) a suspension of transfected HEΚ293-Turbo-RFP cells was subcutaneously injected to small animal. The conducted experiments have shown that FD FDT allows one to detect the presence of labeled tumor cells in small animals, to determine the volume of an experimental tumor, to perform 3D tumor reconstruction, as well as to conduct monitoring investigations. The obtained results demonstrate the potential capability of the FD FDT method for noninvasive whole-body imaging in cancer studies, diagnostics and therapy.

  2. FDG-PET Assessment of Other Gynecologic Cancers.

    Science.gov (United States)

    Faria, Silvana; Devine, Catherine; Viswanathan, Chitra; Javadi, Sanaz; Korivi, Brinda Rao; Bhosale, Priya R

    2018-04-01

    PET and PET/computed tomography play a role in the staging, monitoring of response to therapy, and surveillance for cervical and ovarian cancers. Currently, it is also an integral part of the assessment of patients with endometrial cancer and other gynecologic malignancies, such as vaginal and vulvar cancers and uterine sarcomas. In this article, we discuss in detail and highlight the potential role of PET and PET/computed tomography in evaluating these gynecologic malignancies using illustrative cases with relevant imaging findings. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Colorectal cancer staging: comparison of whole-body PET/CT and PET/MR.

    Science.gov (United States)

    Catalano, Onofrio A; Coutinho, Artur M; Sahani, Dushyant V; Vangel, Mark G; Gee, Michael S; Hahn, Peter F; Witzel, Thomas; Soricelli, Andrea; Salvatore, Marco; Catana, Ciprian; Mahmood, Umar; Rosen, Bruce R; Gervais, Debra

    2017-04-01

    Correct staging is imperative for colorectal cancer (CRC) since it influences both prognosis and management. Several imaging methods are used for this purpose, with variable performance. Positron emission tomography-magnetic resonance (PET/MR) is an innovative imaging technique recently employed for clinical application. The present study was undertaken to compare the staging accuracy of whole-body positron emission tomography-computed tomography (PET/CT) with whole-body PET/MR in patients with both newly diagnosed and treated colorectal cancer. Twenty-six patients, who underwent same day whole-body (WB) PET/CT and WB-PET/MR, were evaluated. PET/CT and PET/MR studies were interpreted by consensus by a radiologist and a nuclear medicine physician. Correlations with prior imaging and follow-up studies were used as the reference standard. Correct staging was compared between methods using McNemar's Chi square test. The two methods were in agreement and correct for 18/26 (69%) patients, and in agreement and incorrect for one patient (3.8%). PET/MR and PET/CT stages for the remaining 7/26 patients (27%) were discordant, with PET/MR staging being correct in all seven cases. PET/MR significantly outperformed PET/CT overall for accurate staging (P = 0.02). PET/MR outperformed PET/CT in CRC staging. PET/MR might allow accurate local and distant staging of CRC patients during both at the time of diagnosis and during follow-up.

  4. Quantifying the limitations of small animal positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, D.C. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom)], E-mail: dco@ns.ph.liv.ac.uk; Boston, A.J.; Boston, H.C.; Cooper, R.J.; Cresswell, J.R.; Grint, A.N.; Nolan, P.J.; Scraggs, D.P. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Lazarus, I.H. [STFC Daresbury Laboratory, Warrington, WA4 4AD Cheshire (United Kingdom); Beveridge, T.E. [School of Materials and Engineering, Monash University, Melbourne (Australia)

    2009-06-01

    The application of position sensitive semiconductor detectors in medical imaging is a field of global research interest. The Monte-Carlo simulation toolkit GEANT4 [ (http://geant4.web.cern.ch/geant4/)] was employed to improve the understanding of detailed {gamma}-ray interactions within the small animal Positron Emission Tomography (PET), high-purity germanium (HPGe) imaging system, SmartPET [A.J. Boston, et al., Oral contribution, ANL, Chicago, USA, 2006]. This system has shown promising results in the field of PET [R.J. Cooper, et al., Nucl. Instr. and Meth. A (2009), accepted for publication] and Compton camera imaging [J.E. Gillam, et al., Nucl. Instr. and Meth. A 579 (2007) 76]. Images for a selection of single and multiple point, line and phantom sources were successfully reconstructed using both a filtered-back-projection (FBP) [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007] and an iterative reconstruction algorithm [A.R. Mather, Ph.D. Thesis, University of Liverpool, 2007]. Simulated data were exploited as an alternative route to a reconstructed image allowing full quantification of the image distortions introduced in each phase of the data processing. Quantifying the contribution of uncertainty in all system components from detector to reconstruction algorithm allows the areas in need of most attention on the SmartPET project and semiconductor PET to be addressed.

  5. Molecular Imaging in Breast Cancer: From Whole-Body PET/CT to Dedicated Breast PET

    Directory of Open Access Journals (Sweden)

    B. B. Koolen

    2012-01-01

    Full Text Available Positron emission tomography (PET, with or without integrated computed tomography (CT, using 18F-fluorodeoxyglucose (FDG is based on the principle of elevated glucose metabolism in malignant tumors, and its use in breast cancer patients is frequently being investigated. It has been shown useful for classification, staging, and response monitoring, both in primary and recurrent disease. However, because of the partial volume effect and limited resolution of most whole-body PET scanners, sensitivity for the visualization of small tumors is generally low. To improve the detection and quantification of primary breast tumors with FDG PET, several dedicated breast PET devices have been developed. In this nonsystematic review, we shortly summarize the value of whole-body PET/CT in breast cancer and provide an overview of currently available dedicated breast PETs.

  6. Advances in SPECT Instrumentation (Including Small Animal Scanners). Chapter 4

    International Nuclear Information System (INIS)

    Di Domenico, G.; Zavattini, G.

    2009-01-01

    Fundamental major efforts have been devoted to the development of positron emission tomography (PET) imaging modality over the last few decades. Recently, a novel surge of interest in single photon emission computed tomography (SPECT) technology has occurred, particularly after the introduction of the hybrid SPECT-CT imaging system. This has led to a flourishing of investigations in new types of detectors and collimators, and to more accurate refinement of reconstruction algorithms. Along with SPECT-CT, new, fast gamma cameras have been developed for dedicated cardiac imaging. The existing gap between PET and SPECT in sensitivity and spatial resolution is progressively decreasing, and this trend is particularly apparent in the field of small animal imaging where the most important advances have been reported in SPECT tomographs. An outline of the basic features of SPECT technology, and of recent developments in SPECT instrumentation for both clinical applications and basic biological research on animal models is described. (author)

  7. Pet Ownership and Cancer Risk in the Women's Health Initiative.

    Science.gov (United States)

    Garcia, David O; Lander, Eric M; Wertheim, Betsy C; Manson, JoAnn E; Volpe, Stella L; Chlebowski, Rowan T; Stefanick, Marcia L; Lessin, Lawrence S; Kuller, Lewis H; Thomson, Cynthia A

    2016-09-01

    Pet ownership and cancer are both highly prevalent in the United States. Evidence suggests that associations may exist between this potentially modifiable factor and cancer prevention, though studies are sparse. The present report examined whether pet ownership (dog, cat, or bird) is associated with lower risk for total cancer and site-specific obesity-related cancers. This was a prospective analysis of 123,560 participants (20,981 dog owners; 19,288 cat owners; 1,338 bird owners; and 81,953 non-pet owners) enrolled in the Women's Health Initiative observational study and clinical trials. Cox proportional hazards models were used to estimate HR and 95% confidence intervals for the association between pet ownership and cancer, adjusted for potential confounders. There were no significant relationships between ownership of a dog, cat, or bird and incidence of cancer overall. When site-specific cancers were examined, no associations were observed after adjustment for multiple comparisons. Pet ownership had no association with overall cancer incidence. This is the first large epidemiologic study to date to explore relationships between pet ownership and cancer risk, as well as associated risks for individual cancer types. This study requires replication in other sizable, diverse cohorts. Cancer Epidemiol Biomarkers Prev; 25(9); 1311-6. ©2016 AACR. ©2016 American Association for Cancer Research.

  8. Oral cancer diagnosed using PET/CT: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hee; Yang, Byoung Eun; Cho, Young Min [Hallym Univ. College of Medicine, Anyang (Korea, Republic of); Kim, Seong Gon [Sam Anyang General Hospital, Anyang (Korea, Republic of)

    2006-06-15

    PET/CT is a new imaging technology that combines high-quality Position Emission Tomography (PET) and Computed Tomography (CT). This imaging provides simultaneous anatomical and metabolic information. Therefore PET/CT is useful diagnostic modality for early detection og malignant tumor, accurate at aging, decision on therapeutic plan, monitoring response to therapy and rapid detection of recurrence. We report oral and maxillofacial cancers diagnosed by using PET/CT and the usefulness of PET/CT in the evaluation of postoperative recurrence.

  9. PET/MRI in head and neck cancer: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Platzek, Ivan; Laniado, Michael [Dresden University Hospital, Department of Radiology, Dresden (Germany); Beuthien-Baumann, Bettina [Dresden University Hospital, Department of Nuclear Medicine, Dresden (Germany); Schneider, Matthias [Dresden University Hospital, Oral and Maxillofacial Surgery, Dresden (Germany); Gudziol, Volker [Dresden University Hospital, Department of Otolaryngology, Dresden (Germany); Langner, Jens; Schramm, Georg; Hoff, Joerg van den [Institute of Bioinorganic and Radiopharmaceutical Chemistry, Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kotzerke, Joerg [Dresden University Hospital, Nuclear Medicine, Dresden (Germany)

    2013-01-15

    To evaluate the feasibility of PET/MRI (positron emission tomography/magnetic resonance imaging) with FDG ({sup 18}F-fluorodeoxyglucose) for initial staging of head and neck cancer. The study group comprised 20 patients (16 men, 4 women) aged between 52 and 81 years (median 64 years) with histologically proven squamous cell carcinoma of the head and neck region. The patients underwent a PET scan on a conventional scanner and a subsequent PET/MRI examination on a whole-body hybrid system. FDG was administered intravenously prior to the conventional PET scan (267-395 MBq FDG, 348 MBq on average). The maximum standardized uptake values (SUV{sub max}) of the tumour and of both cerebellar hemispheres were determined for both PET datasets. The numbers of lymph nodes with increased FDG uptake were compared between the two PET datasets. No MRI-induced artefacts where observed in the PET images. The tumour was detected by PET/MRI in 17 of the 20 patients, by PET in 16 and by MRI in 14. The PET/MRI examination yielded significantly higher SUV{sub max} than the conventional PET scanner for both the tumour (p < 0.0001) and the cerebellum (p = 0.0009). The number of lymph nodes with increased FDG uptake detected using the PET dataset from the PET/MRI system was significantly higher the number detected by the stand-alone PET system (64 vs. 39, p = 0.001). The current study demonstrated that PET/MRI of the whole head and neck region is feasible with a whole-body PET/MRI system without impairment of PET or MR image quality. (orig.)

  10. Clinical Application of F-18 FDG PET (PET/CT) in Colo-rectal and Anal Cancer

    International Nuclear Information System (INIS)

    Kim, Byung Il

    2008-01-01

    In the management of colo-retal and anal cancer, accurate staging, treatment evaluation, early detection of recurrence are main clinical problems. F-18 FDG PET (PET/CT) has been reported as useful in the management of colo-rectal and anal cancer because that PET has high diagnostic performance comparing to conventional studies. In case of liver metastases, for confirmation of no extrahepatic metastases, in case of high risk of metastasis, for avoiding unnecessary operation, PET (PET/CT) is expected more useful. In anal cancer, PET is expected useful in lymph node staging. For the early prediction of chemotherapy or radiation therapy effect PET has been reported as useful, also. In early detection of recurrence by PET, cost-benefit advantages has been suggested, also. PET/CT is expected to have higher diagnostic performance than PET alone

  11. Importance of PET/CT for imaging of colorectal cancer

    International Nuclear Information System (INIS)

    Meinel, F.G.; Schramm, N.; Graser, A.; Reiser, M.F.; Rist, C.; Haug, A.R.

    2012-01-01

    Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) has emerged as a very useful imaging modality in the management of colorectal carcinoma. Data from the literature regarding the role of PET/CT in the initial diagnosis, staging, radiotherapy planning, response monitoring and surveillance of colorectal carcinoma is presented. Future directions and economic aspects are discussed. Computed tomography (CT), magnetic resonance imaging (MRI) and FDG-PET for colorectal cancer and endorectal ultrasound for rectal cancer. Combined FDG-PET/CT. While other imaging modalities allow superior visualization of the extent and invasion depth of the primary tumor, PET/CT is most sensitive for the detection of distant metastases of colorectal cancer. We recommend a targeted use of PET/CT in cases of unclear M staging, prior to metastasectomy and in suspected cases of residual or recurrent colorectal carcinoma with equivocal conventional imaging. The role of PET/CT in radiotherapy planning and response monitoring needs to be determined. Currently there is no evidence to support the routine use of PET/CT for colorectal screening, staging or surveillance. To optimally exploit the synergy between morphologic and functional information, FDG-PET should generally be performed as an integrated FDG-PET/CT with a contrast-enhanced CT component in colorectal carcinoma. (orig.) [de

  12. Thermoacoustic Molecular Imaging of Small Animals

    Directory of Open Access Journals (Sweden)

    Robert A. Kruger

    2003-04-01

    Full Text Available We have designed, constructed, and tested a thermoacoustic computed tomography (TCT scanner for imaging optical absorption in small animals in three dimensions. The device utilizes pulsed laser irradiation (680–1064 nm and a unique, 128-element transducer array. We quantified the isotropic spatial resolution of this scanner to be 0.35 mm. We describe a dual-wavelength subtraction technique for isolating optical dyes with TCT. Phantom experiments demonstrate that we can detect 5 fmol of a near-infrared dye (indocyanine green, ICG in a 1-ML volume using dual-wavelength subtraction. Initial TCT imaging in phantoms and in two sacrificed mice suggests that three-dimensional, optical absorption patterns in small animals can be detected with an order of magnitude better spatial resolution and an order of magnitude better low-contrast detectability in small animals when compared to fluorescence imaging or diffusion optical tomography.

  13. [¹⁸F]Altanserin and small animal PET: impact of multidrug efflux transporters on ligand brain uptake and subsequent quantification of 5-HT₂A receptor densities in the rat brain.

    Science.gov (United States)

    Kroll, Tina; Elmenhorst, David; Matusch, Andreas; Celik, A Avdo; Wedekind, Franziska; Weisshaupt, Angela; Beer, Simone; Bauer, Andreas

    2014-01-01

    The selective 5-hydroxytryptamine type 2a receptor (5-HT(2A)R) radiotracer [(18)F]altanserin is a promising ligand for in vivo brain imaging in rodents. However, [(18)F]altanserin is a substrate of P-glycoprotein (P-gp) in rats. Its applicability might therefore be constrained by both a differential expression of P-gp under pathological conditions, e.g. epilepsy, and its relatively low cerebral uptake. The aim of the present study was therefore twofold: (i) to investigate whether inhibition of multidrug transporters (MDT) is suitable to enhance the cerebral uptake of [(18)F]altanserin in vivo and (ii) to test different pharmacokinetic, particularly reference tissue-based models for exact quantification of 5-HT(2A)R densities in the rat brain. Eighteen Sprague-Dawley rats, either treated with the MDT inhibitor cyclosporine A (CsA, 50 mg/kg, n=8) or vehicle (n=10) underwent 180-min PET scans with arterial blood sampling. Kinetic analyses of tissue time-activity curves (TACs) were performed to validate invasive and non-invasive pharmacokinetic models. CsA application lead to a two- to threefold increase of [(18)F]altanserin uptake in different brain regions and showed a trend toward higher binding potentials (BP(ND)) of the radioligand. MDT inhibition led to an increased cerebral uptake of [(18)F]altanserin but did not improve the reliability of BP(ND) as a non-invasive estimate of 5-HT(2A)R. This finding is most probable caused by the heterogeneous distribution of P-gp in the rat brain and its incomplete blockade in the reference region (cerebellum). Differential MDT expressions in experimental animal models or pathological conditions are therefore likely to influence the applicability of imaging protocols and have to be carefully evaluated. © 2013.

  14. Evaluation of the PET component of simultaneous [18F]choline PET/MRI in prostate cancer: comparison with [18F]choline PET/CT

    International Nuclear Information System (INIS)

    Wetter, Axel; Lipponer, Christine; Nensa, Felix; Altenbernd, Jens-Christian; Schlosser, Thomas; Lauenstein, Thomas; Heusch, Philipp; Ruebben, Herbert; Bockisch, Andreas; Poeppel, Thorsten; Nagarajah, James

    2014-01-01

    The aim of this study was to evaluate the positron emission tomography (PET) component of [ 18 F]choline PET/MRI and compare it with the PET component of [ 18 F]choline PET/CT in patients with histologically proven prostate cancer and suspected recurrent prostate cancer. Thirty-six patients were examined with simultaneous [ 18 F]choline PET/MRI following combined [ 18 F]choline PET/CT. Fifty-eight PET-positive lesions in PET/CT and PET/MRI were evaluated by measuring the maximum and mean standardized uptake values (SUV max and SUV mean ) using volume of interest (VOI) analysis. A scoring system was applied to determine the quality of the PET images of both PET/CT and PET/MRI. Agreement between PET/CT and PET/MRI regarding SUV max and SUV mean was tested using Pearson's product-moment correlation and Bland-Altman analysis. All PET-positive lesions that were visible on PET/CT were also detectable on PET/MRI. The quality of the PET images was comparable in both groups. Median SUV max and SUV mean of all lesions were significantly lower in PET/MRI than in PET/CT (5.2 vs 6.1, p max of PET/CT and PET/MRI (R = 0.86, p mean of PET/CT and PET/MRI (R = 0.81, p max of PET/CT vs PET/MRI and -1.12 to +2.23 between SUV mean of PET/CT vs PET/MRI. PET image quality of PET/MRI was comparable to that of PET/CT. A highly significant correlation between SUV max and SUV mean was found. Both SUV max and SUV mean were significantly lower in [ 18 F]choline PET/MRI than in [ 18 F]choline PET/CT. Differences of SUV max and SUV mean might be caused by different techniques of attenuation correction. Furthermore, differences in biodistribution and biokinetics of [ 18 F]choline between the subsequent examinations and in the respective organ systems have to be taken into account. (orig.)

  15. PET/CT in renal, bladder and testicular cancer

    Science.gov (United States)

    Bouchelouche, Kirsten; Physician, Chief; Choyke, Peter L.

    2015-01-01

    Imaging plays an important role in the clinical management of cancer patients. Hybrid imaging with PET/CT is having a broad impact in oncology, and in recent years PET/CT is beginning to have an impact in uro-oncology as well. In both bladder and renal cancer there is a need to study the efficacy of other tracers than F-18 fluorodeoxyglucose (FDG), particularly tracers with only limited renal excretion. Thus, new tracers are being introduced in these malignancies. This review focuses on the clinical role of FDG and other PET agents in renal, bladder and testicular cancer. PMID:26099672

  16. Improved clinical staging of esophageal cancer with FDG-PET

    International Nuclear Information System (INIS)

    Kim, Young Hwan; Choi, Joon Young; Lee, Kyung Soo; Choi, Yong Soo; Lee, Eun Jeong; Chung, Hyun Woo; Lee, Su Jin; Lee, Kyung Han; Shim, Young Mog; Kim, Byung Tae

    2004-01-01

    Since preoperative staging in esophageal cancer is important in both therapy and prognosis, there had been many efforts to improve its accuracy. Recent studies indicate that whole body FDG-PET has high sensitivity in detection of metastasis in esophageal cancer. Therefore, we added FDG-PET to other conventional methods in staging esophageal cancer to evaluate the usefulness of this method. Subjects were 142 esophageal cancer patients (average 62.3±8.3 yrs) who received CT and PET just before operation. First, we compared N stage and M stage of the CT or PET with those of the post-operative results. Then we compared the stage according to the EUS (T stage) and CT (N and M stage) or EUS (T stage) and CT and PET (N and M stage) to that according to the post-operative results. Among 142 patients, surgical staging of 69 were N0 and 73 were N1. In M staging, 128 were M0 and 14 were M1. Sensitivity, specificity, and accuracy of N staging were 35.6%, 89.9%, 62.0% with CT and 58.9%, 71.0%, 64.7% with PET, respectively. In M staging, 14.3%, 96.9%, 88.7% with CT and 50.0%, 94.5%, 90.1% with PET, respectively. The concordances of [EUS+CT] and [EUS+CT+PET] with post-operative results were 41.2% and 54.6%, respectively and there was significant improvement of staging with additional PET scan (p<0.005). The concordance of [EUS+CT+PET] with post-operative result was significantly increased compared to that of [EUS+CT]. Thus, the addition of FDG-PET with other conventional methods may enable more accurate preoperative staging

  17. PET and Hormone Receptor Ligands in Breast Cancer

    National Research Council Canada - National Science Library

    Gemignani, Mary

    2006-01-01

    .... To investigate this further, this project's objectives are: To evaluate the use of estrogen-like ligands labeled with positron emitters in preoperatively determining the ER status of breast cancer using PET...

  18. FDG-PET in monitoring therapy of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Biersack, H J; Bender, H; Palmedo, H [Department of Nuclear Medicine, University Hospital Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn (Germany)

    2004-06-01

    Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) has been used successfully for the staging and re-staging of breast cancer. Another significant indication is the evaluation of therapy response. Only limited data are available on the use of FDG-PET in breast cancer after radiation therapy. The same holds true for chemotherapy. Only the therapy response in locally advanced breast cancer after chemotherapy has been investigated thoroughly. Histopathological response could be predicted with an accuracy of 88-91% after the first and second courses of therapy. A quantitative evaluation is, of course, a prerequisite when FDG-PET is used for therapy monitoring. Only a small number of studies have focussed on hormone therapy. In this context, a flare phenomenon with increasing standardised uptake values after initiation of tamoxifen therapy has been observed. More prospective multicentre trials will be needed to make FDG-PET a powerful tool in monitoring chemotherapy in breast cancer. (orig.)

  19. FDG-PET in monitoring therapy of breast cancer

    International Nuclear Information System (INIS)

    Biersack, H.J.; Bender, H.; Palmedo, H.

    2004-01-01

    Fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) has been used successfully for the staging and re-staging of breast cancer. Another significant indication is the evaluation of therapy response. Only limited data are available on the use of FDG-PET in breast cancer after radiation therapy. The same holds true for chemotherapy. Only the therapy response in locally advanced breast cancer after chemotherapy has been investigated thoroughly. Histopathological response could be predicted with an accuracy of 88-91% after the first and second courses of therapy. A quantitative evaluation is, of course, a prerequisite when FDG-PET is used for therapy monitoring. Only a small number of studies have focussed on hormone therapy. In this context, a flare phenomenon with increasing standardised uptake values after initiation of tamoxifen therapy has been observed. More prospective multicentre trials will be needed to make FDG-PET a powerful tool in monitoring chemotherapy in breast cancer. (orig.)

  20. Hyperspectral small animal fluorescence imaging: spectral selection imaging

    Science.gov (United States)

    Leavesley, Silas; Jiang, Yanan; Patsekin, Valery; Hall, Heidi; Vizard, Douglas; Robinson, J. Paul

    2008-02-01

    Molecular imaging is a rapidly growing area of research, fueled by needs in pharmaceutical drug-development for methods for high-throughput screening, pre-clinical and clinical screening for visualizing tumor growth and drug targeting, and a growing number of applications in the molecular biology fields. Small animal fluorescence imaging employs fluorescent probes to target molecular events in vivo, with a large number of molecular targeting probes readily available. The ease at which new targeting compounds can be developed, the short acquisition times, and the low cost (compared to microCT, MRI, or PET) makes fluorescence imaging attractive. However, small animal fluorescence imaging suffers from high optical scattering, absorption, and autofluorescence. Much of these problems can be overcome through multispectral imaging techniques, which collect images at different fluorescence emission wavelengths, followed by analysis, classification, and spectral deconvolution methods to isolate signals from fluorescence emission. We present an alternative to the current method, using hyperspectral excitation scanning (spectral selection imaging), a technique that allows excitation at any wavelength in the visible and near-infrared wavelength range. In many cases, excitation imaging may be more effective at identifying specific fluorescence signals because of the higher complexity of the fluorophore excitation spectrum. Because the excitation is filtered and not the emission, the resolution limit and image shift imposed by acousto-optic tunable filters have no effect on imager performance. We will discuss design of the imager, optimizing the imager for use in small animal fluorescence imaging, and application of spectral analysis and classification methods for identifying specific fluorescence signals.

  1. Preoperative PET/CT in early-stage breast cancer

    DEFF Research Database (Denmark)

    Bernsdorf, M; Berthelsen, A K; Timmermans-Wielenga, Vera

    2012-01-01

    The aim of this study was to assess the diagnostic and therapeutic impact of preoperative positron emission tomography and computed tomography (PET/CT) in the initial staging of patients with early-stage breast cancer.......The aim of this study was to assess the diagnostic and therapeutic impact of preoperative positron emission tomography and computed tomography (PET/CT) in the initial staging of patients with early-stage breast cancer....

  2. Clinical aspects of toxoplasmosis in small animal

    Directory of Open Access Journals (Sweden)

    André Luiz Baptista Galvão

    2014-02-01

    Full Text Available Toxoplasmosis, a zoonosis of worldwide distribution, has importance in human and veterinary medicine. Animals can be direct or indirect source of infection to man, and this intermediate host, the disease may be responsible for encephalitis and deaths due to congenital form as coinfection in neonates and patients with acquired immunodeficiency syndrome. The man and animals can acquire the disease by eating undercooked meat or cures, infected with tissue cysts, as well as food and water contaminated with oocysts. Iatrogenic, such as, blood transfusion and organ transplantation are other less frequent routes of transmission. The causative agent of this disease is Toxoplasma gondii, a protozoan obligate intracellular coccidian. In small animals, the infection has been reported in several countries, promoting varied clinical manifestations and uncommon but severe and fatal, which is a challenge in the clinical diagnosis of small animals, especially when the nervous system involvement. Thus, constitute the purpose of this review address the participation of small animals in the spread of the disease, clinical aspects related to it, as well as discuss methods of diagnosis, therapeutic measures, prophylaxis and control of this disease.

  3. Small Animal Models for Evaluating Filovirus Countermeasures.

    Science.gov (United States)

    Banadyga, Logan; Wong, Gary; Qiu, Xiangguo

    2018-05-11

    The development of novel therapeutics and vaccines to treat or prevent disease caused by filoviruses, such as Ebola and Marburg viruses, depends on the availability of animal models that faithfully recapitulate clinical hallmarks of disease as it is observed in humans. In particular, small animal models (such as mice and guinea pigs) are historically and frequently used for the primary evaluation of antiviral countermeasures, prior to testing in nonhuman primates, which represent the gold-standard filovirus animal model. In the past several years, however, the filovirus field has witnessed the continued refinement of the mouse and guinea pig models of disease, as well as the introduction of the hamster and ferret models. We now have small animal models for most human-pathogenic filoviruses, many of which are susceptible to wild type virus and demonstrate key features of disease, including robust virus replication, coagulopathy, and immune system dysfunction. Although none of these small animal model systems perfectly recapitulates Ebola virus disease or Marburg virus disease on its own, collectively they offer a nearly complete set of tools in which to carry out the preclinical development of novel antiviral drugs.

  4. In vivo small animal imaging: Current status and future prospects

    International Nuclear Information System (INIS)

    Kagadis, George C.; Loudos, George; Katsanos, Konstantinos; Langer, Steve G.; Nikiforidis, George C.

    2010-01-01

    The use of small animal models in basic and preclinical sciences constitutes an integral part of testing new pharmaceutical agents prior to commercial translation to clinical practice. Whole-body small animal imaging is a particularly elegant and cost-effective experimental platform for the timely validation and commercialization of novel agents from the bench to the bedside. Biomedical imaging is now listed along with genomics, proteomics, and metabolomics as an integral part of biological and medical sciences. Miniaturized versions of clinical diagnostic modalities, including but not limited to microcomputed tomography, micromagnetic resonance tomography, microsingle-photon-emission tomography, micropositron-emission tomography, optical imaging, digital angiography, and ultrasound, have all greatly improved our investigative abilities to longitudinally study various experimental models of human disease in mice and rodents. After an exhaustive literature search, the authors present a concise and critical review of in vivo small animal imaging, focusing on currently available modalities as well as emerging imaging technologies on one side and molecularly targeted contrast agents on the other. Aforementioned scientific topics are analyzed in the context of cancer angiogenesis and innovative antiangiogenic strategies under-the-way to the clinic. Proposed hybrid approaches for diagnosis and targeted site-specific therapy are highlighted to offer an intriguing glimpse of the future.

  5. Positron Emission Tomography (PET) and breast cancer in clinical practice

    International Nuclear Information System (INIS)

    Lavayssiere, Robert; Cabee, Anne-Elizabeth; Filmont, Jean-Emmanuel

    2009-01-01

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005

  6. Positron Emission Tomography (PET) and breast cancer in clinical practice

    Energy Technology Data Exchange (ETDEWEB)

    Lavayssiere, Robert [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France)], E-mail: cab.lav@wanadoo.fr; Cabee, Anne-Elizabeth [Centre d' Imagerie Paris-Nord, 1, avenue Charles Peguy, 95200 Sarcelles (France); Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); Centre RMX, 80, avenue Felix Faure, 75105 Paris (France); Filmont, Jean-Emmanuel [Institut du Sein Henri Hartmann (ISHH), 1, rue des Dames Augustines, 92200 Neuilly sur Seine (France); American Hospital of Paris, Nuclear Medicine, 63, boulevard Victor Hugo - BP 109, 92202 Neuilly sur Seine Cedex (France)

    2009-01-15

    The landscape of oncologic practice has changed deeply during the past few years and there is now a need, through a multidisciplinary approach, for imaging to provide accurate evaluation of morphology and function and to guide treatment (Image Guided Therapy). Increasing emphasis has been put on Position Emission Tomography (PET) role in various cancers among clinicians and patients despite a general context of healthcare expenditure limitation. Positron Emission Tomography has currently a limited role in breast cancer, but also general radiologists and specialists should be aware of these indications, especially when staging aggressive cancers and looking for recurrence. Currently, the hybrid systems associating PET and Computed Tomography (CT) and in the same device [Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology 2004;231:305-32; Blodgett TM, Meltzer CM, Townsend DW. PET/CT: form and function. Radiology 2007;242:360-85; von Schulthess GK, Steinert HC, Hany TF. Integrated PET/CT: current applications and futures directions. Radiology 2006;238(2):405-22], or PET-CT, are more commonly used and the two techniques are adding their potentialities. Other techniques, MRI in particular, may also compete with PET in some instance and as far as ionizing radiations dose limitation is considered, some breast cancers becoming some form of a chronic disease. Breast cancer is a very complex, non-uniform, disease and molecular imaging at large may contribute to a better knowledge and to new drugs development. Ongoing research, Positron Emission Mammography (PEM) and new tracers, are likely to bring improvements in patient care [Kelloff GJ, Hoffman JM, Johnson B, et al. Progress and promise of FDG-PET Imaging for cancer patient management and oncologic drug development. Clin Cancer Res 2005;1(April (8)): 2005].

  7. Development of a New Positron Emission Tomography Tracer for Targeting Tumor Angiogenesis: Synthesis, Small Animal Imaging, and Radiation Dosimetry

    Directory of Open Access Journals (Sweden)

    David S. Lalush

    2013-05-01

    Full Text Available Angiogenesis plays a key role in cancer progression and correlates with disease aggressiveness and poor clinical outcomes. Affinity ligands discovered by screening phage display random peptide libraries can be engineered to molecularly target tumor blood vessels for noninvasive imaging and early detection of tumor aggressiveness. In this study, we tested the ability of a phage-display-selected peptide sequence recognizing specifically bone marrow- derived pro-angiogenic tumor-homing cells, the QFP-peptide, radiolabeled with 64Cu radioisotope to selectively image tumor vasculature in vivo by positron emission tomography (PET. To prepare the targeted PET tracer we modified QFP-phage with the DOTA chelator and radiolabeled the purified QFP-phage-DOTA intermediate with 64Cu to obtain QFP-targeted radioconjugate with high radiopharmaceutical yield and specific activity. We evaluated the new PET tracer in vivo in a subcutaneous (s.c. Lewis lung carcinoma (LLC mouse model and conducted tissue distribution, small animal PET/CT imaging study, autoradiography, histology, fluorescence imaging, and dosimetry assessments. The results from this study show that, in the context of the s.c. LLC immunocompetent mouse model, the QFP-tracer can target tumor blood vessels selectively. However, further optimization of the biodistribution and dosimetry profile of the tracer is necessary to ensure efficient radiopharmaceutical applications enabled by the biological specificity of the QFP-peptide.

  8. Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT

    International Nuclear Information System (INIS)

    Wever, W. de; Marchal, G.; Bogaert, J.; Verschakelen, J.A.; Ceyssens, S.; Mortelmans, L.; Stroobants, S.

    2007-01-01

    Integrated positron emission tomography (PET) and computed tomography (CT) is a new imaging modality offering anatomic and metabolic information. The purpose was to evaluate retrospectively the accuracy of integrated PET-CT in the staging of a suggestive lung lesion, comparing this with the accuracy of CT alone, PET alone and visually correlated PET-CT. Fifty patients undergoing integrated PET-CT for staging of a suggestive lung lesion were studied. Their tumor, node, metastasis (TNM) statuses were determined with CT, PET, visually correlated PET-CT and integrated PET-CT. These TNM stages were compared with the surgical TNM status. Integrated PET-CT was the most accurate imaging technique in the assessment of the TNM status. Integrated PET-CT predicted correctly the T status, N status, M status and TNM status in, respectively, 86%, 80%, 98%, 70% versus 68%, 66%,88%, 46% with CT, 46%, 70%, 96%, 30% with PET and 72%, 68%, 96%, 54% with visually correlated PET-CT. T status and N status were overstaged, respectively, in 8% and 16% with integrated PET-CT, in 20% and 28% with CT, in 16% and 20% with PET, in 12% and 20% with visually correlated PET-CT and understaged in 6% and 4% with integrated PET-CT, versus 12% and 6% with CT, 38% and 10% with PET and 12% with visually correlated PET-CT. Integrated PET-CT improves the staging of lung cancer through a better anatomic localization and characterization of lesions and is superior to CT alone and PET alone. If this technique is not available, visual correlation of PET and CT can be a valuable alternative. (orig.)

  9. Dual modality CT/PET imaging in lung cancer staging

    International Nuclear Information System (INIS)

    Diaz, Gabriel A.

    2005-01-01

    Purpose: To compare the diagnostic capability of PET-HCT image fusion and helical computed tomography (HCT) for nodal and distant metastases detection in patients with lung cancer. Material and methods: Between February, 2003 and March, 2004 sixty-six consecutive lung cancer patients (45 men and 21 women, mean ages: 63 years old, range: 38 to 96 years old) who underwent HCT and PET-HCT fusion imaging were evaluated retrospectively. All patients had histological confirmation of lung cancer and a definitive diagnosis established on the basis of pathology results and/or clinical follow-up. Results: For global nodal staging (hilar and mediastinal) HCT showed a sensitivity, specificity, positive predictive value and negative predictive value of 72%, 47%, 62% and 58% respectively, versus 94%, 77%, 83% and 92% corresponding to PET-HCT examination. For assessment of advanced nodal stage (N3) PET-HCT showed values of 92%, 100%, 100% and 98% respectively. For detection of distant metastasis, HCT alone had values of 67%, 93%, 84% and 83% respectively versus 100%, 98%, 96% and 100% for the PET-HCT fusion imaging. In 20 (30%) patients under-staged or over-staged on the basis of HCT results, PET-HCT allowed accurate staging. Conclusions: PET-HCT fusion imaging was more effective than HCT alone for nodal and distant metastasis detection and oncology staging. (author)

  10. Diagnostic PET Imaging of Mammary Microcalcifications Using 64Cu-DOTA-Alendronate in a Rat Model of Breast Cancer.

    Science.gov (United States)

    Ahrens, Bradley J; Li, Lin; Ciminera, Alexandra K; Chea, Junie; Poku, Erasmus; Bading, James R; Weist, Michael R; Miller, Marcia M; Colcher, David M; Shively, John E

    2017-09-01

    The development of improved breast cancer screening methods is hindered by a lack of cancer-specific imaging agents and effective small-animal models to test them. The purpose of this study was to evaluate 64 Cu-DOTA-alendronate as a mammary microcalcification-targeting PET imaging agent, using an ideal rat model. Our long-term goal is to develop 64 Cu-DOTA-alendronate for the detection and noninvasive differentiation of malignant versus benign breast tumors with PET. Methods: DOTA-alendronate was synthesized, radiolabeled with 64 Cu, and administered to normal or tumor-bearing aged, female, retired breeder Sprague-Dawley rats for PET imaging. Mammary tissues were subsequently labeled and imaged with light, confocal, and electron microscopy to verify microcalcification targeting specificity of DOTA-alendronate and elucidate the histologic and ultrastructural characteristics of the microcalcifications in different mammary tumor types. Tumor uptake, biodistribution, and dosimetry studies were performed to evaluate the efficacy and safety of 64 Cu-DOTA-alendronate. Results: 64 Cu-DOTA-alendronate was radiolabeled with a 98% yield. PET imaging using aged, female, retired breeder rats showed specific binding of 64 Cu-DOTA-alendronate in mammary glands and mammary tumors. The highest uptake of 64 Cu-DOTA-alendronate was in malignant tumors and the lowest uptake in benign tumors and normal mammary tissue. Confocal analysis with carboxyfluorescein-alendronate confirmed the microcalcification binding specificity of alendronate derivatives. Biodistribution studies revealed tissue alendronate concentrations peaking within the first hour, then decreasing over the next 48 h. Our dosimetric analysis demonstrated a 64 Cu effective dose within the acceptable range for clinical PET imaging agents and the potential for translation into human patients. Conclusion: 64 Cu-DOTA-alendronate is a promising PET imaging agent for the sensitive and specific detection of mammary tumors as

  11. An integrated multimodality image-guided robot system for small-animal imaging research

    International Nuclear Information System (INIS)

    Hsu, Wen-Lin; Hsin Wu, Tung; Hsu, Shih-Ming; Chen, Chia-Lin; Lee, Jason J.S.; Huang, Yung-Hui

    2011-01-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO 2 probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153±0.042 mm of desired placement; the phantom simulation errors were within 0.693±0.128 mm. In small-animal studies, the pO 2 probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  12. State of the art in both in vitro and in vivo aspects of small animal imaging

    International Nuclear Information System (INIS)

    Maziere, B.; Lebars, D.

    2002-01-01

    Full text: In vivo imaging for small animals is dramatically expanding due to the coincidence of mainly three technical factors: 1. the explosion in computer power 2. the enhancement in image processing 3. the accessibility and affordability of digital autoradiography systems and small-animal scanners. Among these imaging techniques let us mention the anatomical imaging techniques such as ultrasonography, X-rays and IRM and the functional imaging radioisotopic techniques SPECT and TEP. The main advantage of the first group of imaging techniques is essentially linked to the high resolution of the anatomical images (with the drawback of the necessity of putting the animal at rest using anaesthesia). The main advantages of SPECT and PET are their high sensitivity and the vast number of functions or metabolism they allow to image. The applications for isotopic functional imaging in small animals are increasing rapidly. Factors contributing to this dramatic expansion include the three previous technical factors plus, at least, three methodological factors: 1. the drug discovery process based on receptor / mechanism of action 2. the increasing number of rodent models of human diseases (SCID mice implanted with human tumors, gene knock-out mice, transgene mice) 3. the advances in isotope and validated tracer availability performances Small animal radioisotopic functional imaging for drug development. In vivo quantification of biological processes to measure the mechanism of action of a potential drug and its concentration at the site of action has become mandatory for developing a drug. Rational and efficient means of confirming mechanisms of action are required. For this purpose, PET and/or SPECT functional - biochemical - molecular imaging in small animals are tools of choice for economical reasons (in the domain of drug development, industry is suffering huge opportunity costs by failing to weed out non-performing new active substances until late phases II and III) and

  13. PET-MRI and multimodal cancer imaging

    International Nuclear Information System (INIS)

    Wang Taisong; Zhao Jinhua; Song Jianhua

    2011-01-01

    Multimodality imaging, specifically PET-CT, brought a new perspective into the fields of clinical imaging. Clinical cases have shown that PET-CT has great value in clinical diagnosis and experimental research. But PET-CT still bears some limitations. A major drawback is that CT provides only limited soft tissue contrast and exposes the patient to a significant radiation dose. MRI overcome these limitations, it has excellent soft tissue contrast, high temporal and spatial resolution and no radiation damage. Additionally, since MRI provides also functional information, PET-MRI will show a new direction of multimodality imaging in the future. (authors)

  14. PET/CT in kidney and bladder cancer

    International Nuclear Information System (INIS)

    Bochev, P.; Klisarova, A.

    2013-01-01

    Full text: FDG PET/CT has traditionally been considered a method of limited use in tumors of the kidneys and excretory system. Major shortcoming of the method in kidney cancer is considered variable fixation and a more general lack of significant therapeutic alternatives that require early diagnosis of recurrence after nephrectomy. In the context of the modern methods of systemic anticancer therapy in kidney cancer, marking a significant success in terms of time to progression, the need of more detailed selection of the patients and the search methods for the early diagnosis and assessment of therapeutic response arises. While CT remains the primary method for the diagnosis of parenchymal metastases (lung, liver), the use of FDG PET/CT has a significant advantage in detecting of nodal metastasis, locoregional recurrence and bone metastasis. Interesting direction in the use of PET/CT remains the monitoring of therapeutic response to systemic therapy of metastatic kidney cancer. Unlike kidney cancer in transitional cell carcinoma of bladder (TCC), the application of FDG PET/CT is non- systematic and based on the specific clinical indications. As the main indicator can be observed the distant staging in locally advanced tumors and recurrences in restading after cystectomy. Besides the general advantages of PET/CT in terms of nodal and peritoneal involvement it should be noted that the role of the PET/CT in TCC is discussible. Application of FDG PET / CT in kidney cancer and TCC at this stage can not be considered as established, but while in TCCs, the method has sporadically application, mostly for specific clinical questions, the application in kidney cancer is significantly more systemic and in the context of systemic anti-tumor therapy allows early diagnosis and therapeutic approach modulation

  15. PET/CT Imaging and Radioimmunotherapy of Prostate Cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Tagawa, Scott T; Goldsmith, Stanley J

    2011-01-01

    disease (ideal for antigen access and antibody delivery). Furthermore, prostate cancer is also radiation sensitive. Prostate-specific membrane antigen is expressed by virtually all prostate cancers, and represents an attractive target for RIT. Antiprostate-specific membrane antigen RIT demonstrates......Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an important role in the clinical management of patients with prostate cancer. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis...... of anatomic, functional, and molecular imaging information. Positron emission tomography (PET)/computed tomography (CT) in oncology is emerging as an important imaging tool. The most common radiotracer for PET/CT in oncology, (18)F-fluorodeoxyglucose (FDG), is not very useful in the imaging of prostate cancer...

  16. Pre-clinical research in small animals using radiotherapy technology. A bidirectional translational approach

    International Nuclear Information System (INIS)

    Tillner, Falk; Buetof, Rebecca; Krause, Mechthild; Enghardt, Wolfgang; Helmholtz-Zentrum Dresden-Rossendorf, Dresden; Technische Univ. Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden

    2014-01-01

    For translational cancer research, pre-clinical in-vivo studies using small animals have become indispensable in bridging the gap between in-vitro cell experiments and clinical implementation. When setting up such small animal experiments, various biological, technical and methodical aspects have to be considered. In this work we present a comprehensive topical review based on relevant publications on irradiation techniques used for pre-clinical cancer research in mice and rats. Clinical radiotherapy treatment devices for the application of external beam radiotherapy and brachytherapy as well as dedicated research irradiation devices are feasible for small animal irradiation depending on the animal model and the experimental goals. In this work, appropriate solutions for the technological transfer of human radiation oncology to small animal radiation research are summarised. Additionally, important information concerning the experimental design is provided such that reliable and clinically relevant results can be attained.

  17. Pre-clinical research in small animals using radiotherapy technology--a bidirectional translational approach.

    Science.gov (United States)

    Tillner, Falk; Thute, Prasad; Bütof, Rebecca; Krause, Mechthild; Enghardt, Wolfgang

    2014-12-01

    For translational cancer research, pre-clinical in-vivo studies using small animals have become indispensable in bridging the gap between in-vitro cell experiments and clinical implementation. When setting up such small animal experiments, various biological, technical and methodical aspects have to be considered. In this work we present a comprehensive topical review based on relevant publications on irradiation techniques used for pre-clinical cancer research in mice and rats. Clinical radiotherapy treatment devices for the application of external beam radiotherapy and brachytherapy as well as dedicated research irradiation devices are feasible for small animal irradiation depending on the animal model and the experimental goals. In this work, appropriate solutions for the technological transfer of human radiation oncology to small animal radiation research are summarised. Additionally, important information concerning the experimental design is provided such that reliable and clinically relevant results can be attained. Copyright © 2014. Published by Elsevier GmbH.

  18. Pre-clinical research in small animals using radiotherapy technology. A bidirectional translational approach

    Energy Technology Data Exchange (ETDEWEB)

    Tillner, Falk; Buetof, Rebecca [Technische Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden (Germany). Dept. of Radiation Oncology; Thute, Prasad [Technische Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Krause, Mechthild [Technische Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden (Germany). Dept. of Radiation Oncology; German Cancer Consortium (DKTK), Dresden (Germany); German Cancer Research Center (DKFZ), Heidelberg (Germany); Enghardt, Wolfgang [Technische Univ. Dresden (Germany). OncoRay - National Center for Radiation Research in Oncology; Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Technische Univ. Dresden (Germany). Dept. of Radiation Oncology; Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany). Inst. of Radiooncology

    2014-07-01

    For translational cancer research, pre-clinical in-vivo studies using small animals have become indispensable in bridging the gap between in-vitro cell experiments and clinical implementation. When setting up such small animal experiments, various biological, technical and methodical aspects have to be considered. In this work we present a comprehensive topical review based on relevant publications on irradiation techniques used for pre-clinical cancer research in mice and rats. Clinical radiotherapy treatment devices for the application of external beam radiotherapy and brachytherapy as well as dedicated research irradiation devices are feasible for small animal irradiation depending on the animal model and the experimental goals. In this work, appropriate solutions for the technological transfer of human radiation oncology to small animal radiation research are summarised. Additionally, important information concerning the experimental design is provided such that reliable and clinically relevant results can be attained.

  19. FDG-PET, PET/CT and conventional nuclear medicine procedures in the evaluation of lung cancer. A systematic review

    International Nuclear Information System (INIS)

    Hellwig, Dirk; Kirsch, C.M.; Baum, R.P.

    2009-01-01

    Aim: Currently, the German and Austrian S3 guidelines on the evaluation and treatment of lung cancer are about to be published whereas the American Colleague of Chest Physicians (ACCP) guidelines were already presented in 2007. An important part of the diagnostic workup of lung cancer will be the evaluation of indeterminate lung lesions and the mediastinal and extrathoracic staging using FDG-PET or PET/CT. The results from the literature on FDG-PET and PET/CT as well as on conventional nuclear medicine staging procedures and the clinical implications are presented. Methods: The literature data was amassed in analogy to the metaanalyses drawn for the current ACCP guidelines. In addition, relevant more recent publications were also considered. To answer the important question for the extent of pathological confirmation needed, the residual risk of mediastinal metastases was calculated for certain constellations of FDG-PET and CT findings. Suggested recommendations were characterized with the level of evidence. Results: FDG-PET (PET/CT) allows the differentiation of indeterminate lung lesions with high accuracy. FDG-PET (PET/CT) is the most accurate non-invasive procedure to assess the mediastinal nodal stage, for non-small cell as well as for small cell lung cancer. It is justified to omit invasive evaluation of enlarged but FDG-PET negative lymph nodes under certain circumstances. Unexpected extrathoracic metastases detected by FDG-PET imply important changes in therapeutic management. Conclusion: The upcoming S3 guideline on lung cancer will recommend FDG-PET in several indications due to its clinical efficacy well proven by data from literature (high level of evidence). The selected use of conventional nuclear medicine procedures remains beyond doubt. FDG-PET (PET/CT) belongs to the standard of care in lung cancer

  20. FDG-PET, PET/CT and conventional nuclear medicine procedures in the evaluation of lung cancer. A systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Hellwig, Dirk; Kirsch, C.M. [Saarland Univ. Medical Center, Homburg (Germany). Dept. of Nuclear Medicine; Baum, R.P. [Zentralklinik Bad Berka (Germany). Dept. of Nuclear Medicine / PET Center

    2009-07-01

    Aim: Currently, the German and Austrian S3 guidelines on the evaluation and treatment of lung cancer are about to be published whereas the American Colleague of Chest Physicians (ACCP) guidelines were already presented in 2007. An important part of the diagnostic workup of lung cancer will be the evaluation of indeterminate lung lesions and the mediastinal and extrathoracic staging using FDG-PET or PET/CT. The results from the literature on FDG-PET and PET/CT as well as on conventional nuclear medicine staging procedures and the clinical implications are presented. Methods: The literature data was amassed in analogy to the metaanalyses drawn for the current ACCP guidelines. In addition, relevant more recent publications were also considered. To answer the important question for the extent of pathological confirmation needed, the residual risk of mediastinal metastases was calculated for certain constellations of FDG-PET and CT findings. Suggested recommendations were characterized with the level of evidence. Results: FDG-PET (PET/CT) allows the differentiation of indeterminate lung lesions with high accuracy. FDG-PET (PET/CT) is the most accurate non-invasive procedure to assess the mediastinal nodal stage, for non-small cell as well as for small cell lung cancer. It is justified to omit invasive evaluation of enlarged but FDG-PET negative lymph nodes under certain circumstances. Unexpected extrathoracic metastases detected by FDG-PET imply important changes in therapeutic management. Conclusion: The upcoming S3 guideline on lung cancer will recommend FDG-PET in several indications due to its clinical efficacy well proven by data from literature (high level of evidence). The selected use of conventional nuclear medicine procedures remains beyond doubt. FDG-PET (PET/CT) belongs to the standard of care in lung cancer.

  1. Attitudes of Austrian veterinarians towards euthanasia in small animal practice: impacts of age and gender on views on euthanasia

    OpenAIRE

    Hartnack, Sonja; Springer, Svenja; Pittavino, Marta; Grimm, Herwig

    2016-01-01

    Background Euthanasia of pets has been described by veterinarians as ?the best and the worst? of the profession. The most commonly mentioned ethical dilemmas veterinarians face in small animal practice are: limited treatment options due to financial constraints, euthanizing of healthy animals and owners wishing to continue treatment of terminally ill animals. The aim of the study was to gain insight into the attitudes of Austrian veterinarians towards euthanasia of small animals. This include...

  2. PET/CT diagnostic of colo-rectal cancers

    International Nuclear Information System (INIS)

    Straciuc, O.

    2012-01-01

    Full text: Objective: Presenting the advantages of Positron Emission Tomography/Computed Tomography (PET/ CT) examination, using the radiotracer fluorure 18-deoxyglucose (FDG) in colo-rectal cancer diagnostic. Basics of the method will be also presented. Introduction: FDG PET/CT is recognized as the most efficient diagnostic imaging weapon in colorectal cancer, enable too comprehend all the 3 targets needed for staging of colo-rectal cancers: 1)Detection and evaluation of primary tumor (T) and recurrence; 2) Lymphadenopathy (N); 3)Metastatic disease (M). Assessment of treatment response during and after therapy, follow up and radiotherapy planning are also indications for PET/CT. There are two essential advantages of the method: 1)The whole body examination; 2)The complementary morphological information offered by CT and functional information offered by PET. Material and methods: Study of a total of 394 patients diagnosed with colo-rectal cancer of the total of 4125 investigated by PET/CT in Diagnosztika Pozitron center of Oradea, between 01.06.2008 - 06.06.2012. All cases had documented preoperative or postoperative histopathologic evaluation. We used a Siemens Biograph 16 device and only FDG as radiotracer, injected intravenously at a dose of 0.1-0.15 mCi /kg. Standard protocol of examination was performed at 60 minutes after FDG injection. CT acquisition consists of 'low dose' from vertex to thighs, followed by PET acquisition in 7 to 8 beds. Results: We followed the performance of PET/CT diagnostic in staging and restaging of colorectal cancer compared with other imaging methods. 141 patients had negative examinations. 107 patients were diagnosed with locally recurrent lesions, lymphadenopathy and/ or metastases. Compared with the results of previous imaging new metabolically active lesions were detected in 87 patients by PET/CT and suspected lesions were denied in 48 patients. Significant clinically cases are presented. Conclusions: The data obtained by PET

  3. Effective dose and cancer risk in PET/CT exams

    International Nuclear Information System (INIS)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de

    2013-01-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10 -4 . Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10 -3

  4. Quantitative assessment of dynamic PET imaging data in cancer imaging.

    Science.gov (United States)

    Muzi, Mark; O'Sullivan, Finbarr; Mankoff, David A; Doot, Robert K; Pierce, Larry A; Kurland, Brenda F; Linden, Hannah M; Kinahan, Paul E

    2012-11-01

    Clinical imaging in positron emission tomography (PET) is often performed using single-time-point estimates of tracer uptake or static imaging that provides a spatial map of regional tracer concentration. However, dynamic tracer imaging can provide considerably more information about in vivo biology by delineating both the temporal and spatial pattern of tracer uptake. In addition, several potential sources of error that occur in static imaging can be mitigated. This review focuses on the application of dynamic PET imaging to measuring regional cancer biologic features and especially in using dynamic PET imaging for quantitative therapeutic response monitoring for cancer clinical trials. Dynamic PET imaging output parameters, particularly transport (flow) and overall metabolic rate, have provided imaging end points for clinical trials at single-center institutions for years. However, dynamic imaging poses many challenges for multicenter clinical trial implementations from cross-center calibration to the inadequacy of a common informatics infrastructure. Underlying principles and methodology of PET dynamic imaging are first reviewed, followed by an examination of current approaches to dynamic PET image analysis with a specific case example of dynamic fluorothymidine imaging to illustrate the approach. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. PET in diagnosing exocrine pancreatic cancer; PET bei Tumoren des exokrinen Pankreas

    Energy Technology Data Exchange (ETDEWEB)

    Bares, R.; Besenfelder, H.; Dohmen, B.M. [Abt. Nuklearmedizin, Radiologische Klinik des Universitaetsklinikums Tuebingen (Germany)

    2003-06-01

    Despite dramatic improvements in diagnostic imaging (ultrasonography, in particular endoscopic ultrasound, CT, MRI) treatment results of pancreatic cancer are still poor. Due to the lack of early symptoms, most tumors are diagnosed at an advanced stage of disease which excludes curative surgical treatment. FDG-PET has been shown to be effective in detecting pancreatic cancer as well as differentiating benign from malignant pancreatic tumors. Results might be further improved by applying quantitative analyses, in particular kinetic modelling of FDG metabolism. Nevertheless false negative as well as false positive findings may occur. Small lesions (lymphnode or liver metastases < 1 cm) might be missed, furthermore hyperglycemia often present in patients with pancreatic disease might reduce tumor uptake and subsequently tumor detectability by PET. False positive findings were reported in active pancreatitis and some benign tumors. Although PET proved to be superior to CT or ERCP in detecting cancer, clinical relevance of PET is limited due to the absence of therapeutic consequences to be derived from PET. As a consequence PET should only be used in patients with equivocal findings of morphological imaging (CT, ERCP) who are potential candidates for surgical treatment. (orig.) [German] Trotz verbesserter diagnostischer Moeglichkeiten (endoskopischer Ultraschall, Spiral-CT, MRT) sind die Behandlungsergebnisse bei Tumoren des exokrinen Pankreas nach wie vor unbefriedigend. Aufgrund der spaet einsetzenden klinischen Symptomatik wird die Diagnose meist erst bei lokaler Inoperabilitaet gestellt. Die FDG-PET has sich sowohl im Nachweis von Pankreaskarzinomen als auch bei der Differenzialdiagnose pankreatischer Raumforderungen bewaehrt und den etablierten bildgebenden Verfahren (Ultraschall, CT) als ueberlegen erwiesen. Weitere Verbesserungen erscheinen durch absolute Quantifizierung der FDG-Kinetik moeglich. Dennoch koennen falsch negative wie auch falsch positive Ergebnisse

  6. Improving PET spatial resolution and detectability for prostate cancer imaging

    International Nuclear Information System (INIS)

    Bal, H; Guerin, L; Casey, M E; Conti, M; Eriksson, L; Michel, C; Fanti, S; Pettinato, C; Adler, S; Choyke, P

    2014-01-01

    Prostate cancer, one of the most common forms of cancer among men, can benefit from recent improvements in positron emission tomography (PET) technology. In particular, better spatial resolution, lower noise and higher detectability of small lesions could be greatly beneficial for early diagnosis and could provide a strong support for guiding biopsy and surgery. In this article, the impact of improved PET instrumentation with superior spatial resolution and high sensitivity are discussed, together with the latest development in PET technology: resolution recovery and time-of-flight reconstruction. Using simulated cancer lesions, inserted in clinical PET images obtained with conventional protocols, we show that visual identification of the lesions and detectability via numerical observers can already be improved using state of the art PET reconstruction methods. This was achieved using both resolution recovery and time-of-flight reconstruction, and a high resolution image with 2 mm pixel size. Channelized Hotelling numerical observers showed an increase in the area under the LROC curve from 0.52 to 0.58. In addition, a relationship between the simulated input activity and the area under the LROC curve showed that the minimum detectable activity was reduced by more than 23%. (paper)

  7. Risk-benefit analysis of 18FDG PET cancer screening

    International Nuclear Information System (INIS)

    Murano, Takeshi; Daisaki, Hiromitsu; Terauchi, Takashi; Iinuma, Takeshi; Tateno, Yukio; Tateishi, Ukihide; Kato, Kazuaki; Inoue, Tomio

    2008-01-01

    The benefits of 18 F-fluorodeoxyglucose ( 18 FDG) positron emission tomography (PET) cancer screening are expected to include a large population of examinees and are intended for a healthy group. Therefore, we attempted to determine the benefit/risk ratio, estimated risk of radiation exposure, and benefit of cancer detection. We used software that embodied the method of the International Commission on Radiological Protection (ICRP) to calculate the average duration of life of radiation exposure. We calculated the lifesaving person years of benefit to be obtained by 18 FDG PET cancer screening detection. We also calculated the benefit/risk ratio using life-shortening and lifesaving person years. According to age, the benefit/risk ratio was more than 1 at 35-39 years old for males and 30-34 years old for females. 18 FDG PET cancer screening also is effective for examinees older than this. A risk-benefit analysis of 18 FDG-PET/computed tomography (CT) cancer screening will be necessary in the future. (author)

  8. F-FDG PET/CT (PET/CT) influences management in patients with known or suspected pancreatic cancer

    International Nuclear Information System (INIS)

    Barber, Thomas W.; Kalff, Victor; Cherk, Martin H.; Yap, Kenneth SK.; Evans, Peter; Kelly, Michael J.

    2009-01-01

    Full text: Objective: To assess the impact on clinical management of PET/CT in patients with known or suspected pancreatic cancer. Methods: Between April 2006 and September 2008,25 PET/CT scans were performed using a dedicated PET/CT (22 scans) or a coincidence hybrid PET/CT camera (3 scans) in 23 patients with known or suspected pancreatic cancer. 17 scans were performed for initial evaluation and 8 for restaging of disease. The pre-PET/CT management plan and for intent were prospectively recorded in all cases. The post-PET/CT management plan was determined from the medical record and for discussions with treating clinicians. The impact of PET/CT on management was classified as High, Medium, Low or None, defined using ANZAPNM PET data collection project criteria. Follow-up was used to reconcile any discordance between PET/CT and conventional imaging. Results: Overall, PET/CT management impact was classified as high (n equal 7), medium (n equal 4), low (n equal 10) or none (n equal 4). Impact was either high or medium in l l/25 patients (44%) (95% confidence interval; 24 - 64%). Impact was high in 4/17 patients imaged for initial evaluation, predominantly by clarifying equivocal lesions on conventional imaging. In restaged patients, PET/CT impact was high in 3/8, and it correctly modified disease extent in 5/8. In the 16 discordant studies, PET/CT assessment was correct in 10, conventional imaging in 4 and there was insufficient information in 2. Conclusion: PET/CT has high or medium management impact in 44% of patients imaged for known or suspected pancreatic cancer, more commonly during restaging. Discordant PET/CT results were usually correct.

  9. Blended learning in the small animal clinic

    DEFF Research Database (Denmark)

    Langebæk, Rikke

    2011-01-01

    At the Department of Small Animal Clinical Sciences, Basic Surgical Skills are taught in groups of 30-35 students in the first year of the master program (4th year students). The eight day course is an example of ‘blended learning’ in which students use our e-learning-material (Step 1) to prepare...... for the practical part of the course (Step 2, 3 and 4). From their home computers, students log on to the e-learning platform of Copenhagen University: https://absalon.ku.dk and go to the Basic Surgical Skills course, which consist of a line of chapters concerning a variety of surgical subjects. Each subject...... the implementation of these new teaching methods (e-learning and Skills Lab), teachers have ascertained a more satisfactory level of preparation, students that seem more focused and live-animal surgery that is conducted at a more ‘professional’ level than before. Finally, our research in this field shows...

  10. Breast cancer detection using high-resolution breast PET compared to whole-body PET or PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Kalinyak, Judith E. [Naviscan Inc., San Diego, CA (United States); Berg, Wendie A. [University of Pittsburgh School of Medicine, Magee-Womens Hospital, Pittsburgh, PA (United States); Schilling, Kathy [Boca Raton Regional Hospital, Boca Raton, FL (United States); Madsen, Kathleen S. [Certus International, Inc., St. Louis, MO (United States); Narayanan, Deepa [Naviscan Inc., San Diego, CA (United States); National Cancer Institute, Bethesda, MD (United States); Tartar, Marie [Scripps Clinic, Scripps Green Hospital, La Jolla, CA (United States)

    2014-02-15

    To compare the performance characteristics of positron emission mammography (PEM) with those of whole-body PET (WBPET) and PET/CT in women with newly diagnosed breast cancer. A total of 178 women consented to PEM for presurgical planning in an IRB-approved protocol and also underwent either WBPET (n = 69) or PET/CT (n = 109) imaging, as per usual care at three centers. Tumor detection sensitivity, positive predictive values, and {sup 18}F-fluorodeoxyglucose (FDG) uptake were compared between the modalities. The effects of tumor size, type, and grade on detection were examined. The chi-squared or Fisher's exact tests were used to compare distributions between groups, and McNemar's test was used to compare distributions for paired data within subject groups, i.e. PEM versus WBPET or PEM versus PET/CT. The mean age of the women was 59 ± 12 years (median 60 years, range 26-89 years), with a mean invasive index tumor size of 1.6 ± 0.8 cm (median 1.5 cm, range 0.5-4.0 cm). PEM detected more index tumors (61/66, 92 %) than WBPET (37/66, 56 %; p < 0.001) or PET/CT (95/109, 87 % vs. 104/109, 95 % for PEM; p < 0.029). Sensitivity for the detection of additional ipsilateral malignancies was also greater with PEM (7/15, 47 %) than with WBPET (1/15, 6.7 %; p = 0.014) or PET/CT (3/23, 13 % vs. 13/23, 57 % for PEM; p = 0.003). Index tumor detection decreased with decreasing invasive tumor size for both WBPET (p = 0.002) and PET/CT (p < 0.001); PEM was not significantly affected (p = 0.20). FDG uptake, quantified in terms of maximum PEM uptake value, was lowest in ductal carcinoma in situ (median 1.5, range 0.7-3.0) and invasive lobular carcinoma (median 1.5, range 0.7-3.4), and highest in grade III invasive ductal carcinoma (median 3.1, range 1.4-12.9). PEM was more sensitive than either WBPET or PET/CT in showing index and additional ipsilateral breast tumors and remained highly sensitive for tumors smaller than 1 cm. (orig.)

  11. Diagnostic value of [18F] FDG-PET and PET/CT in urinary bladder cancer: a meta-analysis.

    Science.gov (United States)

    Zhang, Huojun; Xing, Wei; Kang, Qinqin; Chen, Chao; Wang, Linhui; Lu, Jianping

    2015-05-01

    An early diagnosis of urinary bladder cancer is crucial for early treatment and management. The objective of this systematic review was to assess the overall diagnostic accuracy of 18 F FDG-PET and PET/CT in urinary bladder cancer with meta-analysis. The PubMed and CNKI databases were searched for the eligible studies published up to June 01, 2014. The sensitivity, specificity, and other measures of accuracy of 18 F FDG-PET and PET/CT in the diagnosis of urinary bladder cancer were pooled along with 95 % confidence intervals (CI). Summary receiver operating characteristic (ROC) curves were used to summarize overall test performance. Ten studies met our inclusion criteria. The summary estimates for 18 F FDG-PET and PET/CT in the diagnosis of urinary bladder cancer in meta-analysis were as follows: a pooled sensitivity, 0.82 (95 % confidence interval [CI], 0.75 to 0.88); a pooled specificity, 0.92 (95 % CI, 0.87 to 0.95); positive likelihood ratio, 6.80 (95 % CI, 4.31 to 10.74); negative likelihood ratio, 0.27 (95 % CI, 0.19 to 0.36); and diagnostic odds ratio, 25.18 (95 % CI, 17.58 to 70.4). The results indicate that 18 F FDG-PET and PET/CT are relatively high sensitive and specific for the diagnosis of urinary bladder cancer.

  12. PET-CT in the evaluation of metastatic breast cancer

    International Nuclear Information System (INIS)

    Sullivan, A.M.; Fulham, M.J.

    2005-01-01

    A 44-year-old woman underwent two PET-CT scans for the evaluation of metastatic breast cancer. A radical left mastectomy with axillary dissection (1 of 43 nodes positive) followed by chemotherapy, was performed in 1998. She represented in October 2003 with a left supraclavicular fossa mass. This was confirmed to be recurrent breast cancer on FNAB. She was considered for a radical neck dissection and the surgeon requested a PET scan. Other imaging at this time included a normal bone scan and CT brain. CT neck/chest/abdomen/pelvis showed soft tissue thickening in the left lower neck. The PET-CT scan showed multiple glucose avid lesions in the sternum, mediastinum and neck lymph nodes as well as a small lesion in the proximal left femur consistent with extensive metastatic disease. Surgery was cancelled and Femara chemotherapy commenced. Femara was stopped in March 2004 and the patient began alternative therapies. In October 2004 she presented to her surgeon with new back and chest pain. CT of the neck/chest/abdomen/pelvis showed a soft tissue mass in the upper sternum and a lymph node at the base of the neck highly suspicious for metastatic disease. There were also 2 suspicious lung nodules and a lesion in the proximal left femur reported as an osteoid osteoma. Wholebody PET-CT scans were performed on a Siemens LSO Biograph, 60mins after the injection of 350Mbq of Fl 8-Fag, with arms at the patient's side and head in the field-of-view. On both occasions the patient had to pay for the scan. On the 2004 PET-CT scan, the CT brain revealed multiple hyperdense lesions consistent with hemorrhagic metastases. In addition, there were innumerable glucose avid foci involving viscera, nodes and skeleton consistent with disseminated disease. Our case illustrates: (i) the value of PET in the management of metastatic breast cancer; (ii) the improved accuracy of PET-CT in delineating sites of disease; (iii) the issues of head movement in PET-CT and. (iv) the problem with lack of

  13. [18F]FDG PET/CT outperforms [18F]FDG PET/MRI in differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Vrachimis, Alexis; Wenning, Christian; Weckesser, Matthias; Stegger, Lars; Burg, Matthias Christian; Allkemper, Thomas; Schaefers, Michael

    2016-01-01

    To evaluate the diagnostic potential of PET/MRI with [ 18 F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [ 18 F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [ 18 F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [ 18 F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [ 18 F]FDG PET/MRI was inferior to low-dose [ 18 F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [ 18 F]FDG PET/MRI was equal to contrast-enhanced neck [ 18 F]FDG PET/CT. Therefore, [ 18 F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast agent is contraindicated. (orig.)

  14. Value of {sup 11}C-choline PET and PET/CT in patients with suspected prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Scher, Bernhard; Albinger, Wolfram; Tiling, Reinhold; Gildehaus, Franz-Josef; Dresel, Stefan [University of Munich, Department of Nuclear Medicine, Munich (Germany); Seitz, Michael [University of Munich, Department of Urology, Munich (Germany); Scherr, Michael; Becker, Hans-Christoph [University of Munich, Department of Radiology, Munich (Germany); Souvatzogluou, Michael; Wester, Hans-Juergen [Technical University of Munich, Department of Nuclear Medicine, Munich (Germany)

    2007-01-15

    The value and limitations of {sup 11}C-choline PET and PET/CT for the detection of prostate cancer remain controversial. The aim of this study was to investigate the diagnostic efficacy of {sup 11}C-choline PET and PET/CT in a large group of patients with suspected prostate cancer. Fifty-eight patients with clinical suspicion of prostate cancer underwent {sup 11}C-choline PET (25/58, Siemens ECAT Exact HR+) or PET/CT (33/58, Philips Gemini) scanning. On average, 500 MBq of {sup 11}C-choline was administered intravenously. Studies were interpreted by raters blinded to clinical information and other diagnostic procedures. Qualitative image analysis as well as semiquantitative SUV measurement was carried out. The reference standard was histopathological examination of resection specimens or biopsy. Prevalence of prostate cancer in this selected patient population was 63.8% (37/58). {sup 11}C-choline PET and PET/CT showed a sensitivity of 86.5% (32/37) and a specificity of 61.9% (13/21) in the detection of the primary malignancy. With regard to metastatic spread, PET showed a per-patient sensitivity of 81.8% (9/11) and produced no false positive findings. Based on our findings, differentiation between benign prostatic changes, such as benign prostatic hyperplasia or prostatitis, and prostate cancer is feasible in the majority of cases when image interpretation is primarily based on qualitative characteristics. SUV{sub max} may serve as guidance. False positive findings may occur due to an overlap of {sup 11}C-choline uptake between benign and malignant processes. By providing functional information regarding both the primary malignancy and its metastases, {sup 11}C-choline PET may prove to be a useful method for staging prostate cancer. (orig.)

  15. Gamma-camera 18F-FDG PET in diagnosis and staging of patients presenting with suspected lung cancer and comparison with dedicated PET

    DEFF Research Database (Denmark)

    Oturai, Peter S; Mortensen, Jann; Enevoldsen, Henriette

    2004-01-01

    It is not clear whether high-quality coincidence gamma-PET (gPET) cameras can provide clinical data comparable with data obtained with dedicated PET (dPET) cameras in the primary diagnostic work-up of patients with suspected lung cancer. This study focuses on 2 main issues: direct comparison...

  16. Preliminary study for small animal preclinical hadrontherapy facility

    Energy Technology Data Exchange (ETDEWEB)

    Russo, G. [Institute of Molecular Bioimaging and Physiology, IBFM CNR-LATO, Cefalú (Italy); Pisciotta, P., E-mail: pietro.pisciotta@ibfm.cnr.it [Institute of Molecular Bioimaging and Physiology, IBFM CNR-LATO, Cefalú (Italy); National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania (Italy); Cirrone, G.A.P.; Romano, F. [National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania (Italy); Cammarata, F.; Marchese, V.; Forte, G.I.; Lamia, D.; Minafra, L.; Bravatá, V. [Institute of Molecular Bioimaging and Physiology, IBFM CNR-LATO, Cefalú (Italy); Acquaviva, R. [University of Catania, Catania (Italy); Gilardi, M.C. [Institute of Molecular Bioimaging and Physiology, IBFM CNR-LATO, Cefalú (Italy); Cuttone, G. [National Institute for Nuclear Physics, Laboratori Nazionali del Sud, INFN-LNS, Catania (Italy)

    2017-02-21

    Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and

  17. Preliminary study for small animal preclinical hadrontherapy facility

    Science.gov (United States)

    Russo, G.; Pisciotta, P.; Cirrone, G. A. P.; Romano, F.; Cammarata, F.; Marchese, V.; Forte, G. I.; Lamia, D.; Minafra, L.; Bravatá, V.; Acquaviva, R.; Gilardi, M. C.; Cuttone, G.

    2017-02-01

    Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and

  18. Preliminary study for small animal preclinical hadrontherapy facility

    International Nuclear Information System (INIS)

    Russo, G.; Pisciotta, P.; Cirrone, G.A.P.; Romano, F.; Cammarata, F.; Marchese, V.; Forte, G.I.; Lamia, D.; Minafra, L.; Bravatá, V.; Acquaviva, R.; Gilardi, M.C.; Cuttone, G.

    2017-01-01

    Aim of this work is the study of the preliminary steps to perform a particle treatment of cancer cells inoculated in small animals and to realize a preclinical hadrontherapy facility. A well-defined dosimetric protocol was developed to explicate the steps needed in order to perform a precise proton irradiation in small animals and achieve a highly conformal dose into the target. A precise homemade positioning and holding system for small animals was designed and developed at INFN-LNS in Catania (Italy), where an accurate Monte Carlo simulation was developed, using Geant4 code to simulate the treatment in order to choose the best animal position and perform accurately all the necessary dosimetric evaluations. The Geant4 application can also be used to realize dosimetric studies and its peculiarity consists in the possibility to introduce the real target composition in the simulation using the DICOM micro-CT image. This application was fully validated comparing the results with the experimental measurements. The latter ones were performed at the CATANA (Centro di AdroTerapia e Applicazioni Nucleari Avanzate) facility at INFN-LNS by irradiating both PMMA and water solid phantom. Dosimetric measurements were performed using previously calibrated EBT3 Gafchromic films as a detector and the results were compared with the Geant4 simulation ones. In particular, two different types of dosimetric studies were performed: the first one involved irradiation of a phantom made up of water solid slabs where a layer of EBT3 was alternated with two different slabs in a sandwich configuration, in order to validate the dosimetric distribution. The second one involved irradiation of a PMMA phantom made up of a half hemisphere and some PMMA slabs in order to simulate a subcutaneous tumour configuration, normally used in preclinical studies. In order to evaluate the accordance between experimental and simulation results, two different statistical tests were made: Kolmogorov test and

  19. Imaging optimizations with non-pure and high-energy positron emitters in small animal positron computed tomography

    International Nuclear Information System (INIS)

    Harzmann, Sophie

    2014-01-01

    The contribution on imaging optimizations with non-pure and high-energy positron emitters in small animal positron emission tomography (PET) covers the following topics: physical fundamentals of PET, mathematical image reconstruction and data analyses, Monte-Carlo simulations and implemented correction scheme, quantification of cascade gamma coincidences based on simulations and measurements, sinogram based corrections, restoration of the spatial resolution, implementation of full corrections.

  20. Evaluation of a novel GRPR antagonist for prostate cancer PET imaging: [64Cu]-DOTHA2-PEG-RM26.

    Science.gov (United States)

    Mansour, Nematallah; Paquette, Michel; Ait-Mohand, Samia; Dumulon-Perreault, Véronique; Guérin, Brigitte

    2018-01-01

    Gastrin releasing peptide receptors (GRPRs) are significantly over-expressed on a large proportion of prostate cancers making them prime candidates for receptor-mediated nuclear imaging by PET. Recently, we synthesized a novel bifunctional chelator (BFC) bearing hydroxamic acid arms (DOTHA 2 ). Here we investigated the potential of a novel DOTHA 2 -conjugated, 64 Cu-radiolabeled GRPR peptide antagonist, [D-Phe 6 -Sta 13 -Leu 14 -NH 2 ]bombesin(6-14) (DOTHA 2 -PEG-RM26) to visualize prostate tumors by PET imaging. DOTHA 2 -PEG-RM26 was conveniently and efficiently assembled on solid support. The compound was radiolabeled with 64 Cu and its affinity, stability, cellular uptake on PC3 prostate cancer cells were evaluated. The in vitro and in vivo behavior of [ 64 Cu]DOTHA 2 -PEG-RM26 was examined by PET imaging using human PC3 prostate cancer xenografts and its behavior was compared to that of the analogous [ 64 Cu]NOTA-PEG-RM26. The inhibition constant of nat Cu-DOTHA 2 -PEG-RM26 was in the low nanomolar range (0.68±0.19 nM). The [ 64 Cu]DOTHA 2 -PEG-RM26 conjugate was prepared with a labeling yield >95% and molar activity of 56±3 GBq/μmol after a 5-min room temperature labeling. [ 64 Cu]-DOTHA 2 -PEG-RM26 demonstrated rapid blood and renal clearance as well as a high tumor uptake. Small animal PET images confirmed high and specific uptake in PC3 tumor. Both [ 64 Cu]-DOTHA 2 -PEG-RM26 and [ 64 Cu]-NOTA-PEG-RM26 displayed similar tumor and normal tissue uptakes at early time point post injection. [ 64 Cu]-DOTHA 2 -PEG-RM26 allows visualization of prostate tumors by PET imaging. DOTHA 2 enables fast 64 Cu chelation under mild condition, and as such could be used advantageously for the development of other 64 Cu-labeled peptide-derived PET tracers. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. WE-H-206-02: Recent Advances in Multi-Modality Molecular Imaging of Small Animals

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, B. [Johns Hopkins University (United States)

    2016-06-15

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffers from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly

  2. WE-H-206-02: Recent Advances in Multi-Modality Molecular Imaging of Small Animals

    International Nuclear Information System (INIS)

    Tsui, B.

    2016-01-01

    Lihong V. Wang: Photoacoustic tomography (PAT), combining non-ionizing optical and ultrasonic waves via the photoacoustic effect, provides in vivo multiscale functional, metabolic, and molecular imaging. Broad applications include imaging of the breast, brain, skin, esophagus, colon, vascular system, and lymphatic system in humans or animals. Light offers rich contrast but does not penetrate biological tissue in straight paths as x-rays do. Consequently, high-resolution pure optical imaging (e.g., confocal microscopy, two-photon microscopy, and optical coherence tomography) is limited to penetration within the optical diffusion limit (∼1 mm in the skin). Ultrasonic imaging, on the contrary, provides fine spatial resolution but suffers from both poor contrast in early-stage tumors and strong speckle artifacts. In PAT, pulsed laser light penetrates tissue and generates a small but rapid temperature rise, which induces emission of ultrasonic waves due to thermoelastic expansion. The ultrasonic waves, orders of magnitude less scattering than optical waves, are then detected to form high-resolution images of optical absorption at depths up to 7 cm, conquering the optical diffusion limit. PAT is the only modality capable of imaging across the length scales of organelles, cells, tissues, and organs (up to whole-body small animals) with consistent contrast. This rapidly growing technology promises to enable multiscale biological research and accelerate translation from microscopic laboratory discoveries to macroscopic clinical practice. PAT may also hold the key to label-free early detection of cancer by in vivo quantification of hypermetabolism, the quintessential hallmark of malignancy. Learning Objectives: To understand the contrast mechanism of PAT To understand the multiscale applications of PAT Benjamin M. W. Tsui: Multi-modality molecular imaging instrumentation and techniques have been major developments in small animal imaging that has contributed significantly

  3. Improved detection of breast cancer on FDG-PET cancer screening using breast positioning device

    International Nuclear Information System (INIS)

    Kaida, Hayato; Ishibashi, Masatoshi; Fujii, Teruhiko; Kurata, Seiji; Ogo, Etsuyo; Hayabuchi, Naofumi; Tanaka, Maki

    2008-01-01

    The aim of this study was to investigate the detection rate of breast cancer by positron emission tomography cancer screening using a breast positioning device. Between January 2004 and January 2006, 1,498 healthy asymptomatic individuals underwent cancer screening by fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) at our institution; 660 of 1498 asymptomatic healthy women underwent breast PET imaging in the prone position using the breast positioning device to examine the mammary glands in addition to whole-body PET imaging. All subjects that showed abnormal 18 F-FDG uptake in the mammary glands were referred for further examination or surgery at our institution or a local hospital. Our data were compared with the histopathological findings or findings of other imaging modalities in our institution and replies from the doctors at another hospital. Of the 660 participants, 7 (1.06%) were found to have breast cancers at a curable stage. All the seven cancers were detected by breast PET imaging, but only five of these were detected by whole-body PET imaging; the other two were detected by breast PET imaging using the breast positioning device. In cancer screening, prone breast imaging using a positioning device may help to improve the detection rate of breast cancer. However, overall cancer including mammography and ultrasonography screening should be performed to investigate the false-negative cases and reduce false-positive cases. The effectiveness of prone breast PET imaging in cancer screening should be investigated using a much larger number of cases in the near future. (author)

  4. Initial experience with FDG-PET/CT in the evaluation of breast cancer

    International Nuclear Information System (INIS)

    Tatsumi, Mitsuaki; Cohade, Christian; Mourtzikos, Karen A.; Wahl, Richard L.; Fishman, Elliot K.

    2006-01-01

    We retrospectively reviewed FDG-PET/CT images in patients with breast cancer to determine whether PET/CT improved the level of diagnostic confidence as compared with PET and to compare PET/CT and CT findings at the location of suspected malignancies. The study included 75 patients with known breast cancer. The initial PET/CT study for each patient was retrospectively reviewed to determine whether improved diagnostic confidence (IDC) regarding lesion localization and characterization was observed with PET/CT as compared with PET alone. PET/CT and CT findings were compared regarding lesion characterization and staging in 69 of the 75 patients, and in the case of discordant findings, comparison with histological or informative follow-up results was also performed. Fifty of the 75 patients exhibited increased FDG uptake in a total of 95 regions. In the comparison of PET/CT and PET, PET/CT resulted in IDC in 30 (60%) of these 50 patients and in 52 (55%) of the 95 regions. In the comparison between PET/CT and CT in 69 patients, PET/CT demonstrated a significantly better accuracy than CT (P<0.05). PET/CT showed definitely positive findings in 60 regions with malignancies, among which CT exhibited positive findings in 43 (72%). PET/CT and CT accurately staged 59 (86%) and 53 (77%) of the 69 patients, respectively. (orig.)

  5. Prevalence and pattern of small animal orthopaedic conditions at ...

    African Journals Online (AJOL)

    Small animal orthopaedic case records of a 20-year period were surveyed to obtain the prevalence and pattern of orthopaedic conditions presented to the Veterinary Teaching Hospital (VTH), University of Ibadan, Nigeria, with the objective of providing data for planning on small animal healthcare facilities, policy ...

  6. Colorectal cancer: before and after PET-CT

    International Nuclear Information System (INIS)

    San Roman, Jose

    2008-01-01

    The author makes reference to the fundamental and growing role of images in the detection, localization, staging and control in colorectal cancer therapy. He points out the main reasons why the combined method PET-CT has meant to a great progress in diagnostic imaging and compares its diagnostic capacity and cost-benefit with other methods. Also, he makes a brief review of some technical aspects [es

  7. Clinical Application of 18F-FDG PET in Pancreas Cancer

    International Nuclear Information System (INIS)

    Kang, Won Jun

    2008-01-01

    The prevalence of pancreas cancer is increasing. Due to difficulty in detecting early stage disease, the prognosis of pancreas cancer is known to be poor. Clinical use of FDG PET in pancreas has been reported. FDG PET showed good performance in diagnosing pancreas cancer, and is expected to be useful in staging and detecting recurrence

  8. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals

    NARCIS (Netherlands)

    Klerk, Clara P. W.; Overmeer, Renée M.; Niers, Tatjana M. H.; Versteeg, Henri H.; Richel, Dick J.; Buckle, Tessa; van Noorden, Cornelis J. F.; van Tellingen, Olaf

    2007-01-01

    A relatively new strategy to longitudinally monitor tumor load in intact animals and the effects of therapy is noninvasive bioluminescence imaging (BLI). The validity of BLI for quantitative assessment of tumor load in small animals is critically evaluated in the present review. Cancer cells are

  9. Detection of prostate cancer by an FDG-PET cancer screening program: results from a Japanese nationwide survey

    International Nuclear Information System (INIS)

    Minamimoto, Ryogo; Senda, Michio; Jinnouchi, Seishi; Terauchi, Takashi; Inoue, Tomio

    2014-01-01

    The aim of this study was to analyze detection rates and effectiveness of 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) cancer screening program for prostate cancer in Japan, which is defined as a cancer-screening program for subjects without known cancer. It contains FDG-PET aimed at detection of cancer at an early stage with or without additional screening tests such as prostate-specific antigen (PSA) and magnetic resonance imaging (MRI). A total of 92,255 asymptomatic men underwent the FDG-PET cancer screening program. Of these, 504 cases with findings of possible prostate cancer in any screening method were analyzed. Of the 504 cases, 165 were verified as having prostate cancer. Of these, only 61 cases were detected by FDG-PET, which result in 37.0% relative sensitivity and 32.8% positive predictive value (PPV). The sensitivity of PET/computed tomography (CT) scanner was higher than that of dedicated PET (44.0% vs. 20.4%). However, the sensitivity of FDG-PET was lower than that of PSA and pelvic MRI. FDG-PET did not contribute to improving the sensitivity and PPV when performed as combined screening. PSA should be included in FDG-PET cancer screening programs to screen for prostate cancer

  10. Molecular imaging of head and neck cancers. Perspectives of PET/MRI

    International Nuclear Information System (INIS)

    Stumpp, P.; Kahn, T.; Purz, S.; Sabri, O.

    2016-01-01

    The 18 F-fluorodeoxyglucose positron emission tomography-computed tomography ( 18 F-FDG-PET/CT) procedure is a cornerstone in the diagnostics of head and neck cancers. Several years ago PET-magnetic resonance imaging (PET/MRI) also became available as an alternative hybrid multimodal imaging method. Does PET/MRI have advantages over PET/CT in the diagnostics of head and neck cancers ?The diagnostic accuracy of the standard imaging methods CT, MRI and PET/CT is depicted according to currently available meta-analyses and studies concerning the use of PET/MRI for these indications are summarized. In all studies published up to now PET/MRI did not show superiority regarding the diagnostic accuracy in head and neck cancers; however, there is some evidence that in the future PET/MRI can contribute to tumor characterization and possibly be used to predict tumor response to therapy with the use of multiparametric imaging. Currently, 18 F-FDG-PET/CT is not outperformed by PET/MRI in the diagnostics of head and neck cancers. The additive value of PET/MRI due to the use of multiparametric imaging needs to be investigated in future research. (orig.) [de

  11. FDG-PET/CT in the diagnosis of recurrent breast cancer

    International Nuclear Information System (INIS)

    Murakami, Ryusuke; Kumita, Shin-ichiro; Yoshida, Tamiko; Ishihara, Keiichi; Kiriyama, Tomonari; Hakozaki, Kenta; Yanagihara, Keiko; Lida, Shinya; Tsuchiya, Shin-ichi

    2012-01-01

    Background. An advantage of PET/CT has been demonstrated for diagnosis of several tumor entities. In patients with breast cancer, early diagnosis and accurate restaging of recurrence after surgery is important for selection of the most appropriate therapeutic strategy. Purpose. To evaluate the accuracy of integrated positron emission tomography and computed tomography (PET/CT) using 18F-fluorodeoxyglucose (FDG), for follow-up of patients with suspected recurrent breast cancer. Material and Methods. Forty-seven patients with suspected recurrent breast cancer underwent PET/CT. The PET and PET/CT images were interpreted without knowledge of the results of other diagnostic modalities, and compared with each other with reference to the final diagnosis. Results. Twenty-five (53%) patients suffered tumor recurrence. The overall sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of PET/CT were 96%, 91%, 92%, 95%, and 94%, respectively. In comparison with PET, PET/CT had a higher sensitivity and accuracy (96% vs. 80% and 94% vs. 81%, respectively). The difference in diagnostic accuracy between PET/CT and PET was significant (P < 0.05). Conclusion. The present findings indicate that PET/CT is an accurate, sensitive and reliable modality for screening and detection of breast cancer recurrence. PET/CT appears to be an effective surveillance tool, as it is able to cover the whole body in a single procedure and shows good performance

  12. PET with a dual-head coincidence gamma camera in head and neck cancer: A comparison with computed tomography and dedicated PET

    International Nuclear Information System (INIS)

    Zimny, M.

    2001-01-01

    Positron emission tomography with 18 F-fluoro-deoxyglucose (FDG PET) is a promising imaging tool for detecting and staging of primary or recurrent head and neck cancer. The aim of this study was to evaluate a dual-head gamma camera modified for coincidence detection (KGK-PET) in comparison to computed tomography (CT) and dedicated PET (dPET). 50 patients with known or suspected primary or recurrent head and neck cancer were enrolled. 32 patients underwent KGK-PET and dPET using a one-day protocol. The sensitivity for the detection of primary/ recurrent head and neck cancer for KGK-PET and CT was 80% and 54%, respectively, specificity was 73% and 82%, respectively. The sensitivity and specificity for the detection of lymph node metastases based on neck sides with KGK-PET was 71% (CT: 65%) and 88% (CT: 89%) respectively. In comparison to dPET, KGK-PET revealed concordant results in 32/32 patients with respect to primary tumor/recurrent disease and in 55/60 evaluated neck sides. All involved neck sides that were missed by KGK-PET were also negative with dPET. These results indicate that in patients with head and neck cancer KGK-PET reveals information, that are similar to dPET and complementary to CT. (orig.) [de

  13. Fluence compensated photoacoustic tomography in small animals (Conference Presentation)

    Science.gov (United States)

    Hussain, Altaf; Pool, Martin; Daoudi, Khalid; de Vries, Liesbeth G.; Steenbergen, Wiendelt

    2017-03-01

    Light fluence inside turbid media can be experimentally mapped by measuring ultrasonically modulated light (Acousto-optics). To demonstrate the feasibility of fluence corrected Photoacoustic (PA) imaging, we have realized a tri-modality (i.e. photoacoustic, acousto-optic and ultrasound) tomographic small animal imaging system. Wherein PA imaging provides high resolution map of absorbed optical energy density, Acousto-optics yields the fluence distribution map in the corresponding PA imaging plane and Ultrasound provides morphological information. Further, normalization of the PA image with the acousto-optically measured fluence map results in an image that directly represents the optical absorption. Human epidermal growth factor receptor 2 (HER2) is commonly found overexpressed in human cancers, among which breast cancers, resulting in a more aggressive tumor phenotype. Identification of HER2-expression is clinically relevant, because cancers overexpressing this marker are amenable to HER2-directed therapies, among which antibodies trastuzumab and pertuzumab. Here, we investigate the feasibility and advantage of acousto-optically assisted fluence compensated PA imaging over PA imaging alone in visualizing and quantifying HER2 expression. For this experiment, nude mice were xenografted with human breast cancer cell lines SKBR3 and BT474 (both HER2 overexpressing), as well as HER2-negative MDA-MB-231. To visualize HER2 expression in these mice, HER2 monoclonal antibody pertuzumab (Perjeta®, Roche), was conjugated to near-infrared dye IRDye 800CW (800CW, LICOR Biosciences) at a ratio of 1∶2 antibody to 800CW. When xenograft tumors measured ≥ 100 mm3, mice received 100 µg 800CW-pertuzumab intravenously. Three days post injection, mice were scanned for fluorescence signal with an IVIS scanner. After fluorescence scans, mice were euthanized and imaged in our PA tomographic imaging system.

  14. Carriage of methicillin-resistant Staphylococcus pseudintermedius in small animal veterinarians

    DEFF Research Database (Denmark)

    Paul, Narayan Chandra; Moodley, Arshnee; Ghibaudo, G.

    2011-01-01

    Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is increasingly reported in small animals and cases of human infections have already been described despite its recent emergence in veterinary practice. We investigated the prevalence of MRSP and methicillin-resistant Staphylococcus...... aureus (MRSA) among small animal dermatologists attending a national veterinary conference in Italy. Nasal swabs were obtained from 128 veterinarians, seven of which harboured MRSP (n = 5; 3.9%) or MRSA (n = 2; 1.6%). A follow-up study of two carriers revealed that MRSP persisted for at least 1 month...... by spa typing. Methicillin-resistant isolates were further typed by antimicrobial susceptibility testing, SCCmec and multi-locus sequence typing. Two lineages previously associated with pets were identified among the five MRSP isolates; the European epidemic clone ST71-SCCmec II-III and ST106-SCCmec IV...

  15. An application of a new planar positron imaging system (PPIS) in a small animal. MPTP-induced parkinsonism in mouse

    International Nuclear Information System (INIS)

    Takamatsu, Hiroyuki; Noda, Akihiro; Kakiuchi, Takeharu

    2004-01-01

    Recent animal PET research has led to the development of PET scanners for small animals. A planar positron imaging system (PPIS) was newly developed to study physiological function in small animals and plants in recent years. To examine the usefulness of PPIS for functional study in small animals, we examined dopaminergic images of mouse striata in MPTP-induced parkinsonism. Male C57BL/6NCrj mice were treated with MPTP 7 days before the PPIS study. Scans were performed to measure dopamine D 1 receptor binding and dopamine transporter availability with [ 11 C]SCH23390 (about 2 MBq) and [ 11 C]β-CFT (about 2 MBq), respectively. After the PPIS study, dopamine content in the striatum was measured by high-performance liquid chromatography (HPLC). The MPTP treatment significantly reduced dopamine content in the striatum 7 days after treatment. In the MPTP-treated group, [ 11 C]β-CFT binding in the striatum was significantly decreased compared with the control group, while striatal [ 11 C]SCH23390 binding was not affected. Dopamine content in the striatum was significantly correlated with the striatal binding of [ 11 C]β-CFT. The present results suggest that PPIS is able to determine brain function in a small animal. Using PPIS, high throughput imaging of small animal brain functions could be achieved. (author)

  16. In vivo PET imaging with 18F-FHBG of hepatoma cancer gene therapy using herpes simplex virus thymidine kinase and ganciclovir

    International Nuclear Information System (INIS)

    Lee, TaeSup; Kim, JunYoup; Moon, ByungSeok; Kang, JooHyun; Song, Inho; Kwon, HeeChung; Kim, KyungMin; Cheon, GiJeong; Choi, ChangWoon; Lim, SangMoo

    2007-01-01

    Monitoring gene expression in vivo to evaluate the gene therapy efficacy is a critical issue for scientists and physicians. Non-invasive nuclear imaging can offer information regarding the level of gene expression and its location when an appropriate reporter gene is constructed in the therapeutic gene therapy. Herpes simplex virus type 1 thymidine kinase gene (HSV1-tk) is the most common reporter gene and is used in cancer gene therapy by activating relatively nontoxic compounds, such as acyclovir or ganciclovir (GCV), to induce cell death. In this study, we investigate the feasibility of monitoring cancer gene therapy using retroviral vector transduced HSV1-tk and GCV, in vitro cellular uptake and in vivo animal studies, including biodistribution and small animal positron emission tomography (PET) imaging, were performed in HSV1-tk and luciferase (Luc)-transduced MCA-TK/Luc and enhanced green fluorescent protein (eGFP)-transduced MCA-eGFP hepatoma cell lines

  17. Clinical Application of 18F-FDG PET in Non-Small Cell Lung Cancer

    International Nuclear Information System (INIS)

    Choi, Joon Young

    2008-01-01

    This review focuses on the clinical use of 18 F-FDG PET to evaluate solitary pulmonary nodule (SPN) and non-small cell lung cancer (NSCLC). When SPN or mass without calcification is found on chest X-ray or CT, 18 F-FDG PET is an effective modality to differentiate benign from malignant lesions. For initial staging of NSCLC, 18 F-FDG PET is useful, and proved to be cost-effective in several countries. 18 F-FDG PET is useful for detecting recurrence, restaging and evaluating residual tumor after curative therapy in NSCLC. For therapy response assessment, 18 F-FDG PET may be effective after chemotherapy or radiation therapy. 18 F-FDG PET is useful to predict pathological response after neoadjuvant therapy in NSCLC. For radiation therapy planning, 18 F-FDG PET may be helpful, but requires further investigations. PET/CT is better for evaluating NSCLC than conventional PET

  18. Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours

    International Nuclear Information System (INIS)

    Novak, P; Moros, E G; Parry, J J; Rogers, B E; Myerson, R J; Zeug, A; Locke, J E; Rossin, R; Straube, W L; Singh, A K

    2005-01-01

    An external local ultrasound (US) system was developed to induce controlled hyperthermia of subcutaneously implanted tumours in small animals (e.g., mice and rats). It was designed to be compatible with a small animal positron emission tomography scanner (microPET) to facilitate studies of hyperthermia-induced tumour re-oxygenation using a PET radiopharmaceutical, but it is applicable for any small animal study requiring controlled heating. The system consists of an acrylic applicator bed with up to four independent 5 MHz planar disc US transducers of 1 cm in diameter, a four-channel radiofrequency (RF) generator, a multiple thermocouple thermometry unit, and a personal computer with custom monitoring and controlling software. Although the system presented here was developed to target tumours of up to 1 cm in diameter, the applicator design allows for different piezoelectric transducers to be exchanged and operated within the 3.5-6.5 MHz band to target different tumour sizes. Temperature feedback control software was developed on the basis of a proportional-integral-derivative (PID) approach when the measured temperatures were within a selectable temperature band about the target temperature. Outside this band, an on/off control action was applied. Perfused tissue-mimicking phantom experiments were performed to determine optimum controller gain constants, which were later employed successfully in animal experiments. The performance of the SAHUS (small animal hyperthermia ultrasound system) was tested using several tumour types grown in thighs of female nude (nu/nu) mice. To date, the system has successfully treated 83 tumours to target temperatures in the range of 41-43 deg. C for periods of 65 min on average

  19. Non-small-cell lung cancer resectability: diagnostic value of PET/MR

    International Nuclear Information System (INIS)

    Fraioli, Francesco; Menezes, Leon; Kayani, Irfan; Syed, Rizwan; O'Meara, Celia; Barnes, Anna; Bomanji, Jamshed B.; Punwani, Shonit; Groves, Ashley M.; Screaton, Nicholas J.; Janes, Samuel M.; Win, Thida; Zaccagna, Fulvio

    2015-01-01

    To assess the diagnostic performance of PET/MR in patients with non-small-cell lung cancer. Fifty consecutive consenting patients who underwent routine 18 F-FDG PET/CT for potentially radically treatable lung cancer following a staging CT scan were recruited for PET/MR imaging on the same day. Two experienced readers, unaware of the results with the other modalities, interpreted the PET/MR images independently. Discordances were resolved in consensus. PET/MR TNM staging was compared to surgical staging from thoracotomy as the reference standard in 33 patients. In the remaining 17 nonsurgical patients, TNM was determined based on histology from biopsy, imaging results (CT and PET/CT) and follow-up. ROC curve analysis was used to assess accuracy, sensitivity and specificity of the PET/MR in assessing the surgical resectability of primary tumour. The kappa statistic was used to assess interobserver agreement in the PET/MR TNM staging. Two different readers, without knowledge of the PET/MR findings, subsequently separately reviewed the PET/CT images for TNM staging. The generalized kappa statistic was used to determine intermodality agreement between PET/CT and PET/MR for TNM staging. ROC curve analysis showed that PET/MR had a specificity of 92.3 % and a sensitivity of 97.3 % in the determination of resectability with an AUC of 0.95. Interobserver agreement in PET/MR reading ranged from substantial to perfect between the two readers (Cohen's kappa 0.646 - 1) for T stage, N stage and M stage. Intermodality agreement between PET/CT and PET/MR ranged from substantial to almost perfect for T stage, N stage and M stage (Cohen's kappa 0.627 - 0.823). In lung cancer patients PET/MR appears to be a robust technique for preoperative staging. (orig.)

  20. PET/CT in therapy evaluation of patients with lung cancer

    DEFF Research Database (Denmark)

    Langer, Natasha Hemicke; Christensen, Tine Nøhr; Langer, Seppo W

    2014-01-01

    FDG-PET/CT is a well documented and widespread used imaging modality for the diagnosis and staging of patient with lung cancer. FDG-PET/CT is increasingly used for the assessment of treatment effects during and after chemotherapy. However, PET is not an accepted surrogate end-point for assessment...... of response rate in clinical trials. The aim of this review is to present current evidence on the use of PET in response evaluation of patients with lung cancer and to introduce the pearls and pitfalls of the PET-technology relating to response assessment. Based on this and relating to validation criteria......, including stable technology, standardization, reproducibility and broad availability, the review discusses why, despite numerous studies on response assessment indicating a possible role for FDG-PET/CT, PET still has no place in guidelines relating to response evaluation in lung cancer....

  1. 68Ga-labeling and in vivo evaluation of a uPAR binding DOTA- and NODAGA-conjugated peptide for PET imaging of invasive cancers

    DEFF Research Database (Denmark)

    Persson, Morten; Madsen, Jacob; Østergaard, Søren

    2012-01-01

    , uPAR binding affinity and cell uptake were determined. To characterize the in vivo properties, dynamic microPET imaging was carried out in nude mice bearing human glioma U87MG tumor xenograft. RESULTS: In vitro experiments revealed uPAR binding affinities in the lower nM range for both conjugated......-AE105-NH(2) was observed. Good stability in phosphate-buffered saline and mouse plasma was observed. High cell uptake was found for both tracers in U87MG tumor cells. Dynamic microPET imaging demonstrated good tumor-to-background ratio for both tracers. Tumor uptake was 2.1% ID/g and 1.3% ID/g 30 min...... positron emission tomography (PET) in human cancer xenograft mice models. Here we introduce (68)Ga-DOTA-AE105-NH(2) and (68)Ga-NODAGA-AE105-NH(2) and evaluate their imaging properties using small-animal PET. METHODS: Synthesis of DOTA-AE105-NH(2) and NODAGA-AE105-NH(2) was based on solid-phase peptide...

  2. Guide to clinical PET in oncology: Improving clinical management of cancer patients

    International Nuclear Information System (INIS)

    2008-10-01

    Positron emission tomography (PET) has an approximately 50 year-history. It was developed as a tool of medical science to quantitatively measure metabolic rates of bio-substances in vivo and in particular the number of receptors in neuroscience. Until the late 1990s PET was, in most cases, research oriented activity. In 2001, positron emission tomography/X ray computed tomography (PET/CT) hybrid imaging system became commercially available. An era of clinical PET then emerged, in which PET images were utilized for clinical practice in the treatment and diagnosis of cancer patients. PET imaging could recognize areas of abnormal metabolic behaviour of cancers in vivo, and the addition of CT imaging underlines the site of malignancy. More accurate and precise interpretation of cancer lesions can therefore be performed by PET/CT imaging than PET or CT imaging alone. Clinical PET, in particular with fluorine-18-fluorodeoxyglucose ( 18 F-FDG), has already proven itself to have considerable value in oncology. The indications include malignant lymphoma and melanoma, head and neck cancers, oesophageal cancer, breast cancer, lung cancer and colorectal cancer, and it is still being expanded. The roles of clinical PET could be for 1) preoperative staging of cancers, 2) differentiation between residual tumour and scarring, 3) demonstration of suspected recurrences, 4) monitoring response to therapy, 5) prognosis and 6) radiotherapy treatment planning. Clinical PET can be used to illustrate exactly which treatment should be applied for a cancer patient as well as where surgeons should operate and where radiation oncologists should target radiation therapy. An almost exponential rise in the introduction of clinical PET, as well as the installation of PET/CT has been seen throughout the world. Clinical PET is currently viewed as the most powerful diagnostic tool in its field. This IAEA-TECDOC presents an overview of clinical PET for cancer patients and a relevant source of

  3. Performance of FDG-PET/CT for diagnosis of recurrent uterine cervical cancer

    International Nuclear Information System (INIS)

    Kitajima, Kazuhiro; Murakami, Koji; Yamasaki, Erena; Domeki, Yasushi; Kaji, Yasushi; Sugimura, Kazuro

    2008-01-01

    The purpose is to evaluate the accuracy of integrated FDG-PET/CT, compared with PET alone, for diagnosis of suspected recurrence of uterine cervical cancer. Fifty-two women who had undergone treatment for histopathologically proven cervical cancer received PET/CT with suspected recurrence. PET-alone and integrated PET/CT images were evaluated by two different experienced radiologists by consensus for each investigation. A final diagnosis was confirmed by histopathology, radiological imaging, and clinical follow-up for over 1 year. Patient-based analysis showed that the sensitivity, specificity, and accuracy of PET/CT were 92.0% (23/25), 92.6% (25/27), and 92.3% (48/52), respectively, while for PET, the corresponding figures were 80.0% (20/25), 77.8% (21/27), and 78.8% (41/52), respectively. PET/CT resolved the false-positive PET results due to hypermetabolic activity of benign/inflammatory lesions and physiological variants, and was able to detect lung metastasis, local recurrence, peritoneal dissemination, para-aortic lymph node metastasis, and pelvic lymph node metastasis missed by PET alone. However, tiny local recurrence and lymph node metastasis could not be detected even by PET/CT. FDG-PET/CT is a useful complementary modality for providing good anatomic and functional localization of sites of recurrence during follow-up of patients with cervical cancer. (orig.)

  4. Laser surgery for selected small animal soft-tissue conditions

    Science.gov (United States)

    Bartels, Kenneth E.

    1991-05-01

    With the acquisition of a Nd:YAG and a CO2 laser in the College of Veterinary Medicine at Oklahoma State University in 1989, over 100 small animal clinical cases have been managed with these modern modalities for surgical excision and tissue vaporization. Most procedures have been for oncologic problems, but inflammatory, infectious, or congenital conditions including vaporization of acral lick 'granulomas,' excision/vaporization of foreign body induced, infected draining tracts, and resection of elongated soft palates have been successfully accomplished. Laser excision or vaporization of both benign and malignant neoplasms have effectively been performed and include feline nasal squamous cell carcinoma, mast cell tumors, and rectal/anal neoplasms. Results to date have been excellent with animals exhibiting little postoperative pain, swelling, and inflammation. Investigations involving application of laser energy for tissue welding of esophageal lacerations and hepatitic interstitial hyperthermia for metastatic colorectal cancer have also shown potential. A review of cases with an emphasis on survival time and postoperative morbidity suggests that carefully planned laser surgical procedures in clinical veterinary practice done with standardized protocols and techniques offer an acceptable means of treating conditions that were previously considered extremely difficult or virtually impossible to perform.

  5. PET imaging in the management of cervical cancer

    International Nuclear Information System (INIS)

    Yen, Tzu-Chen; Lai, Chyong-Huey

    2004-01-01

    FDG-PET has shown its great potential in improving the management of cervical cancer. The dual time-point strategy is attractive and further investigation is needed to justify the lengthening of the imaging line. Early detection of recurrence or more accurate initial staging or re-staging on relapse does not automatically lead to improved long-term survival. Besides, cost-effectiveness analyses of using PET scan should be evaluated. The incremental cost-effectiveness ratio (ICER) and cost per life year saved (NT dollars/LYS) is a logical way to validate the benefit of a procedure. However, a potential of cost saving is viable. For example, pelvic exenteration is a highly morbid procedure but also the only way to seek cure in a cervical patient with central recurrence after primary or adjuvant RT

  6. Enhanced Application of 18F-FDG PET/CT in Bladder Cancer by Adding Early Dynamic Acquisition to a Standard Delayed PET Protocol.

    Science.gov (United States)

    Yoon, Hai-Jeon; Yoo, Jang; Kim, Yemi; Lee, Dong Hyeon; Kim, Bom Sahn

    2017-10-01

    We investigated the value of early dynamic (ED) PET for the detection and characterization of bladder cancer. Fifty-two bladder cancer patients were prospectively enrolled. The study protocol was composed of ED, whole-body (WB, 60 minutes after injection), and additional delayed (AD, 120 minutes after injection) PET acquisition. Early dynamic PET was acquired for 10 minutes and reconstructed as 5 frames at 2-minute intervals. A focal radiotracer accumulation confined to the bladder wall was considered as PET positive and referred for further quantitative measurement. SUVmax on ED (SUVmax, SUVmax, SUVmax, SUVmax, and SUVmax for 5 frames), WB (SUVmax), and AD PET (SUVmax) were measured. PET results were correlated with bladder cancer pathology variables. The sensitivities of ED, WB, and AD PET for bladder cancer were 84.6%, 57.7%, and 61.2%, respectively. The sensitivity of ED PET was significantly higher than that of WB (P = 0.002) and AD PET (P = 0.008). On ED PET, SUVmax was significantly correlated with muscle invasiveness, histological grade, and pathological tumor size (P = 0.018, P = 0.030, and P = 0.030). On WB and AD PET, only pathological tumor size showed significant positive correlation with SUVmax and SUVmax (P = 0.043 and P = 0.007). Early dynamic PET can help to detect and characterize bladder cancer.

  7. A study on client needs regarding FDG-PET for cancer screening

    International Nuclear Information System (INIS)

    Yamane, Tomohiko; Yoshiya, Kazuhiko; Nagata, Takeshi; Ito, Shinichi; Ito, Satoshi; Mezaki, Yukio; Uchida, Hideo

    2006-01-01

    We researched client needs regarding FDG-PET for cancer screening. The study included 1,527 individuals who underwent FDG-PET for cancer screening at our hospital. An interview sheet was distributed after injecting FDG. Clients listed the organs that required examination and the symptoms causing them anxiety. Results indicated that 9.8% of the clients listed organs for which FDG-PET would not be useful in detecting cancer. This study suggested that there exists a gap between client needs and FDG-PET utility; hence we need improved methods of providing correct information to clients. (author)

  8. Technical note - Considerations for MR imaging of small animals

    International Nuclear Information System (INIS)

    Baker, Martin A.

    2011-01-01

    Routine clinical veterinary use of MR scanning is becoming more common. This article addresses the major technical considerations for radiographers performing MR examinations on small animals and provides practical advice for scanning techniques.

  9. Clinical Application of {sup 18}F-FDG PET in Testicular Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Joon Kee [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2008-12-15

    {sup 18}F-FDG PET has a higher diagnostic accuracy than CT in initial staging of testicular cancer. In seminoma, it can discriminate residual tumor from necrosis/fibrosis or mature teratoma. {sup 18}F-FDG PET is also useful for the response evaluation of chemotherapy. However, there's no clinical evidence for the use of {sup 18}F-FDG PET in the diagnosis and differential diagnosis of testicular cancer.

  10. Impact of (18)F-Fluoride PET on Intended Management of Patients with Cancers Other Than Prostate Cancer: Results from the National Oncologic PET Registry.

    Science.gov (United States)

    Hillner, Bruce E; Siegel, Barry A; Hanna, Lucy; Duan, Fenghai; Shields, Anthony F; Quinn, Bruce; Coleman, R Edward

    2014-07-01

    The National Oncologic PET Registry prospectively assessed the impact of PET with (18)F-sodium fluoride (NaF PET) on intended management of Medicare patients with suspected or known osseous metastasis. We report our findings for cancers other than prostate and make selected comparisons to our previously reported prostate cancer cohort. Data were collected from both referring and interpreting physicians before and after NaF PET in patients (age ≥ 65 y) stratified for initial staging (IS; n = 570), for suspected first osseous metastasis (FOM; n = 1,814; breast, 781 [43%]; lung, 380 [21%]; and all other cancers, 653 [36%]), and for suspected progression of osseous metastasis (POM; n = 435). The dominant indication was bone pain. If NaF PET were unavailable, conventional bone scintigraphy would have been ordered in 85% of patients. In IS, 28% of patients had suspected or confirmed nonosseous metastasis. If neither conventional bone scintigraphy nor NaF PET were available, referring physicians would have ordered other advanced imaging more than 70% of the time rather than initiate treatment for suspected FOM (11%-16%) or POM (18%-22%). When intended management was classified as either treatment or nontreatment, the intended management change for each cancer type was highest in POM, lower in IS, and lowest in FOM. For suspected FOM, intended management change was lower in breast (24%), lung (36%), or other cancers (31%), compared with prostate cancer (44%) (P definite metastases) frequencies were similar across cancer types. After normal/benign/equivocal PET results, 15% of breast, 30% lung, and 38% prostate cancer patients had treatment, likely reflecting differences in management of nonosseous disease. For patients with definite metastasis on NaF PET, nonprostate, compared with prostate, cancer patients had post-PET plans for more frequent biopsy, alternative imaging, chemotherapy, and radiotherapy. In the smaller IS and POM cohorts, differences among cancer types

  11. Colorectal cancer: before and after PET-CT; Cancer colorrectal: antes y despues de PET-TC

    Energy Technology Data Exchange (ETDEWEB)

    San Roman, Jose [Hospital Italiano, Buenos Aires (Argentina). Servicio de Diagnostico por Imagenes

    2008-07-01

    The author makes reference to the fundamental and growing role of images in the detection, localization, staging and control in colorectal cancer therapy. He points out the main reasons why the combined method PET-CT has meant to a great progress in diagnostic imaging and compares its diagnostic capacity and cost-benefit with other methods. Also, he makes a brief review of some technical aspects. [Spanish] El autor senala el rol central y creciente de las imagenes para la deteccion, localizacion, estadificacion y control del tratamiento del CCR. Menciona las razones principales por las que el metodo combinado PET-TC ha significado un progreso mayor para el diagnostico por imagenes y compara su capacidad diagnostica y costo-beneficio con los metodos establecidos. Tambien hace un repaso breve de algunos aspectos tecnicos.

  12. Dual-time FDG-PET/CT in patients with potential breast cancer recurrence

    DEFF Research Database (Denmark)

    Baun, Christina; Falch Braas, Kirsten; Gerke, Oke

    Dual-time FDG-PET/CT in patients with potential breast cancer recurrence: head-to-head comparison with CT and bonescintigraphy......Dual-time FDG-PET/CT in patients with potential breast cancer recurrence: head-to-head comparison with CT and bonescintigraphy...

  13. How to study optimal timing of PET/CT for monitoring of cancer treatment

    DEFF Research Database (Denmark)

    Vach, Werner; Høilund-Carlsen, Poul Flemming; Fischer, Barbara Malene Bjerregaard

    2011-01-01

    Purpose: The use of PET/CT for monitoring treatment response in cancer patients after chemo- or radiotherapy is a very promising approach to optimize cancer treatment. However, the timing of the PET/CT-based evaluation of reduction in viable tumor tissue is a crucial question. We investigated how...

  14. FDG PET and PET-CT for the detection of bone metastases in patients with head and neck cancer. A meta-analysis

    International Nuclear Information System (INIS)

    Yi, Xuelin; Zhang, Hongting; Liu, Shixi; Fan, Min; Liu, Yilin

    2013-01-01

    We performed a meta-analysis to evaluate 18FDG PET/PET-CT for the detection of bone metastases in patients with head and neck cancer. We calculated sensitivities, specificities, likelihood ratios, and constructed summary receiver operating characteristic curves for PET and PET-CT, respectively. We also compared the performance of PET/PET-CT with that of bone scintigraphy by analysing studies that had also used bone scintigraphy on the same patients. Across 9 PET studies (1621 patients) and 10 PET-CT studies (1291 patients), sensitivity and specificity of PET were 0.81 and 0.99, and of PET-CT were 0.89 and 0.99, respectively. In 5 comparative studies (1184 patients), sensitivity and specificity of PET/PET-CT were 0.85 and 0.98, and of bone scintigraphy were 0.55 and 0.98, respectively. 18FDG PET and PET-CT have high sensitivity and accuracy for the detection of bone metastasis in patients with head and neck cancer.

  15. Performance of integrated FDG-PET/contrast-enhanced CT in the staging and restaging of colorectal cancer: Comparison with PET and enhanced CT

    International Nuclear Information System (INIS)

    Dirisamer, Albert; Halpern, Benjamin S.; Floery, Daniel; Wolf, Florian; Beheshti, Mohsen; Mayerhoefer, Marius E.; Langsteger, Werner

    2010-01-01

    Objective: The purpose of this study was to assess the diagnostic value of PET/CT as a one step examination in patients with colorectal cancer. Therefore we proved whether diagnostic PET/CT adds information over PET or contrast-enhanced CT alone for staging or restaging of patients with colorectal cancer. Methods: Seventy-three patients (46 males and 27 females; age range: 50-81 years; mean age: 67 years) with known colorectal cancer underwent 18F-FDG-PET/CT for staging or restaging. Results: Of the 73 patients 26 patients underwent PET/CT for staging and 47 for restaging. 266 metastases could be detected in 60 patients. Contrast-enhanced PET/CT had a lesion-based sensitivity of 100%, contrast-enhanced CT of 91% and PET of 85%. PET/CT identified 2 lesions as false positive. PET/CT could also reach a patient-based sensitivity of 100%, which was superior to contrast-enhanced CT and PET. Conclusion: Our study clearly demonstrated the added value of contrast-enhanced PET/CT in staging and restaging patients with colorectal cancer over CT and PET alone.

  16. Assessing the impact of FDG-PET in the management of anal cancer

    International Nuclear Information System (INIS)

    Nguyen, Brandon T.; Joon, Daryl Lim; Khoo, Vincent; Quong, George; Chao, Michael; Wada, Morikatsu; Joon, Michael Lim; See, Andrew; Feigen, Malcolm; Rykers, Kym; Kai, Cynleen; Zupan, Eddy; Scott, Andrew

    2008-01-01

    Purpose: To assess the utility of FDG-PET in anal cancer for staging and impact on radiotherapy planning (RTP), response and detection of recurrent disease. Methods and materials: Fifty histopathological anal cancer patients were reviewed between 1996 and 2006. The median age was 58 years (range 36-85) with 19 males:31females. Clinical assessment with CT was compared to PET. Impact on management, disease response, recurrence and metastases was evaluated. Results: The non-PET staging was Stage I(8), Stage II(18), Stage III(22), and Stage IV(2)s. The primary was strongly FDG avid in 98% with non-excised tumors compared to CT (58%). PET upstaged 17% with unsuspected pelvic/inguinal nodal disease. Pre-treatment PET identified 11 additional by involved nodal groups in 48 patients causing RTP amendments in 19%. Post-treatment PETs at median 17 weeks (range 9-28) showed complete responses in 20 (80%) and 5 (20%) partial responses (PR). PRs were biopsy positive in 2 and negative in 3. Fifteen had follow-up scans of which all nine PETs detected recurrences were pathologically confirmed. Conclusions: Anal cancer is FDG-PET avid. PET upstages 17% and changes the RTP in 19%. PET can aid in anal cancer staging and identification of residual disease, recurrent/metastatic disease but warrants further prospective studies

  17. Preoperative staging of lung cancer with combined PET-CT

    DEFF Research Database (Denmark)

    Fischer, Barbara; Lassen, Ulrik; Mortensen, Jann

    2009-01-01

    BACKGROUND: Fast and accurate staging is essential for choosing treatment for non-small-cell lung cancer (NSCLC). The purpose of this randomized study was to evaluate the clinical effect of combined positron-emission tomography and computed tomography (PET-CT) on preoperative staging of NSCLC...... one of the following: a thoracotomy with the finding of pathologically confirmed mediastinal lymph-node involvement (stage IIIA [N2]), stage IIIB or stage IV disease, or a benign lung lesion; an exploratory thoracotomy; or a thoracotomy in a patient who had recurrent disease or death from any cause...

  18. Molecular imaging of cancer using PET and SPECT

    DEFF Research Database (Denmark)

    Kjaer, Andreas

    2006-01-01

    for molecular imaging of cancer. Especially the possibility of a quick transfer of methods developed in animals to patients (translational research) is an important strength. This article will briefly discuss the newest applications and their importance and perspective in relation to the shift in paradigm......Molecular imaging allows for the study of molecular and cellular events in the living intact organism. The nuclear medicine methodologies of positron emission tomography (PET) and single photon emission computer tomography (SPECT) posses several advantages, which make them particularly suited...

  19. Advances in prostate-specific membrane antigen PET of prostate cancer.

    Science.gov (United States)

    Bouchelouche, Kirsten; Choyke, Peter L

    2018-05-01

    In recent years, a large number of reports have been published on prostate-specific membrane antigen (PSMA)/PET in prostate cancer (PCa). This review highlights advances in PSMA PET in PCa during the past year. PSMA PET/computed tomography (CT) is useful in detection of biochemical recurrence, especially at low prostate-specific antigen (PSA) values. The detection rate of PSMA PET is influenced by PSA level. For primary PCa, PSMA PET/CT shows promise for tumour localization in the prostate, especially in combination with multiparametric MRI (mpMRI). For primary staging, PSMA PET/CT can be used in intermediate and high-risk PCa. Intraoperative PSMA radioligand guidance seems promising for detection of malignant lymph nodes. While the use of PSMA PET/MRI in primary localized disease is limited to high and intermediate-risk patients and localized staging, in the recurrence setting, PET/MRI can be particularly helpful when the lesions are subtle. PSMA PET/CT is superior to choline PET/CT and other conventional imaging modalities. Molecular imaging with PSMA PET continues to pave the way for personalized medicine in PCa.However, large prospective clinical studies are still needed to fully evaluate the role of PSMA PET/CT and PET/MRI in the clinical workflow of PCa.

  20. Open-Source Medical Devices (OSMD) Design of a Small Animal Radiotherapy System

    Science.gov (United States)

    Prajapati, S.; Mackie, T. R.; Jeraj, R.

    2014-03-01

    Open-Source Medical Devices (OSMD) was initiated with the goal of facilitating medical research by developing medical technologies including both hardware and software on an open-source platform. Our first project was to develop an integrated imaging and radiotherapy device for small animals that includes computed tomography (CT), positron emission tomography (PET) and radiation therapy (RT) modalities for which technical specifications were defined in the first OSMD conference held in Madison, Wisconsin, USA in December 2011. This paper specifically focuses on the development of a small animal RT (micro-RT) system by designing a binary micro multileaf collimator (bmMLC) and a small animal treatment planning system (SATPS) to enable intensity modulated RT (IMRT). Both hardware and software projects are currently under development and their current progresses are described. After the development, both bmMLC and TPS will be validated and commissioned for a micro-RT system. Both hardware design and software development will be open-sourced after completion.

  1. An automated robot arm system for small animal tissue biopsy under dual-image modality

    International Nuclear Information System (INIS)

    Huang, Y.H.; Wu, T.H.; Lin, M.H.; Yang, C.C.; Guo, W.Y.; Wang, Z.J.; Chen, C.L.; Lee, J.S.

    2006-01-01

    The ability to non-invasively monitor cell biology in vivo is one of the most important goals of molecular imaging. Imaging procedures could be inter-subject performed repeatedly at different investigating stages; thereby need not sacrifice small animals during the entire study period. Thus, the ultimate goal of this study was to design a stereotactic image-guided system for small animals and integrated it with an automatic robot arm for in vivo tissue biopsy analysis. The system was composed of three main parts, including one small animal stereotactic frame, one imaging-fusion software and an automatic robot arm system. The system has been thoroughly evaluated with three components; the robot position accuracy was 0.05±0.02 mm, the image registration accuracy was 0.37±0.18 mm and the system integration was satisfactorily within 1.20±0.39 mm of error. From these results, the system demonstrated sufficient accuracy to guide the micro-injector from the planned delivery routes into practice. The entire system accuracy was limited by the image fusion and orientation procedures, due to its nature of the blurred PET imaging obtained from the small objects. The primary improvement is to acquire as higher resolution as possible the fused imaging for localizing the targets in the future

  2. Development of a high resolution gamma imager for cancerology: from surgery treatment of cancer to the study on small animals; Developpement d'un imageur gamma haute resolution pour la cancerologie: du traitement chirurgical du cancer a l'etude sur petits animaux

    Energy Technology Data Exchange (ETDEWEB)

    Pitre, St

    2002-12-01

    In the context of the surgical treatment of cancer, counting probes of radioactivity have been introduced in a theater bloc to assist the surgeon in real time for the excision of the radio-labeled tumors. This technique of radio-guided surgery allows to reach the precise localization and the complete excision of pathological tissues. To reinforce this surgical practice we developed a mini gamma-camera called POCI (Per-Operative Compact Imager). The objective of this work was to determine the role of this new generation of detectors to assist the surgeon in the excision of tumors and to also approach cancer research involving studies on small animals. From the instrumental point of view, the principle of detection based on the photodiode with intensified localization has been validated in a first prototype which was extended to a large field of analysis imagery without degrading the spatial performances and with miniaturizing the dimensions of the camera. The prototype of the realized camera has a 40 mm diameter field of view and a total weight of 1.2 kg. At 140 keV, the spatial resolution is 2.1 mm for an efficiency of 2.8 10{sup -4}%. POCI was estimated through the sentinel node protocol in breast cancer staging according to two approaches: one based on a comparative study of the performances of detection of a probe and POCI and an other one based on a clinical evaluation in collaboration with Institute Gustave Roussy. This study has permit to establish the complementarity between the imager and the probe considering various clinical configurations. The detection performances of POCI were also estimated in mice to study the biodistribution of iodine in the thyroid and the mammary glands. All these encouraging results allows to consider the use of the detector in a wider frame of investigations clinical as well as biological. (author)

  3. Development of a high resolution gamma imager for cancerology: from surgery treatment of cancer to the study on small animals; Developpement d'un imageur gamma haute resolution pour la cancerologie: du traitement chirurgical du cancer a l'etude sur petits animaux

    Energy Technology Data Exchange (ETDEWEB)

    Pitre, St

    2002-12-01

    In the context of the surgical treatment of cancer, counting probes of radioactivity have been introduced in a theater bloc to assist the surgeon in real time for the excision of the radio-labeled tumors. This technique of radio-guided surgery allows to reach the precise localization and the complete excision of pathological tissues. To reinforce this surgical practice we developed a mini gamma-camera called POCI (Per-Operative Compact Imager). The objective of this work was to determine the role of this new generation of detectors to assist the surgeon in the excision of tumors and to also approach cancer research involving studies on small animals. From the instrumental point of view, the principle of detection based on the photodiode with intensified localization has been validated in a first prototype which was extended to a large field of analysis imagery without degrading the spatial performances and with miniaturizing the dimensions of the camera. The prototype of the realized camera has a 40 mm diameter field of view and a total weight of 1.2 kg. At 140 keV, the spatial resolution is 2.1 mm for an efficiency of 2.8 10{sup -4}%. POCI was estimated through the sentinel node protocol in breast cancer staging according to two approaches: one based on a comparative study of the performances of detection of a probe and POCI and an other one based on a clinical evaluation in collaboration with Institute Gustave Roussy. This study has permit to establish the complementarity between the imager and the probe considering various clinical configurations. The detection performances of POCI were also estimated in mice to study the biodistribution of iodine in the thyroid and the mammary glands. All these encouraging results allows to consider the use of the detector in a wider frame of investigations clinical as well as biological. (author)

  4. Comparison of CE-FDG-PET/CT with CE-FDG-PET/MR in the evaluation of osseous metastases in breast cancer patients

    OpenAIRE

    Catalano, O A; Nicolai, E; Rosen, B R; Luongo, A; Catalano, M; Iannace, C; Guimaraes, A; Vangel, M G; Mahmood, U; Soricelli, A; Salvatore, M

    2015-01-01

    Background: Despite improvements in treatments, metastatic breast cancer remains difficult to cure. Bones constitute the most common site of first-time recurrence, occurring in 40?75% of cases. Therefore, evaluation for possible osseous metastases is crucial. Technetium 99 (99Tc) bone scintigraphy and fluorodexossyglucose (FDG) positron emission tomography (PET)-computed tomography (PET-CT) are the most commonly used techniques to assess osseous metastasis. PET magnetic resonance (PET-MR) ima...

  5. Usefulness of Integrated PET/MRI in Head and Neck Cancer: A Preliminary Study

    International Nuclear Information System (INIS)

    Lee, Soo Jin; Seo, Hyo Jung; Cheon, Gi Jeong; Kim, Ji Hoon; Kim, E. Edmund; Kang, Keon Wook; Paeng, Jin Chul; Chung, Junekey; Lee, Dong Soo

    2014-01-01

    The new modality of an integrated positron emission tomography/magnetic resonance imaging (PET/MRI) has recently been introduced but not validated. Our objective was to evaluate clinical performance of 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) PET/MRI in patients with head and neck cancer. This retrospective study was conducted between January 2013 and February 2013. Ten patients (eight men, two women; mean age, 61.4±13.4 years) with histologically proven head and neck tumors were enrolled.Whole-body PET/MRI and regional positron emission tomography (PET) with dedicated MRI were sequentially obtained. Maximum standardized uptake value (SUVmax), SUVmean, metabolic tumor volume, total lesion glycolysis and contrast enhancement were analyzed. A total of ten whole-body positron emission tomography (PET), ten regional positron emission tomography (PET), ten dedicated MRI and ten regional PET/gadolinium-enhanced T1-weighted (Gd)-MRI images were analyzed for initial staging. Two nuclear medicine physicians analyzed positron emission tomography (PET) and PET/MRI with a consensus. One radiologist analyzed dedicated MRI. The primary lesions and number of metastatic lymph nodes analyzed from each image were compared. Eight patients were diagnosed with head and neck cancer (one tongue cancer, four tonsillar cancers, one nasopharyngeal cancer and two hypopharyngeal cancers) by histological diagnosis. Two benign tumors (pleomorphic adenoma and Warthin tumor) were diagnosed with surgical operation. Whole-body positron emission tomography (PET) and regional positron emission tomography (PET) attenuated by MRI showed good image quality for the lesion detection. Whole-body positron emission tomography (PET) and regional positron emission tomography (PET) detected ten primary sites and compensated for a missed lesion on dedicated MRI. A discordant number of suspicious lymph node metastases was noted according to the different images; 22, 16, 39 and 40 in the whole-body positron

  6. Follicular thyroid cancer avid on C-11 Methionine PET/CT

    OpenAIRE

    Jochumsen, Mads Ryø; Iversen, Peter; Arveschoug, Anne Kirstine

    2018-01-01

    Summary A case of follicular thyroid cancer with intense focal Methionine uptake on 11C-Methionine PET/CT is reported here. The use of 11C-Methionine PET in differentiated thyroid cancer is currently being investigated as a surrogate tracer compared to the more widely used 18F-FDG PET. This case illustrates the potential incremental value of this modality, not only in the localizing of parathyroid adenoma, but also indicating that 11C-Methionine PET might have a potential of increasing the pr...

  7. Follicular thyroid cancer avid on C-11 Methionine PET/CT

    Directory of Open Access Journals (Sweden)

    Mads Ryø Jochumsen

    2018-01-01

    Full Text Available A case of follicular thyroid cancer with intense focal Methionine uptake on 11C-Methionine PET/CT is reported here. The use of 11C-Methionine PET in differentiated thyroid cancer is currently being investigated as a surrogate tracer compared to the more widely used 18F-FDG PET. This case illustrates the potential incremental value of this modality, not only in the localizing of parathyroid adenoma, but also indicating that 11C-Methionine PET might have a potential of increasing the pretest likelihood of thyroid malignancy in a cold nodule with highly increased Sestamibi uptake.

  8. FDG PET/MR for lymph node staging in head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Platzek, Ivan, E-mail: ivan.platzek@uniklinikum-dresden.de [Dresden University Hospital, Department of Radiology, Fetscherstr. 74, 01307 Dresden (Germany); Beuthien-Baumann, Bettina, E-mail: bettina.beuthien-baumann3@uniklinikum-dresden.de [Dresden University Hospital, Department of Nuclear Medicine, Fetscherstr. 74, 01307 Dresden (Germany); Schneider, Matthias, E-mail: m.schneider@mkgdresden.de [Dresden University Hospital, Department of Oral and Maxillofacial Surgery, Fetscherstr. 74, 01307 Dresden (Germany); Gudziol, Volker, E-mail: volker.gudziol@uniklinikum-dresden.de [Dresden University Hospital, Department of Otolaryngology, Fetscherstr. 74, 01307 Dresden (Germany); Kitzler, Hagen H., E-mail: hagen.kitzler@uniklinikum-dresden.de [Dresden University Hospital, Department of Neuroradiology, Fetscherstr. 74, 01307 Dresden (Germany); Maus, Jens, E-mail: j.maus@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Schramm, Georg, E-mail: g.schramm@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr. 400, 01328 Dresden (Germany); Popp, Manuel, E-mail: manuel.popp@praxisklinik-dresden.de [Dresden University Hospital, Department of Nuclear Medicine, Fetscherstr. 74, 01307 Dresden (Germany); Laniado, Michael, E-mail: michael.laniado@uniklinikum-dresden.de [Dresden University Hospital, Department of Radiology, Fetscherstr. 74, 01307 Dresden (Germany); Kotzerke, Jörg, E-mail: Joerg.Kotzerke@uniklinikum-dresden.de [Dresden University Hospital, Department of Nuclear Medicine, Fetscherstr. 74, 01307 Dresden (Germany); Hoff, Jörg van den, E-mail: j.van_den_hoff@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr. 400, 01328 Dresden (Germany)

    2014-07-15

    Objective: To assess the diagnostic value of PET/MR (positron emission tomography/magnetic resonance imaging) with FDG (18F-fluorodeoxyglucose) for lymph node staging in head and neck cancer. Materials and methods: This prospective study was approved by the local ethics committee; all patients signed informed consent. Thirty-eight patients with squamous cell carcinoma of the head and neck region underwent a PET scan on a conventional scanner and a subsequent PET/MR on a whole-body hybrid system after a single intravenous injection of FDG. The accuracy of PET, MR and PET/MR for lymph node metastases were compared using receiver operating characteristic (ROC) analysis. Histology served as the reference standard. Results: Metastatic disease was confirmed in 16 (42.1%) of 38 patients and 38 (9.7%) of 391 dissected lymph node levels. There were no significant differences between PET/MR, MR and PET and MR (p > 0.05) regarding accuracy for cervical metastatic disease. Based on lymph node levels, sensitivity and specificity for metastatic involvement were 65.8% and 97.2% for MR, 86.8% and 97.0% for PET and 89.5% and 95.2% for PET/MR. Conclusions: In head and neck cancer, FDG PET/MR does not significantly improve accuracy for cervical lymph node metastases in comparison to MR or PET.

  9. Multiparametric evaluation by simultaneous PET-MRI examination in patients with histologically proven laryngeal cancer

    International Nuclear Information System (INIS)

    Cavaliere, Carlo; Romeo, Valeria; Aiello, Marco; Mesolella, Massimo; Iorio, Brigida; Barbuto, Luigi; Cantone, Elena; Nicolai, Emanuele; Covello, Mario

    2017-01-01

    Highlights: • PET/MRI is feasible and useful for primary staging of laryngeal cancer. • PET/MRI simultaneously provides morphological, metabolic and functional parameters of tumoral laryngeal lesions. • PET/MRI allows an appropriate tumoral staging in terms of lesion extension with significant impact on therapeutic strategies. - Abstract: Objectives: To evaluate the relationship between metabolic 18Fluoro-Deoxyglucose-Positron Emission Tomography (18FDG/PET) and morpho-functional parameters derived by Magnetic Resonance Imaging (MRI) in patients with histologically proven laryngeal cancer. To assess the clinical impact of PET/MRI examination on patient’s staging and treatment planning. Methods: 16 patients with histologically proven laryngeal cancer were enrolled and underwent whole body PET/CT followed by a dedicated PET/MRI of the head/neck region. Data were separately evaluated by two blinded groups: metabolic (SUV and MTV), diffusion (ADC) and perfusion (K trans , V e , k ep and iAUC) maps were obtained by positioning regions of interest (ROIs). Tumoral local extension assessed on PET/MRI was compared to endoscopic findings. Results: A good inter-observer agreement was found in anatomical location and local extension of PET/MRI lesions (Cohen’s kappa 0.9). PET/CT SUV measures highly correlate with ones derived by PET/MRI (e.g., p = 0.96 for measures on VOI). Significant correlations among metabolic, diffusion and perfusion parameters have been detected. PET/MRI had a relevant clinical impact, confirming endoscopic findings (6 cases), helping treatment planning (9 cases), and modifying endoscopic primary staging (1 case). Conclusions: PET/MRI is useful for primary staging of laryngeal cancer, allowing simultaneous collection of metabolic and functional data and conditioning the therapeutic strategies.

  10. Multiparametric evaluation by simultaneous PET-MRI examination in patients with histologically proven laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, Carlo [IRCCS SDN, Via E. Gianturco, 113-80143, Naples (Italy); Romeo, Valeria, E-mail: valeria.romeo@unina.it [Department of Advanced Biomedical Sciences, Federico II University, Naples (Italy); Aiello, Marco [IRCCS SDN, Via E. Gianturco, 113-80143, Naples (Italy); Mesolella, Massimo; Iorio, Brigida [Department of Neuroscience, Reproductive and Odontostomatologic Science, ENT Section, Federico II University, Naples (Italy); Barbuto, Luigi [Department of Advanced Biomedical Sciences, Federico II University, Naples (Italy); Cantone, Elena [Department of Neuroscience, Reproductive and Odontostomatologic Science, ENT Section, Federico II University, Naples (Italy); Nicolai, Emanuele; Covello, Mario [IRCCS SDN, Via E. Gianturco, 113-80143, Naples (Italy)

    2017-03-15

    Highlights: • PET/MRI is feasible and useful for primary staging of laryngeal cancer. • PET/MRI simultaneously provides morphological, metabolic and functional parameters of tumoral laryngeal lesions. • PET/MRI allows an appropriate tumoral staging in terms of lesion extension with significant impact on therapeutic strategies. - Abstract: Objectives: To evaluate the relationship between metabolic 18Fluoro-Deoxyglucose-Positron Emission Tomography (18FDG/PET) and morpho-functional parameters derived by Magnetic Resonance Imaging (MRI) in patients with histologically proven laryngeal cancer. To assess the clinical impact of PET/MRI examination on patient’s staging and treatment planning. Methods: 16 patients with histologically proven laryngeal cancer were enrolled and underwent whole body PET/CT followed by a dedicated PET/MRI of the head/neck region. Data were separately evaluated by two blinded groups: metabolic (SUV and MTV), diffusion (ADC) and perfusion (K{sub trans}, V{sub e}, k{sub ep} and iAUC) maps were obtained by positioning regions of interest (ROIs). Tumoral local extension assessed on PET/MRI was compared to endoscopic findings. Results: A good inter-observer agreement was found in anatomical location and local extension of PET/MRI lesions (Cohen’s kappa 0.9). PET/CT SUV measures highly correlate with ones derived by PET/MRI (e.g., p = 0.96 for measures on VOI). Significant correlations among metabolic, diffusion and perfusion parameters have been detected. PET/MRI had a relevant clinical impact, confirming endoscopic findings (6 cases), helping treatment planning (9 cases), and modifying endoscopic primary staging (1 case). Conclusions: PET/MRI is useful for primary staging of laryngeal cancer, allowing simultaneous collection of metabolic and functional data and conditioning the therapeutic strategies.

  11. Multiparametric evaluation by simultaneous PET-MRI examination in patients with histologically proven laryngeal cancer.

    Science.gov (United States)

    Cavaliere, Carlo; Romeo, Valeria; Aiello, Marco; Mesolella, Massimo; Iorio, Brigida; Barbuto, Luigi; Cantone, Elena; Nicolai, Emanuele; Covello, Mario

    2017-03-01

    To evaluate the relationship between metabolic 18Fluoro-Deoxyglucose-Positron Emission Tomography (18FDG/PET) and morpho-functional parameters derived by Magnetic Resonance Imaging (MRI) in patients with histologically proven laryngeal cancer. To assess the clinical impact of PET/MRI examination on patient's staging and treatment planning. 16 patients with histologically proven laryngeal cancer were enrolled and underwent whole body PET/CT followed by a dedicated PET/MRI of the head/neck region. Data were separately evaluated by two blinded groups: metabolic (SUV and MTV), diffusion (ADC) and perfusion (K trans , V e , k ep and iAUC) maps were obtained by positioning regions of interest (ROIs). Tumoral local extension assessed on PET/MRI was compared to endoscopic findings. A good inter-observer agreement was found in anatomical location and local extension of PET/MRI lesions (Cohen's kappa 0.9). PET/CT SUV measures highly correlate with ones derived by PET/MRI (e.g., p=0.96 for measures on VOI). Significant correlations among metabolic, diffusion and perfusion parameters have been detected. PET/MRI had a relevant clinical impact, confirming endoscopic findings (6 cases), helping treatment planning (9 cases), and modifying endoscopic primary staging (1 case). PET/MRI is useful for primary staging of laryngeal cancer, allowing simultaneous collection of metabolic and functional data and conditioning the therapeutic strategies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Value of integrated PET/CT in clinical staging of patients with lung cancer

    International Nuclear Information System (INIS)

    Zhao Jun; Guan Yihui; Zuo Chuantao; Hua Fengchun; Lin Xiangtong

    2004-01-01

    Objectives: The purpose of this study was to evaluate the value of combined fluorine-18 fluorodeoxyglucose positron emission tomography and computed tomography (FDG PET/CT) in patients with lung cancer, and to compare the results of PET/CT with those of FDG PET and CT alone. Methods: Forty-two patients were studied in this group. 3D whole body images were acquired using Siemens Biograph Sensetionl6 PET/CT scanner. Attenuation corrected PET images, CT and fusion images were interpreted. Reports were compared for each patient including identified the number of lesions, their anatomical localization and certainty of diagnosis. Results: PET/CT increased the number of lesions reported as being definitely abnormal or normal (+22%). In 12 patients (28.6%), the PET/CT report positively impacted surgical management when compared to the PET report alone. 6 patients were correctly downstaged negating further treatment or imaging, 3 patient was upstaged to inoperable and in another 3 ones improved localization by PET/CT led to an altered surgical incision with decreased morbidity. Lesion-based evaluation showed sensitivity for regional lymph node involvement of 61% for CT alone, 88% for FDG PET alone, and 96% for integrated PET/CT imaging respectively. In addition, PET/CT could identify some benign disease, including lung tuberculosis, cyst of liver and kidney, calculus etc. Conclusion: PET/CT improves anatomical localization and increases the certainty in reporting abnormal and normal lesions. PET/CT imaging is superior to CT alone and has additional benefit over FDG PET alone, and is accurate in clinical staging for lung cancer. (authors)

  13. Cost effectiveness of FDG-PET: rapid evaluation in recurrent colorectal cancer

    International Nuclear Information System (INIS)

    Kelley, B.B.; Miles, K.A.; Keith, C.J.; Wong, D.C.; Griffiths, M.R.

    2002-01-01

    Full text: Intensive patient follow-up in assessments of the cost-effectiveness of a new imaging modality is associated with time-delays, ethical difficulties and increased costs. This study aims to evaluate the cost-effectiveness of FDG-PET in recurrent colorectal cancer using Australian data whilst avoiding intensive patient follow-up. The study population comprised patients with recurrent colorectal under consideration for resection of apparently isolated hepatic metastasis in whom demonstration of extra-hepatic tumour would preclude surgery. The results of FDG-PET in a consecutive series of 75 such patients referred to the Wesley PET centre were used to determine the range of possible values for disease prevalence and specificity, assuming the value for PET sensitivity as reported in the federal government's PET review. These values, along with the diagnostic accuracy of CT and Australian costs for procedures (PET = $ 1200), were entered into decision trees modelling a diagnostic strategy comprising CT only and an alternative strategy where patients without extra-hepatic tumour on CT also undergo FDG-PET. The cost per patient, accuracy and Incremental Cost-Accuracy Ratio (ICAR) were determined for each strategy. The PET strategy is cheaper for all possible values of disease prevalence and PET specificity ($306-328/patient) and is more cost-effective for values of disease prevalence above 0.18 or PET specificity above 0.86. At a typical disease prevalence of 0.3 (PET specificity 0.92), the ICAR for the PET strategy is $9700 versus $11,200 for CT. PET remains cost saving even if the best reported values for sensitivity of CT and worse values for PET are used, FDG-PET for recurrent colorectal cancer in Australia would be cost-saving and most probably cost-effective. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  14. Rapid evaluation of the cost-effectiveness o FDG-PET in recurrent colorectal cancer

    International Nuclear Information System (INIS)

    Miles, K.A.; Keith, C.J.; Wong, D.C.; Griffiths, M.R.

    2002-01-01

    Full text: To evaluate the cost-effectiveness of FDG-PET in recurrent colorectal cancer using Australian data whilst avoiding the time delays, costs and ethical difficulties associated with intensive patient follow-up. A decision tree sensitivity analysis was used. The study population comprised patients with recurrent colorectal under consideration for resection of apparently isolated hepatic metastasis in whom demonstration of extra-hepatic tumour would preclude surgery.The results of FDG-PET in a consecutive series of 75 such patients referred to the Wesley PET centre were used to determine the range of possible values for disease prevalence and specificity, assuming the value for PET sensitivity as reported in the federal government's PET review. These values, along with the diagnostic accuracy of CT and Australian costs for procedures (PET = $1200), were entered into decision trees modelling a diagnostic strategy comprising CT only and an alternative strategy where patients without extrahepatic tumour on CT also undergo FDG-PET. The cost per patient, accuracy and Incremental Cost-Accuracy Ratio (ICAR) were determined for each strategy. The PET strategy is cheaper for all possible values of disease prevalence and PET specificity ($306-328 / patient) and is more cost-effective for values of disease prevalence above 0.18 or PET specificity above 0.86. At a typical disease prevalence of 0.3 (PET specificity 0.92), the ICAR for the PET strategy is $9700 versus $11,200 for CT. PET remains cost saving even if the best reported values for sensitivity of CT and worse values for PET are used. FDG-PET for recurrent colorectal cancer in Australia would be cost saving and most probably cost-effective. Copyright (2002) Blackwell Science Pty Ltd

  15. PET-CT detection rate of primary breast cancer lesions. Correlation with the clinicopathological factors

    International Nuclear Information System (INIS)

    Ogawa, Tomoko; Tozaki, Mitsuhiro; Fukuma, Eisuke

    2008-01-01

    One hundred and forty lesions of primary breast cancer underwent positron emission tomography (PET)-CT between June 2006 and May 2007. The PET-CT detection rate of primary breast cancer lesions was 72.1%. The detection rate was 52.1% for invasive cancer ≤20 mm, 92.8% for invasive breast cancers >20 mm, and these results were significant. In the present study, no significant relationship was observed between tumor types, however, invasive lobular carcinoma showed a lower detection rate, 58.3%. The PET-CT results were not significantly affected by either estrogen and progesterone receptors or distant metastasis. A significant correlation regarding the detection rate of PET-CT was found with HER2 status, tumor grade, and axillary lymph node status. The detection rate was 100% for invasive cancer ≤20 mm when the interval between prior diagnostic Mammotome biopsies and PET-CT was less than 3 weeks, 18.8% for invasive cancer ≤20 mm when the interval was more than 3 weeks, and these results were significant. Mammotome biopsies may therefore affect the detection rate of PET-CT. Invasive cancers ≤20 mm showed a low detection rate, therefore, it is considered to be insufficient to use PET-CT for the detection of early breast cancer. (author)

  16. The usefulness of FDG-PET for diagnosis of locally recurrent rectal cancer

    International Nuclear Information System (INIS)

    Sekimoto, Mitsugu; Ikeda, Masataka; Yamamoto, Hirofumi; Nomura, Masaya; Takemasa, Ichiro; Fukunaga, Hiroki; Higuchi, Ichiro; Monden, Morito

    2006-01-01

    The local recurrence is the most frequently encountered recurrent pattern after radical resection of rectal cancer. We show the results of our study evaluating the usefulness of FDGPET (PET) and fusion image of PET and CT for the diagnosis of local recurrence of rectal cancer. Forty-two patients with a suspicious local recurrence after curative resection of rectal cancer were prospectively recruited and underwent PET and CT. The fusion image yielded a correct diagnosis in 39 (93%) of 42 patients, whereas CT alone and PET alone did so in 33 (79%) and 37 (88%) patients, respectively. The fusion image had better diagnostic accuracy than CT alone (P=.0138) and PET alone (P=.0156), and altered patient management in 11 (26.2%) cases on the basis of additional information. Fusion image had a potential clinical value in the treatment of suspected local recurrence of rectal cancer. (author)

  17. A small animal holding fixture system with positional reproducibility for longitudinal multimodal imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kokuryo, Daisuke; Kimura, Yuichi; Obata, Takayuki; Yamaya, Taiga; Kawamura, Kazunori; Zhang, Ming-Rong; Kanno, Iwao; Aoki, Ichio, E-mail: ukimura@ieee.or [Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555 (Japan)

    2010-07-21

    This study presents a combined small animal holding fixture system, termed a 'bridge capsule', which provides for small animal re-fixation with positional reproducibility. This system comprises separate holding fixtures for the head and lower body and a connecting part to a gas anesthesia system. A mouse is fixed in place by the combination of a head fixture with a movable part made from polyacetal resin, a lower body fixture made from vinyl-silicone and a holder for the legs and tail. For re-fixation, a similar posture could be maintained by the same holding fixtures and a constant distance between the head and lower body fixtures is maintained. Artifacts caused by the bridge capsule system were not observed on magnetic resonance (MRI) and positron emission tomography (PET) images. The average position differences of the spinal column and the iliac body before and after re-fixation for the same modality were approximately 1.1 mm. The difference between the MRI and PET images was approximately 1.8 mm for the lower body fixture after image registration using fiducial markers. This system would be useful for longitudinal, repeated and multimodal imaging experiments requiring similar animal postures.

  18. PET

    DEFF Research Database (Denmark)

    Mariager, Rasmus Mølgaard; Schmidt, Regin; Heiberg, Morten Rievers

    PET handler om den hemmelige tjenestes arbejde under den kolde krig 1945-1989. Her fortæller Regin Schmidt, Rasmus Mariager og Morten Heiberg om de mest dramatiske og interessante sager fra PET's arkiv. PET er på flere måder en udemokratisk institution, der er sat til at vogte over demokratiet....... Dens virksomhed er skjult for offentligheden, den overvåger borgernes aktiviteter, og den registrerer følsomme personoplysninger. Historien om PET rejser spørgsmålet om, hvad man skal gøre, når befolkningen i et demokrati er kritisk indstillet over for overvågningen af lovlige politiske aktiviteter......, mens myndighederne mener, at det er nødvendigt for at beskytte demokratiet. PET er på en gang en fortælling om konkrete aktioner og begivenheder i PET's arbejde og et stykke Danmarkshistorie. Det handler om overvågning, spioner, politisk ekstremisme og international terrorisme.  ...

  19. The Usefulness of {sup 18}F-FDG PET as a Cancer Screening Test

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Doo Heun; Choi, Joon Young; Song, Yun Mi; Lee, Su Jin; Kim, Young Hwan; Lee, Kyung Han; Kim, Byung Tae; Lee, Moon Kyu [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2008-12-15

    The aim of this study was to evaluate the usefulness of whole body positron emission tomography (PET) using {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) for cancer screening in asymptomatic subjects. The subjects were 1,762 men and 259 women who voluntarily underwent {sup 18}F-FDG PET for cancer screening as a part of a routine health examination. Final diagnosis was decided by other diagnostic studies, pathological results or clinical follow-up for 1 year. Of 2,021 subjects, 40 (2.0%) were finally proved to have cancer. Abnormal focal {sup 18}F-FDG uptake suggesting malignancy was found in 102 subjects (5.0%). Among them, 21 subjects (1.0%) were proved to have cancer. Other tests in the routine health examination could not find 9 of 21 cancers (42.9%) detected by PET. The sensitivity, specificity, positive predictive value, and negative predictive value of PET for cancer screening were 52.5%, 95.9%, 20.6%, and 99.0%, respectively. Pathologies of cancers missed on PET were adenocarcinoma (n=9; 3 colon cancers, 3 prostate cancers, 2 stomach cancers, and 1 rectal cancer), differentiated thyroid carcinoma (n=6), bronchioalveolar cell carcinoma (n=2), urinary bladder cancer (n=1), and melanoma (n=1). More than half of cancers which were not detected by PET were smaller than 1 cm in diameter. {sup 18}F-FDG PET might be useful for cancer screening in asymptomatic subjects due to its high specificity and negative predictive value and play a supplementary role to the conventional health check-up, but it could not replace due to limited sensitivity for urological cancers, small-sized tumors and some hypometaboic cancers.

  20. The Usefulness of 18F-FDG PET as a Cancer Screening Test

    International Nuclear Information System (INIS)

    Ko, Doo Heun; Choi, Joon Young; Song, Yun Mi; Lee, Su Jin; Kim, Young Hwan; Lee, Kyung Han; Kim, Byung Tae; Lee, Moon Kyu

    2008-01-01

    The aim of this study was to evaluate the usefulness of whole body positron emission tomography (PET) using 18 F-fluorodeoxyglucose ( 18 F-FDG) for cancer screening in asymptomatic subjects. The subjects were 1,762 men and 259 women who voluntarily underwent 18 F-FDG PET for cancer screening as a part of a routine health examination. Final diagnosis was decided by other diagnostic studies, pathological results or clinical follow-up for 1 year. Of 2,021 subjects, 40 (2.0%) were finally proved to have cancer. Abnormal focal 18 F-FDG uptake suggesting malignancy was found in 102 subjects (5.0%). Among them, 21 subjects (1.0%) were proved to have cancer. Other tests in the routine health examination could not find 9 of 21 cancers (42.9%) detected by PET. The sensitivity, specificity, positive predictive value, and negative predictive value of PET for cancer screening were 52.5%, 95.9%, 20.6%, and 99.0%, respectively. Pathologies of cancers missed on PET were adenocarcinoma (n=9; 3 colon cancers, 3 prostate cancers, 2 stomach cancers, and 1 rectal cancer), differentiated thyroid carcinoma (n=6), bronchioalveolar cell carcinoma (n=2), urinary bladder cancer (n=1), and melanoma (n=1). More than half of cancers which were not detected by PET were smaller than 1 cm in diameter. 18 F-FDG PET might be useful for cancer screening in asymptomatic subjects due to its high specificity and negative predictive value and play a supplementary role to the conventional health check-up, but it could not replace due to limited sensitivity for urological cancers, small-sized tumors and some hypometaboic cancers

  1. 11C-Choline PET/pathology image coregistration in primary localized prostate cancer

    International Nuclear Information System (INIS)

    Grosu, Anca-Ligia; Prokic, Vesna; Weirich, Gregor; Wendl, Christina; Geinitz, Hans; Molls, Michael; Kirste, Simon; Souvatzoglou, Michael; Schwaiger, Markus; Gschwend, Juergen E.; Treiber, Uwe; Weber, Wolfgang A.; Krause, Bernd Joachim

    2014-01-01

    The aim of this study was to develop a methodology for the comparison of pathology specimens after prostatectomy (post-S) with PET images obtained before surgery (pre-S). This method was used to evaluate the merit of 11 C-choline PET/CT for delineation of gross tumour volume (GTV) in prostate cancer (PC). In 28 PC patients, 11 C-choline PET/CT was performed before surgery. PET/CT data were coregistered with the pathology specimens. GTV on PET images (GTV-PET) was outlined automatically and corrected manually. Tumour volume in the prostate (TVP) was delineated manually on the pathology specimens. Based on the coregistered PET/pathology images, the following parameters were assessed: SUVmax and SUVmean in the tumoral and nontumoral prostate (NP), GTV-PET (millilitres) and TVP (millilitres). PET/pathology image coregistration was satisfactory. Mean SUVmax in the TVP was lower than in the NP: 5.0 and 5.5, respectively (p = 0.093). Considering the entire prostate, SUVmax was located in the TVP in two patients, in the TVP and NP in 12 patients and exclusively in NP in 14 patients. Partial overlap the TVP and GTV-PET was seen in 71 % of patients, and complete overlap in 4 %. PET/pathology image coregistration can be used for evaluation of different imaging modalities. 11 C-Choline PET failed to distinguish tumour from nontumour tissue. (orig.)

  2. Comparison of PET/CT and PET/MRI hybrid systems using a 68Ga-labelled PSMA ligand for the diagnosis of recurrent prostate cancer: initial experience

    International Nuclear Information System (INIS)

    Afshar-Oromieh, A.; Haberkorn, U.; Schlemmer, H.P.; Fenchel, M.; Roethke, M.; Eder, M.; Eisenhut, M.; Hadaschik, B.A.; Kopp-Schneider, A.

    2014-01-01

    68 Ga-labelled HBED-CC-PSMA is a highly promising tracer for imaging recurrent prostate cancer (PCa). The intention of this study was to evaluate the feasibility of PET/MRI with this tracer. Twenty patients underwent PET/CT 1 h after injection of the 68 Ga-PSMA ligand followed by PET/MRI 3 h after injection. Data from the two investigations were first analysed separately and then compared with respect to tumour detection rate and radiotracer uptake in various tissues. To evaluate the quantification accuracy of the PET/MRI system, differences in SUVs between PET/CT and corresponding PET/MRI were compared with differences in SUVs between PET/CT 1 h and 3 h after injection in another patient cohort. This cohort was investigated using the same PET/CT system. With PET/MRI, different diagnostic sequences, higher contrast of lesions and higher resolution of MRI enabled a subjectively easier evaluation of the images. In addition, four unclear findings on PET/CT could be clarified as characteristic of PCa metastases by PET/MRI. However, in PET images of the PET/MRI, a reduced signal was observed at the level of the kidneys (in 11 patients) and around the urinary bladder (in 15 patients). This led to reduced SUVs in six lesions. SUV mean values provided by the PET/MRI system were different in muscles, blood pool, liver and spleen. PCa was detected more easily and more accurately with Ga-PSMA PET/MRI than with PET/CT and with lower radiation exposure. Consequently, this new technique could clarify unclear findings on PET/CT. However, scatter correction was challenging when the specific 68 Ga-PSMA ligand was used. Moreover, direct comparison of SUVs from PET/CT and PET/MR needs to be conducted carefully. (orig.)

  3. Detection of Recurrent Cervical Cancer by Whole-body FDG PET Scans

    Institute of Scientific and Technical Information of China (English)

    Jiaxin Yang; Jinhui Wang; Zhaohui Zhu; Keng Shen; Bocheng Wang

    2008-01-01

    OBJECTIVE To evaluate the role of whole-body {18F} fluro-2-dexoxyglucose (FDG) positron emission tomography (PET) scans in the detection of recurrent cervical cancer.METHODS Between June, 2000 and January, 2006, 25 patients had undergone a PET scan at the Peking Union Medical College Hospital to evaluate possible recurrent cervical cancer. All the PET findings were reviewed and compared to available clinical data to classify each PET scan result as a true positive, true negative, false positive, or false negative.RESULTS A total of 38 PET scans were conducted on the 25patients whose median age was 46 years. The Stage distributions were IA (n = 1), IB (n = 11), IIA (n = 5), IIB (n = 4), IIIB (n = 2), WB (n= 1), and unknown Stage (n = 1). There were 22 cases of squamous cell carcinoma and 3 cases of adenocarcinoma resulting in 9 true positive PET scans, 27 true negatives, 2 false positives and no false negatives. The sensitivity of the FDG PET scans for detecting recurrent cervical cancer was 100%, specificity 93.1%, positive predictive value 81.8%, and negative predictive value 100%.CONCLUSION The whole body FDG PET scans are a sensitive and specific imaging modality for the detection of recurrent cervical cancer. However the cost of PET scans is too high at this time. A large prospective study will determine whether this modality should be used routinely and take the place of other imaging methods in the early detection of recurrent cervical carcinoma

  4. Clinical Application of 18F-FDG PET in Gastric Cancer

    International Nuclear Information System (INIS)

    Yun, Mi Jin; Kim, Tae Sung; Hwang, Hee Sung

    2008-01-01

    PET or PET/CT detects only less than 50% of early gastric cancer and 62-98% of advanced gastric cancer. Therefore, mass screening programs are recommended for all adults over the age of 40 for early detection and early treatment of gastric cancer through endoscopy or various radiological tests. The most important step after diagnosis of gastric cancer is accurate staging, which mainly evaluates tumor resectability to avoid unnecessary surgery. Important factors that affect tumor resectability are whether the tumor can be separated from adjacent organs or important blood vessels, the extent of lymph node metastasis, presence of peritoneal metastasis, or distant organ metastasis. To evaluate the extent of local tumor invasion, anatomical imaging that has superior spatial resolution is essential. There are a few studies on prognostic significance of FDG uptake with inconsistent results between them. In spite of lower sensitivity for lymph node staging, the specificity of CT and PET are very high, and the specificity for PET tends to be higher than that for CT. Limited data published so far show that PET seems less useful in the detection of lung and bone metastasis. In the evaluation of pleural or peritoneal metastasis, PET seems very specific but insensitive as well. When FDG uptake of primary tumor is low, distant metastasis also tends to show low FDG uptake reducing its detection on PET. There are only a few data available in the evaluation of recurrence detection and treatment response using FDG PET or PET/CT

  5. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  6. Pet Ownership and Cancer Risk in the Women’s Health Initiative

    Science.gov (United States)

    Garcia, David O.; Lander, Eric M.; Wertheim, Betsy C.; Manson, JoAnn E.; Volpe, Stella L.; Chlebowski, Rowan T.; Stefanick, Marcia L.; Lessin, Lawrence S.; Kuller, Lewis H.; Thomson, Cynthia A.

    2016-01-01

    Background Pet ownership and cancer are both highly prevalent in the U.S. Evidence suggest associations may exist between this potentially modifiable factor and cancer prevention, though studies are sparse. The present report examined whether pet ownership (dog, cat, or bird) is associated with lower risk for total cancer and site-specific obesity-related cancers. Methods A prospective analysis of 123,560 participants (20,981 dog owners; 19,288 cat owners; 1,338 bird owners; and 81,953 non-pet owners) enrolled in the Women’s Health Initiative (WHI) observational study and clinical trials. Cox proportional hazards models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between pet ownership and cancer, adjusted for potential confounders. Results There were no significant relationships between ownership of a dog, cat, or bird and incidence of cancer overall. When site-specific cancers were examined, no associations were observed after adjustment for multiple comparisons. Conclusion Pet ownership had no association with overall cancer incidence. Impact This is the first large epidemiological study to date to explore relationships between pet ownership and cancer risk, as well as associated risks for individual cancer types. This study requires replication in other sizable, diverse cohorts. PMID:27365150

  7. [18F]fluorodeoxyglucose PET/computed tomography in breast cancer and gynecologic cancers

    DEFF Research Database (Denmark)

    Hildebrandt, Malene Grubbe; Kodahl, Annette Raskov; Teilmann-Jørgensen, Dorte

    2015-01-01

    In this literature review, an update is provided on the role of [(18)F]fluorodeoxyglucose PET/computed tomography in different clinical settings of the 4 most frequent female-specific cancer types: breast, endometrial, ovarian, and cervical cancer. The most recent knowledge regarding primary...... diagnosis, staging, response evaluation, prognostic and predictive values, recurrence detection, and radiotherapy planning is evaluated, including, when clinically relevant, considerations with respect to the epidemiology, treatment, and course of the diseases....

  8. Role of choline PET/CT in guiding target volume delineation for irradiation of prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schwarzenboeck, S.M.; Kurth, J. [University Medical Centre Rostock, Department of Nuclear Medicine, Rostock (Germany); Gocke, C.; Kuhnt, T.; Hildebrandt, G. [University Medical Centre Rostock, Department of Radiotherapy, Rostock (Germany); Krause, B.J. [University Medical Centre Rostock, Department of Nuclear Medicine, Rostock (Germany); Universitaet Rostock, Department of Nuclear Medicine, Universitaetsmedizin Rostock, Rostock (Germany)

    2013-07-15

    Choline PET/CT has shown limitations for the detection of primary prostate cancer and nodal metastatic disease, mainly due to limited sensitivity and specificity. Conversely in the restaging of prostate cancer recurrence, choline PET/CT is a promising imaging modality for the detection of local regional and nodal recurrence with an impact on therapy management. This review highlights current literature on choline PET/CT for radiation treatment planning in primary and recurrent prostate cancer. Due to limited sensitivity and specificity in differentiating between benign and malignant prostatic tissues in primary prostate cancer, there is little enthusiasm for target volume delineation based on choline PET/CT. Irradiation planning for the treatment of single lymph node metastases on the basis of choline PET/CT is controversial due to its limited lesion-based sensitivity in primary nodal staging. In high-risk prostate cancer, choline PET/CT might diagnose lymph node metastases, which potentially can be included in the conventional irradiation field. Prior to radiation treatment of recurrent prostate cancer, choline PET/CT may prove useful for patient stratification by excluding distant disease which would require systemic therapy. In patients with local recurrence, choline PET/CT can be used to delineate local sites of recurrence within the prostatic resection bed allowing a boost to PET-positive sites. In patients with lymph node metastases outside the prostatic fossa and regional metastatic lymph nodes, choline PET/CT might influence radiation treatment planning by enabling extension of the target volume to lymphatic drainage sites with or without a boost to PET-positive lymph nodes. Further clinical randomized trials are required to assess treatment outcomes following choline-based biological radiation treatment planning in comparison with conventional radiation treatment planning. (orig.)

  9. Appropriate Use of FDG-PET for the Management of Cancer Patients

    International Nuclear Information System (INIS)

    2010-01-01

    The use of PET (positron emission tomography) has become the standard quality of care for optimal management of patients with cancer. The availability of the hybrid PET/CT (positron emission tomography/computed tomography) scanner has further improved the utility of PET scanning and provides additional benefits both to patients and to the health system. This publication addresses the important issue of appropriateness of the application of PET/CT procedures in different clinical scenarios for many cancers. It is a resource for specialists in nuclear medicine and oncology, and aims to make reliable information widely available to those Member States where PET programmes are still in their planning phase or where the use of PET scanning is limited.

  10. PET/CT imaging in response evaluation of patients with small cell lung cancer

    DEFF Research Database (Denmark)

    Fischer, Barbara M; Mortensen, Jann; Langer, Seppo W

    2006-01-01

    UNLABELLED: There is an increasing amount of evidence on the usability of PET in response evaluation of non-small cell lung cancer. However, data on SCLC is scarce and mainly retrospective. This prospective study assesses the use of PET (positron emission tomography) and PET/CT in response...... evaluation of patients with small cell lung cancer (SCLC). METHODS: Assignment of early and final response was compared between PET, PET/CT, and CT in 20 patients with SCLC. Final response as assigned by CT (RECIST) served as reference. RESULTS: At response evaluation after one cycle of chemotherapy major...... by PET/CT is feasible, but it is uncertain whether it adds further information to evaluation by RECIST, thus further studies and standardization of methods are needed....

  11. Clinical Application of {sup 18}F-FDG PET in Nonmelanomatous Skin Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Joon Kee [Ajou University School of Medicine, Suwon (Korea, Republic of)

    2008-12-15

    Nonmelanomatous skin cancer includes basal cell carcinoma, squamous cell carcinoma, merkel cell carcinoma and dermatofibrosarcoma protuberance. So far, there have been a few reports that {sup 18}F-FDG PET was useful in the evaluation of metastasis and therapeutic response in nonmelanomatous skin cancer, however, those are very weak evidences. Therefore, further studies on the usefulness of {sup 18}F-FDG PET in nonmelanomatous skin cancer are required.

  12. Clinical Application of 18F-FDG PET in Ovarian Cancer

    International Nuclear Information System (INIS)

    Oh, So Won; Kim, Seok Ki

    2008-01-01

    Ovarian cancer is often fatal since it is difficult to diagnose early and recurrence is quite frequent despite successful implementation of cytoreductive surgery and chemotherapy, thus exact diagnosis and early detection of recurrence are crucial to patient management. For pre-treatment staging, FDG PET could be helpful in a limited patient group possessing high risks of ovarian cancer. Besides, FDG PET could be recommended to patients with a high suspicion of recurrence i.e. rise of CA-125, especially in cases of conventional diagnostic imaging modalities presenting no evidence of disease because FDG PET provides critical information for treatment planning such as recurrence site or pattern. In order to expand the use of FDG PET to general population at staging or routine surveillance of ovarian cancer, more investigation is needed. The usefulness of FDG PET in evaluating treatment response and prognosis of ovarian cancer has not yet been determined, but it has been reported that FDG PET could evaluate treatment response early and show a close relationship with overall survival. PET/CT has been actively adopted in management of ovarian cancer. Not only in detecting tumor recurrence and evaluating treatment response but also in pre-treatment staging, FDG PET/CT is expected to play a role due to available anatomical information

  13. Molecular imaging of head and neck cancers. Perspectives of PET/MRI; Molekulare Bildgebung bei Kopf-ï]¿Hals-Tumoren. Perspektive der PET-MRT

    Energy Technology Data Exchange (ETDEWEB)

    Stumpp, P.; Kahn, T. [Universitaetsklinikum Leipzig AoeR, Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie, Leipzig (Germany); Purz, S.; Sabri, O. [Universitaetsklinikum Leipzig, Klinik und Poliklinik fuer Nuklearmedizin, Leipzig (Germany)

    2016-07-15

    The {sup 18}F-fluorodeoxyglucose positron emission tomography-computed tomography ({sup 18}F-FDG-PET/CT) procedure is a cornerstone in the diagnostics of head and neck cancers. Several years ago PET-magnetic resonance imaging (PET/MRI) also became available as an alternative hybrid multimodal imaging method. Does PET/MRI have advantages over PET/CT in the diagnostics of head and neck cancers ?The diagnostic accuracy of the standard imaging methods CT, MRI and PET/CT is depicted according to currently available meta-analyses and studies concerning the use of PET/MRI for these indications are summarized. In all studies published up to now PET/MRI did not show superiority regarding the diagnostic accuracy in head and neck cancers; however, there is some evidence that in the future PET/MRI can contribute to tumor characterization and possibly be used to predict tumor response to therapy with the use of multiparametric imaging. Currently, {sup 18}F-FDG-PET/CT is not outperformed by PET/MRI in the diagnostics of head and neck cancers. The additive value of PET/MRI due to the use of multiparametric imaging needs to be investigated in future research. (orig.) [German] Die {sup 18}F-Fluordesoxyglukose-Positronenemissionstomographie-Computertomographie ({sup 18}F-FDG-PET-CT) hat ihren festen Stellenwert in der Diagnostik von Kopf-Hals-Tumoren. Seit einigen Jahren ist die PET-MRT als weitere hybride Bildgebungsmodalitaet verfuegbar. Bringt die PET-MRT Fortschritte bei der Diagnostik von Kopf-Hals-Tumoren ?Darstellung der diagnostischen Genauigkeit der bisherigen Bildgebungsmethoden CT, MRT und PET-CT anhand von Metaanalysen und Zusammenfassung der bisherigen Publikationen zur PET-MRT auf diesem Gebiet. Die PET-MRT zeigt in allen bisherigen Studien keine Ueberlegenheit bzgl. der diagnostischen Genauigkeit von Kopf-Hals-Tumoren. Sie kann jedoch durch die multiparametrische Diagnostik perspektivisch Beitraege zur Tumorcharakterisierung und damit moeglicherweise Voraussagen zum

  14. Owners and Veterinary Surgeons in the United Kingdom Disagree about What Should Happen during a Small Animal Vaccination Consultation.

    Science.gov (United States)

    Belshaw, Zoe; Robinson, Natalie J; Dean, Rachel S; Brennan, Marnie L

    2018-01-18

    Dog and cat vaccination consultations are a common part of small animal practice in the United Kingdom. Few data are available describing what happens during those consultations or what participants think about their content. The aim of this novel study was to investigate the attitudes of dog and cat owners and veterinary surgeons towards the content of small animal vaccination consultations. Telephone interviews with veterinary surgeons and pet owners captured rich qualitative data. Thematic analysis was performed to identify key themes. This study reports the theme describing attitudes towards the content of the consultation. Diverse preferences exist for what should be prioritised during vaccination consultations, and mismatched expectations may lead to negative experiences. Vaccination consultations for puppies and kittens were described to have a relatively standardised structure with an educational and preventative healthcare focus. In contrast, adult pet vaccination consultations were described to focus on current physical health problems with only limited discussion of preventative healthcare topics. This first qualitative exploration of UK vaccination consultation expectations suggests that the content and consistency of adult pet vaccination consultations may not meet the needs or expectations of all participants. Redefining preventative healthcare to include all preventable conditions may benefit owners, pets and veterinary surgeons, and may help to provide a clearer structure for adult pet vaccination consultations. This study represents a significant advance our understanding of this consultation type.

  15. Owners and Veterinary Surgeons in the United Kingdom Disagree about What Should Happen during a Small Animal Vaccination Consultation

    Directory of Open Access Journals (Sweden)

    Zoe Belshaw

    2018-01-01

    Full Text Available Dog and cat vaccination consultations are a common part of small animal practice in the United Kingdom. Few data are available describing what happens during those consultations or what participants think about their content. The aim of this novel study was to investigate the attitudes of dog and cat owners and veterinary surgeons towards the content of small animal vaccination consultations. Telephone interviews with veterinary surgeons and pet owners captured rich qualitative data. Thematic analysis was performed to identify key themes. This study reports the theme describing attitudes towards the content of the consultation. Diverse preferences exist for what should be prioritised during vaccination consultations, and mismatched expectations may lead to negative experiences. Vaccination consultations for puppies and kittens were described to have a relatively standardised structure with an educational and preventative healthcare focus. In contrast, adult pet vaccination consultations were described to focus on current physical health problems with only limited discussion of preventative healthcare topics. This first qualitative exploration of UK vaccination consultation expectations suggests that the content and consistency of adult pet vaccination consultations may not meet the needs or expectations of all participants. Redefining preventative healthcare to include all preventable conditions may benefit owners, pets and veterinary surgeons, and may help to provide a clearer structure for adult pet vaccination consultations. This study represents a significant advance our understanding of this consultation type.

  16. Establishment study of the in vivo imaging analysis with small animal imaging modalities for bio-durg development

    International Nuclear Information System (INIS)

    Jang, Beomsu; Park, Sanghyeon; Choi, Dae Seong; Park, Jeonghoon; Jung, Uhee; Lee, Yun Jong

    2012-01-01

    In this study, we established the image modalities (micro-PET, SPECT/CT) using the experimental animal (mouse) for the development of imaging assessment method for the bio-durg and extramural collaboration proposal. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with 99m Tc tricarbonyl bifunctional chelators and 18 F-clotrimazole derivative. SPECT imaging studies were performed with 99m Tc tricarbonyl BFCs. PET imaging study was performed with 18 F-clotrimazole derivatives. We performed the PET image study of 18 F-clotrimazole derivatives using U87MG tumor bearing mice. Also we tested the intramural and extramural collaboration using small animal imaging modalities and prepared the draft of extramural R and D operation manual for small animal imaging modalities and the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug

  17. Owners and Veterinary Surgeons in the United Kingdom Disagree about What Should Happen during a Small Animal Vaccination Consultation

    Science.gov (United States)

    Robinson, Natalie J.; Dean, Rachel S.

    2018-01-01

    Dog and cat vaccination consultations are a common part of small animal practice in the United Kingdom. Few data are available describing what happens during those consultations or what participants think about their content. The aim of this novel study was to investigate the attitudes of dog and cat owners and veterinary surgeons towards the content of small animal vaccination consultations. Telephone interviews with veterinary surgeons and pet owners captured rich qualitative data. Thematic analysis was performed to identify key themes. This study reports the theme describing attitudes towards the content of the consultation. Diverse preferences exist for what should be prioritised during vaccination consultations, and mismatched expectations may lead to negative experiences. Vaccination consultations for puppies and kittens were described to have a relatively standardised structure with an educational and preventative healthcare focus. In contrast, adult pet vaccination consultations were described to focus on current physical health problems with only limited discussion of preventative healthcare topics. This first qualitative exploration of UK vaccination consultation expectations suggests that the content and consistency of adult pet vaccination consultations may not meet the needs or expectations of all participants. Redefining preventative healthcare to include all preventable conditions may benefit owners, pets and veterinary surgeons, and may help to provide a clearer structure for adult pet vaccination consultations. This study represents a significant advance our understanding of this consultation type. PMID:29346332

  18. Imaging of Prostate Cancer Using Urokinase-Type Plasminogen Activator Receptor PET

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2017-01-01

    Urokinase-type plasminogen activator receptor (uPAR) overexpression is an important biomarker for aggressiveness in cancer including prostate cancer (PC) and provides independent clinical information in addition to prostate-specific antigen and Gleason score. This article focuses on uPAR PET...... as a new diagnostic and prognostic imaging biomarker in PC. Many preclinical uPAR-targeted PET imaging studies using AE105 in cancer models have been undertaken with promising results. A major breakthrough was obtained with the recent human translation of uPAR PET in using 64Cu- and 68Ga-labelled versions...

  19. 18F-deoxyglucose-PET in the detection of recurrence in head and neck cancer

    International Nuclear Information System (INIS)

    Chen Yingrui; Li Weixiong; Gu Meixin; Xie Songxi

    2002-01-01

    Objective: To evaluate 18 F-deoxyglucose-positron emission tomography (FDG-PET) in the detection of suspicious recurrence in head and neck cancers, as compared with CT/MRI imaging. Methods: Thirty-seven patients with clinically suspicious recurrences in head and neck cancers underwent FDG-PET, with 34 checked with CT/MRI imaging. The final diagnosis of recurrence were proved by pathology or clinical following-up. Results: FDG-PET detected recurrence successfully in 32 of 37 (86.5%) patients with 3 false positives and 2 false negatives. The FDG-PET sensitivity, specificity and accuracy in defining local recurrence were 91.7%, 76.9%, 86.5%, respectively; and those of CT/MRI were 68.2%, 75.0%, 61.8%, respectively. Conclusion: In comparison with CT/MRI, FDG-PET possesses a high accuracy in detecting recurrence in head and neck cancers

  20. Evaluation of a Hanging-Breast PET System for Primary Tumor Visualization in Patients With Stage I-III Breast Cancer: Comparison With Standard PET/CT.

    Science.gov (United States)

    Teixeira, Suzana C; Rebolleda, José Ferrér; Koolen, Bas B; Wesseling, Jelle; Jurado, Raúl Sánchez; Stokkel, Marcel P M; Del Puig Cózar Santiago, María; van der Noort, Vincent; Rutgers, Emiel J Th; Valdés Olmos, Renato A

    2016-06-01

    The purposes of this study were to evaluate the performance of a mammography with molecular imaging PET (MAMMI-PET) system for breast imaging in the hanging-breast position for the visualization of primary breast cancer lesions and to compare this method with whole-body PET/CT. Between March 2011 and March 2014, a prospective evaluation included women with one or more histologically confirmed primary breast cancer lesions (index lesions). After injection of 180-240 MBq of (18)F-FDG, whole-body PET/CT and MAMMI-PET acquisitions were performed, index lesions were scored 0, 1, or 2 for FDG uptake relative to background. Detection and FDG uptake were compared by breast length, maximal tumor diameter, affected breast quadrants, tumor grade, and histologic and immunologic sub-types. Finally, the two PET modalities were compared for detection of index lesions. For 234 index lesions (diameter, 5-170 mm), the overall sensitivity was 88.9% for MAMMI-PET and 91% for PET/CT (p = 0.61). Twenty-three (9.8%) index lesions located too close to the pectoral muscle were missed with MAMMI-PET, and 20 index lesions were missed with PET/CT. Lesion visibility on MAMMI-PET images was influenced by tumor grade (p = 0.034) but not by cancer subtype (p = 0.65). Although in an overall evaluation MAMMI-PET was not superior to PET/CT, MAMMI-PET does have higher sensitivity for primary breast cancer lesions within the scanning range of the device. Optimization of the positioning device may increase visualization of the most dorsal lesions.

  1. Treatment planning for a small animal using Monte Carlo simulation

    International Nuclear Information System (INIS)

    Chow, James C. L.; Leung, Michael K. K.

    2007-01-01

    The development of a small animal model for radiotherapy research requires a complete setup of customized imaging equipment, irradiators, and planning software that matches the sizes of the subjects. The purpose of this study is to develop and demonstrate the use of a flexible in-house research environment for treatment planning on small animals. The software package, called DOSCTP, provides a user-friendly platform for DICOM computed tomography-based Monte Carlo dose calculation using the EGSnrcMP-based DOSXYZnrc code. Validation of the treatment planning was performed by comparing the dose distributions for simple photon beam geometries calculated through the Pinnacle3 treatment planning system and measurements. A treatment plan for a mouse based on a CT image set by a 360-deg photon arc is demonstrated. It is shown that it is possible to create 3D conformal treatment plans for small animals with consideration of inhomogeneities using small photon beam field sizes in the diameter range of 0.5-5 cm, with conformal dose covering the target volume while sparing the surrounding critical tissue. It is also found that Monte Carlo simulation is suitable to carry out treatment planning dose calculation for small animal anatomy with voxel size about one order of magnitude smaller than that of the human

  2. Computed tomography of the central nervous system in small animals

    International Nuclear Information System (INIS)

    Tipold, A.; Tipold, E.

    1991-01-01

    With computed tomography in 44 small animals some well defined anatomical structures and pathological processes of the central nervous system are described. Computed tomography is not only necessary for the diagnosis of tumors; malformations, inflammatory, degenerative and vascular diseases and traumas are also visible

  3. Marketing small animal theriogenology services--one perspective.

    Science.gov (United States)

    Barber, J A

    2007-08-01

    Once a decision is made to add small animal theriogenology services to a practice, marketing strategies must be developed and implemented to attract clients to the new services. Marketing strategies for the niche market of theriogenology include start-up marketing methods, referral programs, internal marketing, and continued marketing. Marketing theriogenology services is a dynamic, ongoing process that never ends.

  4. Current concepts in F18 FDG PET/CT-based Radiation Therapy planning for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Percy eLee

    2012-07-01

    Full Text Available Radiation therapy is an important component of cancer therapy for early stage as well as locally advanced lung cancer. The use of F18 FDG PET/CT has come to the forefront of lung cancer staging and overall treatment decision-making. FDG PET/CT parameters such as standard uptake value and metabolic tumor volume provide important prognostic and predictive information in lung cancer. Importantly, FDG PET/CT for radiation planning has added biological information in defining the gross tumor volume as well as involved nodal disease. For example, accurate target delineation between tumor and atelectasis is facilitated by utilizing PET and CT imaging. Furthermore, there has been meaningful progress in incorporating metabolic information from FDG PET/CT imaging in radiation treatment planning strategies such as radiation dose escalation based on standard uptake value thresholds as well as using respiratory gated PET and CT planning for improved target delineation of moving targets. In addition, PET/CT based follow-up after radiation therapy has provided the possibility of early detection of local as well as distant recurrences after treatment. More research is needed to incorporate other biomarkers such as proliferative and hypoxia biomarkers in PET as well as integrating metabolic information in adaptive, patient-centered, tailored radiation therapy.

  5. Performance of FDG PET/CT in the clinical management of breast cancer.

    Science.gov (United States)

    Groheux, David; Espié, Marc; Giacchetti, Sylvie; Hindié, Elif

    2013-02-01

    In this analysis, the role of metabolic imaging with fluorine 18 fluorodeoxyglucose (FDG) in breast cancer is reviewed. The analysis was limited to recent works by using state-of-the-art positron emission tomography (PET)/computed tomography (CT) technology. The strengths and limitations of FDG PET/CT are examined in various clinical settings, and the following questions are answered: Is FDG PET/CT useful to differentiate malignant from benign breast lesions? Can FDG PET/CT replace sentinel node biopsy for axillary staging? What is the role of FDG PET/CT in initial staging of inflammatory or locally advanced breast cancer? What is the role of FDG PET/CT in initial staging of clinical stage IIA and IIB and primary operable stage IIIA breast cancer? How does FDG PET/CT compare with conventional techniques in the restaging of cancer in patients who are suspected of having disease recurrence? What is the role of FDG PET/CT in the assessment of early response to neoadjuvant therapy and of response to therapy for metastatic disease? Some recommendations for clinical practice are given.

  6. PET/CT for diagnostics and therapy stratification of lung cancer

    International Nuclear Information System (INIS)

    Kratochwil, C.; Haberkorn, U.; Giesel, F.L.

    2010-01-01

    With the introduction of positron emission tomography (PET) and more recently the hybrid systems PET/CT, the management of cancer patients in the treatment strategy has changed tremendously. The combination of PET with multidetector CT scanning enables the integration of metabolic and high resolution morphological image information. PET/CT is nowadays an established modality for tumor detection, characterization, staging and response monitoring. The increased installation of PET/CT systems worldwide and also the increased scientific publications underline the importance of this imaging modality. PET/CT is particular the imaging modality of choice in lung cancer staging and re-staging (T, N and M staging). The possible increased success of surgery in lung cancer patients and also the expected reduction in additional invasive diagnostics lead to benefits for both the individual patient and the healthcare system. In this review article PET and PET/CT is presented for diagnostic and therapeutic stratification in lung cancer. The fundamentals of glucose metabolism, staging, tumor recurrence and therapeutic monitoring are presented. (orig.) [de

  7. Usefulness of 18F fluoride PET/CT in breast cancer patients with osteosclerotic bone metastases

    International Nuclear Information System (INIS)

    Yoon, Seok Ho; Kim, Ku Sang; Kang, Seok Yun; Song, Hee Sung; Jo, Kyung Sook; Lee, Su Jin; Yoon, Joon Kee; An, Young Sil; Choi, Bong Hoi

    2012-01-01

    Bone metastasis is an important factor for the treatment and prognosis of breast cancer patients. Whole body bone scintigraphy (WBBS) can evaluate skeletal metastases, and 18 F FDG PET/CT seems to exhibit high specificity and accuracy in detecting bone metastases. However, there is a limitation of 18 F FDG PET in assessing sclerotic bone metastases because some lesions may be undetectable. Recent studies showed that 18 F fluoride PET/CT is more sensitive than WBBS in detecting bone metastases. This study aims to evaluate the usefulness of 18 F fluoride PET/CT by comparing it with WBBS and 18 F FDG PET/CT in breast cancer patients with osteosclerotic skeletal metastases. Nine breast cancer patients with suspected bone metastases (9 females; mean age ± SD, 55.6±10.0 years) underwent 99m Tc MDP WBBS, 18 F FDG PET/CT and 18 F fluoride PET/CT. Lesion based analysis of five regions of the skeletons(skull, vertebral column, thoracic cage, pelvic bones and long bones of extremities) and patient based analysis were performed. 18 F fluoride PET/CT, 18 F FDG PET/CT and WBBS detected 49, 20 and 25 true metastases, respectively. Sensitivity, specificity, positive predictive value and negative predictive value of 18 F fluoride PET/CT were 94.2%, 46.3%, 57.7% and 91.2%, respectively. Most true metastatic lesions of 18 F fluoride PET/CT had osteosclerotic change (45/49, 91.8%), and only four lesions showed osteolytic change. Most lesions on 18 F FDG PET/CT also demonstrated osteosclerotic change (17/20, 85.0%) with three osteolytic lesions. All true metastatic lesions detected on WBBS and 18 F FDG PET/CT were identified on 18 F fluoride PET/CT. 18 F FDG PET/CT in detecting osteosclerotic metastatic lesions. 18 F fluoride PET/CT might be useful in evaluating osteosclerotic metastases in breast cancer patients

  8. Role of {sup 18}F-fluorodeoxyglucose PET/CT in Recurrent Ovary Cancer

    Energy Technology Data Exchange (ETDEWEB)

    O, Joo Hyun; Yoo, Ie Ryung; Choi, Woo Hee; Lee, Won Hyoung; Kim, Sung Hoon; Chung, Soo Kyo [The Catholic University of Korea, Seoul (Korea, Republic of)

    2008-06-15

    To date, anatomical imaging modalities of the pelvis and tumor markers have been the mainstay of surveillance for recurrent ovary cancer. This study aimed to assess the role of 18F-FDG PET/CT in evaluation of ovary cancer recurrences, especially in comparison with enhanced CT and tumor marker CA 125. 73 patients who had PET/CT scan for restaging of confirmed ovary cancer, and additional imaging with enhanced CT of the pelvis within one month were included. CA 125 level was available in all patients. From the PET/CT images, maximum standard uptake values (SUVmax) of suspected recurrence sites were recorded. Confirmation was available through re-operation or biopsy in 26 cases, and clinical assessment with series of follow-up images in 47. PET/CT had 93% sensitivity and 88% specificity for detecting recurrent ovary cancer. Enhanced CT of pelvis had sensitivity and specificity of 83% and 88%, and CA 125 50% and 95%. PET/CT has higher sensitivity for detecting recurrent ovary cancer compared to enhanced CT though the differences were not significant. PET/CT has significantly higher sensitivity than CA 125. However, the three tests all agreed in only 43% of the recurrence cases, and recurrence should be suspected when any of the tests, especially PET/CT, show positive findings.

  9. Role of 18F-fluorodeoxyglucose PET/CT in Recurrent Ovary Cancer

    International Nuclear Information System (INIS)

    O, Joo Hyun; Yoo, Ie Ryung; Choi, Woo Hee; Lee, Won Hyoung; Kim, Sung Hoon; Chung, Soo Kyo

    2008-01-01

    To date, anatomical imaging modalities of the pelvis and tumor markers have been the mainstay of surveillance for recurrent ovary cancer. This study aimed to assess the role of 18F-FDG PET/CT in evaluation of ovary cancer recurrences, especially in comparison with enhanced CT and tumor marker CA 125. 73 patients who had PET/CT scan for restaging of confirmed ovary cancer, and additional imaging with enhanced CT of the pelvis within one month were included. CA 125 level was available in all patients. From the PET/CT images, maximum standard uptake values (SUVmax) of suspected recurrence sites were recorded. Confirmation was available through re-operation or biopsy in 26 cases, and clinical assessment with series of follow-up images in 47. PET/CT had 93% sensitivity and 88% specificity for detecting recurrent ovary cancer. Enhanced CT of pelvis had sensitivity and specificity of 83% and 88%, and CA 125 50% and 95%. PET/CT has higher sensitivity for detecting recurrent ovary cancer compared to enhanced CT though the differences were not significant. PET/CT has significantly higher sensitivity than CA 125. However, the three tests all agreed in only 43% of the recurrence cases, and recurrence should be suspected when any of the tests, especially PET/CT, show positive findings

  10. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients

    DEFF Research Database (Denmark)

    Berthelsen, A K; Holm, S; Loft, A

    2005-01-01

    PURPOSE: If the CT scan of a combined PET/CT study is performed as a full diagnostic quality CT scan including intravenous (IV) contrast agent, the quality of the joint PET/CT procedure is improved and a separate diagnostic CT scan can be avoided. CT with IV contrast can be used for PET attenuation...... correction, but this may result in a bias in the attenuation factors. The clinical significance of this bias has not been established. Our aim was to perform a prospective clinical study where each patient had CT performed with and without IV contrast agent to establish whether PET/CT with IV contrast can...... scans without, and then with contrast agent, followed by an 18F-fluorodeoxyglucose whole-body PET scan. The CT examinations were performed with identical parameters on a GE Discovery LS scanner. The PET data were reconstructed with attenuation correction based on the two CT data sets. A global...

  11. Comparison of MET-PET and FDG-PET for differentiation between benign lesions and lung cancer in pneumoconiosis

    International Nuclear Information System (INIS)

    Kanegae, Kakuko; Kuge, Yuji; Shiga, Tohru; Zhao, Songji; Okamoto, Shouzo; Tamaki, Nagara; Nakano, Ikuo; Kimura, Kiyonobu; Kaji, Hiroshi

    2007-01-01

    The aim of this study was to evaluate and compare the ability of C-11-methionine (MET) and F-18 fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) to diagnose lung cancer in patients with pneumoconiosis. Twenty-six subjects underwent both wholebody MET-PET and FDG-PET on the same day. The first group was a lung cancer group, which consisted of 15 patients, and included those with pneumoconiosis with increased nodules (13 cases), hemoptysis (1 case), and positive sputum cytology (1 case). The second group was a no-malignancy control group, consisting of 11 patients with pneumoconiosis. Significant correlations between nodule size and the maximum standardized uptake value (SUV max ) of the two PET tracers were observed in the control group. The larger the nodule size, the greater were the amounts of these tracers accumulated (MET: r=0.771, P max of MET was significantly lower than that of FDG in the pneumoconiotic nodules (P max of MET was significantly higher in the lung cancer than in the pneumoconiotic nodules, with 3.48±1.18 (mean ± SE) for the lung cancer and 1.48±0.08 for the pneumoconiotic nodules (P max of FDG, with 7.12±2.36 and 2.85±0.24 (P<0.05), respectively. On the basis of the criteria for the control group, FDG and MET identified lung cancer with sensitivities of 60% and 80%, specificities of 100% and 93%, accuracies of 90% and 90%, positive predictive values of 100% and 80%, and negative predictive values of 88% and 93%, respectively. Our results indicate that nodules with an intense uptake of MET and FDG relative to their size should be carefully observed because of a high risk for lung cancer. (author)

  12. Visualisation of bladder cancer using 11C-choline PET: first clinical experience

    International Nuclear Information System (INIS)

    De Jong, Igle J.; Pruim, Jan; Elsinga, Philip H.; Jongen, Maud M.G.J.; Vaalburg, Willem; Mensink, Han J.A.

    2002-01-01

    Fluorine-18 fluorodeoxyglucose (FDG), the most widely used radiopharmaceutical in positron emission tomography (PET) for oncological purposes, is unsuitable for imaging of bladder cancer owing to high excretion into the urine. More specific PET radiopharmaceuticals which are not excreted into urine would be welcome. Carbon-11 labelled choline (CHOL) is a new radiopharmaceutical potentially useful for tumour imaging and is not excreted into the urine. We prospectively studied the visualisation of bladder cancer using CHOL PET. Eighteen patients with bladder cancer and five healthy volunteers were included. Bladder cancer was first diagnosed by transurethral resection or by biopsy of the tumour. Next, PET images were performed before surgical treatment by cystectomy. The histopathological findings after cystectomy were used as the gold standard. PET images were performed on either an ECAT 951/31 or an ECAT Exact HR+ system. Attenuation-corrected PET images were obtained after injection of 400 MBq CHOL. PET images were analysed by two independent physicians using visual analysis and calculation of the standardised uptake value (SUV). In the normal bladder wall, the uptake of CHOL was low, and the bladder margin was only outlined by minimal urinary radioactivity, if present. In ten patients the tumour was detected correctly by CHOL PET, with an SUV of 4.7±3.6 (mean±SD). One false positive CHOL PET scan was seen in a patient with an indwelling catheter for 2 weeks prior to the PET scan. In two patients, lymph node metastases were detected by CHOL PET. A micrometastasis <5 mm was not visualised with CHOL PET. In seven patients, no residual tumour was found after surgery. In six of seven patients CHOL PET imaging was negative. In situ carcinoma, dysplasia and a non-invasive urothelial tumour (pTa) remained undetected in three of these six patients. Minimal to no urinary tract radioactivity was seen in 22/23 subjects. Non-specific uptake of CHOL was observed in the small

  13. The application value of PET-CT in the diagnosis of breast cancer

    International Nuclear Information System (INIS)

    Li Haitao

    2005-01-01

    Breast cancer is the most common malignancy in women in most of countries. During the past decades, the application of PET with 18 f-fluoro-2-deoxy-D-glocuse ( 18 F-FDG) has remarkably improved the management of breast cancer. Nevertheless, due to anatomical localisation of 18 F-FDG uptake was difficult, the clinical interpretation of 18 F-FDG PET scan could not be exactly. A novel combined PET-CT system has largely improved the capacity of sensitivity and specificity in the diagnosis of breast cancer. In this artiacal we focus on the application value of PET-CT to breast cancer diagnosis, with respect to dissease re-staging, treatment monitoring, preoperative staging and radiotherapy planning. (authors)

  14. Investigations with FDG-PET Scanning in Prostate Cancer Show Limited Value for Clinical Practice

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Eeva [Univ. of Turku (Finland). Department of Oncology and Radiotherapy; Hogg, Annette; Binns, David; Hicks, Rodney [The Peter MacCallum Cancer Institute, East Melbourne, Vic (Australia). Dept. of Diagnostic Imaging; Frydenberg, Mark [Monash Medical Centre, Clayton, Vic (Australia)

    2002-09-01

    The aim of this study was to investigate FDG-PET (fluorodeoxyglucose positron emission tomography) imaging in the management of prostate cancer. Twenty-two patients were studied during different disease phases of prostate cancer, for staging or restaging to clarify specific clinical questions. FDG-PET was performed encompassing the thorax, abdomen and pelvis using the Penn PET 300H scanner. Scanning was begun 60 min after {sup 18}F fluorodeoxyglucose marker. Patients were catheterized and administered diuretics to minimize urinary activity. Information obtained with FDG-PET was concordant with findings from other investigations in 7/22 (32%) patients, discordant in 15/22 (68%) patients and equivalent in one patient (4%). PET indicated progressive disease in five patients with prostate-specific antigen (PSA) <4 ng/L. The impact on management of the patients was high in 46% of cases, low in 41% and for 14% there was no impact on management. The accuracy of FDG-PET was 72% (95% CI 50-89) as confirmed by invasive diagnostics/follow-up. FDG-PET can provide useful information and improve the clinician's decision on further management procedures in selected patients with low PSA and bone or lymph node changes. A negative PET scan in prostate cancer should be interpreted with caution.

  15. PET diagnosis. The decisive factor for early detection of the cancer

    International Nuclear Information System (INIS)

    Yonekura, Yoshiharu; Kusakabe, Kiyoko; Fukuda, Hiroshi; Inoue, Kentaro; Tanaka, Koichi; Murayama, Hideo; Amano, Masaharu; Oikawa, Koichi; Yamashita, Takashi

    2007-01-01

    The feature contains 8 articles concerned with the subject matter in the title. The first is a document of the interview with Dr. Yoshiharu Yonekura, the National Institute of Radiological Sciences (NIRS) President, by the editor in chief of the journal, entitled ''Twenty to Thirty years are Necessary for Development of Basic Technology''- discussed are progress of molecular imaging, present and future of positron emission tomography (PET) diagnosis. Lasting are the articles of: ''Recommendation for PET diagnosis'' by K. Kusakabe, Tokyo Women's Medical Univ.- the role of PET diagnosis in a mass examination; ''The present state and future development of PET diagnosis of cancer'' by H. Fukuda and K. Inoue, Tohoku Univ. Hospital- labeled compounds and others; ''Promotion of popularization of the diagnosis as a part of CSR (corporate social responsibility) in the local medicare- A participation of the Hospital of Chugoku Electric Power Co., Ltd. in the project'' by K. Tanaka; ''Trend of development of next generation PET equipment'' by H. Murayama, NIRS- equipments like PET/CT or PET/MRI, and with high system sensitivity (detector- and photo-elements, DOI detection, high performance circuit, etc.); ''Achievement and developing trend of the equipments in the manufacturer- Shimadzu Corp.'' by M. Amano- PET/CT; ''(the same title)- Sumitomo Heavy Industries, Ltd.'' by K. Oikawa- cyclotron and therapeutic heavy ion beam generator; and ''Research and development in Hamamatsu Photonics K.K.'' by T. Yamashita- high throughput PET and animal PET. (R.T.)

  16. PET-CT and PET-MR in urological cancers other than prostate cancer: An update on state of the art.

    Science.gov (United States)

    Razik, Abdul; Das, Chandan Jyoti; Sharma, Sanjay

    2018-01-01

    Hybrid positron emission tomography with computed tomography (PET/CT) and magnetic resonance imaging (PET/MRI) have enabled the combination of morphologic and functional imaging with the promise of providing better information in guiding therapy. Further advance has been made in the past decade with the development of newer radiotracers and optimization of the technical aspects. We performed a search in PubMed, Scopus, and Google Scholar for peer-reviewed literature concerning the advances and newer developments in the imaging of nonprostate urologic cancers between 2005 and 2017. This review aims at summarizing the current evidence on PET imaging in nonprostate urologic cancers and their impact on the diagnosis, staging, prognostication, response assessment, and restaging of these malignancies. However, much of the evidence is still in infancy and has not been incorporated into routine management or the practice guidelines of National Comprehensive Cancer Network or European Society for Medical Oncology (ESMO).

  17. The diagnostic value of PET/CT scanning in patients with cervical cancer

    DEFF Research Database (Denmark)

    Loft, Annika; Berthelsen, Anne Kiil; Roed, Henrik

    2007-01-01

    OBJECTIVE: To investigate the clinical value of PET/CT as a supplement to FIGO staging in patients with cervical cancer stage >or=1B. METHODS: This prospective study included 120 consecutive patients. After staging, a whole-body PET/CT scan was performed and these examinations were divided into two....../CT scanning for newly diagnosed cervical cancer FIGO stage >or=1B has a high sensitivity and specificity, and can be a valuable supplement to the FIGO staging procedure....

  18. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    International Nuclear Information System (INIS)

    Ireland, Rob H.; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-01-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 ± 0.80 mm and 4.96 ± 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 ± 1.22 mm and 4.96 ± 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy

  19. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer?

    International Nuclear Information System (INIS)

    Schinagl, Dominic A.X.; Hoffmann, Aswin L.; Vogel, Wouter V.; Dalen, Jorn A. van; Verstappen, Suzan M.M.; Oyen, Wim J.G.; Kaanders, Johannes H.A.M.

    2009-01-01

    Background and purpose: The role of FDG-PET in radiotherapy target volume definition of the neck was evaluated by comparing eight methods of FDG-PET segmentation to the current CT-based practice of lymph node assessment in head-and-neck cancer patients. Materials and methods: Seventy-eight head-and-neck cancer patients underwent coregistered CT- and FDG-PET scans. Lymph nodes were classified as 'enlarged' if the shortest axial diameter on CT was ≥10 mm, and as 'marginally enlarged' if it was 7-10 mm. Subsequently, lymph nodes were assessed on FDG-PET applying eight segmentation methods: visual interpretation (PET VIS ), applying fixed thresholds at a standardized uptake value (SUV) of 2.5 and at 40% and 50% of the maximum signal intensity of the primary tumor (PET SUV , PET 40% , PET 50% ) and applying a variable threshold based on the signal-to-background ratio (PET SBR ). Finally, PET 40%N , PET 50%N and PET SBRN were acquired using the signal of the lymph node as the threshold reference. Results: Of 108 nodes classified as 'enlarged' on CT, 75% were also identified by PET VIS , 59% by PET 40% , 43% by PET 50% and 43% by PET SBR . Of 100 nodes classified as 'marginally enlarged', only a minority were visualized by FDG-PET. The respective numbers were 26%, 10%, 7% and 8% for PET VIS , PET 40% , PET 50% and PET SBR . PET 40%N , PET 50%N and PET SBRN , respectively, identified 66%, 82% and 96% of the PET VIS -positive nodes. Conclusions: Many lymph nodes that are enlarged and considered metastatic by standard CT-based criteria appear to be negative on FDG-PET scan. Alternately, a small proportion of marginally enlarged nodes are positive on FDG-PET scan. However, the results are largely dependent on the PET segmentation tool used, and until proper validation FDG-PET is not recommended for target volume definition of metastatic lymph nodes in routine practice.

  20. Hyperpolarized singlet NMR on a small animal imaging system

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Pileio, Giuseppe; Tayler, Michael C. D.

    2012-01-01

    Nuclear spin hyperpolarization makes a significant advance toward overcoming the sensitivity limitations of in vivo magnetic resonance imaging, particularly in the case of low-gamma nuclei. The sensitivity may be improved further by storing the hyperpolarization in slowly relaxing singlet...... populations of spin- 1/2 pairs. Here, we report hyperpolarized 13C spin order transferred into and retrieved from singlet spin order using a small animal magnetic resonance imaging scanner. For spins in sites with very similar chemical shifts, singlet spin order is sustained in high magnetic field without...... requiring strong radiofrequency irradiation. The demonstration of robust singlet-to-magnetization conversion, and vice versa, on a small animal scanner, is promising for future in vivo and clinical deployments....

  1. Clinical impact of FDG-PET/CT on colorectal cancer staging and treatment strategy

    DEFF Research Database (Denmark)

    Petersen, Rasmus K; Hess, Søren; Alavi, Abass

    2014-01-01

    and patients divided as follows: (A) Patients with a change in therapy following FDG-PET/CT and (B) Patients without a change following FDG-PET/CT. Sixty-two patients had colon and five had rectal cancer. Of these, 20 (30%; CI 20.2-41.7) belonged to group A, whereas 47 (70%; CI 58.3-79.8) fell in group B......FDG-PET/CT is rarely used for initial staging of patients with colorectal cancer (CRC). Surgical resection of primary tumor and isolated metastases may result in long-term survival or presumed cure, whereas disseminated disease contraindicates operation. We analyzed a retrospective material...

  2. Therapy assessment in prostate cancer using choline and PSMA PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Ceci, Francesco; Castellucci, Paolo; Fanti, Stefano [University of Bologna, Nuclear Medicine Unit, S. Orsola-Malpighi University Hospital, Bologna (Italy); Herrmann, Ken [University Hospital Essen, Department of Nuclear Medicine, Essen (Germany); University of California Los Angeles, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Los Angeles, CA (United States); Hadaschik, Boris [University Hospital Essen, Department of Urology, Essen (Germany)

    2017-08-15

    While PET with non-FDG tracers (mainly choline and Ga-PSMA) has commonly been used for restaging in men with biochemically recurrent prostate cancer, as well as for primary staging, it is only recently that a few preliminary studies have addressed the possible use of PET for monitoring the response to systemic therapy of metastatic disease, especially innovative treatments such as abiraterone and enzalutamide. This article aims to evaluate the role of PET imaging with different non-FDG radiotracers for assessment of therapy in advanced prostate cancer patients. (orig.)

  3. Digital signal processing applied to crystal identification in Positron Emission Tomography dedicated to small animals

    International Nuclear Information System (INIS)

    Fontaine, Rejean; Viscogliosi, Nicolas; Semmaoui, Hicham; Belanger, Francois; Lemieux, Francois; Tetrault, Marc-Andre; Michaud, Jean-Baptiste; Berard, Philippe; Cadorette, Jules; Pepin, Catherine M.; Lecomte, Roger

    2007-01-01

    The recent introduction of all-digital electronic architecture in Positron Emission Tomography (PET) scanners, enables new paradigms to be explored for extracting relevant information from the detector signals, such as energy, time and crystal identification. The LabPET TM small animal scanner, which implements free-running 45-MHz sampling directly at the output of the charge sensitive preamplifiers, provides an excellent platform to test such advanced digital algorithms. A real-time identification method, based on an Auto-Regressive Moving-Average (ARMA) scheme, was tested for discriminating between LYSO (t r ∼40 ns) and LGSO (t r ∼65 ns) scintillators in phoswich detectors, coupled to a single Avalanche Photodiode (APD). Even with a low energy threshold of 250 keV applied individually, error rates 10%, typically with conventional analog pulse shape discrimination techniques. Such digital crystal identification techniques can be readily implemented with phoswich detectors for improving spatial resolution in PET, either by increasing crystal pixellization or by mitigating parallax errors through depth-of-interaction determination. It also allows to reduce the event rate presented to the real-time coincidence engine by applying a low energy limit at the crystal granularity and rejecting more Compton photons

  4. Digital signal processing applied to crystal identification in Positron Emission Tomography dedicated to small animals

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Rejean [Department of Electrical and Computer Engineering, Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, Que., J1 K 2R1 (Canada)]. E-mail: Rejean.Fontaine@Usherbrooke.ca; Viscogliosi, Nicolas [Department of Electrical and Computer Engineering, Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, Que., J1 K 2R1 (Canada); Semmaoui, Hicham [Department of Electrical and Computer Engineering, Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, Que., J1 K 2R1 (Canada); Belanger, Francois [Department of Electrical and Computer Engineering, Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, Que., J1 K 2R1 (Canada); Lemieux, Francois [Department of Electrical and Computer Engineering, Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, Que., J1 K 2R1 (Canada); Tetrault, Marc-Andre [Department of Electrical and Computer Engineering, Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, Que., J1 K 2R1 (Canada); Michaud, Jean-Baptiste [Department of Electrical and Computer Engineering, Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, Que., J1 K 2R1 (Canada); Berard, Philippe [Department of Nuclear Medicine and Radiobiology, Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, Que., J1 K 2R1 (Canada); Cadorette, Jules [Department of Nuclear Medicine and Radiobiology, Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, Que., J1 K 2R1 (Canada); Pepin, Catherine M. [Department of Nuclear Medicine and Radiobiology, Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, Que., J1 K 2R1 (Canada); Lecomte, Roger [Department of Nuclear Medicine and Radiobiology, Universite de Sherbrooke, 2500 Boul. Universite, Sherbrooke, Que., J1 K 2R1 (Canada)

    2007-02-01

    The recent introduction of all-digital electronic architecture in Positron Emission Tomography (PET) scanners, enables new paradigms to be explored for extracting relevant information from the detector signals, such as energy, time and crystal identification. The LabPET{sup TM} small animal scanner, which implements free-running 45-MHz sampling directly at the output of the charge sensitive preamplifiers, provides an excellent platform to test such advanced digital algorithms. A real-time identification method, based on an Auto-Regressive Moving-Average (ARMA) scheme, was tested for discriminating between LYSO (t{sub r}{approx}40 ns) and LGSO (t{sub r}{approx}65 ns) scintillators in phoswich detectors, coupled to a single Avalanche Photodiode (APD). Even with a low energy threshold of 250 keV applied individually, error rates<4% can be achieved, as compared to >10%, typically with conventional analog pulse shape discrimination techniques. Such digital crystal identification techniques can be readily implemented with phoswich detectors for improving spatial resolution in PET, either by increasing crystal pixellization or by mitigating parallax errors through depth-of-interaction determination. It also allows to reduce the event rate presented to the real-time coincidence engine by applying a low energy limit at the crystal granularity and rejecting more Compton photons.

  5. FDG-PET improves the staging and selection of patients with recurrent colorectal cancer

    International Nuclear Information System (INIS)

    Lonneux, Max; Reffad, Abdel-Malek; Pauwels, Stanislas; Detry, Roger; Kartheuser, Alex; Gigot, Jean-Francois

    2002-01-01

    Whole-body fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) has proved effective in the diagnosis and staging of recurrent colorectal cancer. In this study, we analysed how PET affects the management of patients with recurrent colorectal cancer by permitting more accurate selection of candidates for curative resection. The data of 79 patients with known or suspected recurrent colorectal cancer were analysed. Conventional imaging modalities (CIM) and PET results were compared with regard to their accuracy in determining the extent and the resectability of tumour recurrence. Recurrence was demonstrated in 68 of the 79 patients. The data indicate that PET was superior to CIM for detection of recurrence at all sites except the liver. Based on the CIM+PET staging, surgery with curative intent was proposed in 39 patients and was indeed achieved in 31 of them (80%). PET was more accurate than CIM alone in predicting the resectability or non-resectability of the recurrence (82% vs 68%, P=0.02). It is concluded that whole-body FDG-PET is highly sensitive for both the diagnosis and the staging of patients with recurrent colorectal cancer. Its use in conjunction with conventional imaging procedures results in a more accurate selection of patients for surgical treatment with curative intent. (orig.)

  6. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET)

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E.; Henriksen, Sarah T.

    2015-01-01

    named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13CCO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use......In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have...... of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence...

  7. UTIs in small animal patients: part 1: etiology and pathogenesis.

    Science.gov (United States)

    Smee, Nicole; Loyd, Kimberly; Grauer, Greg

    2013-01-01

    Understanding how urinary tract infections (UTIs) can occur and how to classify them can help the practitioner to make a plan for treatment. This review summarizes the etiology, pathogenesis, and host defense mechanisms associated with bacterial UTIs in dogs and cats. UTIs in Small Animal Patients: Part 2: Diagnosis, Treatment, and Complications will appear in the March/April 2013 issue of the Journal of the American Animal Hospital Association.

  8. Euthanasia of Small Animals with Nitrogen; Comparison with Intravenous Pentobarbital

    OpenAIRE

    Quine, John P.; Buckingham, William; Strunin, Leo

    1988-01-01

    Intravenous pentobarbital (with or without addition of saturated potassium chloride) was compared with nitrogen gas exposure for euthanasia of small animals (dogs, cats, and rabbits) in a humane society environment. Initially, electrocardiographic) and electroencephalographic monitoring were used to establish the time of death in presedated animals given either pentobarbital or exposed to nitrogen; later, nitrogen euthanasia alone was studied. Sedation with acepromazine delayed the effects of...

  9. Current concepts in oncologic surgery in small animals.

    Science.gov (United States)

    Matz, Brad M

    2015-05-01

    Surgical oncology is experiencing rapid transition in veterinary medicine. Mast cell tumors and soft tissue sarcomas are two of the most common neoplasms in small animal patients. Clinicians should be familiar with the need for staging and the procedures involved in treating patients with these tumors. Clinicians should be comfortable with available adjuvant therapies and when to use them in certain patients. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Skeletal metastasis as detected by 18F-FDG PET with negative CT of the PET/CT: Frequency and impact on cancer staging and or management

    Directory of Open Access Journals (Sweden)

    Fatma Ahmed

    2016-10-01

    Full Text Available Objectives: The aim of our study is to assess the frequency of detection of PET positive CT negative skeletal metastases (SM and determine the impact of such detection on staging and/or management in patients who had FDG PET/CT as part of the cancer work up.Methods: We retrospectively reviewed 2000 18F-FDG PET/CT scans of known cancer patients. A log was kept to record cases of suspected SM with or without bone changes from the low-dose non-contrast CT. The presence or absence of SM was evaluated based on available pathological and clinical data. The impact of detection of such lesions on cancer staging and/or management was evaluated by a board certified oncologist.Results: Of the 2000 cases, 18F-FDG PET/CT suggested SM in 146/2000 (7.3%. Of those 146 cases, 105 (72% were positive on both PET and CT. The remaining 41 (28% had PET positive CT negative bone lesions. SM was confirmed in 36/41 (88% PET positive/CT negative cases. This was based on biopsy, imaging or clinical follow-up. The detection of PET positive CT negative SM did not change staging or management in 7/36 (19.4%. However, staging and/or management was affected in 29/36 (80.6%. Conclusions: SM is not uncommon in 18F-FDG PET/CT, as it accounts for 146/2000 (7.3% of cases. PET demonstrated FDG-avid SM without a CT abnormality in at least 36/146 (25%. Patients staging and or management changed in 29/36 (80.5%. We concluded that 18F-FDG PET is sensitive in detection of SM with significant impact on staging & or management. Key words18F-FDG PET/CT, Skeletal metastasis, PET positive, CT negative

  11. PET/CT staging of T1-stage non-small cell lung cancer

    International Nuclear Information System (INIS)

    Salman, K. A.; Steinmann, C. H.; Von Schulthess, G. K.; Steinert, H. C.; Sukumar, V. P.

    2009-01-01

    Full text:Purpose: To evaluate the value of PET/CT in detecting occult metastases in patients with T 1 -stage non-small cell lung cancer (NSCLC). Method: Patients with proven NSCLC and T 1 -stage ( c m) were retrospectively analyzed. In all patients a whole-body 18 F-FDG PET/CT scan for initial staging was performed. The PET/CT findings were compared with all available clinical information, intra-operative findings and the histopathological results. Results: 95 patients (39 men, 56 women; age range, 19-85 years) were analyzed in our study. PET/CT in 68-95 patients correctly excluded mediastinal and distant metastases. In 17/95 patients (18%) mediastinal lymph-node metastases were proven (N 2 n=15; N 3 n=2). PET/CT correctly detected in 10/17 patients (58.8%) mediastinal nodal disease. The smallest mediastinal lymph-node metastasis detected by PET/CT had a size of 0.7 c m. In 7 patients PET/CT missed N 2 -stage. In three of these patients the SUVmax of the primary was c m. Only in one missed N 2 -stage metastasis was sized > 1.0 c m. The tumor histology (adenocarcinoma, squamous cell carcinoma) and location of the primary (central, periphery) did not influence the missed N 2 -stage by PET/CT. PET/CT diagnosed correctly N 3 -stage in 2 patients. 10/95 patients (10.5%) had distant metastases. PET/CT detected unknown M 1 -stage in 4/10 patients. In one patient a metastasis of the parietal pleura was missed by PET/CT. Conclusion: In our study, 28% patients with T 1 -stage NSCLC showed mediastinal or distant metastases. PET/CT was efficient in the detection of occult metastases. However, the sensitivity of PET/CT in mediastinal staging was only 64%.

  12. 18F-FDG PET radiomics approaches: comparing and clustering features in cervical cancer.

    Science.gov (United States)

    Tsujikawa, Tetsuya; Rahman, Tasmiah; Yamamoto, Makoto; Yamada, Shizuka; Tsuyoshi, Hideaki; Kiyono, Yasushi; Kimura, Hirohiko; Yoshida, Yoshio; Okazawa, Hidehiko

    2017-11-01

    The aims of our study were to find the textural features on 18 F-FDG PET/CT which reflect the different histological architectures between cervical cancer subtypes and to make a visual assessment of the association between 18 F-FDG PET textural features in cervical cancer. Eighty-three cervical cancer patients [62 squamous cell carcinomas (SCCs) and 21 non-SCCs (NSCCs)] who had undergone pretreatment 18 F-FDG PET/CT were enrolled. A texture analysis was performed on PET/CT images, from which 18 PET radiomics features were extracted including first-order features such as standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), second- and high-order textural features using SUV histogram, normalized gray-level co-occurrence matrix (NGLCM), and neighborhood gray-tone difference matrix, respectively. These features were compared between SCC and NSCC using a Bonferroni adjusted P value threshold of 0.0028 (0.05/18). To assess the association between PET features, a heat map analysis with hierarchical clustering, one of the radiomics approaches, was performed. Among 18 PET features, correlation, a second-order textural feature derived from NGLCM, was a stable parameter and it was the only feature which showed a robust trend toward significant difference between SCC and NSCC. Cervical SCC showed a higher correlation (0.70 ± 0.07) than NSCC (0.64 ± 0.07, P = 0.0030). The other PET features did not show any significant differences between SCC and NSCC. A higher correlation in SCC might reflect higher structural integrity and stronger spatial/linear relationship of cancer cells compared with NSCC. A heat map with a PET feature dendrogram clearly showed 5 distinct clusters, where correlation belonged to a cluster including MTV and TLG. However, the association between correlation and MTV/TLG was not strong. Correlation was a relatively independent PET feature in cervical cancer. 18 F-FDG PET textural features might reflect the

  13. Intrinsic respiratory gating in small-animal CT

    International Nuclear Information System (INIS)

    Bartling, Soenke H.; Dinkel, Julien; Kauczor, Hans-Ulrich; Stiller, Wolfram; Semmler, Wolfhard; Grasruck, Michael; Madisch, Ijad; Gupta, Rajiv; Kiessling, Fabian

    2008-01-01

    Gating in small-animal CT imaging can compensate artefacts caused by physiological motion during scanning. However, all published gating approaches for small animals rely on additional hardware to derive the gating signals. In contrast, in this study a novel method of intrinsic respiratory gating of rodents was developed and tested for mice (n=5), rats (n=5) and rabbits (n=2) in a flat-panel cone-beam CT system. In a consensus read image quality was compared with that of non-gated and retrospective extrinsically gated scans performed using a pneumatic cushion. In comparison to non-gated images, image quality improved significantly using intrinsic and extrinsic gating. Delineation of diaphragm and lung structure improved in all animals. Image quality of intrinsically gated CT was judged to be equivalent to extrinsically gated ones. Additionally 4D datasets were calculated using both gating methods. Values for expiratory, inspiratory and tidal lung volumes determined with the two gating methods were comparable and correlated well with values known from the literature. We could show that intrinsic respiratory gating in rodents makes additional gating hardware and preparatory efforts superfluous. This method improves image quality and allows derivation of functional data. Therefore it bears the potential to find wide applications in small-animal CT imaging. (orig.)

  14. Advances in endoscopic surgery for small animal reproduction.

    Science.gov (United States)

    Katic, N; Dupré, G

    2016-09-01

    Although endoscopic surgery entered its "golden era" in the mid-1980s, it is still advancing at a tremendous pace. Novel surgical techniques and devices are continuously developed and applied, and new indications (and/or contraindications) for the use of endoscopic surgery are routinely reported in the literature and subjected to systematic assessments. Although endoscopic surgery (laparoscopy in particular) has already become established as the gold standard in human medicine, it has yet to be proven as a viable alternative to open surgery in the field of veterinary medicine. The advantages of minimally invasive surgery include better intra-operative visualization, reduced postoperative pain, reduced scar formation and increased postoperative mobility. Therefore, it is reasonable to expect that the application of this will continue to expand. Small animal reproduction, a field within the broad discipline of veterinary medicine, has already recognized and begun to reap the benefits of endoscopic surgery. Herein, we retrospectively review the most recent successful novel applications of endoscopic surgery in the small animal reproduction system to provide small animal reproductive surgeons with important knowledge to help improve their own veterinarian medical practice. © 2016 Blackwell Verlag GmbH.

  15. Assess results of PET/CT in cancer diagnosis, follow up treatment and simulation for radiation therapy

    International Nuclear Information System (INIS)

    Mai Trong Khoa; Tran Dinh Ha; Tran Hai Binh

    2015-01-01

    PET/CT (Positron Emission Computed Tomography) has been studied and established as routine at the Nuclear Medicine and Oncology Center, Bach Mai hospital. From 8/2009 to 5/2015, 6223 patients have been undergone PET/CT scan. Among them, diagnostic and simulation PET/CT scan for cancer patients accounted to 5833 (93.8%). Researches about value of PET/CT for most common cancers have been done. Results: PET/CT can help the primary tumor diagnosis, metastases detection, staging, simulation for radiation therapy, response to treatment assessment, and relapses after treatment identification. Percentage accordance between PET / CT and histopathology was 96% (esophagus cancer), 94.7% (lung cancer). Average maxSUV value of primary tumor of the esophagus cancer, colorectal cancer, nasopharynx cancer, lung cancer, and NHL respectively 9.50, 9.78, 11.08, 9.17, 10.21. MaxSUV value increased with histological grade and tumor size. After undergone PET / CT, stage of disease changed in 28% esophagus cancer; 22.7% colorectal cancer; stage of disease increased in 23.5% of NHL, 32.0% of lung cancer, and 25.0% of nasopharynx cancer. PET / CT simulation for radiation therapy target volume reduced in 28% of nasopharynx cancer, which helped the radioactive dose concentrate exactly in the target lesions, minimize effect to healthy tissues, improved the effectiveness of treatment and reduced complications. (author)

  16. The Utility of PET/CT in the Planning of External Radiation Therapy for Prostate Cancer.

    Science.gov (United States)

    Calais, Jeremie; Cao, Minsong; Nickols, Nicholas G

    2018-04-01

    Radiotherapy and radical prostatectomy are the definitive treatment options for patients with localized prostate cancer. A rising level of prostate-specific antigen after radical prostatectomy indicates prostate cancer recurrence, and these patients may still be cured with salvage radiotherapy. To maximize chance for cure, the irradiated volumes should completely encompass the extent of disease. Therefore, accurate estimation of the location of disease is critical for radiotherapy planning in both the definitive and the salvage settings. Current first-line imaging for prostate cancer has limited sensitivity for detection of disease both at initial staging and at biochemical recurrence. Integration of PET into routine evaluation of prostate cancer patients may improve both staging accuracy and radiotherapy planning. 18 F-FDG PET/CT is now routinely used in radiation planning for several cancer types. However, 18 F-FDG PET/CT has low sensitivity for prostate cancer. Additional PET probes evaluated in prostate cancer include 18 F-sodium fluoride, 11 C-acetate, 11 C- or 18 F-choline, 18 F-fluciclovine, and 68 Ga- or 18 F-labeled ligands that bind prostate-specific membrane antigen (PSMA). PSMA ligands appear to be the most sensitive and specific but have not yet received Food and Drug Administration New Drug Application approval for use in the United States. Retrospective and prospective investigations suggest a potential major impact of PET/CT on prostate radiation treatment planning. Prospective trials randomizing patients to routine radiotherapy planning versus PET/CT-aided planning may show meaningful clinical outcomes. Prospective clinical trials evaluating the addition of 18 F-fluciclovine PET/CT for planning of salvage radiotherapy with clinical endpoints are under way. Prospective trials evaluating the clinical impact of PSMA PET/CT on prostate radiation planning are indicated. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  17. PET/CT and dedicated PET in breast cancer: Implications for classification, staging, and response monitoring

    NARCIS (Netherlands)

    Koolen, B.B.

    2013-01-01

    De PET-CT, een scan die gebruik maakt van radioactiviteit om tumoren in beeld te brengen, is een zinvol instrument voor beeldvorming van patiënten met borstkanker, met name van patiënten met een tumor groter dan drie centimeter of tumor-positieve lymfeklieren. De PET-CT is vooral van waarde voor de

  18. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients

    International Nuclear Information System (INIS)

    Berthelsen, A.K.; Holm, S.; Loft, A.; Klausen, T.L.; Andersen, F.; Hoejgaard, L.

    2005-01-01

    If the CT scan of a combined PET/CT study is performed as a full diagnostic quality CT scan including intravenous (IV) contrast agent, the quality of the joint PET/CT procedure is improved and a separate diagnostic CT scan can be avoided. CT with IV contrast can be used for PET attenuation correction, but this may result in a bias in the attenuation factors. The clinical significance of this bias has not been established. Our aim was to perform a prospective clinical study where each patient had CT performed with and without IV contrast agent to establish whether PET/CT with IV contrast can be used for PET attenuation without reducing the clinical value of the PET scan. A uniform phantom study was used to document that the PET acquisition itself is not significantly influenced by the presence of IV contrast medium. Then, 19 patients referred to PET/CT with IV contrast underwent CT scans without, and then with contrast agent, followed by an 18 F-fluorodeoxyglucose whole-body PET scan. The CT examinations were performed with identical parameters on a GE Discovery LS scanner. The PET data were reconstructed with attenuation correction based on the two CT data sets. A global comparison of standard uptake value (SUV) was performed, and SUVs in tumour, in non-tumour tissue and in the subclavian vein were calculated. Clinical evaluation of the number and location of lesions on all PET/CT scans was performed twice, blinded and in a different random order, by two independent nuclear medicine specialists. In all patients, the measured global SUV of PET images based on CT with IV contrast agent was higher than the global activity using non-contrast correction. The overall increase in the mean SUV (for two different conversion tables tested) was 4.5±2.3% and 1.6±0.5%, respectively. In 11/19 patients, focal uptake was identified corresponding to malignant tumours. Eight out of 11 tumours showed an increased SUV max (2.9±3.1%) on the PET images reconstructed using IV contrast

  19. Value of PET/CT in the approach to head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Curioni, Otavio Alberto; Amar, Ali; Viana, Debora [Hospital Heliopolis, Sao Paulo, SP (Brazil). Service of Head and Neck Surgery and Otorhynolaryngology; Souza, Ricardo Pires de [Hospital Heliopolis, Sao Paulo, SP (Brazil). Service of Radiology; Rapoport, Abrao [Hospital Heliopolis, Sao Paulo, SP (Brazil); Dedivitis, Rogerio Aparecido [Universidade de Sao Paulo (HC-FMUSP), SP (Brazil). Hospital das Clinicas. Group of Larynx and Hypopharynx; Cernea, Claudio Roberto; Brandao, Lenine Garcia [Universidade de Sao Paulo (FMUSP), SP (Brazil). Fac. de Medicina. Dept. of Head and Neck Surgery

    2012-11-15

    Objective: To evaluate the role of PET/CT in the approach to patients with head and neck cancer. Materials and Methods: Retrospective study of medical records and PET/CT images of 63 patients with head and neck cancer. Results: Alterations were observed in 76% of the cases. Out of these cases, 7 (11%) were considered as false-positive, with SUV < 5.0. PET/CT demonstrated negative results in 15 cases (24%). Among the 14 cases where the method was utilized for staging, 3 (22%) had their stages changed. Conclusion: PET/CT has shown to be of potential value in the routine evaluation of patients with head and neck cancer, but further studies of a higher number of cases are required to define a protocol for utilization of the method. (author)

  20. Modality comparison for small animal radiotherapy: A simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Bazalova, Magdalena, E-mail: bazalova@stanford.edu; Nelson, Geoff; Noll, John M.; Graves, Edward E. [Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University, Stanford, California 94305 (United States)

    2014-01-15

    Purpose: Small animal radiation therapy has advanced significantly in recent years. Whereas in the past dose was delivered using a single beam and a lead shield for sparing of healthy tissue, conformal doses can be now delivered using more complex dedicated small animal radiotherapy systems with image guidance. The goal of this paper is to investigate dose distributions for three small animal radiation treatment modalities. Methods: This paper presents a comparison of dose distributions generated by the three approaches—a single-field irradiator with a 200 kV beam and no image guidance, a small animal image-guided conformal system based on a modified microCT scanner with a 120 kV beam developed at Stanford University, and a dedicated conformal system, SARRP, using a 220 kV beam developed at Johns Hopkins University. The authors present a comparison of treatment plans for the three modalities using two cases: a mouse with a subcutaneous tumor and a mouse with a spontaneous lung tumor. A 5 Gy target dose was calculated using the EGSnrc Monte Carlo codes. Results: All treatment modalities generated similar dose distributions for the subcutaneous tumor case, with the highest mean dose to the ipsilateral lung and bones in the single-field plan (0.4 and 0.4 Gy) compared to the microCT (0.1 and 0.2 Gy) and SARRP (0.1 and 0.3 Gy) plans. The lung case demonstrated that due to the nine-beam arrangements in the conformal plans, the mean doses to the ipsilateral lung, spinal cord, and bones were significantly lower in the microCT plan (2.0, 0.4, and 1.9 Gy) and the SARRP plan (1.5, 0.5, and 1.8 Gy) than in single-field irradiator plan (4.5, 3.8, and 3.3 Gy). Similarly, the mean doses to the contralateral lung and the heart were lowest in the microCT plan (1.5 and 2.0 Gy), followed by the SARRP plan (1.7 and 2.2 Gy), and they were highest in the single-field plan (2.5 and 2.4 Gy). For both cases, dose uniformity was greatest in the single-field irradiator plan followed by

  1. A prospective study of the clinical impact of PET scanning in lung cancer patients

    International Nuclear Information System (INIS)

    Hicks, R.J.; Kalff, V.; Binns, D.S.; McManus, M.; Millward, M.; Ball, D.J.

    1998-01-01

    Full text: PET scanning using F-18 fluorodeoxyglucose (FDG), has been shown to very accurately stage patients with non-small cell lung cancer. At this Institute these patients are only sent for PET imaging where there remains any significant doubt as to their clinical staging or management after the completion of conventional screening test including CT scanning. This study examines how PET scan findings influenced the clinical management decisions in 45 consecutive patients (26 males, mean age 69±9 yrs: range 36-78 yrs). Referring doctors were asked to indicate reason for the PET scan, stage their patients on the basis of aU their current investigations, including CT scans, and to indicate their management plans prior to PET scanning. Follow-up of subsequent patient management at 2-4 weeks post PET scan was then obtained and compared to pre scan plans. Results:, PET was used to stage 27 patients, restage 8, plan radiotherapy in 4, post treatment follow-up in 3, assess solitary nodules in 2, and as a baseline for experimental therapy in 1. To date follow-up has shown that in 14 (31%) patients PET scanning found new distant abnormalities which caused planned radical surgery or radiotherapy to be changed to palliative treatment only. Following PET findings, which clarified equivocal findings on other imaging modalities 9 patients underwent curative lung surgery. This found localised disease only in the 5 who have had surgery to this time. Similarly 7 patients continued on to have radical radiotherapy. In 3 patients, original treatment protocols changed (smaller radiation portal, surgery after good response to radiotherapy, planned chemotherapy ceased). In 8(18%) patients PET scans did not alter planned therapy. 1 patient awaits follow-up. Conclusions: In carefully selected patients with lung cancer, PET scanning significantly affected management decisions in 82%. It was used not only to spare unnecessary treatment, but also to target treatment appropriate to

  2. Role of CT/PET in predicting nodal disease in head and neck cancers

    International Nuclear Information System (INIS)

    Singham, S.; Iyer, G.; Clark, J.

    2009-01-01

    Full text:Introduction: Pre-treatment evaluation of the presence of cervical nodal metastases is important in head and neck cancers and has major prognostic implications. In this study, we aim to determine the accuracy of CT/PET as a tool for identifying such metastases. Methods: All patients from Royal Prince Alfred and Liverpool Hospitals, who underwent CT/PET for any cancer arising from the head and neck, and who underwent subsequent surgery (which included a neck dissection) within 8 weeks of the CT/PET were included. Nodal staging was undertaken by utilising imaging-based nodal classification, and comparison with pathologic data from the surgical specimen was made. PET was considered positive if the SUV was greater than 2. Results: We identified 111 patients from the above criteria. 80 of such patients were treated for squamous cell carcinoma (SCC). CT/PET identified unsuspected metastatic disease in 6 patients. Correlation of CT/PET findings and the presence of disease at the primary site: sensitivity: 98%, specificity: 93%, positive predictive value (PPV): 98% and negative predictive value (NPV): 93%. Correlating CT/PET findings with the presence of nodal disease at any level: sensitivity: 95%, specificity: 88%, PPV: 95% and NPV: 88%. CT/PET was anatomically accurate in predicting the site of metastases in 62/74 (84%). Conclusion: PET is accurate in predicting both presence of nodal metastases and the level of involvement. CT/PET should be undertaken as a pre-operative tool to assist in planning the extent of surgery required in head and neck cancers.

  3. [{sup 18}F]FDG PET/CT outperforms [{sup 18}F]FDG PET/MRI in differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vrachimis, Alexis; Wenning, Christian; Weckesser, Matthias; Stegger, Lars [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Burg, Matthias Christian; Allkemper, Thomas [University Hospital Muenster, Department of Clinical Radiology, Muenster (Germany); Schaefers, Michael [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Westfaelische Wilhelms University Muenster, European Institute for Molecular Imaging, Muenster (Germany)

    2016-02-15

    To evaluate the diagnostic potential of PET/MRI with [{sup 18}F]FDG in comparison to PET/CT in patients with differentiated thyroid cancer suspected or known to have dedifferentiated. The study included 31 thyroidectomized and remnant-ablated patients who underwent a scheduled [{sup 18}F]FDG PET/CT scan and were then enrolled for a PET/MRI scan of the neck and thorax. The datasets (PET/CT, PET/MRI) were rated regarding lesion count, conspicuity, diameter and characterization. Standardized uptake values were determined for all [{sup 18}F]FDG-positive lesions. Histology, cytology, and examinations before and after treatment served as the standards of reference. Of 26 patients with a dedifferentiated tumour burden, 25 were correctly identified by both [{sup 18}F]FDG PET/CT and PET/MRI. Detection rates by PET/CT and PET/MRI were 97 % (113 of 116 lesions) and 85 % (99 of 113 lesions) for malignant lesions, and 100 % (48 of 48 lesions) and 77 % (37 of 48 lesions) for benign lesions, respectively. Lesion conspicuity was higher on PET/CT for both malignant and benign pulmonary lesions and in the overall rating for malignant lesions (p < 0.001). There was a difference between PET/CT and PET/MRI in overall evaluation of malignant lesions (p < 0.01) and detection of pulmonary metastases (p < 0.001). Surgical evaluation revealed three malignant lesions missed by both modalities. PET/MRI additionally failed to detect 14 pulmonary metastases and 11 benign lesions. In patients with thyroid cancer and suspected or known dedifferentiation, [{sup 18}F]FDG PET/MRI was inferior to low-dose [{sup 18}F]FDG PET/CT for the assessment of pulmonary status. However, for the assessment of cervical status, [{sup 18}F]FDG PET/MRI was equal to contrast-enhanced neck [{sup 18}F]FDG PET/CT. Therefore, [{sup 18}F]FDG PET/MRI combined with a low-dose CT scan of the thorax may provide an imaging solution when high-quality imaging is needed and high-energy CT is undesirable or the use of a contrast

  4. Application of 18F-FDG PET/CT for the diagnosis of cervical cancer

    International Nuclear Information System (INIS)

    Zhou Wenlan; Wu Hubing; Wang Quanshi; Ye Xianghua

    2008-01-01

    Objective: The purpose of this study was to evaluate the clinical value of 18 F-fluorode-oxyglucose (FDG) PET/CT for staging and re-staging cervical cancer cases. Methods: This retrospective study included 88 patients. Of the 88 patients, 19 were primary cervical cancer, 11 were benign cervical tumor and 58 were cervical cancer patients with post-treatment surveillance. All had either whole body or abdominal-pelvic FDG PET/CT imaging. The diagnosis was established according to the pathologic results of surgery or biopsy, and(or) multi-modality imaging and clinical follow-up for at least six months. Results: For initial diagnosis of cervical cancer, the sensitivity, specificity and accuracy of FDG PET/CT were 17/19 (89.5%), 10/11 (90.9%) and 27/30(90.0%) respectively. For re-staging cervical cancer, the sensitivity, specificity and accuracy of FDG PET/CT were 10/11 (90. 9%), 47/47 (100. 0%) and 57/58 (98.3%) respectively. In all, 41 had metastases. The sensitivity, specificity and accuracy of FDG PET/ CT detecting metastases were 92.7%, 88.9% and 90.9% respectively. Of the metastatic sites, 66.3% were abdominal-pelvic lymph nodes, 26.8% of the metastatic lymph nodes were detected with diameters less than 1.0 cm. Twenty-two of twenty seven (28.6%) patients were identified to have extra-pelvic lesions after PET/CT and were then changed their treatment plans. Conclusions: 18 F-FDG PET/CT is useful in staging and re-staging cervical cancer patients. PET/CT is of great value in identifying small lesions and also in detecting extra-pelvic lesions. (authors)

  5. A 16-channel MR coil for simultaneous PET/MR imaging in breast cancer

    International Nuclear Information System (INIS)

    Dregely, Isabel; Lanz, Titus; Mueller, Matthias F.; Metz, Stephan; Kuschan, Marika; Nimbalkar, Manoj; Ziegler, Sibylle I.; Nekolla, Stephan G.; Schwaiger, Markus; Bundschuh, Ralph A.; Haase, Axel

    2015-01-01

    To implement and evaluate a dedicated receiver array coil for simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging in breast cancer. A 16-channel receiver coil design was optimized for simultaneous PET/MR imaging. To assess MR performance, the signal-to-noise ratio, parallel imaging capability and image quality was evaluated in phantoms, volunteers and patients and compared to clinical standard protocols. For PET evaluation, quantitative 18 F-FDG PET images of phantoms and seven patients (14 lesions) were compared to images without the coil. In PET image reconstruction, a CT-based template of the coil was combined with the MR-acquired attenuation correction (AC) map of the phantom/patient. MR image quality was comparable to clinical MR-only examinations. PET evaluation in phantoms showed regionally varying underestimation of the standardised uptake value (SUV; mean 22 %) due to attenuation caused by the coil. This was improved by implementing the CT-based coil template in the AC (<2 % SUV underestimation). Patient data indicated that including the coil in the AC increased the SUV values in the lesions (21 ± 9 %). Using a dedicated PET/MR breast coil, state-of-the-art MRI was possible. In PET, accurate quantification and image homogeneity could be achieved if a CT-template of this coil was included in the AC for PET image reconstruction. (orig.)

  6. PET/CT scanning guided intensity-modulated radiotherapy in treatment of recurrent ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Du, Xue-lian, E-mail: duxuelian23800@yahoo.com.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Jiang, Tao, E-mail: melody23800@yahoo.com.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Sheng, Xiu-gui, E-mail: jnsd2000@yahoo.cn [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Li, Qing-shui, E-mail: lqs1966@126.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Wang, Cong, E-mail: jnwc1981@hotmail.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China); Yu, Hao, E-mail: jnyh2200@sina.com [Department of Gynecologic Oncology, Shandong Cancer Hospital, Jinan 250117 (China); Shandong Academy of Medical Science, Jinan 250012 (China)

    2012-11-15

    Objective: This study was undertaken to evaluate the clinical contribution of positron emission tomography using {sup 18}F-fluorodeoxyglucose and integrated computer tomography (FDG-PET/CT) guided intensity-modulated radiotherapy (IMRT) for treatment of recurrent ovarian cancer. Materials and methods: Fifty-eight patients with recurrent ovarian cancer from 2003 to 2008 were retrospectively studied. In these patients, 28 received PET/CT guided IMRT (PET/CT-IMRT group), and 30 received CT guided IMRT (CT-IMRT group). Treatment plans, tumor response, toxicities and survival were evaluated. Results: Changes in GTV delineation were found in 10 (35.7%) patients based on PET-CT information compared with CT data, due to the incorporation of additional lymph node metastases and extension of the metastasis tumor. PET/CT guided IMRT improved tumor response compared to CT-IMRT group (CR: 64.3% vs. 46.7%, P = 0.021; PR: 25.0% vs. 13.3%, P = 0.036). The 3-year overall survival was significantly higher in the PET-CT/IMRT group than control (34.1% vs. 13.2%, P = 0.014). Conclusions: PET/CT guided IMRT in recurrent ovarian cancer patients improved the delineation of GTV and reduce the likelihood of geographic misses and therefore improve the clinical outcome.

  7. Evaluation of therapy response in breast and ovarian cancer patients by positron emission tomography (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Baum, R. P.; Przetak, C. [Zentralklinik Bad Berka, Clinic of Nuclear Medicine, Center for PET, Bad Berka (Germany)

    2001-09-01

    Positron emission tomography (PET) has the potential to contribute significantly to treatment planning and to the evaluation of response to therapy in patients with cancer. For disease recurrence PET imaging provides information non-invasively. The final goal is to biologically characterize an individual patients' tumor and to predict the response to treatment at the earliest possible time. Quantitative and/or semi-quantitative PET studies yield valuable information in breast cancer regarding prognosis and response to chemohormontherapy in a timely fashion. In ovarian cancer, up to now only few studies have been performed applying PET techniques for the evaluation of treatment response. These preliminary studies indicate that serial assessment of tumor metabolism by FDG-PET early during effective chemotherapy may predict subsequent response to such therapy. PET studies can be repeated without any side-effects and with low radiation exposure and results can be directly correlated with clinical laboratory data and histology. Therapy monitoring by PET could help to optimize neoadjuvant therapy protocols and to avoid ineffective preoperative therapy in non-responders, but this has to be proven in a larger number of patients and in different neoadjuvant settings such as chemotherapy, radiation therapy, hormone therapy or a combination of these.

  8. Evaluation of therapy response in breast and ovarian cancer patients by positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Baum, R. P.; Przetak, C.

    2001-01-01

    Positron emission tomography (PET) has the potential to contribute significantly to treatment planning and to the evaluation of response to therapy in patients with cancer. For disease recurrence PET imaging provides information non-invasively. The final goal is to biologically characterize an individual patients' tumor and to predict the response to treatment at the earliest possible time. Quantitative and/or semi-quantitative PET studies yield valuable information in breast cancer regarding prognosis and response to chemohormontherapy in a timely fashion. In ovarian cancer, up to now only few studies have been performed applying PET techniques for the evaluation of treatment response. These preliminary studies indicate that serial assessment of tumor metabolism by FDG-PET early during effective chemotherapy may predict subsequent response to such therapy. PET studies can be repeated without any side-effects and with low radiation exposure and results can be directly correlated with clinical laboratory data and histology. Therapy monitoring by PET could help to optimize neoadjuvant therapy protocols and to avoid ineffective preoperative therapy in non-responders, but this has to be proven in a larger number of patients and in different neoadjuvant settings such as chemotherapy, radiation therapy, hormone therapy or a combination of these

  9. (18)F-Dihydroxyphenylalanine PET in patients with biochemical evidence of medullary thyroid cancer : Relation to tumor differentiation

    NARCIS (Netherlands)

    Koopmans, Klaas P.; de Groot, Jan Willem B.; Plukker, John T. M.; de Vries, Elisabeth G. E.; Kema, Ido P.; Sluiter, Wim J.; Jager, Pieter L.; Links, Thera P.

    Curative treatment for recurrent medullary thyroid cancer (MTC), diagnosed by rising serum calcitonin, is surgery, but tumor localization is difficult. Therefore, the value of (18)F-dihy-droxyphenylanaline PET ((18)F-DOPA PET), (18)F-FDG PET, (99m)Tc-V-di-mercaptosulfuricacid (DMSA-V) scintigraphy,

  10. A meta-analysis of 18F-FDG PET or PET/CT for the evaluation of neoadjuvant chemotherapy in locally advanced breast cancer

    International Nuclear Information System (INIS)

    Xi Yun; Zhang Min; Guo Rui; Zhang Miao; Hu Jiajia; Li Biao

    2012-01-01

    Objective: To evaluate the accuracy and predictive value of 18 F-FDG PET or PET/CT in the assessment of neoadjuvant chemotherapy in locally advanced breast cancer by meta-analysis. Methods: Relevant studies were retrieved from PubMed, Embase, Cochrane and Wanfang, in English or Chinese. To ensure the homogeneity of all included studies, selection criteria were established and all the studies were scored according to a quality assessment of diagnostic accuracy studies (QUADAS) table. The combined Se, Sp, LR, diagnostic odds ratio (DOR), and AUC of PET and other conventional imaging techniques were compared. The assessment standard of neoadjuvant chemotherapy by conventional imaging techniques is tumor size change. Funnel plot and analysis with meta-regression were performed to explore the source of heterogeneity. Results: Sixteen eligible studies were included with a total of 662 subjects. The combined results were: (1) PET: Se PET 86.1% (247/287), Sp PET 69.6% (261/375), LR + PET 3.18, LR - PET 0.23, DOR PET 17.26; (2) Other imaging techniques: Se d 57.2% (91/159), Sp d 48.5% (50/103), LR + d 1.07, LR - d 0.87, DOR d 1.30. ROC analysis showed that Q * values of PET (Q PET * ) and other imaging techniques (Q d * ) were 0.8058 and 0.5328, respectively. Funnel plot showed that publication bias was not the main source of heterogeneity. Meta-regression results suggested that the year of publication might be one of the sources of heterogeneity (P=0.05). Conclusion: This meta-analysis suggests that, in the assessment of treatment response of neoadjuvant chemotherapy for breast cancer, FDG PET or PET/CT in monitoring the changes in glucose metabolism is more accurate than conventional imaging techniques in monitoring tumor size. (authors)

  11. Computer-aided pulmonary image analysis in small animal models

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ziyue; Mansoor, Awais; Mollura, Daniel J. [Center for Infectious Disease Imaging (CIDI), Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Bagci, Ulas, E-mail: ulasbagci@gmail.com [Center for Research in Computer Vision (CRCV), University of Central Florida (UCF), Orlando, Florida 32816 (United States); Kramer-Marek, Gabriela [The Institute of Cancer Research, London SW7 3RP (United Kingdom); Luna, Brian [Microfluidic Laboratory Automation, University of California-Irvine, Irvine, California 92697-2715 (United States); Kubler, Andre [Department of Medicine, Imperial College London, London SW7 2AZ (United Kingdom); Dey, Bappaditya; Jain, Sanjay [Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Foster, Brent [Department of Biomedical Engineering, University of California-Davis, Davis, California 95817 (United States); Papadakis, Georgios Z. [Radiology and Imaging Sciences, National Institutes of Health (NIH), Bethesda, Maryland 32892 (United States); Camp, Jeremy V. [Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky 40202 (United States); Jonsson, Colleen B. [National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee 37996 (United States); Bishai, William R. [Howard Hughes Medical Institute, Chevy Chase, Maryland 20815 and Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Udupa, Jayaram K. [Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)

    2015-07-15

    Purpose: To develop an automated pulmonary image analysis framework for infectious lung diseases in small animal models. Methods: The authors describe a novel pathological lung and airway segmentation method for small animals. The proposed framework includes identification of abnormal imaging patterns pertaining to infectious lung diseases. First, the authors’ system estimates an expected lung volume by utilizing a regression function between total lung capacity and approximated rib cage volume. A significant difference between the expected lung volume and the initial lung segmentation indicates the presence of severe pathology, and invokes a machine learning based abnormal imaging pattern detection system next. The final stage of the proposed framework is the automatic extraction of airway tree for which new affinity relationships within the fuzzy connectedness image segmentation framework are proposed by combining Hessian and gray-scale morphological reconstruction filters. Results: 133 CT scans were collected from four different studies encompassing a wide spectrum of pulmonary abnormalities pertaining to two commonly used small animal models (ferret and rabbit). Sensitivity and specificity were greater than 90% for pathological lung segmentation (average dice similarity coefficient > 0.9). While qualitative visual assessments of airway tree extraction were performed by the participating expert radiologists, for quantitative evaluation the authors validated the proposed airway extraction method by using publicly available EXACT’09 data set. Conclusions: The authors developed a comprehensive computer-aided pulmonary image analysis framework for preclinical research applications. The proposed framework consists of automatic pathological lung segmentation and accurate airway tree extraction. The framework has high sensitivity and specificity; therefore, it can contribute advances in preclinical research in pulmonary diseases.

  12. Small-Animal Imaging Using Diffuse Fluorescence Tomography.

    Science.gov (United States)

    Davis, Scott C; Tichauer, Kenneth M

    2016-01-01

    Diffuse fluorescence tomography (DFT) has been developed to image the spatial distribution of fluorescence-tagged tracers in living tissue. This capability facilitates the recovery of any number of functional parameters, including enzymatic activity, receptor density, blood flow, and gene expression. However, deploying DFT effectively is complex and often requires years of know-how, especially for newer mutlimodal systems that combine DFT with conventional imaging systems. In this chapter, we step through the process of using MRI-DFT imaging of a receptor-targeted tracer in small animals.

  13. [Application of paramunity inducers in small animal practice].

    Science.gov (United States)

    Proksch, A L; Hartmann, K

    2016-01-01

    Paramunity inducers have been used to treat small animals for decades. Paramunity inducers are based on attenuated and inactivated poxviruses (avipox virus and parapox virus). Their applications include both therapeutic and prophylactic use in various diseases. Despite their wide and variable use, only a very small number of placebo-controlled studies has been published. Positive effects in preventing kitten mortality and in treating feline stomatitis have been reported, however, no statistically significant effect of their therapeutic use in canine parvovirus infection, feline leukemia infection virus infection or canine papillomavirus infection could be demonstrated. For these infectious diseases, paramunity inducers do not appear to be effective.

  14. The use of PET in assessing tumor response after neoadjuvant chemoradiation for rectal cancer

    International Nuclear Information System (INIS)

    Mak, Daisy; Joon, Daryl Lim; Chao, Michael; Wada, Morikatsu; Joon, Michael Lim; See, Andrew; Feigen, Malcolm; Jenkins, Patricia; Mercuri, Angelina; McNamara, Joanne; Poon, Aurora; Khoo, Vincent

    2010-01-01

    Purpose: To assess the correlation of 18F-FDG-PET (PET) response to pathological response after neoadjuvant chemoradiation (CRT) for locally advanced rectal cancer. Methods and materials: Twenty patients with locally advanced rectal cancer were identified between 2001 and 2005. The median age was 57 years (range 37-72) with 14 males and 6 females. All patients were staged with endorectal ultrasound and/or MRI, CT, and PET. The clinical staging was T3N0M0 (16), T3N1M0 (2), and T3N0M1 (2). Restaging PET was performed after CRT, and prior to definitive surgery. The response on PET and pathology was assessed and correlated. Patient outcome according to PET response was also assessed. Results: Following CRT, a complete PET response occurred in 7 patients, incomplete response in 10, and no response in 3 patients. At surgery, complete pathological response was recorded in 7 patients, incomplete response in 10 and no response in 3. There was a good correlation of PET and pathological responses in complete responders (5/7 cases) and non-responders (3/3 cases). After a median follow-up of 62 months (range 7-73), twelve patients were alive with no evidence of disease. All patients achieving complete metabolic response were alive with no evidence of disease, while as those who had no metabolic response, all died as a result of metastatic disease. Conclusions: PET is a promising complementary assessment tool for assessing tumor response after CRT if there is a complete or no response. PET response may also predict for outcome.

  15. Automated interpretation of PET/CT images in patients with lung cancer

    DEFF Research Database (Denmark)

    Gutte, Henrik; Jakobsson, David; Olofsson, Fredrik

    2007-01-01

    cancer. METHODS: A total of 87 patients who underwent PET/CT examinations due to suspected lung cancer comprised the training group. The test group consisted of PET/CT images from 49 patients suspected with lung cancer. The consensus interpretations by two experienced physicians were used as the 'gold...... method measured as the area under the receiver operating characteristic curve, was 0.97 in the test group, with an accuracy of 92%. The sensitivity was 86% at a specificity of 100%. CONCLUSIONS: A completely automated method using artificial neural networks can be used to detect lung cancer......PURPOSE: To develop a completely automated method based on image processing techniques and artificial neural networks for the interpretation of combined [(18)F]fluorodeoxyglucose (FDG) positron emission tomography (PET) and computed tomography (CT) images for the diagnosis and staging of lung...

  16. Relationship of detection rate of PET cancer screening examinees and risk factors. Analysis of background of examinees

    International Nuclear Information System (INIS)

    Shibata, Koji; Uno, Kimiichi; Arai, Masami; Matsuura, Masaaki; Yoshida, Teruhiko; Momose, Toshimitsu; Ohtomo, Kuni

    2011-01-01

    Positron emission tomography (PET) cancer screening is performed widely in Japan as opportunistic screening, but no study has focused on the correlation with various cancer risk factors and the seeking bias of examinees and cancer detection rate. Analyzing our large series of PET cancer screening data, correlations with cancer detection rates according to general cancer risk factors and PET detection survey were reviewed, and the selection bias of the medical examinees was determined. 19189 examinees who underwent PET cancer screening were enrolled. Using logistic-regression analysis, we analyzed correlations between smoking history/drinking history/cancer family history and detection rates of thyroid cancer/breast cancer/colorectal cancer/lung cancer, which are the main malignancies detected in PET cancer screening. In addition, we evaluated seeking bias of examinees, analyzing correlations between the presence of cancer risk factors and prior screening checkups at other institutions to our PET cancer screening using a matched case-control study. Cancer detection rates by FDG-PET were 1.17% (224/19189), being much higher than those of standard cancer mass screenings. In males, statistically significant correlations were seen between lung cancer and smoking, and between prostate cancer and a family history of prostate cancer, but not between the detection rates of three other types of cancer (thyroid cancer/lung cancer/colorectal cancer) and other cancer risk factors. In females, detection rates of four types of cancer (thyroid cancer/lung cancer/colorectal cancer/breast cancer) were significantly higher in the examinees without cancer risks, and subgroup analysis according to types of cancer did not indicate significant correlations either. The matched case-control study evaluating seeking bias indicated that a significant proportion of the examinees with cancer risks had undergone prior cancer screening at other institutions. Our study indicated that there was

  17. Evaluation of suspected local recurrence in head and neck cancer: A comparison between PET and PET/CT for biopsy proven lesions

    International Nuclear Information System (INIS)

    Halpern, Benjamin S.; Yeom, Kristen; Fueger, Barbara J.; Lufkin, Robert B.; Czernin, Johannes; Allen-Auerbach, Martin

    2007-01-01

    Background: 18 F-FDG PET has a high accuracy for re-staging of head and neck cancer. The purpose of this study was to determine whether the diagnostic accuracy can be further improved with integrated PET/CT. Materials and methods: Forty-nine patients with a mean age of 59 ± 18 years were studied retrospectively. Histo-pathological verification was available either from complete tumor resection with or without lymph node dissection (n = 27) or direct endoscopic biopsy (n = 16) or ultrasound guided biopsy (n = 6). Two reviewers blinded to the pathological findings read all PET images in consensus. An experienced radiologist was added for the interpretation of the PET/CT images. Results: Tissue verification was available for 110 lesions in 49 patients. Sixty-seven lesions (61%) were biopsy positive and 43 (39%) were negative for malignant disease. PET and PET/CT showed an overall accuracy for cancer detection of 84 and 88% (p = 0.06), respectively. Sensitivity and specificity for PET were 78 and 93% versus 84 (p = NS) and 95% (p = NS) with PET/CT. A patient-by-patient analysis yielded a sensitivity, specificity and accuracy for PET of 80, 56 and 76%, compared to 88% (p = NS), 78% (p = NS) and 86% (p = 0.06) for PET/CT. Conclusion: The results of this study indicate that PET/CT does not significantly improve the detection of recurrence of head and neck cancer. However, a trend towards improved accuracy was observed (p = 0.06)

  18. 68Ga-PSMA PET/CT in the evaluation of bone metastases in prostate cancer.

    Science.gov (United States)

    Sachpekidis, Christos; Bäumer, P; Kopka, K; Hadaschik, B A; Hohenfellner, M; Kopp-Schneider, A; Haberkorn, U; Dimitrakopoulou-Strauss, A

    2018-06-01

    The aims of this retrospective analysis were to compare 68 Ga-PSMA PET findings and low-dose CT findings (120 kV, 30 mA), and to obtain semiquantitative and quantitative 68 Ga-PSMA PET data in patients with prostate cancer (PC) bone metastases. In total, 152 PET/CT scans from 140 patients were evaluated. Of these patients, 30 had previously untreated primary PC, and 110 had biochemical relapse after treatment of primary PC. All patients underwent dynamic PET/CT scanning of the pelvis and lower abdomen as well as whole-body PET/CT with 68 Ga-PSMA-11. The PET/CT scans were analysed qualitatively (visually), semiquantitatively (SUV), and quantitatively based on a two-tissue compartment model and a noncompartmental approach leading to the extraction of the fractal dimension. Differences were considered significant for p values PET-positive and CT-positive, 65 were only 68 Ga-PSMA-positive, and 10 were only CT-positive. The Yang test showed that there were significantly more 68 Ga-PSMA PET-positive lesions than CT-positive lesions. Association analysis showed that PSA plasma levels were significantly correlated with several 68 Ga-PSMA-11-associated parameters in bone metastases, including the degree of tracer uptake (SUV average and SUV max ), its transport rate from plasma to the interstitial/intracellular compartment (K 1 ), its rate of binding to the PSMA receptor and its internalization (k 3 ), its influx rate (K i ), and its distribution heterogeneity. 68 Ga-PSMA PET/CT is a useful diagnostic tool in the detection of bone metastases in PC. 68 Ga-PSMA PET visualizes more bone metastases than low-dose CT. PSA plasma levels are significantly correlated with several 68 Ga-PSMA PET parameters.

  19. Utility of 18FDG-PET/CT in breast cancer diagnostics – a systematic review

    DEFF Research Database (Denmark)

    Warning, Karina; Hildebrandt, Malene; Christensen, Bent

    2011-01-01

    as a primary diagnostic procedure in breast cancer; but it has the potential to be useful for the detection of distant metastases and for monitoring response to chemotherapy in breast cancer patients. PET/CT should still be regarded as a supplement to conventional diagnostic procedures such as CT and MRI....

  20. Detectability of T Measurable diseases in advanced gastric cancer in FDG PET CT

    International Nuclear Information System (INIS)

    Oh, Sun Young; Cheon, Gi Jeong; Kim, Young Chul; Jeong, Eugene; Kim, Seung Eun; Choe, Jae Gol

    2012-01-01

    Usefulness of FDG PET CT in monitoring response in locally advanced gastric cancer has been reported. The purpose of this study was to evaluate the related factors to detect measurable diseases in advanced gastric cancer on FDG PET CT. We retrospectively reviewed 38 patients diagnosed as having advanced gastric cancer. We defined the measurable diseases when there was visualized tumor of which maximum standardized uptake value(SUVmax) was higher than 1.35*SUVmax of liver + 2*SD of liver SUV. We evaluated what kinds of factors from the clinicopathologic features were related to identifying measurable diseases. Of 38 patients with advanced gastric cancer, 18 (50%) had measurable tumors on FDG PET CT. Measurable tumors were significantly more frequent in well or moderately differentiated adenocarcinoma (70.5% vs 35.3%, p<0.05), in the tumors located at antrum or angle (66.7% vs 29.4%, p<0.05) and in the elderly group (age of 55 years old or more, 72.0% vs 8.3%, p<0.001) than the others, respectively. By multivariate analysis, age at diagnosis was the only independent predictor for the measurable disease on FDG PET CT. We found that age at diagnosis, as well as histologic types and location of tumors, were the affecting factors to detect measurable disease on FDG PET CT in patients with advanced gastric cancer. Our study suggests that elderly patients of age of 55 years old or more can frequently have T measurable disease on FDG PET CT in advanced gastric cancer and FDG PET CT will be helpful to monitor measurable disease

  1. Carbon-11 choline or FDG-PET for staging of oesophageal cancer?

    International Nuclear Information System (INIS)

    Jager, P.L.; Que, T.H.; Vaalburg, W.; Pruim, J.; Elsinga, P.; Plukker, J.T.

    2001-01-01

    We investigated the feasibility of using carbon-11 choline (CHOL) positron emission tomography (PET) for the staging of oesophageal cancer, in comparison with fluorine-18 fluorodeoxyglucose (FDG) PET, using histopathological findings as the gold standard. Eighteen patients were studied: 16 patients with cancer of the oesophagus or gastro-oesophageal junction and two with in situ carcinoma/high-grade dysplasia. PET imaging was performed 5 min (CHOL) or 90 min (FDG) after injection of 370 MBq of the tracer. PET images were analysed by two independent and blinded physicians using visual and standardised uptake value (SUV) analysis. PET results were compared with surgical and histopathological findings. FDG-PET was able to detect all (100%) of the 16 malignant primary lesions, while CHOL-PET detected 73%. In situ carcinoma (n=1) and high-grade dysplasia (n=1) were not visualised with either tracer. Diffuse uptake of the tracers was noted in areas of Barrett's oesophagitis. Twelve patients had locoregional metastases (N1) that were not detected with either FDG or CHOL. Six patients had additional distant nodal (M1a) metastases; four of six (66%) were visualised by FDG, and three of five (60%) by CHOL-PET. On a lesion basis, FDG-PET detected 10/12 non-regional metastases (sensitivity 83%), while CHOL-PET detected 5/12 (sensitivity 42%). Haematogenous distant metastases (M1b) were positive on FDG-PET in three of four patients, and on CHOL-PET in two of four. SUV values were significantly higher for FDG (FDG 6.6±3.5, CHOL 5.5±2.5, P=0.04). CHOL-PET is able to visualise oesophageal carcinoma and its metastases, but appears to be inferior to FDG-PET. Presumably this is the result of lower tumoural uptake and considerable non-specific uptake of CHOL in liver, stomach wall, pancreas and small intestine. Further studies are needed to confirm these data. (orig.)

  2. Carbon-11 choline or FDG-PET for staging of oesophageal cancer?

    Energy Technology Data Exchange (ETDEWEB)

    Jager, P.L.; Que, T.H.; Vaalburg, W.; Pruim, J.; Elsinga, P. [PET Centre, Groningen Univ. Hospital (Netherlands); Plukker, J.T. [Dept. of Surgical Oncology, Groningen University Hospital (Netherlands)

    2001-12-01

    We investigated the feasibility of using carbon-11 choline (CHOL) positron emission tomography (PET) for the staging of oesophageal cancer, in comparison with fluorine-18 fluorodeoxyglucose (FDG) PET, using histopathological findings as the gold standard. Eighteen patients were studied: 16 patients with cancer of the oesophagus or gastro-oesophageal junction and two with in situ carcinoma/high-grade dysplasia. PET imaging was performed 5 min (CHOL) or 90 min (FDG) after injection of 370 MBq of the tracer. PET images were analysed by two independent and blinded physicians using visual and standardised uptake value (SUV) analysis. PET results were compared with surgical and histopathological findings. FDG-PET was able to detect all (100%) of the 16 malignant primary lesions, while CHOL-PET detected 73%. In situ carcinoma (n=1) and high-grade dysplasia (n=1) were not visualised with either tracer. Diffuse uptake of the tracers was noted in areas of Barrett's oesophagitis. Twelve patients had locoregional metastases (N1) that were not detected with either FDG or CHOL. Six patients had additional distant nodal (M1a) metastases; four of six (66%) were visualised by FDG, and three of five (60%) by CHOL-PET. On a lesion basis, FDG-PET detected 10/12 non-regional metastases (sensitivity 83%), while CHOL-PET detected 5/12 (sensitivity 42%). Haematogenous distant metastases (M1b) were positive on FDG-PET in three of four patients, and on CHOL-PET in two of four. SUV values were significantly higher for FDG (FDG 6.6{+-}3.5, CHOL 5.5{+-}2.5, P=0.04). CHOL-PET is able to visualise oesophageal carcinoma and its metastases, but appears to be inferior to FDG-PET. Presumably this is the result of lower tumoural uptake and considerable non-specific uptake of CHOL in liver, stomach wall, pancreas and small intestine. Further studies are needed to confirm these data. (orig.)

  3. Evaluation of PET/MRI for Tumor Volume Delineation for Head and Neck Cancer.

    Science.gov (United States)

    Wang, Kyle; Mullins, Brandon T; Falchook, Aaron D; Lian, Jun; He, Kelei; Shen, Dinggang; Dance, Michael; Lin, Weili; Sills, Tiffany M; Das, Shiva K; Huang, Benjamin Y; Chera, Bhishamjit S

    2017-01-01

    Computed tomography (CT), combined positron emitted tomography and CT (PET/CT), and magnetic resonance imaging (MRI) are commonly used in head and neck radiation planning. Hybrid PET/MRI has garnered attention for potential added value in cancer staging and treatment planning. Herein, we compare PET/MRI vs. planning CT for head and neck cancer gross tumor volume (GTV) delineation. We prospectively enrolled patients with head and neck cancer treated with definitive chemoradiation to 60-70 Gy using IMRT. We performed pretreatment contrast-enhanced planning CT and gadolinium-enhanced PET/MRI. Primary and nodal volumes were delineated on planning CT (GTV-CT) prospectively before treatment and PET/MRI (GTV-PET/MRI) retrospectively after treatment. GTV-PET/MRI was compared to GTV-CT using separate rigid registrations for each tumor volume. The Dice similarity coefficient (DSC) metric evaluating spatial overlap and modified Hausdorff distance (mHD) evaluating mean orthogonal distance difference were calculated. Minimum dose to 95% of GTVs (D95) was compared. Eleven patients were evaluable (10 oropharynx, 1 larynx). Nine patients had evaluable primary tumor GTVs and seven patients had evaluable nodal GTVs. Mean primary GTV-CT and GTV-PET/MRI size were 13.2 and 14.3 cc, with mean intersection 8.7 cc, DSC 0.63, and mHD 1.6 mm. D95 was 65.3 Gy for primary GTV-CT vs. 65.2 Gy for primary GTV-PET/MRI. Mean nodal GTV-CT and GTV-PET/MRI size were 19.0 and 23.0 cc, with mean intersection 14.4 cc, DSC 0.69, and mHD 2.3 mm. D95 was 62.3 Gy for both nodal GTV-CT and GTV-PET/MRI. In this series of patients with head and neck (primarily oropharynx) cancer, PET/MRI and CT-GTVs had similar volumes (though there were individual cases with larger differences) with overall small discrepancies in spatial overlap, small mean orthogonal distance differences, and similar radiation doses.

  4. Early PET/CT after radiofrequency ablation in colorectal cancer liver metastases: is it useful?

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-yu; CHANG Zhi-hui; LU Zai-ming; GUO Qi-yong

    2010-01-01

    Background Morphologic imaging after radiofrequency ablation (RFA) of liver metastases is hampered by an inflammatory response in the ablation margin, making the identification of local tumor progression (LTP) difficult. The aim of this study was to evaluate the efficacy of early 18F-FDG PET/CT scanning to monitor the effectiveness of RFA in colorectal liver metastases.Methods Twelve patients with 20 metastases were treated with RFA for colorectal liver metastases. They underwent PET/CT within 2 weeks before RFA and within 24 hours after RFA (so termed "early PET/CT"). PET/CT was repeated at 1, 3, and 6 months, and then every 6 months after ablation. The standard of reference was based on available clinical and radiological follow-up data.Results Early PET/CT revealed total photopenia in 16 RFA-treated metastases, which were found to be without residual tumor on the final PET/CT scan. Three RFA-treated metastases with focal uptake were identified as local tumor progression, which necessitated further treatment. One RFA-treated metastasis with rim-shaped uptake was regarded as inflammation. The results of the early PET/CT scanning were consistent with the findings of the final follow-up. Conclusions PET/CT performed within 24 hours after RFA can effectively detect whether residual tumor exists for colorectal cancer liver metastases. The results can guide further treatment, and may improve the efficacy of RFA.

  5. Small Animal Massage Therapy: A Brief Review and Relevant Observations.

    Science.gov (United States)

    Formenton, Maira Rezende; Pereira, Marco Aurélio Amador; Fantoni, Denise Tabacchi

    2017-12-01

    Massage therapy is becoming increasingly popular in human and animal physiotherapy and rehabilitation. Wider application of the technique led to research efforts aimed at providing scientific support to anecdotal beneficial effects, particularly pain relief. Recent studies have shown that massage therapy alters dopamine and serotonin levels, decreases noradrenaline levels, and modulates the immune system. Psychological effects such as reduction of stress and anxiety, with improvement of depressive patients, have been reported in humans. This article set out to review the major aspects of massage therapy based on recent publications on the topic, and to extrapolate concepts and practical aspects described in human physiotherapy to the veterinary patient, particularly the applicability of different techniques in Small Animal Medicine. Indications of massage therapy in small animals include pain relief, orthopedic rehabilitation, Canine Sports Medicine, intensive care, and management of nonspecific edema. Techniques described in this article were originally intended for use in humans and scientific data supporting anecdotal, beneficial effects in domestic animals are still lacking; this fruitful area for research is therefore open to veterinary professionals. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The value of FDG-PET in diagnosing peritoneal seeding of colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Eun; Moon, Sun Mi; Cheon, Gi Jeong; Choi, Chang Woon; Hwang, Dae Yong; Lim, Sang Moo [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2004-07-01

    Peritoneal seeding of colon cancer cells is a common cause of morbidity and eventual mortality with recurrent disease. This study evaluated the role of F -18 FDG PET in detecting peritoneal seeding in colorectal carcinoma (CRC and to identify characteristic patterns of abdominal F-18 FDG uptake. We reviewed the FDG PET and CT images and clinical charts of 49 patients with peritoneal seeding and 22 cancer patients without peritoneal seeding. We also assessed FDG PET scans from 20 healthy volunteers as a baseline study. The maximum standardised uptake values (SUVmax) over peritoneal lesions in cancer patients and over the area of most intense intestinal uptake in healthy volunteers and cancer patients without peritoneal carcinomatosis were measured. The result were correlated with either biopsy or ascitic aspirate. The characteristics of FDG uptake were evaluated: overall pattern (focal or diffuse), heterogeneity (yes or none), intensity (low, or equal, faint to moderate, intense). The sensitivity and positive predictive value (PPV) of FDG PET were superior to CT for the detection of peritoneal lesions (sensitivity: 71.4% vs 57.1%, specificity: 72.7% vs 54.5%: PPV: 85.4% vs 73.7%, NPV: 53.3 % vs 36.4% ). The FDG uptake in patients with peritoneal carcinomatosis was divided into nodular(14), diffuse (23) and mixed pattern (12). An SUVmax threshold of 5.2 produced a diagnostic accuracy of FDG PET of 78%. The additional information provided by FDG PET allowed a more accurate diagnosis in 12 patients (24 %), and led to alteration of the therapeutic strategy in 6 (12.2%) of the enrolled patients (n=49) with peritoneal seeding. FDG-PET was more sensitive than CT for the detection of peritoneal seeding in CRC, and altered patient management. Thus, the application of PET may be beneficial to the management of peritoneal seeding in patient with CRC.

  7. The value of FDG-PET in diagnosing peritoneal seeding of colorectal cancer

    International Nuclear Information System (INIS)

    Kim, Sung Eun; Moon, Sun Mi; Cheon, Gi Jeong; Choi, Chang Woon; Hwang, Dae Yong; Lim, Sang Moo

    2004-01-01

    Peritoneal seeding of colon cancer cells is a common cause of morbidity and eventual mortality with recurrent disease. This study evaluated the role of F -18 FDG PET in detecting peritoneal seeding in colorectal carcinoma (CRC and to identify characteristic patterns of abdominal F-18 FDG uptake. We reviewed the FDG PET and CT images and clinical charts of 49 patients with peritoneal seeding and 22 cancer patients without peritoneal seeding. We also assessed FDG PET scans from 20 healthy volunteers as a baseline study. The maximum standardised uptake values (SUVmax) over peritoneal lesions in cancer patients and over the area of most intense intestinal uptake in healthy volunteers and cancer patients without peritoneal carcinomatosis were measured. The result were correlated with either biopsy or ascitic aspirate. The characteristics of FDG uptake were evaluated: overall pattern (focal or diffuse), heterogeneity (yes or none), intensity (low, or equal, faint to moderate, intense). The sensitivity and positive predictive value (PPV) of FDG PET were superior to CT for the detection of peritoneal lesions (sensitivity: 71.4% vs 57.1%, specificity: 72.7% vs 54.5%: PPV: 85.4% vs 73.7%, NPV: 53.3 % vs 36.4% ). The FDG uptake in patients with peritoneal carcinomatosis was divided into nodular(14), diffuse (23) and mixed pattern (12). An SUVmax threshold of 5.2 produced a diagnostic accuracy of FDG PET of 78%. The additional information provided by FDG PET allowed a more accurate diagnosis in 12 patients (24 %), and led to alteration of the therapeutic strategy in 6 (12.2%) of the enrolled patients (n=49) with peritoneal seeding. FDG-PET was more sensitive than CT for the detection of peritoneal seeding in CRC, and altered patient management. Thus, the application of PET may be beneficial to the management of peritoneal seeding in patient with CRC

  8. Radiopharmacological evaluation of 6-deoxy-6-[{sup 18}F]fluoro-D-fructose as a radiotracer for PET imaging of GLUT5 in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Melinda, E-mail: mwuest@ualberta.c [Department of Oncology, University of Alberta - Cross Cancer Institute, Edmonton, AB-T6G 1Z2 (Canada); Trayner, Brendan J. [Department of Physiology, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); Grant, Tina N. [Department of Physiology, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); Department of Chemistry, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); Jans, Hans-Soenke; Mercer, John R.; Murray, David [Department of Oncology, University of Alberta - Cross Cancer Institute, Edmonton, AB-T6G 1Z2 (Canada); West, Frederick G. [Department of Chemistry, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada); McEwan, Alexander J.B.; Wuest, Frank [Department of Oncology, University of Alberta - Cross Cancer Institute, Edmonton, AB-T6G 1Z2 (Canada); Cheeseman, Chris I. [Department of Physiology, University of Alberta, Edmonton, AB-T6G 1Z2 (Canada)

    2011-05-15

    Introduction: Several clinical studies have shown low or no expression of GLUT1 in breast cancer patients, which may account for the low clinical specificity and sensitivity of 2-deoxy-2-[{sup 18}F]fluoro-D-glucose ([{sup 18}F]FDG) used in positron emission tomography (PET). Therefore, it has been proposed that other tumor characteristics such as the high expression of GLUT2 and GLUT5 in many breast tumors could be used to develop alternative strategies to detect breast cancer. Here we have studied the in vitro and in vivo radiopharmacological profile of 6-deoxy-6-[{sup 18}F]fluoro-D-fructose (6-[{sup 18}F]FDF) as a potential PET radiotracer to image GLUT5 expression in breast cancers. Methods: Uptake of 6-[{sup 18}F]FDF was studied in murine EMT-6 and human MCF-7 breast cancer cells over 60 min and compared to [{sup 18}F]FDG. Biodistribution of 6-[{sup 18}F]FDF was determined in BALB/c mice. Tumor uptake was studied with dynamic small animal PET in EMT-6 tumor-bearing BALB/c mice and human xenograft MCF-7 tumor-bearing NIH-III mice in comparison to [{sup 18}F]FDG. 6-[{sup 18}F]FDF metabolism was investigated in mouse blood and urine. Results: 6-[{sup 18}F]FDF is taken up by EMT-6 and MCF-7 breast tumor cells independent of extracellular glucose levels but dependent on the extracellular concentration of fructose. After 60 min, 30{+-}4% (n=9) and 12{+-}1% (n=7) ID/mg protein 6-[{sup 18}F]FDF was found in EMT-6 and MCF-7 cells, respectively. 6-deoxy-6-fluoro-D-fructose had a 10-fold higher potency than fructose to inhibit 6-[{sup 18}F]FDF uptake into EMT-6 cells. Biodistribution in normal mice revealed radioactivity uptake in bone and brain. Radioactivity was accumulated in EMT-6 tumors reaching 3.65{+-}0.30% ID/g (n=3) at 5 min post injection and decreasing to 1.75{+-}0.03% ID/g (n=3) at 120 min post injection. Dynamic small animal PET showed significantly lower radioactivity uptake after 15 min post injection in MCF-7 tumors [standard uptake value (SUV)=0

  9. Integration of optical imaging with a small animal irradiator

    International Nuclear Information System (INIS)

    Weersink, Robert A.; Ansell, Steve; Wang, An; Wilson, Graham; Shah, Duoaud; Lindsay, Patricia E.; Jaffray, David A.

    2014-01-01

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mounted on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  10. Simultaneous PET/MR head–neck cancer imaging: Preliminary clinical experience and multiparametric evaluation

    International Nuclear Information System (INIS)

    Covello, M.; Cavaliere, C.; Aiello, M.; Cianelli, M.S.; Mesolella, M.; Iorio, B.; Rossi, A.; Nicolai, E.

    2015-01-01

    Highlights: • Simultaneous PET/MRI is a suitable tool for head/neck T-staging. • No significant differences have been found for PET measures get by both PET/CT and PET/MRI. • SUV 2D and 3D measures in HN lesion offer comparable estimations. • Multiparametric evaluation allows a complete characterization of HN lesions. - Abstract: Purpose: To evaluate the role of simultaneous hybrid PET/MR imaging and to correlate metabolic PET data with morpho-functional parameters derived by MRI in patients with head–neck cancer. Methods: Forty-four patients, with histologically confirmed head and neck malignancy (22 primary tumors and 22 follow-up) were studied. Patients initially received a clinical exam and endoscopy with direct biopsy. Next patients underwent whole body PET/CT followed by PET/MR of the head/neck region. PET and MRI studies were separately evaluated by two blinded groups (both included one radiologist and one nuclear physician) in order to define the presence or absence of lesions/recurrences. Regions of interest (ROIs) analysis was conducted on the primary lesion at the level of maximum size on metabolic (SUV and MTV), diffusion (ADC) and perfusion (K trans , V e , k ep and iAUC) parameters. Results: PET/MR examinations were successfully performed on all 44 patients. Agreement between the two blinded groups was found in anatomic allocation of lesions by PET/MR (Primary tumors: Cohen's kappa 0.93; Follow-up: Cohen's kappa 0.89). There was a significant correlation between CT-SUV measures and MR (e.g., CT-SUV VOI vs. MR-SUV VOI: ρ = 0.97, p < 0.001 for the entire sample). There was also significant positive correlations between the ROI area, SUV measures, and the metabolic parameters (SUV and MTV) obtained during both PET/CT and PET/MR. A significant negative correlation was observed between ADC and K trans values in the primary tumors. In addition, a significant negative correlation existed between MR SUV and ADC in recurrent tumors

  11. High impact of FDG-PET/CT in diagnostic strategies for ovarian cancer

    International Nuclear Information System (INIS)

    Zytoon, Ashraf Anas; Murakami, Koji; Eid, Hazem; El-Gammal, Mahmoud

    2013-01-01

    Background: Ovarian cancer has the highest mortality of all gynecologic malignancies. FDG-PET/CT was proven to be accurate for identification of primary ovarian tumors, regional lymph nodes, and distant metastases. Purpose: To evaluate ovarian masses at FDG-PET/CT in correlation with histopathologic findings. Material and Methods: Ninety-eight patients underwent whole body FDG-PET/CT examination. Eighty-six patients with primary ovarian cancer and 12 patients with metastatic disease to the ovaries were included. Results: PET/CT imaging was true-positive in 87/94 patients with malignant tumors. In 4/4 patients with benign tumors, PET/CT results were true-negative, with sensitivity of 92.6%, specificity 100%, total test accuracy 92.9%. Fifty-seven patients were diagnosed as stage IV ovarian cancer with distant metastasis. Conclusion: The anatomical/functional examination by FDG-PET/CT was proven to be valuable in increasing the diagnostic accuracy that can help improve patient management

  12. First-in-human uPAR PET: Imaging of Cancer Aggressiveness

    Science.gov (United States)

    Persson, Morten; Skovgaard, Dorthe; Brandt-Larsen, Malene; Christensen, Camilla; Madsen, Jacob; Nielsen, Carsten H.; Thurison, Tine; Klausen, Thomas Levin; Holm, Søren; Loft, Annika; Berthelsen, Anne Kiil; Ploug, Michael; Pappot, Helle; Brasso, Klaus; Kroman, Niels; Højgaard, Liselotte; Kjaer, Andreas

    2015-01-01

    A first-in-human clinical trial with Positron Emission Tomography (PET) imaging of the urokinase-type plasminogen activator receptor (uPAR) in patients with breast, prostate and bladder cancer, is described. uPAR is expressed in many types of human cancers and the expression is predictive of invasion, metastasis and indicates poor prognosis. uPAR PET imaging therefore holds promise to be a new and innovative method for improved cancer diagnosis, staging and individual risk stratification. The uPAR specific peptide AE105 was conjugated to the macrocyclic chelator DOTA and labeled with 64Cu for targeted molecular imaging with PET. The safety, pharmacokinetic, biodistribution profile and radiation dosimetry after a single intravenous dose of 64Cu-DOTA-AE105 were assessed by serial PET and computed tomography (CT) in 4 prostate, 3 breast and 3 bladder cancer patients. Safety assessment with laboratory blood screening tests was performed before and after PET ligand injection. In a subgroup of the patients, the in vivo stability of our targeted PET ligand was determined in collected blood and urine. No adverse or clinically detectable side effects in any of the 10 patients were found. The ligand exhibited good in vivo stability and fast clearance from plasma and tissue compartments by renal excretion. In addition, high uptake in both primary tumor lesions and lymph node metastases was seen and paralleled high uPAR expression in excised tumor tissue. Overall, this first-in-human study therefore provides promising evidence for safe use of 64Cu-DOTA-AE105 for uPAR PET imaging in cancer patients. PMID:26516369

  13. Speeding up PET/MR for cancer staging of children and young adults

    Energy Technology Data Exchange (ETDEWEB)

    Aghighi, Maryam; Pisani, Laura Jean; Sun, Ziyan; Klenk, Christopher; Madnawat, Himani; Owen, Daniel; Quon, Andrew; Moseley, Michael; Daldrup-Link, Heike E. [Stanford University, Department of Radiology, Molecular Imaging Program at Stanford, Stanford, CA (United States); Fineman, Sandra Luna [Stanford University, Department of Pediatrics, Lucile Packard Children' s Hospital, Stanford, CA (United States); Advani, Ranjana [Stanford University, Department of Medicine, Stanford Hospital, Stanford, CA (United States); Von Eyben, Rie [Stanford University, Department of Radiation and Oncology, Stanford, CA (United States)

    2016-12-15

    Combining {sup 18}F-FDG PET with whole-body MR for paediatric cancer staging is practically feasible if imaging protocols can be streamlined. We compared {sup 18}F-FDG PET/STIR with accelerated {sup 18}F-FDG PET/FSPGR for whole-body tumour imaging in children and young adults. Thirty-three children and young adults (17.5 ± 5.5 years, range 10-30) with malignant lymphoma or sarcoma underwent a {sup 18}F-FDG PET staging examination, followed by ferumoxytol-enhanced STIR and FSPGR whole-body MR. {sup 18}F-FDG PET scans were fused with MR data and the number and location of tumours on each integrated examination were determined. Histopathology and follow-up imaging served as standard of reference. The agreement of each MR sequence with the reference and whole-body imaging times were compared using Cohen's kappa coefficient and Student's t-test, respectively. Comparing {sup 18}F-FDG PET/FSPGR to {sup 18}F-FDG PET/STIR, sensitivities were 99.3 % for both, specificities were statistically equivalent, 99.8 versus 99.9 %, and the agreement with the reference based on Cohen's kappa coefficient was also statistically equivalent, 0.989 versus 0.992. However, the total scan-time for accelerated FSPGR of 19.8 ± 5.3 minutes was significantly shorter compared to 29.0 ± 7.6 minutes for STIR (p = 0.001). F-FDG PET/FSPGR demonstrated equivalent sensitivities and specificities for cancer staging compared to {sup 18}F-FDG PET/STIR, but could be acquired with shorter acquisition time. (orig.)

  14. Impact of FDG-PET on lung cancer delineation for radiotherapy

    International Nuclear Information System (INIS)

    Morarji, Kavita; Fowler, Allan; Vinod, Shalini K.; Shon, Ivan Ho; Laurence, Jerome M.

    2012-01-01

    The purpose of this study is to assess the impact of fused diagnostic F-18 2-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET)/computed tomography (CT) and planning FDG-PET/CT scans on voluming of lung cancer for radiotherapy. Five radiation oncologists (ROs), five radiation oncology trainees and a radiologist contoured five cases of non-small cell lung cancer. The CT alone, the diagnostic FDG-PET/CT and planning FDG-PET/CT each registered to the CT, were used to contour three volumes. The concordance index (CI) was used to compare each volume with a reference RO. Although there was considerable inter-observer variability in CT contouring, there was no significant difference between mean volumes of the gross tumour volume for the RO and radiation oncology trainees using any technique. There was no increase in CI with the addition of PET/CT, either diagnostic or planning, for the RO. However, the volumes of the radiation oncology trainees showed a significant increase in CI from 65.8% with CT alone to 68.0% and 72.3% with diagnostic PET/CT and planning PET/CT, respectively (P = 0.028). Mean variation at the tumour/mediastinum interface was significantly reduced with addition of registered PET/CT. The concordance of RO with the reference RO did not significantly increase with use of integrated FDG PET/CT images. However, the contouring of radiation oncology trainees' became more concordant with the reference.

  15. Evaluation of PET and laparoscopy in STagIng advanced gastric cancer: A multicenter prospective study (PLASTIC-study)

    NARCIS (Netherlands)

    H.J.F. Brenkman (Hylke J.F.); Gertsen, E.C. (E. C.); E. Vegt (Erik); R. van Hillegersberg (Richard); M.I. van Berge Henegouwen; S.S. Gisbertz (Suzanne S.); M. Luyer (Misha); G.A.P. Nieuwenhuijzen (Gerard); J.J.B. van Lanschot (Jan); S.M. Lagarde (Sjoerd); W.O. de Steur (Wobbe O.); H.H. Hartgrink (H.); J.H.M.B. Stoot (Jan); K.W.E. Hulsewé (Karel W.E.); E.J. Spillenaar Bilgen (Ernst Jan); M.J. van Det (Marc J.); E.A. Kouwenhoven (Ewout); D.L. van der Peet (Donald); F. Daams (Freek); J.W. van Sandick (J.); N.C.T. Grieken (Nicole); J. Heisterkamp (Joos); B. van Etten (Boudewijn); J.W. Haveman; J.-P.E.N. Pierie (Jean-Pierre); Jonker, F. (F.); Thijssen, A.Y. (A. Y.); E.J.T. Belt (Eric); P. van Duijvendijk (Peter); Wassenaar, E. (E.); H.W.M. van Laarhoven (Hanneke); Wessels, F.J. (F. J.); N. Haj Mohammad; H.F. van Stel (Henk); G.W.J. Frederix (Geert); P.D. Siersema (Peter); J.P. Ruurda (Jelle)

    2018-01-01

    textabstractBackground: Initial staging of gastric cancer consists of computed tomography (CT) and gastroscopy. In locally advanced (cT3-4) gastric cancer, fluorodeoxyglucose positron emission tomography with CT (FDG-PET/CT or PET) and staging laparoscopy (SL) may have a role in staging, but

  16. Monitoring tumor response to neoadjuvant chemotherapy using MRI and 18F-FDG PET/CT in breast cancer subtypes

    NARCIS (Netherlands)

    Schmitz, Alexander M. Th; Teixeira, Suzana C.; Pengel, Kenneth E.; Loo, Claudette E.; Vogel, Wouter V.; Wesseling, Jelle; Rutgers, Emiel J. Th; Valdés Olmos, Renato A.; Sonke, Gabe S.; Rodenhuis, Sjoerd; Vrancken Peeters, Marie Jeanne T. F. D.; Gilhuijs, Kenneth G. A.

    2017-01-01

    To explore guidelines on the use of MRI and PET/CT monitoring primary tumor response to neoadjuvant chemotherapy (NAC), taking breast cancer subtype into account. In this prospective cohort study, 188 women were included with stages II and III breast cancer. MRI and 18F-FDG-PET/CT were acquired

  17. Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT.

    Science.gov (United States)

    Heusch, Philipp; Buchbender, Christian; Köhler, Jens; Nensa, Felix; Gauler, Thomas; Gomez, Benedikt; Reis, Henning; Stamatis, Georgios; Kühl, Hilmar; Hartung, Verena; Heusner, Till A

    2014-03-01

    Therapeutic decisions in non-small cell lung cancer (NSCLC) patients depend on the tumor stage. PET/CT with (18)F-FDG is widely accepted as the diagnostic standard of care. The purpose of this study was to compare a dedicated pulmonary (18)F-FDG PET/MR imaging protocol with (18)F-FDG PET/CT for primary and locoregional lymph node staging in NSCLC patients using histopathology as the reference. Twenty-two patients (12 men, 10 women; mean age ± SD, 65.1 ± 9.1 y) with histopathologically confirmed NSCLC underwent (18)F-FDG PET/CT, followed by (18)F-FDG PET/MR imaging, including a dedicated pulmonary MR imaging protocol. T and N staging according to the seventh edition of the American Joint Committee on Cancer staging manual was performed by 2 readers in separate sessions for (18)F-FDG PET/CT and PET/MR imaging, respectively. Results from histopathology were used as the standard of reference. The mean and maximum standardized uptake value (SUV(mean) and SUV(max), respectively) and maximum diameter of the primary tumor was measured and compared in (18)F-FDG PET/CT and PET/MR imaging. PET/MR imaging and (18)F-FDG PET/CT agreed on T stages in 16 of 16 of patients (100%). All patients were correctly staged by (18)F-FDG PET/CT and PET/MR (100%), compared with histopathology. There was no statistically significant difference between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging for lymph node metastases detection (P = 0.48). For definition of thoracic N stages, PET/MR imaging and (18)F-FDG PET/CT were concordant in 20 of 22 patients (91%). PET/MR imaging determined the N stage correctly in 20 of 22 patients (91%). (18)F-FDG PET/CT determined the N stage correctly in 18 of 22 patients (82%). The mean differences for SUV(mean) and SUV(max) of NSCLC in (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT were 0.21 and -5.06. These differences were not statistically significant (P > 0.05). The SUV(mean) and SUV(max) measurements derived from (18)F-FDG PET/CT and (18)F-FDG PET

  18. INFLUENCE OF THE FDG-PET/CT ON THE DIAGNOSE AND STAGING OF COLORECTAL CANCER.

    Directory of Open Access Journals (Sweden)

    Nikola Y. Kolev

    2012-06-01

    Full Text Available INTRODUCTION: In patients with colorectal cancer (CRC, preoperative evaluation and staging should focus on techniques that might alter the preoperative or intraoperative surgical plan. Conventional imaging methods (CT, MRI have low accuracy for identifying the depth of tumour infiltration and have limited ability to detect regional lymph node involvement. The aim of this study was to evaluate the utility of FDG-PET in the initial staging of patients with CC in comparison with conventional staging methods and to determine its impact on therapeutic management.METHODS: In First Clinic of Surgery at University Hospital “St. Marina” one hundred and four patients with a diagnosis of CRC (53 males and 51 females; mean age 66.76± 12.36 years, selected prospectively. All patients were studied for staging using a standard procedure (CT and FDG-PET. The reference method was histology. The effect of FDG-PET on the diagnose and the operative treatment was studied.RESULTS: In 14 patients, surgery was contraindicated by FDG-PET owing to the extent of disease (only 6/14 suspected by CT. FDG-PET revealed four synchronous tumours. For N staging, both procedures showed a relatively high specificity but a low diagnostic accuracy (PET 56%, CT 60% and sensitivity (PET 21%, CT 25%. For M assessment, diagnostic accuracy was 92% for FDGPET and 87% for CT. FDG-PET results led to modification of the therapy approach in 17.85% of the patients with rectal cancer and in 14.8% of the patients with colon cancer.CONCLUSION: Compared with conventional techniques, FDGPET appears to be useful in pre-surgical staging of CC, revealing unsuspected disease and impacting on the treatment approach.

  19. Effective dose and cancer risk in PET/CT exams; Dose efetiva e risco de cancer em exames de PET/CT

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Gabriella M.; Sa, Lidia Vasconcellos de, E-mail: montezano@ird.gov.br, E-mail: Iidia@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    Due to the use of radiopharmaceutical positron-emitting in PET exam and realization of tomography by x-ray transmission in CT examination, an increase of dose with hybrid PET/CT technology is expected. However, differences of doses have been reported in many countries for the same type of procedure. It is expected that the dose is an influent parameter to standardize the protocols of PET/CT. This study aimed to estimate the effective doses and absorbed in 65 patients submitted to oncological Protocol in a nuclear medicine clinic in Rio de Janeiro, considering the risk of induction of cancer from the scan. The CT exam-related doses were estimated with a simulator of PMMA and simulated on the lmPACT resistance, which for program effective dose, were considered the weight factors of the lCRP 103. The PET exam doses were estimated by multiplying the activity administered to the patient with the ICRP dose 80 factors. The radiological risk for cancer incidence were estimated according to the ICRP 103. The results showed that the effective dose from CT exam is responsible for 70% of the effective total in a PET/CT scan. values of effective dose for the PET/CT exam reached average values of up to 25 mSv leading to a risk of 2, 57 x 10{sup -4}. Considering that in staging of oncological diseases at least four tests are performed annually, the total risk comes to 1,03x 10{sup -3}.

  20. PET imaging of urokinase-type plasminogen activator receptor (uPAR) in prostate cancer

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2016-01-01

    Overexpression of urokinase-type plasminogen activator receptors (uPAR) represents an important biomarker for aggressiveness in most common malignant diseases, including prostate cancer (PC). Accordingly, uPAR expression either assessed directly in malignant PC tissue or assessed directly in plasma...... and prognostic imaging method. In this review, we will focus on the recent development of uPAR PET and the relevance within prostate cancer imaging. Novel antibody and small-molecule radiotracers-targeting uPAR, including a series of uPAR-targeting PET ligands, based on the high affinity peptide ligand AE105......, have been synthesized and tested in vitro and in vivo in preclinical murine xenograft models and, recently, in a first-ever clinical uPAR PET study in cancer patients, including patients with PC. In this phase I study, a high and specific uptake of the tracer 64Cu-DOTA-AE105 was found in both primary...

  1. Diagnosis of pancreatic cancer using fluorine-18 fluorodeoxyglucose positron emission tomography (FDG PET). Usefulness and limitations in clinical reality''

    International Nuclear Information System (INIS)

    Higashi, Tatsuya; Saga, Tsuneo; Ishimori, Takayoshi; Fujimoto, Koji; Doi, Ryuichiro; Imamura, Masayuki; Konishi, Junji

    2003-01-01

    The present review will provide an overview of the literature concerning the FDG PET diagnosis of pancreatic cancer and a summary from our experience of 231 cases of pancreatic lesions. FDG PET can effectively differentiate pancreatic cancer from benign lesion with high accuracy. Newly-developed PET scanners can detect small pancreatic cancers, up to 7 mm in diameter, by their high resolution, which could make a great contribution to the early detection of resectable and potentially curable pancreatic cancers. FDG PET is useful and cost-beneficial in the pre-operative staging of pancreatic cancer because an unexpected distant metastasis can be detected by whole-body PET in about 40% of the cases, which results in avoidance of unnecessary surgical procedures. FDG PET is also useful in evaluation of the treatment effect, monitoring after the operation and detection of recurrent pancreatic cancers. However, there are some drawbacks in PET diagnosis. A relatively wide overlap has been reported between semiquantitative uptake values obtained in cancers and those in inflammatory lesions. As for false-positive cases, active and chronic pancreatitis and autoimmune pancreatitis sometimes show high FDG accumulation and mimic pancreatic cancer with a shape of focal uptake. There were 8 false negative cases in the detection of pancreatic cancer by FDG PET, up to 33 mm in diameter, mainly because of their poor cellularity in cancer tissues. In addition, there are 19% of cancer cases with a decline in FDG uptake from 1 hr to 2 hr scan. FDG PET was recently applied to and was shown to be feasible in the differential diagnosis of cystic pancreatic lesions, such as intraductal papillary mucinous tumor of the pancreas. Further investigations are required to clarify the clinical value of FDG PET in predicting prognosis of the pancreatic patients. (author) 124 refs

  2. Prognostic value of PET/CT in lung cancer. Study of survival and tumor metabolic characterization

    International Nuclear Information System (INIS)

    Ladron de Guevara, David; Fuentes Anibal; Farina, Ciro; Corral, Camilo; Pefaur, Raul

    2013-01-01

    PET/CT (Positron emission tomography/computed tomography) is a hybrid image modality widely used in oncology, for staging, therapy evaluation or follow up. Aim: To evaluate the prognostic value of PET/CT in lung cancer. Material and Methods: Retrospective review of PET/CT records, selecting 51 patients with a lung malignancy, mass or nodule referred for PET/CT between December 2008 and December 2010. All had pathological confirmation of malignancy and had not been treated previously. Age, gender, body mass index, radiological features of lung tumor and metastases, and lung tumor 18 F-fluoro-2-deoxy-d-glucose uptake using the SUV (Standardized uptake value) index were recorded. Survival was analyzed using Kaplan-Meier curves and a Cox proportional regression analysis. Results: Pathology confirmed the presence of lung cancer in 47 patients aged 30 to 88 years. Four patients (7.8%) had other type of tumors such as carcinoid or lymphoma. Fifty percent of lung cancer patients died during a mean observation lapse of 18 months (range: 2-34 months). Patients with metastases, local lymph node involvement, a lung tumor size ≥ 3 cm and high tumor uptake (SUVmax > 6) had significantly lower survival. Occurrence of metastases was the only independent prognostic factor in the Cox regression. A lung lesion with a SUVmax ≥ 12 was always associated to hilar/mediastinal lymph node involvement. Conclusions: PET/CT imaging gives important prognostic information in lung cancer patients

  3. The therapeutic lamp: treating small-animal phobias.

    Science.gov (United States)

    Wrzesien, Maja; Alcañiz, Mariano; Botella, Cristina; Burkhardt, Jean-Marie; Bretón-López, Juana; Ortega, Mario; Brotons, Daniel Beneito

    2013-01-01

    We all have an irrational fear or two. Some of us get scared by an unexpected visit from a spider in our house; others get nervous when they look down from a high building. Fear is an evolutionary and adaptive function that can promote self-preservation and help us deal with the feared object or situation. However, when this state becomes excessive, it might develop into psychological disorders such as phobias, producing high anxiety and affecting everyday life. The Therapeutic Lamp is an interactive projection-based augmented-reality system for treating small-animal phobias. It aims to increase patient-therapist communication, promote more natural interaction, and improve the patient's engagement in the therapy.

  4. Utility of Small Animal Models of Developmental Programming.

    Science.gov (United States)

    Reynolds, Clare M; Vickers, Mark H

    2018-01-01

    Any effective strategy to tackle the global obesity and rising noncommunicable disease epidemic requires an in-depth understanding of the mechanisms that underlie these conditions that manifest as a consequence of complex gene-environment interactions. In this context, it is now well established that alterations in the early life environment, including suboptimal nutrition, can result in an increased risk for a range of metabolic, cardiovascular, and behavioral disorders in later life, a process preferentially termed developmental programming. To date, most of the mechanistic knowledge around the processes underpinning development programming has been derived from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. This review will cover the utility of small animal models in developmental programming, the limitations of such models, and potential future directions that are required to fully maximize information derived from preclinical models in order to effectively translate to clinical use.

  5. Development of a Magnetoencephalograph System for Small Animals

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. E.; Kim, I. S.; Kang, C. S.; Kwon, H.; Kim, J. M.; Lee, Y. H.; Kim, K. [Brain and Cognition Measurement Laboratory, Korea Research Institute of Standards and Science(KRISS), Daejeon (Korea, Republic of)

    2011-08-15

    We developed a four-channel first order gradiometer system to measure magnetoencephalogram for mice. We used double relaxation oscillation SQUID (DROS). The diameter of the pickup coil is 4 mm and the distance between the coils is 5 mm. Coil distance was designed to have good spatial resolution for a small mouse brain. We evaluated the current dipole localization confidence region for a mouse brain, using the spherical conductor model. The white noise of the measurement system was about 30 fT/Hz{sup 1/2}/cm when measured in a magnetically shielded room. We measured magnetic signal from a phantom having the same size of a mouse brain, which was filled with 0.9% saline solution. The results suggest that the developed system has a feasibility to study the functions of brain of small animals.

  6. Imaging of hypoxia in small animals with 18F fluoromisonidasole

    Directory of Open Access Journals (Sweden)

    Kilian Krzysztof

    2016-06-01

    Full Text Available A method of automated synthesis of [18F]fluoromisonidazole ([18F]FMISO for application in preclinical studies on small animals was presented. A remote-controlled synthesizer Synthra RNplus was used for nucleophilic substitution of NITTP (1′-(2′-nitro-1-imidazolyl-2-O-tetrahydropyranyl-3-O-toluenesulfonyl-propanediol with 18F anion. Labeling of 5 mg of precursor was performed in anhydrous acetonitrile at 100°C for 10 min, and the hydrolysis with HCl was performed at 100°C for 5 min. Final purification was done with high-performance liquid chromatography (HPLC and the radiochemical purity of radiotracer was higher than 99%. Proposed [18F]FMISO synthesis was used as a reliable tool in studies on hypoxia in Lewis lung carcinoma (LLC in mouse models.

  7. Development of a Magnetoencephalograph System for Small Animals

    International Nuclear Information System (INIS)

    Kim, J. E.; Kim, I. S.; Kang, C. S.; Kwon, H.; Kim, J. M.; Lee, Y. H.; Kim, K.

    2011-01-01

    We developed a four-channel first order gradiometer system to measure magnetoencephalogram for mice. We used double relaxation oscillation SQUID (DROS). The diameter of the pickup coil is 4 mm and the distance between the coils is 5 mm. Coil distance was designed to have good