WorldWideScience

Sample records for small water works

  1. Water Loss in Small Settlements

    Mindaugas Rimeika; Anželika Jurkienė

    2014-01-01

    The main performance indicators of a water supply system include the quality and safety of water, continuous work, relevant pressure and small water loss. The majority of foreign and local projects on reducing water loss have been carried out in the water supply systems of metropolitans; however, the specificity of small settlements differs from that of big cities. Differences can be observed not only in the development of infrastructure and technical indicators but also in the features of wa...

  2. Urban Waters Small Grants 101

    General information on Urban Waters Small Grants is provided in this document. Grantees are listed by themes, including Environmental Justice, Water Quality, Job Training and Creation, and Green Infrastructure.

  3. Removal of radon by aeration: testing of various aeration techniques for small water works. For European Commission under Contract No FI4PCT960054 TENAWA project

    Salonen, L.; Mehtonen, J.; Turunen, H.; Mjoenes, L.; Hagberg, N.; Raff, O.

    2002-12-01

    Capability of various aeration techniques to remove radon from water in small waterworks was studied as a part of project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water), which was carried out during 1997-1999 on a cost-shared basis (contract No. F14PCT960054) with The European Commission (CEC) under the supervision of the Directorate-General XII Radiation Protection Research Unit. In TENAWA project both laboratory and field experiments were performed in order to find reliable methods and equipment for removing natural radionuclides from ground water originating either from private wells or small waterworks. Because such techniques are more often needed in private households than at waterworks, the main emphasis of the research was aimed to solve the water treatment problems related to the private water supplies, especially bedrock wells. Radon was the most important radionuclide to be removed from water at waterworks whereas the removal of other radionuclides ( 234,238 U, 226,228 Ra, 210 Pb and 210 Po) was oft required from radonrich bedrock waters. The currently available methods and equipment were mainly tested during the field and laboratory experiments but the project was also aimed to find new materials, absorbents and membranes applicable for radionuclide removal from various types of ground waters (e.g. soft, hard, acidic). Because iron, manganese or organic occur in waters with radionuclides, their simultaneous removal was also studied. The project was divided into 13 work packages. In this report the results of the work package 2.2 are described. Elevated levels of radon and other natural radionuclides in European ground waters have been observed mainly in wide areas of the crystalline Scandinavian bedrock, especially in the granite rock areas of Finland and Sweden but also in more limited crystalline rock areas of Central and Southern Europe, Ukraine and Scotland. The radon removal efficiencies of different aeration methods

  4. Removal of radon by aeration testing of various aeration techniques for small water works. For European Commission under Contract No FI4PCT960054 TENAWA project

    Salonen, L; Mehtonen, J; Mjoenes, L; Raff, O; Turunen, H

    2002-01-01

    Capability of various aeration techniques to remove radon from water in small waterworks was studied as a part of project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water), which was carried out during 1997-1999 on a cost-shared basis (contract No. F14PCT960054) with The European Commission (CEC) under the supervision of the Directorate-General XII Radiation Protection Research Unit. In TENAWA project both laboratory and field experiments were performed in order to find reliable methods and equipment for removing natural radionuclides from ground water originating either from private wells or small waterworks. Because such techniques are more often needed in private households than at waterworks, the main emphasis of the research was aimed to solve the water treatment problems related to the private water supplies, especially bedrock wells. Radon was the most important radionuclide to be removed from water at waterworks whereas the removal of other radionuclides ( sup 2 sup 3 sup 4...

  5. Small Drinking Water Systems Communication and Outreach ...

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  6. Economic study of the treatment of surface water by small ...

    The purpose of this work is to evaluate the possibility of utilising an ultrafiltration process for the treatment of water from the dam in the Kabylia region of Algeria and, in particular, for the provision of drinking water to people living in dispersed small villages. The water quality was determined by measuring turbidity, and ...

  7. Risk to Water Security on Small Islands

    Holding, S. T.; Allen, D. M.

    2013-12-01

    The majority of fresh water available on small islands is shallow groundwater that forms a freshwater lens. Freshwater lenses are generally limited in extent and as such are vulnerable to many stressors that impact water security. These include stressors related to climate change, such as sea level rise, as well as those related to human impacts, such as contamination. Traditionally, water security assessments have focussed on indicators that provide a snapshot of the current condition. However, recent work suggests that in order to effectively manage the water system, it is also important to consider uncertain future impacts to the system by evaluating how different stressors might impact water security. In this study, a framework for assessing risk to water security was developed and tested on Andros Island in The Bahamas. The assessment comprises two main components that characterise the water system: numerical modelling studies and a hazard survey. A baseline numerical model of the freshwater lens throughout Andros Island was developed to simulate the morphology of the freshwater lens and estimate the freshwater resources currently available. The model was prepared using SEAWAT, a density-dependent flow and solute transport code. Various stressors were simulated in the model to evaluate the response of the freshwater lens to predicted future shifts in climate patterns, sea level rise, and changes in water use. A hazard survey was also conducted on the island to collect information related to the storage of contaminants, sanitation infrastructure, waste disposal practices and groundwater abstraction rates. The results of the survey form a geo-spatial database of the location and associated hazards to the freshwater lens. The resulting risk framework provides a ranking of overall risk to water security based on information from the numerical modelling and hazard survey. The risk framework is implemented in a Geographic Information System (GIS) and provides a map

  8. Water turbine technology for small power stations

    Salovaara, T.

    1980-02-01

    The paper examines hydro-power stations and the efficiency and costs of using water turbines to run them. Attention is given to different turbine types emphasizing the use of Kaplan-turbines and runners. Hydraulic characteristics and mechanical properties of low head turbines and small turbines, constructed of fully fabricated steel plate structures, are presented.

  9. Status of advanced small pressurized water reactors

    Chen Peipei; Zhou Yun

    2012-01-01

    In order to expand the nuclear power in energy and desalination, increase competitiveness in global nuclear power market, many developed countries with strong nuclear energy technology have realized the importance of Small Modular Reactor (SMR) and initiated heavy R and D programs in SMR. The Advanced Small Pressurized Water Reactor (ASPWR) is characterized by great advantages in safety and economy and can be used in remote power grid and replace mid/small size fossil plant economically. This paper reviews the history and current status of SMR and ASPWR, and also discusses the design concept, safety features and other advantages of ASPWR. The purpose of this paper is to provide an overall review of ASPWR technology in western countries, and to promote the R and D in ASPWR in China. (authors)

  10. Beliefs about motivation and work with quality, environment and working environment in small organisations

    Lindmark, Camilla

    1999-01-01

    Three small organisations in Sweden were studied in order to describe found motives for and against work with quality, environment and working environment among people in a small organisation. Some motives for work within the three areas mainly expressed beliefs about increased production results and increased psychological well-being of people. The work was also thought to have a positive impact on the organisation in terms of coping with changes in the surrounding. Arguments why small organ...

  11. Impact of water drops on small targets

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2002-10-01

    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  12. Hydraulic Network Modelling of Small Community Water Distribution ...

    Prof Anyata

    ... design of a small community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using ..... self cleansing drinking water distribution system is set at 0.4m/s, .... distribution network offers advantages over manual ...

  13. Work related injuries and associated factors among small scale ...

    Objective: This study aims to assess the magnitude of work related injury and associated factors among small scale industrial workers in Mizan-Aman town, Bench Maji Zone, Southwest Ethiopia. Method: A cross-sectional study design was conducted from February to May, 2016. Data was collected using a structured face to ...

  14. Small arms proliferation. Report on working group 2

    1998-01-01

    The working group reported on the proliferation of small arms, light weapons non-lethal weapons, which have traditionally been given little attention in international talks on peace on the contrary to nuclear weapons which have been tested during the Second World War but never used in war later

  15. Water erosion and climate change in a small alpine catchment

    Berteni, Francesca; Grossi, Giovanna

    2017-04-01

    WATER EROSION AND CLIMATE CHANGE IN A SMALL ALPINE CATCHMENT Francesca Berteni, Giovanna Grossi A change in the mean and variability of some variables of the climate system is expected to affect the sediment yield of mountainous areas in several ways: for example through soil temperature and precipitation peak intensity change, permafrost thawing, snow- and ice-melt time shifting. Water erosion, sediment transport and yield and the effects of climate change on these physical phenomena are the focus of this work. The study area is a small mountainous basin, the Guerna creek watershed, located in the Central Southern Alps. The sensitivity of sediment yield estimates to a change of condition of the climate system may be investigated through the application of different models, each characterized by its own features and limits. In this preliminary analysis two different empirical mathematical models are considered: RUSLE (Revised Universal Soil Loss Equation; Renard et al., 1991) and EPM (Erosion Potential Method; Gavrilovic, 1988). These models are implemented in a Geographical Information System (GIS) supporting the management of the territorial database used to estimate relevant geomorphological parameters and to create different thematic maps. From one side the geographical and geomorphological information is required (land use, slope and hydrogeological instability, resistance to erosion, lithological characterization and granulometric composition). On the other side the knowledge of the weather-climate parameters (precipitation and temperature data) is fundamental as well to evaluate the intensity and variability of the erosive processes and estimate the sediment yield at the basin outlet. Therefore different climate change scenarios were considered in order to tentatively assess the impact on the water erosion and sediment yield at the small basin scale. Keywords: water erosion, sediment yield, climate change, empirical mathematical models, EPM, RUSLE, GIS

  16. FINANCING ASSISTANCE AVAILABLE FOR SMALL PUBLIC WATER SYSTEMS

    Many small and very small drinking water systems require repair and upgrading if they are to comply with the Safe Drinking Water Act of 1974 and its amendments. Often, dispersed population makes infracstructure expensive on a per-capita basis. Funding shortages at the federal, ...

  17. Municipal water powers small hydro in California

    Townsend, C.W.

    1985-07-01

    The city council of San Luis Obispo, California approved a scheme in 1984 to install a hydropower plant into an existing water distribution network. The Stenner Canyon project is under construction on the site of an abandoned water treatment plant. A 750 kW Pelton turbine will be fed via a 20 km pipeline from the Salimas Reservoir. A remote telemetry system will control turbine output. The primary objectives are to generate extra power for the area and provide additional revenue for the city. Computer simulation helped hydraulics engineers design the system. Tax-exempt industrial development bonds will finance the $1.5 million project. 2 figures.

  18. Creating healthy work in small enterprises - from understanding to action

    Stephen, Legg; Ian S., laird; Olsen, Kirsten Bendix

    2014-01-01

    Although much is known about small and medium enterprises (SMEs), our current knowledge and understanding of occupational health and safety (OHS) and the work environment in SMEs is limited. Far less is known about how SMEs put our knowledge of OSH into action. In short, how do we create healthy...... work and healthy lives as well as ‘healthy business' in SMEs? The present paper, which also acts as an editorial for this special issue, addresses these questions by providing a summary of current knowledge - our understanding - about how to create healthy work and healthy lives for workers and owner......-managers in SMEs whilst concurrently also aiming to create a healthy business (in terms of profitability and sustainability). This paper and the special issue also emphasise the need to convert this knowledge into action - ‘from understanding to action'....

  19. Treatment technology for removing radon from small community water supplies

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1989-01-01

    Radon contamination of drinking water primarily affects individual homeowners and small communities using ground-water supplies. Presently, three types of treatment processes have been used to remove radon: granular activated carbon adsorption (GAC), diffused-bubble aeration, and packed-tower aeration. In order to obtain data on these treatment alternatives for small communities water supplies, a field evaluation study was conducted on these three processes as well as on several modifications to aeration of water in storage tanks considered to be low cost/low technology alternatives. The paper presents the results of these field studies conducted at a small mobile home park in rural New Hampshire. The conclusion of the study was that the selection of the appropriate treatment system to remove radon from drinking water depends primarily upon: (1) precent removal of process; (2) capital operating and maintenance costs; (3) safety (radiation); and (4) raw water quality (Fe, Mn, bacteria and organics)

  20. Kyiv Small Rivers in Metropolis Water Objects System

    Krelshteyn, P.; Dubnytska, M.

    2017-12-01

    The article answers the question, what really are the small underground rivers with artificial watercourses: water bodies or city engineering infrastructure objects? The place of such rivers in metropolis water objects system is identified. The ecological state and the degree of urbanization of small rivers, as well as the dynamics of change in these indicators are analysed on the Kiev city example with the help of water objects cadastre. It was found that the registration of small rivers in Kyiv city is not conducted, and the summary information on such water objects is absent and is not taken into account when making managerial decisions at the urban level. To solve this problem, we propose to create some water bodies accounting system (water cadastre).

  1. Cloud Water Content Sensor for Sounding Balloons and Small UAVs

    Bognar, John A.

    2009-01-01

    A lightweight, battery-powered sensor was developed for measuring cloud water content, which is the amount of liquid or solid water present in a cloud, generally expressed as grams of water per cubic meter. This sensor has near-zero power consumption and can be flown on standard sounding balloons and small, unmanned aerial vehicles (UAVs). The amount of solid or liquid water is important to the study of atmospheric processes and behavior. Previous sensing techniques relied on strongly heating the incoming air, which requires a major energy input that cannot be achieved on sounding balloons or small UAVs.

  2. Containment for small pressurized water reactors

    Siler, W.C.; Marda, R.S.; Smith, W.R.

    1977-01-01

    Babcock and Wilcox Company has prepared studies under ERDA contract of small and intermediate size (313, 365 and 1200 MWt) PWR reactor plants, for industrial cogeneration or electric power generation. Studies and experience with nuclear plants in this size range indicate unfavorable economics. To offset this disadvantage, modular characteristics of an integral reactor and close-coupled vapor suppression containment have been exploited to shorten construction schedules and reduce construction costs. The resulting compact reactor/containment complex is illustrated. Economic studies to date indicate that the containment design and the innovative construction techniques developed to shorten erection schedules have been important factors in reducing estimated project costs, thus potentially making such smaller plants competetive with competing energy sources

  3. Working group report on water resources

    Baulder, J.

    1991-01-01

    The results and conclusions of a working group held to discuss climate change implications for water resources are presented. The existing water resources and climatological databases necessary to develop models and functional relationships lack integration and coordination. The density and spatial distribution of the existing sampling networks for obtaining necessary climatological data is inadequate, especially in areas of complex terrain, notably higher elevations in the Rocky Mountains. Little information and knowledge is available on potential socio-economic responses that can be anticipated from either increases in climate variability or major change. Recommended research initiatives include the following. Basic functional relationships between climatic events, climatic variability and change, and both surface and groundwater hydrologic processes need to be investigated and improved. Basin-scale and regional-scale climatic models need to be developed, tested, and interfaced with existing global climate models. Public sector attitudes to water management issues and opportunities need to be investigated, and integrated scientific, socio-economic, multidisciplinary, regional databases on climatic change and variability and associated processes need to be developed

  4. Survey of disinfection efficiency of small drinking water treatment ...

    A survey involving 181 water treatment plants across 7 provinces of South Africa: Mpumalanga, Limpopo, North West, Free State, KwaZulu-Natal, Eastern Cape and Western Cape was undertaken to identify the challenges facing small water treatment plants (SWTPs) in South Africa . Information gathered included ...

  5. Water Distribution Network Modelling of a Small Community using ...

    ... of a small community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using WaterCAD simulator. The analysis included a review of pressures, velocities and head loss gradients under steady state average day demand, maximum day demand conditions, and fire flow under maximum day ...

  6. Small Drinking Water Systems Communication and Outreach Highlights

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Wa...

  7. Small Water System Alternatives: Media and Membrane Filtration Alternatives for Small Communities and Households

    This webinar presentation will highlight research case studies on innovative drinking water treatment alternatives for small community water systems. Emphasis will be placed on media and membrane filtration technologies capable of meeting the requirements of the Long-Term 2 Enha...

  8. ERGONOMIC WORK ANALYSIS APPLICATION IN A SMALL SHOE BUSINESS

    Aline Marian Callegaro

    2013-11-01

    Full Text Available This paper aims to presentthe results after conducting an Ergonomic Work Analysis (EWA in a smallbusiness located in Porto Alegre. The ergonomic intervention was performed basedon Guérin et al. (2001 and aimed to analyze the process organization and thelayout of the shoemaker workstations to provide improvements to these areas.The starting point was the account of the small shoe business owner’s need hadto hire one more shoemaker without increasing the company physical space. The EWAwas used focusing the work organization, how the flow of information ran fromthe entry of an order to the final stage of the product repairing. Thediagnosis showed the company main problems were related to the shop assistantsdependence on the shoemakers to provide budget information and delivery time tocustomers and the layout organization. Among the results, a temporal analysisof two company recurrent tasks was performed in order to ascertain possiblelosses related to the displacement and the search for material. A new layoutscheme was also proposed, aiming to organize the work stations, making easierthe stock, tools and equipment removal, providing a free space to make possiblethe hiring of the new shoemakers within the current company boundaries.

  9. 46 CFR 109.334 - Working over water.

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Working over water. 109.334 Section 109.334 Shipping... Operation and Stowage of Safety Equipment § 109.334 Working over water. The master or person in charge shall insure that each person working over the water is wearing a life preserver or a buoyant work vest. ...

  10. DESIGN OF SMALL AUTOMATION WORK CELL SYSTEM DEMONSTRATIONS

    TURNER, C.; PEHL, J.

    2000-01-01

    The introduction of automation systems into many of the facilities dealing with the production, use and disposition of nuclear materials has been an ongoing objective. Many previous attempts have been made, using a variety of monolithic and, in some cases, modular technologies. Many of these attempts were less than successful, owing to the difficulty of the problem, the lack of maturity of the technology, and over optimism about the capabilities of a particular system. Consequently, it is not surprising that suggestions that automation can reduce worker Occupational Radiation Exposure (ORE) levels are often met with skepticism and caution. The development of effective demonstrations of these technologies is of vital importance if automation is to become an acceptable option for nuclear material processing environments. The University of Texas Robotics Research Group (UTRRG) has been pursuing the development of technologies to support modular small automation systems (each of less than 5 degrees-of-freedom) and the design of those systems for more than two decades. Properly designed and implemented, these technologies have a potential to reduce the worker ORE associated with work in nuclear materials processing facilities. Successful development of systems for these applications requires the development of technologies that meet the requirements of the applications. These application requirements form a general set of rules that applicable technologies and approaches need to adhere to, but in and of themselves are generally insufficient for the design of a specific automation system. For the design of an appropriate system, the associated task specifications and relationships need to be defined. These task specifications also provide a means by which appropriate technology demonstrations can be defined. Based on the requirements and specifications of the operations of the Advanced Recovery and Integrated Extraction System (ARIES) pilot line at Los Alamos National

  11. Working Paper 4: Institutions for Effective Water Demand ...

    2012-01-23

    Jan 23, 2012 ... Working Paper 4: Institutions for Effective Water Demand ... This working paper is part of WaDImena 's four Research Series on Water Demand Management ... Improving Water Demand Management Addressing Socioeconomic Inequalities and ... Women's rights and access to water and sanitation in Delhi.

  12. Assessment of a small pressurized water reactor for industrial energy

    Klepper, O.H.; Fuller, L.C.; Myers, M.L.

    1977-01-01

    An evaluation of several recent ERDA/ORNL sponsored studies on the application of a small, 365 MW(t) pressurized water reactor for industrial energy is presented. Preliminary studies have investigated technical and reliability requirements; costs for nuclear and fossil based steam were compared, including consideration of economic inflation and financing methods. For base-load industrial steam production, small reactors appear economically attractive relative to coal fired boilers that use coal priced at $30/ton

  13. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Rasconi, Serena; Gall, Andrea; Winter, Katharina; Kainz, Martin J

    2015-01-01

    Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification") of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C) and brownification will, a) cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b) extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification) caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans), and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development).

  14. Seawater desalination using small and medium light water reactors

    Shimamura, Kazuo

    2000-01-01

    Water is an essential substance for sustaining human life. As Japan is an island country, surrounded by the sea and having abundant rainfall, there is no scarcity of water in daily life except during abnormally dry summers or after disasters such as earthquakes. Consequently, there is hardly any demand for seawater desalination plants except on remote islands, Okinawa and a part of Kyushu. However, the IAEA has forecast a scarcity of drinking water in developing countries at the beginning of the 21st century. Further, much more irrigation water will be required every year to prevent cultivated areas from being lost by desertification. If developing countries were to produce such water by seawater desalination using current fossil fuel energy technology, it would cause increased air pollution and global warming. This paper explains the concept of seawater desalination plants using small and medium water reactors (hereinafter called 'nuclear desalination'), as well as important matters regarding the export nuclear desalination plants to developing countries. (author)

  15. Sandia National Laboratories: Working with Sandia: Small Business

    Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community

  16. Potential Impacts of Organic Wastes on Small Stream Water Quality

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall

  17. Power cycles with ammonia-water mixtures as working fluid

    Thorin, Eva

    2000-05-01

    It is of great interest to improve the efficiency of power generating processes, i.e. to convert more of the energy in the heat source to power. This is favorable from an environmental point of view and can also be an economic advantage. To use an ammonia-water mixture instead of water as working fluid is a possible way to improve the efficiency of steam turbine processes. This thesis includes studies of power cycles with ammonia-water mixtures as working fluid utilizing different kinds of heat sources for power and heat generation. The thermophysical properties of the mixture are also studied. They play an important role in the calculations of the process performance and for the design of its components, such as heat exchangers. The studies concern thermodynamic simulations of processes in applications suitable for Swedish conditions. Available correlations for the thermophysical properties are compared and their influence on simulations and heat exchanger area predictions is investigated. Measurements of ammonia-water mixture viscosities using a vibrating wire viscometer are also described. The studies performed show that power cycles with ammonia-water mixtures as the working fluid are well suited for utilization of waste heat from industry and from gas engines. The ammonia-water power cycles can give up to 32 % more power in the industrial waste heat application and up to 54 % more power in the gas engine bottoming cycle application compared to a conventional Rankine steam cycle. However, ammonia-water power cycles in small direct-fired biomass-fueled cogeneration plants do not show better performance than a conventional Rankine steam cycle. When different correlations for the thermodynamic properties are used in simulations of a simple ammonia-water power cycle the difference in efficiency is not larger than 4 %, corresponding to about 1.3 percentage points. The differences in saturation properties between the correlations are, however, considerable at high

  18. Small Water System Management Program: 100 K Area

    Hunacek, G.S. Jr.

    1995-01-01

    Purposes of this document are: to provide an overview of the service and potable water system presently in service at the Hanford Site's 100 K Area; to provide future system forecasts based on anticipated DOE activities and programs; to delineate performance, design, and operations criteria; and to describe planned improvements. The objective of the small water system management program is to assure the water system is properly and reliably managed and operated, and continues to exist as a functional and viable entity in accordance with WAC 246-290-410

  19. Development and utilization of spring water in small scale supply ...

    Development and utilization of spring water in small scale supply scheme for the Kogi State Polytechnic, Lokoja, central Nigeria. Joseph Omada. Abstract. No Abstract. Journal of Mining and Geology 2005, Vol. 41(1): 131-135. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL ...

  20. Sustainable Water Management under Climate Change in Small ...

    Sustainable Water Management under Climate Change in Small Island States of the Caribbean. In the Caribbean islands, climate change is affecting freshwater availability and other ecosystem services in complex ways. For example, freshwater supply is diminished by droughts and affected by saline intrusion due to sea ...

  1. Acoustic detection for small-leak sodium-water reaction

    Nei, Hiromichi; Ohshima, Iwao; Ujihara, Kozaburo; Hori, Masao

    1977-01-01

    Characteristics of acoustic signal produced by sodium-water reaction due to steam injection and by Ar gas injection into sodium were experimentally investigated. Acoustic signal was measured by using Kistler 808A and 815A5 accelerometers. Root mean square (RMS) measurements and frequency analysis of the signal were conducted. The RMS measurements could detect a small water leakage into sodium, as small as 0.07g/sec, in the present loop. The peaks in a frequency spectrum were caused by the natural vibration of a rod on which the acoustic transducer was mounted. The RMS was approximately proportional to the one-third power of the steam leak rate and increased to some extent with the ambient sodium temperature. RMS values, both for sodium-water reaction and Ar gas injection, were about the same order of magnitude, when the data were plotted against the volumetric flow rates of steam and Argas. (auth.)

  2. Valuing water gains in the Eastern Cape's Working for Water ...

    drinie

    2002-01-01

    Jan 1, 2002 ... reason it is crucial that the pricing of this water be an accurate reflection of its relative ..... conservation projects, but it is not the best way of pricing water ... Establishment of a Pricing Strategy for Water Use Charges in Terms.

  3. Framework for continuous performance improvement in small drinking water systems.

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-01-01

    Continuous performance improvement (CPI) can be a useful approach to overcome water quality problems impacting small communities. Small drinking water systems (SDWSs) struggle to meet regulatory requirements and often lack the economic and human resource flexibility for immediate improvement. A CPI framework is developed to provide SDWS managers and operators an approach to gauge their current performance against similar systems and to track performance improvement from the implementation of the new technologies or innovations into the future. The proposed CPI framework incorporates the use of a water quality index (WQI) and functional performance benchmarking to evaluate and compare drinking water quality performance of an individual water utility against that of a representative benchmark. The results are then used to identify and prioritize the most vulnerable water quality indicators and subsequently identify and prioritize performance improvement strategies. The proposed CPI framework has been demonstrated using data collected from SDWSs in the province of Newfoundland and Labrador (NL), Canada and using the Canadian Council of Ministers of the Environment (CCME) WQI. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Increasing Water Temperature Triggers Dominance of Small Freshwater Plankton.

    Serena Rasconi

    Full Text Available Climate change scenarios predict that lake water temperatures will increase up to 4°C and rainfall events will become more intense and frequent by the end of this century. Concurrently, supply of humic substances from terrestrial runoff is expected to increase, resulting in darker watercolor ("brownification" of aquatic ecosystems. Using a multi-seasonal, low trophic state mesocosm experiment, we investigated how higher water temperature and brownification affect plankton community composition, phenology, and functioning. We tested the hypothesis that higher water temperature (+3°C and brownification will, a cause plankton community composition to shift toward small sized phytoplankton and cyanobacteria, and, b extend the length of the growing season entailing higher phytoplankton production later in the season. We demonstrate that the 3°C increase of water temperature favored the growth of heterotrophic bacteria and small sized autotrophic picophytoplankton cells with significantly higher primary production during warmer fall periods. However, 3X darker water (effect of brownification caused no significant changes in the plankton community composition or functioning relative to control conditions. Our findings reveal that increased temperature change plankton community structure by favoring smaller sized species proliferation (autotrophic phytoplankton and small size cladocerans, and increase primary productivity and community turnover. Finally, results of this multi-seasonal experiment suggest that warming by 3°C in aquatic ecosystems of low trophic state may cause planktonic food web functioning to become more dominated by fast growing, r-trait species (i.e., small sizes and rapid development.

  5. Recommendations for small water reactor development in China

    Chen Peipei; Zhou Yun

    2012-01-01

    This paper summarizes the history and features of Advanced Small Water Reactor (ASWR), and provides recommendations and strategies on ASWR research and development in China. The ASWR can be used in remote power grid and replaces mid/small size fossil plant economically, and thus can be an important part of energy saving and emission reduction policy. The safety and economy characteristics of ASWR are able to effectively expand nuclear energy market in emerging countries and developing countries. Therefore, ASWR should be considered as a critical part of China's nuclear technology and equipment export strategy. (authors)

  6. Small data, data infrastructures and big data (Working Paper 1)

    Kitchin, Rob; Lauriault, Tracey P.

    2014-01-01

    The production of academic knowledge has progressed for the past few centuries using small data studies characterized by sampled data generated to answer specific questions. It is a strategy that has been remarkably successful, enabling the sciences, social sciences and humanities to advance in leaps and bounds. This approach is presently being challenged by the development of big data. Small data studies will, however, continue to be important in the future because of their utility in answer...

  7. A holistic water depth simulation model for small ponds

    Ali, Shakir; Ghosh, Narayan C.; Mishra, P. K.; Singh, R. K.

    2015-10-01

    Estimation of time varying water depth and time to empty of a pond is prerequisite for comprehensive and coordinated planning of water resource for its effective utilization. A holistic water depth simulation (HWDS) and time to empty (TE) model for small, shallow ephemeral ponds have been derived by employing the generalized model based on the Green-Ampt equation in the basic water balance equation. The HWDS model includes time varying rainfall, runoff, surface water evaporation, outflow and advancement of wetting front length as external inputs. The TE model includes two external inputs; surface water evaporation and advancement of wetting front length. Both the models also consider saturated hydraulic conductivity and fillable porosity of the pond's bed material as their parameters. The solution of the HWDS model involved numerical iteration in successive time intervals. The HWDS model has successfully evaluated with 3 years of field data from two small ponds located within a watershed in a semi-arid region in western India. The HWDS model simulated time varying water depth in the ponds with high accuracy as shown by correlation coefficient (R2 ⩾ 0.9765), index of agreement (d ⩾ 0.9878), root mean square errors (RMSE ⩽ 0.20 m) and percent bias (PB ⩽ 6.23%) for the pooled data sets of the measured and simulated water depth. The statistical F and t-tests also confirmed the reliability of the HWDS model at probability level, p ⩽ 0.0001. The response of the TE model showed its ability to estimate the time to empty the ponds. An additional field calibration and validation of the HWDS and TE models with observed field data in varied hydro-climatic conditions could be conducted to increase the applicability and credibility of the models.

  8. Work Related Injuries and Associated Factors among Small Scale ...

    user

    smoking, alcohol consumption, working for more than 8 hours and working at night had high odds of occupational injuries. Use of ... equivalent to 4 % of the world's gross national product. The impact ... required them to miss a week of work (9).

  9. Water striders (family Gerridae): mercury sentinels in small freshwater ecosystems

    Jardine, Timothy D.; Al, Tom A.; MacQuarrie, Kerry T.B.; Ritchie, Charles D.; Arp, Paul A.; Maprani, Antu; Cunjak, Richard A.

    2005-01-01

    To circumvent some of the previous limitations associated with contaminant-monitoring programs, we tested the suitability of the water strider (Hemiptera: Gerridae) as a mercury sentinel by comparing total mercury concentrations in water striders and brook trout (Salvelinus fontinalis) from a variety of stream sites in New Brunswick, Canada. There was a strong association between the two variables across sites (r 2 = 0.81, P < 0.001) in systems where both atmospheric deposition and a point source (an abandoned gold mine) were likely contributing to ambient mercury levels. In a small stream draining the gold mine tailings pile, water striders had mercury concentrations an order of magnitude higher than those from reference locations. Temporal variation at three southern New Brunswick stream sites was non-significant. These results suggest that water strider mercury levels accurately quantify food chain entry of the element. The use of sentinel species holds great potential for expanding contaminant-monitoring programs. - Water striders accurately reflect the entry of mercury in food chains of small freshwater systems

  10. Small is working: small turbines are part of the wind boom, too

    Gipe, Paul

    1999-01-01

    This article traces the growth in the use of small wind turbines, and discusses the trends in the manufacture of the turbines. Small turbine technology is examined, with details given of turbine configurations, the merits of two or three blades, blade materials, orientation, robustness, overspeed control, electric generators, and the current market for small wind turbines

  11. Radon-removal techniques for small community public water supplies

    Kinner, N.E.; Malley, J.P.; Clement, J.A.; Quern, P.A.; Schell, G.S.

    1990-08-01

    The report presents the results of an evaluation, performed by the University of New Hampshire--Environmental Research Group (ERG), of radon removal in small community water supplies using full-scale granular activated carbon adsorption, diffused bubble aeration and packed tower aeration. Various low technology alternatives, such as loss in a distribution system and addition of coarse bubble aeration to a pilot-scale atmospheric storage tank were also evaluated. The report discusses each of the treatment alternatives with respect to their radon removal efficiency, potential problems (i.e., waste disposal, radiation exposure and intermedia pollution), and economics in small community applications. In addition, several sampling methods, storage times, scintillation cocktails and extraction procedures currently used in the liquid scintillation technique for analysis of radon in water were compared

  12. Ground water work breakdown structure dictionary

    NONE

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support.

  13. Ground water work breakdown structure dictionary

    1995-04-01

    This report contains the activities that are necessary to assess in ground water remediation as specified in the UMTRA Project. These activities include the following: site characterization; remedial action compliance and design documentation; environment, health, and safety program; technology assessment; property access and acquisition activities; site remedial actions; long term surveillance and licensing; and technical and management support

  14. The Small College Enrollment Officer: Relationship Marketing at Work

    Vander Schee, Brian A.

    2010-01-01

    Prospective college students regularly read in promotional literature that the college experience is personal and unique to each individual. However, if their experience in the recruitment process proves otherwise it is difficult to convince students that they can each have a personal relationship with the institution. Small colleges can overcome…

  15. Hydrogen bonding characterization in water and small molecules

    Silvestrelli, Pier Luigi

    2017-06-01

    The prototypical hydrogen bond in water dimer and hydrogen bonds in the protonated water dimer, in other small molecules, in water cyclic clusters, and in ice, covering a wide range of bond strengths, are theoretically investigated by first-principles calculations based on density functional theory, considering not only a standard generalized gradient approximation functional but also, for the water dimer, hybrid and van der Waals corrected functionals. We compute structural, energetic, and electrostatic (induced molecular dipole moments) properties. In particular, hydrogen bonds are characterized in terms of differential electron density distributions and profiles, and of the shifts of the centres of maximally localized Wannier functions. The information from the latter quantities can be conveyed to a single geometric bonding parameter that appears to be correlated with the Mayer bond order parameter and can be taken as an estimate of the covalent contribution to the hydrogen bond. By considering the water trimer, the cyclic water hexamer, and the hexagonal phase of ice, we also elucidate the importance of cooperative/anticooperative effects in hydrogen-bonding formation.

  16. Making trade work for small producers in Southeast Asia's least ...

    Public policies can help overcome these entry barriers into global markets. ... Institute will work with women entrepreneurs and business development providers, ... Call for new OWSD Fellowships for Early Career Women Scientists now open.

  17. 75 FR 20352 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    2010-04-19

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9139-3] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency. ACTION...-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water...

  18. 75 FR 1380 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    2010-01-11

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9101-9] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency. ACTION... meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National Drinking Water Advisory...

  19. Drinking Water Quality and Occurrence of Giardia in Finnish Small Groundwater Supplies

    Tarja Pitkänen

    2015-08-01

    Full Text Available The microbiological and chemical drinking water quality of 20 vulnerable Finnish small groundwater supplies was studied in relation to environmental risk factors associated with potential sources of contamination. The microbiological parameters analyzed included the following enteric pathogens: Giardia and Cryptosporidium, Campylobacter species, noroviruses, as well as indicator microbes (Escherichia coli, intestinal enterococci, coliform bacteria, Clostridium perfringens, Aeromonas spp. and heterotrophic bacteria. Chemical analyses included the determination of pH, conductivity, TOC, color, turbidity, and phosphorus, nitrate and nitrite nitrogen, iron, and manganese concentrations. Giardia intestinalis was detected from four of the water supplies, all of which had wastewater treatment activities in the neighborhood. Mesophilic Aeromonas salmonicida, coliform bacteria and E. coli were also detected. None of the samples were positive for both coliforms and Giardia. Low pH and high iron and manganese concentrations in some samples compromised the water quality. Giardia intestinalis was isolated for the first time in Finland in groundwater wells of public water works. In Europe, small water supplies are of great importance since they serve a significant sector of the population. In our study, the presence of fecal indicator bacteria, Aeromonas and Giardia revealed surface water access to the wells and health risks associated with small water supplies.

  20. Assessment of water quality from water harvesting using small farm reservoir for irrigation

    Dewi, W. S.; Komariah; Samsuri, I. Y.; Senge, M.

    2018-03-01

    This study aims to assess the quality of rainfall-runoff water harvesting using small farm reservoir (SFR) for irrigation. Water quality assessment criteria based on RI Government Regulation number 82 the year 2001 on Water Quality Management and Pollution Control, and FAO Irrigation Water Quality Guidelines 1985. The experiment was conducted in the dry land of Wonosari Village, Gondangrejo District, Karanganyar Regency. SFR size was 10 m x 3 m x 2 m. Water quality measurements are done every week, ten times. Water samples were taken at 6 points, namely: distance of 2.5 m, 5 m, and 7.5 m from the inlet, at depth 25 cm and 175 cm from surface water. In each sampling point replicated three times. Water quality parameters include dissolved oxygen (DO), Turbidity (TSS), water pH, Nitrate (NO3), and Phosphate. The results show that water harvesting that collected in SFR meets both standards quality used, so the water is feasible for agricultural irrigation. The average value of harvested water was DO 2.6 mg/l, TSS 62.7 mg/l, pH 6.6, P 5.3 mg/l and NO3 0.16 mg/l. Rainfall-runoff water harvesting using SFR prospectus for increasing save water availability for irrigation.

  1. Water: The Flow of Women's Work. Water in Africa.

    Cohen, Amy

    The Water in Africa Project was realized over a 2-year period by a team of Peace Corps volunteers, World Wise Schools (WWS) classroom teachers, and WWS staff members. As part of an expanded, detailed design, resources were collected from over 90 volunteers serving in African countries, photos and stories were prepared, and standards-based learning…

  2. Solar water heating for small cheese factories in Peru

    Oliveros Donohue, A A

    1982-03-01

    Plans are described for the implementation of 40 small plants to be used for cheese production. As a start, a demonstration plant has been built in San Juan de Chuquibambilla-Puno, Peru. Design and testing of a flat plate solar collector, to be used for water heating purposes, are described. The cheese making process is discussed. Essentially two pots are required, one at 32/sup 0/C and one at 80/sup 0/. Two flat plate collectors (1.12 m/sup 2/ each) are connected to a 150 l storage tank. Instrumentation and results are discussed. Total efficiency of the process is given as 40%. It is concluded that future installations should consider using biogas digesters and wind driven water pumps in addition to the solar collectors. A brief discussion of the climate, population distribution, and economy of Peru is given. (MJJ)

  3. Uranium concentration in drinking water from small-scale water supplies in Schleswig-Holstein, Germany; Urankonzentration im Trinkwasser aus Hausbrunnen in Schleswig-Holstein

    Ostendorp, G. [Landesamt fuer soziale Dienste, Kiel (Germany). Dezernat Umweltbezogener Gesundheitsschutz

    2015-07-01

    In this study the drinking water of 212 small-scale water supplies, mainly situated in areas with intensive agriculture or fruit-growing, was analysed for uranium. The median uranium concentration amounted to 0.04 μg/lL, the 95th percentile was 2.5 μg/L. The maximum level was 14 μg/L. This sample exceeded the guideline value for uranium in drinking water. The uranium concentration in small-scale water supplies was found to be slightly higher than that in central water works in Schleswig-Holstein. Water containing more than 10 mg/L nitrate showed significantly higher uranium contents. The results indicate that the uranium burden in drinking water from small wells is mainly determined by geological factors. An additional anthropogenic effect of soil management cannot be excluded. Overall uranium concentrations were low and not causing health concerns. However, in specific cases higher concentrations may occur.

  4. Small Is Not Always Beautiful – A Comparative Study Of Working Conditions

    Sørensen, Ole Henning; Hasle, Peter; Bach, Elsa

    2004-01-01

    When considering working conditions, the myth sometimes holds that small is beautiful. Some studies of occupational accidents show that small companies have fever accidents than large. This indicates that small companies have better working conditions than large. A Danish study based on a random...... sample of employees in the general industry rejects this myth. The figures show that physical working conditions become systematically worse the smaller the size of privately owned companies. The study also supports international data that small companies underreport accidents, and that this might...... be the reason why small seems beautiful....

  5. Status of small water supplies in the Nordic countries: Characteristics, water quality and challenges.

    Gunnarsdottir, Maria J; Persson, Kenneth M; Andradottir, Hrund O; Gardarsson, Sigurdur M

    2017-11-01

    Access to safe water is essential for public health and is one of the most important prerequisites for good living and safe food production. Many studies have shown that non-compliance with drinking water quality standards in small water supply systems is much higher than in large systems. Nevertheless, people served by small water supply systems have the right to the same level of health protection. Actions are therefore needed to improve the situation. The objective of the present study was to carry out a baseline analysis of the situation in the Nordic region and provide recommendations for governmental policy and actions. Data were gathered on number of water supplies, population served, compliance with regulations and waterborne disease outbreaks from various sources in the Nordic countries. The collected data showed that there are about 12500 regulated water supplies, 9400 of which serve fewer than 500 persons. The number of unregulated and poorly regulated supplies is unknown, but it can be roughly estimated that these serve 10% of the Nordic population on a permanent basis or 2.6 million people. However, this does not tell the whole story as many of the very small water supplies serve transient populations, summerhouse dwellers and tourist sites, with many more users. Non-compliance regarding microbes is much higher in the small supplies. The population weighted average fecal contamination incidence rate in the Nordic region is eleven times higher in the smaller supplies than in the large ones, 0.76% and 0.07%, respectively. Registered waterborne disease outbreaks were also more frequent in the small supplies than in the large ones. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Quantification of Protozoa and Viruses from Small Water Volumes

    J. Alfredo Bonilla

    2015-06-01

    Full Text Available Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The aims of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter and viruses capture by charge (bottom filter. Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation—IFA-microscopy, while virus (poliovirus detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45% and poliovirus (67% vs. 55% whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%. Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels.

  7. Promotion of a healthy work life at small enterprises in Thailand by participatory methods.

    Krungkraiwong, Sudthida; Itani, Toru; Amornratanapaichit, Ratanaporn

    2006-01-01

    The major problems of small enterprises include unfavourable working conditions and environment that affect safety and health of workers. The WISE (Work Improvement in Small Enterprises) methodology developed by the ILO has been widely applied to improve occupational safety and health in small enterprises in Thailand. The participatory methods building on local good practices and focusing on practicable improvements have proven effective in controlling the occupational hazards in these enterprises at their sources. As a result of applying the methods in small-scale industries, the frequency of occupational accidents was reduced and the working environment actually improved in the cases studied. The results prove that the participatory approach taken by the WISE activities is a useful and effective tool to make owner/managers and workers in small enterprises voluntarily improve their own working conditions and environment. In promoting a healthy work life at small enterprises in Thailand, it is important to further develop and spread the approach.

  8. Drying of heavy water system and works of charging heavy water in Fugen

    Matsushita, Tadashi; Iijima, Setsuo

    1980-01-01

    The advanced thermal reactor ''Fugen'' is the first heavy water-moderated, boiling light water-cooled nuclear reactor for power generation in Japan. It is a large heavy water reactor having about 130 m 3 of heavy water inventory and about 300 m 3 of helium space as the cover gas of the heavy water system. The heavy water required was purchased from FRG, which had been used for the power output test in the KKN, and the quality was 99.82 mol % mean heavy water concentration. The concentration of heavy water for Fugen used for the nuclear design is 99.70 mol%, and it was investigated how heavy water can be charged without lowering the concentration. The matters of investigation include the method of bringing the heavy water and helium system to perfect dryness after washing and light water test, the method of confirming the sufficient dryness to prevent the deterioration, and the method of charging heavy water safely from its containers. On the basis of the results of investigation, the actual works were started. The works of drying the heavy water and helium system by vacuum drying, the works of sampling heavy water and the result of the degree of deterioration, and the works of charging heavy water and the measures to the heavy water remaing in the containers are described. All the works were completed safely and smoothly. (J.P.N.)

  9. REMOVING BIOMASS FROM WATER PONDS AND SMALL WATER RESERVOIRS BY USING NON-WOVEN FILTERS

    Jakub Nieć

    2015-10-01

    Full Text Available Small water bodies, for example garden ponds, play many functions in the environment, including biocenotic, hydrological, climatic, sozological, landfill-creative, and aesthetic. Due to their small size, these reservoirs are sensitive to external and internal factors, they are also a common natural contaminants receivers. Nonwoven filters have been investigated for several years as a useful device for treatment of domestic wastewater pre-treated in a septic tank. The aim of this study was to verify the possibility of using this type of filters for water originating from small water body purification. The effectiveness of filters were tested on the water originating from the garden pond, contained high levels of nutrients and intensive algal bloom. Research was carried out on three filters (each filter consisted of four geotextile TS 20 layers. Basic water quality indicators: total suspended solids, turbidity, COD and BOD5, temperature, pH and dissolved oxygen were measured. The research results can be considered as satisfactory in terms of mechanical treatment (removal of turbidity and total suspended solids. An important positive effect of the filters was the oxygenation of the treated water, which is especially important for fish.

  10. Assessing rural small community water supply in Limpopo, South Africa: water service benchmarks and reliability.

    Majuru, Batsirai; Jagals, Paul; Hunter, Paul R

    2012-10-01

    Although a number of studies have reported on water supply improvements, few have simultaneously taken into account the reliability of the water services. The study aimed to assess whether upgrading water supply systems in small rural communities improved access, availability and potability of water by assessing the water services against selected benchmarks from the World Health Organisation and South African Department of Water Affairs, and to determine the impact of unreliability on the services. These benchmarks were applied in three rural communities in Limpopo, South Africa where rudimentary water supply services were being upgraded to basic services. Data were collected through structured interviews, observations and measurement, and multi-level linear regression models were used to assess the impact of water service upgrades on key outcome measures of distance to source, daily per capita water quantity and Escherichia coli count. When the basic system was operational, 72% of households met the minimum benchmarks for distance and water quantity, but only 8% met both enhanced benchmarks. During non-operational periods of the basic service, daily per capita water consumption decreased by 5.19l (pwater sources were 639 m further (p ≤ 0.001, 95% CI 560-718). Although both rudimentary and basic systems delivered water that met potability criteria at the sources, the quality of stored water sampled in the home was still unacceptable throughout the various service levels. These results show that basic water services can make substantial improvements to water access, availability, potability, but only if such services are reliable. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. 75 FR 54871 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    2010-09-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9198-8] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency (EPA... final in-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National...

  12. 75 FR 35458 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting...

    2010-06-22

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9165-6] National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting Announcement AGENCY: Environmental Protection Agency (EPA... fourth in-person meeting of the Climate Ready Water Utilities (CRWU) Working Group of the National...

  13. Designing Decentralized Water and Electricity Supply System for Small Recreational Facilities in the South of Russia

    Kasharin, D. V.

    2017-11-01

    The article tackles the issues of designing seasonal water and power supply systems for small recreational facilities in the south of Russia based on intelligent decision support systems. The paper proposes modular prefabricated shell water and power supply works (MPSW&PW) along with energy-efficient standalone water-treatment plants as the principal facilities compliant with the environmental and infrastructural requirements applied to specially protected areas and ensuring the least possible damage to the environment due to a maximum possible use of local construction materials characterized by impressive safety margins in highly seismic environments. The task of designing water and power supply systems requires the consideration of issues pertaining to the development of an intelligent GIS-based system for the selection of water intake sites that facilitate automation of data-processing systems using a priori scanning methods with a variable step and random directions. The paper duly addresses such issues and develops parameterized optimization algorithms for MPSW&PW shell facilities. It equally provides the substantiation of water-treatment plants intelligent design based on energy recovery reverse osmosis and nanofiltration plants that enhance the energy efficiency of such plants serving as the optimum solution for the decentralized water supply of small recreational facilities from renewable energy sources.

  14. Small scale lithium-lead/water-interaction studies

    Kranert, O.; Kottowski, H.

    1991-01-01

    One current concept in fusion blanket design is to utilize water as the coolant and liquid lithium-lead as the breeding/neutron multiplier material. Considering the complex design of the blanket module, it is likely that a water leakage into the liquid alloy may occur due to a tube rupture provoking an intolerable pressure increase in the blanket module. The pressure increase is caused by the combined chemical and thermohydraulic reaction of lithium-lead with water. Experiments which simulate such a transient event are necessary to obtain information which is important for the blanket module design. The interaction has been investigated by conducting small-scale experiments at various injection pressures, alloy- and coolant temperatures. Besides using eutectic Li 17 Pb 83 , Li 7 Pb 2 , lithium and lead have been used. Among other results, the experiments indicate increasing chemical reaction with increasing lithium concentration. At the same time, the chemical reaction inhibits violent thermohydaulic reactions due to the attenuating effect of the hydrogen produced. The preliminary epxerimental results from Li 17 Pb 83 and Li 7 Pb 2 reveal that the pressure- and temperature transients caused by the chemical and thermohydraulic reactions lie within technically manageable limits. (orig.)

  15. GW and Bethe-Salpeter study of small water clusters

    Blase, Xavier, E-mail: xavier.blase@neel.cnrs.fr; Boulanger, Paul [CNRS, Institut NEEL, F-38042 Grenoble (France); Bruneval, Fabien [CEA, DEN, Service de Recherches de Métallurgie Physique, F-91191 Gif-sur-Yvette (France); Fernandez-Serra, Marivi [Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, New York 11794-3800 (United States); Duchemin, Ivan [INAC, SP2M/L-Sim, CEA/UJF Cedex 09, 38054 Grenoble (France)

    2016-01-21

    We study within the GW and Bethe-Salpeter many-body perturbation theories the electronic and optical properties of small (H{sub 2}O){sub n} water clusters (n = 1-6). Comparison with high-level CCSD(T) Coupled-Cluster at the Single Double (Triple) levels and ADC(3) Green’s function third order algebraic diagrammatic construction calculations indicates that the standard non-self-consistent G{sub 0}W{sub 0}@PBE or G{sub 0}W{sub 0}@PBE0 approaches significantly underestimate the ionization energy by about 1.1 eV and 0.5 eV, respectively. Consequently, the related Bethe-Salpeter lowest optical excitations are found to be located much too low in energy when building transitions from a non-self-consistent G{sub 0}W{sub 0} description of the quasiparticle spectrum. Simple self-consistent schemes, with update of the eigenvalues only, are shown to provide a weak dependence on the Kohn-Sham starting point and a much better agreement with reference calculations. The present findings rationalize the theory to experiment possible discrepancies observed in previous G{sub 0}W{sub 0} and Bethe-Salpeter studies of bulk water. The increase of the optical gap with increasing cluster size is consistent with the evolution from gas to dense ice or water phases and results from an enhanced screening of the electron-hole interaction.

  16. Working to reverse a water deficit | IDRC - International ...

    ... and Yugoslavia, Bataineh began work for the Ministry of Water and Irrigation in 1975. ... cubic metres of wastewater treated in Jordan can only be used in agriculture ... Consequently, the ministry has started to improve existing wastewater ...

  17. Water Conservation and Reuse. Instructor Guide. Working for Clean Water: An Information Program for Advisory Committees.

    Pennsylvania State Univ., Middletown. Inst. of State and Regional Affairs.

    Described is a learning session on water conservation intended for citizen advisory groups interested in water quality planning. Topics addressed in this instructor's manual include water conservation needs, benefits, programs, technology, and problems. These materials are components of the Working for Clean Water Project. (Author/WB)

  18. Vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters

    Ahmed, Musahid; Ahmed, Musahid; Wilson, Kevin R.; Belau, Leonid; Kostko, Oleg

    2008-01-01

    In this work we report on the vacuum-ultraviolet (VUV) photoionization of small methanol and methanol-water clusters. Clusters of methanol with water are generated via co-expansion of the gas phase constituents in a continuous supersonic jet expansion of methanol and water seeded in Ar. The resulting clusters are investigated by single photon ionization with tunable vacuum ultraviolet synchrotron radiation and mass analyzed using reflectron mass spectrometry. Protonated methanol clusters of the form (CH3OH)nH + (n=1-12) dominate the mass spectrum below the ionization energy of the methanol monomer. With an increase in water concentration, small amounts of mixed clusters of the form (CH3OH)n(H2O)H + (n=2-11) are detected. The only unprotonated species observed in this work are the methanol monomer and dimer. Appearance energies are obtained from the photoionization efficiency (PIE) curves for CH3OH +, (CH 3OH)2 +, (CH3OH)nH + (n=1-9), and (CH 3OH)n(H2O)H + (n=2-9 ) as a function of photon energy. With an increase in the water content in the molecular beam, there is an enhancement of photoionization intensity for methanol dimer and protonated methanol monomer at threshold. These results are compared and contrasted to previous experimental observations

  19. Smart solar tanks for small solar domestic hot water systems

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  20. Simulation of water flows in multiple columns with small outlets

    Suh, Yong Kweon; Li, Zi Lu; Jeong, Jong Hyun; Lee, Jun Hee

    2006-01-01

    High-pressure die casting such as thixocasting and rheocasting is an effective process in the manufacturing automotive parts. Following the recent trend in the automotive manufacturing technologies, the product design subject to the die casting becomes more and more complex. Simultaneously the injection speed is also designed to be very high to establish a short cycle-time. Thus, the requirement of the die design becomes more demanding than ever before. In some cases the product's shape can have multiple slender manifolds. In such cases, design of the inlet and outlet parts of the die is very important in the whole manufacturing process. The main issues required for the qualified products are to attain gentle and uniform flow of the molten liquid within the passages of the die. To satisfy such issues, the inlet cylinder ('bed cylinder' in this paper) must be as large as possible and simultaneously the outlet opening at the end of each passage must be as small as possible. However these in turn obviously bring additional manufacturing costs caused by re-melting of the bed cylinder and increased power due to the small outlet-openings. The purpose of this paper is to develop effective simulation methods of calculation for fluid flows in multiple columns, which mimic the actual complex design, and to get some useful information which can give some contributions to the die-casting industry. We have used a commercial code CFX in the numerical simulation. The primary parameter involved is the size of the bed cylinder. We will show how the very small opening of the outlet can be treated with the aid of the porous model provided in the code. To check the validity of the numerical results we have also conducted a simple experiment by using water

  1. "Named Small but Doing Great": An Investigation of Small-Scale Chemistry Experimentation for Effective Undergraduate Practical Work

    Tesfamariam, Gebrekidan Mebrahtu; Lykknes, Annette; Kvittingen, Lise

    2017-01-01

    In theory, practical work is an established part of university-level chemistry courses. However, mainly due to budget constraints, large class size, time constraints and inadequate teacher preparations, practical activities are frequently left out from chemistry classroom instruction in most developing countries. Small-scale chemistry (SSC)…

  2. Small drinking water systems under spatiotemporal water quality variability: a risk-based performance benchmarking framework.

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-23

    Traditional approaches for benchmarking drinking water systems are binary, based solely on the compliance and/or non-compliance of one or more water quality performance indicators against defined regulatory guidelines/standards. The consequence of water quality failure is dependent on location within a water supply system as well as time of the year (i.e., season) with varying levels of water consumption. Conventional approaches used for water quality comparison purposes fail to incorporate spatiotemporal variability and degrees of compliance and/or non-compliance. This can lead to misleading or inaccurate performance assessment data used in the performance benchmarking process. In this research, a hierarchical risk-based water quality performance benchmarking framework is proposed to evaluate small drinking water systems (SDWSs) through cross-comparison amongst similar systems. The proposed framework (R WQI framework) is designed to quantify consequence associated with seasonal and location-specific water quality issues in a given drinking water supply system to facilitate more efficient decision-making for SDWSs striving for continuous performance improvement. Fuzzy rule-based modelling is used to address imprecision associated with measuring performance based on singular water quality guidelines/standards and the uncertainties present in SDWS operations and monitoring. This proposed R WQI framework has been demonstrated using data collected from 16 SDWSs in Newfoundland and Labrador and Quebec, Canada, and compared to the Canadian Council of Ministers of the Environment WQI, a traditional, guidelines/standard-based approach. The study found that the R WQI framework provides an in-depth state of water quality and benchmarks SDWSs more rationally based on the frequency of occurrence and consequence of failure events.

  3. How to build a small ferro-cement water tank: technical guide

    Sadzik, P

    1988-05-01

    Full Text Available This guide will assist on how to build a small water tank which can be used to store spring water, rainwater or water pumped from a stream or dam. Small water tanks can be constructed from many different materials such as corrugated iron, bricks...

  4. Social benefits in the Working for Water programme as a public works initiative

    Magadlela, D

    2004-01-01

    Full Text Available The Working for Water programme is a pioneering environmental conservation initiative in that its implementation successfully combines ecological concerns and social development benefits. By addressing unemployment, skills training and empowerment...

  5. Review of boiling water reactor small break loss of coolant accidents

    Gururaj, P.M.; Dua, S.S.; Rao, A.S.

    1981-01-01

    This paper presents a review of the analytical and the experimental work performed by the General Electric Company to determine the performance of boiling water reactors (BWR) following postulated small break accidents (SBA). This review paper addresses the following issues: (1) the response of the BWR following small loss of inventory events; (2) methods of analysis and their justification; (3) necessity, if any, of operator action and the length of time available in which such action can be performed; and (4) operator interface following the SBA event. The results from these SBA studies for different BWR product lines show that even with the multiple system failures assumed, the BWR can successfully withstand an SBA. For a typical BWR/6, it takes the failure of 13 water delivery pumps to cause any significant core heatup. The only operator actions determined to be necessary are simple ones and ample time is available to the operator to perform these actions, if needed

  6. Metal balance shift induced in small fresh water fish by several environmental stresses

    Yukawa, Masae; Iso, Hiroyuki; Kodama, Kumiko; Imaseki, Hitoshi; Aoki, Kazuko; Ishikawa, Yuji

    2005-01-01

    Balance of essential elements in organisms might be changed by environmental stresses. Small fresh water fish, Medaka, was burdened with X-ray irradiation (total dose: 17 Gy), keeping in salty water (70% NaCl of sea water) and keeping in metal containing water (10 ppm of Cr and Co). These stresses are not lethal doses. Essential elements in liver, gall bladder, kidney, spleen, heart and brain in the stress-loaded fish were measured by PIXE method and compared with a control fish to determine the effect of the stresses. Various changes of the elemental contents were observed. Effect of X-ray irradiation was the smallest among the stresses. Relatively high content elements such as P, S, Cl and K were hardly affected with the stresses examined in this work. The effect of Cr on the metal balance seems to be larger than the other stresses. As PIXE method can analyze many elements in a small sample simultaneously, change of elemental distribution in small organisms induced by environmental stresses can be determined readily. (author)

  7. How can context affect what strategies are effective in improving the working environment in small companies?

    Antonsson, Ann-Beth; Hasle, Peter

    2015-01-01

    Background Small companies include many different sectors and types of organisations. Additionally the small companies are affected by clients, authorities and other stakeholders. Some of these contextual factors have been proven to be of relevance to and affect the work environment management, e.......g. in cleaning companies, where many aspects of the working environment is decided by the client company, whose premises is cleaned by the cleaning company. Aim To discuss what factors in small companies´ context may affect the outcome of work environment interventions as a theoretical basis for evaluation...... of what factors that may have affected the outcome of work environment interventions and programs in small companies. Discussion The context is a convenient and simple term covering a multitude of factors and complex relations. It is unavoidable to discuss context when aiming at understanding small...

  8. Analysis of the Sodium-Water Reaction Phenomena by Small Water/Steam Leaks

    Jeong, J-Y; Kim, T-J; Kim, J-M; Kim, B-H; Park, N-C

    2006-01-01

    One of the important problems to be solved in the design and construction of a sodium cooled fast reactor is to confirm the safety and reliability of the steam generator which transfers the heat from the sodium to the water. Sodium-water reaction events may occur when material faults such as a pinhole or cracks occur in the heat transfer tube wall. When such a leak occurs, evaporating water or superheated steam enters through a small leak into the sodium. The surface of this steam jet reacts with the surrounding sodium. Due to turbulence, sodium and particles of the reaction products are drawn at a high velocity into the jet. Impingement of these particles on an adjacent tube is followed by a combined process of a corrosion and erosion which results in a local weakening of the affected tube. If there is no reliable detection available in time, wastage will ultimately result in an additional leak in the adjacent tube. Therefore, it is very significant to predict these phenomena quantitatively from the view of designing a steam generator and its leak detection systems. The objective of this study is a basic investigating of the sodium-water reaction phenomena by small water/steam leaks

  9. Small Microbial Three-Electrode Cell Based Biosensor for Online Detection of Acute Water Toxicity.

    Yu, Dengbin; Zhai, Junfeng; Liu, Changyu; Zhang, Xueping; Bai, Lu; Wang, Yizhe; Dong, Shaojun

    2017-11-22

    The monitoring of toxicity of water is very important to estimate the safety of drinking water and the level of water pollution. Herein, a small microbial three-electrode cell (M3C) biosensor filled with polystyrene particles was proposed for online monitoring of the acute water toxicity. The peak current of the biosensor related with the performance of the bioanode was regarded as the toxicity indicator, and thus the acute water toxicity could be determined in terms of inhibition ratio by comparing the peak current obtained with water sample to that obtained with nontoxic standard water. The incorporation of polystyrene particles in the electrochemical cell not only reduced the volume of the samples used, but also improved the sensitivity of the biosensor. Experimental conditions including washing time with PBS and the concentration of sodium acetate solution were optimized. The stability of the M3C biosensor under optimal conditions was also investigated. The M3C biosensor was further examined by formaldehyde at the concentration of 0.01%, 0.03%, and 0.05% (v/v), and the corresponding inhibition ratios were 14.6%, 21.6%, and 36.4%, respectively. This work provides a new insight into the development of an online toxicity detector based on M3C biosensor.

  10. Hydraulic Network Modelling of Small Community Water Distribution ...

    Prof Anyata

    community (Sakwa) water distribution network in North Eastern geopolitical region of Nigeria using. WaterCAD ..... Table 1: Criteria Relating Population to Water Demand (NWSP, 2000) ..... timely manner ... Department, Middle East Technical.

  11. Theoretical simulation of small scale psychometric solar water desalination system in semi-arid region

    Shatat, Mahmoud; Omer, Siddig; Gillott, Mark; Riffat, Saffa

    2013-01-01

    Many countries around the world suffer from water scarcity. This is especially true in remote and semi-arid regions in the Middle East and North Africa (MENA) where per capita water supplies decline as populations increase. This paper presents the results of a theoretical simulation of an affordable small scale solar water desalination plant using the psychometric humidification and dehumidification process coupled with an evacuated tube solar collector with an area of about 2 m 2 . A mathematical model was developed to describe the system's operation. Then a computer program using Simulink Matlab software was developed to provide the governing equations for the theoretical calculations of the humidification and dehumidification processes. The experimental and theoretical values for the total daily distillate output were found to be closely correlated. After the experimental calibration of the mathematical model, a model simulating solar radiation under the climatic conditions in the Middle East region proved that the performance of the system could be improved to produce a considerably higher amount of fresh water, namely up to 17.5 kg/m 2 day. This work suggests that utilizing the concept of humidification and dehumidification, a compact water desalination unit coupled with solar collectors would significantly increase the potable water supply in remote area. It could be a unique solution of water shortages in such areas. -- Highlights: • An affordable small scale desalination system is proposed. • A mathematical model of the desalination system is developed and programmed using Matlab Simulink. • The model describes the psychometric process based on humidification and dehumidification. • The model is used in optimal selection of elements and operating conditions for solar desalination system. • The use of solar water desalination contributes significantly to reducing global warming

  12. Irrigation Water Value at Small-scale Schemes: Evidence from the North West Province, South Africa

    Speelman, S.; Farolfi, S.; Perret, S.; Haese, D' L.; Haese, D' M.

    2008-01-01

    Insight into the value of water is essential to support policy decision making about investments in the water sector, efficient allocation of water and water pricing. However, information on irrigation water values at small-scale schemes is scarce and in general little attention is paid to the

  13. [Assessment of work ability index in evaluation of small peptides geroprotective effect].

    Bashkireva, A S; Kachan, E Yu

    We have conducted a comparative analysis of the work ability index (WAI) application in evaluation of the effectiveness of small peptides (cytogens) used as geroprotectors in the system of preventive medical nutrition of those working with occupational hazards. Our study revealed the necessity of an inclusion of small peptides into the system of preventive medical nutrition, health promotion in people working with occupational hazards and thus subjected to an accelerated aging. The combined application of peptide geroprotectors makes it possible to restore and enhance adaptive resources as well as to correct work ability and maintain health and well-being in different professional groups.

  14. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  15. Quantification of surface energy fluxes from a small water body using scintillometry and eddy covariance

    McGloin, Ryan; McGowan, Hamish; McJannet, David

    2014-01-01

    Accurate quantification of evaporation from small water storages is essential for water management and planning, particularly in water-scarce regions. In order to ascertain suitable methods for direct measurement of evaporation from small water bodies, this study presents a comparison of eddy......% greater than eddy covariance measurements. We suggest possible reasons for this difference and provide recommendations for further research for improving measurements of surface energy fluxes over small water bodies using eddy covariance and scintillometry. Key Points Source areas for Eddy covariance...... and scintillometry were on the water surface Reasonable agreement was shown between the sensible heat flux measurements Scintillometer estimates of latent heat flux were greater than eddy covariance...

  16. Organising Water: The Hidden Role of Intermediary Work

    Timothy Moss

    2009-02-01

    Full Text Available The increasingly complex challenges of making water management more sustainable require a critical and detailed understanding of the social organisation of water. This paper examines the hitherto neglected role that 'intermediary' organisations play in reshaping the relations between the provision and use of water and sanitation services. In response to new regulatory, environmental, social, and commercial pressures the relationships between water utilities, consumers, and regulators are changing, creating openings for both new and existing organisations to take on intermediary functions. Drawing on recent EU-funded research we provide the first systematic analysis of intermediary organisations in the European water sector, examining the contexts of their emergence, the ways they work, the functions they perform, and the impacts they can have. With a combination of conceptual and empirical analysis we substantiate and elaborate the case for appreciating the often hidden work of intermediaries. We caution, however, against over-simplistic conclusions on harnessing this potential, highlighting instead the need to reframe perspectives on how water is organised to contemplate actor constellations and interactions beyond the common triad of provider, consumer, and regulator.

  17. Small photon beam measurements using radiochromic film and Monte Carlo simulations in a water phantom

    Garcia-Garduno, Olivia A.; Larraga-Gutierrez, Jose M.; Rodriguez-Villafuerte, Mercedes; Martinez-Davalos, Arnulfo; Celis, Miguel A.

    2010-01-01

    This work reports the use of both GafChromic EBT film immersed in a water phantom and Monte Carlo (MC) simulations for small photon beam stereotactic radiosurgery dosimetry. Circularly collimated photon beams with diameters in the 4-20 mm range of a dedicated 6 MV linear accelerator (Novalis (registered) , BrainLAB, Germany) were used to perform off-axis ratios, tissue maximum ratios and total scatter factors measurements, and MC simulations. GafChromic EBT film data show an excellent agreement with MC results (<2.7%) for all measured quantities.

  18. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    Al-Falahi, A. [Helsinki Univ. of Technology, Espoo (Finland); Haennine, M. [VTT Energy, Espoo (Finland); Porkholm, K. [IVO International, Ltd., Vantaa (Finland)

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  19. Radiological characterization for small type light water reactor

    Tanaka, Ken-ichi; Ichige, Hideaki; Tanabe, Hidenori

    2011-01-01

    In order to plan a decommissioning, amount investigation of waste materials and residual radioactivity inventory evaluation must be performed at the first stage of preparatory tasks. These tasks are called radiological characterization. Reliable information from radiological characterization is crucial for specification of decommissioning plan. With the information, we can perform radiological safety analysis and optimize decommissioning scenario. Japan Atomic Power Company (JAPC) has already started preparatory tasks for Tsuruga Nuclear Power Plant Unit 1 (TS-1) that is the first commercial Small Type Light Water Reactor in Japan. To obtain reliable information about residual radioactivity inventory, we improved radioactivity inventory evaluation procedure. The procedure consists of neutron flux distribution calculation and radioactivity distribution calculation. We need a better understanding about characteristics of neutron transport phenomena in order to obtain reliable neutron flux distribution. Neutron flux was measured in Primary Containment Vessel (PCV) at 30 locations using activation foils. We chose locations where characteristic phenomena can be observed. Three dimensional (3D) neutron flux calculation was also performed to simulate continuous changes of neutron flux distribution. By assessing both the measured values and 3D calculation results, we could perform the calculation that simulates the phenomena well. We got knowledge about how to perform an appropriate neutron flux distribution calculation and also became able to calculate a reliable neutron flux distribution. Using the neutron flux distribution, we can estimate a reliable radioactivity distribution. We applied network-parallel-computing method to the estimation. And further we developed 'flux level approximation method' which use linear or parabola fitting method to estimation. Using these new methods, radioactivity by neutron irradiation, which is radioisotope formation, was calculated at

  20. POLLUTION OF SMALL RESERVOIRS OF WATER IN BIALYSTOK AGGLOMERATION

    Janina Piekutin

    2016-05-01

    Full Text Available The aim of the study work was to evaluate the impact of the emissions of heavy metals of roads and streets in the surface water in reservoirs located near the main roads of the Bialystok City. The analysis was conducted for a period of six weeks from March to April 2014. During the study five reservoirs were selected. Two of them, the first and the forth of them are located in Parks. One of them – the third one is a public bathing beach. The second is located near the crossroads in the center of the city and last one – the fifth object is situated within buildings and parking of trucks. Study includes an analysis of indicators such as total suspended solids, BOD5, CODCr, selected heavy metal such as, lead, nickel, copper, cobalt and chromium. All determinations were made in accordance to given methodology, and the evaluation was performed by comparing achieved results to a limit values presented in the Decree of Environment Ministry.

  1. Performance optimization of solar driven small-cooled absorption–diffusion chiller working with light hydrocarbons

    Sayadi, Zouhour [U.R. Thermique et Thermodynamique des Procédés Industriels, Ecole Nationale d’Ingénieurs de Monastir (ENIM), Av. Ibn Jazzar, 5060 Monastir (Tunisia); Ben Thameur, Nizar, E-mail: nizarbenthameur@yahoo.fr [U.R. Thermique et Thermodynamique des Procédés Industriels, Ecole Nationale d’Ingénieurs de Monastir (ENIM), Av. Ibn Jazzar, 5060 Monastir (Tunisia); Bourouis, Mahmoud [Mechanical Engineering Department, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Bellagi, Ahmed [U.R. Thermique et Thermodynamique des Procédés Industriels, Ecole Nationale d’Ingénieurs de Monastir (ENIM), Av. Ibn Jazzar, 5060 Monastir (Tunisia)

    2013-10-15

    Highlights: • 1 kW{sub cooling} diffusion/absorption machine with light hydrocarbons as working fluids. • Hysys optimization to choose the optimal mixture for a better machine performance. • Cooling loads for a small bed-room (16 m{sup 2}) have been estimated into TRNSYS. • Economic assessment to choose the best combination of solar equipments. • Energy savings, CO{sub 2} avoided and equivalent gasoil and Diesel saved energy. - Abstract: We present in this paper a HYSYS (Aspen One) model and simulation results for 1 kW capacity water-cooled absorption/diffusion machine using different binary mixtures of light hydrocarbons as working fluids (C{sub 3}/n-C{sub 6}, C{sub 3}/c-C{sub 6}, C{sub 3}/c-C{sub 5}, propylene/c-C{sub 5}, propylene/i-C{sub 4}, propylene/i-C{sub 5}) in combination with helium as inert gas. The driving heat is supposed to be provided by an evacuated solar collector field. TRNSYS is used to address the solar aspects of the simulations. For the optimal chiller the driving heat temperature was found to be 121 °C for an evaporator exit temperature of 0 °C. The cooling water flow rate circulating between chiller and cooling tower is 140 l/h. Bubble pump and generator are heated by pressurized water from an insulated tank (70 l/m{sup 2}) maintained at a maximum temperature of 126 °C – with make-up heat when needed – and storing solar heat at an estimated 4.2 kW power. The solar energy cover only 40% for the energy supplied to drive the chiller. It’s found that the necessary collector surface area is about 6 m{sup 2} with annually total costs of 1.60 €/kW h with 20 years lifetime period for the installation. The avoided CO{sub 2} emissions are estimated at 1396 kg. The equivalent saved energy is 521 l of diesel or 604 l of gasoline.

  2. Performance optimization of solar driven small-cooled absorption–diffusion chiller working with light hydrocarbons

    Sayadi, Zouhour; Ben Thameur, Nizar; Bourouis, Mahmoud; Bellagi, Ahmed

    2013-01-01

    Highlights: • 1 kW cooling diffusion/absorption machine with light hydrocarbons as working fluids. • Hysys optimization to choose the optimal mixture for a better machine performance. • Cooling loads for a small bed-room (16 m 2 ) have been estimated into TRNSYS. • Economic assessment to choose the best combination of solar equipments. • Energy savings, CO 2 avoided and equivalent gasoil and Diesel saved energy. - Abstract: We present in this paper a HYSYS (Aspen One) model and simulation results for 1 kW capacity water-cooled absorption/diffusion machine using different binary mixtures of light hydrocarbons as working fluids (C 3 /n-C 6 , C 3 /c-C 6 , C 3 /c-C 5 , propylene/c-C 5 , propylene/i-C 4 , propylene/i-C 5 ) in combination with helium as inert gas. The driving heat is supposed to be provided by an evacuated solar collector field. TRNSYS is used to address the solar aspects of the simulations. For the optimal chiller the driving heat temperature was found to be 121 °C for an evaporator exit temperature of 0 °C. The cooling water flow rate circulating between chiller and cooling tower is 140 l/h. Bubble pump and generator are heated by pressurized water from an insulated tank (70 l/m 2 ) maintained at a maximum temperature of 126 °C – with make-up heat when needed – and storing solar heat at an estimated 4.2 kW power. The solar energy cover only 40% for the energy supplied to drive the chiller. It’s found that the necessary collector surface area is about 6 m 2 with annually total costs of 1.60 €/kW h with 20 years lifetime period for the installation. The avoided CO 2 emissions are estimated at 1396 kg. The equivalent saved energy is 521 l of diesel or 604 l of gasoline

  3. Silica dust control in small-scale building/structure demolition operations using good work practice guidance

    Muianga, C V; Rice, C H; Succop, P

    2009-01-01

    Work practices can influence exposure, especially in small-scale operations conducted by mobile work crews. This study evaluated the use of information on good work practice in control guidance sheets adapted from UK Silica Essentials guidance sheets by trained workers and supervisors employed in small-scale concrete and masonry demolition operations. A one-page employee silica task-based control guidance sheet for each of four demolition tasks and multiple-page silica control guidance for supervisors were developed. Interactive, hands-on worker training on these task-based good work practice controls was developed. Training was presented to 26 participants from two demolition crews. Feedback on the training and task-based good work practice control guidance sheets was elicited. Observations of work practices were made before and after training. Participants indicated gains in knowledge and checklists were used to document skill attainment. The quality of the training and usefulness of the material/skills was rated high by trainees. Increased use of water to suppress dust and wet cleaning methods on the job were documented following the training. Additional follow-up after training is required to determine long-term impact on sustained changes in work practices, and to evaluate the need for refresher training.

  4. Silica dust control in small-scale building/structure demolition operations using good work practice guidance

    Muianga, C. V.; Rice, C. H.; Succop, P.

    2009-02-01

    Work practices can influence exposure, especially in small-scale operations conducted by mobile work crews. This study evaluated the use of information on good work practice in control guidance sheets adapted from UK Silica Essentials guidance sheets by trained workers and supervisors employed in small-scale concrete and masonry demolition operations. A one-page employee silica task-based control guidance sheet for each of four demolition tasks and multiple-page silica control guidance for supervisors were developed. Interactive, hands-on worker training on these task-based good work practice controls was developed. Training was presented to 26 participants from two demolition crews. Feedback on the training and task-based good work practice control guidance sheets was elicited. Observations of work practices were made before and after training. Participants indicated gains in knowledge and checklists were used to document skill attainment. The quality of the training and usefulness of the material/skills was rated high by trainees. Increased use of water to suppress dust and wet cleaning methods on the job were documented following the training. Additional follow-up after training is required to determine long-term impact on sustained changes in work practices, and to evaluate the need for refresher training.

  5. What kind of knowledge do small companies need to improve their working environment?

    Antonsson, Ann-Beth; Hasle, Peter

    2015-01-01

    towards knowledge-based behaviour. Additionally the time required increases when moving from skill- to knowledge-based behaviour. On the other hand, skill-based behaviour lacks the ability to solve problems and adapt to new situations. In the working environment risk assessment as well as the development...... of management routines are typically knowledge-based activities, whereas the application of good practice is more of skill or rule-based. For small companies, time as well as knowledge is an important constraint for the work environment management. Therefore the conclusion could be to focus on and provide skill......Background One of the main obstacles identified for small companies´ improvement of the working environment is lack of knowledge. Aim To discuss what kind of knowledge is required by small companies if they are to be able to improve their working environment and the pros and cons of different kinds...

  6. Multi-Application Small Light Water Reactor Final Report

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-01-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO 2 , 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept. Applications such as cogeneration

  7. On the slowdown mechanism of water dynamics around small amphiphiles

    Homsi Brandeburgo, W.; Thijmen van der Post, S.; Meijer, E.J.; Ensing, B.

    2015-01-01

    Aqueous solvation of small amphiphilic molecules exhibits a unique and complex dynamics, that is only partially understood. A recent series of studies on the hydration of small organic compounds, such as tetramethylurea (TMU), trimethylamine N-oxide (TMAO) and urea, has provided strong evidence of a

  8. Free water transport, small pore transport and the osmotic pressure gradient

    Parikova, Alena; Smit, Watske; Zweers, Machteld M.; Struijk, Dirk G.; Krediet, Raymond T.

    2008-01-01

    BACKGROUND: Water transport in peritoneal dialysis (PD) patients occurs through the small pores and water channels, the latter allowing free water transport (FWT). The osmotic gradient is known to be one of the major determinants of water transport. The objective of the study was to analyse the

  9. Soil water content, runoff and soil loss prediction in a small ungauged agricultural basin in the Mediterranean region using the Soil and Water Assessment Tool

    Ramos Martín, Ma. C. (Ma. Concepción); Martínez Casasnovas, José Antonio

    2015-01-01

    The aim of the present work was to evaluate the possibilities of using sub-basin data for calibration of the Soil and Water Assessment Tool (SWAT) model in a small (46 ha) ungauged basin (i.e. where the water flow is not systematically measured) and its response. This small basin was located in the viticultural Anoia-Penedès region (North-east Spain), which suffers severe soil erosion. The data sources were: daily weather data from an observatory located close to the basin; a detailed soil ma...

  10. Work Ability Index (WAI) and its health-related determinants among Iranian farmers working in small farm enterprises.

    Rostamabadi, Akbar; Mazloumi, Adel; Rahimi Foroushani, Abbas

    2014-01-01

    This study aimed to determine the Work Ability Index (WAI) and examine the influence of health dimensions and demographic variables on the work ability of Iranian farmers working in small farm enterprises. A cross-sectional study was conducted among 294 male farmers. The WAI and SF-36 questionnaires were used to determine work ability and health status. The effect of demographics variables on the work ability index was investigated with the independent samples t-test and one-way ANOVA. Also, multiple linear regression analysis was used to test the association between the mean WAI score and the SF-36 scales. The mean WAI score was 35.1 (SD=10.6). One-way ANOVA revealed a significant relationship between the mean WAI and age. Multiple linear regression analysis showed that work ability was more influenced by physical scales of the health dimensions, such as physical function, role-physical, and general health, whereas a lower association was found for mental scales such as mental health. The average WAI was at a moderate work ability level for the sample population of farmers in this study. Based on the WAI guidelines, improvement of work ability and identification of factors affecting it should be considered a priority in interventional programs. Given the influence of health dimensions on WAI, any intervention program for preservation and promotion of work ability among the studied farmers should be based on balancing and optimizing the physical and psychosocial work environments, with a special focus on reducing physical work load.(J Occup Health 2014; 56: 478-484).

  11. Integrated Water, Sanitation and Solid Waste Management in Small ...

    Inadequate water and sanitation services are having an negative effect on human health and polluting Lake Victoria in East Africa. At the request of the governments of Kenya, Tanzania and Uganda, UN-Habitat has undertaken an initiative to provide water and sanitation services in the region and protect the Lake basin.

  12. The Persistence of Informality: Small-Scale Water Providers in Manila’s Post-Privatisation Era

    Deborah Cheng

    2014-02-01

    Full Text Available This article troubles the notion of a formal-informal dichotomy in urban water provision. Whereas expansion of a water utility typically involves the replacement of informal providers, the experience in Manila demonstrates that the rapid connection of low-income areas actually hinges, in part, on the selective inclusion and exclusion of these smaller actors. In this sense, privatisation has not eliminated small-scale water provision, but has led to the reconfiguration of its usage, blurring the boundaries between formal and informal. By examining the spatial and temporal evolution of small-scale water provision in Manila’s post-privatisation era, I show how certain spaces are seen as less serviceable than others. Critically, small providers working in partnership with the utilities are sanctioned because they supplement the utilities’ operations. The areas in which they work are considered served, factoring into aggregate coverage statistics, even though their terms of service are often less desirable than those of households directly connected to the utilities. In contrast, small providers that operate outside of the utilities’ zones of coverage are considered inferior, to be replaced. The result is a differentiation in informality – one in which the private utilities largely determine modes of access and thus the spatialisation of informal water provision.

  13. 77 FR 25721 - Small Entity Compliance Guide: Bottled Water: Quality Standard: Establishing an Allowable Level...

    2012-05-01

    ...] Small Entity Compliance Guide: Bottled Water: Quality Standard: Establishing an Allowable Level for di(2... ``Bottled Water: Quality Standard: Establishing an Allowable Level for di(2- ethylhexyl)phthalate--Small... an allowable level for di(2- ethylhexyl)phthalate (DEHP). This final rule is effective April 16, 2012...

  14. The Impact of Small Scale Mining on Irrigation Water Quality in ...

    Small scale mining is a major threat to water resources and agricultural activities in most mining communities across Ghana. This study investigated the effect of small scale mining on the quality of water for irrigation from some selected sites along a river and a reservoir which was used as a control. The physical and ...

  15. Systematic Work Environment Management: experiences from implementation in Swedish small-scale enterprises.

    Gunnarsson, Kristina; Andersson, Ing-Marie; Rosén, Gunnar

    2010-01-01

    Small-scale enterprises face difficulties in fulfilling the regulations for organising Systematic Work Environment Management. This study compared three groups of small-scale manufacturing enterprises with and without support for implementing the provision. Two implementation methods, supervised and network method, were used. The third group worked according to their own ideas. Twenty-three enterprises participated. The effects of the implementation were evaluated after one year by semi-structured dialogue with the manager and safety representative. Each enterprise was classified on compliance with ten demands concerning the provision. The work environment was estimated by the WEST-method. Impact of the implementation on daily work was also studied. At the follow-up, the enterprises in the supervised method reported slightly more improvements in the fulfilment of the demands in the provision than the enterprises in the network method and the enterprises working on their own did. The effect of the project reached the employees faster in the enterprises with the supervised method. In general, the work environment improved to some extent in all enterprises. Extensive support to small-scale enterprises in terms of advise and networking aimed to fulfil the regulations of Systematic Work Environment Management had limited effect - especially considering the cost of applying these methods.

  16. Air and water qualities around small ruminant houses in Central Java - Indonesia

    Budisatria, I.G.S.; Udo, H.M.J.; Zijpp, van der A.J.; Murti, T.W.; Baliarti, E.

    2007-01-01

    There is a general concern that livestock can have a profound effect on the environment, also in smallholder production systems. This paper presented the impact of small ruminants on the quality of air and water in and around small ruminant houses. In total, 27 small ruminant houses from the three

  17. Small Businesses in South Africa : Who Outsources Tax Compliance Work and Why?

    Coolidge, Jacqueline; Ilic, Domagoj; Kisunko, Gregory

    2009-01-01

    The authors use firm-level survey data on 998 small and medium enterprises registered for tax in South Africa regarding tax compliance costs to investigate the use of outsourcing to complete tax compliance tasks. Overall, about 43 percent of the enterprises do all their tax compliance work in-house, 11 percent outsource all their tax compliance work, and the remaining 46 percent use a comb...

  18. Improving the ecohydrological and economic efficiency of Small Hydropower Plants with water diversion

    Razurel, Pierre; Gorla, Lorenzo; Tron, Stefania; Niayifar, Amin; Crouzy, Benoît; Perona, Paolo

    2018-03-01

    Water exploitation for energy production from Small Hydropower Plant (SHP) is increasing despite human pressure on freshwater already being very intense in several countries. Preserving natural rivers thus requires deeper understanding of the global (i.e., ecological and economic) efficiency of flow-diversion practice. In this work, we show that the global efficiency of SHP river intakes can be improved by non-proportional flow-redistribution policies. This innovative dynamic water allocation defines the fraction of water released to the river as a nonlinear function of river runoff. Three swiss SHP case studies are considered to systematically test the global performance of such policies, under both present and future hydroclimatic regimes. The environmental efficiency is plotted versus the economic efficiency showing that efficient solutions align along a (Pareto) frontier, which is entirely formed by non-proportional policies. On the contrary, other commonly used distribution policies generally lie below the Pareto frontier. This confirms the existence of better policies based on non-proportional redistribution, which should be considered in relation to implementation and operational costs. Our results recommend abandoning static (e.g., constant-minimal-flow) policies in favour of non-proportional dynamic ones towards a more sustainable use of the water resource, also considering changing hydroclimatic scenarios.

  19. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns

    Kulinkina, Alexandra V.; Kosinski, Karen C.; Liss, Alexander; Adjei, Michael N.; Ayamgah, Gilbert A.; Webb, Patrick; Gute, David M.; Plummer, Jeanine D.; Naumova, Elena N.

    2016-01-01

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. Despite providing the highest and most flexible level of service with better microbiological water quality to their users, these systems remain vulnerable to rural water sustainability challenges. We assessed temporal and spatial patterns in water consumption from public stan...

  20. Vocabulary Learning in Collaborative Tasks: A Comparison of Pair and Small Group Work

    Dobao, Ana Fernández

    2014-01-01

    This study examined the opportunities that pair and small group interaction offer for collaborative dialogue and second language (L2) vocabulary learning. It compared the performance of the same collaborative writing task by learners working in groups of four (n = 60) and in pairs (n = 50), focusing on the occurrence of lexical language-related…

  1. Developing Employment Interview and Interviewing Skills in Small-group Project Work.

    Hindle, Paul

    2000-01-01

    Discusses the value of communications skills in geographical education. Describes the use of realistic interviews that were a part of small-group project work. Explains that students wrote job specifications, a curriculum vitae, a cover letter, and conducted interview panels. (CMK)

  2. Gender, Work-Family Linkages, and Economic Success among Small Business Owners.

    Loscocco, Karyn A.; Leicht, Kevin T.

    1993-01-01

    Investigated work-family connections and economic success among women and men small business owners. Analyses of data from 3-year panel survey of 99 women and 312 men showed considerable gender similarity in processes through which business and individual characteristics affect personal earnings, although women were disadvantaged in some…

  3. Small-angle neutron scattering studies on water soluble complexes ...

    ... by small-angle neutron scattering. SANS data showed a positive indication of the formation of RCP-SDS complexes. Even though the complete structure of the polyion complexes could not be ascertained, the results obtained give us the information on the local structure in these polymer-surfactant systems. The data were ...

  4. The utilization of water courses for the production of electric power. Report from a working group

    1992-01-01

    The problems connected with damming Danish water courses to enable the production of hydroelectricity are discussed. These constraints are generally related to conservation principles and cultural historical interests. It is observed that attempts are usually made to remove dams constructed in water courses such as streams and brooks, in order to ensure the free passage of fish and small animals and it is the opinion of the working group that this policy should continue to be followed. Otherwise alternative methods (such as fish staircases and fish sluices) should be set up to enable the fish to pass through without getting entangled with any turbines. Consideration must be given to the preservation of items of cultural-historical interest. Where waters are stagnant, at least half of the water volume should be left untouched for fish passage, and in other non-stagnant water areas water should be reserved for fish passage. The amount of necessary water volume should be assessed in individual cases. The local authorities have agreed that legislation on dams, the establishment of fauna and fish passages and the dedication of free waters to fish passage should be coordinated. (AB)

  5. Working group report on water resources, supply and demand

    Marta, T.J.

    1990-01-01

    A summary is presented of the issues discussed, and the conclusions and recommendations of a working group on water resources, supply and demand. The issues were grouped into the categories of detecting climatic change and water impacts, simulating potential impacts, and responding to potential impacts. The workshop groups achieved consensus on the following points: the physics of global warming and climatic change have been satifactorily proven; there appears to be some evidence of climatic change and a signal could soon be detected; policy decisions and strategic plans for climatic change and its potential impacts are needed immediately; and targets and priorities for decison making should be identified and addressed immediately. Three top-priority issues are the identification of indicators for the detection of climatic change impacts on hydrology, determining response to climate-related change, and evaluation of design criteria. Better information on regional climate and hydrology under conditions of global warming is needed before design criteria could be altered

  6. Problems of Nitrogen at Central Municipal Water Works in Ostrava

    Praus Petr

    2003-09-01

    Full Text Available Nitrogen is very important nutrient and must be removed during wastewater treatment process. The presented article describes the situation of nitrogen removal at the Central Municipal Water Works in Ostrava. At present, this biological sewage plant operates with only 45% nitrogen removal efficiency. The current three corridor denitrification-nitrification (D-N system is planed to be reconstructed. One of several solution is modification of the activation tank into four step D-N system that could be completed by postdenitrification in the redundant clarifiers.In this paper the analytical methods, used for determination of nitrogen compounds in waste waters, are described as well. Only sufficiently precise and accurate methods must be selected and that is why the standardized or fully validated procedures are preferred. Laboratory results are used for monitoring of treatment process and for making of important technological decisions. For this purpose, introduction of the quality control and quality assurance system into laboratory practise is desired.

  7. Field Testing of a Small Water Purification System for Non-PRASA Rural Communities

    Small, rural communities typically do not have adequate water purification systems to sustain their life quality and residents are exposed to pathogens present in drinking water. In Puerto Rico (PR), approximately 4% of the population does not have access to drinking water provi...

  8. Evaluation of Small-Scale Providers of Water Supply and Sanitation Services in Peru

    World Bank

    2007-01-01

    The Water and Sanitation Program (WSP), administered by the World Bank, helps countries find sustainable solutions to ensure efficient delivery of the quality water supply and sanitation services the population demands. The WSP is carrying out a systematic analysis in several countries to identify the role of small-scale providers (SSP) of water and sanitation services to poor populations ...

  9. Nanofiltration Membranes for Removal of Color and Pathogens in Small Public Drinking Water Sources

    Small public water supplies that use surface water as a source for drinking water are frequently faced with elevated levels of color and natural organic matter (NOM) that are precursors for chlorinated disinfection byproduct (DBP) formation. Nanofiltration (NF) systems can preve...

  10. Sustainability of small reservoirs and large scale water availability under current conditions and climate change

    Krol, Martinus S.; de Vries, Marjella J.; van Oel, Pieter R.; Carlos de Araújo, José

    2011-01-01

    Semi-arid river basins often rely on reservoirs for water supply. Small reservoirs may impact on large-scale water availability both by enhancing availability in a distributed sense and by subtracting water for large downstream user communities, e.g. served by large reservoirs. Both of these impacts

  11. Performance of a small wind powered water pumping system

    Lorentz helical pumps (Henstedt-Ulzburg, Germany) have been powered by solar energy for remote water pumping applications for many years, but from October 2005 to March 2008 a Lorentz helical pump was powered by wind energy at the USDA-ARS Conservation and Production Research Laboratory (CPRL) near ...

  12. Topical and working papers on heavy water requirements and availability

    The documents included in this report are: Heavy water requirements and availability; technological infrastructure for heavy water plants; heavy water plant siting; hydrogen and methane availability; economics of heavy water production; monothermal, water fed heavy water process based on the ammonia/hydrogen isotopic exchange; production strategies to meet demand projections; hydrogen availability; deuterium sources; the independent UHDE heavy water process

  13. Methodology for Assessing the Work of Small Business at the Municipal Level

    Aleksandr Evgen’evich Kremin

    2016-07-01

    Full Text Available In order to promote sustainable socio-economic development in a municipality, its local authorities face the task of establishing an industrial and financial base on their territory, it will help increase its level of economic independence. On the basis of foreign experience and domestic research on territorial development it can be concluded that one of the most effective ways to enhance the level of socio-economic development of the municipality is to boost its small business. Effective management of this economic sector requires adequate assessment of its functioning at the municipal level. The analysis of existing methodologies for assessing the functioning of small business at the municipal level shows that none of them meets the criteria that the author of the present paper has selected and that are necessary for efficient research into the small business sector. In this regard, a methodology for estimating the work of small business at the municipal level was elaborated, and tested on the statistic data of municipal formations of the Vologda Oblast. The study reveals municipalities with the highest and lowest levels of small business development. In addition, municipalities were grouped in three blocks that represent different characteristics of their functioning. Taking into account the problems of business subjects, the study has developed measures to increase the level of development for each group of municipalities. Implementing these activities will help intensify the work of the sector of the economy under consideration, and increase the economic independence of territorial formations in the region. The paper can be used to assess the effectiveness of activities aimed to support small business in the region and to help regional and municipal authorities to work out a strategy for further development of this economic sector

  14. Treatment technology for removing radon from small community water supplies

    Kinner, N.E.; Quern, P.A.; Schell, G.S.; Lessard, C.E.; Clement, J.A.

    1990-01-01

    This paper reports on the selection of an appropriate treatment system to remove radon from drinking water which depends primarily upon percent removal; capital and operating and maintenance costs; safety; raw water quality with respect to parameters such as Fe, Mn, bacteria, and organics. The radon removal efficiency of the diffused bubble and packed tower aeration exceeded 99% at A:W ratios of 15:1 and 5:1, respectively; the GAC system averaged 81 ± 7.7%. Though our field evaluations indicated that GAC systems may not be as efficient as aeration systems, the system tested was operated above design requirements for most of the study period. Other researchers have found removals of greater than 99% with GAC point-of-entry applications. Therefore, each of these processes has the potential to consistently remove 99% of the radon applied. However, even this percent removal may not be sufficient to meet an MCL in the range of 200 to 1000 pCi/L if the raw water contained more than 20,000 to 100,000 pCi/L, respectively

  15. Enrichment and determination of small amounts of 90Sr/90Y in water samples

    Mundschenk, H.

    1979-01-01

    Small amounts of 90 Sr/ 90 Y can be concentrated from large volumes of surface water (100 l) by precipitation of the phosphates, using bentonite as adsorber matrix. In the case of samples containing no or nearly no suspended matter (tap water, ground water, sea water), the daughter 90 Y can be extracted directly by using filter beds impregnated with HDEHP. The applicability of both techniques is demonstrated under realistic conditions. (orig.) 891 HP/orig. 892 MKO [de

  16. Sustainability of small reservoirs and large scale water availability under current conditions and climate change

    Krol, Martinus S.; de Vries, Marjella J.; van Oel, P.R.; Carlos de Araújo, José

    2011-01-01

    Semi-arid river basins often rely on reservoirs for water supply. Small reservoirs may impact on large-scale water availability both by enhancing availability in a distributed sense and by subtracting water for large downstream user communities, e.g. served by large reservoirs. Both of these impacts of small reservoirs are subject to climate change. Using a case-study on North-East Brazil, this paper shows that climate change impacts on water availability may be severe, and impacts on distrib...

  17. What Happens Where the Water and the Rock Touch in Small Space Bodies

    Byrne, P. K.; Regensburger, P. V.; Klimczak, C.; Bohnenstiehl, D. R.; Dombard, A. J.; Hauck, S. A., II

    2017-12-01

    There are several small space bodies that go around bigger worlds that might have a layer of water under a layer of ice. Lots of study has been done to understand the outside ice layer of these small space bodies, because the ice can tells us important things about the big water layer under it. Some of these small space bodies are very interesting because the right things for life—water, hot rock, and food—might be at the bottom of the water layer, where it touches the top of the next layer down, which is made of rock. But it is very hard to understand what this rock at the bottom of the water is like, because we can't see it. So, we are imagining what this rock is like by thinking about what the rock is like under the water layer on our own world. If hot rock comes out of the rock layer through cracks under the water, the cold of the water makes the hot rock go very cold very fast, and it makes funny rolls as it does so. This might happen on some small space bodies that are hot enough on the inside to make hot rock. We know that on our own world the rock layer under the water is wet to as far down as cracks can go, so it makes sense that this is true for small space bodies, too. We did some thinking about numbers and found out that the cracks can go a few ten hundred steps into the rock layer on small space bodies, but for bigger (well, not quite so small) space bodies, the cracks can go at least tens of ten hundred steps into the rock layer. This means that water goes into the rock layer this much, too. But get this: some small bodies are not really that small—one of them is bigger than the first world from the Sun! And on a few of these big (small) bodies, the layer of water is so heavy that the bottom of that water is pushed together from all sides and turns into a type of hot ice. This means that, for these big (small) worlds, the water can't get into the rock layer through cracks (since there is a layer of hot ice in the way), and so these bodies are

  18. Diversity patterns and freshwater molluscs similarities in small water reservoirs

    Tomáš Čejka

    2011-02-01

    Full Text Available The survey presents the molluscan fauna from six impoundment systems of two sides (NW and SE of the Small Carpathians. Altogether 25 species (15 gastropod and 10 bivalve species were identified in reservoirs and their subsystems (inflows and outlets. The number of species per site ranged from 2 to 12, the mean number of species per site was 7. The mean number of individuals per site ranged from 15 to 905 (mean 174 ind/m2. Radix auricularia, R. ovata, Gyraulus albus, Gyraulus parvus/laevis, Hippeutis complanatus and Pisidium casertanum were present in more than 50% of reservoirs. The most abundant and frequent species in the entire area and all subsystems were Pisidium casertanum, Pisidium subtruncatum and Gyraulus parvus/laevis. Faunistic similarity indices indicate moderate degree of beta diversity i.e., differentiation among the sites; good separation of sites by cluster analysis indicates a different composition among inflows/outlets and littoral molluscan faunas of reservoirs.

  19. QUALITY OF WORK LIFE: PROPOSED ASSESSMENT FOR PROFESSIONAL MICRO AND SMALL ENTERPRISES LOGISTICS SECTOR

    Orlando Roque da Silva

    2015-03-01

    Full Text Available The concept of Management of Quality of Work Life (MQWL search to develop mechanisms for the individual has balance between their professional and human life. The great challenge for organizations is to match the organizational need, dictated by the market with its rapid businesses changes and individual needs. Understanding the individual as an entire person with numerous and diverse interests and knowledge that can be directed to the activities performed in the organization is one of the conditions for having this compliance. This work, following the proposals made by Richard Walton, is an indication for evaluation especially for micro and small enterprises. The purpose of this article is observe the concepts and establish variants understood as fundamental in the production environment of micro and small enterprises sector logistics.

  20. The Hidden Work of Women in Small Family Firms in Southern Spain

    Paula Rodríguez-Modroño

    2017-01-01

    Full Text Available Women have historically played an important hidden role in family firms, and a great deal of research is now shedding light on this role. In spite of the more formal nature of female work at the present day, still a considerable volume of women’s contributions in family firms is unregistered and unpaid, even in developed regions. A questionnaire was administered to 396 women working in small and medium-sized family firms located in Andalucia, a southern European region, characterized by familialism and an important informal economy. Our results confirm the persistence of subordinate forms of unpaid family collaboration due to the neutrality assigned to female contributions under the traditional gendered division of work. But also this study shows how some of the women voluntarily embrace subordinate roles as a temporary way to gain professional experience, useful for their future work inside or outside the family firm.

  1. Assessment of water consumptions in small mediterranean islands' primary schools by means of a long-term online monitoring

    Ferraris, Marco; De Gisi, Sabino; Farina, Roberto

    2017-10-01

    A key challenge of our society is improving schools through the sustainable use of resources especially in countries at risk of desertification. The estimation of water consumption is the starting point for the correct dimensioning of water recovery systems. To date, unlike the energy sector, there is a lack of scientific information regarding water consumption in school buildings. Available data refer roughly to indirect estimates by means of utility bills and therefore no information on the role of water leakage in the internal network of the school is provided. In this context, the aim of the work was to define and implement an on-line monitoring system for the assessment of water consumptions in a small Mediterranean island primary school to achieve the following sub-goals: (1) definition of water consumption profile considering teaching activities and secretarial work; (2) direct assessment of water consumptions and leakages and, (3) quantification of the behaviour parameters. The installed monitoring system consisted of 33 water metres (3.24 persons per water metre) equipped with sensors set on 1-L impulse signal and connected to a data logging system. Results showed consumptions in the range 13.6-14.2 L/student/day and leakage equal to 54.8 % of the total water consumptions. Considering the behavioural parameters, the consumptions related to toilet flushing, personal, and building cleaning were, respectively, 54, 43 and 3 % of the total water ones. Finally, the obtained results could be used for dimensioning the most suitable water recovery strategies at school level such as grey water or rainwater recovery systems.

  2. Working fluid charge oriented off-design modeling of a small scale Organic Rankine Cycle system

    Liu, Liuchen; Zhu, Tong; Ma, Jiacheng

    2017-01-01

    Highlights: • Organic Rankine Cycle model considering working fluid charge has been established. • Overall solution algorithm of system off-design performance is proposed. • Variation trend of different zones in both heat exchangers can be observed. • Optimal working fluid charge volume for different output work has been estimated. - Abstract: Organic Rankine Cycle system is one of the most widely used technique for low-grade waste heat recovery. Developing of dynamic Organic Rankine Cycle models played an increasingly important part in system performance prediction. The present paper developed a working fluid charge oriented model for an small scale Organic Rankine Cycle to calculate the theoretical value of working fluid charge level for the system under rated condition. The two heat exchangers are divided into three different zones and related heat transfer correlations are employed to estimate the length variation of each zones. Steady state models have been applied to describe the performance of pump and expander. Afterwards, an overall solution algorithm based on the established model has been proposed in order to exact simulate the system’s off-design performance. Additionally, the impact of different working fluid charge volumes has also been discussed. Simulation results clearly shows the variation trend of different zones in both heat exchangers, as well as the variation trend of system operating parameters under various expander output work. Furthermore, the highest thermal efficiency can be reached 6.37% under rated conditions with a working fluid charge volume of 34.6 kg.

  3. THE IMPACT OF TBILISI USED WATER ON ECOCHEMICAL STATE OF SMALL RIVERS OF THE CITY

    MARIAM TABATADZE

    2016-03-01

    Full Text Available The centralized sewerage systems and wastewater treatment facilities were constructed in Tbilisi in the middle of the previous century. Nowadays only mechanical treatment stage operates in wastewater treatment facilities of Tbilisi. Moreover, collected wastewater from the sewerage systems often drains without any treatment directly into the small rivers located in Tbilisi area. These rivers feed the main water artery of our capital – river Mtkvari and play an important role in its salt balance. As a result of study of hydro-chemical parameters of Tbilisi small rivers were identified Water Pollution Index (WPI and assessment of small rivers pollution by sewage waters was carried out. It was established that small rivers of Tbilisi belong to the IV and V classes, i.e. less polluted and polluted rivers, while according to the content of fecal matter in the river water they are ranged in the class of polluted and most polluted.

  4. Linking Working Capital Policy Towards Financial Performance of Small Medium Enterprise (SME in Malaysia

    Binti Mohamad Nor Edi Azhar

    2017-01-01

    Full Text Available Despite the fact that working capital management (WCM is vital to businesses of any size that operated in developed and emerging countries, WCM is of particular importance to the small business firms operating in emerging markets. The importance of WCM to small and medium-sized enterprises (SMEs stems from the limited financial resources available and heavily reliance of SMEs on WCM as a main source of finance. This study aims to provide empirical evidence on the effects of working capital investment policy on firm’s financial performance for a sample of 103 small and medium-sized firms listed with the SME Corporation of Malaysia. Data for the period from 2008 to 2013 are analysed to examine if investment policy improves firms’ return on total asset. By using correlation and pooled ordinary least square regression, the result provides a significant relationship between the level of aggressiveness of investment policy and SME’s financial performance. The findings of this study not only contribute to the scant WCM literature in Malaysia but throw light on the importance of efficient WCM to the policy makers and regulators in motivating and encouraging relevant parties to pay more attention on working capital through improving investors’ awareness and improving transparency.

  5. Impacts of alum residues from Morton Jaffray Water Works on water quality and fish, Harare, Zimbabwe

    Muisa, Norah; Hoko, Zvikomborero; Chifamba, Portia

    Metal pollution of freshwater due to human activities is a major problem confronting most urban centres in developing countries. This study determined the extent to which aluminium in the residues from Morton Jaffray Water Works in Harare were affecting the water quality of Manyame River and Lake Manyame. The study also measured aluminium bioaccumulation in Nile Tilapia ( Oreochromis niloticus) which is of importance to the commercial fisheries industry in Zimbabwe. Depth integrated water, and sediment grab samples and adult fish were collected per site in January and March, 2010. A total of six sites were selected on the Manyame River and in Lake Manyame. The levels of Total Aluminium (Al) were determined in sediments, water and fish tissues (liver, kidney, gill and muscle). Total solids, total dissolved solids, conductivity, pH, dissolved oxygen and temperature were also determined in water and residues. The texture of the sediments was also assessed. Aluminium concentration in water ranged from 2.19 mg/L to 68.93 mg/L during both sampling campaigns surpassing permissible maximum concentration limits of 0.087 to 0.75 mg/L suggested by the Environmental Protection Agency and African Union. The site upstream of the discharge point of the residues always had the lowest levels though it was higher than acceptable levels indicated above, thus suggesting the existence of other sources of aluminium in the catchment besides Morton Jaffray Water Works. However, there was a 10-fold and 100-fold increase in levels of aluminium in water and sediments, respectively, at the site 100 m downstream of the discharge point on the Manyame River. Mean aluminium concentrations in water and sediments at this site averaged 68.93 ± 61.74 mg/L and 38.18 ± 21.54 mg/L in water and 103.79 ± 55.96 mg/L and 131.84 ± 16.48 mg/L in sediments in sampling campaigns 1 and 2, respectively. These levels were significantly higher than levels obtained from all the other sites during both sampling

  6. Assessment of irrigation performance: contribution to improve water management in a small catchment in the Brazilian savannas

    Rodrigues, Lineu; Marioti, Juliana; Steenhuis, Tammo; Wallender, Wesley

    2010-05-01

    Irrigated agriculture is the major consumer of surface water in Brazil using over 70% of the total supply. Due to the growing competition for water among different sectors of the economy, sustainable water use can only be achieved by decreasing the portion of water used by the irrigated agriculture. Thus, in order to maintain yield, farmers need to irrigate more efficiently. There is little known on irrigation efficiency in Brazil. Therefore a study was carried out in the Buriti Vermelho basin to assess the irrigation performance of existing system. The experimental basin has a drainage area of 940 hectares and is located in the eastern part of the Federal District, in the Brazilian savanna region. Agriculture is the main activity. There is a dominance of red latosols. Several types of land use and crop cover are encountered in the basin. Conflicts among farmers for water are increasing. As water, in quality and quantity, is crucial to maintain the livelihood of the population in the basin, concern about risk of water lack due to climatic and land use change is in place. Once irrigation is the main water user in the basin, to increase water availability and reduce conflicts a water resource management plan has to be established. For this purpose, irrigation system performance has to be understood. The objective of this work was to assess the performance and the management of irrigation (small and big) that has been carried out by farmers in the Buriti Vermelho experimental watershed. A survey undertaken in 2007 was used to identify the irrigation systems in the basin. It was verified that irrigation is practiced by both small (area up to 6 hectare) and big farmers. Small farmers usually crop limes and vegetables and use micro-irrigation, drip, sprinkler, guns or furrow to irrigate them. Big farmers plant annual crops and use center pivot as irrigation system. In this first assessment 13 irrigation systems were evaluated: five conventional sprinklers, four drip

  7. URANIUM REMOVAL FROM DRINKING WATER USING A SMALL FULL-SCALE SYSTEM

    This report presents background and history of water quality, the basis for design and nine months of actual operating data for a small, full-scale strong-base ion exchange system that is used to remove uranium from a water supply serving a school in Jefferson County, CO. Informa...

  8. 75 FR 14607 - Small Entity Compliance Guide: Bottled Water: Total Coliform and E. coli

    2010-03-26

    ...] Small Entity Compliance Guide: Bottled Water: Total Coliform and E. coli; Availability AGENCY: Food and... the availability of a guidance for industry entitled ``Bottled Water: Total Coliform and E. coli... determine whether any of the coliform organisms are Escherichia coli (E. coli), an indicator of fecal...

  9. Water Quality in Small Community Distribution Systems. A Reference Guide for Operators

    The U.S. Environmental Protection Agency (EPA) has developed this reference guide to assist the operators and managers of small- and medium-sized public water systems. This compilation provides a comprehensive picture of the impact of the water distribution system network on dist...

  10. Supercritical Carbon Dioxide turbomachinery design for water-cooled Small Modular Reactor application

    Lee, Jekyoung; Lee, Jeong Ik; Yoon, Ho Joon; Cha, Jae Eun

    2014-01-01

    Highlights: • We described the concept of coupling the S-CO 2 Brayton cycle to the water-cooled SMRs. • We describe a turbomachinery design code called KAISD T MD that can use real gases too. • We suggest changes to the S-CO 2 cycle layout with multiple-independent shafts. • KAIST T MD was used to design the turbomachinery of suggested layout. - Abstract: The Supercritical Carbon Dioxide (S-CO 2 ) Brayton cycle has been gaining attention due to its compactness and high efficiency at moderate turbine inlet temperature. Previous S-CO 2 cycle research works in the field of nuclear engineering were focused on its application to the next generation reactor with higher turbine inlet temperature than the existing conventional water-cooled nuclear power plants. However, it was shown in authors’ previous paper that the advantages of the S-CO 2 Brayton cycle can be also further applied to the water-cooled Small Modular Reactor (SMR) with a success, since SMR requires minimal overall footprint while retaining high performance. One of the major issues in the S-CO 2 Brayton cycle is the selection and design of appropriate turbomachinery for the designed cycle. Because most of the nuclear industry uses incompressible working fluids or ideal gases in the turbomachinery, a more detailed examination of the design of the turbomachinery is required for a power system that uses S-CO 2 as working fluid. This is because the S-CO 2 Brayton cycle high efficiency is the result of the non-ideal variation of properties near the CO 2 critical point. Thus, the major focus of this paper is to suggest the design of the turbomachinery necessary for the S-CO 2 Brayton cycle coupled to water cooled SMRs. For this reason, a S-CO 2 Brayton cycle turbomachinery design methodology was suggested and the suggested design methodology was first tested with the existing experimental data to verify its capability. After then, it was applied to the proposed reference system to demonstrate its

  11. Supercritical Carbon Dioxide turbomachinery design for water-cooled Small Modular Reactor application

    Lee, Jekyoung, E-mail: leejaeky85@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Yoon, Ho Joon, E-mail: hojoon.yoon@kustar.ac.ae [Khalifa University of Science, Technology and Research (KUSTAR), P.O. Box 127788, Abu Dhabi (United Arab Emirates); Cha, Jae Eun, E-mail: jecha@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2014-04-01

    Highlights: • We described the concept of coupling the S-CO{sub 2} Brayton cycle to the water-cooled SMRs. • We describe a turbomachinery design code called KAISD{sub T}MD that can use real gases too. • We suggest changes to the S-CO{sub 2} cycle layout with multiple-independent shafts. • KAIST{sub T}MD was used to design the turbomachinery of suggested layout. - Abstract: The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton cycle has been gaining attention due to its compactness and high efficiency at moderate turbine inlet temperature. Previous S-CO{sub 2} cycle research works in the field of nuclear engineering were focused on its application to the next generation reactor with higher turbine inlet temperature than the existing conventional water-cooled nuclear power plants. However, it was shown in authors’ previous paper that the advantages of the S-CO{sub 2} Brayton cycle can be also further applied to the water-cooled Small Modular Reactor (SMR) with a success, since SMR requires minimal overall footprint while retaining high performance. One of the major issues in the S-CO{sub 2} Brayton cycle is the selection and design of appropriate turbomachinery for the designed cycle. Because most of the nuclear industry uses incompressible working fluids or ideal gases in the turbomachinery, a more detailed examination of the design of the turbomachinery is required for a power system that uses S-CO{sub 2} as working fluid. This is because the S-CO{sub 2} Brayton cycle high efficiency is the result of the non-ideal variation of properties near the CO{sub 2} critical point. Thus, the major focus of this paper is to suggest the design of the turbomachinery necessary for the S-CO{sub 2} Brayton cycle coupled to water cooled SMRs. For this reason, a S-CO{sub 2} Brayton cycle turbomachinery design methodology was suggested and the suggested design methodology was first tested with the existing experimental data to verify its capability. After then, it was

  12. Topical and working papers on heavy water accountability and safeguards

    This report contains the following papers: 1) Statement of IAEA concerning safeguarding of heavy water; 2) Preliminary Canadian Comments on IAEA document on heavy water safeguards; 3) Heavy water accountability 03.10.78; 4) Heavy water accountability 05.04.79

  13. Role of small-scale independent providers in water and sanitation

    Dijk, Meine Pieter

    2008-01-01

    textabstractSmall-scale independent providers (SSIPs) and households are good for 10–69% of the household water supply and sometimes up to 95% of the sanitation solutions in cities in developing countries. Different types of SSIP can be distinguished. They could be allowed to make a more important contribution to drinking water and sanitation in a situation where many governments cannot be the only one to supply drinking water and sanitary services. Theoretical and practical arguments are use...

  14. Implications of small water leak reactions on sodium heated steam generator design

    Smedley, J A

    1975-07-01

    Various types of sodium water reactions have been looked on as possibly causing hazard conditions in sodium heated steam generator units ranging from the very improbable boiler tube double ended guillotine fracture to the almost certain occurrence of micro-leaks. Within this range small water leaks reactions have attracted particular interest and the present paper looks at the principles of associating the reactions with detection and protection systems for Commercial Fast Reactors. A method is developed for assessing whether adequate protection has been provided against the effects of small water leak reactions in a steam generator unit. (author)

  15. THE ANALYSIS OF THE TIME-SERIES FLUCTUATION OF WATER DEMAND FOR THE SMALL WATER SUPPLY BLOCK

    Koizumi, Akira; Suehiro, Miki; Arai, Yasuhiro; Inakazu, Toyono; Masuko, Atushi; Tamura, Satoshi; Ashida, Hiroshi

    The purpose of this study is to define one apartment complex as "the water supply block" and to show the relationship between the amount of water supply for an apartment house and its time series fluctuation. We examined the observation data which were collected from 33 apartment houses. The water meters were installed at individual observation points for about 20 days in Tokyo. This study used Fourier analysis in order to grasp the irregularity in a time series data. As a result, this paper demonstrated that the smaller the amount of water supply became, the larger irregularity the time series fluctuation had. We also found that it was difficult to describe the daily cyclical pattern for a small apartment house using the dominant periodic components which were obtained from a Fourier spectrum. Our research give useful information about the design for a directional water supply system, as to making estimates of the hourly fluctuation and the maximum daily water demand.

  16. Shodagor Family Strategies : Balancing Work and Family on the Water.

    Starkweather, Kathrine E

    2017-06-01

    The Shodagor of Matlab, Bangladesh, are a seminomadic community of people who live and work on small wooden boats, within the extensive system of rivers and canals that traverse the country. This unique ecology places particular constraints on family and economic life and leads to Shodagor parents employing one of four distinct strategies to balance childcare and provisioning needs. The purpose of this paper is to understand the conditions that lead a family to choose one strategy over another by testing predictions about socioecological factors that impact the sexual division of labor, including a family's stage in the domestic cycle, aspects of the local ecology, and the availability of alloparents. Results show that although each factor has an impact on the division of labor individually, a confluence of these factors best explains within-group, between-family differences in how mothers and fathers divide subsistence and childcare labor. These factors also interact in particular ways for Shodagor families, and it appears that families choose their economic strategies based on the constellation of constraints that they face. The results of these analyses have implications for theory regarding the sexual division of labor across cultures and inform how Shodagor family economic and parenting strategies should be contextualized in future studies.

  17. Study on water leak-tightness of small leaks on a 1 inch cylinder valve

    Miyazawa, T.; Kasai, Y.; Inabe, N.; Aritomi, M.

    2002-01-01

    Practical thresholds for water leak-tightness of small leaks were determined by experimentation. Measurements for small leak samples were taken of air leakage rates and water leakage rates for identical leak samples in order to identify parameters that influence water leak-tightness threshold. Four types of leaks were evaluated: a fine wire inserted in an O-ring seal, a glass capillary tube, a stainless steel orifice, and a scratched valve stem on a 1 inch UF 6 cylinder valve. Experimental results demonstrated that the key parameter for water leak-tightness is the opening size of the leak hole. The maximum allowable hole size to achieve water leak-tightness ranged from 10 to 20 μm in diameter in this study. Experimental results with 1 inch UF 6 cylinder valve samples demonstrated that the acceptance criteria for preshipment leakage test, 1x10 -3 ref-cm 3 .s -1 , as prescribed in ANSI N14.5 is an appropriate value from the point of view of water leak-tightness for enriched UF 6 packages. The mechanism of water leak-tightness is plugging by tiny particles existing in water. The water used in experiments in this study contained far fewer particles than in water assumed to be encountered under accident conditions of transport. Therefore, the water leak-tightness threshold determined in this study is a conservative value in a practical evaluation. (author)

  18. Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.

    Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.

    2017-12-01

    This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa

  19. Data gaps in evidence-based research on small water enterprises in developing countries.

    Opryszko, Melissa C; Huang, Haiou; Soderlund, Kurt; Schwab, Kellogg J

    2009-12-01

    Small water enterprises (SWEs) are water delivery operations that predominantly provide water at the community level. SWEs operate beyond the reach of piped water systems, selling water to households throughout the world. Their ubiquity in the developing world and access to vulnerable populations suggests that these small-scale water vendors may prove valuable in improving potable water availability. This paper assesses the current literature on SWEs to evaluate previous studies and determine gaps in the evidence base. Piped systems and point-of-use products were not included in this assessment. Results indicate that SWES are active in urban, peri-urban and rural areas of Africa, Asia and Latin America. Benefits of SWEs include: no upfront connection fees; demand-driven and flexible to local conditions; and service to large populations without high costs of utility infrastructure. Disadvantages of SWEs include: higher charges for water per unit of volume compared with infrastructure-based utilities; lack of regulation; operation often outside legal structures; no water quality monitoring; increased potential for conflict with local utilities; and potential for extortion by local officials. No rigorous, evidence-based, peer-reviewed scientific studies that control for confounders examining the effectiveness of SWEs in providing potable water were identified.

  20. PRELIMINARY RESULTS OF QUALITY STUDY OF WATER FROM SMALL MICHALICE RESERVOIR ON WIDAWA RIVER

    Mirosław Wiatkowski

    2014-10-01

    Full Text Available The paper presents an analysis of water quality of the small Michalice reservoir. A preliminary assessment of the reservoir water quality and its usability was made. The quality of water in the reservoir is particularly important as the main functions of the reservoir are agricultural irrigation, recreation and flood protection . The following physico-chemical parameters of the Widawa River were analyzed: NO3 -, NO2 -, NH4 +, PO4 3-, COD, water temperature, pH and electrolytic conductivity. Main descriptive statistical data were presented for the analyzed water quality indicators. The research results indicate that the reservoir contributed to the reduced concentrations of the following water quality indicators: nitrates, nitrites, phosphates, electrolytic conductivity and COD (in the outflowing water – St.3 in comparison to the water flowing into the reservoir – St.1. In the water flowing out of the Psurów reservoir higher values of the remaining indicators were observed if compared with the inflowing water. It was stated, as well, that analised waters are not vulnerable to nitrogen compounds pollution coming from the agricultural sources and are eutrophic. For purpose obtaining of the précised information about condition of Michalice reservoir water purity as well as river Widawa it becomes to continue the hydrological monitoring and water quality studies.

  1. Digitizing specimens in a small herbarium: A viable workflow for collections working with limited resources.

    Harris, Kari M; Marsico, Travis D

    2017-04-01

    Small herbaria represent a significant portion of herbaria in the United States, but many are not digitizing their collections. At the Arkansas State University Herbarium (STAR), we have created a viable workflow to help small herbaria begin the digitization process, including suggestions for publishing data on the Internet. We calculated hourly rates of each phase of the digitization process. We also mapped accessions at the county level to determine geographic strengths in the collection. All 17,678 accessioned flowering plant specimens at STAR are imaged, databased in Specify, and available electronically on the herbarium's website. Students imaged the specimens at a mean rate of 145/h. We found differences in databasing rates between the graduate student leading the project (47/h) and undergraduate assistants (25/h). The majority of specimens at STAR were collected within the counties neighboring the institution. With this workflow, we estimate that one person can digitize a 20,000-specimen collection in less than 2.5 yr by working only 10 h/wk. Because STAR is a small herbarium with limited resources, the application of the workflow described should assist curators of similar-sized collections as they contemplate and undertake the digitization process.

  2. Digitizing specimens in a small herbarium: A viable workflow for collections working with limited resources1

    Harris, Kari M.; Marsico, Travis D.

    2017-01-01

    Premise of the study: Small herbaria represent a significant portion of herbaria in the United States, but many are not digitizing their collections. Methods: At the Arkansas State University Herbarium (STAR), we have created a viable workflow to help small herbaria begin the digitization process, including suggestions for publishing data on the Internet. We calculated hourly rates of each phase of the digitization process. We also mapped accessions at the county level to determine geographic strengths in the collection. Results: All 17,678 accessioned flowering plant specimens at STAR are imaged, databased in Specify, and available electronically on the herbarium’s website. Students imaged the specimens at a mean rate of 145/h. We found differences in databasing rates between the graduate student leading the project (47/h) and undergraduate assistants (25/h). The majority of specimens at STAR were collected within the counties neighboring the institution. Discussion: With this workflow, we estimate that one person can digitize a 20,000-specimen collection in less than 2.5 yr by working only 10 h/wk. Because STAR is a small herbarium with limited resources, the application of the workflow described should assist curators of similar-sized collections as they contemplate and undertake the digitization process. PMID:28439474

  3. Characterization of the Water Quality Status on a Stretch of River Lérez around a Small Hydroelectric Power Station

    Enrique Valero

    2012-10-01

    Full Text Available The renewable energy emerged as a solution to the environmental problems caused by the conventional sources of energy. Small hydropower (SHP is claimed to cause negligible effects on the ecosystem, although some environmental values are threatened and maintenance of an adequate water quality should be ensured. This work provides a characterization of the water quality status in a river stretch around a SHP plant on river Lérez, northwest Spain, for four years after its construction. The ecological and chemical status of the water as well as the ecological quality of the riparian habitat, were used as measures of quality. Data were compared with the water quality requirements. The variations in the quality parameters were analyzed over time and over the river sections with respect to the SHP plant elements. Two years after construction, the temperature and dissolved oxygen values achieved conditions for salmonid water and close to the reference condition, while pH values were low. The Iberian Biological Monitoring Working Party (IBMWP index showed a positive trend from two years after the construction and stabilized at “unpolluted or not considerably altered water”. Quality parameters did not present significant differences between sampling points. The SHP plant construction momentarily altered the quality characteristics of the water.

  4. ENVIRONMENTAL FACTORS AND CHEMICAL AND MICROBIOLOGICAL WATER QUALITY CONSTITUTENTS RELATED TO THE PRESENCE OF ENTERIC VIRUSES IN GROUND WATER FROM SMALL PUBLIC WATER SUPPLIES IN SOUTHEASTERN MICHIGAN

    A study of small public ground-water-supply wells that produce water from discontinuous sand and gravel aquifers was done from July 1999 through July 2001 in southeastern Michigan. Samples were collected to determine the occurrence of viral pathogens and microbiological indicato...

  5. Simulation of water-energy fluxes through small-scale reservoir systems under limited data availability

    Papoulakos, Konstantinos; Pollakis, Giorgos; Moustakis, Yiannis; Markopoulos, Apostolis; Iliopoulou, Theano; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris; Efstratiadis, Andreas

    2017-04-01

    Small islands are regarded as promising areas for developing hybrid water-energy systems that combine multiple sources of renewable energy with pumped-storage facilities. Essential element of such systems is the water storage component (reservoir), which implements both flow and energy regulations. Apparently, the representation of the overall water-energy management problem requires the simulation of the operation of the reservoir system, which in turn requires a faithful estimation of water inflows and demands of water and energy. Yet, in small-scale reservoir systems, this task in far from straightforward, since both the availability and accuracy of associated information is generally very poor. For, in contrast to large-scale reservoir systems, for which it is quite easy to find systematic and reliable hydrological data, in the case of small systems such data may be minor or even totally missing. The stochastic approach is the unique means to account for input data uncertainties within the combined water-energy management problem. Using as example the Livadi reservoir, which is the pumped storage component of the small Aegean island of Astypalaia, Greece, we provide a simulation framework, comprising: (a) a stochastic model for generating synthetic rainfall and temperature time series; (b) a stochastic rainfall-runoff model, whose parameters cannot be inferred through calibration and, thus, they are represented as correlated random variables; (c) a stochastic model for estimating water supply and irrigation demands, based on simulated temperature and soil moisture, and (d) a daily operation model of the reservoir system, providing stochastic forecasts of water and energy outflows. Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students

  6. Structure of fullerene aggregates in pyridine/water solutions by small-angle neutron scattering

    Aksenov, V.L.; Belushkin, A.V.; Avdeev, M.V.; Rosta, L.; Mihailovic, D.; Mrzel, A.; Serdyuk, I.N.; Timchenko, A.A.

    2001-01-01

    Results of small-angle neutron scattering experiments on fullerenes (C 60 ) in pyridine/water solutions are reported. They confirm conclusions of the previous studies, in particular, dynamic light scattering experiments. Aggregates with characteristic radius of about 20 nm are formed in the solutions. The contrast variation using different combinations of protonated/deuterated components (water and pyridine) of the solutions points to the small pyridine content inside the aggregates. This fact testifies that the aggregates consist of a massive fullerene core covered by a thin pyridine shell

  7. Piped water consumption in Ghana: A case study of temporal and spatial patterns of clean water demand relative to alternative water sources in rural small towns.

    Kulinkina, Alexandra V; Kosinski, Karen C; Liss, Alexander; Adjei, Michael N; Ayamgah, Gilbert A; Webb, Patrick; Gute, David M; Plummer, Jeanine D; Naumova, Elena N

    2016-07-15

    Continuous access to adequate quantities of safe water is essential for human health and socioeconomic development. Piped water systems (PWSs) are an increasingly common type of water supply in rural African small towns. We assessed temporal and spatial patterns in water consumption from public standpipes of four PWSs in Ghana in order to assess clean water demand relative to other available water sources. Low water consumption was evident in all study towns, which manifested temporally and spatially. Temporal variability in water consumption that is negatively correlated with rainfall is an indicator of rainwater preference when it is available. Furthermore, our findings show that standpipes in close proximity to alternative water sources such as streams and hand-dug wells suffer further reductions in water consumption. Qualitative data suggest that consumer demand in the study towns appears to be driven more by water quantity, accessibility, and perceived aesthetic water quality, as compared to microbiological water quality or price. In settings with chronic under-utilization of improved water sources, increasing water demand through household connections, improving water quality with respect to taste and appropriateness for laundry, and educating residents about health benefits of using piped water should be prioritized. Continued consumer demand and sufficient revenue generation are important attributes of a water service that ensure its function over time. Our findings suggest that analyzing water consumption of existing metered PWSs in combination with qualitative approaches may enable more efficient planning of community-based water supplies and support sustainable development. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The influence of small-mammal burrowing activity on water storage at the Hanford Site

    Landeen, D.S.

    1994-01-01

    This paper summarizes the activities that were conducted in support of the long-term surface barrier development program by Westinghouse Hanford Company to determine the degree that small-mammal burrow systems affect the loss or retention of water in the soils at the Hanford Site in Washington state. An animal intrusion lysimeter facility was constructed, consisting of two outer boxes buried at grade, which served as receptacles for six animal intrusion lysimeters. Small burrowing animals common the Hanford Site were introduced over a 3- to 4-month period. Supplemental precipitation was added monthly to three of the lysimeters with a rainfall simulator (rainulator). Information collected from the five tests indicated that (1) during summer months, water was lost in all the lysimeters, including the supplemental precipitation added with the rainulator; and (2) during winter months, all lysimeters gained water. The data indicate little difference in the amount of water stored between control and animal lysimeters. The overall water loss was attributed to surface evaporation, a process that occurred equally in control and treatment lysimeters. Other causes of water loss are a result of (1) constant soil turnover and subsequent drying, and (2) burrow ventilation effects. This suggests that burrow systems will not contribute to any significant water storage at depth and, in fact, may enhance the removal of water from the soil

  9. Applying information theory to small groups assessment: emotions and well-being at work.

    García-Izquierdo, Antonio León; Moreno, Blanca; García-Izquierdo, Mariano

    2010-05-01

    This paper explores and analyzes the relations between emotions and well-being in a sample of aviation personnel, passenger crew (flight attendants). There is an increasing interest in studying the influence of emotions and its role as psychosocial factors in the work environment as they are able to act as facilitators or shock absorbers. The contrast of the theoretical models by using traditional parametric techniques requires a large sample size to the efficient estimation of the coefficients that quantify the relations between variables. Since the available sample that we have is small, the most common size in European enterprises, we used the maximum entropy principle to explore the emotions that are involved in the psychosocial risks. The analyses show that this method takes advantage of the limited information available and guarantee an optimal estimation, the results of which are coherent with theoretical models and numerous empirical researches about emotions and well-being.

  10. LIFE QUALITY AT WORK: PROPOSITION FOR MICRO AND SMALL BUSINESS AVALIATION

    Jucelaine Lopes de Oliveira

    2012-12-01

    Full Text Available The concept of QLW seeks to develop mechanisms for the individual to have balance between their personal and professional life, with this in mind the challenge for the organizations is to balance the organizational needs, dictated by the market with its rapid changes, and the needs of individuals. The company should understand the individual as a whole person with various interests and knowledge which can be directed to activities undertaken in the organization. This work, following the proposals made by Richard Walton, is an indication for evaluation especially created for micro and small businesses; the goal is to sharpen the concepts and to establish variant knowledge as fundamental in the environment production of MSEs.

  11. Varying the charge of small cations in liquid water: Structural, transport, and thermodynamical properties

    Martelli, Fausto; Vuilleumier, Rodolphe; Simonin, Jean-Pierre; Spezia, Riccardo

    2012-10-01

    In this work, we show how increasing the charge of small cations affects the structural, thermodynamical, and dynamical properties of these ions in liquid water. We have studied the case of lanthanoid and actinoid ions, for which we have recently developed accurate polarizable force fields, and the ionic radius is in the 0.995-1.250 Å range, and explored the valency range from 0 to 4+. We found that the ion charge strongly structures the neighboring water molecules and that, in this range of charges, the hydration enthalpies exhibit a quadratic dependence with respect to the charge, in line with the Born model. The diffusion process follows two main regimes: a hydrodynamical regime for neutral or low charges, and a dielectric friction regime for high charges in which the contraction of the ionic radius along the series of elements causes a decrease of the diffusion coefficient. This latter behavior can be qualitatively described by theoretical models, such as the Zwanzig and the solvated ion models. However, these models need be modified in order to obtain agreement with the observed behavior in the full charge range. We have thus modified the solvated ion model by introducing a dependence of the bare ion radius as a function of the ionic charge. Besides agreement between theory and simulation this modification allows one to obtain an empirical unified model. Thus, by analyzing the contributions to the drag coefficient from the viscous and the dielectric terms, we are able to explain the transition from a regime in which the effect of viscosity dominates to one in which dielectric friction governs the motion of ions with radii of ca. 1 Å.

  12. Work environment and occupational risk assessment for small animal Portuguese veterinary activities.

    Macedo, Angela C; Mota, Vânia T; Tavares, João M; Machado, Osvaldo L; Malcata, Francisco X; Cristo, Marinela P; Mayan, Olga N

    2018-03-01

    The professional work of small animal veterinary staff encompasses a wide diversity of demanding tasks. This has prompted a number of studies covering physical, chemical, biological, ergonomic, or psychological hazards, as well as their health effects upon veterinary workers. However, such results were obtained from self-reported surveys (via paper or online). This study reports the identification of potential hazards and provides a risk assessment of 15 veterinary clinics based on data from walk-through surveys, interviews with workers, and quantification of indoor air quality parameters including concentration of volatile organic compounds (total, isoflurane, and glutaraldehyde). The risk arising from X-ray exposure was unacceptable in seven clinics; X-ray examination should be discontinued in the absence of isolated radiation rooms, poor safety practices, and lack of personal protective equipment. Ergonomic-related hazards and work practices should be revised as soon as possible, considering that improper postures, as well as moving and lifting heavy animals are major causes of musculoskeletal disorders. The risk levels were, in general, small or medium (acceptable) with regard to exposure to physical hazards (such as bites, scratches, cuts, and burns) and biological hazards. It was observed that the indoor air quality parameters including temperature, respirable particulate matter and total volatile organic compounds do not indicate a comfortable workplace environment, requiring clinics' attention to keep the safe environment. The veterinarians and nurses were exposed to isoflurane (above 2 ppm) during surgery if an extractor system for waste gas was used instead of a scavenging system. Finally, veterinary workers did not possess any type of training on occupational safety and health issues, even though they recognized its importance.

  13. Female peers in small work groups enhance women's motivation, verbal participation, and career aspirations in engineering

    Dasgupta, Nilanjana; Scircle, Melissa McManus; Hunsinger, Matthew

    2015-01-01

    For years, public discourse in science education, technology, and policy-making has focused on the “leaky pipeline” problem: the observation that fewer women than men enter science, technology, engineering, and mathematics fields and more women than men leave. Less attention has focused on experimentally testing solutions to this problem. We report an experiment investigating one solution: we created “microenvironments” (small groups) in engineering with varying proportions of women to identify which environment increases motivation and participation, and whether outcomes depend on students’ academic stage. Female engineering students were randomly assigned to one of three engineering groups of varying sex composition: 75% women, 50% women, or 25% women. For first-years, group composition had a large effect: women in female-majority and sex-parity groups felt less anxious than women in female-minority groups. However, among advanced students, sex composition had no effect on anxiety. Importantly, group composition significantly affected verbal participation, regardless of women’s academic seniority: women participated more in female-majority groups than sex-parity or female-minority groups. Additionally, when assigned to female-minority groups, women who harbored implicit masculine stereotypes about engineering reported less confidence and engineering career aspirations. However, in sex-parity and female-majority groups, confidence and career aspirations remained high regardless of implicit stereotypes. These data suggest that creating small groups with high proportions of women in otherwise male-dominated fields is one way to keep women engaged and aspiring toward engineering careers. Although sex parity works sometimes, it is insufficient to boost women’s verbal participation in group work, which often affects learning and mastery. PMID:25848061

  14. Female peers in small work groups enhance women's motivation, verbal participation, and career aspirations in engineering.

    Dasgupta, Nilanjana; Scircle, Melissa McManus; Hunsinger, Matthew

    2015-04-21

    For years, public discourse in science education, technology, and policy-making has focused on the "leaky pipeline" problem: the observation that fewer women than men enter science, technology, engineering, and mathematics fields and more women than men leave. Less attention has focused on experimentally testing solutions to this problem. We report an experiment investigating one solution: we created "microenvironments" (small groups) in engineering with varying proportions of women to identify which environment increases motivation and participation, and whether outcomes depend on students' academic stage. Female engineering students were randomly assigned to one of three engineering groups of varying sex composition: 75% women, 50% women, or 25% women. For first-years, group composition had a large effect: women in female-majority and sex-parity groups felt less anxious than women in female-minority groups. However, among advanced students, sex composition had no effect on anxiety. Importantly, group composition significantly affected verbal participation, regardless of women's academic seniority: women participated more in female-majority groups than sex-parity or female-minority groups. Additionally, when assigned to female-minority groups, women who harbored implicit masculine stereotypes about engineering reported less confidence and engineering career aspirations. However, in sex-parity and female-majority groups, confidence and career aspirations remained high regardless of implicit stereotypes. These data suggest that creating small groups with high proportions of women in otherwise male-dominated fields is one way to keep women engaged and aspiring toward engineering careers. Although sex parity works sometimes, it is insufficient to boost women's verbal participation in group work, which often affects learning and mastery.

  15. Analysis of environmental issues related to small-scale hydroelectric development. III. Water level fluctuation

    Hildebrand, S.G. (ed.)

    1980-10-01

    Potential environmental impacts in reservoirs and downstream river reaches below dams that may be caused by the water level fluctuation resulting from development and operation of small scale (under 25MW) hydroelectric projects are identified. The impacts discussed will be of potential concern at only those small-scale hydroelectric projects that are operated in a store and release (peaking) mode. Potential impacts on physical and chemical characteristics in reservoirs resulting from water level fluctuation include resuspension and redistribution of bank and bed sediment; leaching of soluble organic matter from sediment in the littoral zone; and changes in water quality resulting from changes in sediment and nutrient trap efficiency. Potential impacts on reservoir biota as a result of water level fluctuation include habitat destruction and the resulting partial or total loss of aquatic species; changes in habitat quality, which result in reduced standing crop and production of aquatic biota; and possible shifts in species diversity. The potential physical effects of water level fluctuation on downstream systems below dams are streambed and bank erosion and water quality problems related to resuspension and redistribution of these materials. Potential biological impacts of water level fluctuation on downstream systems below dams result from changes in current velocity, habitat reduction, and alteration in food supply. These alterations, either singly or in combination, can adversely affect aquatic populations below dams. The nature and potential significance of adverse impacts resulting from water level fluctuation are discussed. Recommendations for site-specific evaluation of water level fluctuation at small-scale hydroelectric projects are presented.

  16. Work Plan for a Water Quality Model of Florida Bay

    Dortch, Mark

    1997-01-01

    .... The model is required to address issues pertaining to nutrient inputs and associated impacts on water quality and sea grass, particularly as related to changes in freshwater inflows from south...

  17. Role of small-scale independent providers in water and sanitation

    M.P. van Dijk (Meine Pieter)

    2008-01-01

    textabstractSmall-scale independent providers (SSIPs) and households are good for 10–69% of the household water supply and sometimes up to 95% of the sanitation solutions in cities in developing countries. Different types of SSIP can be distinguished. They could be allowed to make a more important

  18. Influence of soil and water conservation techniques on yield of small ...

    The study determined the application of soil and water conservation techniques in relation to yield of small-holder swamp rice farmers in Imo State, Nigeria in 2009. Specifically, the socio-economic characteristics of the farmer were described, their influence on the application of the techniques examined and relationship of ...

  19. The Costs of Small Drinking Water Systems Removing Arsenic from Groundwater

    Between 2003 and 2011, EPA conducted an Arsenic Demonstration Program whereby the Agency purchased, installed and evaluated the performance and cost of 50 small water treatment systems scattered across the USA. A major goal of the program was to collect high-quality cost data (c...

  20. Design characteristics for pressurized water small modular nuclear power reactors with focus on safety

    Kani, Iraj Mahmoudzadeh [Tehran Univ. (Iran, Islamic Republic of). Civil Faculty; Zandieh, Mehdi [Tehran Univ. (Iran, Islamic Republic of). Civil Faculty; International Univ. of Imam Khomeini (Iran, Islamic Republic of). Architecture Faculty; Abadi, Saeed Kheirollahi Hossein [International Univ. of Imam Khomeini (Iran, Islamic Republic of). Architecture Faculty

    2016-05-15

    Small Modular Reactors (SMRs) are a technology, attracting attention. Light water SMR possess an upgraded design case and emphasize the significance of integral models. Beside of these advantages, SMRs has faced numerous challenges, e.g. licensing, cost/investment, safety and security observation, social and environmental issues in building new plants.

  1. 4 The Impact of Small scale Mining on Irrigation Water.cdr

    user

    has over the years created numerous employment, especially, in rural areas where there are limited formal sector jobs ... Small scale mining is a major threat to water resources and agricultural ..... upstream with a mean value of 49.8mg/l.

  2. Appropriate technology for rural India - solar decontamination of water for emergency settings and small communities.

    Kang, Gagandeep; Roy, Sheela; Balraj, Vinohar

    2006-09-01

    A commercial solar water heating system was evaluated for its effectiveness in decontaminating drinking water with a view to use in emergency situations. A total of 18 seeding experiments carried out over 6 months with 10(5) to 10(7)Escherichia coli/ml showed that the solar heater produced 125 l of bacteriologically safe water in 4 h when the ambient temperature was above 30 degrees C, with a holding time of at least 2 h. The solar water heating system is inexpensive, easy to transport and set up and could provide safer drinking water for 50 people a day. It would be effective in the decrease and prevention of waterborne disease in emergency situations, and is appropriate for use in small communities.

  3. High performance work practices in small firms : A resource-poverty and strategic decision-making perspective

    Kroon, B.; van de Voorde, F.C.; Timmers, J.

    2013-01-01

    High performance work practices (HPWPs) are human resource management practices aimed at stimulating employee and organisational performance. The application of HPWPs is not widespread in small organisations. We examine whether the implementation of coherent bundles of HPWPs (aimed at employee

  4. High performance work practices in small firms: a resource-poverty and strategic decision-making perspective

    Kroon, B.; Voorde, F.C. van de; Timmers, J.

    2013-01-01

    High performance work practices (HPWPs) are human resource management practices aimed at stimulating employee and organisational performance. The application of HPWPs is not widespread in small organisations. We examine whether the implementation of coherent bundles of HPWPs (aimed at employee

  5. Environmental impacts of small dams on agriculture and ground water development: a case study of Khan pur Dam, Pakistan

    Ejaz, N.; Shahmim, M.A.; Elahi, A.; Khan, N.M.

    2012-01-01

    The water scarcity issues are increasing through out the world. Pakistan is also facing water crises and its water demands are increasing every day. During this research it is investigated that small dams are playing an important role for the sustainability of groundwater and agriculture. The main objective of this study was to assess the environmental impacts of small dam on agricultural and ground water. Proper planning and management of small dams may improve the sustainable agriculture in Pakistan. It is also concluded that small dams are significantly contributing towards economy, environment, local climate, recreational activities and crop production. Small dams can also be utilized for the production of electricity at local level. On the other hand, water management issues can be resolved by the involvement of local farmer's associations. Water losses through seepage, unlined channels and old irrigation methods are most critical in developing world. Considering the overall positive environmental impacts, construction of small dams must be promoted. (author)

  6. The potential of PIXE analytical work in water pollution

    Yamazaki, H.; Takahashi, Y.; Ishii, K. [Dept. of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi (JP)] [and others

    1999-07-01

    A method has been developed and tested for PIXE analysis of soluble and insoluble constituents in a variety of water samples in our surroundings. Insoluble components were filtered on a Nuclepore filter of 0.4-{mu}m pores. For soluble fractions, a target of major components was made from a 0.15-ml filtrate evaporated on a user-made polycarbonate film, and in turn heavy metals in trace amounts were preconcentrated in a PIXE-target through the use of a combination of dibenzyldithiocarbamate-chelation with subsequent condensation into dibenzylidene-D-sorbitol gels. These three kinds of targets were analyzed with a PIXE system of 3-MeV proton beams. The widespread concentrations (several tenths of ppb to a few tens of ppm) of {approx}24 elements from Na to Pb were determined simultaneously in a precision sufficient to reveal the elemental distribution between the soluble and insoluble fractions of various aqueous sample such as river water, rain water and water leaking from disposal sites of industrial wastes. Hence, the methodology for preparing three types of targets promotes the PIXE analysis to a truly effective means for monitoring a water-pollution problem in our surroundings. (author)

  7. The potential of PIXE analytical work in water pollution

    Yamazaki, H.; Takahashi, Y.; Ishii, K.

    1999-01-01

    A method has been developed and tested for PIXE analysis of soluble and insoluble constituents in a variety of water samples in our surroundings. Insoluble components were filtered on a Nuclepore filter of 0.4-μm pores. For soluble fractions, a target of major components was made from a 0.15-ml filtrate evaporated on a user-made polycarbonate film, and in turn heavy metals in trace amounts were preconcentrated in a PIXE-target through the use of a combination of dibenzyldithiocarbamate-chelation with subsequent condensation into dibenzylidene-D-sorbitol gels. These three kinds of targets were analyzed with a PIXE system of 3-MeV proton beams. The widespread concentrations (several tenths of ppb to a few tens of ppm) of ∼24 elements from Na to Pb were determined simultaneously in a precision sufficient to reveal the elemental distribution between the soluble and insoluble fractions of various aqueous sample such as river water, rain water and water leaking from disposal sites of industrial wastes. Hence, the methodology for preparing three types of targets promotes the PIXE analysis to a truly effective means for monitoring a water-pollution problem in our surroundings. (author)

  8. Analysis of change of retention capacity of a small water reservoir

    Výleta, R.; Danáčová, M.; Valent, P.

    2017-10-01

    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  9. How the Drinking Water State Revolving Fund Works

    The DWSRF was established by the 1996 amendments to the Safe Drinking Water Act (SDWA) as a financial assistance program for systems and states to achieve the health protection objectives of the law, 42 U.S.C. §300j-12

  10. Development of regulations for water care works and process ...

    driniev

    In terms of the South African Qualifications Authority Act of 1995 (SAQA) and the ... persons must be trained and assessed using unit standards generated for each particular sector. ... works are common, giving rise to major pollution incidents.

  11. Challenges for implementing water quality monitoring and analysis on a small Costa Rican catchment

    Golcher, Christian; Cernesson, Flavie; Tournoud, Marie-George; Bonin, Muriel; Suarez, Andrea

    2016-04-01

    The Costa Rican water regulatory framework (WRF) (2007), expresses the national concern about the degradation of surface water quality observed in the country since several years. Given the urgency of preserving and restoring the surface water bodies, and facing the need of defining a monitoring tool to classify surface water pollution, the Costa-Rican WRF relies on two water quality indexes: the so-called "Dutch Index" (D.I) and the Biological Monitoring Working Party adapted to Costa Rica (BMWP'CR), allowing an "easy" physicochemical and biological appraisal of the water quality and the ecological integrity of water bodies. Herein, we intend to evaluate whether the compound of water quality indexes imposed by Costa Rican legislation, is suitable to assess rivers local and global anthropogenic pressure and environmental conditions. We monitor water quality for 7 points of Liberia River (northern pacific region - Costa Rica) from March 2013 to July 2015. Anthropogenic pressures are characterized by catchment land use and riparian conditions. Environmental conditions are built from rainfall daily series. Our results show (i) the difficulties to monitor new sites following the recent implementation of the WRF; (ii) the statistical characteristics of each index; and (iii) a modelling tentative of relationships between water quality indexes and explanatory factors (land-use, riparian characteristics and climate conditions).

  12. Effect of water purification process in radioactive content: analysis on small scale purification plants

    Lopez del Rio, H.; Quiroga S, J. C.; Davila R, J. I.; Mireles G, F.

    2009-10-01

    Water from small scale purification plants is a low cost alternative for consumers in comparison to the bottled commercial presentations. Because of its low cost per liter, the consumption of this product has increased in recent years, stimulating in turn the installation of purification systems for these small businesses. The purpose of this study was to estimate the efficiency of small scale purification systems located in the cities of Zacatecas and Guadalupe, Zacatecas, to reduce the radioactive content of water. It was measured the total alpha and beta activity in water samples of entry and exit to process, through the liquid scintillation technique. In general it was observed that the process is more efficient in removing alpha that beta activity. The fraction of total alpha activity removed varied between 27 and 100%, while between 0 and 77% of the total beta activity was removed by the analyzed plants. In all cases, the total radioactivity level was lower than the maximum permissible value settled by the official mexican standard for drinking water. (Author)

  13. Handling Small Talk at Work: Challenges for Workers with Intellectual Disabilities.

    Holmes, Janet; Fillary, Rose

    2000-01-01

    This study analyzed tape-recorded workplace small talk collected in New Zealand workplaces, including workplaces employing workers with intellectual disabilities. The topics, the distributional patterns, and the functions of small talk are described, and aspects of the management of small talk which may present problems to workers with…

  14. Measurement of evaporative water loss in small animals by dew-point hygrometry.

    Bernstein, M H; Hudson, D M; Stearns, J M; Hoyt, R W

    1977-08-01

    This paper presents the procedures and equations to be utilized for measurement of evaporative water loss (mw), by use of the dew-point hygrometer, in small animals exposed to air containing water vapor in an open-flow system. The system accounted accurately for the water evaporated from a bubble flask. In addition, hygrometric measurements of pulmocutaneous mw in pigeons (Columba livia, mean mass 0.31 kg) agreed closely with simultaneous gravimetric measurements, utilizing a desiccant in the sample stream, in a manner independently of air temperature (Ta, 20 or 40 degrees C), ambient water vapor pressure (PW, 4-16 10(2) Pa), or mw (5-66 mg-min-1). Evaporation in pigeons was independent of PW at 20 degrees C, but increased with decreasing PW at 40 degrees C, suggesting differences in ventilatory adjustments to changes in PW at the two temperatures.

  15. Iodine-131 in sewage sludge from a small water pollution control plant serving a thyroid cancer treatment facility.

    Rose, Paula S; Swanson, R Lawrence

    2013-08-01

    Iodine-131 (half-life = 8.04 d) is the most widely used radionuclide in medicine for therapeutic purposes. It is excreted by patients and is discharged directly to sewer systems. Despite considerable dilution in waste water and the relatively short half-life of I, it is readily measured in sewage. This work presents I concentrations in sewage sludge from three water pollution control plants (WPCPs) on Long Island, NY. Iodine-131 concentrations ranged from 0.027 ± 0.002 to 148 ± 4 Bq g dry weight. The highest concentrations were measured in the Stony Brook WPCP, a relatively small plant (average flow = 6.8 × 10 L d) serving a regional thyroid cancer treatment facility in Stony Brook, NY. Preliminary radiation dose calculations suggested further evaluation of dose to treatment plant workers in the Stony Brook WPCP based on the recommendations of the Interagency Steering Committee on Radiation Standards.

  16. Heat transfer with water in forced convection without boiling in small diameter tubes

    Ricque, Roger; Siboul, Roger

    1969-01-01

    This note presents the measurements performed for the establishment of an empirical heat transfer law for water in forced convection without boiling in small diameter tubes (2 and 4 mm), with high flow velocity and strong heat flux, and for relatively low fluid temperatures. A correlation of experimental points is obtained with a very small maximum dispersion: Nu fl = 0,0092 Re fl 0,88 Pr 0,5 (μ fl /μ p ) 0,14 . A correlation for the fiction coefficient is also presented [fr

  17. The influence of small mammal burrowing activity on water storage at the Hanford Site

    Landeen, D.S.

    1994-09-01

    The amount and rate at which water may penetrate a protective barrier and come into contact with buried radioactive waste is a major concern. Because burrowing animals eventually will reside on the surface of any protective barrier, the effect these burrow systems may have on the loss or retention of water needs to be determined. The first section of this document summarizes the known literature relative to small mammals and the effects that burrowing activities have on water distribution, infiltration, and the overall impact of burrows on the ecosystem. Topics that are summarized include burrow air pressures, airflow, burrow humidity, microtopography, mounding, infiltration, climate, soil evaporation, and discussions of large pores relative to water distribution. The second section of this document provides the results of the study that was conducted at the Hanford Site to determine what effect small mammal burrows have on water storage. This Biointrusion task is identified in the Permanent Isolation Surface Barrier Development Plan in support of protective barriers. This particular animal intrusion task is one part of the overall animal intrusion task identified in Animal Intrusion Test Plan

  18. Linking seasonal surface water dynamics with methane emissions and export from small, forested wetlands

    Hondula, K. L.; Palmer, M.

    2017-12-01

    One of the biggest uncertainties about global methane sources and sinks is attributed to uncertainties regarding wetland area and its dynamics. This is exacerbated by confusion over the role of small, shallow water bodies like Delmarva bay wetlands that could be categorized as both wetlands and ponds. These small inland water bodies are often poorly quantified due to their size, closed forest canopies, and inter- and intra-annual variability in surface water extent. We are studying wetland-rich areas on the Delmarva Peninsula in the U.S. mid-Atlantic to address this uncertainty at the scale of individual wetland ecosystems ( 1m depth). We estimated the size and temporal variability of the methane emissions source area by combining these measurements with daily estimates of the extent of surface water inundation derived from water level monitoring and a high-resolution digital elevation model. This knowledge is critical for informing land use decisions (e.g. restoring wetlands specifically for climate mitigation), the jurisdiction of environmental policies in the US, and for resolving major outstanding discrepancies in our understanding of the global methane budget.

  19. Practical guidelines for small-volume additions of uninhibited water to waste storage tanks

    Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A.

    1994-01-01

    Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick's second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem

  20. Emerging and Innovative Techniques for Arsenic Removal Applied to a Small Water Supply System

    António J. Alçada

    2009-12-01

    Full Text Available The impact of arsenic on human health has led its drinking water MCL to be drastically reduced from 50 to 10 ppb. Consequently, arsenic levels in many water supply sources have become critical. This has resulted in technical and operational impacts on many drinking water treatment plants that have required onerous upgrading to meet the new standard. This becomes a very sensitive issue in the context of water scarcity and climate change, given the expected increasing demand on groundwater sources. This work presents a case study that describes the development of low-cost techniques for efficient arsenic control in drinking water. The results obtained at the Manteigas WTP (Portugal demonstrate the successful implementation of an effective and flexible process of reactive filtration using iron oxide. At real-scale, very high removal efficiencies of over 95% were obtained.

  1. Quality Improvement of a Small Water Supply. A Practical Application of a Full System of Nanofiltration

    R. Marin Galvin

    2013-04-01

    Full Text Available The THM level in the Spanish drinking water is limited to less than 0.100 mg/L, due to its potential toxicological effect on humans. This paper investigates the comparison of the results obtained in a small supply of water that historically presented THM contents out of the Spanish normative, versus the results there obtained when the treatment was modified with the inclusion of a nanofiltration system. So, the conventional treatment first applied was that of pre-oxidation with chlorine and/or KMnO4, followed by coagulation with aluminum salts directly on closed sand filter, and disinfection final by chlorination: with this system, THM levels lower than 0.100 mg/L were not always secured. Thus, to improve the water quality, a full system of nanofiltration was implemented, after the above treatment, consisting in: pre-filtration through cartridges, filtration over activated carbon, post-filtration for retaining impurities, and finally, nanofiltration and chlorination of water after nanofiltration. In this order, the new treatment scheme has usually produced water with maximum THM levels of 0.058 mg/L, and average values of 0.013 mg/L, 0.30 mg/L for organic matter concentrations, and water always microbiologically pure. Also, the contents of Fe, Mn and Al in the treated water were significantly reduced with respect to the previous situation without nanofiltration.

  2. In silico studies of the properties of water hydrating a small protein

    Sinha, Sudipta Kumar; Chakraborty, Kausik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302 (India); Jana, Madhurima [Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela - 769008 (India)

    2014-12-14

    Atomistic molecular dynamics simulation of an aqueous solution of the small protein HP-36 has been carried out with explicit solvent at room temperature. Efforts have been made to explore the influence of the protein on the relative packing and ordering of water molecules around its secondary structures, namely, three α-helices. The calculations reveal that the inhomogeneous water ordering and density distributions around the helices are correlated with their relative hydrophobicity. Importantly, we have identified the existence of a narrow relatively dehydrated region containing randomly organized “quasi-free” water molecules beyond the first layer of “bound” waters at the protein surface. These water molecules with relatively weaker binding energies form the transition state separating the “bound” and “free” water molecules at the interface. Further, increased contribution of solid-like caging motions of water molecules around the protein is found to be responsible for reduced fluidity of the hydration layer. Interestingly, we notice that the hydration layer of helix-3 is more fluidic with relatively higher entropy as compared to the hydration layers of the other two helical segments. Such characteristics of helix-3 hydration layer correlate well with the activity of HP-36, as helix-3 contains the active site of the protein.

  3. In silico studies of the properties of water hydrating a small protein

    Sinha, Sudipta Kumar; Chakraborty, Kausik; Bandyopadhyay, Sanjoy; Jana, Madhurima

    2014-01-01

    Atomistic molecular dynamics simulation of an aqueous solution of the small protein HP-36 has been carried out with explicit solvent at room temperature. Efforts have been made to explore the influence of the protein on the relative packing and ordering of water molecules around its secondary structures, namely, three α-helices. The calculations reveal that the inhomogeneous water ordering and density distributions around the helices are correlated with their relative hydrophobicity. Importantly, we have identified the existence of a narrow relatively dehydrated region containing randomly organized “quasi-free” water molecules beyond the first layer of “bound” waters at the protein surface. These water molecules with relatively weaker binding energies form the transition state separating the “bound” and “free” water molecules at the interface. Further, increased contribution of solid-like caging motions of water molecules around the protein is found to be responsible for reduced fluidity of the hydration layer. Interestingly, we notice that the hydration layer of helix-3 is more fluidic with relatively higher entropy as compared to the hydration layers of the other two helical segments. Such characteristics of helix-3 hydration layer correlate well with the activity of HP-36, as helix-3 contains the active site of the protein

  4. Calculation of wastage by small water leaks in sodium heated steam generators

    Tregonning, K.

    1976-01-01

    On the basis of mechanistic arguments it is suggested that the temperature of the wasting surface would provide a single physically meaningful parameter with which to correlate wastage data. A lumped parameter model is developed which predicts reaction temperature as a function of the major variables in the small water leak situation (Leak rate, tube spacing, sodium temperature). The calculated temperatures explain much of the observed behaviour of wastage rate with these variables and compare well with the limited temperature data available. Wastage rates are correlated with predicted temperature on a total activation energy basis. The results are encouraging and a first conservative method for the calculation of wastage by small water leaks in sodium-heated steam generators is produced

  5. PHOSPHORUS CONTAMINATION AS A BARRIER TO WATER QUALITY OF SMALL RETENTION RESERVOIRS IN PODLASIE REGION

    Joanna Ewa Szczykowska

    2016-06-01

    Full Text Available Dam retention reservoirs created on the rivers play a special role as an environmentally friendly forms of stopping and slowing of water runoff. The aim of this study was to evaluate the quality of water flowing into small retention reservoirs in terms of the concentration of total phosphorus and phosphates. The study involved three small retention reservoirs located in the municipalities of: Bransk, Dubicze Cerkiewne and Kleszczele in Podlasie region. Selection of the research facilities was made due to the similarity in the soil management type within catchment of the flowing watercourse, retained water utilization ways, and a small surface of reservoirs. Watercourse reaching the reservoir provides biogens along with water, which directly affect the water quality resulting in high concentrations in water, either indirectly by initiating or accelerating the process of degradation of the reservoir and the loss of its usability. Given the concentration of total phosphorus, it can be said that only in the case of 20.8% of water samples from Nurzec river feeding the Otapy-Kiersnówek reservoir, about 25% of water samples of Orlanka river feeding Bachmaty reservoir, and 17% of samples taken from the watercourse supplying Repczyce reservoir, corresponded to values specified for the second class in the current Regulation of the Minister of the Environment [Regulation 2014]. It can be assumed that this situation is caused by a long-term fertilization using manure, which in consequence led to the oversaturation of soils and phosphorus compounds penetration into the river waters in areas used for agricultural purposes. Especially in the early spring periods, rising temperature together with rainfall caused soil thawing resulting in increasing concentrations of contaminants carried along with the washed soil particles during the surface and subsurface runoff. Values of TSI(TP calculated for Otapy-Kiersnówek reservoir amounted to 112.4 in hydrological

  6. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water.

    Smith, Richard L; Buckwalter, Seanne P; Repert, Deborah A; Miller, Daniel N

    2005-05-01

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated from a sole-source drinking-water aquifer. The autotrophic capacity of the purple non-sulfur photosynthetic bacterium made it particularly adept for this purpose. Initial tests used a commercial bioreactor filled with glass beads and countercurrent, non-sterile flow of an autotrophic, air-saturated, growth medium and hydrogen gas. Complete removal of 2 mM nitrate was achieved for more than 300 days of operation at a 2-h retention time. A low-cost hydrogen generator/bioreactor system was then constructed from readily available materials as a water treatment approach using the Rhodocyclus strain. After initial tests with the growth medium, the constructed system was tested using nitrate-amended drinking water obtained from fractured granite and sandstone aquifers, with moderate and low TDS loads, respectively. Incomplete nitrate removal was evident in both water types, with high-nitrite concentrations in the bioreactor output, due to a pH increase, which inhibited nitrite reduction. This was rectified by including carbon dioxide in the hydrogen stream. Additionally, complete nitrate removal was accomplished with wastewater-impacted surface water, with a concurrent decrease in dissolved organic carbon. The results of this study using three chemically distinct water supplies demonstrate that hydrogen-coupled denitrification can serve as the basis for small-scale remediation and that pilot-scale testing might be the next logical step.

  7. HYDROMORPHOLOGICAL EFFECT OF INTRODUCING SMALL WATER STRUCTURES IN RIVER RESTORATION – THE EXAMPLE OF PBHS IMPLEMENTATION

    Tomasz Kałuża

    2016-04-01

    Full Text Available The work attempts to determine the impact of small hydrotechnical structures on channel hydromorphology as a measure of river restoration. The experiment was set up in Flinta River in Polish lowland where extensive hydromorphological survey was competed. At the first stage of restoration project containers filled with plant clumps working as sediment traps (plant basket hydraulic structures – PBHS were introduced. Those structures were relatively small but at the same time, large enough to change the river flow efficiently – working like low crested weirs. Two year monitoring program provided information about the impact of introducing such structures on river morphology and explained the PBHS impact on flow pattern of the river.

  8. Small-angle light scattering studies of dense AOT-water-decane microemulsions

    Micali, N.; Trusso, S.; Mallamace, F.; Chen, S.H.

    1996-01-01

    It is performed extensive studies of a three-component microemulsion system composed of AOT-water-decane using small-angle light scattering (SALS). The small-angle scattering intensities are measured in the angular interval 0.001-0.1 radians, corresponding to a Bragg wave number range of 0.14 μm -1 -1 . The measurements were made by changing temperature and volume fraction φ of the dispersed phase in the range 0.65< φ < 0.75. All samples have a fixed water-to-AOT molar ratio, w [water[/[AOT[ = 40.8, in order to keep the same average droplet size in the stable one-phase region. With the SALS technique it is observed all the phase boundaries of a very complex phase diagram with a percolation line and many structural organizations within it. It is observed at the percolation transition threshold, a scaling behavior of the intensity data. In addition it is described in detail a structural transition from a droplet microemulsion to a bi continuous one a suggested by a recent small-angle neutron scattering experiment. From the data analysis it is show that both the percolation phenomenon and this novel structural transition are described from a large-scale aggregation between microemulsion droplets

  9. Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA

    Dr.. Amber R. Ignatius, Geographer

    2016-12-01

    Full Text Available Small reservoirs are prevalent landscape features that affect the physical, chemical, and biological characteristics of headwater streams. Tens of thousands of small reservoirs, often less than a hectare in size, were constructed over the past century within the United States. While remote-sensing and geographic-mapping technologies assist in identifying and quantifying these features, their localized influence on water quality is uncertain. We report a year-long physicochemical study of nine small reservoirs (0.15–2.17 ha within the Oconee and Broad River Watersheds in the Georgia Piedmont. Study sites were selected along an urban-rural gradient with differing amounts of agricultural, forested, and developed land covers. Sites were sampled monthly for discharge and inflow/outflow water quality parameters (temperature, specific conductance, pH, dissolved oxygen, turbidity, alkalinity, total phosphorus, total nitrogen, nitrate, ammonium. While the proportion of developed land cover within watersheds had positive correlations with reservoir specific conductivity values, agricultural and forested land covers showed correlations (positive and negative, respectively with reservoir alkalinity, total nitrogen, nitrate, and specific conductivity. The majority of outflow temperatures were warmer than inflows for all land uses throughout the year, especially in the summer. Outflows had lower nitrate concentrations, but higher ammonium. The type of outflow structure was also influential; top-release dams showed higher dissolved oxygen and pH than bottom-release dams. Water quality effects were still evident 250 m below the dam, albeit reduced.

  10. The changing nature of nursing work in rural and small community hospitals.

    Montour, Amy; Baumann, Andrea; Blythe, Jennifer; Hunsberger, Mabel

    2009-01-01

    The nursing literature includes descriptions of rural nursing workforces in Canada, the United States of America and Australia. However, inconsistent definitions of rural demography, diverse employment conditions and health care system reorganization make comparisons of these data difficult. In 2007, the Ministry of Health and Long-term Care in Ontario, Canada, transferred responsibility for decision-making and funding to 14 regional governing bodies known as Local Health Integration Networks (LHINs). Little is known about rural-urban variations in the nursing workforces in the LHINs because existing data repositories do not describe them. This study investigated the influence of demographic characteristics, provincial policies, organizational changes and emerging practice challenges on nursing work in a geographically unique rural region. The purpose was to describe the nature of nursing work from the perspective of rural nurse executives and frontline nurses. The study was conducted in 7 small rural and community hospitals in the Hamilton Niagara Haldimand Brant LHIN. Data collection occurred between August and November 2007. A qualitative descriptive study design was chosen to facilitate exploration of nursing in the rural setting. Study participants were identified through purposive snowball sampling. All nurses, nurse managers and nurse executives currently employed in the 7 study hospitals were eligible to participate. Data collection included the use of questionnaires and semi-structured interviews. Memos were also created to describe the relevance and applicability of concepts, categories and properties emerging from the data. Themes were compared across interviews to determine relevance and value. Twenty-one nurses from 7 different hospitals participated. The nurses reflect the aging trend in the provincial and regional workforces of Ontario. All study participants anticipate a substantial increase in retirements during the next decade, which will alter

  11. Recent work on network application layer: MioNet, the virtual workplace for small businesses

    Hesselink, Lambertus; Rizal, Dharmarus; Bjornson, Eric; Miller, Brian; Chan, Keith

    2005-11-01

    Small businesses must be extremely efficient and smartly leverage their resources, suppliers, and partners to successfully compete with larger firms. A successful small business requires a set of companies with interlocking business relationships that are dynamic and needs-based. There has been no software solution that creates a secure and flexible way to efficiently connect small business computer-based employees and partners. In this invited paper, we discuss MioNet, a secure and powerful data management platform which may provide millions of small businesses with a virtual workplace and help them to succeed.

  12. ACQUISION OF GEOMETRICAL DATA OF SMALL RIVERS WITH AN UNMANNED WATER VEHICLE

    H. Sardemann

    2018-05-01

    Full Text Available Rivers with small- and medium-scaled catchments have been increasingly affected by extreme events, i.e. flash floods, in the last years. New methods to describe and predict these events are developed in the interdisciplinary research project EXTRUSO. Flash flood events happen on small temporal and spatial scales, stressing the necessity of high-resolution input data for hydrological and hydrodynamic modelling. Among others, the benefit of high-resolution digital terrain models (DTMs will be evaluated in the project. This article introduces a boat-based approach for the acquisition of geometrical and morphological data of small rivers and their banks. An unmanned water vehicle (UWV is used as a multi-sensor platform to collect 3D-point clouds of the riverbanks, as well as bathymetric measurements of water depth and river morphology. The UWV is equipped with a mobile Lidar, a panorama camera, an echo sounder and a positioning unit. Whole (sub- catchments of small rivers can be digitalized and provided for hydrological modelling when UWV-based and UAV (unmanned aerial vehicle based point clouds are fused.

  13. Precursor Evolution and Stress Corrosion Cracking Initiation of Cold-Worked Alloy 690 in Simulated Pressurized Water Reactor Primary Water

    Zhai, Ziqing [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Toloczko, Mychailo [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Kruska, Karen [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.; Bruemmer, Stephen [Pacific Northwest National Laboratory, 622 Horn Rapids Road, P.O. Box 999, Richland, Washington 99352.

    2017-05-22

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 (UNS N06690) materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for either the 21% or 31%CW CLT specimens loaded at their yield stress after ~9,220 hours, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiation after 10,400 hours of exposure at constant stress intensity, which was resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and discusses their effects on crack initiation in CW alloy 690.

  14. TO ASSESS THE QUALITY OF WORK LIFE EMPLOYEE IN SMALL SCALE INDUSTRIES

    Dr. Devendra S. Verma; Atul Kumar Doharey

    2016-01-01

    Quality of work life is a policy to increase the strategies and focus is on the potential of these policies to influence employees. Quality of work life is useful for workers to use their potential to maximum extend. Quality of work life helps the employees to maintain work life balance with equal attention on their performance and commitment to work. Quality of work life helps to employees for their job satisfaction and work place environment. Quality of work life helps to the employees to ...

  15. The water equivalence of solid materials used for dosimetry with small proton beams

    Schneider, Uwe; Pemler, Peter; Besserer, Juergen; Dellert, Matthias; Moosburger, Martin; Boer, Jorrit de; Pedroni, Eros; Boehringer, Terence

    2002-01-01

    Various solid materials are used instead of water for absolute dosimetry with small proton beams. This may result in a dose measurement different to that in water, even when the range of protons in the phantom material is considered correctly. This dose difference is caused by the diverse cross sections for inelastic nuclear scattering in water and in the phantom materials respectively. To estimate the magnitude of this effect, flux and dose measurements with a 177 MeV proton pencil beam having a width of 0.6 cm (FWHM) were performed. The proton flux and the deposited dose in the beam path were determined behind water, lucite, polyethylene, teflon, and aluminum of diverse thicknesses. The number of out-scattered protons due to inelastic nuclear scattering was determined for water and the different materials. The ratios of the number of scattered protons in the materials relative to that in water were found to be 1.20 for lucite, 1.16 for polyethylene, 1.22 for teflon, and 1.03 for aluminum. The difference between the deposited dose in water and in the phantom materials taken in the center of the proton pencil beam, was estimated from the flux measurements, always taking the different ranges of protons in the materials into account. The estimated dose difference relative to water in 15 cm water equivalent thickness was -2.3% for lucite, -1.7% for polyethylene, -2.5% for teflon, and -0.4% for aluminum. The dose deviation was verified by a measurement using an ionization chamber. It should be noted that the dose error is larger when the effective point of measurement in the material is deeper or when the energy is higher

  16. Local Water Management of Small Reservoirs: Lessons from Two Case Studies in Burkina Faso

    Hilmy Sally

    2011-10-01

    Full Text Available Burkina Faso is actively pursuing the implementation of Integrated Water Resources Management (IWRM in its development plans. Several policy and institutional mechanisms have been put in place, including the adoption of a national IWRM action plan (PAGIRE and the establishment so far of 30 local water management committees (Comités Locaux de l’Eau, or CLE. The stated purpose of the CLE is to take responsibility for managing water at sub-basin level. The two case studies discussed in this paper illustrate gaps between the policy objective of promoting IWRM on the one hand, and the realities associated with its practical on-the-ground implementation on the other. A significant adjustment that occurred in practice is the fact that the two CLE studied have been set up as entities focused on reservoir management, whereas it is envisioned that a CLE would constitute a platform for sub-basin management. This reflects a concern to minimise conflict and optimally manage the country’s primary water resource and illustrates the type of pragmatic actions that have to be taken to make IWRM a reality. It is also observed that the local water management committees have not been able to satisfactorily address questions regarding access to, and allocation of, water, which are crucial for the satisfactory functioning of the reservoirs. Water resources in the reservoirs appear to be controlled by the dominant user. In order to correct this trend, measures to build mutual trust and confidence among water users 'condemned' to work together to manage their common resource are suggested, foremost of which is the need to collect and share reliable data. Awareness of power relationships among water user groups and building on functioning, already existing formal or informal arrangements for water sharing are key determinants for successful implementation of the water reform process underway.

  17. Laboratory QA/QC improvements for small drinking water systems at Savannah River Site

    Turner, R.D.

    1995-12-01

    The Savannah River Site (SRS), a 310 square mile facility located near Aiken, S.C., is operated by Westinghouse Savannah River Company for the US Department of Energy. SRS has 28 separate drinking water systems with average daily demands ranging from 0.0002 to 0.5 MGD. All systems utilize treated groundwater. Until recently, the water laboratories for each system operated independently. As a result, equipment, reagents, chemicals, procedures, personnel, and quality control practices differed from location to location. Due to this inconsistency, and a lack of extensive laboratory OA/QC practices at some locations, SRS auditors were not confident in the accuracy of daily water quality analyses results. The Site`s Water Services Department addressed these concerns by developing and implementing a practical laboratory QA/QC program. Basic changes were made which can be readily adopted by most small drinking water systems. Key features of the program include: Standardized and upgraded laboratory instrumentation and equipment; standardized analytical procedures based on vendor manuals and site requirements; periodic accuracy checks for all instrumentation; creation of a centralized laboratory to perform metals digestions and chlorine colorimeter accuracy checks; off-site and on-site operator training; proper storage, inventory and shelf life monitoring for reagents and chemicals. This program has enhanced the credibility and accuracy of SRS drinking water system analyses results.

  18. The Politics of Pipes: The Persistence of Small Water Networks in Post-Privatization Manila

    Cheng, Deborah

    This project examines the politics of water provision in low-income areas of large, developing cities. In the last two decades, water privatization has become a global paradigm, emerging as a potential means for addressing the urban water crisis. In Manila, the site of the world's largest water privatization project, service to low-income areas has improved significantly in the post-privatization era. But whereas expansion of a water utility typically involves the replacement of informal providers, the experience in Manila demonstrates that the rapid connection of low-income areas actually hinges, in part, on the selective inclusion and exclusion of these smaller actors. Based on an ethnography of the private utilities and community-based providers, I use the persistence of small water networks as a lens for exploring the limits of water privatization in Manila. I focus on what I call micro-networks---community-built infrastructure that extends the formal, private utilities into low-income neighborhoods that the utilities do not wish to serve directly. In such a setup, the utility provides water only as far as the community boundary; beyond that, the micro-network operator constructs internal infrastructure, monitors for leakage and theft, and collects bills. But while these communities may gain access to safer water, they are also subject to higher costs and heightened disciplinary measures. By tracing the ways in which the utilities selectively use micro-networks to manage sub-populations, I show how the utilities make low-income spaces more governable. Delegating localized water management to micro-network operators depoliticizes the utilities' roles, shifting the sociopolitical difficulties of water provision to community organizations, while allowing the utilities to claim that these areas are served. This research leads to three related arguments. First, the persistence of small water networks highlights lingering inequities in access to water, for micro

  19. 77 FR 9882 - Arsenic Small Systems Compliance and Alternative Affordability Criteria Working Group; public...

    2012-02-21

    ... affordability criteria that give extra weight to small, rural, and lower income communities. This meeting will... held via the Internet using a Webcast and teleconference. Registrants will receive an Internet access... affordability criteria that give extra weight to small, rural, and lower income communities. Based upon input...

  20. Application of HEC-RAS water quality model to estimate contaminant spreading in small stream

    Halaj, Peter; Bárek, Viliam; Halajová, Anna Báreková; Halajová, Denisa [Slovak University of Agriculture in Nitra, Nitra (Slovakia)

    2013-07-01

    The paper presents study of some aspects of HEC-RAS water quality model connected to simulation of contaminant transport in small stream. Authors mainly focused on one of the key tasks in process of pollutant transport modelling in streams - determination of the dispersion characteristics represented by longitudinal dispersion coefficient D. Different theoretical and empirical formulas have been proposed for D value determination and they have revealed that the coefficient is variable parameter that depends on hydraulic and morphometric characteristics of the stream reaches. Authors compare the results of several methods of coefficient D assessment, assuming experimental data obtained by tracer studies and compare them with results optimized by HEC-RAS water quality model. The analyses of tracer study and computation outputs allow us to outline the important aspects of longitudinal dispersion coefficient set up in process of the HEC-RAS model use. Key words: longitudinal dispersion coefficient, HEC-RAS, water quality modeling.

  1. Water balance of a small catchment with permeable soils in Ile-Ife area, southwester Nigeria

    Ogunkoya, O. O.

    2000-01-01

    Three - year and annual catchment water balances were drawn for a small l catchment (44 ha.) in southwestern Nigeria. The equation: P - Q - E T - Δs = O was not resolved. Rather, the terms on the left did not sum to zero. The residual, which are between 4% and 5% of total rainfall, were consistently negative. A probable source of error is the use of Thornthwaite's potential evaporation in estimating catchment evapotranspiration. Potential evapotranspiration is higher than actual evapotranspiration in the study area due to the limited evaporation opportunity during the approximately five - mouth dry season. Given that the study catchment had runoff patterns that are simi liar to those of larger rivers in the region the computed catchment water balance indicated that 37% of annual rainfall may be taken as the runoff coefficient for the region. This suggests that the engineer's coefficient (0.35 - 0.45) used in assessment of surface water resources in southwestern Nigeria, is reasonable

  2. Residual stress improved by water jet peening using cavitation for small-diameter pipe inner surfaces

    Yasuo, Nakamura; Toshizo, Ohya; Koji, Okimura

    2001-01-01

    As one of degradation conditions on components used in water, the overlapping effect of environment, material and stress might cause stress corrosion cracking (SCC). Especially, for the tensile residual stress produced by welding, it is particularly effective to reduce the tensile residual stress on the material surface to prevent SCC. In this paper, the residual stress improvement method using cavitation impact generated by a water jet, called Water Jet Peening (WJP), has been developed as the maintenance technology for the inner surfaces of small-diameter Ni-Cr-Fe alloy (Alloy 600) pipes. As the results, by WJP for the inner surface of Alloy 600 pipe (inner diameter; approximately 10-15 mm), we confirmed that the compressive stress generated within the range from the surface to the inner part about 0.5 mm deep and took a maximum value about 350 MPa on the surface. (author)

  3. Planning and Corrupting Water Resources Development: The Case of Small Reservoirs in Ghana

    Jean-Philippe Venot

    2011-10-01

    Full Text Available Agricultural (water development is once again at the fore of the development agenda of sub-Saharan Africa. Yet, corruption is seen as a major obstacle to the sustainability of future investments in the sector but there is still little empirical evidence on the ways corruption pervades development projects. This paper documents the planning and implementation processes of two specific small reservoir programmes in the north of Ghana. We specifically delve into the dynamics of corruption and interrogate the ways they add to the inherent unpredictability of development planning. We argue that operational limitations of small reservoirs such as poor infrastructure, lack of managerial and organisational capacity at the community level and weak market integration and public support are the symptoms – rather than inherent problems – of wider lapses in the planning processes that govern the development of small reservoirs in Ghana and plausibly worldwide. A suite of petty misconduct and corrupt practices during the planning, tendering, supervision, and administration of contracts for the rehabilitation and construction of small reservoirs results in delays in implementation, poor construction, escalating costs, and ultimately failures of small reservoirs vis-à-vis their intended goals and a widely shared frustration among donor agencies, civil servants, contractors, and communities. Such practices hang on and can only be addressed through a better understanding of the complex web of formal decisions and informal rules that shape the understanding and actions of the state.

  4. Impact of water-level changes to aquatic vegetation in small oligotrophic lakes

    Egert VANDEL

    2016-06-01

    Full Text Available This study demonstrates the effect of drastic water-level changes to the aquatic vegetation in three small oligotrophic lakes situated in Kurtna Kame Field in north-eastern Estonia. The area holds around 40 lakes in 30 km2 of which 18 lakes are under protection as Natura Habitat lakes (Natura 2000 network. The area is under a strong human impact as it is surrounded by oil shale mines, sand quarry, peat harvesting field etc. The most severe impact comes from the groundwater intake established in 1972 in the vicinity of three studied lakes. The exploitation of groundwater led to drastic water-level drops. In 1980s the water-level drops were measured to be up to 3 to 4 meters compared to the levels of 1946. Lake Martiska and Lake Kuradijärv were severely affected and only 29% and 45% of lake area respectively and 21% of initial volume remained. Both lakes were described as oligotrophic lakes before severe human impact and held characteristic macrophytes such as Isoëtes lacustris L., Sparganium angustifolium Michx and Lobelia dortmanna L. As the water level declined the lakes lost their rare characteristic species and can now be described more as a meso- or even eutrophic lakes. When the volume of groundwater abstraction decreased in the 1990s the water levels started to recover but did not reach the natural levels of pre-industrialized era. Also the vegetation did not show any signs of recovery. In 2012 the pumping rates increased again causing a new rapid decline in water levels which almost exceed the previous minimum levels. The water-level monitoring alongside with the macrophyte monitoring data gives us a good case study on how the long term abrupt water-level changes can affect the aquatic vegetation

  5. Development of a small-sized generator of ozonated water using an electro-conductive diamond electrode.

    Sekido, Kota; Kitaori, Noriyuki

    2008-12-01

    A small-sized generator of ozonated water was developed using an electro-conductive diamond. We studied the optimum conditions for producing ozonated water. As a result, we developed a small-sized generator of ozonated water driven by a dry-cell for use in the average household. This generator was easily able to produce ozonated water with an ozone concentration (over 4 mg/L) sufficient for disinfection. In addition, we verified the high disinfecting performance of the water produced in an actual hospital.

  6. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    2010-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... WATER REGULATIONS Control of Lead and Copper § 141.81 Applicability of corrosion control treatment steps...). (ii) A report explaining the test methods used by the water system to evaluate the corrosion control...

  7. The contribution of free water transport and small pore transport to the total fluid removal in peritoneal dialysis

    Parikova, Alena; Smit, Watske; Struijk, Dirk G.; Zweers, Machteld M.; Krediet, Raymond T.

    2005-01-01

    BACKGROUND: Water transport in peritoneal dialysis (PD) patients is across the small pores and water channels, the latter allowing free water transport. The objective of the study was to investigate the contribution of each transport route on transcapillary ultrafiltration (TCUF). METHODS: Standard

  8. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  9. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    B. S. Daya Sagar

    2005-01-01

    Full Text Available Spatio-temporal patterns of small water bodies (SWBs under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  11. Review of the desalinated water market in France for small units

    Dutheil, F.; Malissen, M.

    1969-01-01

    On the initiative of and in close collaboration with the Commissariat a l'Energie Atomique, the Societe pour la Conversion et le Developpement Industriel (SODIC) has carried out a very general study of the coastal regions of France in which the short, medium and long-term prospects of the demand for water, and the cost of the necessary supplies, could possibly make desalination units of 3 000 to 10 000 m3/day competitive. So far this general enquiry, which went into detail on some particular aspects, has not revealed any very clear possibilities in this respect, except in the case of the small islands, and of units of much lower capacity, as well as that of large units on the coast, which would benefit from the size effect. However the probable difference between the cost of desalinated water and the high selling price already applying in a small number of coastal regions is relatively small. It might therefore be worthwhile and relatively inexpensive to install an experimental desalination unit in the near future. (author) [fr

  12. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.

    Ulanowski, T A; Branfireun, B A

    2013-06-01

    The Hudson Bay Lowland (HBL) of northern Ontario, Manitoba and Quebec, Canada is the second largest contiguous peatland complex in the world, currently containing more than half of Canada's soil carbon. Recent concerns about the ecohydrological impacts to these large northern peatlands resulting from climate change and resource extraction have catalyzed a resurgence in scientific research into this ecologically important region. However, the sheer size, heterogeneity and elaborate landscape arrangements of this ecosystem raise important questions concerning representative sampling of environmental media for chemical or physical characterization. To begin to quantify such variability, this study assessed the small-scale spatial (1m) and short temporal (21 day) variability of surface pore-water biogeochemistry (pH, dissolved organic carbon, and major ions) in a Sphagnum spp.-dominated, ombrotrophic raised bog, and a Carex spp.-dominated intermediate fen in the HBL. In general, pore-water pH and concentrations of dissolved solutes were similar to previously reported literature values from this region. However, systematic sampling revealed consistent statistically significant differences in pore-water chemistries between the bog and fen peatland types, and large within-site spatiotemporal variability. We found that microtopography in the bog was associated with consistent differences in most biogeochemical variables. Temporal changes in dissolved solute chemistry, particularly base cations (Na(+), Ca(2+) and Mg(2+)), were statistically significant in the intermediate fen, likely a result of a dynamic connection between surficial waters and mineral-rich deep groundwater. In both the bog and fen, concentrations of SO4(2-) showed considerable spatial variability, and a significant decrease in concentrations over the study period. The observed variability in peatland pore-water biogeochemistry over such small spatial and temporal scales suggests that under-sampling in

  13. PCBs in Rain Water, Streams and a Reservoir in a Small Catchment of NW Spain

    Delgado-Martín, Jordi; Cereijo-Arango, José Luis; García-Morrondo, David; Juncosa-Rivera, Ricardo; Cillero-Castro, Carmen; Muñoz-Ibáñez, Andrea

    2016-04-01

    Polychlorinated biphenyls (PCBs) constitute a significant environmental concern due to its persistence, tendency to bio-accumulate, acknowledged toxicity and ubiquity. In the present study, a small water catchment (~100 km2) inclusive of a two-tailed water supply reservoir (Abegondo-Cecebre) has been monitored between 2009 and 2014. Sampling stations include: a) one precipitation gauge used to collect monthly-integrated bulk precipitation (25 samples); b) seven streams (95 samples); c) five surface and one bottom points within the reservoir (104 samples); d) five points for sediment sampling in two surveys (spring and summer; 10 samples). All the water samples as well as the leachates of sediment washing have been analyzed for their concentration in 6 marker PCB (congeners 28, 52, 101, 138, 153 and 180) and 12 dioxin-like PCB (congeners 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169 and 189) compounds. The average concentration of PCBtot in the bulk precipitation during the sampling period is ~406 pg/L although a very significant decrease has occurred since the end of 2011 (~800 pg/L) to the end of 2014 (~60 pg/L). Likewise, the mean concentration of PCBtot in the stream water samples is 174 pg/L and a similar reduction in the concentration of PCBtot is also acknowledged for the same period of time (~250 pg/L before the end of 2011 and ~30 pg/L after then). Reservoir surface water has a PCBtot concentration of ~234 pg/L which, according to its sampling time (2010-2011) is consistent with the measured stream waters. However, deep reservoir water reveals an average concentration which is higher than the corresponding top water (~330 pg/L) but significantly smaller than the water-leached sediments (~860 pg/L). The available data suggest that up to a 30% of PCBs associated with precipitation becomes sequestered by the soil/sediment system while no significant change takes place during the transfer of water from the stream to the reservoir system, at least in

  14. Design optimization of a vaneless ``fish-friendly'' swirl injector for small water turbines

    Airody, Ajith; Peterson, Sean D.

    2015-11-01

    Small-scale hydro-electric plants are attractive options for powering remote sites, as they draw energy from local bodies of water. However, the environmental impact on the aquatic life drawn into the water turbine is a concern. To mitigate adverse consequences on the local fauna, small-scale water turbine design efforts have focused on developing ``fish-friendly'' facilities. The components of these turbines tend to have wider passages between the blades when compared to traditional turbines, and the rotors are designed to spin at much lower angular velocities, thus allowing fish to pass through safely. Galt Green Energy has proposed a vaneless casing that provides the swirl component to the flow approaching the rotor, eliminating the need for inlet guide vanes. We numerically model the flow through the casing using ANSYS CFX to assess the evolution of the axial and circumferential velocity symmetry and uniformity in various cross-sections within and downstream of the injector. The velocity distributions, as well as the pressure loss through the injector, are functions of the pitch angle and number of revolutions of the casing. Optimization of the casing design is discussed via an objective function consisting of the velocity and pressure performance measures.

  15. Optimal water allocation in small hydropower plants between traditional and non-traditional water users: merging theory and existing practices.

    Gorla, Lorenzo; Crouzy, Benoît; Perona, Paolo

    2014-05-01

    Water demand for hydropower production is increasing together with the consciousness of the importance of riparian ecosystems and biodiversity. Some Cantons in Switzerland and other alpine regions in Austria and in Süd Tiröl (Italy) started replacing the inadequate concept of Minimum Flow Requirement (MFR) with a dynamic one, by releasing a fix percentage of the total inflow (e.g. 25 %) to the environment. Starting from a model proposed by Perona et al. (2013) and the need of including the environment as an actual water user, we arrived to similar qualitative results, and better quantitative performances. In this paper we explore the space of non-proportional water repartition rules analysed by Gorla and Perona (2013), and we propose new ecological indicators which are directly derived from current ecologic evaluation practices (fish habitat modelling and hydrological alteration). We demonstrate that both MFR water redistribution policy and also proportional repartition rules can be improved using nothing but available information. Furthermore, all water redistribution policies can be described by the model proposed by Perona et al. (2013) in terms of the Principle of Equal Marginal Utility (PEMU) and a suitable class of nonlinear functions. This is particularly useful to highlights implicit assumptions and choosing best-compromise solutions, providing analytical reasons explaining why efficiency cannot be attained by classic repartition rules. Each water repartition policy underlies an ecosystem monetization and a political choice always has to be taken. We explicit the value of the ecosystem health underlying each policy by means of the PEMU under a few assumptions, and discuss how the theoretic efficient redistribution law obtained by our approach is feasible and doesn't imply high costs or advanced management tools. For small run-of-river power plants, this methodology answers the question "how much water should be left to the river?" and is therefore a

  16. Analysis of the Sodium Recirculation Theory of Solute Coupled Water Transport in Small Intestine

    Larsen, E. H.; Sørensen, Jens Nørkær; Sørensen, J. B.

    2002-01-01

    Our previous mathematical model of solute-coupled water transport through the intestinal epithelium is extended for dealing with electrolytes rather than electroneutral solutes. A 3Na+-2K+ pump in the lateral membranes provides the energy-requiring step for driving transjunctional and translateral......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions....... The computed sodium recirculation flux that is required for isotonic transport corresponds to that estimated in experiments on toad small intestine. This result is shown to be robust and independent of whether the apical entrance mechanism for the sodium ion is a channel, a SGLT1 transporter driving inward...

  17. Experimental investigation of small diameter two-phase closed thermosyphons charged with water, FC-84, FC-77 and FC-3283

    Jouhara, Hussam; Robinson, Anthony J.

    2010-01-01

    An experimental investigation of the performance of thermosyphons charged with water as well as the dielectric heat transfer liquids FC-84, FC-77 and FC-3283 has been carried out. The copper thermosyphon was 200 mm long with an inner diameter of 6 mm, which can be considered quite small compared with the vast majority of thermosyphons reported in the open literature. The evaporator length was 40 mm and the condenser length was 60 mm which corresponds with what might be expected in compact heat exchangers. With water as the working fluid two fluid loadings were investigated, that being 0.6 ml and 1.8 ml, corresponding to approximately half filled and overfilled evaporator section in order to ensure combined pool boiling and thin film evaporation/boiling and pool boiling only conditions, respectively. For the Fluorinert TM liquids, only the higher fill volume was tested as the aim was to investigate pool boiling opposed to thin film evaporation. Generally, the water-charged thermosyphon evaporator and condenser heat transfer characteristics compared well with available predictive correlations and theories. The thermal performance of the water-charged thermosyphon also outperformed the other three working fluids in both the effective thermal resistance as well as maximum heat transport capabilities. Even so, FC-84, the lowest saturation temperature fluid tested, shows marginal improvement in the heat transfer at low operating temperatures. All of the tested Fluorinert TM liquids offer the advantage of being dielectric fluids, which may be better suited for sensitive electronics cooling applications and were all found to provide adequate thermal performance up to approximately 30-50 W after which liquid entrainment compromised their performance.

  18. Diagnosis of small capacity reverse osmosis desalination unit for domestic water

    Hillali, Z.; Hamed, A.; Elfil, Hamza; Ferjani, E.

    2009-01-01

    Tunisian norm of drinking water tolerates a maximum TDS of 1.5 g/L, and the domestic water presents usually a salinity grater than 500 mg/L. In the last years, several small capacity reverse osmosis desalination prototypes have been marketed. They are used to desalinate brackish water with TDS lower than 1.5 g/L. This RO unit, tested with tap waters during four years, was diagnosed. The RO unit produces 10-15 L/Hour with a recovery rate between 25 and 40 pour cent and salt rejection in order of 90 pour cent. The salinity of the tested domestic water is located between 0.4 and 1.4 g/L. Water pretreatment is composed of three filtration operations (cartridge filter, granulate active carbon filter and 5 =m cartridge filter). Pretreated water is pumped through RO membrane with maximum pressure of 6 bars. At the 4th year, the RO unit performances were substantial decreased. Recovery rate and salt rejection fall down more than 50 and 100% respectively and the pressure drop increase from 1 to 2.1 bar The membrane regeneration allowed only the rate recovery restoration. The membrane selectivity was not improved. The membrane seems irreversibly damaged by the tap water chlorine none retained by the deficient pretreatment. An autopsy of the used RO membrane was done by different analysis techniques as SEM/EDX, AFM, XRD and FTIR spectroscopy. The analysis of membrane (proper and used) surfaces show a deposit film on the used membrane witch evaluated to environ 2 =m, it indicates a fooling phenomenon. The SEM photos show deterioration on the active layer material of the membrane witch seems attacked by the tap water chlorine. The X Rays Diffraction and FTIR show that the deposit collected on the used membrane contains organic and mineral (Gypsum, SiO 2 and clays) materials. Silicates and clays can exist in tap waters and reach the RO membrane when the pretreatment micro-filter became deficient. The Gypsum presence is due only to germination on the membrane.

  19. Water and oxygen induced degradation of small molecule organic solar cells

    Hermenau, Martin; Riede, Moritz; Leo, Karl

    2011-01-01

    Small molecule organic solar cells were studied with respect to water and oxygen induced degradation by mapping the spatial distribution of reaction products in order to elucidate the degradation patterns and failure mechanisms. The active layers consist of a 30 nm bulk heterojunction formed......,4′-diamine p-doped with C60F36 (MeO-TPD:C60F36), which acted as hole transporting layer. Indium-tin-oxide (ITO) and aluminum served as hole and electron collecting electrode, respectively. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) in conjunction...... of aluminum oxide at the BPhen/Al interface, and diffusion of water into the ZnPc:C60 layer where ZnPc becomes oxidized. Finally, diffusion from the electrodes was found to have no or a negligible effect on the device lifetime....

  20. Science in and out of the classroom: A look at Water Resource at Gammams Water Care Works, Namibia

    Iileka-Shinavene, Leena

    2016-04-01

    Primary school pupils in Van Rhyn School in Namibia are taught Natural Sciences from grade 4 at the age of 9. The curriculum is mainly theory/classroom based and natural science is taught through theory and various practical activities. However occasionally teachers have opportunities to supplement the pupils' learning experience through outdoor activities such as excursions to museums, municipal works and science fairs. Apart from enhancing the learning experience and improving understanding, such activities make the Natural science subject more interesting subject to learners. Water, a scarce/limited resource in Namibia, is one of the topics we cover in Natural sciences. Sustainable management of water is one of the top priorities of the government, which through various initiatives including the National Development Plan supports innovative ideas and technologies to reclaim water from sewage, recycling of industry and mining water and use semi-purified water for public recreational places. Most of the water used in Windhoek is reclaimed by City of Windhoek. To better illustrate this to the pupils, a school trip with 40 pupils of seventh grade was taken to the City of Windhoek's Gammams Water Care works. The aim of the trip was to show how the sewage purification process works and how the water is reclaimed from sewage. A guided tour of the water works was given by the resident scientists and the pupils were provided with the worksheet to complete after the tour around the Centre. They were encouraged to ask questions in all stages of water purification process and write down short notes. Most learners completed their worksheet during the tour session as they are getting information from the tour guide. The rest had to retrieve information and do further research as they got back to class so they could complete their worksheets. After the tour to Gammams, learners were asked to share what they had learned with the lower grades, 5 and 6, in a classroom

  1. Leak Detection in Water-Filled Small-Diameter Polyethylene Pipes by Means of Acoustic Emission Measurements

    Alberto Martini; Marco Troncossi; Alessandro Rivola

    2016-01-01

    The implementation of effective strategies to manage leaks represents an essential goal for all utilities involved with drinking water supply in order to reduce water losses affecting urban distribution networks. This study concerns the early detection of leaks occurring in small-diameter customers’ connections to water supply networks. An experimental campaign was carried out in a test bed to investigate the sensitivity of Acoustic Emission (AE) monitoring to water leaks. Damages were artifi...

  2. Estimates of ground-water recharge rates for two small basins in central Nevada

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins, two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation, stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most reliable results are those derived from a reduced form of the chloride-ion model because they reflect integrated, basinwide processes in terms of only three measured variables: precipitation amount, precipitation chemistry, and streamflow chemistry

  3. Gas and water permeability of concrete for reactor buildings small specimens

    Mills, R.H.

    1986-03-01

    The effect on permeability of artifical aging by drying shrinkage and by freeze-thaw was determined by observing mass transfer of gas and water under a pressure gradient. It was found that damage due to freeze-thaw was negligible but that cracking around aggregate caused by drying shrinkage resulted in significantly increased permeability to both gas and water. The absence of freeze-thaw damage was attributed to self-dessication. Since the concrete was not exposed to an external source of water, the chemical reaction was sustained by consumption of mixing water. The resulting air voids were, apparently, sufficient to absorb expansive pressures due to ice formation. The response to lateral prestress was different for cracked and uncracked concrete. Although, in all cases, increased prestress resulted in reduced leakage, the effect was stronger in cracked concrete. Mean pore diameter as determined by gas diffusion was not, however, substantially affected because the leakage in cracked concrete remained very low. Reinforcing steel did not have a great influence on permeability of small specimens. Gas transmission through concrete was strongly influenced by moisture content. Free moisture constituted a barrier to gas flow, acting as a virtual solid. This is important since aging of concrete results in reduced free moisture. Ultrasonic pulse velocity appeared to vary with moisture content and porosity of concrete in the same way as gas permeability and gave promise of being effective for in-situ monitoring of concrete in reactor buildings

  4. Removal of inorganic As5+ from a small drinking water system

    MARJANA SIMONIC

    2009-01-01

    Full Text Available The drinking water from a small drinking water system contained arsenic in a concentration of about 50 μg/L. Chemical analyses showed that the pentavalent form of arsenic was present. Since the MCL value is 10 μg/L, it was necessary to implement a technological treatment to make the water suitable for drinking. In order to do so, two technologies were suggested: activated alumina and a-FeOOH (TehnoArz, TA adsorption media. Experiments using both adsorption media were performed on a laboratory scale. It was possible to remove arsenic to below 1 μg/L. The maximal adsorption capacity was found to be 12.7 mg of As5+ per gram of a-FeOOH. Moreover, all the important physico–chemical parameters of the water remained practically unchanged after the treatment. Only a slight release of iron from the media was observed. The Fe–As bond was studied by means of chemical analysis and X-ray powder diffraction. Finally, in addition to showing the capability of arsenic removal by a-FeOOH, a comprehensive optimization of the technological parameters of the selected technology is provided.

  5. Small leak detection by measuring surface oscillation during sodium-water reaction in steam generator

    Nei, Hiromichi; Hori, Masao

    1977-01-01

    Small leak sodium-water reaction tests were conducted to develop various kinds of leak detectors for the sodium-heated steam generator in FBR. The super-heated steam was injected into sodium in a reaction vessel having a sodium free surface, simulating the steam generator. The level gauge in the reaction vessel generated the most reliable signal among detectors, as long as the leak rates were relatively high. The level gauge signal was estimated to be the sodium surface oscillation caused by hydrogen bubbles produced in sodium-water reaction. Experimental correlation was derived, predicting the amplitude as a function of leak rate, hydrogen dissolution ratio, bubble rise velocity and other parameters concerned, assuming that the surface oscillation is in proportion to the gas hold-up. The noise amplitude under normal operation without water leak was increased with sodium flow rate and found to be well correlated with Froud number. These two correlations predict that a water leak in a ''MONJU'' class (300 MWe) steam generator could possibly be detected by level gauges at a leak rate above 2 g/sec. (auth.)

  6. Mars Global Surveyor Data Analysis Program. Origins of Small Volcanic Cones: Eruption Mechanisms and Implications for Water on Mars

    Fagents, Sarah A.; Greeley, Ronald; Thordarson, Thorvaldur

    2002-01-01

    The goal of the proposed work was to determine the origins of small volcanic cones observed in Mars Global Surveyor (MGS) data, and their implications for regolith ice stores and magma volatile contents. For this 1-year study, our approach involved a combination of: Quantitative morphologic analysis and interpretation of Mars Orbiter Camera (MOC) and Mars Orbiter Laser Altimeter (MOLA) data; Numerical modeling of eruption processes responsible for producing the observed features; Fieldwork on terrestrial analogs in Iceland. Following this approach, this study succeeded in furthering our understanding of (i) the spatial and temporal distribution of near-surface water ice, as defined by the distribution and sizes of rootless volcanic cones ("pseudocraters"), and (ii) the properties, eruption conditions, and volatile contents of magmas producing primary vent cones.

  7. Transformational and transactional leadership: does it work in small to medium-sized enterprises?

    Mesu, J.K.

    2013-01-01

    Using a sample of 755 employees who rated 121 supervisors within 50 Dutch small and medium-sized enterprises (SMEs), this dissertation intends to fill in some of the existing gaps in the literature. Firstly, by investigating whether the impact of transformational and transactional leadership extends

  8. Graduates' Experiences of Work in Small Organizations in the UK and the Netherlands : Better than Expected

    Arnold, J.; Schalk, R.; Bosley, S.; van Overbeek, S.

    2002-01-01

    This project was designed to examine university graduates' expectations and experiences of employment in small organizations in the UK and the Netherlands. Specifically, three predictions were made on the basis of existing literature and tested using self-report questionnaire data gathered from 126

  9. Small Wars 2.0: A Working Paper on Land Force Planning After Iraq and Afghanistan

    2011-02-01

    official examination of future ground combat demands that look genetically distinct from those undertaken in the name of the WoT. The concept of...under the worst-case rubric but for very different reasons. The latter are small wars. However, that by no means aptly describes their size

  10. Small-Scale Design Experiments as Working Space for Larger Mobile Communication Challenges

    Lowe, Sarah; Stuedahl, Dagny

    2014-01-01

    In this paper, a design experiment using Instagram as a cultural probe is submitted as a method for analyzing the challenges that arise when considering the implementation of social media within a distributed communication space. It outlines how small, iterative investigations can reveal deeper research questions relevant to the education of…

  11. Large Industries in Small Towns: Who Benefits? Working Paper RID 73.9.

    Clemente, Frank; Summers, Gene F.

    The impact of a large manufacturing plant on a small village in "middle America" was explored in this paper. Research was conducted in Illinois using Putnam County as an "experimental" region and Iroquois County as a "control." In the spring of 1966, the Jones and Laughlin Steel Corporation began construction of a…

  12. Do decent working conditions contribute to work–life balance: A study of small enterprises in Bangladesh

    A.H.M. Belayeth Hussain

    2018-05-01

    Full Text Available Purpose - The purpose of this study was to explore the contributions of decent work situation to work–life balance of small entrepreneurs. The survey was conducted to uncover the degree and magnitude of essential decent work indicators that can aid the work–life balance situation of small ventures. Design/methodology/approach - The study utilized a survey research design and used a five-point Likert type questionnaire to investigate the research questions. Each construct of the scale has its corresponding items, which were measured specifically. To analyze the latent variables, partial least square (PLS–structural equation modelling with Smart PLS application was used. Findings - The findings of this study reveal that social dialogue and stability and security of enterprise have the most significant effects in ensuring work–life balance of an enterprise. Additionally, social dialogue among entrepreneurs has influence in maintaining decent working hours and fair treatment at workplace. Originality/value - The value of this study lies in exploring a new dimension of analyzing working conditions in informal sector economy such as small enterprises. Because this research aims to study ventures that are financed by the microcredit institution, whether social financing plays a role in improving work–life balance situation through empowering decent working conditions can be investigated.

  13. Public health risk status of the water supply frame work at Kwame ...

    The aim of the study is to assess the public health risk status of the potable water supply framework at the Kwame Nkurumah Postgraduate Residence (PG) Hall, University of Nigeria, Nsukka, (UNN), Enugu State, Nigeria, and environs. Four potable water supply frame-works at the PG Hall, UNN, and exposed stagnant ...

  14. Precursor evolution and SCC initiation of cold-worked alloy 690 in simulated PWR primary water

    Zhai, Ziqing; Kruska, Karen; Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2017-03-27

    Stress corrosion crack initiation of two thermally-treated, cold-worked (CW) alloy 690 materials was investigated in 360oC simulated PWR primary water using constant load tensile (CLT) tests and blunt notch compact tension (BNCT) tests equipped with direct current potential drop (DCPD) for in-situ detection of cracking. SCC initiation was not detected by DCPD for the 21% and 31%CW CLT specimens loaded at their yield stress after ~9,220 h, however intergranular (IG) precursor damage and isolated surface cracks were observed on the specimens. The two 31%CW BNCT specimens loaded at moderate stress intensity after several cyclic loading ramps showed DCPD-indicated crack initiation after 10,400h exposure at constant stress intensity, which resulted from significant growth of IG cracks. The 21%CW BNCT specimens only exhibited isolated small IG surface cracks and showed no apparent DCPD change throughout the test. Interestingly, post-test cross-section examinations revealed many grain boundary (GB) nano-cavities in the bulk of all the CLT and BNCT specimens particularly for the 31%CW materials. Cavities were also found along GBs extending to the surface suggesting an important role in crack nucleation. This paper provides an overview of the evolution of GB cavities and will discuss their effects on crack initiation in CW alloy 690.

  15. Work Ability and Its Related Factors Among Workers in Small and Medium Enterprises: Comparison Among Four ASEAN Countries.

    Kaewboonchoo, Orawan; Isahak, Marzuki; Susilowati, Indri; Phuong, Toai Nguyen; Morioka, Ikuharu; Harncharoen, Kitiphong; Low, Wah Yun; Ratanasiripong, Paul

    2016-07-01

    Work ability is related to many factors that might influence one's capacity to work. This study aimed to examine the work ability and its related factors among small and medium enterprises (SME) workers in 4 Association of Southeast Asian Nations (ASEAN) countries. The participants in this study included 2098 workers from food and textile industries in Indonesia, Malaysia, Thailand, and Vietnam. A cross-sectional survey of anonymous self-administrated questionnaire was designed to collect information on sociodemographic factors, work environment and ergonomic condition, musculoskeletal disorders, and work ability. Bivariate correlation coefficient and multiple linear regression analyses were used to predict the work ability. Results of this study confirm that work ability in 4 ASEAN countries was similar to that in European countries, and that the sociodemographic factors, work environment and ergonomic condition, and musculoskeletal disorder (MSD) were associated with work ability. These factors are important for considering occupational health and safety policy to promote work ability in food, textile, and other SME workers. © 2016 APJPH.

  16. SMALL ROV MARINE BOAT FOR BATHYMETRY SURVEYS OF SHALLOW WATERS – POTENTIAL IMPLEMENTATION IN MALAYSIA

    K. T. Suhari

    2017-10-01

    Full Text Available Current practices in bathymetry survey (available method are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products – economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian’ bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling since it is mostly similar to Malaysia’s river characteristics and suggests some improvement for Malaysia best practice.

  17. Small Rov Marine Boat for Bathymetry Surveys of Shallow Waters - Potential Implementation in Malaysia

    Suhari, K. T.; Karim, H.; Gunawan, P. H.; Purwanto, H.

    2017-10-01

    Current practices in bathymetry survey (available method) are indeed having some limitations. New technologies for bathymetry survey such as using unmanned boat has becoming popular in developed countries - filled in and served those limitations of existing survey methods. Malaysia as one of tropical country has it own river/water body characteristics and suitable approaches in conducting bathymetry survey. Thus, a study on this emerging technology should be conducted using enhanced version of small ROV boat with Malaysian rivers and best approaches so that the surveyors get benefits from the innovative surveying product. Among the available ROV boat for bathymetry surveying in the market, an Indonesian product called SHUMOO is among the promising products - economically and practically proven using a few sample areas in Indonesia. The boat was equipped and integrated with systems of remote sensing technology, GNSS, echo sounder and navigational engine. It was designed for riverbed surveys on shallow area such as small /medium river, lakes, reservoirs, oxidation/detention pond and other water bodies. This paper tries to highlight the needs and enhancement offered to Malaysian' bathymetry surveyors/practitioners on the new ROV boat which make their task easier, faster, safer, economically effective and better riverbed modelling results. The discussion continues with a sample of Indonesia river (data collection and modelling) since it is mostly similar to Malaysia's river characteristics and suggests some improvement for Malaysia best practice.

  18. Testing of the multi-application small light water reactor (MASLWR) passive safety systems

    Reyes, Jose N.; Groome, John; Woods, Brian G.; Young, Eric; Abel, Kent; Yao, You; Yoo, Yeon Jong

    2007-01-01

    Experimental thermal hydraulic research has been conducted at Oregon State University for the purpose of assessing the performance of a new reactor design concept, the multi-application small light water reactor (MASLWR). The MASLWR is a pressurized light water reactor design with a net output of 35 MWe that uses natural circulation in both normal and transient operation. Due to its small size, portability and modularity, the MASLWR design is well suited to help fill the potential need for grid appropriate reactor designs for smaller electricity grids as may be found in developing or remote regions. The purpose of the OSU MASLWR test facility is to assess the operation of the MASLWR under normal full operating pressure and full temperature conditions and to assess the passive safety systems under transient conditions. The data generated by the testing program will be used to assess computer code calculations and to provide a better understanding of the thermal-hydraulic phenomena in the design of the MASLWR NSSS. During this testing program, four tests were conducted at the OSU MASLWR test facility. These tests included one design basis accident and one beyond design basis accident. During the performance of these tests, plant operations to include start up, normal operation and shut down evolutions were demonstrated successfully

  19. Life Cycle Environmental Impacts of Disinfection Technologies Used in Small Drinking Water Systems.

    Jones, Christopher H; Shilling, Elizabeth G; Linden, Karl G; Cook, Sherri M

    2018-03-06

    Small drinking water systems serve a fifth of the U.S. population and rely heavily on disinfection. While chlorine disinfection is common, there is interest in minimizing chemical addition, especially due to carcinogenic disinfection byproducts and chlorine-resistant pathogens, by using ultraviolet technologies; however, the relative, broader environmental impacts of these technologies are not well established, especially in the context of small (environmental trade-offs between chlorine and ultraviolet disinfection via comparative life cycle assessment. The functional unit was the production of 1 m 3 of drinking water to U.S. Treatment included cartridge filtration followed by either chlorine disinfection or ultraviolet disinfection with chlorine residual addition. Environmental performance was evaluated for various chlorine contact zone materials (plastic, concrete, steel), ultraviolet validation factors (1.2 to 4.4), and electricity sources (renewable; U.S. average, high, and low impact grids). Performance was also evaluated when filtration and chlorine residual were not required. From a life cycle assessment perspective, replacing chlorine with UV was preferred only in a limited number of cases (i.e., high pumping pressure but filtration is not required). In all others, chlorine was environmentally preferred, although some contact zone materials and energy sources had an impact on the comparison. Utilities can use these data to inform their disinfection technology selection and operation to minimize environmental and human health impacts.

  20. Natural products phytotoxicity A bioassay suitable for small quantities of slightly water-soluble compounds.

    Dornbos, D L; Spencer, G F

    1990-02-01

    A large variety of secondary metabolites that can inhibit germination and/or seedling growth are produced by plants in low quantities. The objective of this study was to develop a bioassay capable of reliably assessing reductions in germination percentage and seedling length of small-seeded plant species caused by exposure to minute quantities of these compounds. The germination and growth of alfalfa (Medicago saliva), annual ryegrass (Lolium multiflorum), and velvetleaf (Abutilon theophrasti) were evaluated against six known phytotoxins from five chemical classes; cinmethylin (a herbicidal cineole derivative) was selected as a comparison standard. Each phytotoxin, dissolved in a suitable organic solvent, was placed on water-agar in small tissue culture wells. After the solvent evaporated, imbibed seeds were placed on the agar; after three days, germination percentages and seedling lengths were measured. Compared to a commonly used filter paper procedure, this modified agar bioassay required smaller quantities of compound per seed for comparable bioassay results. This bioassay also readily permitted the measurement of seedling length, a more sensitive indicator of phytotoxicity than germination. Seedling length decreased sigmoidally as the toxin concentration increased logarithmically. Phytotoxicity was a function of both compound and plant species. Cinmethylin, a grass herbicide, reduced the length of annual ryegrass seedlings by 90-100%, whereas that of alfalfa and velvetleaf was inhibited slightly. The agar bioassay facilitated the rapid and reliable testing of slightly water-soluble compounds, requiring only minute quantities of each compound to give reproducible results.

  1. Integrated energy and waste water solutions to solve small town municipal service delivery problems in South Africa

    Du Plessis, C

    2010-02-01

    Full Text Available Providing municipal services such as electricity and waste water treatment is a major challenge for small towns that often lack the institutional capacity to manage and maintain the necessary infrastructure. High levels of poverty in these towns...

  2. The Planning of a Small Pilot Plant for Development Work on Aqueous Reprocessing of Nuclear Fuels

    Sjoeborg, T U; Haeffner, E; Hultgren, Aa

    1963-10-15

    A shielded volume (42 m{sup 3}) in the hot laboratory at Kjeller, Norway, has been used for the installation of a small pilot plant intended for studies on nuclear fuel reprocessing. During the first period of operation (1963) a plutonium separation method (the Silex process) developed at AB Atomenergi will be studied. This document is a description of the project during the stage of technical planning and chemical process development.

  3. Female peers in small work groups enhance women's motivation, verbal participation, and career aspirations in engineering

    Dasgupta, Nilanjana; Scircle, Melissa McManus; Hunsinger, Matthew

    2015-01-01

    Advances in science, technology, engineering, and mathematics are critical to the American economy and require a robust workforce. The scarcity of women in this workforce is a well-recognized problem, but data-driven solutions to this problem are less common. We provide experimental evidence showing that gender composition of small groups in engineering has a substantial impact on undergraduate women’s persistence. Women participate more actively in engineering groups when members are mostly ...

  4. Estimates of ground-water recharge rates for two small basins in central Nevada

    Lichty, R.W.; McKinley, P.W.

    1995-01-01

    Estimates of ground-water recharge rates developed from hydrologic modeling studies are presented for 3-Springs and East Stewart basins. two small basins (analog sites) located in central Nevada. The analog-site studies were conducted to aid in the estimation of recharge to the paleohydrologic regime associated with ground water in the vicinity of Yucca Mountain under wetter climatic conditions. The two analog sites are located to the north and at higher elevations than Yucca Mountain, and the prevailing (current) climatic conditions at these sites is thought to be representative of the possible range of paleoclimatic conditions in the general area of Yucca Mountain during the Quaternary. Two independent modeling approaches were conducted at each of the analog sites using observed hydrologic data on precipitation, temperature, solar radiation stream discharge, and chloride-ion water chemistry for a 6-year study period (October 1986 through September 1992). Both models quantify the hydrologic water-balance equation and yield estimates of ground-water recharge, given appropriate input data. The first model uses a traditional approach to quantify watershed hydrology through a precipitation-runoff modeling system that accounts for the spatial variability of hydrologic inputs, processes, and responses (outputs) using a dailycomputational time step. The second model is based on the conservative nature of the dissolved chloride ion in selected hydrologic environments, and its use as a natural tracer allows the computation of acoupled, water and chloride-ion, mass-balance system of equations to estimate available water (sum ofsurface runoff and groundwater recharge). Results of the modeling approaches support the conclusion that reasonable estimates of average-annual recharge to ground water range from about 1 to 3 centimeters per year for 3-Springs basin (the drier site), and from about 30 to 32 centimeters per year for East Stewart basin (the wetter site). The most

  5. Water quality and small-scale land use mapping in the South-Chinese megacity Guangzhou

    Strohschoen, R.; Azzam, R.; Baier, K.

    2011-12-01

    Since China adopted its "open-door" policy in 1978/ 79, the Pearl River Delta became one of the most rapid and dynamic urbanizing areas in East Asia due to migration, industrialization and globalization processes. The study area Guangzhou grew from a small town to a megacity with some 15 million inhabitants within less than 30 years. The rapid population growth and the urban and industrial expansion led to a remarkably increasing demand for freshwater, a high water consume and a rising sewage production. While economy and house constructions developed very fast, the expansion of water infrastructures could not keep pace with the urban growth. The consequences arising out of these situations are a serious deterioration of the surface and groundwater resources but also a degradation of living conditions and a threat to human health, particularly of the urban poor. In contrast to other studies that often consider the surface water quality outside Guangzhou, our focus was put on the urban Pearl River and its tributaries as well as urban groundwater and tap water. The study was conducted to spatially investigate the present status of the water quality in view of the concurrent formal and informal anthropogenic influences. Additional land use mapping was undertaken to analyze the interrelations between different land use types and water quality and to determine local pollution hotspots which should be taken into particular consideration of future city planning. Supplementing interviews were hold to find out usage patterns of groundwater and strategies to cope with both insufficient tap water quality and water infrastructures. A total of 74 surface water samples and 16 groundwater samples of privately and publicly accessible wells were taken at the beginning of the rainy season in May 2010. Those samples were partly compared to measurements carried out from 2007-2009, where adequate. Further, 15 tap water samples were taken in 2007/ 08 to draw conclusions about possible

  6. An educational alternative for improving working conditions in small and medium enterprises

    Eliana Castro S; Elisabeth Herreño T

    2011-01-01

    Managing health and safety at work involves considering two internal processes common to all organizations: knowledge and human talent management. These two processes are affected by globalizing phenomena that have an effect at the economic, environmental, and occupational levels. This is especially true for countries like Colombia. Objective: to provide an educational alternative that contributes to knowledge management in SME’s in order to improve the working conditions and to support their...

  7. Public choice in water resource management: two case studies of the small-scale hydroelectric controversy

    Soden, D.L.

    1985-01-01

    Hydroelectric issues have a long history in the Pacific Northwest, and more recently have come to focus on developing environmentally less-obtrusive means of hydroelectric generation. Small-scale hydroelectric represents perhaps the most important of these means of developing new sources of renewable resources to lessen the nation's dependence on foreign sources of energy. Each potential small-scale hydroelectric project, however, manifests a unique history which provides a highly useful opportunity to study the process of collective social choice in the area of new energy uses of water resources. Utilizing the basic concepts of public choice theory, a highly developed and increasingly widely accepted approach in the social sciences, the politicalization of small-scale hydroelectric proposals is analyzed. Through the use of secondary analysis of archival public opinion data collected from residents of the State of Idaho, and through the development of the two case studies - one on the Palouse River in Eastern Washington and the other at Elk Creek Falls in Northern Idaho, the policy relevant behavior and influence of major actors is assessed. Results provide a useful test of the utility of public-choice theory for the study of cases of natural-resources development when public involvement is high.

  8. Performance of a Small-scale Treatment Wetland for Treatment of Landscaping Wash Water

    Thompson, R. J.; Fayed, E.; Fish, W.

    2011-12-01

    A large number of lawn mowers and related equipment must be cleaned each day by commercial landscaping operations and state and local highway maintenance crews. Washing these devices produces wastewater that contains high amounts of organic matter and potentially problematic nutrients, as well as oil and grease and other chemicals and metals that come from the machinery itself. Dirty water washes off the mowers, flows off the pavement and into nearby storm drains without any kind of treatment. A better idea would be to collect such wastewater, retain it in an appropriate catchment such as an engineered wetland where natural processes could break down any pollutants in the wash water, and allow the water to naturally evaporate or percolate into the soil where it could recharge ground water resources safely. This research examines the performance of a small-scale treatment wetland tailored to remove nitrogen from landscaping wash water by incorporating both aerobic and anaerobic phases. Contaminants are analyzed through physical and chemical methods. Both methods involve collection of samples, followed by standardized, validated analytical laboratory tests for measuring total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease, and metals (Zn and Cu). High levels of total solids, total kjeldahl nitrogen, nitrates, total and dissolved phosphorus, COD, BOD, oil and grease are found. Zinc and copper levels are low. Wetland treatment removes 99% total solids, 77% total kjeldahl nitrogen, 100% nitrates, 94% total phosphorus, 86% dissolved phosphorus, 94% COD, 97% BOD, and 76% oil and grease. The results will be a critical step towards developing a sustainable low-energy system for treating such wastewater that could be used by private landscaping companies and government agencies.

  9. Water Dynamics and Dewetting Transitions in the Small Mechanosensitive Channel MscS

    Anishkin, Andriy; Sukharev, Sergei

    2004-01-01

    The dynamics of confined water in capillaries and nanotubes suggests that gating of ion channels may involve not only changes of the pore geometry, but also transitions between water-filled and empty states in certain locations. The recently solved heptameric structure of the small mechanosensitive channel of Escherichia coli, MscS, has revealed a relatively wide (7–15 Å) yet highly hydrophobic transmembrane pore. Continuum estimations based on the properties of pore surface suggest low conductance and a thermodynamic possibility of dewetting. To test the predictions we performed molecular dynamics simulations of MscS filled with flexible TIP3P water. Irrespective to the initial conditions, several independent 6-ns simulations converged to the same stable state with the pore water-filled in the wider part, but predominantly empty in the narrow hydrophobic part, displaying intermittent vapor-liquid transitions. The polar gain-of-function substitution L109S in the constriction resulted in a stable hydration of the entire pore. Steered passages of Cl− ions through the narrow part of the pore consistently produced partial ion dehydration and required a force of 200–400 pN to overcome an estimated barrier of 10–20 kcal/mole, implying negligibly low conductance. We conclude that the crystal structure of MscS does not represent an open state. We infer that MscS gate, which is similar to that of the nicotinic ACh receptor, involves a vapor-lock mechanism where limited changes of geometry or surface polarity can locally switch the regime between water-filled (conducting) and empty (nonconducting) states. PMID:15111405

  10. Ranking of small scale proposals for water system repair using the Rapid Impact Assessment Matrix (RIAM)

    Shakib-Manesh, T.E.; Hirvonen, K.O.; Jalava, K.J.; Ålander, T.; Kuitunen, M.T., E-mail: markku.kuitunen@jyu.fi

    2014-11-15

    Environmental impacts of small scale projects are often assessed poorly, or not assessed at all. This paper examines the usability of the Rapid Impact Assessment Matrix (RIAM) as a tool to prioritize project proposals for small scale water restoration projects in relation to proposals' potential to improve the environment. The RIAM scoring system was used to assess and rank the proposals based on their environmental impacts, the costs of the projects to repair the harmful impacts, and the size of human population living around the sites. A four-member assessment group (The expert panel) gave the RIAM-scores to the proposals. The assumed impacts of the studied projects at the Eastern Finland water systems were divided into the ecological and social impacts. The more detailed assessment categories of the ecological impacts in this study were impacts on landscape, natural state, and limnology. The social impact categories were impacts to recreational use of the area, fishing, industry, population, and economy. These impacts were scored according to their geographical and social significance, their magnitude of change, their character, permanence, reversibility, and cumulativeness. The RIAM method proved to be an appropriate and recommendable method for the small-scale assessment and prioritizing of project proposals. If the assessments are well documented, the RIAM can be a method for easy assessing and comparison of the various kinds of projects. In the studied project proposals there were no big surprises in the results: the best ranks were received by the projects, which were assumed to return watersheds toward their original state.

  11. Ranking of small scale proposals for water system repair using the Rapid Impact Assessment Matrix (RIAM)

    Shakib-Manesh, T.E.; Hirvonen, K.O.; Jalava, K.J.; Ålander, T.; Kuitunen, M.T.

    2014-01-01

    Environmental impacts of small scale projects are often assessed poorly, or not assessed at all. This paper examines the usability of the Rapid Impact Assessment Matrix (RIAM) as a tool to prioritize project proposals for small scale water restoration projects in relation to proposals' potential to improve the environment. The RIAM scoring system was used to assess and rank the proposals based on their environmental impacts, the costs of the projects to repair the harmful impacts, and the size of human population living around the sites. A four-member assessment group (The expert panel) gave the RIAM-scores to the proposals. The assumed impacts of the studied projects at the Eastern Finland water systems were divided into the ecological and social impacts. The more detailed assessment categories of the ecological impacts in this study were impacts on landscape, natural state, and limnology. The social impact categories were impacts to recreational use of the area, fishing, industry, population, and economy. These impacts were scored according to their geographical and social significance, their magnitude of change, their character, permanence, reversibility, and cumulativeness. The RIAM method proved to be an appropriate and recommendable method for the small-scale assessment and prioritizing of project proposals. If the assessments are well documented, the RIAM can be a method for easy assessing and comparison of the various kinds of projects. In the studied project proposals there were no big surprises in the results: the best ranks were received by the projects, which were assumed to return watersheds toward their original state

  12. Anthropogenic water sources and the effects on Sonoran Desert small mammal communities

    Aaron B. Switalski

    2017-11-01

    Full Text Available Anthropogenic water sources (AWS are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert in Arizona. A total of 370 individual mammals representing three genera and eight species were captured in 4,800 trap nights from winter 2011 to spring 2012. A multi-response permutation procedure was used to identify differences in small mammal community abundance and biomass by season and treatment. Rodent abundance, biomass, and richness were greater at AWS compared to control sites. Patterns of abundance and biomass were driven by the desert pocket mouse (Chaetodipus penicillatus which was the most common capture and two times more numerous at AWS compared to controls. Vegetation characteristics, explored using principal components analysis, were similar between AWS and controls. Two species that prefer vegetation structure, Bailey’s pocket mouse (C. baileyi and white-throated woodrat (Neotoma albigula, had greater abundances and biomass near AWS and were associated with habitat having high cactus density. Although small mammals do not drink free-water, perhaps higher abundances of some species of desert rodents at AWS could be related to artificial structure associated with construction or other resources. Compared to the 30-year average of precipitation for the area, the period of our study occurred during a dry winter. During dry periods, perhaps AWS provide resources to rodents related to moisture.

  13. Anthropogenic water sources and the effects on Sonoran Desert small mammal communities.

    Switalski, Aaron B; Bateman, Heather L

    2017-01-01

    Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert in Arizona. A total of 370 individual mammals representing three genera and eight species were captured in 4,800 trap nights from winter 2011 to spring 2012. A multi-response permutation procedure was used to identify differences in small mammal community abundance and biomass by season and treatment. Rodent abundance, biomass, and richness were greater at AWS compared to control sites. Patterns of abundance and biomass were driven by the desert pocket mouse ( Chaetodipus penicillatus ) which was the most common capture and two times more numerous at AWS compared to controls. Vegetation characteristics, explored using principal components analysis, were similar between AWS and controls. Two species that prefer vegetation structure, Bailey's pocket mouse ( C. baileyi ) and white-throated woodrat ( Neotoma albigula) , had greater abundances and biomass near AWS and were associated with habitat having high cactus density. Although small mammals do not drink free-water, perhaps higher abundances of some species of desert rodents at AWS could be related to artificial structure associated with construction or other resources. Compared to the 30-year average of precipitation for the area, the period of our study occurred during a dry winter. During dry periods, perhaps AWS provide resources to rodents related to moisture.

  14. Water Quality Improvement through Reductions of Pollutant Loads on Small Scale of Bioretention System

    Elyza Muha, Norshafa; Mohd Sidek, Lariyah; Jajarmizadeh, Milad

    2016-03-01

    Bioretention system is introduced as an important topic namely Urban Storm Water Management Manual for Malaysia (MSMA) by the Department of Irrigation and Drainage Malaysia (DID) in May 2012. The main objective of this paper is to evaluate the performance of water quality for small scale bioretention system under tropical climate via MUSIC model. Two bioretention systems 1 and 2 are observed based on the difference media depth. The result of bioretention system is compared with a reference model which has infrastructure with Urban Stormwater Improvement Conceptualisation (MUSIC) for pollutants load reduction and water quality results. Assessment of results via MUSIC software indicates a significant percentage of reduction for Total Suspended Solid (TSS), Total Phosphorus (TP) and Total Nitrogen (TN). The prediction of pollutant reduction via using MUSIC has the harmony for requirement in MSMA. TSS pollutant reduction is more than 80%, while for TP and TN more than 50%. The outcome of this study can be helpful for improvement of the existing MSMA guidelines for application of bioretention systems in Malaysia.

  15. Enhancing work motivation for Japanese female nurses in small to medium-sized private hospitals by analyzing job satisfaction.

    Kudo, Yasushi; Kido, Shigeri; Shahzad, Machiko Taruzuka; Shida, Kyoko; Satoh, Toshihiko; Aizawa, Yoshiharu

    2010-03-01

    Proper work environments are important for nurses to feel motivated. We examined the associations between work motivation and job satisfaction among Japanese nurses to improve their motivation. In Japan, relatively small and medium-sized private hospitals play a central role in the healthcare industry. In the present study, the subjects were nurses working in 23 small and medium-sized private hospitals that had 65 to 326 beds. We analyzed 1,116 registered and licensed practical female nurses (average age, 38.3 years; standard deviation, 11.3 years). Many nurses with their specialized nursing skills dedicate themselves to patient care. However, many of these nurses may not be interested in contributing to their hospitals. Nurses may have different opinions regarding dedication to patient care and contribution to their hospitals. Therefore, concerning work motivation, we produced these two different items, "Nurses' dedication to patients" and "Nurses' contribution to their hospitals." We also produced our own original new job satisfaction questionnaire. We found 7 facets of job satisfaction: "Work as specialists," "Workplace safety," "Relationships with superiors," "Work-life balance," "Relationships among nurses," "Communications with physicians," and "Salary." Multiple linear regression analyses show that both "Nurses' dedication to patients" and "Nurses' contribution to their hospitals" were significantly associated with "Work as specialists." Nurses feel their jobs of protecting people's lives and health are valuable. They do not feel motivated only by money. They value the intrinsic nature of their jobs. Creating proper work environments is important for nurses to be able to work as specialists.

  16. Development and Deployment Strategy for a Small Advanced Light Water Reactor

    Modro, S. Michael; Reith, Raymond; Babka, Pierre

    2002-01-01

    This paper discusses development and deployment strategies for the modular Multi-Application Small Light Water Reactor (MASLWR). Modularity, small size, capability to transport whole modules including containment on road or by rail, simplicity and safety of this reactor allows innovative deployment strategies for a variety of applications. A larger plant may be constructed of many independent power generation units. The multi-module plant is intended to be operated as a base-load plant. Each reactor is to be operated at full load. However, in response to changes in power demand individual units can brought on line or shut down. A larger plant can be built in small increments to match the power demand balancing capital commitments with revenues from sales of electricity. Also, an unplanned shutdown of a reactor only affects a relatively small portion of the total plant capacity. Simplification of MASLWR design and extensive use of modularization coupled with factory fabrication will result in improved productivity of fieldwork and improved quality achieved in a factory environment. The initial MASLWR design concept development has been completed under the U.S. DOE (Department of Energy) Nuclear Energy Research Initiative (NERI) project. This paper discusses a strategy for developing and deploying a MASLWR plant by 2015. This schedule is realistic because the plant design relies on existing industrial experience and manufacturing capabilities. The development strategy consists of the following elements: concept confirmation through testing (under the NERI program a scaled integral test facility has been constructed and initial testing performed), design concept optimization, and design certification based on prototype testing. (authors)

  17. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado

    1994-01-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  18. Success nonetheless : Making public utilities work in small-scale democracies despite difficult capital conditions

    Douglas, Scott

    2011-01-01

    A large part of the study of politics is dedicated to identifying the circumstances under which democracy will flourish. Putnam made a major contribution to this field through his concept of social capital as developed in Making Democracy Work. Putnam found that communities with a high number of

  19. Can't You Just Talk to Them? Small Group Work in a Senior Thesis Course.

    Nance, Teresa; Mackey-Kallis, Susan

    At Villanova University, the Senior Projects Course is designed to serve as a capstone course. Students are required to integrate the pieces of the discipline acquired from previous course work into a comprehensive, fully developed research project. This paper looks critically at one aspect of effectively managing a group project course: conflict…

  20. A Case Analysis on the Adequacy of Work-Life Balance Practices in UK Small- and Medium-Sized Enterprises

    Babatunde Akanji

    2017-01-01

    Objective: The purpose of this study is to examine whether work-life balance (WLB) practices are satisfactorily provided in UK small and medium-sized enterprises (SMEs) and the impact of the availability of these work-life policies on turnover intentions. A review of extant literature reveals scarce knowledge in this area of research and this study presents a rudimentary effort to fill this gap. Research Design & Methods: Using qualitative design, the data set comprised of in-depth interv...

  1. Work motivation for Japanese nursing assistants in small- to medium-sized hospitals.

    Kudo, Yasushi; Kido, Shigeri; Shahzad, Machiko Taruzuka; Yoshimura, Emiko; Shibuya, Akitaka; Aizawa, Yoshiharu

    2011-12-01

    Nursing assistants can work without a professional certification to help registered nurses and licensed practical nurses. Nursing assistants engage in various tasks, e.g., washing laundry, cleaning up, and clerk tasks regarding nursing. Enhancing work motivation among nursing assistants is essential for every hospital, because when nursing assistants do their jobs well, it allows registered nurses and licensed practical nurses to complete their own specialized jobs. We examined the predictors significantly associated with nursing assistants' work motivation. For those predictors, we produced items to examine job satisfaction. Those items are classified into intrinsic and extrinsic facets. The subjects for this study were Japanese nursing assistants working in 26 hospitals with 62-376 beds (4 public and 22 private hospitals). A total of 516 nursing assistants were analyzed, with the average age and standard deviation of 42.7 ± 12.9 years; the age of 456 female subjects was 43.8 ± 12.7 years and that of 60 male subjects was 34.3 ± 11.0 years. Our results show that "work motivation" is significantly associated with "free time to do one's own things," "nursing assistants as important partners on the job," "feeling helpful to patients," "participating in decision making," and "job-skill improvement." Free time to do one's own things is an extrinsic item. Hospital administrators must monitor the workload and their quality of life among nursing assistants. All the other significant items are intrinsic. Nursing assistants are not only motivated by money. They highly value the intrinsic nature and experience of their jobs.

  2. An Experimental investigation of critical flow rates of subcooled water through short pipes with small diameters

    Park, Choon Kyung

    1997-02-01

    The primary objective of this study is to improve our understanding on critical flow phenomena in a small size leak and to develop a model which can be used to estimate the critical mass flow rates through reactor vessel or primary coolant pipe wall. For this purpose, critical two-phase flow phenomena of subcooled water through short pipes (100 ≤ L ≤ 400 mm) with small diameters (3.4 ≤ D ≤ 7.15 mm) have been experimentally investigated for wide ranges of subcooling (0∼199 .deg. C) and pressure (0.5∼2.0MPa). To examine the effects of various parameters (i.e., the location of flashing inception, the degree of subcooling, the stagnation temperature and pressure, and the pipe size) on the critical two-phase flow rates of subcooled water, a total of 135 runs were made for various combinations of test parameters using four different L/D test sections. Experimental results that show effects of various parameters on subcooled critical two-phase flow rates are presented. The measured static pressure profiles along the discharge pipe show that the critical flow rate can be strongly influenced by the flashing location. The locations of saturation pressure for different values of the stagnation subcooling have been consistently determined from the pressure profiles. Based upon the test results, two important parameters have been identified. These are cold state discharge coefficient and dimensionless subcooling, which are found to efficiently take into account the test section geometry and the stagnation conditions, respectively. A semi-empirical model has been developed to predict subcooled two-phase flow rates through small size openings. This model provides a simple and direct calculation of the critical mass flow rates with information on the initial condition and on the test section geometry. Comparisons between the mass fluxes calculated by present model and a total of 755 selected experimental data from 9 different investigators show that the agreement is

  3. A rainfall-runoff model for two small ungauged catchment using the water balance of a reservoir for calibration

    de Hamer, W.; Love, D.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2007-01-01

    In semi‐arid regions, small artificial surface reservoirs are important to meet the domestic and agricultural water requirements of smallholder farmers. The research objective of the study was to determine the rainfall‐runoff relation of two ungauged rivers using the measured water levels of the

  4. Impacts of nutrients and pesticides from small- and large-scale agriculture on the water quality of Lake Ziway, Ethiopia

    Teklu, Berhan M.; Hailu, Amare; Wiegant, Daniel A.; Scholten, Bernice S.; Brink, van den Paul J.

    2018-01-01

    The area around Lake Ziway in Ethiopia is going through a major agricultural transformation with both small-scale farmers and large horticultural companies using pesticides and fertilisers at an increased rate. To be able to understand how this influences the water quality of Lake Ziway, water

  5. Impacts of nutrients and pesticides from small- and large-scale agriculture on the water quality of Lake Ziway, Ethiopia

    Teklu, Berhan M.; Hailu, Amare; Wiegant, Daniel A.; Scholten, Bernice S.; Brink, van den Paul J.

    2016-01-01

    The area around Lake Ziway in Ethiopia is going through a major agricultural transformation with both small-scale farmers and large horticultural companies using pesticides and fertilisers at an increased rate. To be able to understand how this influences the water quality of Lake Ziway, water

  6. Performance characteristics of single effect lithium bromide/ water absorption chiller for small data centers

    Mysore, Abhishek Arun Babu

    A medium data center consists of servers performing operations such as file sharing, collaboration and email. There are a large number of small and medium data centers across the world which consume more energy and are less efficient when compared to large data center facilities of companies such as GOOGLE, APPLE and FACEBOOK. Such companies are making their data center facilities more environmental friendly by employing renewable energy solutions such as wind and solar to power the data center or in data center cooling. This not only reduces the carbon footprint significantly but also decreases the costs incurred over a period of time. Cooling of data center play a vital role in proper functioning of the servers. It is found that cooling consumes about 50% of the total power consumed by the data center. Traditional method of cooling includes the use of mechanical compression chillers which consume lot of power and is not desirable. In order to eliminate the use of mechanical compressor chillers renewable energy resources such as solar and wind should be employed. One such technology is solar thermal cooling by means of absorption chiller which is powered by solar energy. The absorption chiller unit can be coupled with either flat plate or evacuated tube collectors in order to achieve the required inlet temperature for the generator of the absorption chiller unit. In this study a modular data center is considered having a cooling load requirement of 23kw. The performance characteristics of a single stage Lithium Bromide/ water refrigeration is presented in this study considering the cooling load of 23kw. Performance characteristics of each of the 4 heat exchangers within the unit is discussed which helps in customizing the unit according to the users' specific needs. This analysis helps in studying the importance of different properties such as the effect of inlet temperatures of hot water for generator, inlet temperatures of cooling water for absorber and

  7. 40 CFR 142.310 - How can a person served by the public water system obtain EPA review of a State proposed small...

    2010-07-01

    ... water system obtain EPA review of a State proposed small system variance? 142.310 Section 142.310... PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Variances for Small System Public Participation § 142.310 How can a person served by the public water system obtain EPA review of a State proposed small...

  8. Tentative Study on Performance of Darriues-Type Hydroturbine Operated in Small Open Water Channel

    Matsushita, D.; Moriyama, R.; Nakashima, K.; Watanabe, S.; Okuma, K.; Furukawa, A.

    2014-03-01

    The development of small hydropower is one of the realistic and preferable utilizations of renewable energy, but the extra-low head hydropower less than 2 m is almost undeveloped yet for some reasons. The authors have developed several types of Darrieus-type hydro-turbine system, and among them, the Darrieus-turbine with a wear and a nozzle installed upstream of turbine is so far in success to obtain more output power, i.e. more shaft torque, by gathering all water into the turbine. However, there can several cases exist, in which installing the wear covering all the flow channel width is unrealistic. Then, in the present study, the hydraulic performances of Darrieus-type hydro-turbine with the inlet nozzle is investigated, putting alone in a small open channel without upstream wear. In the experiment, the five-bladed Darrieus-type runner with the pitch-circle diameter of 300 mm and the blade span of 300 mm is vertically installed in the open channel with the width of 1,200 mm. The effectiveness of the shape of the inlet nozzle is also examined using two types of two-dimensional symmetric nozzle, the straight line nozzle (SL nozzle) with the converging angle of 45 degrees and the half diameter curved nozzle (HD nozzle) whose radius is a half diameter of runner pitch circle. Inlet and outlet nozzle widths are in common for the both nozzles, which are 540 mm and 240 mm respectively. All the experiments are carried out under the conditions with constant flow rate and downstream water level, and performances are evaluated by measured output torque and the measured head difference between the water levels upstream and downstream of the turbine. As a result, it is found that the output power is remarkably increased by installing the inlet nozzle, and the turbine with SL nozzle produces larger power than that with HD nozzle. However, the peak efficiency is deteriorated in both cases. The speed ratio defined by the rotor speed divided by the downstream water velocity at

  9. Tentative Study on Performance of Darriues-Type Hydroturbine Operated in Small Open Water Channel

    Matsushita, D; Watanabe, S; Okuma, K; Moriyama, R; Nakashima, K; Furukawa, A

    2014-01-01

    The development of small hydropower is one of the realistic and preferable utilizations of renewable energy, but the extra-low head hydropower less than 2 m is almost undeveloped yet for some reasons. The authors have developed several types of Darrieus-type hydro-turbine system, and among them, the Darrieus-turbine with a wear and a nozzle installed upstream of turbine is so far in success to obtain more output power, i.e. more shaft torque, by gathering all water into the turbine. However, there can several cases exist, in which installing the wear covering all the flow channel width is unrealistic. Then, in the present study, the hydraulic performances of Darrieus-type hydro-turbine with the inlet nozzle is investigated, putting alone in a small open channel without upstream wear. In the experiment, the five-bladed Darrieus-type runner with the pitch-circle diameter of 300 mm and the blade span of 300 mm is vertically installed in the open channel with the width of 1,200 mm. The effectiveness of the shape of the inlet nozzle is also examined using two types of two-dimensional symmetric nozzle, the straight line nozzle (SL nozzle) with the converging angle of 45 degrees and the half diameter curved nozzle (HD nozzle) whose radius is a half diameter of runner pitch circle. Inlet and outlet nozzle widths are in common for the both nozzles, which are 540 mm and 240 mm respectively. All the experiments are carried out under the conditions with constant flow rate and downstream water level, and performances are evaluated by measured output torque and the measured head difference between the water levels upstream and downstream of the turbine. As a result, it is found that the output power is remarkably increased by installing the inlet nozzle, and the turbine with SL nozzle produces larger power than that with HD nozzle. However, the peak efficiency is deteriorated in both cases. The speed ratio defined by the rotor speed divided by the downstream water velocity at

  10. Risks connected to the work force at the small, medium and micro enterprises

    Bukelwa Mbinda

    2016-11-01

    Full Text Available The aim of this paper is to report on, and examine the impacts of, a skills shortage as a constraint on entrepreneurial development in the townships, specifically that of Khayelitsha, and to identify tools that are essential for the Small, Medium and Micro enterprise (SMMEs businesses, in Khayelitsha. These skills are critical for the future development of the area. The research design employed in data gathering for this study was both qualitative and quantitative, and the questionnaires used required participants to answer open and closed ended questions. The review reveals, among other factors, a lack of a skilled workforce facing these businesses, and the recommendations made could lead to an empowering tool necessary for business ventures and entrepreneurs to succeed

  11. An educational alternative for improving working conditions in small and medium enterprises

    Eliana Castro S

    2011-11-01

    Full Text Available Managing health and safety at work involves considering two internal processes common to all organizations: knowledge and human talent management. These two processes are affected by globalizing phenomena that have an effect at the economic, environmental, and occupational levels. This is especially true for countries like Colombia. Objective: to provide an educational alternative that contributes to knowledge management in SME’s in order to improve the working conditions and to support their innovation processes. Methodology: an exploratory and descriptive study. We start by analyzing the concepts related to the improvement of working conditions and experiences from previous projects involving the university-industry relationship. This is done from the systemic viewpoint that characterizes the ergonomics and interdisciplinary perspectives of the professional practice of industrial design. Result: the proposal was approved by regional institutions wishing to conduct a pilot study, and is based on principles establishing health promotion at the workplace. It also includes a methodology for affecting the technological core of companies and contributes to the empowerment of the personnel involved. Conclusion:it is mandatory that organizations express their support and commitment through a policy that facilitates the active participation of employees in these processes.

  12. Selecting Sustainability Indicators for Small to Medium Sized Urban Water Systems Using Fuzzy-ELECTRE.

    Chhipi-Shrestha, Gyan; Hewage, Kasun; Sadiq, Rehan

    2017-03-01

      Urban water systems (UWSs) are challenged by the sustainability perspective. Certain limitations of the sustainability of centralized UWSs and decentralized household level wastewater treatments can be overcome by managing UWSs at an intermediate scale, referred to as small to medium sized UWSs (SMUWSs). SMUWSs are different from large UWSs, mainly in terms of smaller infrastructure, data limitation, smaller service area, and institutional limitations. Moreover, sustainability assessment systems to evaluate the sustainability of an entire UWS are very limited and confined only to large UWSs. This research addressed the gap and has developed a set of 38 applied sustainability performance indicators (SPIs) by using fuzzy-Elimination and Choice Translating Reality (ELECTRE) I outranking method to assess the sustainability of SMUWSs. The developed set of SPIs can be applied to existing and new SMUWSs and also provides a flexibility to include additional SPIs in the future based on the same selection criteria.

  13. Productivity of Stored Water in Some Selected Multiple Use Small Reservoirs in the Upper East Region of Ghana

    Annor, F. O.; Yamoah-Antwi, D.; Odai, S. N.; Adjei, K. A.; van de Giesen, N. C.

    2009-04-01

    The Upper East Region (UER) of Ghana is a water stressed area with agriculture as the main occupation of the inhabitants. The importance of small reservoirs for the sustenance of the livelihood of the people in this part of the country during the dry season cannot be over emphasized. Most of these small reservoirs were constructed, in the 1960s, mainly with the aim of providing water for domestic use and livestock watering during the dry periods of the year. Over the years, however, these small reservoirs have been put to a variety of uses, some of which accelerate the depletion of the stored water. The reservoirs are therefore most times, unable to serve the purposes for which they were constructed. To address this situation, a study was conducted to determine the productivity of stored water in small reservoirs to better inform policy makers and water managers in the allocation of water especially in the dry season. Water productivity can be thought of as the output (product) that can be obtained per unit volume of water used or applied for either crop or livestock production. Data on crops and livestock were obtained through questionnaire administration, interviews, focus group discussions, physical measurements as well as field observations from nine reservoirs in the UER. The research findings show that donkeys have the highest productivity of about US90 followed by cattle with US70. These high productivity values are as a result of the variety of products and services rendered by donkeys and cattle. For crop, tomatoes have the highest productivity value compared with pepper and leafy vegetables. Despite the fact that donkeys had the highest productivity and hence priority over all uses, it is prudent to note that, inhabitants of the study area aside the sale of livestock for money (income) keep livestock for prestige. Therefore in the allocation of stored water in small multiple use reservoirs, the allocation criteria should consider the views, values and

  14. Conversion of thermall energy to mechanical work in the oscillations with steam condensation in pool water

    Aya, Izuo; Nariai, Hideki.

    1988-01-01

    Pressure and fluid oscillations with steam injection into pool water were discussed from the view point of the conversion of thermal energy into mechanical work. When the change of fluid state moves clockwise in the p-V diagram, the oscillation sustains since the thermal energy changes into positive work. The equations difining the mechanical work at the condensation oscillations were presented. The oscillation threshold determined by the condition that mechanical work became zero, coincided with the values derived by the linear oscillation theory. The changes of pressure and specific volume during chugging were also shown with one dimensional simulation analysis. The p-V diagrams at various chugging modes were presented with the movement of steam water interface, and the conversion efficiency of thermal energy to mechanical work was also discussed. (author)

  15. Water works Slatinka, Garajky, Hroncek and Tichy potok for public profit

    Holcik, V.

    2003-01-01

    There is 2890 towns and villages in Slovak Republic. About 2030 has drinking water from public ducting. Worse situation is in waste water off take - only about 490 villages are connected to public sewerage. It is necessary to have drinking water at disposal (from underground and ground sources), consequently ducting with water finishing department and at the end sewerage with water purifier. But Slovak Republic is country that has never had enough money for such investments as building drinking water basin, to process and distribute water to 38 villages and to build sewerage and water purifier for these villages. If we want to be equal partner to another European Union countries thus all villages above 2000 inhabitants should have ducting and sewerage. In Slovak Republic there is about 295 villages without ducting and sewerage. First, the source is necessary, then duct and then sewerage, not conversely. Structural, cohesive and other European Union funds should be used also for building of drinking water basins and connecting ducts and sewerage. I am confident that water works Slatinka, Garajky, Hroncek and Tichy Potok recommended by Ministry of Land management are necessary to be built and it will be for public profit

  16. Water Worries: The Hidden Costs of Water Conservation in China are not Working

    Junlian Zhang

    2006-01-01

    One of the obstacles many conservation strategies face is the amount of time and money it actually costs for people t o be involved in their implementation - in other words, their "transaction costs" (TCs) . A new study from China has looked at how these costs have affected an innovative market-based water conservation system. The study found that TCs are a significant barrier to proper functioning of the system. It also found that these costs are linked to key social and administrative obsta...

  17. A stream-scale model to optimize the water allocation for Small Hydropower Plants and the application to traditional systems

    Razurel, Pierre; Niayifar, Amin; Perona, Paolo

    2017-04-01

    Hydropower plays an important role in supplying worldwide energy demand where it contributes to approximately 16% of global electricity production. Although hydropower, as an emission-free renewable energy, is a reliable source of energy to mitigate climate change, its development will increase river exploitation. The environmental impacts associated with both small hydropower plants (SHP) and traditional dammed systems have been found to the consequence of changing natural flow regime with other release policies, e.g. the minimal flow. Nowadays, in some countries, proportional allocation rules are also applied aiming to mimic the natural flow variability. For example, these dynamic rules are part of the environmental guidance in the United Kingdom and constitute an improvement in comparison to static rules. In a context in which the full hydropower potential might be reached in a close future, a solution to optimize the water allocation seems essential. In this work, we present a model that enables to simulate a wide range of water allocation rules (static and dynamic) for a specific hydropower plant and to evaluate their associated economic and ecological benefits. It is developed in the form of a graphical user interface (GUI) where, depending on the specific type of hydropower plant (i.e., SHP or traditional dammed system), the user is able to specify the different characteristics (e.g., hydrological data and turbine characteristics) of the studied system. As an alternative to commonly used policies, a new class of dynamic allocation functions (non-proportional repartition rules) is introduced (e.g., Razurel et al., 2016). The efficiency plot resulting from the simulations shows the environmental indicator and the energy produced for each allocation policies. The optimal water distribution rules can be identified on the Pareto's frontier, which is obtained by stochastic optimization in the case of storage systems (e.g., Niayifar and Perona, submitted) and by

  18. Prediction of Repair Work Duration for Gas Transport Systems Based on Small Data Samples

    Lesnykh, Valery; Litvin, Yuri; Kozin, Igor

    2016-01-01

    Prediction of the duration of a repair and maintenance project of a gas transport system is an important part of planning activities. There exist numerous sources of uncertainties that may result in time overruns possibly leading to multiple negative consequences. Our experience in planning...... this work suggests that accepting the stochastic nature of the project duration is a constructive step towards the preparedness to contingencies and defining penalties for repair companies. To support this approach, one needs to construct probability distributions of the durations of the projects...

  19. Aspects of working with manipulators and small samples in an αβγ-box

    Zubler, Robert; Bertsch, Johannes; Heimgartner, Peter

    2007-01-01

    The Laboratory for Materials Behaviour, operator of the Hotlab and part of the Paul Scherrer Institute (PSI) is studying corrosion- and mechanical phenomena of irradiated fuel rod cladding materials. To improve the options for mechanical tests, a heavy shielded αβγ) universal electro-mechanical testing machine has been installed. The machine is equipped with an 800 deg. C furnace. The furnace chamber is part of the inner α-box and can be flushed with inert gas. The specimen can be observed by camera during the tests. The foreseen active specimens are very small and can not be handled by hand. Before starting active tests, tools and installations had to be improved and a lot of manipulator practise had to be absolved. For the operational permit, given by the authorities (Swiss Federal Nuclear Safety Inspectorate, HSK), many safety data concerning furnace cooling, air pressure and γ- shielding had to be collected. Up to now various inactive tests have been performed. Besides the operational and safety features, results of inactive mechanical tests and tests for active commissioning are presented. (authors)

  20. Micro and small firms contracted the works of third sector contracting and public

    Daniela Juliano Silva

    2015-06-01

    Full Text Available In a scenario of successive changes, we are faced today with a "new" State of design (First Sector subsidiary and developer, embracing new contracting models, involving private non-profit institutions (Third Sector ahead of social services relevance (health, education, technology, among others. To comply with the obligations entered into with the public entity (end-obligations, this Third Sector performs hires (to perform their half-bonds with the second sector (market, where they operate Micro and Small Businesses. This study aims a reflective look at these contracts, usually the result of simplified bidding process in order to verify their specificities and whether they take place in compliance with the prerogatives and differential treatment meted especially those business companies (art. 170, X, SC / 1988. In this endeavor, it was decided, besides a literature review by an investigative approach from the point of view of three different social organizations that have management contracts in health care with public entities and therefore have signed contracts with ME and EPP for the fulfillment of their obligations to the government.      

  1. Model Studies on the Effectiveness of MBBR Reactors for the Restoration of Small Water Reservoirs

    Nowak, Agata; Mazur, Robert; Panek, Ewa; Chmist, Joanna

    2018-02-01

    The authors present the Moving Bed Biofilm Reactor (MBBR) model with a quasi-continuous flow for small water reservoir restoration, characterized by high concentrations of organic pollutants. To determine the efficiency of wastewater treatment the laboratory analysis of physic-chemical parameters were conducted for the model on a semi-technical scale of 1:3. Wastewater treatment process was carried out in 24 h for 1 m3 for raw sewage. The startup period was 2 weeks for all biofilters (biological beds). Approximately 50% reduction in COD and BOD5 was obtained on average for the studied bioreactors. Significant improvements were achieved in theclarity of the treated wastewater, with the reduction of suspension by 60%. The oxygen profile has improved significantly in 7 to 9 hours of the process, and a diametric reduction in the oxidative reduction potential was recorded. A preliminary model of biological treatment effectiveness was determined based on the conducted studies. In final stages, the operation mode was set in real conditions of polluted water reservoirs.

  2. An automated microinfiltrometer to measure small-scale soil water infiltration properties

    Gordon Dennis C.

    2014-09-01

    Full Text Available We developed an automated miniature constant-head tension infiltrometer that measures very small infiltration rates at millimetre resolution with minimal demands on the operator. The infiltrometer is made of 2.9 mm internal radius glass tube, with an integrated bubbling tower to maintain constant negative head and a porous mesh tip to avoid air-entry. In the bubbling tower, bubble formation and release changes the electrical resistance between two electrodes at the air-inlet. Tests were conducted on repacked sieved sands, sandy loam soil and clay loam soil, packed to a soil bulk density ρd of 1200 kg m-3 or 1400 kg m-3 and tested either air-dried or at a water potential ψ of -50 kPa. The change in water volume in the infiltrometer had a linear relationship with the number of bubbles, allowing bubble rate to be converted to infiltration rate. Sorptivity measured with the infiltrometer was similar between replicates and showed expected differences from soil texture and ρd, varying from 0.15 ± 0.01 (s.e. mm s-1/2 for 1400 kg m-3 clay loam at ψ = -50 kPa to 0.65 ± 0.06 mm s-1/2 for 1200 kg m-3 air dry sandy loam soil. An array of infiltrometers is currently being developed so many measurements can be taken simultaneously.

  3. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Oszczapińska Katarzyna

    2018-01-01

    Full Text Available The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll “a”, reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake and 2014/2015 (Dojlidy. The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  4. Impact of Catchment Area Activities on Water Quality in Small Retention Reservoirs

    Oszczapińska, Katarzyna; Skoczko, Iwona; Szczykowska, Joanna

    2018-02-01

    The aim of the study was to evaluate catchment area impact on small water reservoirs condition in Podlasie. The researches were conducted in two different catchment areas. Topiło reservoir, located in Podlasie area in the south-east of Białowieża Forest, has typical sylvan catchment. Second reservoir, Dojlidy, is located also in Podlasie, in the south-east of Białystok as a part of Dojlidy Ponds. In contrast to Topiło, Dojlidy has agricultural catchment. Water samples collected from five sites along each reservoir were analysed for the presence of total nitrogen and phosphorus, chlorophyll "a", reaction, turbidity and conductivity. Researches took place in spring, summer and autumn 2013 (Topiło Lake) and 2014/2015 (Dojlidy). The lowest trophic state was observed in autumn and the highest in summer. Because of the high loads of phosphorus received by the reservoirs, this element did not limit primary production. Calculated TSI values based on total phosphorus were always markedly higher than calculated on chlorophyll-a and total nitrogen. Both reservoirs demonstrated TSI indexes specific to hypertrophic lakes due to large amount of total phosphorus.

  5. Passive safe small reactor for distributed energy supply system sited in water filled pit at seaside

    Ishida, Toshihisa; Imayoshi, Shou

    2003-01-01

    Japan Atomic Energy Research Institute has developed a Passive Safe Small Reactor for Distributed Energy Supply System (PSRD) concept. The PSRD is an integrated-type PWR with reactor thermal power of 100 to 300 MW aimed at supplying electricity, district heating, etc. In design of the PSRD, high priority is laid on enhancement of safety as well as improvement of economy. Safety is enhanced by the following means: i) Extreme reduction of pipes penetrating the reactor vessel, by limiting to only those of the steam, the feed water and the safety valves, ii) Adoption of the water filled containment and the passive safety systems with fluid driven by natural circulation force, and iii) Adoption of the in-vessel type control rod drive mechanism, accompanying a passive reactor shut-down device. For improvement of economy, simplification of the reactor system and long operation of the core over five years without refueling with low enriched UO 2 fuel rods are achieved. To avoid releasing the radioactive materials to the circumstance even if a hypothetical accident, the containment is submerged in a pit filled with seawater at a seaside. Refueling or maintenance of the reactor can be conducted using an exclusive barge instead of the reactor building. (author)

  6. Experimental investigation of single small bubble motion in linear shear flow in water

    Li, Zhongchun; Zhao, Yang; Song, Xiaoming; Yu, Hongxing; Jiang, Shengyao; Ishii, Mamoru

    2016-01-01

    Highlights: • The bubble motion in simple linear shear flow was experimentally investigated. • The bubble trajectories, bubble velocity and drag and lift force were obtained using image process routine. • The bubble trajectory was coupled with a zigzag motion and incline path. • The lift force was kept negative and it decreased when bubble diameter and shear flow magnitude increased. - Abstract: The motion of small bubble in a simple shear flow in water was experimental studied. Stable shear flow with low turbulence level was achieved with curved screen and measured using LDV. The bubbles were captured by high speed camera and the captured images were processed with digital image routine. The bubble was released from a capillary tube. The instantaneous bubble position, bubble velocity and forces were obtained based on the captured parameters. The quasi-steady lift coefficient was determined by the linear fitting of the bubble trajectory of several cycles. The results indicated that the lateral migration was coupled with the zigzag motion of bubble in the present experiment. The bubble migrated to the left side and its quasi-steady lift coefficient was negative. Good repeatable results were observed by measurements of 18 bubbles. The bubble motion in shear flow in water was first experimental studied and negative lift force was observed in the present study condition. The lift coefficient decreased when shear stress magnitude or bubble diameter increased in the present experiment condition.

  7. Simulation of small break loss of coolant accident in pressurized water reactor (PWR)

    Abass, N. M. N.

    2012-02-01

    A major safety concern in pressurized-water-reactor (PWR) design is the loss-of-coolant accident (LOCA),in which a break in the primary coolant circuit leads to depressurization, boiling of the coolant, consequent reduced cooling of the reactor core, and , unless remedial measures are taken, overheating of the fuel rods. This concern has led to the development of several simulators for safety analysis. This study demonstrates how the passive and active safety systems in conventional and advanced PWR behave during the small break loss of Coolant Accident (SBLOCA). The consequences of SBOLOCA have been simulated using IAEA Generic pressurized Water Reactor Simulator (GPWRS) and personal Computer Transient analyzer (PCTRAN) . The results were presented and discussed. The study has confirmed the major safety advantage of passive plants versus conventional PWRs is that the passive safety systems provide long-term core cooling and decay heat removal without the need for operator actions and without reliance on active safety-related system. (Author)

  8. Tuning dissociation using isoelectronically doped graphene and hexagonal boron nitride: Water and other small molecules

    Al-Hamdani, Yasmine S. [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-04-21

    Novel uses for 2-dimensional materials like graphene and hexagonal boron nitride (h-BN) are being frequently discovered especially for membrane and catalysis applications. Still however, a great deal remains to be understood about the interaction of environmentally and industrially relevant molecules such as water with these materials. Taking inspiration from advances in hybridising graphene and h-BN, we explore using density functional theory, the dissociation of water, hydrogen, methane, and methanol on graphene, h-BN, and their isoelectronic doped counterparts: BN doped graphene and C doped h-BN. We find that doped surfaces are considerably more reactive than their pristine counterparts and by comparing the reactivity of several small molecules, we develop a general framework for dissociative adsorption. From this a particularly attractive consequence of isoelectronic doping emerges: substrates can be doped to enhance their reactivity specifically towards either polar or non-polar adsorbates. As such, these substrates are potentially viable candidates for selective catalysts and membranes, with the implication that a range of tuneable materials can be designed.

  9. Improving the economy-of-scale of small organic rankine cycle systems through appropriate working fluid selection

    White, Martin; Sayma, Abdulnaser I.

    2016-01-01

    Highlights: • Novel system model coupling turbine and ORC system performance. • Contour plots to characterise working fluid and turbine performance. • Changing working fluid can expand pump and turbine operating envelope. • Possible to improve the economy-of-scale through optimal working fluid selection. - Abstract: Organic Rankine cycles (ORC) are becoming a major research area within the field of sustainable energy systems. However, a major challenge facing the widespread implementation of small and mini-scale ORC systems is the economy-of-scale. To overcome this challenge requires single components that can be manufactured in large volumes and then implemented into a wide variety of different applications where the heat source conditions may vary. The aim of this paper is to investigate whether working fluid selection can improve the current economy-of-scale by enabling the same system components to be used in multiple ORC systems. This is done through coupling analysis and optimisation of the energy process, with a performance map for a small-scale ORC radial turbine. The performance map, obtained using CFD, is adapted to account for additional loss mechanisms not accounted for in the original CFD simulation before being non-dimensionalised using a modified similitude theory developed for subsonic ORC turbines. The updated performance map is then implemented into a thermodynamic model, enabling the construction of a single performance contour that displays the range of heat source conditions that can be accommodated by the existing turbine whilst using a particular working fluid. Constructing this performance map for a range of working fluids, this paper demonstrates that through selecting a suitable working fluid, the same turbine can efficiently utilise heat sources between 360 and 400 K, with mass flow rates ranging between 0.5 and 2.75 kg/s respectively. This corresponds to using the same turbine in ORC applications where the heat available ranges

  10. Water quality assessment of a small peri-urban river using low and high frequency monitoring.

    Ivanovsky, A; Criquet, J; Dumoulin, D; Alary, C; Prygiel, J; Duponchel, L; Billon, G

    2016-05-18

    The biogeochemical behaviors of small rivers that pass through suburban areas are difficult to understand because of the multi-origin inputs that can modify their behavior. In this context, a monitoring strategy has been designed for the Marque River, located in Lille Metropolitan area of northern France, that includes both low-frequency monitoring over a one-year period (monthly sampling) and high frequency monitoring (measurements every 10 minutes) in spring and summer. Several environmental and chemical parameters are evaluated including rainfall events, river flow, temperature, dissolved oxygen, turbidity, conductivity, nutritive salts and dissolved organic matter. Our results from the Marque River show that (i) it is impacted by both urban and agricultural inputs, and as a consequence, the concentrations of phosphate and inorganic nitrogen have degraded the water quality; (ii) the classic photosynthesis/respiration processes are disrupted by the inputs of organic matter and nutritive salts; (iii) during dry periods, the urban sewage inputs (treated or not) are more important during the day, as indicated by higher river flows and maximal concentrations of ammonium; (iv) phosphate concentrations depend on oxygen contents in the river; (v) high nutrient concentrations result in eutrophication of the Marque River with lower pH and oxygen concentrations in summer. During rainfalls, additional inputs of ammonium, biodegradable organic matter as well as sediment resuspension result in anoxic events; and finally (vi) concentrations of nitrate are approximately constant over the year, except in winter when higher inputs can be recorded. Having better identified the processes responsible for the observed water quality, a more informed remediation effort can be put forward to move this suburban river to a good status of water quality.

  11. Sensory and Working Memory Representations of Small and Large Numerosities in the Crow Endbrain.

    Ditz, Helen M; Nieder, Andreas

    2016-11-23

    Neurons in the avian nidopallium caudolaterale (NCL), an endbrain structure that originated independently from the mammalian neocortex, process visual numerosities. To clarify the code for number in this anatomically distinct endbrain area in birds, neuronal responses to a broad range of numerosities were analyzed. We recorded single-neuron activity from the NCL of crows performing a delayed match-to-sample task with visual numerosities as discriminanda. The responses of >20% of randomly selected neurons were modulated significantly by numerosities ranging from one to 30 items. Numerosity-selective neurons showed bell-shaped tuning curves with one of the presented numerosities as preferred numerosity regardless of the physical appearance of the items. The resulting labeled-line code exhibited logarithmic compression obeying the Weber-Fechner law for magnitudes. Comparable proportions of selective neurons were found, not only during stimulus presentation, but also in the delay phase, indicating a dominant role of the NCL in numerical working memory. Both during sensory encoding and memorization of numerosities in working memory, NCL activity predicted the crows' number discrimination performance. These neuronal data reveal striking similarities across vertebrate taxa in their code for number despite convergently evolved and anatomically distinct endbrain structures. Birds are known for their capabilities to process numerical quantity. However, birds lack a six-layered neocortex that enables primates with numerical competence. We aimed to decipher the neuronal code for numerical quantity in the independently and distinctly evolved endbrain of birds. We recorded the activity of neurons in an endbrain association area termed nidopallium caudolaterale (NCL) from crows that assessed and briefly memorized numerosities from one to 30 dots. We report a neuronal code for sensory representation and working memory of numerosities in the crow NCL exhibiting several

  12. Pore water pressure response to small and large openings in argillaceous rocks

    Garitte, B.; Gens, A.; Vaunat, J.; Armand, G.; Conil, N.

    2012-01-01

    Document available in extended abstract form only. In the last decade an important amount of piezometers have been installed in the Bure Underground Rock Laboratory (URL) in the vicinity of ongoing works involving gallery excavations and drilling of boreholes and alveoles both in the major and minor stress directions. Relatively far field piezometers (placed one to four diameters from the excavation wall) showed a qualitatively consistent response at different scales. Here, we investigate whether the pore water pressure response around openings of different scales may be up-scaled. An attempt is made to find a common set of parameters that explains quantitatively the rock response at the different scales. The mechanisms underlying the pore water pressure response around an underground opening are twofold. The first class of mechanisms is usually associated with nearly undrained behaviour and the related pore water pressure changes are induced by the stress redistribution triggered by the creation of the tunnel opening causing a reorientation of the principal stresses and influenced by the initial stress anisotropy. These pore water pressure changes are closely linked to the mechanical constitutive law of the rock and to the damage zone around the opening. The second class of mechanisms is related to the drainage of excess pore water pressure relative to a state governed by the atmospheric water pressure condition prescribed at gallery wall and the water flow law, usually Darcy's. Strong anisotropy effects on the hydraulic response of Callovo-Oxfordian Clay can be observed with reference to Figure 1 that shows the pore pressure response to the drilling of a 150 mm-diameter borehole performed to install a heater for the TER thermal experiment. The borehole is aligned with the major horizontal principal stress. Therefore, in principle, the stress state should be approximately isotropic in a cross section of the borehole. As a matter of fact, however, a degree of

  13. Risk Evaluation of Multiple Hazards during Sediment and Water Related Disasters in a Small Basin

    Yamanoi, Kazuki; Fujita, Masaharu

    2016-04-01

    To reduce human damage due to sediment and water related disasters induced by heavy rainfall, warning and evacuation system is very important. In Japan, the Meteorological Agency issues the sediment disaster alert when the potential of sediment disaster increases. Following the alert, local government issues evacuation advisory considering the alert and premonitory phenomena. However, it is very difficult for local people to perceive the dangerousness around them because the alert and advisory do not contain any definite information. Therefore, they sometimes misjudge the evacuation action. One reason of this is not only crucial hazards but also relatively small-scale multiple hazards take place and rise evacuation difficulties during sediment and water related disaster. Examples of small-scale hazards include: rainfall-associated hazards such as poor visibility or road submergence; landslide-associated hazards such as slope failure or sediment inflow; and flood-associated hazards such as overtopping of river dike, inundation, or destruction of bridges. The purpose of this study was to estimate the risk of multiple hazards during disaster events by numerical simulation. We applied the integrated sediment runoff model on unit channels, unit slopes, and slope units to an actual sediment and water related disaster occurred in a small basin in Tamba city, Hyogo, Japan. The maximum rainfall per hour was 91 mm (17/09/2014 2:00˜3:00) and the maximum daily precipitation was 414mm. The integrated model contains semi-physical based landslide prediction (sediment production) model, rainfall runoff model employing the kinematic wave method, model of sediment supply to channels, and bedload and suspended sediment transport model. We evaluated the risk of rainfall-associated hazards in each slope unit into 4 levels (Level I ˜ IV) using the rainfall intensity Ir [mm/hour]. The risk of flood- associated hazards were also estimated using the ratio of calculated water level and

  14. Fluorescence spectroscopy as a tool for determination of organic matter removal efficiency at water treatment works

    M. Z. Bieroza

    2010-04-01

    Full Text Available Organic matter (OM in drinking water treatment is a common impediment responsible for increased coagulant and disinfectant dosages, formation of carcinogenic disinfection-by products, and microbial re-growth in distribution system. The inherent heterogeneity of OM implies the utilization of advanced analytical techniques for its characterization and assessment of removal efficiency. Here, the application of simple fluorescence excitation-emission technique to OM characterization in drinking water treatment is presented. The fluorescence data of raw and clarified water was obtained from 16 drinking water treatment works. The reduction in fulvic-like fluorescence was found to significantly correlate with OM removal measured with total organic carbon (TOC. Fluorescence properties, fulvic- and tryptophan-like regions, were found to discriminate OM fractions of different removal efficiencies. The results obtained in the study show that fluorescence spectroscopy provides a rapid and accurate characterization and quantification of OM fractions and indication of their treatability in conventional water treatment.

  15. Four decades of working experience of Cirus primary cooling water heat exchangers

    Dubey, P.K.; Ullas, O.P.; Rao, D.V.H.; Zope, A.K.; Kharpate, A.V.

    2006-01-01

    CIRUS is a 40 MW (Th.) research reactor, commissioned in the year 1960. The reactor has natural uranium fuel rods, heavy water as moderator, demineralised water (DM water) as primary coolant, and seawater as secondary coolant. There are six Heat Exchangers in the primary cooling water (PCW) system. Five of them are required for the normal operation of the reactor and one is kept stand by. DM water flows on the shell side of the heat exchanger in two passes. Seawater is used as coolant on the tube side of the heat exchangers in four passes. Cirus has been in operation for around 41 years excluding refurbishment period. During these four decades of reactor operation, PCW heat exchangers have experienced many failures and undergone many modifications in the circuit for ensuring better performance. This paper tries to capture the essence of working experiences with PCW heat exchangers, various problems faced, remedial measures taken during those four decades of reactor operation. (author)

  16. Climate Change and Water Working Group - User Needs to Manage Hydrclimatic Risk from Days to Decades

    Raff, D. A.; Brekke, L. D.; Werner, K.; Wood, A.; White, K. D.

    2012-12-01

    The Federal Climate Change Water Working Group (CCAWWG) provides engineering and scientific collaborations in support of water management. CCAWWG objectives include building working relationships across federal science and water management agencies, provide a forum to share expertise and leverage resources, develop education and training forums, to work with water managers to understand scientific needs and to foster collaborative efforts across the Federal and non-Federal water management and science communities to address those needs. Identifying and addressing water management needs has been categorized across two major time scales: days to a decade and multi-decadal, respectively. These two time periods are termed "Short-Term" and "Long-Term" in terms of the types of water management decisions they support where Short-Term roughly correlates to water management operations and Long-Term roughly correlates to planning activities. This presentation will focus on portraying the identified water management user needs across these two time periods. User Needs for Long-Term planning were identified in the 2011 Reclamation and USACE "Addressing Climate Change in Long-Term Water Resources Planning and Management: User Needs for Improving Tools and Information." User needs for Long-Term planning are identified across eight major categories: Summarize Relevant Literature, Obtain Climate Change Information, Make Decisions About How to Use the Climate Change Information, Assess Natural Systems Response, Assess Socioeconomic and Institutional Response, Assess System Risks and Evaluate Alternatives, Assess and Characterize Uncertainties, and Communicating Results and Uncertainties to Decisionmakers. User Needs for Short-Term operations are focused on needs relative to available or desired monitoring and forecast products from the hydroclimatic community. These needs are presenting in the 2012 USACE, Reclamation, and NOAA - NWS "Short-Term Water Management Decisions: User

  17. Works carried out to correct and monitor water contamination; Actuaciones para la correccion y el seguimiento de la contaminacion hidrica

    Ayora, C.; Guijarro, A.; Domenech, C.; Fernandez, I.; Gomez, P.; Manzano, M.; Mora, A.; Moreno, L.; Navarrete, P.; Sanchez, M.; Serrano, J.

    2001-07-01

    The works carried out to correct or control the impact of the Aznalcollar mine spill on water is described. The chapter refers both to the surface water retained in Entremuros between walls area since the very first moment, to the Guadiamar river water, and to groundwater in the aquifers affected by the spill. Most of the water retained in Entremuros after the spill was treated in situ by the IGME in an emergency plant, and afterwards was evacuated to the Guadalquivir river through the Canal de Aguas Minimas (low water canal). The water was cleaned by adding sodium carbonate and sodium hydroxide to small volumes which allowed to settle afterwards. The treatment and evacuation activities lasted around one month. The impact of the spill on the river water resulted in the immediate acidification, reaching pH values around 4 between the failed dam and Aznalcazar village. Also, dissolved oxygen was eliminated, suspended solids increased up to 30 g/L and dissolved heavy metals reached concentrations close to those of the original spilled water. However, after a few days the dissolved oxygen concentrations were recovered, most of the solid particles settled down, and pH started slowly to increase. the fast collection of the mud settled down on the river margins prevented the continuous contamination of the river. However, the Agrio river sector between the failed dam and the Agrio-Guadiamar river junction is still contaminated with acid and heavy metals. It is assumed the discharge of contaminated water from the alluvial aquifer into the river bed. To the s of the Agrio-Guadiamar junction the main threat to river water quality is the disposal of urban and agro-industrial untreated waste water. Looking to the impact on groundwater, only the above mentioned sector of the Agrio river alluvial aquifer is widely contaminated. This pollution is probably due both to the 1998 spill and the previous leakage from the tailings dam, and it is presently under study. Between the Agrio

  18. Scientific Symposium “Small Solution for Big Water-Related Problems: Innovative Microarrays and Small Sensors to Cope with Water Quality and Food Security”

    Stefania Marcheggiani

    2015-12-01

    Full Text Available This issue presents the conclusive results of two European Commission funded Projects, namely Universal Microarrays for the Evaluation of Fresh-water Quality Based on Detection of Pathogens and their Toxins (MicroAQUA and Rationally Designed Aquatic Receptors (RADAR. These projects focused their activities on the quality of drinking water as an extremely important factor for public health of humans and animals. The MicroAQUA Project aimed at developing a universal microarray chip for the detection of various pathogens (cyanobacteria, bacteria, viruses and parasitic protozoa and their toxins in waters. In addition, the project included the detection of select species of diatoms, which represent reliable bio-indicators to assess overall water quality. Large numbers of compounds are released into the environment; some of these are toxins such as endocrine disrupting compounds (EDCs and can affect the endocrine, immune and nervous systems of a wide range of animals causing alterations such as reproductive disorders and cancer. Detection of these contaminants in water systems is important to protect sensitive environmental sites and reduce the risk of toxins entering the food chain. A modular platform for monitoring toxins in water and food production facilities, using biosensors derived from aquatic organisms, was the main goal of RADAR Project.

  19. A Case Analysis on the Adequacy of Work-Life Balance Practices in UK Small- and Medium-Sized Enterprises

    Babatunde Akanji

    2017-09-01

    Full Text Available Objective: The purpose of this study is to examine whether work-life balance (WLB practices are satisfactorily provided in UK small and medium-sized enterprises (SMEs and the impact of the availability of these work-life policies on turnover intentions. A review of extant literature reveals scarce knowledge in this area of research and this study presents a rudimentary effort to fill this gap. Research Design & Methods: Using qualitative design, the data set comprised of in-depth interviews with thirty-six employees working in small and medium-sized UK convenience stores and supermarkets with less than ninety employees. Findings: Informal nature of human resource management policies emerged from the findings as one of the constraining forces impeding work-life agendas in SMEs and causing low staff retention in UK. Although other themes were found to contribute to retention challenges, however, these additional reasons were not independent, but all considered integrated. Implications & Recommendations: Consequently, the practical implication of devising ways to overcome WLB and retention deficiencies in this context were also explored. Contribution & Value Added: The originality of this work lies in studying the importance of WLB practices to some of these grass root businesses that make up a large proportion of the economy in the UK. As the limitation of this study is that it is wholly qualitative in nature, it is suggested that future research should rely on quantitative designs that provides more internally valid tests via computational techniques.

  20. Psychological Distress, Related Work Attendance, and Productivity Loss in Small-to-Medium Enterprise Owner/Managers

    Cocker, Fiona; Martin, Angela; Scott, Jenn; Venn, Alison; Sanderson, Kristy

    2013-01-01

    Owner/managers of small-to-medium enterprises (SMEs) are an under-researched population in terms of psychological distress and the associated health and economic consequences. Using baseline data from the evaluation of the Business in Mind program, a mental health promotion intervention amongst SME owner/managers, this study investigated: (i) prevalence of high/very high psychological distress, past-month sickness absenteeism and presenteeism days in SME owner/managers; (ii) associated, self-reported lost productivity; and (iii) associations between work, non-work and business-specific factors and work attendance behaviours. In our sample of 217 SME owner/managers 36.8% reported high/very high psychological distress. Of this group 38.7% reported past-month absenteeism, 82.5% reported past-month presenteeism, and those reporting presenteeism were 50% less productive as than usual. Negative binomial regression was used to demonstrate the independent effects of socio-demographic, work-related wellbeing and health-related factors, as well as various individual and business characteristics on continuous measures of absenteeism and presenteeism days. Health-related factors (self-rated health and treatment) were the strongest correlates of higher presenteeism days (p absenteeism days (p absenteeism days. SME-specific information about the occurrence of psychological distress, work attendance behaviour, and the variables that influence these decisions, are needed for the development of guidelines for managing psychological distress within this sector. PMID:24132134

  1. Water on TiO2 studied by work function change: adsorption in cycles

    Bundaleski, Nenad; Silva, Ana G; Jean-Shaw, Bobbie; Teodoro, Orlando; Moutinho, Augusto

    2013-01-01

    The nature of water adsorption on TiO 2 (110) rutile surface attracts a lot of attention for quite some time. In spite of the considerable experimental and theoretical efforts a lot of details remain unclear. We have been using work function study to follow the adsorption of water on TiO 2 at room temperature, and interpreted the results in terms of fast dissociative adsorption on bridging oxygen vacancies (BOV) and much slower non-dissociative adsorption on Ti 5f rows. Additionally, we concluded that water from Ti 5f rows efficiently desorbs at room temperature which is not the case for BOV adsorption sites. Here we propose a novel experimental approach which consists of monitoring in real-time the work function change during cycles of water adsorption. Since desorption at BOVs does not take place at room temperature, this method allows us to resolve the adsorption dynamics on the two adsorption sites. The first results changed our understanding of the phenomenon: we show that both, adsorption on BOVs and Ti 5f are both very fast. Additionally, slow exponential decay of the work function is observed, which is not directly related to water adsorption. The possible explanation of the third slow contribution could be related to the migration of hydrogen atoms along the bridging oxygen rows.

  2. Small-angle neutron scattering study of micropore collapse in amorphous solid water.

    Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas

    2014-08-14

    Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.

  3. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.; Nasiri, A. [Atomic Energy Organization of Iran, Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute (Iran, Islamic Republic of)

    2017-01-15

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.

  4. INFORMATION AND SMALL AND MEDIUM SIZED ENTERPRISES: THE CONVERGENCE OF SHAREDTIME WORK AND INFORMATION AND COMMUNICATION TECHNOLOGIES

    Marc-André VILETTE

    2009-01-01

    Full Text Available The subject of this communication is to analyze points of similarities of usingInformation and Communication Technologies (ICT and Shared Time Work(STW, for a special category of firms, whose place seems to be more andmore important: Small and Middle sized Enterprises (SMEs. After severalparticularities (apart from the size, we will remind their difficulties in HumanResources Management, especially about ICT, then the opportunity in theusing of STW, for research teachers, professionals and media. We willpresent different legal shapes, then precise points of similarities between TICand STW, and finally, results among different kinds of players in this one, inan exploring research.

  5. Visiting students work with professors to research water resources management issues

    Davis, Lynn

    2009-01-01

    Undergraduate students visiting from universities across the continent, as well as one from Virginia Tech, are working with professors at Virginia Tech on individual research projects in a 10-week summer program that addresses issues related to sustainable management of water resources.

  6. International Working Group on Water Reactor Fuel Performance and Technology. Summary report of the 14. plenary meeting. Working material

    1997-01-01

    The fourteenth Plenary Meeting of the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) was held at IAEA Headquarters, Vienna, from 21 to 23 May 1997. Twenty-seven participants, from twenty two Member States and two international organizations, attended the meeting. These presentations generally gave: The general situation of the nuclear industry in the country; Fuel fabrication; Fuel performance, high burnup fuel (including MOX) operational experience; Status and trends in fuel research programmes directed to achievement sufficient safety margins at high burnups with regard to normal and transient operational conditions. Majority of countries reported on the stable situation of the nuclear fuel industry, i.e. without significant additions/cuts in nuclear power plant and fuel fabrication plant (NPP) capacities. Refs, figs, tabs

  7. International Working Group on Water Reactor Fuel Performance and Technology. Summary report of the 14. plenary meeting. Working material

    NONE

    1997-12-01

    The fourteenth Plenary Meeting of the International Working Group on Water Reactor Fuel Performance and Technology (IWGFPT) was held at IAEA Headquarters, Vienna, from 21 to 23 May 1997. Twenty-seven participants, from twenty two Member States and two international organizations, attended the meeting. These presentations generally gave: The general situation of the nuclear industry in the country; Fuel fabrication; Fuel performance, high burnup fuel (including MOX) operational experience; Status and trends in fuel research programmes directed to achievement sufficient safety margins at high burnups with regard to normal and transient operational conditions. Majority of countries reported on the stable situation of the nuclear fuel industry, i.e. without significant additions/cuts in nuclear power plant and fuel fabrication plant (NPP) capacities. Refs, figs, tabs.

  8. Effect of cold work hardening on stress corrosion cracking of stainless steels in primary water of pressurized water reactors

    Raquet, O.; Herms, E.; Vaillant, F.; Couvant, T.; Boursier, J.M.

    2004-01-01

    A R and D program is carried out in CEA and EDF laboratories to investigate separately the effects of factors which could contribute to IASCC mechanism. In the framework of this study, the influence of cold work on SCC of ASSs in primary water is studied to supply additional knowledge concerning the contribution of radiation hardening on IASCC of ASSs. Solution annealed ASSs, essentially of type AISI 304(L) and AISI 316(L), are generally considered very resistant to SCC in nominal primary water. However, Constant Extension Rate Tests (CERTs), performed on cold pressed humped specimens in nominal primary water at 360 deg. C, reveal that these materials can exhibit a high SCC susceptibility: deepest cracks reach 1 mm (mean crack growth rate about 1 μm.h -1 ) and propagation is mainly intergranular for 304L and mainly transgranular for 316L. Indeed, work hardening in conjunction with high localized deformation can promote SCC. The influence of the nature of the cold work (shot peening, reaming, cold rolling, counter sinking, fatigue work hardening and tensile deformation) is investigated by means of screening CERTs performed with smooth specimens in 304L at 360 deg. C. For a given cold work hardening level, the susceptibility to crack initiation strongly depends on the cold working process, and no propagation is observed for a hardness level lower than 300 ±10 HV(0.49N). The propagation of cracks is observed only for dynamic loadings like CERT, traction/relaxation tests and crack growth rate tests performed with CT specimens under trapezoidal loading. Although crack initiation is observed for constant load and constant deformation tests, crack propagation do not seem to occur under these mechanical solicitations for 17000 hours of testing, even for hardness levels higher than 450 HV(0.49N). The mean crack growth rate increases when the hardness increases. An important R and D program is in progress to complement these results and to develop a SCC model for ASSs in

  9. Prevalence of external injuries in small cetaceans in Aruban waters, southern Caribbean.

    Jolanda A Luksenburg

    Full Text Available Aruba, located close to the coasts of Colombia and Venezuela, is one of the most densely populated islands in the Caribbean and supports a wide range of marine-related socio-economic activities. However, little is known about the impacts of human activities on the marine environment. Injuries in marine mammals can be used to examine interactions with human activities and identify potential threats to the survival of populations. The prevalence of external injuries and tooth rake marks were examined in Atlantic spotted dolphin (Stenella frontalis (n = 179, bottlenose dolphin (Tursiops truncatus (n = 76 and false killer whale (Pseudorca crassidens (n = 71 in Aruban waters using photo identification techniques. Eleven injury categories were defined and linked to either human-related activities or natural causes. All injury categories were observed. In total, 18.7% of all individuals had at least one injury. Almost half (41.7% of the injuries could be attributed to human interactions, of which fishing gear was the most common cause (53.3% followed by propeller hits (13.3%. Major disfigurements were observed in all three species and could be attributed to interactions with fishing gear. The results of this study indicate that fishing gear and propeller hits may pose threats to small and medium-sized cetaceans in Aruban waters. Thus, long-term monitoring of population trends is warranted. Shark-inflicted bite wounds were observed in Atlantic spotted dolphin and bottlenose dolphin. Bite wounds of cookie cutter sharks (Isistius sp. were recorded in all three species, and include the first documented record of a cookie cutter shark bite in Atlantic spotted dolphin. This is one of the few studies which investigates the prevalence of injuries in cetaceans in the Caribbean. Further study is necessary to determine to which extent the injuries observed in Aruba affect the health and survival of local populations.

  10. Small angle neutron scattering study of the gemini nonionic surfactant in heavy water solutions

    Rajewska, A

    2012-01-01

    The nonionic gemini surfactant α α'-[2,4,7,9-tetramethyl-5-decyne-4,7diyl]bis[ω hydroxyl-polyoxyethylene] (S-10) was investigated in heavy water solutions only for concentrations: 2.3%, 2.5%,3%, 3.4%, 4% and 5% at temperature 25 C with small angle neutron scattering (SANS) method. All of surfactants solutions were prepared using D 2 O (99.9% deuterated, Prikladnaia Chimia, St. Petersburg, Russia) as a solvent. The nonionic gemini surfactant S-10 was obtained from Air Products and Chemicals, Inc., and used without further purification. All SANS measurements were performed on V-4 SANS spectrometer at BENSC, Berlin (Germany). Neutrons were used in wavelength range of 0.02 - 4 nm - 1. For the measurements quartz cells of were used during experiment. Up to 14 such cells were placed in a holder. Results from experiment was calculated and evaluated with PCG 2.0 program from Graz University (Austria). In the investigated solutions two axis ellipsoidal micelles was observed.

  11. Mathematical model of small water-plane area twin-hull and application in marine simulator

    Zhang, Xiufeng; Lyu, Zhenwang; Yin, Yong; Jin, Yicheng

    2013-09-01

    Small water-plane area twin-hull (SWATH) has drawn the attention of many researchers due to its good sea-keeping ability. In this paper, MMG's idea of separation was used to perform SWATH movement modeling and simulation; respectively the forces and moment of SWATH were divided into bare hull, propeller, rudder at the fluid hydrodynamics, etc. Wake coefficient at the propellers which reduces thrust coefficient, and rudder mutual interference forces among the hull and propeller, for the calculation of SWATH, were all considered. The fourth-order Runge-Kutta method of integration was used by solving differential equations, in order to get SWATH's movement states. As an example, a turning test at full speed and full starboard rudder of `Seagull' craft is shown. The simulation results show the SWATH's regular pattern and trend of motion. It verifies the correctness of the mathematical model of the turning movement. The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen, or safety assessment for ocean engineering project. Lastly, the full mission navigation simulating system (FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.

  12. Preliminary Assessment of Silting and The Quality of Bottom Sediments in A Small Water Reservoir

    Bąk Łukasz

    2014-07-01

    Full Text Available The aim of this study was to assess the degree of silting and pollution of bottom sediments in a small water reservoir Lubianka situated in Starachowice, Świętokrzyskie Province, with selected heavy metals (Pb, Cr, Cd, Cu, Ni, Zn, Fe, Mn, Hg. Catchment basin of the reservoir is forested in 92%. Other parts are covered by estates of detached houses, barren lands and green areas. Bathymetric measurements and analyses of trace elements in bottom sediments were made in 2012. After 28 years of exploitation, reservoir's basin accumulated 43 thousand cubic metres of sediments i.e. 4.7% of its initial volume. Mean annual silting rate was 0.17%. Due to the content of copper and chromium, bottom sediments were classified to the II category (sediments of average pollution according to geochemical standards. Concentrations of Pb, Cd and Hg in all analysed samples were below geochemical background. In a sample collected at the inlet to the reservoir, the TEL index for chromium was exceeded by 25.6%. In other samples the threshold values of the TEL and PEL indices were not exceeded.

  13. Problems of reliability and economy work of thermal power plants water treatment based on baromembrane technologies

    Chichirova, N. D.; Chichirov, A. A.; Saitov, S. R.

    2017-11-01

    The introduction of baromembrane water treatment technologies for water desalination at Russian thermal power plants was beganed more than 25 years ago. These technologies have demonstrated their definite advantage over the traditional technologies of additional water treatment for steam boilers. However, there are problems associated with the reliability and economy of their work. The first problem is a large volume of waste water (up to 60% of the initial water). The second problem a expensive and unique chemical reagents complex (biocides, antiscalants, washing compositions) is required for units stable and troublefree operation. Each manufacturer develops his own chemical composition for a certain membrane type. This leads to a significant increase in reagents cost, as well as creates dependence of the technology consumer on the certain supplier. The third problem is that the reliability of the baromembrane units depends directly on the water preliminary treatment. The popular pre-cleaning technology with coagulation of aluminum oxychloride proves to be unacceptable during seasonal changes in the quality of the source water at a number of stations. As a result, pollution, poisoning and lesion of the membrane structure or deterioration of their mechanical properties are observed. The report presents ways to solve these problems.

  14. Insufficient time for leisure and perceived health and stress in working parents with small children.

    Håkansson, Carita; Axmon, Anna; Eek, Frida

    2016-10-17

    More knowledge about how recovery may promote health among parents with small children is needed. To explore whether insufficient time for leisure was associated with poorer perceived health and higher stress in working parents. A further aim was to explore potential gender differences in the association between insufficient time for leisure and poor perceived health. A postal survey including the perceived stress scale and three measures of subjective health - self-rated health (SF-36), work-related fatigue (Swedish occupational fatigue questionnaire), and Lund subjective health complaints - as well as questions about time for leisure was completed by 965 women and 597 men. Risk ratios for poor perceived health and stress were estimated using Poisson regression, in which also gender interaction was analysed. The results showed higher risk for perceived stress among parents reporting insufficient time for relaxation, and more subjective health complaints among those reporting insufficient time to spend with their children. Overall, effects were larger among women than among men. A good balance between work and leisure seems to be of importance for working parents' perceived health and stress.

  15. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  16. Psychological distress, related work attendance, and productivity loss in small-to-medium enterprise owner/managers.

    Cocker, Fiona; Martin, Angela; Scott, Jenn; Venn, Alison; Sanderson, Kristy

    2013-10-15

    Owner/managers of small-to-medium enterprises (SMEs) are an under-researched population in terms of psychological distress and the associated health and economic consequences. Using baseline data from the evaluation of the Business in Mind program, a mental health promotion intervention amongst SME owner/managers, this study investigated: (i) prevalence of high/very high psychological distress, past-month sickness absenteeism and presenteeism days in SME owner/managers; (ii) associated, self-reported lost productivity; and (iii) associations between work, non-work and business-specific factors and work attendance behaviours. In our sample of 217 SME owner/managers 36.8% reported high/very high psychological distress. Of this group 38.7% reported past-month absenteeism, 82.5% reported past-month presenteeism, and those reporting presenteeism were 50% less productive as than usual. Negative binomial regression was used to demonstrate the independent effects of socio-demographic, work-related wellbeing and health-related factors, as well as various individual and business characteristics on continuous measures of absenteeism and presenteeism days. Health-related factors (self-rated health and treatment) were the strongest correlates of higher presenteeism days (p < 0.05). Work-related wellbeing factors (job tension and job satisfaction) were the strongest correlates of higher absenteeism days (p < 0.05). Higher educational attainment, treatment and neuroticism were also correlated with more absenteeism days. SME-specific information about the occurrence of psychological distress, work attendance behaviour, and the variables that influence these decisions, are needed for the development of guidelines for managing psychological distress within this sector.

  17. Psychological Distress, Related Work Attendance, and Productivity Loss in Small-to-Medium Enterprise Owner/Managers

    Alison Venn

    2013-10-01

    Full Text Available Owner/managers of small-to-medium enterprises (SMEs are an under-researched population in terms of psychological distress and the associated health and economic consequences. Using baseline data from the evaluation of the Business in Mind program, a mental health promotion intervention amongst SME owner/managers, this study investigated: (i prevalence of high/very high psychological distress, past-month sickness absenteeism and presenteeism days in SME owner/managers; (ii associated, self-reported lost productivity; and (iii associations between work, non-work and business-specific factors and work attendance behaviours. In our sample of 217 SME owner/managers 36.8% reported high/very high psychological distress. Of this group 38.7% reported past-month absenteeism, 82.5% reported past-month presenteeism, and those reporting presenteeism were 50% less productive as than usual. Negative binomial regression was used to demonstrate the independent effects of socio-demographic, work-related wellbeing and health-related factors, as well as various individual and business characteristics on continuous measures of absenteeism and presenteeism days. Health-related factors (self-rated health and treatment were the strongest correlates of higher presenteeism days (p < 0.05. Work-related wellbeing factors (job tension and job satisfaction were the strongest correlates of higher absenteeism days (p < 0.05. Higher educational attainment, treatment and neuroticism were also correlated with more absenteeism days. SME-specific information about the occurrence of psychological distress, work attendance behaviour, and the variables that influence these decisions, are needed for the development of guidelines for managing psychological distress within this sector.

  18. Comparative Performance in Single-Port Versus Multiport Minimally Invasive Surgery, and Small Versus Large Operative Working Spaces: A Preclinical Randomized Crossover Trial.

    Marcus, Hani J; Seneci, Carlo A; Hughes-Hallett, Archie; Cundy, Thomas P; Nandi, Dipankar; Yang, Guang-Zhong; Darzi, Ara

    2016-04-01

    Surgical approaches such as transanal endoscopic microsurgery, which utilize small operative working spaces, and are necessarily single-port, are particularly demanding with standard instruments and have not been widely adopted. The aim of this study was to compare simultaneously surgical performance in single-port versus multiport approaches, and small versus large working spaces. Ten novice, 4 intermediate, and 1 expert surgeons were recruited from a university hospital. A preclinical randomized crossover study design was implemented, comparing performance under the following conditions: (1) multiport approach and large working space, (2) multiport approach and intermediate working space, (3) single-port approach and large working space, (4) single-port approach and intermediate working space, and (5) single-port approach and small working space. In each case, participants performed a peg transfer and pattern cutting tasks, and each task repetition was scored. Intermediate and expert surgeons performed significantly better than novices in all conditions (P Performance in single-port surgery was significantly worse than multiport surgery (P performance in the intermediate versus large working space. In single-port surgery, there was a converse trend; performances in the intermediate and small working spaces were significantly better than in the large working space. Single-port approaches were significantly more technically challenging than multiport approaches, possibly reflecting loss of instrument triangulation. Surprisingly, in single-port approaches, in which triangulation was no longer a factor, performance in large working spaces was worse than in intermediate and small working spaces. © The Author(s) 2015.

  19. Small Water Enterprise in Rural Rwanda: Business Development and Year-One Performance Evaluation of Nine Water Kiosks at Health Care Facilities

    Alexandra Huttinger

    2017-12-01

    Full Text Available Small water enterprises (SWEs have lower capital expenditures than centralized systems, offering decentralized solutions for rural markets. This study evaluated SWEs in rural Rwanda, where nine health care facilities (HCF owned and operated water kiosks supplying water from onsite water treatment systems (WTS. SWEs were monitored for 12 months. Spearman’s Rank Correlation Coefficient (rs was used to evaluate correlations between demand for kiosk water and community characteristics, and between kiosk profit and factors influencing the cost model. On average, SWEs distributed 15,300 L/month. One SWE ran at a loss, four had profit margins of ≤10% and four had profit margins of 45–75%. Factors influencing SWE performance were intermittent water supply (87% of SWE closures were due to water shortage, consumer demand (demand was high where populations already used improved water sources (rs = 0.81, p = 0.02, price sensitivity (demand was lower where SWEs had high prices (rs = −0.65, p = 0.08, and production cost (water utility tariffs negatively impacted SWE profits (rs = −0.52, p < 0.01. Sustainability was more favorable in circumstances where recovery of capital expenditures was not expected, and the demand for treated water was sufficient to fund operational expenditures. Future research is needed to assess the extent to which kiosk revenue can support ongoing operational costs of WTS and kiosks both at HCF and in other contexts.

  20. Pesticide volatilization from small surface waters : rationale of a new parameterization for TOXSWA

    Jacobs, C.M.J.; Adriaanse, P.I.

    2012-01-01

    In the TOXSWA (TOXic substances in Surface WAters) model volatilization of pesticides from surface water is computed because it may be an important component of the mass balance of pesticides in water bodies. Here, we briefly review the physics of air-water gas exchange relevant in this context. A

  1. The Planck-Benzinger thermal work function in the condensation of water vapor

    Chun, Paul W.

    Based on the Planck-Benzinger thermal work function using Chun's method, the innate temperature-invariant enthalpy at 0 K, ?H0(T0), for the condensation of water vapor as well as the dimer, trimer, tetramer, and pentamer form in the vapor phase, was determined to be 0.447 kcal mol-1 for vapor, 1.127 for the dimer, 0.555 for the trimer, 0.236 for the tetramer, and 0.079 kcal mol-1 for the pentamer using ?G(T) data reported by Kell et al. in 1968 and Kell and McLaurin in 1969. These results suggest that the predominant dimeric form is the most stable of these n-mers. Using Nemethy and Scheraga's 1962 data for the Helmholtz free energy of liquid water, the value of ?H0(T0) was determined to be 1.21 kcal mol-1. This is very close to the value for the energy of the hydrogen bond EH of 1.32 kcal mol-1 reported by Nemethy and Scheraga, using statistical thermodynamics. It seems clear that very little energy is required for interconversion between the hypothetical supercooled water vapor and glassy water at 0 K. A hypothetical supercooled water vapor at 0 K is apparently almost as highly associated as glassy water at that temperature, suggesting a dynamic equilibrium between vapor and liquid. This water vapor condensation is highly similar in its thermodynamic behavior to that of sequence-specific pairwise (dipeptide) hydrophobic interaction, except that the negative Gibbs free energy change minimum at ?Ts?, the thermal setpoint for vapor condensation, where T?S = 0, occurs at a considerably lower temperature, 270 K (below 0°C) compared with ?350 K. The temperature of condensation ?Tcond? at which ?G(T) = 0, where water vapor begins to condense, was found to be 383 K. In the case of a sequence-specific pairwise hydrophobic interaction, the melting temperature, ?Tm?, where ?G(Tm) = 0 was found to be 460 K. Only between two temperature limits, ?Th? = 99 K and ?Tcond? = 383 K, where ?G(Tcond) = 0, is the net chemical driving force favorable for polymorphism of glassy water

  2. Workshop in a Box: Sustainable Management of Rural and Small Water and Wastewater Systems Workshops

    A resource to help rural and small systems and communities to conduct workshops, either for an individual system or for a group of systems, based on the Rural and Small Systems Guidebook to Sustainable Utility Management.

  3. Experimental Investigation to Heat Transfer Augmentation in A Car Radiator Worked with (Water - Magnesium Oxide) Nanofluid.

    Hameed K. Hamzah; Qusay Rasheed Al-Amir

    2017-01-01

    In this work, effect of adding MgO nanoparticle to base fluid (water) in car radiator has been implemented experimentally. In this investigation, an experimental test rig has been designed to study effect inlet temperature of nanofluid, the flow rate and nanoparticle volume fraction on heat transfer rates. Six different concentrations of nanofluid of 0.125%, 0.25%, 0.5%,1% ,1.5% and 2% have been prepared by mixed of MgO nanoparticles with water. Reynolds number of nanofluid was between 4500 a...

  4. Research work on the water and heat balance of a paddy field

    Oue, A.; Kamii, Y.

    2002-01-01

    Daily water consumption and seepage of a rice paddy field with acreage of 3086 m 2 in Noichi Town was investigated from April 10, 2001 to August 6, 2001. The soil of the paddy field is highly permeable, and 'Shirokaki' (paddling) was performed elaborately before 'Taue' (rice seedlings transplanting). The result is as follows. 1) Since the soil is highly permeable, a lot of seepage into the ground was observed after the development of crack by 'Nakaboshi' (intermittent full drainage of paddy field water) performed from the end of May to the first one third of June. 2) It is found that water temperatures of the paddy field near water inlet are lower and temperature far from the inlet is higher. 3) At the earlier stage of rice cultivation, the water temperature of the paddy field was higher than the air temperature, but at the last stage, both temperatures approached closer. 4) The seepage given by seepage meter varies much, but the seepage values calculated from daily water consumption (mm/d) minus estimated evapotranspiration by Penman's method gave rather stable seepage values. 5) The interrelationships between large scale pan evaporation (class A pan), small scale pan evaporation (with 20 cm diameter) and Penman's potential evapotranspiration were investigated by simple regressional analysis. The results were not so remarkable and not so highly interrelated. 6) After 'Nakaboshi' it was hard to calculate effective rain, because if all the water percolated into the soil should be counted as effective rainfall, we have enormous effective rainfall after Nakaboshi because of improved permeability

  5. On small things in water moving around: Purcell's contributions to biology

    Berg, Howard

    2012-02-01

    I went to see Purcell after finishing my course work for the Ph.D. (1961) to ask whether I might join his group. ``But I don't have any graduate students,`` he said. ``Why is that?'' I asked. ``I can't think of anything to do,'' he replied. That was a wipe out. After I had finished my Ph.D. with Ramsey on the hydrogen maser (1964), Ed and I came up with an idea that led to work on sedimentation field-flow fractionation (PNAS 1967). We had hoped this method would be useful for biology, but problems of adsorption of proteins to surfaces stood in the way. Then I moved over to the biology department and got interested in the motile behavior of bacteria (1968). Here was a subject that I thought Ed would really enjoy. There were wonderful movies made by Norbert Pfennig of experiments done by Theodor Engelmann in the 1880's. We found a 16-mm projector and looked at these movies on Ed's office wall. Ed's first comment proved seminal, ''How can such a small cell swim in a straight line?'' We thought about how cells count molecules in their environment and wrote ``Physics of chemoreception,'' (Biophys. J.,1977). In the meantime, Ed gave a memorable lecture at Viki Weisskopf's retirement symposium, his classic ``Life at low Reynolds number'' (Am. J. Phys. 1977). Ed really wanted to understand what it would be like to swim like a bacterium! He wasn't very interested in what the literature had to say about such a problem, he wanted to think it through for himself. My role was straight man. I very much enjoyed the ride.

  6. A closed cabinet system with water flushers and a blender for breeding small animal administered 3HHO

    Yamamoto, O.; Takeoka, S.; Tsujimura, T.; Kuroda, T.; Iwashita, T.; Amme, T.

    1984-01-01

    A closed cabinet system was developed for breeding small animals administered 3 HHO. 3 HHO vapor released from the animals in the chamber was absorbed with water in a water bubbler. Feces and urine which were washed out with water were ground in a blender, diluted, and then released. With this cabinet system we were successful in safely breeding mice even given a total single injection of 15.5 GBq (420 mCi) of 3 HHO without storing the 3 H-slops for a long time and without any significant leakage of 3 H from the cabinet. (author)

  7. Assessment of small-scale integrated water vapour variability during HOPE

    Steinke, S.; Eikenberg, S.; Löhnert, U.; Dick, G.; Klocke, D.; Di Girolamo, P.; Crewell, S.

    2015-03-01

    The spatio-temporal variability of integrated water vapour (IWV) on small scales of less than 10 km and hours is assessed with data from the 2 months of the High Definition Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE). The statistical intercomparison of the unique set of observations during HOPE (microwave radiometer (MWR), Global Positioning System (GPS), sun photometer, radiosondes, Raman lidar, infrared and near-infrared Moderate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra) measuring close together reveals a good agreement in terms of random differences (standard deviation ≤1 kg m-2) and correlation coefficient (≥ 0.98). The exception is MODIS, which appears to suffer from insufficient cloud filtering. For a case study during HOPE featuring a typical boundary layer development, the IWV variability in time and space on scales of less than 10 km and less than 1 h is investigated in detail. For this purpose, the measurements are complemented by simulations with the novel ICOsahedral Nonhydrostatic modelling framework (ICON), which for this study has a horizontal resolution of 156 m. These runs show that differences in space of 3-4 km or time of 10-15 min induce IWV variabilities on the order of 0.4 kg m-2. This model finding is confirmed by observed time series from two MWRs approximately 3 km apart with a comparable temporal resolution of a few seconds. Standard deviations of IWV derived from MWR measurements reveal a high variability (> 1 kg m-2) even at very short time scales of a few minutes. These cannot be captured by the temporally lower-resolved instruments and by operational numerical weather prediction models such as COSMO-DE (an application of the Consortium for Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included in the comparison. However, for time scales larger than 1 h, a sampling resolution of 15 min is

  8. Modeling Chilled-Water Storage System Components for Coupling to a Small Modular Reactor in a Nuclear Hybrid Energy System

    Misenheimer, Corey Thomas

    The intermittency of wind and solar power puts strain on electric grids, often forcing carbonbased and nuclear sources of energy to operate in a load-follow mode. Operating nuclear reactors in a load-follow fashion is undesirable due to the associated thermal and mechanical stresses placed on the fuel and other reactor components. Various Thermal Energy Storage (TES) elements and ancillary energy applications can be coupled to nuclear (or renewable) power sources to help absorb grid instabilities caused by daily electric demand changes and renewable intermittency, thereby forming the basis of a candidate Nuclear Hybrid Energy System (NHES). During the warmer months of the year in many parts of the country, facility air-conditioning loads are significant contributors to the increase in the daily peak electric demand. Previous research demonstrated that a stratified chilled-water storage tank can displace peak cooling loads to off-peak hours. Based on these findings, the objective of this work is to evaluate the prospect of using a stratified chilled-water storage tank as a potential TES reservoir for a nuclear reactor in a NHES. This is accomplished by developing time-dependent models of chilled-water system components, including absorption chillers, cooling towers, a storage tank, and facility cooling loads appropriate for a large office space or college campus, as a callable FORTRAN subroutine. The resulting TES model is coupled to a high-fidelity mPower-sized Small Modular Reactor (SMR) Simulator, with the goal of utilizing excess reactor capacity to operate several sizable chillers in order to keep reactor power constant. Chilled-water production via single effect, lithium bromide (LiBr) absorption chillers is primarily examined in this study, although the use of electric chillers is briefly explored. Absorption chillers use hot water or low-pressure steam to drive an absorption-refrigeration cycle. The mathematical framework for a high-fidelity dynamic

  9. Thermal performance of small solar domestic hot water systems in theory, in the laboratory and in practice

    Andersen, Elsa

    1998-01-01

    for poor thermal performances of systems tested in practice are given. Based on theoretical calculations the negative impact on the thermal performance, due to a large number of different parameter variations are given. Recommendations for future developments of small solar domestic hot water systems...

  10. Using System Dynamics to Explore the Water Supply and Demand Dilemmas of a Small South African Municipality

    Clifford Holmes, J.K.; Slinger, J.H.; Musango, J.K.; Brent, A.C.; Palmer, C.G.

    2014-01-01

    This paper explores the challenges faced by small municipalities in providing water services in a developing-world context of increasing urban demand. The paper uses a case study of the Sundays River Valley Municipality (SRVM) in South Africa. The municipality faces multiple dilemmas in reconciling

  11. 40 CFR 122.30 - What are the objectives of the storm water regulations for small MS4s?

    2010-07-01

    ... DISCHARGE ELIMINATION SYSTEM Permit Application and Special NPDES Program Requirements § 122.30 What are the... 40 Protection of Environment 21 2010-07-01 2010-07-01 false What are the objectives of the storm water regulations for small MS4s? 122.30 Section 122.30 Protection of Environment ENVIRONMENTAL...

  12. Ceramic Filter for Small System Drinking Water Treatment: Evaluation of Membrane Pore Size and Importance of Integrity Monitoring

    Ceramic filtration has recently been identified as a promising technology for drinking water treatment in households and small communities. This paper summarizes the results of a pilot-scale study conducted at the U.S. Environmental Protection Agency’s (EPA’s) Test & Evaluation ...

  13. Comparison of Heavy Water Reactor Thermalhydraulic Code Predictions with Small Break LOCA Experimental Data

    2012-08-01

    Activities within the frame of the IAEA's Technical Working Group on Advanced Technologies for HWRs (TWG-HWR) are conducted in a project within the IAEA's subprogramme on nuclear power reactor technology development. The objective of the activities on HWRs is to foster, within the frame of the TWG-HWR, information exchange and cooperative research on technology development for current and future HWRs, with an emphasis on safety, economics and fuel resource sustainability. One of the activities recommended by the TWG-HWR was an international standard problem exercise entitled Intercomparison and Validation of Computer Codes for Thermalhydraulics Safety Analyses. Intercomparison and validation of computer codes used in different countries for thermalhydraulics safety analyses will enhance the confidence in the predictions made by these codes. However, the intercomparison and validation exercise needs a set of reliable experimental data. Two RD-14M small break loss of coolant accident (SBLOCA) tests, simulating HWR LOCA behaviour, conducted by Atomic Energy of Canada Ltd (AECL), were selected for this validation project. This report provides a comparison of the results obtained from eight participating organizations from six countries (Argentina, Canada, China, India, Republic of Korea, and Romania), utilizing four different computer codes (ATMIKA, CATHENA, MARS-KS, and RELAP5). General conclusions are reached and recommendations made.

  14. Public-Private Partnerships Working Beyond Scale Challenges toward Water Quality Improvements from Private Lands

    Enloe, Stephanie K.; Schulte, Lisa A.; Tyndall, John C.

    2017-10-01

    In recognition that Iowa agriculture must maintain long-term production of food, fiber, clean water, healthy soil, and robust rural economies, Iowa recently devised a nutrient reduction strategy to set objectives for water quality improvements. To demonstrate how watershed programs and farmers can reduce nutrient and sediment pollution in Iowa waters, the Iowa Water Quality Initiative selected the Boone River Watershed Nutrient Management Initiative as one of eight demonstration projects. For over a decade, diverse public, private, and non-profit partner organizations have worked in the Boone River Watershed to engage farmers in water quality management efforts. To evaluate social dynamics in the Boone River Watershed and provide partners with actionable recommendations, we conducted and analyzed semi-structured interviews with 33 program leaders, farmers, and local agronomists. We triangulated primary interview data with formal analysis of Boone River Watershed documents such as grant applications, progress reports, and outreach materials. Our evaluation suggests that while multi-stakeholder collaboration has enabled partners to overcome many of the traditional barriers to watershed programming, scale mismatches caused by external socio-economic and ecological forces still present substantial obstacles to programmatic resilience. Public funding restrictions and timeframes, for example, often cause interruptions to adaptive management of water quality monitoring and farmer engagement. We present our findings within a resilience framework to demonstrate how multi-stakeholder collaboration can help sustain adaptive watershed programs to improve socio-ecological function in agricultural watersheds such as the Boone River Watershed.

  15. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large

  16. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  17. Dealing with water deficit in Atta ant colonies: large ants scout for water while small ants transport it

    Antonio Carlos Da-Silva

    2012-07-01

    Leafcutter ants (Atta sexdens rubropilosa (Forel 1908 have an elaborate social organization, complete with caste divisions. Activities carried out by specialist groups contribute to the overall success and survival of the colony when it is confronted with environmental challenges such as dehydration. Ants detect variations in humidity inside the nest and react by activating several types of behavior that enhance water uptake and decrease water loss, but it is not clear whether or not a single caste collects water regardless of the cost of bringing this resource back to the colony. Accordingly, we investigated water collection activities in three colonies of Atta sexdens rubropilosa experimentally exposed to water stress. Specifically, we analyzed whether or not the same ant caste foraged for water, regardless of the absolute energetic cost (distance of transporting this resource back to the colony. Our experimental design offered water sources at 0 m, 1 m and 10 m from the nest. We studied the body size of ants near the water sources from the initial offer of water (time  =  0 to 120 min, and tested for specialization. We observed a reduction in the average size and variance of ants that corroborated the specialization hypothesis. Although the temporal course of specialization changed with distance, the final outcome was similar among distances. Thus, we conclude that, for this species, a specialist (our use of the word “specialist” does not mean exclusive task force is responsible for collecting water, regardless of the cost of transporting water back to the colony.

  18. Small drains, big problems: the impact of dry weather runoff on shoreline water quality at enclosed beaches.

    Rippy, Megan A; Stein, Robert; Sanders, Brett F; Davis, Kristen; McLaughlin, Karen; Skinner, John F; Kappeler, John; Grant, Stanley B

    2014-12-16

    Enclosed beaches along urban coastlines are frequent hot spots of fecal indicator bacteria (FIB) pollution. In this paper we present field measurements and modeling studies aimed at evaluating the impact of small storm drains on FIB pollution at enclosed beaches in Newport Bay, the second largest tidal embayment in Southern California. Our results suggest that small drains have a disproportionate impact on enclosed beach water quality for five reasons: (1) dry weather surface flows (primarily from overirrigation of lawns and ornamental plants) harbor FIB at concentrations exceeding recreational water quality criteria; (2) small drains can trap dry weather runoff during high tide, and then release it in a bolus during the falling tide when drainpipe outlets are exposed; (3) nearshore turbulence is low (turbulent diffusivities approximately 10(-3) m(2) s(-1)), limiting dilution of FIB and other runoff-associated pollutants once they enter the bay; (4) once in the bay, runoff can form buoyant plumes that further limit vertical mixing and dilution; and (5) local winds can force buoyant runoff plumes back against the shoreline, where water depth is minimal and human contact likely. Outdoor water conservation and urban retrofits that minimize the volume of dry and wet weather runoff entering the local storm drain system may be the best option for improving beach water quality in Newport Bay and other urban-impacted enclosed beaches.

  19. Small Water Enterprise in Rural Rwanda: Business Development and Year-One Performance Evaluation of Nine Water Kiosks at Health Care Facilities.

    Huttinger, Alexandra; Brunson, Laura; Moe, Christine L; Roha, Kristin; Ngirimpuhwe, Providence; Mfura, Leodomir; Kayigamba, Felix; Ciza, Philbert; Dreibelbis, Robert

    2017-12-16

    Small water enterprises (SWEs) have lower capital expenditures than centralized systems, offering decentralized solutions for rural markets. This study evaluated SWEs in rural Rwanda, where nine health care facilities (HCF) owned and operated water kiosks supplying water from onsite water treatment systems (WTS). SWEs were monitored for 12 months. Spearman's Rank Correlation Coefficient (r s ) was used to evaluate correlations between demand for kiosk water and community characteristics, and between kiosk profit and factors influencing the cost model. On average, SWEs distributed 15,300 L/month. One SWE ran at a loss, four had profit margins of ≤10% and four had profit margins of 45-75%. Factors influencing SWE performance were intermittent water supply (87% of SWE closures were due to water shortage), consumer demand (demand was high where populations already used improved water sources (r s = 0.81, p = 0.02)), price sensitivity (demand was lower where SWEs had high prices (r s = -0.65, p = 0.08)), and production cost (water utility tariffs negatively impacted SWE profits (r s = -0.52, p Future research is needed to assess the extent to which kiosk revenue can support ongoing operational costs of WTS and kiosks both at HCF and in other contexts.

  20. Bibliography of work on the photocatalytic removal of hazardous compounds from water and air

    Blake, D.M.

    1994-05-01

    This is a bibliography of information in the open literature on work that has been done to date on the photocatalytic oxidation of compounds, principally organic compounds. The goal of the listing is removing hazardous oompounds from water or air. It contains lists of substances and literature citations. The bibliography includes information obtained through the middle of 1993 and some selected references for the balance of that year.

  1. Performance Characteristics of Hero's Turbine Using Hot Water as a Working Fluid

    藤井, 照重; 太田, 淳一; 赤川, 浩爾; 中村, 登志; 浅野, 等

    1990-01-01

    From the view point of energy saving and the development of new energy resources,it is important to utilize geothermal resources and waste heat from factories. As one of the energy conversion expanders,there is a radial outflow reaction turbine(that is,Hero's turbine). Performance characteristics of Hero's turbine using subcooled hot water as a working fluid are clarified analytically and experimentally. It is found that:(a)there is an optimum rotational speed at which maximum turbine efficie...

  2. A Small-Scale and Low-Cost Apparatus for the Electrolysis of Water

    Eggeen, Per-Odd; Kvittingen, Lise

    2004-01-01

    The construction of two simple, inexpensive apparatuses that clearly show the electrolysis of water are described. Traditionally the electrolysis of water is conducted in a Hofmann apparatus which is expensive and fragile.

  3. The Volta Basin Water Allocation System: assessing the impact of small-scale reservoir development on the water resources of the Volta basin, West Africa

    R. Kasei

    2009-08-01

    Full Text Available In the Volta Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. There is an ongoing debate on the impact of further development of small and medium scale reservoirs on the water level of Lake Volta, which is essential for hydropower generation at the Akosombo power plant. The GLOWA Volta Project (GVP has developed a Volta Basin Water Allocation System (VB-WAS, a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the joint climate-hydrological modeling approach (MM5/WaSiM-ETH serve as input data for a river basin management model (MIKE BASIN. MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. The impact of the expansion of small and medium scale reservoirs on the stored volume of Lake Volta has been quantified and assessed in comparison with the impact of climate variability on the water resources of the basin.

  4. Recovery of water from cacti for use in small farming communities

    sunny t

    2013-10-02

    Oct 2, 2013 ... Full Length Research Paper. Recovery of water ... 35°C and a pH of 5.5. This relates to a yield of 550 L of water per ton of cacti, making chemical water .... recovery of juice from pineapples by up to 14%. Demir et al. (2001) did ...

  5. Virus contamination from operation and maintenance practices in small drinking water distribution systems

    We tested the association of common events in drinking water distribution systems with contamination of household tap water with human enteric viruses. Viruses were enumerated by qPCR in the tap water of 14 municipal systems that use non-disinfected groundwater. Ultra-violet disinfection was install...

  6. Changes in vegetative communities and water table dynamics following timber harvesting in small headwater streams

    B. Choi; J.C. Dewey; J. A. Hatten; A.W. Ezell; Z. Fan

    2012-01-01

    In order to better understand the relationship between vegetation communities and water table in the uppermost portions (ephemeral–intermittent streams) of headwater systems, seasonal plot-based field characterizations of vegetation were used in conjunction with monthly water table measurements. Vegetation, soils, and water table data were examined to determine...

  7. Influence of convection on the diffusive transport and sieving of water and small solutes across the peritoneal membrane.

    Asghar, Ramzana B; Diskin, Ann M; Spanel, Patrik; Smith, David; Davies, Simon J

    2005-02-01

    The three-pore model of peritoneal membrane physiology predicts sieving of small solutes as a result of the presence of a water-exclusive pathway. The purpose of this study was to measure the diffusive and convective components of small solute transport, including water, under differing convection. Triplicate studies were performed in eight stable individuals using 2-L exchanges of bicarbonate buffered 1.36 or 3.86% glucose and icodextrin. Diffusion of water was estimated by establishing an artificial gradient of deuterated water (HDO) between blood/body water and the dialysate. (125)RISA (radio-iodinated serum albumin) was used as an intraperitoneal volume marker to determine the net ultrafiltration and reabsorption of fluid. The mass transfer area coefficient (MTAC) for HDO and solutes was estimated using the Garred and Waniewski equations. The MTAC of HDO calculated for 1.36% glucose and icodextrin were similar (36.8 versus 39.7 ml/min; P = 0.3), whereas for other solutes, values obtained using icodextrin were consistently higher (P solutes is a reflection of their sieving. The increase in the MTAC of water and urea associated with an increase in convection is most likely due to increased mixing within the interstitium.

  8. [Monitoring microbiological safety of small systems of water distribution. Comparison of two sampling programs in a town in central Italy].

    Papini, Paolo; Faustini, Annunziata; Manganello, Rosa; Borzacchi, Giancarlo; Spera, Domenico; Perucci, Carlo A

    2005-01-01

    To determine the frequency of sampling in small water distribution systems (distribution. We carried out two sampling programs to monitor the water distribution system in a town in Central Italy between July and September 1992; the Poisson distribution assumption implied 4 water samples, the assumption of negative binomial distribution implied 21 samples. Coliform organisms were used as indicators of water safety. The network consisted of two pipe rings and two wells fed by the same water source. The number of summer customers varied considerably from 3,000 to 20,000. The mean density was 2.33 coliforms/100 ml (sd= 5.29) for 21 samples and 3 coliforms/100 ml (sd= 6) for four samples. However the hypothesis of homogeneity was rejected (p-value samples (beta= 0.24) than with 21 (beta= 0.05). For this small network, determining the samples' size according to heterogeneity hypothesis strengthens the statement that water is drinkable compared with homogeneity assumption.

  9. Multi isotopic characterization (Li-Cu-Zn-Pb) of waste waters pollution in a small watershed (Loire River basin, France)

    Millot, R.; Desaulty, A. M.; Perret, S.; Bourrain, X.

    2016-12-01

    The goal of this study is to use multi-isotopic signature to track the pollution in surface waters, and to understand the complex processes causing the metals mobilization and transport in the environment. In the present study, we investigate waste water releases from a hospital water treatment plant and its potential impact in a small river basin near Orléans in France (Egoutier watershed: 15 km²and 5 km long). We decided to monitor this small watershed which is poorly urbanized in the Loire river basin. Its spring is located in a pristine area (forested area), while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. A sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Isotopic ratios were measured using a MC-ICP-MS at BRGM, after a specific protocol of purification for each isotopic systematics. Lithium isotopic compositions are rather homogeneous in river waters along the main course of the stream. The waste water signal is very different from the natural background with significant heavy lithium contribution (high δ7Li). Lead isotopic compositions are rather homogenous in river waters and sediments with values close to geologic background. For Zn, the sediments with high concentrations and depleted isotopic compositions (low δ66Zn), typical of an anthropic pollution, are strongly impacted. The analyses of Cu isotopes in sediments show the impact of waster waters, but also isotopic fractionations due to redox processes in the watershed. To better understand these processes controlling the release of metals in water, sequential extractions on sediments are in progress under laboratory conditions and will provide important constraints for metal distribution in this river basin.

  10. Integration of geotechnical and geophysical techniques for the characterization of a small earth-filled canal dyke and the localization of water leakage

    Bièvre, Grégory; Lacroix, Pascal; Oxarango, Laurent; Goutaland, David; Monnot, Guy; Fargier, Yannick

    2017-04-01

    This paper investigates the combined use of extensive geotechnical, hydrogeological and geophysical techniques to assess a small earth dyke with a permanent hydraulic head, namely a canal embankment. The experimental site was chosen because of known issues regarding internal erosion and piping phenomena. Two leakages were visually located following the emptying of the canal prior to remediation works. The results showed a good agreement between the geophysical imaging techniques (Electrical Resistivity Tomography, P- and SH-waves Tomography) and the geotechnical data to detect the depth to the bedrock and its lateral variations. It appeared that surface waves might not be fully adapted for dyke investigation because of the particular geometry of the studied dyke, non-respectful of the 1D assumption, and which induced depth and velocity discrepancies retrieved from Rayleigh and Love waves inversion. The use of these classical prospecting techniques however did not allow to directly locate the two leakages within the studied earth dyke. The analysis of ambient vibration time series with a modified beam-forming algorithm allowed to localize the most energetic water flow prior to remediation works. It was not possible to detect the leakage after remediation works, suggesting that they efficiently contributed to significantly reduce the water flow. The second leakage was not detected probably because of a non-turbulent water flow, generating few energetic vibrations.

  11. Ab initio theoretical calculations of the electronic excitation energies of small water clusters.

    Tachikawa, Hiroto; Yabushita, Akihiro; Kawasaki, Masahiro

    2011-12-14

    A direct ab initio molecular dynamics method has been applied to a water monomer and water clusters (H(2)O)(n) (n = 1-3) to elucidate the effects of zero-point energy (ZPE) vibration on the absorption spectra of water clusters. Static ab initio calculations without ZPE showed that the first electronic transitions of (H(2)O)(n), (1)B(1)←(1)A(1), are blue-shifted as a function of cluster size (n): 7.38 eV (n = 1), 7.58 eV (n = 2) and 8.01 eV (n = 3). The inclusion of the ZPE vibration strongly affects the excitation energies of a water dimer, and a long red-tail appears in the range of 6.42-6.90 eV due to the structural flexibility of a water dimer. The ultraviolet photodissociation of water clusters and water ice surfaces is relevant to these results.

  12. Earthquake countermeasure work on water intake structure based on post-construction shear reinforcement method

    Satou, Yoshihito; Wani, Masaaki; Wachi, Takamitsu

    2017-01-01

    Hamaoka Nuclear Power Station set up 'earthquake motion as the base for remodeling work' by referring to the strong earthquake fault model assumed by the 'Study meeting for Nankai Trough's mega thrust earthquake model' of the Cabinet Office. Based on this earthquake, it implemented seismic countermeasure work using ceramic fixing type post-construction shear reinforcement bars by targeting the Unit 4 water intake tank screen room. This construction work was carried out in a short period of about nine months due to a restriction in the drainage period of the water intake tank. Thanks to the improvement of process control, such as adoption of a two-shift (day and night) system, this work was completed. On the other hand, the quality of construction was secured by adopting a drilling machine with a resistance sensor at the time of drilling and plastic grout at the time of grout filling, as well as through quality inspection based on Construction Technology Review and Certification. (A.O.)

  13. How to use programme theory to evaluate the effectiveness of schemes designed to improve the work environment in small businesses.

    Olsen, Kirsten; Legg, Stephen; Hasle, Peter

    2012-01-01

    Due to the many constraints that small businesses (SBs) face in meeting legislative requirements, occupational health and safety (OHS) regulatory authorities and other OSH actors have developed programmes which can reach out to SBs and motivate and assist them in improving the work environment. A number of conceptual models help to enhance our understanding of OHS interventions in SBs and their effectiveness. However, they have mainly been evaluated on output rather than the process relating to the change theory underlying the intervention, and hence have seldom been rigorously evaluated. Thus little is known about how particular features of SBs can be taken into account when designing and implementing national programmes. This paper shows how realist analysis and programme theory may be used as a framework for evaluating, developing and improving national intervention programmes for the improvement of the work environment and reducing injuries in SBs. It illustrates this for a specific New Zealand intervention: the Workplace Safety Discount scheme and its implementation in the agriculture sector. In practice, realist analysis should be performed during the planning, implementation and management stages so that ongoing findings can be fed back to the participant social actors to help them make appropriate changes to enhance the likelihood of success.

  14. Establishment of sustainable water supply system in small islands through rainwater harvesting (RWH): case study of Guja-do.

    Han, Mooyoung; Ki, Jaehong

    2010-01-01

    Many islands in Korea have problems related to water source security and supply. In particular, the water supply condition is worse in small islands which are remote from the mainland. A couple of alternatives are developed and suggested to supply water to islands including water hauling, groundwater extraction, and desalination. However, these alternatives require much energy, cost, and concern in installation and operation. Rainwater harvesting is a sustainable option that supplies water with low energy and cost. However, lack of practical or comprehensive studies on rainwater harvesting systems in these regions hinders the promotion of the system. Therefore, this research examines defects of current RWH systems on an existing island, Guja-do, and provides technical suggestions in quantitative and qualitative aspects. A simple system design modification and expansion of system capacity using empty space such as a wharf structure can satisfy both the qualitative and the quantitative water demand of the island. Since rainwater harvesting is estimated to be a feasible water supply option under the Korean climate, which is an unfavorable condition for rainwater harvesting, implies a high potential applicability of rainwater harvesting technology to other regions over the world suffering from water shortage.

  15. Studies of water-in-oil emulsions : energy and work threshold as a function of temperature

    Fingas, M.; Fieldhouse, B.; Lerouge, L.

    2001-01-01

    A study was conducted in which the effect of temperature on the kinetics and stability of water-in-oil formation was examined. Previous studies have shown that viscosity influences the formation and stability of water in oil emulsions, therefore a viscosity window has been postulated as necessary for the formation of stable emulsions. The temperature dependence of this physical property is examined through a study of 3 oils, Green Canyon, Arabian Light and Point Arguello. The oils were subjected to mixing at 5, 15 and 25 degrees C. Both Arabian Light and Point Arguello formed meso-stable emulsions at 15 degrees C and were examined further. Arabian Light had a relatively high viscosity, while Point Arguello had a low viscosity. The objective was to examine the effects of changing viscosity resulting from changes in temperature on oil at either end of the observed viscosity window. The total energy applied to the oil/water in the emulsion formation apparatus was varied from about 50 to 600,000 ergs. Work was varied from 1 to 5123 Joules per second. It was determined that a minimum energy threshold is needed for most emulsion formation, but only work correlates with the stability value. The emulsions formed at lower temperatures exhibited higher stability than would be expected from the increase in viscosity. This is most likely because the increase was insufficient, in the case of Green Canyon oil, to result in the formation of emulsions. It was concluded that the stability of an emulsion formed from a given oil increases with decreasing formation temperature. The apparent viscosity is higher at the lower temperature. The work was found to correlate most closely with the stability of the emulsion or water-in-oil state. 7 refs., 4 tabs., 6 figs

  16. Stress corrosion cracking behavior of annealed and cold worked 316L stainless steel in supercritical water

    Sáez-Maderuelo, A., E-mail: alberto.saez@ciemat.es; Gómez-Briceño, D.

    2016-10-15

    Highlights: • The alloy 316L is susceptible to stress corrosion cracking in supercritical water. • The susceptibility of alloy 316L increases with temperature and plastic deformation. • Dynamic strain ageing processes may be active in the material. - Abstract: The supercritical water reactor (SCWR) is one of the more promising designs considered by the Generation IV International Forum due to its high thermal efficiency and improving security. To build this reactor, standardized structural materials used in light water reactors (LWR), like austenitic stainless steels, have been proposed. These kind of materials have shown an optimum behavior to stress corrosion cracking (SCC) under LWR conditions except when they are cold worked. It is known that physicochemical properties of water change sharply with pressure and temperature inside of the supercritical region. Owing to this situation, there are several doubts about the behavior of candidate materials like austenitic stainless steel 316L to SCC in the SCWR conditions. In this work, alloy 316L was studied in deaerated SCW at two different temperatures (400 °C and 500 °C) and at 25 MPa in order to determine how changes in this variable influence the resistance of this material to SCC. The influence of plastic deformation in the behavior of alloy 316L to SCC in SCW was also studied at both temperatures. Results obtained from these tests have shown that alloy 316L is susceptible to SCC in supercritical water reactor conditions where the susceptibility of this alloy increases with temperature. Moreover, prior plastic deformation of 316L SS increased its susceptibility to environmental cracking in SCW.

  17. Modeling Air Temperature/Water Temperature Relations Along a Small Mountain Stream Under Increasing Urban Influence

    Fedders, E. R.; Anderson, W. P., Jr.; Hengst, A. M.; Gu, C.

    2017-12-01

    Boone Creek is a headwater stream of low to moderate gradient located in Boone, North Carolina, USA. Total impervious surface coverage in the 5.2 km2 catchment drained by the 1.9 km study reach increases from 13.4% in the upstream half of the reach to 24.3% in the downstream half. Other markers of urbanization, including culverting, lack of riparian shade vegetation, and bank armoring also increase downstream. Previous studies have shown the stream to be prone to temperature surges on short timescales (minutes to hours) caused by summer runoff from the urban hardscaping. This study investigates the effects of urbanization on the stream's thermal regime at daily to yearly timescales. To do this, we developed an analytical model of daily average stream temperatures based on daily average air temperatures. We utilized a two-part model comprising annual and biannual components and a daily component consisting of a 3rd-order Markov process in order to fit the thermal dynamics of our small, gaining stream. Optimizing this model at each of our study sites in each studied year (78 total site-years of data) yielded annual thermal exchange coefficients (K) for each site. These K values quantify the strength of the relationship between stream and air temperature, or inverse thermal stability. In a uniform, pristine catchment environment, K values are expected to decrease downstream as the stream gains discharge volume and, therefore, thermal inertia. Interannual average K values for our study reach, however, show an overall increase from 0.112 furthest upstream to 0.149 furthest downstream, despite a near doubling of stream discharge between these monitoring points. K values increase only slightly in the upstream, less urban, half of the reach. A line of best fit through these points on a plot of reach distance versus K value has a slope of 2E-6. But the K values of downstream, more urbanized sites increase at a rate of 2E-5 per meter of reach distance, an order of magnitude

  18. Impact of Work Environment, Salary Package and Employees’ Perception on Organizational Commitment: A study of Small & Medium Enterprises (SMEs) of Pakistan

    Jawad Akhtar

    2014-01-01

    The chief purpose of this research paper is to investigate how factors like (1) work environment; (2) salary Package and (3) Employees’ perception have an effect on the employees’ organizational commitment in the Small and Medium Enterprises (SMEs) of Pakistan.

  19. Leak Detection in Water-Filled Small-Diameter Polyethylene Pipes by Means of Acoustic Emission Measurements

    Alberto Martini

    2016-12-01

    Full Text Available The implementation of effective strategies to manage leaks represents an essential goal for all utilities involved with drinking water supply in order to reduce water losses affecting urban distribution networks. This study concerns the early detection of leaks occurring in small-diameter customers’ connections to water supply networks. An experimental campaign was carried out in a test bed to investigate the sensitivity of Acoustic Emission (AE monitoring to water leaks. Damages were artificially induced on a polyethylene pipe (length 28 m, outer diameter 32 mm at different distances from an AE transducer. Measurements were performed in both unburied and buried pipe conditions. The analysis permitted the identification of a clear correlation between three monitored parameters (namely total Hits, Cumulative Counts and Cumulative Amplitude and the characteristics of the examined leaks.

  20. Bottom friction models for shallow water equations: Manning’s roughness coefficient and small-scale bottom heterogeneity

    Dyakonova, Tatyana; Khoperskov, Alexander

    2018-03-01

    The correct description of the surface water dynamics in the model of shallow water requires accounting for friction. To simulate a channel flow in the Chezy model the constant Manning roughness coefficient is frequently used. The Manning coefficient nM is an integral parameter which accounts for a large number of physical factors determining the flow braking. We used computational simulations in a shallow water model to determine the relationship between the Manning coefficient and the parameters of small-scale perturbations of a bottom in a long channel. Comparing the transverse water velocity profiles in the channel obtained in the models with a perturbed bottom without bottom friction and with bottom friction on a smooth bottom, we constructed the dependence of nM on the amplitude and spatial scale of perturbation of the bottom relief.

  1. When good practices by water committees are not relevant: Sustainability of small water infrastructures in semi-arid mozambique

    Ducrot, Raphaëlle

    2017-12-01

    This paper explores the contradiction between the need for large scale interventions in rural water supplies and the need for flexibility when providing support for community institutions, by investigating the implementation of the Mozambique - National Rural Water Supply and Sanitation Program in a semi-arid district of the Limpopo Basin. Our results showed that coordinated leadership by key committee members, and the level of village governance was more important for borehole sustainability than the normative functioning of the committee. In a context in which the centrality of leadership prevails over collective action the sustainability of rural water infrastructure derives from the ability of leaders to motivate the community to provide supplementary funding. This, in turn, depends on the added value to the community of the water points and on village politics. Any interventions that increased community conflicts, for example because of lack of transparency or unequitable access to the benefit of the intervention, weakened the coordination and the collective action capacity of the community and hence the sustainability of the infrastructures even if the intervention was not directly related to water access. These results stress the importance of the project/program implementation pathway.

  2. Community-specific hydraulic conductance potential of soil water decomposed for two Alpine grasslands by small-scale lysimetry

    Frenck, Georg; Leitinger, Georg; Obojes, Nikolaus; Hofmann, Magdalena; Newesely, Christian; Deutschmann, Mario; Tappeiner, Ulrike; Tasser, Erich

    2018-02-01

    For central Europe in addition to rising temperatures an increasing variability in precipitation is predicted. This will increase the probability of drought periods in the Alps, where water supply has been sufficient in most areas so far. For Alpine grasslands, community-specific imprints on drought responses are poorly analyzed so far due to the sufficient natural water supply. In a replicated mesocosm experiment we compared evapotranspiration (ET) and biomass productivity of two differently drought-adapted Alpine grassland communities during two artificial drought periods divided by extreme precipitation events using high-precision small lysimeters. The drought-adapted vegetation type showed a high potential to utilize even scarce water resources. This is combined with a low potential to translate atmospheric deficits into higher water conductance and a lower biomass production as those measured for the non-drought-adapted type. The non-drought-adapted type, in contrast, showed high water conductance potential and a strong increase in ET rates when environmental conditions became less constraining. With high rates even at dry conditions, this community appears not to be optimized to save water and might experience drought effects earlier and probably more strongly. As a result, the water use efficiency of the drought-adapted plant community is with 2.6 gDW kg-1 of water much higher than that of the non-drought-adapted plant community (0.16 gDW kg-1). In summary, the vegetation's reaction to two covarying gradients of potential evapotranspiration and soil water content revealed a clear difference in vegetation development and between water-saving and water-spending strategies regarding evapotranspiration.

  3. Water Retention in a Small Agricultural Catchment and its Potential Improvement by Design of Water Reservoirs – A Case Study of the Bílý Potok Catchment (Czechia

    Doležal Petr

    2018-03-01

    Full Text Available Water retention in the landscape is discussed in the context of conservation and improvement of both its productive and non-productive functions. We analysed the retention potential of a small agricultural catchment associated with the Bílý potok brook, investigating the possibility to improve its retention capacity and slow down the surface runoff, thus increasing the underground water resources. Method of curve numbers was used for that purposes. From results, it emerged that present maximum water retention in the Bílý potok catchment is 96.2 mm. It could increase by 101.3 mm in case of grassing about 20% arable land threatened by soil erosion. As next possibility to retain water from precipitations in landscape, capacity and transformation effect of reservoirs designed in master plans was analysed. The latest programming tools working in the GIS environment were used to assess the retention capacity of both the catchment surface and the reservoirs. Analysing master plans in the catchment, it was found that 16 designed water reservoirs (from 31 have a good potential to intercept water and transform flood discharges. In the result, priority for building of reservoirs was recommended according to their pertinence and efficiency in the studied catchment. Presented complex approach can be widely implemented, especially for better effectivity and cohesion of landscape planning and land consolidations processes.

  4. A study on sustainable urban water management in small and medium sized cities in China

    Liu, Guang

    2012-01-01

    Along with the implementation of national urbanization and modernization strategy in China, the urban scale and quantity are increasing systematically. In this process, the role of water is irreplaceable. Urban water system is a multipurpose and integrated system. Considering China's economic and social development requirements, there are many rigorous problems in exploitation, utilization, operation and management of urban water resources comparing with some developed cities in the world. Cu...

  5. An experimental study on the excitation of large volume airguns in a small volume body of water

    Wang, Baoshan; Yang, Wei; Yuan, Songyong; Ge, Hongkui; Chen, Yong; Guo, Shijun; Xu, Ping

    2010-01-01

    A large volume airgun array is effective in generating seismic waves, which is extensively used in large volume bodies of water such as oceans, lakes and reservoirs. So far, the application of large volume airguns is subject to the distribution of large volume bodies of water. This paper reports an attempt to utilize large volume airguns in a small body of water as a seismic source for seismotectonic studies. We carried out a field experiment in Mapaoquan pond, Fangshan district, Beijing, during the period 25–30 May 2009. Bolt LL1500 airguns, each with volumes of 2000 in 3 , the largest commercial airguns available today, were used in this experiment. We tested the excitation of the airgun array with one or two guns. The airgun array was placed 7–11 m below the water's surface. The near- and far-field seismic motions induced by the airgun source were recorded by a 100 km long seismic profile composed of 16 portable seismometers and a 100 m long strong motion seismograph profile, respectively. The following conclusions can be drawn from this experiment. First, it is feasible to excite large volume airguns in a small volume body of water. Second, seismic signals from a single shot of one airgun can be recognized at the offset up to 15 km. Taking advantage of high source repeatability, we stacked records from 128 shots to enhance the signal-to-noise ratio, and direct P-waves can be easily identified at the offset ∼50 km in stacked records. Third, no detectable damage to fish or near-field constructions was caused by the airgun shots. Those results suggest that large volume airguns excited in small bodies of water can be used as a routinely operated seismic source for mid-scale (tens of kilometres) subsurface explorations and monitoring under various running conditions

  6. Experimental Investigation to Heat Transfer Augmentation in A Car Radiator Worked with (Water - Magnesium Oxide Nanofluid.

    Hameed K. Hamzah

    2017-07-01

    Full Text Available In this work, effect of adding MgO nanoparticle to base fluid (water in car radiator has been implemented experimentally. In this investigation, an experimental test rig has been designed to study effect inlet temperature of nanofluid, the flow rate and nanoparticle volume fraction on heat transfer rates. Six different concentrations of nanofluid of 0.125%, 0.25%, 0.5%,1% ,1.5% and 2% have been prepared by mixed of MgO nanoparticles with water. Reynolds number of nanofluid was between 4500 and 19000.Thermal behavior of an automobile radiator worked with nanofluid has been compared with using pure water in it. So, the fluid circulating rate in radiator has been varied in the extent of the range of 1-8 L/min and fluid inlet temperature is also varied for all experimental. Results emphasized that Nusselt number increases with an increase of liquid inlet temperature, nanoparticle volume fraction and Reynolds number. As well as, the enhancement in heat transfer coefficient due to presence of nanoparticles is more than that without noanoparticles. These results can be achieved to optimize the dimension of an automobile radiator. A good agreement was seen with theoretical and experimental results with many authors

  7. Analysis of water application techniques for growing tomatoes in small pots on different substrates. Note 2

    Luigi Cavazza

    Full Text Available The response of the tomato plants to the irrigation regimes compared in the previous study, particularly when compared with the response to the peat fraction in the mixture, was modest, often irregular and subject to complex interactions with the former factor. This result could depend partially on the fact that the parameters for the water regime applied during the trials were chosen to prevent exposing the plants to excessive stress through lack of water or excess water. This note analyses the technique used to apply the water. Two main water application parameters were identified parameter a expressing the mean moisture level of the pot during growing, and parameter b expressing the amplitude of the variation in moisture level between the irrigation threshold and the level to which the water was topped up at each watering. The actual mean volume of irrigation during the cultivation period was compared with the theoretically predicted value and the discrepancy explained. The role of parameter a and b are proposed to define the irrigation regime applied and the water regime as such can be defined by these two parameters a and b, as a general composite index. Furthermore the effect on the biological performance of both parameters a and b were studied obtaining a clearer picture of the effect of the water regime. The role of both parameters, a and b were synthesized in a specific composite index for each individual characteristic of the plant after taking in account the principal causes of their variations.

  8. In Situ and Satellite Observation of CDOM and Chlorophyll-a Dynamics in Small Water Surface Reservoirs in the Brazilian Semiarid Region

    Christine Coelho

    2017-12-01

    Full Text Available We analyzed chlorophyll-a and Colored Dissolved Organic Matter (CDOM dynamics from field measurements and assessed the potential of multispectral satellite data for retrieving water-quality parameters in three small surface reservoirs in the Brazilian semiarid region. More specifically, this work is comprised of: (i analysis of Chl-a and trophic dynamics; (ii characterization of CDOM; (iii estimation of Chl-a and CDOM from OLI/Landsat-8 and RapidEye imagery. The monitoring lasted 20 months within a multi-year drought, which contributed to water-quality deterioration. Chl-a and trophic state analysis showed a highly eutrophic status for the perennial reservoir during the entire study period, while the non-perennial reservoirs ranged from oligotrophic to eutrophic, with changes associated with the first events of the rainy season. CDOM characterization suggests that the perennial reservoir is mostly influenced by autochthonous sources, while allochthonous sources dominate the non-perennial ones. Spectral-group classification assigned the perennial reservoir as a CDOM-moderate and highly eutrophic reservoir, whereas the non-perennial ones were assigned as CDOM-rich and oligotrophic-dystrophic reservoirs. The remote sensing initiative was partially successful: the Chl-a was best modelled using RapidEye for the perennial one; whereas CDOM performed best with Landsat-8 for non-perennial reservoirs. This investigation showed potential for retrieving water quality parameters in dry areas with small reservoirs.

  9. THE PRESENT CONDITION OF SMALL WATER RETENTION AND THE PROSPECTS OF ITS DEVELOPMENT USING THE EXAMPLE OF THE PODLASKIE VOIVODESHIP

    Joanna Szczykowska

    2014-07-01

    Full Text Available The necessity and purposefulness of the investments related to water retention are justified mostly due to the preservation of the environment equilibrium as well as due to its farming, anti-flood, landscape and recreation aspects. Reasonable water management where various forms of retention are used gives large chances for the mitigation of the effects of unfavorable phenomena related to its insufficient amount. The creation of plans regarding the formation of reservoirs accumulating water is not necessarily synonymous with their realization. The reason of problems connected with the implementation of plans regarding the formation of new reservoirs lies mainly in financial measures and in problems with obtaining them. Water deficit in Poland is the reason for which the principles of its national usage need to be complied with. Realization of plans at both Voivodeship and municipality level that are focused on small retention will contribute to considerable increase in the retention capacity and will enable considerable increase in available resources in hydrographic catchments of both the characterized area and the entire country. The paper presents the characteristics of the present state and assumes the perspective development of small water retention in the Podlaskie Voivodeship using the example of the Podlaskie Voivodeship.

  10. Morphological, physical and pedogenetic attributes related to water yield in small watersheds in Guarapari/ES, Brazil

    Alexson de Mello Cunha

    2011-08-01

    Full Text Available Soil characteristics related to the genesis, land use and management are important factors in water dynamics in watersheds. This study evaluated physical, morphological and pedogenetic attributes related to water yield potential in small watersheds in Guarapari, ES, Brazil. The following representative profiles were selected, morphologically described and sampled in area of Atlantic Forest domain: Lithic Udifolists, Oxyaquic Udifluventes, Typic Paleudults, Typic Hapludults, Typic Hapludox, Oxic Dystrudepts and Typic Endoaquents. Samples were collected in the soil profiles for physical analysis. Measurements of field-saturated hydraulic conductivity and soil penetration resistance were perfomed in some profiles, which were under different uses. The Endoaquents of Limão Creek can be considered efficient as temporary water reservoirs. However, the use of artificial drainage tends to reduce this effect. Differential erosion was detected by the sand texture on the surface of the Typic Paleudults due to the low degree of clay flocculation, slope, high resistance to the penetration and low hydraulic conductivity of the Bt horizon, making it necessary to adopt soil management practices to increase the water infiltration. Under pasture, mainly in the cattle trails where the trampling is more intense, there was high resistance to penetration in the superficial layers of the Typic Hapludults. The Typic Hapludox have the greatest potential for water yield in the small watersheds because of its greater extent in the headwaters and their morphological and physical characteristics, which can result in increased aquifer recharge.

  11. EDF program on SCC initiation of cold-worked stainless steels in primary water

    Huguenin, P.; Vaillant, F.; Couvant, T. [Electricite de France (EDF/RD), Site des Renardieres, 77 - Moret sur loing (France); Buisse, L. [EDF UTO, 93 - Noisy-Le-Grand (France); Huguenin, P.; Crepin, J.; Duhamel, C.; Proudhon, H. [MINES ParisTech, Centre des Materiaux, 91 - Evry (France); Ilevbare, G. [EPRI California (United States)

    2009-07-01

    A few cases of Intergranular Stress Corrosion Cracking (IGSCC) on cold-worked austenitic stainless steels in primary water have been detected in French Pressurized Water Reactors (PWRs). A previous program launched in the early 2000's identified the required conditions for SCC of cold-worked stainless steels. It was found that a high strain hardening coupled with cyclic loading favoured SCC, whereas cracking under static conditions appeared to be difficult. A propagation model was also proposed. The first available results of the present study demonstrate the strong influence of a trapezoidal cyclic loading on the creep of 304L austenitic stainless steel. While no creep was detected under a pure static loading, the creep rate was increased by a factor 102 under a trapezoidal cyclic loading. The first results of SCC initiation performed on notched specimens under a trapezoidal cyclic loading at low frequency are presented. The present study aims at developing an engineering model for IGSCC initiation of 304L, 316L and weld 308L stainless steels. The effect of the pre-straining on the SCC mechanisms is more specifically studied. Such a model will be based on (i) SCC initiation tests on notched and smooth specimens under 'trapezoidal' cyclic loading and, (ii) constant strain rate SCC initiation tests. The influence of stress level, cold-work level, strain path, surface roughness and temperature is particularly investigated. (authors)

  12. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana

    Cobbina, Samuel J.; Duwiejuah, Abudu B.; Quansah, Reginald; Obiri, Samuel; Bakobie, Noel

    2015-01-01

    The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga) in northern Ghana. Seventy-two (72) water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg), arsenic (As), lead (Pb), zinc (Zn), and cadmium (Cd) were determined using an atomic absorption spectrophotometer (AAS). Mean levels (mg/l) of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg), 0.031 and 0.002 (As), 0.250 and 0.031 (Pb), 0.034 and 0.002 (Zn), and 0.534 and 0.023 (Cd), respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO) stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended. PMID:26343702

  13. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana

    Samuel J. Cobbina

    2015-08-01

    Full Text Available The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga in northern Ghana. Seventy-two (72 water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg, arsenic (As, lead (Pb, zinc (Zn, and cadmium (Cd were determined using an atomic absorption spectrophotometer (AAS. Mean levels (mg/l of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg, 0.031 and 0.002 (As, 0.250 and 0.031 (Pb, 0.034 and 0.002 (Zn, and 0.534 and 0.023 (Cd, respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended.

  14. Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor

    Rahayu, Suparni Setyowati; Budiyono; Purwanto

    2018-02-01

    A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1) workshop; (2) supervising; (3) technical meeting; (4) network meeting, and (5) technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 %) and CO2 (20.16 %). Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.

  15. Comparative Assessment of Heavy Metals in Drinking Water Sources in Two Small-Scale Mining Communities in Northern Ghana.

    Cobbina, Samuel J; Duwiejuah, Abudu B; Quansah, Reginald; Obiri, Samuel; Bakobie, Noel

    2015-08-28

    The study assessed levels of heavy metals in drinking water sources in two small-scale mining communities (Nangodi and Tinga) in northern Ghana. Seventy-two (72) water samples were collected from boreholes, hand dug wells, dug-out, and a stream in the two mining communities. The levels of mercury (Hg), arsenic (As), lead (Pb), zinc (Zn), and cadmium (Cd) were determined using an atomic absorption spectrophotometer (AAS). Mean levels (mg/l) of heavy metals in water samples from Nangodi and Tinga communities were 0.038 and 0.064 (Hg), 0.031 and 0.002 (As), 0.250 and 0.031 (Pb), 0.034 and 0.002 (Zn), and 0.534 and 0.023 (Cd), respectively, for each community. Generally, levels of Hg, As, Pb, Zn, and Cd in water from Nangodi exceeded the World Health Organisation (WHO) stipulated limits of 0.010 for Hg, As, and Pb, 3.0 for Zn and 0.003 for Cd for drinking water, and levels of Hg, Pb, and Cd recorded in Tinga, exceeded the stipulated WHO limits. Ingestion of water, containing elevated levels of Hg, As, and Cd by residents in these mining communities may pose significant health risks. Continuous monitoring of the quality of drinking water sources in these two communities is recommended.

  16. Impacts of nutrients and pesticides from small- and large-scale agriculture on the water quality of Lake Ziway, Ethiopia.

    Teklu, Berhan M; Hailu, Amare; Wiegant, Daniel A; Scholten, Bernice S; Van den Brink, Paul J

    2018-05-01

    The area around Lake Ziway in Ethiopia is going through a major agricultural transformation with both small-scale farmers and large horticultural companies using pesticides and fertilisers at an increased rate. To be able to understand how this influences the water quality of Lake Ziway, water quality data was gathered to study the dynamics of pesticide concentrations and physicochemical parameters for the years from 2009 to 2015. Results indicate that for some physicochemical parameters, including pH, potassium and iron, over 50 % of the values were above the maximum permissible limit of the Ethiopian standard for drinking water. The fungicide spiroxamine poses a high chronic risk when the water is used for drinking water, while the estimated intake of diazinon was approximately 50 % of the acceptable daily intake. Higher-tier risk assessment indicated that the fungicide spiroxamine poses a high acute risk to aquatic organisms, while possible acute risks were indicated for the insecticides deltamethrin and endosulfan. Longer-term monitoring needs to be established to show the water quality changes across time and space, and the current study can be used as a baseline measurement for further research in the area as well as an example for other surface water systems in Ethiopia and Africa.

  17. Sea-water intake tower works for Hamaoka Nuclear Power Station No. 2 Plant

    Satake, Norimoto; Sugaya, Yoshinobu; Sugimoto, Tadao

    1976-01-01

    It was determined to adopt tunnel system based on the conclusion of negotiation with local people, specifically fishermen, for the sea water intake arrangement in Hamaoka Nuclear Power Station. The main factors for determining the location of the intake tower included marine conditions such as waves and littoral sand drift, and the sea-bottom topographic features and geology of tunnel route, for which field examination, hydraulic experiments and the research and investigation on the method of construction were carried out. These results in the No.2 tower installation at the point 65 m to the east of the No.1 tower. The construction of the tower is described on the manufacture and conveyance of steel caisson, land works at Omaezaki and temporary assembly works on the sea. Then the details of tower installation and the works on site are reported. Fortunately the difficult sea works have been satisfactorily completed earlier than planned, without any accident. The construction facilities utilizing a pilot tunnel seem to have made the better achievement than expected. In spite of the results, the lifting up, off-shore conveyance, and installation of the intake tower caisson, a superheavy structure of weighting up to total 2900 ton, were critical works. (Wakatsuki, Y.)

  18. Sea-water intake tower works for Hamaoka Nuclear Power Station No. 2 Plant

    Sataki, N; Sugaya, Y; Sugimoto, T [Chubu Electric Power Co. Inc., Nagoya (Japan)

    1976-01-01

    It was determined to adopt tunnel system based on the conclusion of negotiation with local people, specifically fishermen, for the sea water intake arrangement in Hamaoka Nuclear Power Station. The main factors for determining the location of the intake tower included marine conditions such as waves and littoral sand drift, and the sea-bottom topographic features and geology of tunnel route, for which field examination, hydraulic experiments and the research and investigation on the method of construction were carried out. These results in the No.2 tower installation at the point 65 m to the east of the No.1 tower. The construction of the tower is described on the manufacture and conveyance of steel caisson, land works at Omaezaki and temporary assembly works on the sea. Then the details of tower installation and the works on site are reported. Fortunately the difficult sea works have been satisfactorily completed earlier than planned, without any accident. The construction facilities utilizing a pilot tunnel seem to have made the better achievement than expected. In spite of the results, the lifting up, off-shore conveyance, and installation of the intake tower caisson, a superheavy structure of weighting up to total 2900 ton, were critical works.

  19. Drinking water quality in six small tea gardens of Sonitpur District of Assam, India, with special reference to heavy metals.

    Dutta, Joydev; Chetia, Mridul; Misra, A K

    2011-10-01

    Contamination of drinking water by arsenic and other heavy metals and their related toxicology is a serious concern now-a-days. Millions of individual world-wide are suffering from the arsenic and other heavy metal related diseases due to the consumption of contaminated groundwater. 60 water samples from different sources of 6 small tea gardens of Sonitpur district were collected to study the potability of water for drinking purposes. The water samples collected from sources like tube wells, ring wells and ponds were analyzed for arsenic, heavy metals like iron, manganese and mercury with sodium, potassium, calcium, magnesium, pH, total hardness, chloride, fluoride and sulphate. Some drain water samples of the tea garden areas were also collected to analyze the above mentioned water parameters to see the contamination level. Experiments revealed that 78% samples of total collection had arsenic content above the permissible limit (0.01 ppm) of WHO guideline value for drinking water. The highest arsenic was observed 0.09 ppm at one sample of Gobindra Dahal tea garden of Gohpur sub division of Sonitpur district. 94% samples had contamination due to manganese 39% samples had iron and 44% samples had Hg. The water quality data was subjected to some statistical treatments like NDA, cluster analysis and pearson correlation to observe the distribution pattern of the different water quality parameters. A strong pearson correlation coefficient was observed between parameters-arsenic and manganese (0.865) and arsenic and mercury (0.837) at 0.01 level, indicated the same sources of drinking water contamination.

  20. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    de Hamer, W.; Love, D.; Owen, R.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2008-01-01

    Groundwater use by accessing alluvial aquifers of non-perennial rivers can be an important additional water resource in the semi-arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper-Mnyabezi catchment under current conditions

  1. Potential water supply of a small reservoir and alluvial aquifer system in southern Zimbabwe

    de Hamer, W.; Love, D.; Owen, R.; Booij, Martijn J.; Hoekstra, Arjen Ysbert

    2007-01-01

    Groundwater use by accessing alluvial aquifers of non‐perennial rivers can be an important additional water resource in the semi‐arid region of southern Zimbabwe. The research objective of the study was to calculate the potential water supply for the upper‐Mnyabezi catchment under current conditions

  2. Solar Energy and Other Appropriate Technologies for Small Potable Water Systems in Puerto Rico

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change...

  3. Recovery of water from cacti for use in small farming communities ...

    In this study, an extensive investigation was conducted to determine if declared weeds could be used as a source of water for agricultural practices in dry areas. The objective of this study was to determineif declared weeds could successfully be used as a source of water for agricultural practices in dry areas by extracting ...

  4. Effects of Small-Scale Gold Mining on Surface and Ground Water ...

    / Prestea mining area in the Western Region of Ghana were conducted with the aim of assessing the possible effects of mining on water quality. Water samples were collected for 6 consecutive months at ten sampling sites within the study area ...

  5. Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands

    Vinciková, H.; Hanuš, Jan; Pechar, L.

    2015-01-01

    Roč. 23, č. 5 (2015), s. 933-946 ISSN 0923-4861 R&D Projects: GA MŠk(CZ) LM2010007; GA MŠk 2B06068 Institutional support: RVO:67179843 Keywords : remote sensing * water quality * hyperspectral reflectance * turbid inland waters * chlorophyll * TSS Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.407, year: 2015

  6. Development of an improved compact package plant for small community waste-water treatment

    Hulsman, A

    1993-01-01

    Full Text Available The challenges facing the design and operation of small community wastewater treatment plants are discussed. The package plant concept is considered and the consequent development of a compact intermittently aerated activated sludge package plant...

  7. To built a solar hot water heater to work the sustainability problem

    Carretero Gómez, María Begoña

    2012-01-01

    Full Text Available We are commemorating the Education Decade for Sustainable Development. If we want to create positive towards our environment and its sustainable development we have to begin working at school. It is necessary to show our students what problems of the environment are and which solutions can be adopted. That is the reason we have planned this activity in our secondary school. We do think that by doing daily activities we have a good opportunity to fulfil this goal. An example of such experiences is the fabrication of a solar hot water heater to make them and their families more environment conscience.

  8. Finding Structure in Diversity: A Stepwise Small-N/Medium-N Qualitative Comparative Analysis Approach for Water Resources Management Research

    Peter P. Mollinga

    2014-02-01

    Full Text Available Drawing particularly on recent debates on, and development of, comparative methods in the field of comparative politics, the paper argues that stepwise small-N/medium-N qualitative comparative analysis (QCA is a particularly suitable methodological approach for water resources studies because it can make use of the rich but fragmented water resources studies literature for accumulation of knowledge and development of theory. It is suggested that taking an explicit critical realist ontological and epistemological stance allows expansion of the scope of stepwise small-N/medium-N QCA beyond what is claimed for it in Ragin’s 'configurational comparative methods (CCM' perspective for analysing the complexity of causality as 'multiple conjunctural causation'. In addition to explanation of certain sets of 'outcomes' as in CCM’s combinatorial, set-theoretic approach, embedding stepwise small-N/medium-N QCA in a critical realist ontology allows the method to contribute to development of theory on (qualitative differences between the structures in society that shape water resources use, management and governance.

  9. A measure for the efficiency of water use and its determinants, a case study of small-scale irrigation schemes in North-West Province, South Africa

    Speelman, S.; Haese, D' M.F.C.; Buysse, J.; Haese, D' L.

    2008-01-01

    This paper analyses the efficiency with which water is used in small-scale irrigation schemes in North-West Province in South Africa and studies its determinants. In the study area, small-scale irrigation schemes play an important role in rural development, but the increasing pressure on water

  10. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals.

    Line Hermannsen

    Full Text Available Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3 at six ranges (6, 120, 200, 400, 800 and 1300 m in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration, and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.

  11. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals.

    Hermannsen, Line; Tougaard, Jakob; Beedholm, Kristian; Nabe-Nielsen, Jacob; Madsen, Peter Teglberg

    2015-01-01

    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.

  12. Evasion of CO2 and dissolved carbon in river waters of three small catchments in an area occupied by small family farms in the eastern Amazon

    Maria Beatriz Silva da Rosa

    2017-08-01

    Full Text Available CO2 effluxes from streams and rivers have been hypothesized to be a critical pathway of carbon flow from the biosphere back to the atmosphere. This study was conducted in three small Amazonian catchments to evaluate carbon evasion and dynamics, where land-use change has occurred on small family-farms. Monthly field campaigns were conducted from June 2006 to May 2007 in the Cumaru (CM, Pachibá (PB and São João (SJ streams. Electrical conductivity, pH, temperature, and dissolved oxygen measurements were done in situ, while water samples were collected to determine dissolved organic carbon (DOC and dissolved inorganic carbon (DIC concentrations, as well as carbon dioxide partial pressures (pCO2 and CO2 evasion fluxes. Instantaneous discharge measured by a current meter was used to calculate DOC fluxes. Considering all the sites, DOC, DIC, pCO2, and CO2 flux measurements ranged as follows, respectively: 0.27 - 12.13 mg L-1; 3.5 - 38.9 mg L-1; 2,265 - 26,974 ppm; and 3.39 - 75.35 μmol m-2 s-1. DOC annual flux estimates for CM, SJ and PB were, respectively, 281, 245, and 169 kg C ha-1. CO2 evasion fluxes had an average of 22.70 ± 1.67 μmol m-2 s-1. These CO2 evasion fluxes per unit area were similar to those measured for major Amazonian rivers, thus confirming our hypothesis that small streams can evade substantial quantities of CO2. As secondary vegetation is abundant as a result of family farming management in the region, we conclude that this vegetation can be a major driver of an abundant carbon cycle.

  13. Comparative investigation of working fluids for an organic Rankine cycle with geothermal water

    Liu Yan-Na

    2015-06-01

    Full Text Available In this paper, the thermodynamic investigation on the use of geothermal water (130 °C as maximum for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.

  14. Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)

    Olumayegun, Olumide; Wang, Meihong; Kelsall, Greg

    2017-01-01

    Highlights: • Nitrogen closed Brayton cycle for small modular sodium-cooled fast reactor studied. • Thermodynamic modelling and analysis of closed Brayton cycle performed. • Two-shaft configuration proposed and performance compared to single shaft. • Preliminary design of heat exchangers and turbomachinery carried out. - Abstract: Sodium-cooled fast reactor (SFR) is considered the most promising of the Generation IV reactors for their near-term demonstration of power generation. Small modular SFRs (SM-SFRs) have less investment risk, can be deployed more quickly, are easier to operate and are more flexible in comparison to large nuclear reactor. Currently, SFRs use the proven Rankine steam cycle as the power conversion system. However, a key challenge is to prevent dangerous sodium-water reaction that could happen in SFR coupled to steam cycle. Nitrogen gas is inert and does not react with sodium. Hence, intercooled closed Brayton cycle (CBC) using nitrogen as working fluid and with a single shaft configuration has been one common power conversion system option for possible near-term demonstration of SFR. In this work, a new two shaft nitrogen CBC with parallel turbines was proposed to further simplify the design of the turbomachinery and reduce turbomachinery size without compromising the cycle efficiency. Furthermore, thermodynamic performance analysis and preliminary design of components were carried out in comparison with a reference single shaft nitrogen cycle. Mathematical models in Matlab were developed for steady state thermodynamic analysis of the cycles and for preliminary design of the heat exchangers, turbines and compressors. Studies were performed to investigate the impact of the recuperator minimum terminal temperature difference (TTD) on the overall cycle efficiency and recuperator size. The effect of turbomachinery efficiencies on the overall cycle efficiency was examined. The results showed that the cycle efficiency of the proposed

  15. Fishery intensification in small water bodies: a review for North America

    Moehl, John Frederic; Davies, William D

    1993-01-01

    .... Intensification is also achieved by enhancing water fertility through liming and fertilization. Case studies are presented representing contrasting climatic regions of North America while demonstrating similarities in management style...

  16. Distribution of Fe in waters and bottom sediments of a small estuarine catchment, Pumicestone Region, southeast Queensland, Australia

    Liaghati, Tania; Cox, Malcolm E.; Preda, Micaela

    2005-01-01

    Dissolved and extractable iron concentrations in surface water, groundwater and bottom sediments were determined for Halls Creek, a small subtropical tidally influenced creek. Dissolved iron concentrations were much higher in fresh surface waters and groundwater compared to the estuarine water. In bottom sediments, iron minerals were determined by X-ray diffraction (XRD); of these, hematite (up to 11%) has formed by precipitation from iron-rich water in the freshwater section of the catchment. Pyrite was only identified in the estuarine reach and demonstrated several morphologies [identified by scanning electron microscopy (SEM)] including loosely and closely packed framboids, and the euhedral form. The forms of pyrite found in bottom sediments indicate in situ production and recrystallisation. In surface waters, pyrite was detected in suspended sediment; due to oxygen concentrations well above 50 μmol/l, it was concluded that framboids do not form in the water column, but are within resuspended bottom sediments or eroded from creek banks. The persistence of framboids in suspended sediments, where oxygen levels are relatively high, could be due to their silica and clay-rich coatings, which prevent a rapid oxidation of the pyrite. In addition to identifying processes of formation and transport of pyrite, this study has environmental significance, as this mineral is a potential source of bioavailable forms of iron, which can be a major nutrient supporting algal growth

  17. Anthropogenic water sources and the effects on Sonoran Desert small mammal communities

    Aaron B. Switalski; Heather L. Bateman

    2017-01-01

    Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert...

  18. Water table tests of proposed heat transfer tunnels for small turbine vanes

    Meitner, P. L.

    1974-01-01

    Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.

  19. A New Small Drifter for Shallow Water Basins: Application to the Study of Surface Currents in the Muggia Bay (Italy

    Carmelo Nasello

    2016-01-01

    Full Text Available A new small drifter prototype for measuring current immediately below the free surface in a water basin is proposed in this paper. The drifter dimensions make it useful for shallow water applications. The drifter transmits its GPS location via GSM phone network. The drifter was used to study the trajectory of the surface current in the Muggia bay, the latter containing the industrial harbor of the city of Trieste (Italy. The analysis has been carried out under a wide variety of wind conditions. As regards the behavior of the drifter, the analysis has shown that it is well suited to detect the water current since its motion is marginally affected by the wind. The study has allowed detecting the main features of the surface circulation within the Muggia bay under different meteorological conditions. Also, the study has shown that the trajectory of the surface current within the bay is weakly affected by the Coriolis force.

  20. Economic assessments of small-scale drinking-water interventions in pursuit of MDG target 7C.

    Cameron, John; Jagals, Paul; Hunter, Paul R; Pedley, Steve; Pond, Katherine

    2011-12-01

    This paper uses an applied rural case study of a safer water intervention in South Africa to illustrate how three levels of economic assessment can be used to understand the impact of the intervention on people's well-being. It is set in the context of Millennium Development Goal 7 which sets a target (7C) for safe drinking-water provision and the challenges of reaching people in remote rural areas with relatively small-scale schemes. The assessment moves from cost efficiency to cost effectiveness to a full social cost-benefit analysis (SCBA) with an associated sensitivity test. In addition to demonstrating techniques of analysis, the paper brings out many of the challenges in understanding how safer drinking-water impacts on people's livelihoods. The SCBA shows the case study intervention is justified economically, though the sensitivity test suggests 'downside' vulnerability. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Working together with water. A living land builds for its future. Findings of the Deltacommissie 2008

    2008-09-01

    The Government of the Netherlands requested an independent Committee of State (the Delta Committee) to give its advice on flood protection and flood risk management in the Netherlands for the next century, while keeping the country an attractive place to live, work and invest. Large parts of the Netherlands lie below sea level and are even now experiencing the effects of climate change and sea level rise. The Netherlands delta is safe, but preserving this safety over the long term involves action now. The Netherlands is the delta (with a coastline of approximately 350 kilometers long) where major European rivers like the Rhine and the Meuse flow into the North Sea. Problems occur where the rivers meet the sea if the rivers have to discharge more water while the sea level rises - both effects of climate change. The excess water in the rivers cannot flow into the sea when the sea level rises, leading to a drastically increased risk of flooding in large areas of the Netherlands. These regions lie along the coast and the rivers and are protected by dunes and dikes. Most of the population (nearly 11 million) lives in the threatened area, which is also the fulcrum of the Dutch economy: Schiphol Airport, the Port of Rotterdam, Amsterdam, the capital, and The Hague, seat of government. Roughly 65% of GNP is produced in the lowest region of the Netherlands, in some places several meters below sea level. The Netherlands is also home to a rich natural environment and has a wealth of history and culture, none of which can be lost. The Netherlands is safe, but has to start work on the future now. The Delta Committee has made twelve recommendations to 'future proof' the Netherlands, even over the very long term, securing the country against flooding, assured of adequate fresh water, while remaining an attractive place to live. The basic issue is security, but the advice interfaces with life and work, agriculture, ecology, recreation and leisure, landscape, infrastructure and

  2. European Climate Change Programme. Working Group II. Impacts and Adaptation. Water Management. Sectoral Report

    2007-03-01

    Adaptation is a new policy area for the European climate change policy. The Impacts and Adaptation Workgroup has been set up as part of European Climate Change Programme (ECCP II). The main objective of the workgroup is to explore options to improve Europe's resilience to Climate Change Impacts, to encourage the integration of climate change adaptation into other policy areas at the European, national and regional level and to define the role of EU-wide policies complementing action by Member States. The aim of this initial programme of work is to identify good practice in the development of adaptation policy and foster learning from different sectoral experiences and explore a possible EU role in adaptation policies. The Commission has led a series of 10 sectoral meetings looking at adaptation issues for different sectors. One of these meetings looked at the impacts on the water cycle and water resources management and prediction of extreme events in particular. This report summarises the state of play in the Water Resources sector in relation to adaptation to climate change on the basis of the information gathered at the stakeholder meeting on 11 April, 2006

  3. Water and coffee: a systems approach to improving coffee harvesting work in Nicaragua.

    Silverstein, Barbara A; Bao, Stephen S; Russell, Steven; Stewart, Kate

    2012-12-01

    The aim of this study was to reduce the physical load on coffee-harvesting workers while maintaining productivity. Coffee is second to oil in commodity trading. Water is becoming scarce worldwide. The global virtual water footprint for one cup of coffee is 140 liters. Shade-grown coffee is one approach to reducing the water footprint. A participatory ergonomics approach was used during two Nicaraguan shade-grown coffee harvesting seasons to reduce the physical load on harvesters with the use of a newly designed bag instead of a basket strapped around the waist. Productivity in the mountainous, shade-grown coffee farms was maintained while physical load on the worker was improved somewhat.Among basket users, 84.2% reported pain in at least one body area compared with 78.9% of bag users (ns). Nonetheless, 74% of participants liked the bag "much better" than the basket. Workers identified ways the bag could be improved further with the use of local materials.These suggestions included (a) reducing the horizontal distance of the bag to reduce reach and (b) having waterproof material on the bag between the worker and the bag to reduce moisture and damage to the berries.There was no difference in productivity between using the bag and using the small basket. Workers are extending this participatory approach to how to get the harvested coffee cherries down the mountain other than carrying 40-kg bags on their backs. The ultimate goal is to make the coffee-harvesting bag design available to harvesters around the world.

  4. Micro and small enterprises, water and developing countries: a challenge for sustainability in Colombia

    Sanz Galindo, G.A.M.M.

    2015-01-01

    The relationship between environmental agencies and polluters is especially challenging in the context of micro and small sized enterprises (McSEs) in developing countries. The focus is mainly at end-of-pipe solutions that are usually unaffordable for McSEs. In order to engage them in achieving

  5. Combination of methanogenesis and denitrification in a UASB reactor for water reclamation applied to small agglomerations

    Davila, J.M.S.; Khassab, G.; Klapwijk, A.; Lier, van J.B.

    2009-01-01

    A two-step system combining an anaerobic/anoxic UASB reactor followed by a low energy consuming rotating biological contactor might be a sustainable option for wastewater treatment and reuse in small agglomerations. This article focuses on the UASB stage. The performance of a lab-scale UASB fed with

  6. Development of natural circulation small and medium sized boiling water reactor: HSBWR-600

    Miki, Minoru; Horiuchi, Tetsuo; Yoshimoto, Yuichiro; Sumida, Isao; Murase, Michio; Akita, Minoru; Niino, Tsuyoshi

    1988-01-01

    In nuclear power generation, the development of large reactors has been promoted as the main energy source in Japan. However, world economy entered low growth age, and the growth of electric power demand slowed down. Accordingly, attention has been paid to the medium and small reactors that can cope with whatever needs by serializing their types in addition to the nuclear power plants of medium output matching to electric power demand. In order to cope with these new needs, the economical efficiency of medium and small reactors must be as close as possible to that of large reactors, and as the countermeasures to the demerits due to small size, those must be made into the plants having simplified systems and the safety easily acceptable to public. Hitachi Ltd. plans to develop the natural circulation type medium and small BWRs of 600 NWe output class, HSBWR-600, on the basis of the nuclear power plant technology based on the rich results of design and operation of BWRs obtained so far, and to rank them as one of the BWR series. The target of their development design, the circumstance of their development, the core design and the thermo-hydraulic characteristics, the reactor pressure vessel and in-core structures, the safety design, system design, building layout and the evaluation are reported. (Kako, I.)

  7. Water Reform and the Resilience of Small Business People in Drought-Affected Agricultural Communities

    Schwarz, Imogen; Williams, Pam McRae

    2009-01-01

    The impact of drought on rural communities in Australia has been the subject of considerable research. Less well understood are the impacts of drought on rural small businesses and the mechanisms they use to adapt or cope through extended dry periods. In this study, strategies these businesses draw upon to manage this adversity are identified and…

  8. EVALUATION OF WATER RETENTION CAPABILITY IN WETLANDS AT SMALL FOREST CATCHMENT

    Daniel Liberacki

    2015-07-01

    Full Text Available The paper presents the results of researches carried out in the middle part of Pizza Zielonka forest complex. The aim was the evaluation of retention changes at wetlands and mid-forest ponds. The object of the study was the catchment of the Trojanka watercourse, considering from the origin to the cross-section of Zielonka Lake. The catchment is located in in the central part of the Wielkopolska region, approximatelly 20 km on the North-East of Poznań. The area of this forestall catchment is about 223 ha. In the paper an analysis of the results from three hydrological years was presented. The results of the years 1987 (wet year, 2003 (dry year and 2009 (medium year were analysed against meteorological conditions. Retention capacity in each wetlands, as well as the possibility of water retention in the Trojanka watercourse was calculated. The researches confirmed significant meteorological conditions influence the amount of retentioned water. The calculated capacity of retentioned water was 15 852 m3 considering the total area of wetland and swamp (8,58 ha and precipitation sum of 555 mm. 18% increase of water capacity was observed in wet year (1987 In this year the sum of precipitation was 100 mm higher than multiyear average sum. Meanwhile 62% decrease of water capacity was observed in dry year (2003, when the precipitation sum was 208 mm lower than multiyear average one.

  9. Wastage-resistant characteristics of 12Cr steel tube material. Small leak sodium-water reaction test

    Shimoyama, Kazuhito

    2004-03-01

    In the water leak accident of a steam generator designed for a sodium cooled reactor in the Feasibility Study, the localization of tube failure propagation by using an advanced water leak detector will be required from the viewpoints of the safety and economical efficiency of the plant. So far, the conventional knowledge and analytical tools have been used in the investigation and evaluation of water leak phenomenon; nevertheless, there was neither test data nor the study of quantitative evaluation on the corrosion behavior, so-called wastage-resistant characteristics, of 12Cr steel tube material in sodium-water reactions. Wastage tests for the 12Cr steel tube material were conducted in small water leaks by use of the Sodium-Water Reaction Test Rig (SWAT-1R), and the data of wastage rate were obtained in the parameter of water leak rate under the constant sodium temperature and distance between leak and target tubes. The test results lead to the following conclusions: (1) The wastage-resistibility of 12Cr steel is 1.6 times greater than that of 9Cr steel and is 2.7 times greater than that of 2.25Cr-1Mo steel. (2)The wastage-resistibility of 12Cr steel increases in smaller water leaks; especially in water leak rates of 1 g/sec or less, it is more excellent than that of SUS321 stainless steel used as Monju superheater tube material. (3) Based on the correlation of wastage rate for the 9Cr steel, the correlation for the 12Cr steel has been obtained to be used for the evaluation of tube failure propagation. As the correlation of wastage rate for the 12Cr steel is based on the correlation for the 9Cr steel, it gives enough conservatism in smaller water leaks. To serve in accurately evaluating the tube failure propagation in smaller water leaks, it is necessary to obtain new correlation of wastage rate for the 12Cr steel based on the data in the wide range of water leak rates. (author)

  10. The construction for remediation work of contaminated water at Fukushima Daiichi Nuclear Power Plant. Closure work of seawater piping trench and screen pump chamber

    Hibi, Yasuki; Yanai, Shuji; Nishikori, Kazumasa; Soma, Yu

    2016-01-01

    In the seawater piping trench of Fukushima Daiichi Nuclear Power Plant, highly contaminated water was stagnating, which flowed in from the reactor building and turbine building affected by the tsunami caused by the Tohoku Pacific Ocean Earthquake. Although the screen pump chamber, adjacent to the seawater piping trench, escaped from the inflow and retention of contaminated water, it was exposed to the leakage risk of contaminated water from the seawater piping trench. As measures against these conditions, the following emergency work was applied: (1) contaminated water replacement and removal operation based on the implantation of fillers into the seawater piping trench, and (2) closure operation of the screen pump chamber by implanting fillers into the screen pump chamber. In face of these operations, long-distance underwater flow special filler, high workable concrete, and underwater non-separation concrete were developed and used. The implantation of the long-distance underwater-flow special fillers into the seawater piping trench was successfully completed by filling to the tunnel top without gap and without water head difference, and by preventing the occurrence of movement or water path formation of the fillers in the initial curing process. Other fillers were also able to be implanted as planned. The leakage risk of contaminated water to the periphery could be suppressed to a large extent by this work. (A.O.)

  11. A study on the performance valuation of small size water storage electric boiler

    Mo, Joung Gun; Shin, Jae Ho; Bae, Chul Whan; Suh, Jeong Se; Chung, Han Shik; Jeong, Hyo Min

    2003-01-01

    We was made 150L a water storage electric boiler and obtained various performances of the storage, radiant and keeping by experimentation. The storage performance is that the heat were off about 50 minutes after heating start. Then the temperature of outlet was arrived the stead state at 91 deg. C and the storage performance was appeared 93.64%. In the radiant performance, the water temperature was decreased from 90 .deg. C to 44.8 deg. C after 960 minutes. Then the calorific value changed from 675kcal/h to 72kcal/h and the temperature decreased about 50%. The keeping performance showed mean temperature, 67.06 .deg. C according to progress 800 minutes and the maximum temperature drop were 0.2 .deg. C. By the results of the performance valuation, the water storage electric boiler was verified fitted quality on the test prescription of KERI (Korea Electrotechnology Research Institute.)

  12. New Module to Simulate Groundwater-Surface Water Interactions in Small-Scale Alluvial Aquifer System.

    Flores, L.

    2017-12-01

    Streamflow depletion can occur when groundwater pumping wells lower water table elevations adjacent to a nearby stream. Being able to accurately model the severity of this process is of critical importance in semi-arid regions where groundwater-surface water interactions affect water rights and the sustainability of water resource practices. The finite-difference flow model MODFLOW is currently the standard for estimating groundwater-surface water interactions in many regions in the western United States. However, certain limitations of the model persist when highly-resolved spatial scales are used to represent the stream-aquifer system, e.g. when the size of computational grid cells is much less than the river width. In this study, an external module is developed and linked with MODFLOW that (1) allows for multiple computational grid cells over the width of the river; (2) computes streamflow and stream stage along the length of the river using the one-dimensional (1D) steady (over a stress period) shallow water equations, which allows for more accurate stream stages when normal flow cannot be assumed or a rating curve is not available; and (3) incorporates a process for computing streamflow loss when an unsaturated zone develops under the streambed. Use of the module not only provides highly-resolved estimates of streamflow depletion, but also of streambed hydraulic conductivity. The new module is applied to the stream-aquifer alluvial system along the South Platte River south of Denver, Colorado, with results tested against field-measured groundwater levels, streamflow, and streamflow depletion.

  13. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.

    Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai

    2009-10-15

    Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.

  14. Radiation-induced decomposition of small amounts of trichloroethylene in drinking water

    Proksch, E.; Gehringer, P.; Szinovatz, W.; Eschweiler, H.

    1989-01-01

    Solutions of 10 ppm trichloroethylene in air-saturated drinking waters are decomposed by γ radiation with initial G-values, G 0 , around 3-5 molecules per 100 eV. At lower concentrations, the G 0 -values decrease with decreasing trichloroethylene concentration and with increasing amounts of inorganic (especially HCO 3 - ) and organic solutes. From the results, a semi-empirical formula is derived which allows an estimation of G 0 -values for the trichloroethylene decomposition in drinking waters of given composition. (author)

  15. When land breezes collide: Converging diurnal winds over small bodies of water

    Gille, ST; Llewellyn Smith, SG

    2014-01-01

    © 2013 Royal Meteorological Society. Over enclosed and semi-enclosed bodies of water, the land-breeze/sea-breeze circulation is expected to be modified by the presence of opposing coastlines. These effects are studied using satellite scatterometer surface wind observations from the QuikSCAT and ADEOS-2 tandem mission from April-October 2003. Winds are studied for six bodies of water: the Red Sea, the Gulf of California, the Mediterranean, the Adriatic Sea, the Black Sea and the Caspian Sea. T...

  16. COMPARISON OF MEMBRANE FILTER, MULTIPLE-FERMENTATION-TUBE, AND PRESENCE-ABSENCE TECHNIQUES FOR DETECTING TOTAL COLIFORMS IN SMALL COMMUNITY WATER SYSTEMS

    Methods for detecting total coliform bacteria in drinking water were compared using 1483 different drinking water samples from 15 small community water systems in Vermont and New Hampshire. The methods included the membrane filter (MF) technique, a ten tube fermentation tube tech...

  17. Simulation of efficiency impact of drainage water reuse: case of small-scale vegetable growers in North West Province, South Africa

    Speelman, S.; Haese, D' M.F.C.; Haese, D' L.

    2011-01-01

    This paper focuses on estimating the effect of drainage water reuse on the technical efficiency of small-scale vegetable growers in South Africa applying a data envelopment analysis (DEA). In the semi-arid North West Province of South Africa water scarcity and the soon to be implemented water

  18. The role of land use and soils in regulating water flow in small headwater catchments of the Andes

    Roa-GarcíA, M. C.; Brown, S.; Schreier, H.; Lavkulich, L. M.

    2011-05-01

    Land use changes can have a significant impact on the terrestrial component of the water cycle. This study provides a comparison of three small headwater catchments in the Andean mountains of Colombia with different composition of land use. Several methods were used to quantify differences in the hydrological behavior of these catchments such as flow duration curves, stormflow analysis, and the linear reservoir concept. They were combined with an analysis of the characteristics of soils that contribute to understanding the aggregate catchment hydrological behavior. Andisols, which are soils formed in volcanic areas and with a large capacity to hold water, amplify differences in land use and limit the potential impact of land use management activities (conservation or restoration) on the water regulation function of catchments. Of the three studied catchments, less variability of flows was observed from the catchment with a larger percentage of area in forest, and a slower decrease of flows in the dry season was observed for the catchment with a relatively higher percentage of area in wetlands. Evidence is provided for the infiltration trade-off hypothesis for tropical environments, which states that after forest removal, soil infiltration rates are smaller and the water losses through quick flow are larger than the gains by reduced evapotranspiration; this is compatible with the results of the application of the linear reservoir concept showing a faster release of water for the least forested catchment.

  19. Acoustic Leak Detection under Micro and Small Water Steam Leaks into Sodium for a Protection of the SFR Steam Generator

    Kim, Tae-Joon; Jeong, Ji-Young; Kim, Jong-Man; Kim, Byung-Ho; Hahn, Do-Hee; Yugay, Valeriy S.

    2008-01-01

    The results of an experimental study of water in a sodium leak noise spectrum formation related with a leak noise attenuation and absorption, and at various rates of water into a sodium leak, smaller than 1.0 g/s, are presented. We focused on studying the micro leak dynamics with an increasing rate of water into sodium owing to a self-development from 0.005 till 0.27 g/s. Conditions and ranges for the existence of bubbling and jetting modes in a water steam outflow into circulating sodium through an injector device, for simulating a defect in a wall of a heat-transmitting tube of a sodium water steam generator were determined. On the basis of the experimental leak noise data the simple dependency of an acoustic signal level from the rate of a micro and small leak at different frequency bands is presented to understand the principal analysis for the development of an acoustic leak detection methodology used in a K- 600 steam generator, with the operational experiences for the noise analysis and measurements in BN-600

  20. Mercury content in wetland rice soil and water of two different seasons at small-scale gold mine processing areas

    T. Sugianti

    2016-04-01

    Full Text Available This study was aimed to identify the impact of small-scale gold processing activities on mercury content in wetland rice soil and water during the rainy and first dry seasons in Central Lombok and West Lombok Districts. The method used for this study was survey method. Measurement of mercury levels in water samples was conducted at Agro Bogor Centre using SNI 6989.77: 2011 methods. The data was collected and processed in a simple statistic presented descriptively, in order to obtain information. Results of the study showed that mercury content soils in the rainy season exceeded the threshold of 0.005 ppm, while in the first dry season the mercury content in soil decreased, but it was still above the threshold value permitted. The contents of mercury in water samples in the rainy season and the first dry season were still at a safe point that was less than 0.05 ppm. The wetland rice soil and water had been polluted with mercury, although the mercury content in the water was still below the threshold, but the accumulation of mercury that could have been absorbed by the plants are of particular concerns. The decrease of mercury content in soil in dry season was due to lack of gold processing activities.

  1. Assessment of water quality based on diatom indices in a small ...

    2016-04-02

    Apr 2, 2016 ... single metric which is used to indicate the degree of impact. (Taylor et al. ... comparison of diatom-based water quality results, and are an additional reason for ...... establishing a framework for Community action in the field of.

  2. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured at m...

  3. Effect of Strip Mining on Water Quality in Small Streams in Eastern Kentucky, 1967-1975

    Kenneth L. Dyer; Willie R. Curtis

    1977-01-01

    Eight years of streamflow data are analyzed to show the effects of strip mining on chemical quality of water in six first-order streams in Breathitt County, Kentucky. All these watersheds were unmined in August, 1967, but five have since been strip mined. The accumulated data from this case history study indicate that strip mining causes large increases in the...

  4. Adoption patterns and constraints pertaining to small-scale water lifting technologies in Ghana

    Namara, R.E.; Hope, L.; Sarpong, E.; Fraiture, de C.M.S.; Owusu, D.

    2014-01-01

    Irrigation is a priority development agenda item in Ghana and other countries in sub-Saharan Africa. There is a genuine endeavor to increase public and large-scale private investment in the sector. The on-going smallholder-driven private irrigation development that is largely based on water lifting

  5. USEPA'S SMALL DRINKING WATER TREATMENT TECHNOLOGY DEMONSTRATIONS IN ECUADOR AND MEXICO

    In order to support and help in the struggle to improve the quality of drinking water in the United States and abroad, the United States Environmental Protection Agency (USEPA) conducts research studies for the demonstration and evaluation of alternative and innovative drinking w...

  6. A spreadsheet tool for the analysis of flows in small-scale water piping networks

    Adedeji, KB

    2017-07-01

    Full Text Available and the hybrid method to mention but a few, to solve a system of partly linear, and partly non-linear hydraulic equations. In this paper, the authors demonstrate the use of Excel solver to verify the Hardy Cross method for the analysis of flow in water piping...

  7. The protonation state of small carboxylic acids at the water surface from photoelectron spectroscopy

    Ottosson, N.; Wernersson, Erik; Söderström, J.; Pokapanich, W.; Kaufmann, S.; Svensson, S.; Persson, I.; Öhrwall, G.; Björneholm, O.

    2011-01-01

    Roč. 13, č. 26 (2011), s. 12261-12267 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z40550506 Keywords : water surface * carboxylic acids * photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011

  8. Small water courses for electric power generation; Mit wenig Wasser zum Fliessen bringen

    Ossberger, K.F.; Wirth, D. [Ossberger Turbinenfabrik GmbH und Co, Weissenburg (Germany)

    1997-12-31

    In principle, no one nowadays doubts the usefulness of small hydroelectric installations. Hydro power is a renewable energy source. Contrary to oil, gas or coal, the energy source is not consumed. Hydroelectric power generation neither gives rise to atmospheric pollution nor does it cause residual products; it is environment-friendly. Moreover, the energy used is a native one. These arguments no doubt advocate the broadest possible use of hydro power, especially also in the form of small hydroelectric installations. (orig.) [Deutsch] Grundsaetzlich gibt es heutzutage keinen Zweifel am Nutzen von Kleinkraftwerken. Die Wasserkraft ist eine regenerierbare Energiequelle. Im Gegensatz etwa zu Oel, Gas oder Kohle wird der Energietraeger Wasser beim Nutzungsvorgang nicht aufgebraucht. Die Stromerzeugung aus Wasserkraft belastet die Umwelt weder durch Luftschadstoffe noch Rueckstaende, sie ist umweltfreundlich. Und man nutzt damit einheimische Energie. Gewichtige Argumente zweifellos, die fuer eine moeglichst weitgehende Wasserkraftnutzung, gerade auch in Kleinkraftwerken, sprechen. (orig.)

  9. The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group

    Thunnissen, Erik; Kerr, Keith M; Herth, Felix J F

    2012-01-01

    Until recently, the division of pulmonary carcinomas into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) was adequate for therapy selection. Due to the emergence of new treatment options subtyping of NSCLC and predictive testing have become mandatory. A practical approach to...

  10. Challenge to the model of lake charr evolution: Shallow- and deep-water morphs exist within a small postglacial lake

    Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Baillie, Shauna M.; Hansen, Michael J.; Nate, Nancy A.; Yule, Daniel L.; Middel, Trevor; Bentzen, Paul; Krueger, Charles C.

    2016-01-01

    All examples of lake charr (Salvelinus namaycush) diversity occur within the largest, deepest lakes of North America (i.e. > 2000 km2). We report here Rush Lake (1.3 km2) as the first example of a small lake with two lake charr morphs (lean and huronicus). Morphology, diet, life history, and genetics were examined to demonstrate the existence of morphs and determine the potential influence of evolutionary processes that led to their formation or maintenance. Results showed that the huronicus morph, caught in deep-water, had a deeper body, smaller head and jaws, higher eye position, greater buoyancy, and deeper peduncle than the shallow-water lean morph. Huronicus grew slower to a smaller adult size, and had an older mean age than the lean morph. Genetic comparisons showed low genetic divergence between morphs, indicating incomplete reproductive isolation. Phenotypic plasticity and differences in habitat use between deep and shallow waters associated with variation in foraging opportunities seems to have been sufficient to maintain the two morphs, demonstrating their important roles in resource polymorphism. Rush Lake expands previous explanations for lake charr intraspecific diversity, from large to small lakes and from reproductive isolation to the presence of gene flow associated with strong ecological drivers.

  11. Outline for Compiling Precipitation, Runoff, and Ground Water Data from Small Watersheds

    Edward A. Johnson; Robert E. Dils

    1956-01-01

    This is a revision of Technical Note No. 34, first.issued in 1938 by C. R. Hursh. Reissues in 1939 and 1940 included numerous valuable suggestions for improvements from co-workers in the field of small drainage-area studies. Since the last issue in 1940, additions and deletions in both procedures and forms have been effected. In the present edition these changes have...

  12. Characterization of atmospheric deposition and runoff water on a small suburban catchment

    LAMPREA, Diana Katerine; RUBAN, Véronique

    2011-01-01

    A study of air quality and atmospheric deposition on a small urban catchment (Pin Sec catchment) has been carried out in Nantes, France, in 2007 and 2008 in the frame of a federative project aimed at understanding the origin of pollution in urban environments. Carbon monoxide, nitrogen monoxide, nitrogen dioxide, ozone, sulphur dioxide and particles less than 10 µm (PM 10) were monitored for air quality, whereas heavy metals, Polycyclic aromatic hydrocarbons (PAHs) and pesticides were analyze...

  13. Synthesis of underreported small-scale fisheries catch in Pacific island waters

    Zeller, D.; Harper, S.; Zylich, K.; Pauly, D.

    2015-03-01

    We synthesize fisheries catch reconstruction studies for 25 Pacific island countries, states and territories, which compare estimates of total domestic catches with officially reported catch data. We exclude data for the large-scale tuna fleets, which have largely foreign beneficial ownership, even when flying Pacific flags. However, we recognize the considerable financial contributions derived from foreign access or charter fees for Pacific host countries. The reconstructions for the 25 entities from 1950 to 2010 suggested that total domestic catches were 2.5 times the data reported to FAO. This discrepancy was largest in early periods (1950: 6.4 times), while for 2010, total catches were 1.7 times the reported data. There was a significant difference in trend between reported and reconstructed catches since 2000, with reconstructed catches declining strongly since their peak in 2000. Total catches increased from 110,000 t yr-1 in 1950 (of which 17,400 t were reported) to a peak of over 250,000 t yr-1 in 2000, before declining to around 200,000 t yr-1 by 2010. This decrease is driven by a declining artisanal (small-scale commercial) catch, which was not compensated for by increasing domestic industrial (large-scale commercial) catches. The artisanal fisheries appear to be declining from a peak of 97,000 t yr-1 in 1992 to less than 50,000 t yr-1 by 2010. However, total catches were dominated by subsistence (small-scale, non-commercial) fisheries, which accounted for 69 % of total catches, with the majority missing from the reported data. Artisanal catches accounted for 22 %, while truly domestic industrial fisheries accounted for only 6 % of total catches. The smallest component is the recreational (small-scale, non-commercial and largely for leisure) sector (2 %), which, although small in catch, is likely of economic importance in some areas due to its direct link to tourism income.

  14. Small, mobile, persistent: Trifluoroacetate in the water cycle - Overlooked sources, pathways, and consequences for drinking water supply.

    Scheurer, Marco; Nödler, Karsten; Freeling, Finnian; Janda, Joachim; Happel, Oliver; Riegel, Marcel; Müller, Uwe; Storck, Florian Rüdiger; Fleig, Michael; Lange, Frank Thomas; Brunsch, Andrea; Brauch, Heinz-Jürgen

    2017-12-01

    Elevated concentrations of trifluoroacetate (TFA) of more than 100 μg/L in a major German river led to the occurrence of more than 20 μg/L TFA in bank filtration based tap waters. Several spatially resolved monitoring programs were conducted and discharges from an industrial company were identified as the point source of TFA contamination. Treatment options for TFA removal were investigated at full-scale waterworks and in laboratory batch tests. Commonly applied techniques like ozonation or granulated activated carbon filtration are inappropriate for TFA removal, whereas TFA was partly removed by ion exchange and completely retained by reverse osmosis. Further investigations identified wastewater treatment plants (WWTPs) as additional TFA dischargers into the aquatic environment. TFA was neither removed by biological wastewater treatment, nor by a retention soil filter used for the treatment of combined sewer overflows. WWTP influents can even bear a TFA formation potential, when appropriate CF 3 -containing precursors are present. Biological degradation and ozonation batch experiments with chemicals of different classes (flurtamone, fluopyram, tembotrione, flufenacet, fluoxetine, sitagliptine and 4:2 fluorotelomer sulfonate) proved that there are yet overlooked sources and pathways of TFA, which need to be addressed in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  16. Surface fluxes and water balance of spatially varying vegetation within a small mountainous headwater catchment

    G. N. Flerchinger

    2010-06-01

    Full Text Available Precipitation variability and complex topography often create a mosaic of vegetation communities in mountainous headwater catchments, creating a challenge for measuring and interpreting energy and mass fluxes. Understanding the role of these communities in modulating energy, water and carbon fluxes is critical to quantifying the variability in energy, carbon, and water balances across landscapes. The focus of this paper was: (1 to demonstrate the utility of eddy covariance (EC systems in estimating the evapotranspiration component of the water balance of complex headwater mountain catchments; and (2 to compare and contrast the seasonal surface energy and carbon fluxes across a headwater catchment characterized by large variability in precipitation and vegetation cover. Eddy covariance systems were used to measure surface fluxes over sagebrush (Artemesia arbuscula and Artemesia tridentada vaseyana, aspen (Populus tremuloides and the understory of grasses and forbs beneath the aspen canopy. Peak leaf area index of the sagebrush, aspen, and aspen understory was 0.77, 1.35, and 1.20, respectively. The sagebrush and aspen canopies were subject to similar meteorological forces, while the understory of the aspen was sheltered from the wind. Missing periods of measured data were common and made it necessary to extrapolate measured fluxes to the missing periods using a combination of measured and simulated data. Estimated cumulative evapotranspiratation from the sagebrush, aspen trees, and aspen understory were 384 mm, 314 mm and 185 mm. A water balance of the catchment indicated that of the 699 mm of areal average precipitation, 421 mm was lost to evapotranspiration, and 254 mm of streamflow was measured from the catchment; water balance closure for the catchment was within 22 mm. Fluxes of latent heat and carbon for all sites were minimal through the winter. Growing season fluxes of latent heat and carbon were consistently higher

  17. Management of water hyacinth: Final meeting and international conference. Working paper submitted by the Regional Coordinator

    1981-01-01

    Full text: Final Meeting. This meeting will essentially make a terminal review of the project and register final records of work done on the various aspects, such as: - biology of the plant; - biological control; - biogas; - wastewater treatment; - papers and boards; - integrated systems, etc. We should have at the meeting a complete account of the work done in the project under each of the above headings. For example, under 'biogas' we should prepare one consolidated account of work carried out in all the three participating countries rather than individual country reports. Likewise on 'papers and boards', and the other items. To enable preparation of reports in this form there should naturally be prior consultations and contacts among the concerned investigators by correspondence and, if necessary, personal visits. These reports will then be edited and compiled by the Regional Coordinator in the form of a book or monograph on the Management of Water Hyacinth project as a whole. Contributors to chapters will be cited. International Conference. Independent of the consolidated reports, national coordinators may prepare papers for presentation at the proposed international conference. These papers could be prepared m the usual form and style for publication in international scientific journals. Although several papers could be prepared out of work done by us, we may consider the desirability of limiting the number, in order to give adequate opportunities for the other invited participants to the conference. There would be no bar on publication of these scientific papers after the conference in appropriate journals irrespective of whether a separate volume on proceedings of the conference is brought out or not. India would be happy to host the terminal review meeting to be followed by the conference. The likely period would be last week of January to first week in February, 1983. (author)

  18. Data on daily fluoride intake based on drinking water consumption prepared by household desalinators working by reverse osmosis process.

    Karbasdehi, Vahid Noroozi; Dobaradaran, Sina; Esmaili, Abdolhamid; Mirahmadi, Roghayeh; Ghasemi, Fatemeh Faraji; Keshtkar, Mozhgan

    2016-09-01

    In this data article, we evaluated the daily fluoride contents in 20 household desalinators working by reverse osmosis (RO) process in Bushehr, Iran. The concentration levels of fluoride in inlet and outlet waters were determined by the standard SPADNS method using a spectrophotometer (M501 Single Beam Scanning UV/VIS, UK). The fluoride content in outlet waters were compared with EPA and WHO guidelines for drinking water.

  19. Radioactivity in north European waters: report of Working Group 2 of CEC project MARINA

    Camplin, W.C.; Aarkrog, A.

    1989-01-01

    The primary objective of Working Group 2 of Project MARINA was to consider recent measurements of environmental radioactivity in north European waters and to use this, and other information, to report likely magnitude of doses to the critical group from marine pathways. The monitoring data were supplemented, where appropriate, with predictions from simple models. The major sources of radioactivity studied were as follows: (i) liquid wastes from nuclear fuel reprocessing plants, (Sellafield, Dounreay, Cap de la Hague); (ii) liquid wastes from nuclear power plants and other major nuclear industry sites, (including Belgium, Denmark, France, Finland, GDR, FDR, Netherlands, Sweden, UK, USSR); (iii) solid waste disposal in the deep north-east Atlantic; (iv) fallout from Chernobyl; and (v) naturally-occurring radionuclides. (author)

  20. Methadone disrupts performance on the working memory version of the Morris water task.

    Hepner, Ilana J; Homewood, Judi; Taylor, Alan J

    2002-05-01

    The aim of the study was to examine if administration of the mu-opiate agonist methadone hydrochloride resulted in deficits in performance on the Morris water tank task, a widely used test of spatial cognition. To this end, after initial training on the task, Long-Evans rats were administered saline or methadone at either 1.25, 2.5 or 5 mg/kg ip 15 min prior to testing. The performance of the highest-dose methadone group was inferior to that of the controls on the working memory version of the Morris task. There were also differences between the groups on the reference memory version of the task, but this result cannot be considered reliable. These data show that methadone has its most profound effect on cognition in rats when efficient performance on the task requires attention to and retention of new information, in this case, the relationship between platform location and the extramaze cues.

  1. Economic, Energetic, and Environmental Impact Evaluation of the Water Discharge Networks from Mining Works

    Andrei Cristian Rada

    2018-01-01

    Full Text Available Sustainable development represents an optimistic scenario for the evolution of contemporary civilization. The object of this paper is to define certain evaluation criteria regarding the performances of water discharge networks from mining works, and propose a method for aggregating the specific indicators for monetary costs, energetic costs, and environmental impact-related costs. The global pollution index (GPI represents a method for assessing environment health status or pollution levels. The GPI quantitatively expresses this status based on its index, which results from a ratio between the ideal value and the given value of certain quality indices that are considered specific for the analyzed environmental factors at certain moments. The proposed method in this paper tries to perform a synergistic aggregation of the balance sheet of harmfulness and classic balance sheets for matter and energy for an industrial process.

  2. Contingency power for small turboshaft engines using water injection into turbine cooling air

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  3. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  4. Small zeolite column tests for removal of cesium from high radioactive contaminated water in Fukushima Daiichi Nuclear Power Station

    Hijikata, Takatoshi; Uozumi, Koichi; Tukada, Takeshi; Koyama, Tadafumi; Ishikawa, Keiji; Ono, Shoichi; Suzuki, Shunichi; Denton, Mark; Raymont, John

    2011-01-01

    After the earthquake on March 11th 2011, a large amount (more than 0.12 million m 3 ) of highly radioactive contaminated water had pooled in Fukushima Daiichi nuclear power station. As an urgent issue, highly radioactive nuclides should be removed from this contaminated water to reduce radioactivity in the turbine buildings and nuclear reactor buildings. Removal of Cs from this contaminated water is a key issue, because 134 Cs and 137 Cs are highly radioactive γ-emitting nuclides. The zeolite column system was used for Cs and Sr removal from the radioactive water of Three-Mile Island Unit 2, and modified columns were then developed as a Cs removal method for high-level radioactive water in US national laboratories (WRSC, ORNL, PNNL, Hanford, etc.). In order to treat Fukushima's highly contaminated water with a similar system, it was necessary to understand the properties of zeolite to remove Cs from sea salt as well as the applicability of the column system to a high throughput of around 1200 m 3 /d. The kinetic characteristics of the column were another property to be understood before actual operation. Hence, a functional small-scale zeolite column system was installed in CRIEPI for conducting the experiments to understand decontamination behaviors. Each column has a 2- or 3-cm inner diameter and a 12-cm height, and 12 g of zeolite-type media was packed into the column. The column experiments were carried out with Kurion-zeolite, Herschelite, at different feed rates of simulated water with different concentrations of Cs and sea salt. As for the water with 4 ppm Cs and 0 ppm sea salt, only a 10% Cs concentration was observed in the effluent after 20,000 bed volumes were fed at a rate of 33 cm/min, which corresponds to the actual system. On the other hand, a 40% Cs concentration was observed in the effluent after only 50 bed volumes were passed for water with 2 ppm Cs and 3.4 wt.% sea salt at a feed rate of 34 cm/min. As the absorption of Cs is hampered by the

  5. Interstitial water studies on small core samples, Deep Sea Drilling Project, Leg 5

    Manheim, F. T.; Chan, K.M.; Sayles, F.L.

    1970-01-01

    Leg 5 samples fall into two categories with respect to interstitial water composition: 1) rapidly deposited terrigenous or appreciably terrigenous deposits, such as in Hole 35 (western Escanaba trough, off Cape Mendocino, California); and, 2) slowly deposited pelagic clays and biogenic muds and oozes. Interstitial waters in the former show modest to slight variations in chloride and sodium, but drastic changes in non-conservative ions such as magnesium and sulfate. The pelagic deposits show only relatively minor changes in both conservative and non-conservative pore fluid constituents. As was pointed out in earlier Leg Reports, it is believed that much of the variation in chloride in pore fluids within individual holes is attributable to the manipulation of samples on board ship and in the laboratory. On the other hand, the scatter in sodium is due in part to analytical error (on the order of 2 to 3 per cent, in terms of a standard deviation), and it probably accounts for most of the discrepancies in total anion and cation balance. All constituents reported here, with the exception of bulk water content, were analyzed on water samples which were sealed in plastic tubes aboard ship and were subsequently opened and divided into weighed aliquots in the laboratory. Analytical methods follow the atomic absorption, wet chemical and emission spectrochemical techniques briefly summarized in previous reports, e.g. Manheim et al., 1969, and Chan and Manheim, 1970. The authors acknowledge assistance from W. Sunda, D. Kerr, C. Lawson and H. Richards, and thank D. Spencer, P. Brewer and E. Degens for allowing the use of equipment and laboratory facilities.

  6. Development of hot water supply system for a small district heating reactor

    Murase, Toshihiko; Narabayashi, Tadashi; Shimazu, Yoichiro

    2007-01-01

    On the earth, there are many environmental problems. For example, rapid increase of world population causes the enormous consumption of fossil fuel and emission of CO 2 into the global air. Now, mankaind faced to deal with these serious problems. One solution for these problems is utilization of nuclear reactors. Currently, about 65% of thermal output of a nuclear reactor is thrown away to the sea or the atmosphere through a turbine condenser. When a hot-water pipeline from a nuclear plant will be constructed, the exhaust heat from nuclear reactor will able to be utilized. Therefore, authors began to study nuclear power plant system for district heating. This reactor is based on a PWR plant. Its thermal output is 10 MWth and its electrical output is 3.4 MW. The nuclear plant supply electricity and heat for 2000 to 3000 houses. The plant aim to supply all the energy for the adjacent pepole's life, for example, heat, electricity and hydrogen for fuel battery car. This total-energy supply system assumed to be built in Northern area such as Hokkaido in Japan. In order to develop an optimum thermal design method for the system, heat transport experiments and thermal-hydraulic calculations were carried out. Using a metal pipe covered with foam-polyurethane thermal insulator, feed-water temperature and return-water temperature was measured to evaluate heat loss. As the result, the heat loss from the hot-water temperature was very little. The thermal-hydraulic calculation method was verified and applied to actual pipeline size calculation. The result of heat loss calculation will be 0.2degC/5 km. considering these results, the best pipe specification was obtained. (author)

  7. Screening models for releases of radionuclides to atmosphere, surface water, and ground -- Work sheets

    1996-01-01

    Three levels of screening for the atmospheric transport pathways and two levels for surface water are presented. The ground has only one screening level. Level 1 is the simplest approach and incorporates a high degree of conservatism. The estimate of the effective dose for this level assumes a concentration based upon the radionuclide concentration at the point of emission to the environment, i.e., at the stack for atmospheric emissions, at the end of the effluent pipe for liquid effluent releases, and at a well because of the buried radioactive material. Levels 2 and 3 are presented for atmospheric releases, and Level 2 for surface water releases only and are more detailed and correspondingly less conservative. Level 2 screening accounts for dispersion in the atmosphere and in surface waters and combines all recognized pathways into the screening factor. For the atmospheric pathway, Level 3 screening includes more definitive pathways analysis. Should the user be found in compliance on the basis of Level 1 screening, no further calculations are required. If the user fails Level 1, the user proceeds to the next level and checks for compliance. This process is repeated until the user passes screening (is in compliance) or no further screening levels exist. If the user fails the final level, professional assistance should be obtained in environmental radiological assessment. Work sheets are designed to lead the user through screening in a step-by-step manner until compliance is demonstrated or it is determined that more sophisticated methods or expertise are needed. Flow diagrams are provided as a guide to identify key steps in the screening process

  8. A comparison of working in small-scale and large-scale nursing homes: A systematic review of quantitative and qualitative evidence.

    Vermeerbergen, Lander; Van Hootegem, Geert; Benders, Jos

    2017-02-01

    Ongoing shortages of care workers, together with an ageing population, make it of utmost importance to increase the quality of working life in nursing homes. Since the 1970s, normalised and small-scale nursing homes have been increasingly introduced to provide care in a family and homelike environment, potentially providing a richer work life for care workers as well as improved living conditions for residents. 'Normalised' refers to the opportunities given to residents to live in a manner as close as possible to the everyday life of persons not needing care. The study purpose is to provide a synthesis and overview of empirical research comparing the quality of working life - together with related work and health outcomes - of professional care workers in normalised small-scale nursing homes as compared to conventional large-scale ones. A systematic review of qualitative and quantitative studies. A systematic literature search (April 2015) was performed using the electronic databases Pubmed, Embase, PsycInfo, CINAHL and Web of Science. References and citations were tracked to identify additional, relevant studies. We identified 825 studies in the selected databases. After checking the inclusion and exclusion criteria, nine studies were selected for review. Two additional studies were selected after reference and citation tracking. Three studies were excluded after requesting more information on the research setting. The findings from the individual studies suggest that levels of job control and job demands (all but "time pressure") are higher in normalised small-scale homes than in conventional large-scale nursing homes. Additionally, some studies suggested that social support and work motivation are higher, while risks of burnout and mental strain are lower, in normalised small-scale nursing homes. Other studies found no differences or even opposing findings. The studies reviewed showed that these inconclusive findings can be attributed to care workers in some

  9. On the physicochemical states of heavy metals of very small amounts in river water

    Aoyama, Isao; Inoue, Yoriteru; Hashimoto, Noriaki.

    1976-01-01

    The physicochemical existence states of the heavy metals in river water were experimentally studied, with radioactive nuclides as tracers. The experimental samples taken from Kamo-river in the city of Kyoto were filtered through a membrane filter of 0.45 μm pore diameter. The radioactive nuclides of heavy metal tracers were added into the sample water, and pH was adjusted to the given value with hydrochloric solution on the acidic side and with sodium hydroxide solution on the alkaline side. After two days aging, the radioactivity ratios of the sediments on membrane filters to that of total passed samples were measured. The variation in the course of time of the concentrations of ionic tracers dialysed with cellulose tubes (24 angstrom pore diameter) was traced until the equilibrium condition was reached. The radioactivity of the supernatant of 20 ml of sample water added with 0.5 g of anion or cation exchange resin, and the concentrations of tracers in the upper layer of liquid in a centrifuge were measured. The existing conditions of elements such as zinc, cadmium, cobalt, strontium-yttrium were examined. In conclusion, the adsorption of all nuclides on the membrane filters increased with the increase of pH, but the significant difference was not recognized owing to the pore diameter (1.2 μm - 0.05 μm) excepting some experimental results. (Iwakiri, K.)

  10. Development of a water recirculating system for bullfrog production: technological innovation for small farmers

    Sílvia Conceição Reis Pereira Mello

    2016-02-01

    Full Text Available ABSTRACT Despite the technological progress in frog farming, issues related to the environment, biosafety, and the use of technologies that minimise environmental impacts are frequently neglected by farmers. With the goal of developing a low-cost technology for reuse and preservation of water quality, an anaerobic filtering system combined with an aerobic filtering system was implemented in the grow-out sector in the Frog Culture Research Unit at Fundação Instituto de Pesca do Estado do Rio de Janeiro (FIPERJ. The filtering system received the effluent from six pens of frogs that were populated with 362 frogs in different development phases. The efficiency of the filtering system was evaluated by an analysis of the water before and after passing through the filters. In addition to the standards of water quality, the animals' performance was also observed through monitoring rates of survival, weight gain and feed conversion ratio. The results showed the effectiveness of the filtering system by removing organic matter, on average 87%. The values of total ammonia and non-ionisable reached 1.04 and 0.004 mg/L, respectively. Also, frogs subjected to the system presented satisfactory rates of weight gain and a high survival rate (97%.

  11. Preliminary Study of Feasibility of Acoustic Detection of Small Sodium-Water Reactions in Lmfbr Steam Generators.

    Chamberlain, H. V.

    1970-06-01

    An evaluation of acoustic techniques for the detection of sound resulting from water leaks into liquid sodium was conducted. Acoustic spectra over the range of 100Hz to 80kHz were detected. A leak as small as 0.00008 lb/ sec was detected by the acoustic instrumentation. The indicated leak rate was the smallest that was injected into the liquid sodium, and is not to be interpreted as the smallest leak rate that might be detected by the acoustic method. Detection time was found to be essentially instantaneous.

  12. Multi-stage-flash desalination plants of relative small performance with integrated pressurized water reactors as a nuclear heat source

    Petersen, G.; Peltzer, M.

    1977-01-01

    In the Krupp-GKSS joint study MINIPLEX the requirements for seawater-desalination plants with a performance in the range of 10 000 to 80 000 m 3 distillate per day heated by a nuclear reactor are investigated. The reactor concept is similar to the Integrated Pressurized Water Reactor (IPWR) of the nuclear ship OTTO HAHN. The design study shows that IPWR systems have specific advantages up to 200 MWth compared to other reactor types at least being adapted for single- and dual-purpose desalination plants. The calculated costs of the desalinated water show that due to fuel cost advantages of reactors small and medium nuclear desalination plants are economically competetive with oil-fired plants since the steep rise of oil price in autumn 1973. (author)

  13. Small hydropower plant in Ruetenen - Drainage water utilization from the Alpine motor way tunnel 'Seelisberg' in Switzerland

    Odermatt, K.; Ettlin, M.

    2001-01-01

    This report for the Swiss Federal Office of Energy (SFOE) describes a project that uses the drainage water from the Seelisberg motor way tunnel in central Switzerland to drive a small turbine that uses the fall distance between the collection point near the tunnel portal and the lake of Lucerne, which lies 48 meters below, to generate more than 100 kW of electrical power. The operation of the hydraulic power station and the experience gained during initial operation are described and the somewhat erratic amounts of water - depending on rainfall, snow-melting etc. - are discussed. Figures are given on the building and operational costs, electricity production and the price of the electricity produced. The report is illustrated with technical drawings and photos of the installation

  14. Potential for Small Unmanned Aircraft Systems Applications for Identifying Groundwater-Surface Water Exchange in a Meandering River Reach

    Pai, H.; Malenda, H. F.; Briggs, M. A.; Singha, K.; González-Pinzón, R.; Gooseff, M. N.; Tyler, S. W.

    2017-12-01

    The exchange of groundwater and surface water (GW-SW), including dissolved constituents and energy, represents a critical yet challenging characterization problem for hydrogeologists and stream ecologists. Here we describe the use of a suite of high spatial resolution remote sensing techniques, collected using a small unmanned aircraft system (sUAS), to provide novel and complementary data to analyze GW-SW exchange. sUAS provided centimeter-scale resolution topography and water surface elevations, which are often drivers of exchange along the river corridor. Additionally, sUAS-based vegetation imagery, vegetation-top elevation, and normalized difference vegetation index mapping indicated GW-SW exchange patterns that are difficult to characterize from the land surface and may not be resolved from coarser satellite-based imagery. We combined these data with estimates of sediment hydraulic conductivity to provide a direct estimate of GW "shortcutting" through meander necks, which was corroborated by temperature data at the riverbed interface.

  15. Sea-water/groundwater interactions along a small catchment of the European Atlantic coast

    Einsiedl, Florian

    2012-01-01

    The geochemistry and isotopic composition of a karstic coastal aquifer in western Ireland has shed light on the effect of sea-water/groundwater interactions on the water quality of Ireland’s Atlantic coastal zone. The use of stable isotope data from the IAEA precipitation station in Valentia, located in SW Ireland has facilitated the characterization of groundwater recharge conditions in the western part of Ireland and suggests that groundwater is mostly replenished by the isotopically light winter precipitation. The dissolved SO 4 2- in the karstic groundwater that was collected during baseflow conditions with δ 34 S values between 4.6‰ and 18‰ may be composed of S stemming from three principal sources: SO 4 2- derived from precipitation which is composed of both sea-spray S (δ 34 S: 20‰) and an isotopically light anthropogenic source (δ 34 S: 1–5‰), SO 4 2- stemming from animal slurries (δ 34 S: ∼5‰), and intruding sea-water SO 4 2- (δ 34 S: 20.2‰). The isotopic composition of δ 18 O in dissolved groundwater SO 4 2- collected during baseflow conditions is interpreted as reflecting sea-water intrusion to the karstic coastal groundwater system. The highest δ 18 O values in dissolved groundwater SO 4 2- were in samples collected near the coast (4.8 ± 0.4‰) and the lowest (2 ± 0.5‰) were collected further inland. The δ 15 N and δ 18 O values of groundwater NO 3 - were between 3.4‰ and 11.4‰ and approximately 7.7‰, respectively, and reflect geochemical conditions in the aquifer that do not promote attenuation of NO 3 - through denitrification. As a result N loading to Kinvara Bay that is controlled by submarine groundwater discharge (SGD) was calculated as 5 tons/day on average compared to an estimated N-input that derives from precipitation of approximately 2.5 tons/a. SGD into the bay may result in near coastal sea-water quality changes. These results represent one of the first studies addressing the effect of groundwater

  16. Recovery or removal of uranium contained in small quantity in waste water by tannic-group adsorbent

    Komoto, Shigetoshi [Power Reactor and Nuclear Fuel Development Corp., Kamisaibara, Okayama (Japan). Ningyo Toge Works

    1991-12-01

    It was found that tannic compounds have a very strong affinity for uranium and thorium which are nuclear fuel materials, and the new uranium adsorbents composed mainly by tannic-group compounds were made. The solid-state refractory persimmon tannins in those compounds has the most superior capacity for uranium as high as 1.7 g of uranium on 1 g of the adsorbent. The tests adsorbing uranium on the adsorbent are carried out practically by using dam water of Ningyo-toge Works, PNC. Adsorption tests changed the pH or temperature of dam water, elution test, and adsorption-elution repeating test were performed, and it was found that uranium in dam water contained from ppb-level to ppm-level was recovered or removed with very excellent efficiency. (author).

  17. Water quality of small seasonal wetlands in the Piedmont ecoregion, South Carolina, USA: Effects of land use and hydrological connectivity.

    Yu, Xubiao; Hawley-Howard, Joanna; Pitt, Amber L; Wang, Jun-Jian; Baldwin, Robert F; Chow, Alex T

    2015-04-15

    Small, shallow, seasonal wetlands with short hydroperiod (2-4 months) play an important role in the entrapment of organic matter and nutrients and, due to their wide distribution, in determining the water quality of watersheds. In order to explain the temporal, spatial and compositional variation of water quality of seasonal wetlands, we collected water quality data from forty seasonal wetlands in the lower Blue Ridge and upper Piedmont ecoregions of South Carolina, USA during the wet season of February to April 2011. Results indicated that the surficial hydrological connectivity and surrounding land-use were two key factors controlling variation in dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) in these seasonal wetlands. In the sites without obvious land use changes (average developed area land use changes. The connected wetlands in more urbanized areas (average developed area = 12.3%) showed higher concentrations of dissolved organic matter (DOM) (DOC: 11.76 ± 6.09 mg L(-1), TDN: 0.74 ± 0.22 mg L(-1), mean ± standard error) compared to those in isolated wetlands (DOC: 7.20 ± 0.62 mg L(-1), TDN: 0.20 ± 0.08 mg L(-1)). The optical parameters derived from UV and fluorescence also confirmed significant portions of protein-like fractions likely originating from land use changes such as wastewater treatment and livestock pastures. The average of C/N molar ratios of all the wetlands decreased from 77.82 ± 6.72 (mean ± standard error) in February to 15.14 ± 1.58 in April, indicating that the decomposition of organic matter increased with the temperature. Results of this study demonstrate that the water quality of small, seasonal wetlands has a direct and close association with the surrounding environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Repeated sorption of water in SBA-15 investigated by means of in situ small-angle x-ray scattering

    Erko, M; Paris, O; Wallacher, D; Findenegg, G H

    2012-01-01

    The effect of repeated cycles of water adsorption/desorption on the structural stability of ordered mesoporous silica SBA-15 is studied by small-angle x-ray scattering (SAXS). In situ sorption measurements are conducted using a custom-built sorption apparatus in connection with a laboratory SAXS setup. Two striking irreversible changes are observed in the sorption isotherms as derived from the integrated SAXS intensity. First, the capillary condensation pressure shifts progressively to lower relative pressure values with increasing number of sorption cycles. This effect is attributed to chemisorption of water at the silica walls, resulting in a change of the fluid-wall interaction. Second, the sorption cycles do not close completely at vanishing vapour pressure, suggesting that progressively more water remains trapped within the porous material after each cycle. This effect is interpreted to be the result of an irreversible collapse of parts of mesopores, originating from pore wall deformation due to the large Laplace pressure of water acting on the pore walls at capillary condensation and capillary evaporation. (paper)

  19. Phosphorus and nitrogen removal in waste water at small factory. Shokibo jigyosho ni okeru haisuichu no rin chisso shori gijutsu

    Hirai, M. (National Institute for Resources and Environment, Tsukuba (Japan))

    1994-05-25

    For the purpose of preventing closed waters from eutrophicating, COD regulations and nitrogen and phosphorus waste water regulations are executed in Japan, but practically applicable techniques for this purpose are a few. Concerning technology for removing nitrogen and phosphorus in waste water, this paper describes the actual situation of two industries, electroplating and alumite processing, and applicable techniques. Among various nitrogen removal methods, the biological treatment method has been used practically in many cases and is applicable to practical use. While there are many kinds of physical and chemical treatment methods, applicable methods are limited. In removing nitrogen, the coagulating sedimentation method with Ca salt, Al salt and Fe salt is effective generally for orthophosphate. At electroplating factories, various forms of phosphorus and nitrogen compounds are used as plating chemicals. In treating waste water containing phosphorus, the coagulating sedimentation method is used most frequently. The oxidation + coagulating sedimentation method, the autolysis + oxidation coagulation method, and the evaporation method are effected, though the examples of their implementation are small in number. 15 tabs.

  20. Models for estimation of the presence of non-regulated disinfection by-products in small drinking water systems.

    Guilherme, Stéphanie; Rodriguez, Manuel J

    2017-10-23

    Among all the organic disinfection by-products (DBPs), only trihalomethanes (THMs) and haloacetic acids (HAAs) are regulated in drinking water, while most DBPs are not. Very little information exists on the occurrence of non-regulated DBPs, particularly in small water systems (SWS). Paradoxically, SWS are more vulnerable to DBPs because of a low capacity to implement adequate treatment technologies to remove DBP precursors. Since DBP analyses are expensive, usually SWS have difficulties to implement a rigorous characterization of these contaminants. The purpose of this study was to estimate non-regulated DBP levels in SWS from easy measurements of relevant parameters regularly monitored. Since no information on non-regulated DBPs in SWS was available, a sampling program was carried out in 25 SWS in two provinces of Canada. Five DBP families were investigated: THMs, HAAs, haloacetonitriles (HANs), halonitromethanes (HNMs), and haloketones (HKs). Multivariate linear mixed regression models were developed to estimate HAN, HK, and HNM levels from water quality characteristics in the water treatment plant, concentrations of regulated DBPs, and residual disinfectant levels. The models obtained have a good explanatory capacity since R 2 varies from 0.77 to 0.91 according to compounds and conditions for application (season and type of treatment). Model validation with an independent database suggested their ability for generalization in similar SWS in North America.

  1. Investigating the significance of zero-point motion in small molecular clusters of sulphuric acid and water

    Stinson, Jake L.; Ford, Ian J.; Kathmann, Shawn M.

    2014-01-01

    The nucleation of particles from trace gases in the atmosphere is an important source of cloud condensation nuclei, and these are vital for the formation of clouds in view of the high supersaturations required for homogeneous water droplet nucleation. The methods of quantum chemistry have increasingly been employed to model nucleation due to their high accuracy and efficiency in calculating configurational energies; and nucleation rates can be obtained from the associated free energies of particle formation. However, even in such advanced approaches, it is typically assumed that the nuclei have a classical nature, which is questionable for some systems. The importance of zero-point motion (also known as quantum nuclear dynamics) in modelling small clusters of sulphuric acid and water is tested here using the path integral molecular dynamics method at the density functional level of theory. The general effect of zero-point motion is to distort the mean structure slightly, and to promote the extent of proton transfer with respect to classical behaviour. In a particular configuration of one sulphuric acid molecule with three waters, the range of positions explored by a proton between a sulphuric acid and a water molecule at 300 K (a broad range in contrast to the confinement suggested by geometry optimisation at 0 K) is clearly affected by the inclusion of zero point motion, and similar effects are observed for other configurations

  2. The impact of work experience of small and medium-sized enterprises owners or managers on their competitive intelligence awareness and practices

    Rene Pellissier

    2013-06-01

    Objectives: The objective of this research was to establish the influence of owners’ and managers' working experience of CI practice and awareness in the small and medium-sized enterprises (SMEs environment. Method: This research was quantitative in nature and a questionnaire was used to collect data from SMEs owners and managers in The City of Tshwane Metropolitan Municipality. Results: This research indicates that SMEs in the study are aware of CI through education and training. Moreover, the study reveals that the working experience of owners and managers has a great influence on awareness and practice of CI and one should implement training programmes in this domain to assist with building competitive advantage. Conclusion: Small and medium-sized enterprises owners or managers’ years of working experience has a greater influence on awareness and practice of CI. Put differently, years of working experience is a great predictor of CI awareness and practice.

  3. Time evolution simulation of heat removal in a small water tank by natural convection

    Freitas, Carlos Alberto de, E-mail: carlos.freitas1950@hotmail.com [Instituto Federal do Rio de Janeiro (IFRJ), Nilopolis, RJ (Brazil); Jachic, Joao; Moreira, Maria de Lourdes, E-mail: jjachic@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled. (author)

  4. Time evolution simulation of heat removal in a small water tank by natural convection

    Freitas, Carlos Alberto de; Jachic, Joao; Moreira, Maria de Lourdes

    2013-01-01

    One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled. (author)

  5. IRIS - Generation IV Advanced Light Water Reactor for Countries with Small and Medium Electricity Grids

    Carelli, M. D.

    2002-01-01

    An international consortium of industry, laboratory, university and utility establishments, led by Westinghouse, is developing a Generation IV Reactor, International Reactor Innovative and Secure (IRIS). IRIS is a modular, integral, light water cooled, low-to-medium power (100-350 MWe) reactor which addresses the requirements defined by the US DOE for Generation IV reactors, i.e., fuel cycle sustainability, enhanced reliability and safety, and improved economics. It features innovative, advanced engineering, but it does not require new technology development since it relies on the proven technology of light water reactors. This paper presents the current reference IRIS design, which features a 1000 MWt thermal core with proven 5%-enriched uranium oxide fuel and four-year long straight burn fuel cycle, integral reactor vessel housing helical tube steam generators and immersed spool pumps. Other major contributors to the high level of safety and economic attractiveness are the safety by design and optimized maintenance approaches, which allow elimination of some classes of accidents, lower capital cost, long operating cycle, and high capacity factors. The path forward for possible future extension to a eight-year cycle will be also discussed. IRIS has a large potential worldwide market because of its proven technology, modularity, low financing, compatibility with existing grids and very limited infrastructure requirements. It is especially appealing to developing countries because of ease of operation and because its medium power is more adaptable to smaller grids. (author)

  6. Working in small-scale, homelike dementia care: effects on staff burnout symptoms and job characteristics. A quasi-experimental, longitudinal study.

    Zwakhalen, Sandra Mg; Hamers, Jan Ph; van Rossum, Erik; Ambergen, Ton; Kempen, Gertrudis Ijm; Verbeek, Hilde

    2018-05-01

    This paper reports on a quasi-experimental, longitudinal study on the effects of working in a new type of dementia care facility (i.e. small-scale living facilities) on staff burnout symptoms and job characteristics (job autonomy, social support, physical demands and workload). It is hypothesised that nursing staff working in small-scale facilities experience fewer burnout symptoms, more autonomy and social support, and fewer symptoms of physical demands and workload compared with staff in regular wards. Two types of long-term institutional nursing care settings were included: 28 houses in small-scale living facilities and 21 regular psychogeriatric wards in nursing homes. At baseline and at follow-ups after 6 and 12 months nursing staff were assessed by means of self-report questionnaires. In total, 305 nursing staff members were included in the study, 114 working in small-scale living facilities (intervention group) and 191 in regular wards (control group). No overall effects on burnout symptoms were detected. Significantly fewer physical demands and lower workload were experienced by staff working in small-scale living facilities compared with staff in regular wards. They also experienced more job autonomy. No significant effect was found for overall social support in the total group. This study suggests positive effects of the work environment on several work characteristics. Organisational climate differs in the two conditions, which might account for our results. This may influence nursing staff well-being and has important implications for nursing home managers and policy makers. Future studies should enhance our understanding of the influence of job characteristics on outcomes.

  7. Creating Small Learning Communities: Lessons from the Project on High-Performing Learning Communities about "What Works" in Creating Productive, Developmentally Enhancing, Learning Contexts

    Felner, Robert D.; Seitsinger, Anne M.; Brand, Stephen; Burns, Amy; Bolton, Natalie

    2007-01-01

    Personalizing the school environment is a central goal of efforts to transform America's schools. Three decades of work by the Project on High Performance Learning Communities are considered that demonstrate the potential impact and importance of the creation of "small learning environments" on student motivation, adjustment, and well-being.…

  8. Learning Styles Inequity for Small to Micro Firms (SMFs): Social Exclusion through Work-Based E-Learning Practice in Europe

    Hardaker, Glenn; Dockery, Richard; Sabki, Aishah

    2007-01-01

    Purpose: The elearn2work study of learning styles in the context of small to micro firms' (SMFs) and their perceived satisfaction has identified some important finding specific to e-learning content design, delivery and international standards development. Design/methodology/approach: The method of research adopts a deductive rather than an…

  9. High sensitive determination of zinc with novel water-soluble small molecular fluorescent sensor

    Weng Ying; Chen Zilin; Wang Fang; Xue Lin; Jiang Hua

    2009-01-01

    A high sensitive method of quantitative analysis for the determination of zinc in the nutrition supplements has been developed by using a novel water-soluble fluorescent sensor HQ3: (8-pyridylmethyloxy-2-methyl-quinoline). Under the optimized condition of 67 mM phosphate buffer, pH 7.4, and 5% (v/v) DMSO, the zinc concentration showed good linear relationship with fluorescence intensity in the range of 7.5 x 10 -8 to 2.5 x 10 -5 M with the detection limit of 1.5 x 10 -8 M. HQ3 exhibited high selectivity to zinc comparing with other metal ions except for cadmium. The developed analytical method was successfully used for determining the content of zinc in a real sample of zinc gluconate solution of Sanchine.

  10. Radium removal for a small community water-supply system. Research report, 1 October 1985-30 September 1987

    Mangelson, K.A.

    1988-07-01

    In 1984, a radium-removal treatment plant was constructed for the small community of Redhill Forest located in the central mountains of Colorado. The treatment plant consists of a process for removing iron and manganese ahead of an ion-exchange process for the removal of radium. The raw water comes from deep wells and has naturally occurring radium and iron concentrations of about 30-40 pCi/L and 7-10 mg/L, respectively. Before the raw water enters the main treatment plant, the raw water is aerated to remove radon gas and carbon dioxide. The unique features of the Redhill Forest Treatment Plant are related to the ways in which the radium removed from the raw water is further treated and eventually disposed of as treatment plant waste. A separate system removes only radium from the backwash/regeneration water of the ion exchange process and the radium is permanently complexed on a Radium Selective Complexer (RSC) resin made by Dow Chemical. The RSC resin containing radium is replaced with virgin resin as needed and the resin waste transported to a permanent final disposal site in Beatty, NV. This report presents a detailed description of the Redhill Forest treatment system and the results of in-depth monitoring of the processes and other factors relating to the overall operation of the radium-removal system. Included are descriptions of modifications made in the plant operation to improve the overall system operation and of the procedures for final disposal of the RSC resin-containing radium

  11. Remediation of sediment and water contaminated by copper in small-scaled constructed wetlands: effect of bioaugmentation and phytoextraction.

    Huguenot, D; Bois, P; Cornu, J Y; Jezequel, K; Lollier, M; Lebeau, T

    2015-01-01

    The use of plants and microorganisms to mitigate sediment contaminated by copper was studied in microcosms that mimic the functioning of a stormwater basin (SWB) connected to vineyard watershed. The impact of phytoremediation and bioaugmentation with siderophore-producing bacteria on the fate of Cu was studied in two contrasted (batch vs. semi-continuous) hydraulic regimes. The fate of copper was characterised following its discharge at the outlet of the microcosms, its pore water concentration in the sediment, the assessment of its bioaccessible fraction in the rhizosphere and the measurement of its content in plant tissues. Physico-chemical (pH, redox potential) and biological parameters (total heterotrophic bacteria) were also monitored. As expected, the results showed a clear impact of the hydraulic regime on the redox potential and thus on the pore water concentration of Cu. Copper in pore water was also dependent on the frequency of Cu-polluted water discharges. Repeated bioaugmentation increased the total heterotrophic microflora as well as the Cu bioaccessibility in the rhizosphere and increased the amount of Cu extracted by Phragmites australis by a factor of ~2. Sugar beet pulp, used as a filter to avoid copper flushing, retained 20% of outcoming Cu and led to an overall retention of Cu higher than 94% when arranged at the outlet of microcosms. Bioaugmentation clearly improved the phytoextraction rate of Cu in a small-scaled SWB designed to mimic the functioning of a full-size SWB connected to vineyard watershed. Highlights: Cu phytoextraction in constructed wetlands much depends on the hydraulic regime and on the frequency of Cu-polluted water discharges. Cu phytoextraction increases with time and plant density. Cu bioaccessibility can be increased by bioaugmentation with siderophore-producing bacteria.

  12. Work plan for ground water elevation data recorder/monitor well installation at Gunnison, Colorado. Revision 1

    1994-08-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between ground water and surface water in the area. Data collection objectives (DCO) identify reasons for collecting data. The following are DCOs for the Gunnison ground water elevation data recorder/monitor well installation project: long-term continuous ground water level data and periodic ground water samples will be collected to better understand the relationship between surface and ground water at the site; water level and water quality data will eventually be used in future ground water modeling to more firmly establish numerical model boundary conditions in the vicinity of the Gunnison processing site; and modeling results will be used to demonstrate and document the potential remedial alternative of natural flushing

  13. The effect of working capital management on profitability: The case of Small Medium and Micro Enterprises in South Africa

    Samuel Tabot ENOW; Pradeep BRIJLAL

    2014-01-01

    Working capital is vital in any business, especially in SMMEs, given that most of their assets are in the form of current assets. Management of working capital is vital in order to improve profitability of the business. This study investigated the effect working capital management on profitability, using fifteen South African SMMEs, listed on the Alt-X on the JSE, from 2008-2012, using a multiple regression analysis. The results show a positive relationship between number of days account rece...

  14. Interactions between small cetaceans and the purse-seine fishery in western Portuguese waters

    Laura Wise

    2007-06-01

    Full Text Available Marine mammal interactions with Portuguese purse-seine fisheries operating in four different ports (Figueira da Foz, Sesimbra, Setúbal, Sines were studied (July-October 2003. Observers accompanied commercial fishing vessels and monitored 48 fishing trips. An interview survey of skippers was also carried out (n = 36. Three species of marine mammals were observed in 31 sightings during the commercials trips but only the species Delphinus delphis and the category Delphinidae were observed to interact with fishing activities. Small cetaceans were observed to sink, gather or disperse school fishes and damage gear. Mean CPUE and fishing effort values did not change significantly in the presence of dolphins (H = 0.06 and H = 0, both p>0.05. Results from Figueira da Foz indicate that cetaceans are attracted to fishing grounds with a high abundance of their prey-species. Fishermen reported three by-catch events off Figueira da Foz. Compared with other fisheries, purse-seine fishing does not seem to be among the most damaging to marine mammals.

  15. Long working hours, job satisfaction, and depressive symptoms: a community-based cross-sectional study among Japanese employees in small- and medium-scale businesses

    Nakata, Akinori

    2017-01-01

    Although long working hours have been suspected to be a risk factor for depressive symptoms (DS), it is not well understood the conditions under which long working hours are associated with it. This study investigated the moderating effect of job satisfaction on the relationship between working hours and DS. A total of 2,375 full-time non-shift day workers (73% men), aged 18?79 (mean 45) years, in 296 small- and medium-scale businesses were surveyed using a self-administered questionnaire eva...

  16. Wind variability and sheltering effects on measurements and modeling of air-water exchange for a small lake

    Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz

    2014-05-01

    Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.

  17. Decision-Making Quandaries that Superintendents Face in Their Work in Small School Districts Building Democratic Communities

    Touchton, Debra; Acker-Hocevar, Michele

    2011-01-01

    Superintendents of small school districts describe how they give voice, involve and listen to others, and solicit various publics to build democratic communities. Superintendents make sense of leadership through their constructed role, leadership orientation, and district size. Findings suggest the following when superintendents involve, listen,…

  18. Occupational activities associated with a reported history of malaria among women working in small-scale agriculture in South Africa

    S. Naidoo (Steven); L. London (Leslie); A. Burdorf (Alex); S. Naidoo (Steven); H. Kromhout (Hans)

    2011-01-01

    textabstractMalaria-endemic agricultural communities are at risk for this disease because of crop and agricultural activities. A cross-sectional survey among women in small-scale agriculture on irrigated and dryland areas in Makhatini Flats, KwaZulu-Natal South Africa explored associations with

  19. Graduate Transition into Work: The Bridging Role of Graduate Placement Programmes in the Small- and Medium-Sized Enterprise Workplace

    Gallagher, Pádraig

    2015-01-01

    This research looks at the role of graduate placement programmes in bridging the gap between higher education and the small- and medium-sized enterprise (SME) sector. The research design and methodology used in this study was exploratory, in-depth and qualitative in nature. The research took the form of a multiple case study and focused on seven…

  20. Properties of surfactant films in water-in-CO2 microemulsions obtained by small-angle neutron scattering.

    Yan, Ci; Sagisaka, Masanobu; James, Craig; Rogers, Sarah; Alexander, Shirin; Eastoe, Julian

    2014-12-01

    The formation, stability and structural properties of normal liquid phase microemulsions, stabilized by hydrocarbon surfactants, comprising water and hydrocarbon oils can be interpreted in terms of the film bending rigidity (energy) model. Here, this model is tested for unusual water-in-CO2 (w/c) microemulsions, formed at high pressure with supercritical CO2 (sc-CO2) as a solvent and fluorinated surfactants as stabilizers. Hence, it is possible to explore the generality of this model for other types of microemulsions. High Pressure Small-Angle Neutron Scattering (HP-SANS) has been used to study w/c microemulsions, using contrast variation to highlight scattering from the stabilizing fluorinated surfactant films: these data show clear evidence for spherical core-shell structures for the microemulsion droplets. The results extend understanding of w/c microemulsions since previous SANS studies are based only on scattering from water core droplets. Here, detailed structural parameters for the surfactant films, such as thickness and film bending energy, have been extracted from the core-shell SANS profiles revealed by controlled contrast variation. Furthermore, at reduced CO2 densities (∼0.7gcm(-3)), elongated cylindrical droplet structures have been observed, which are uncommon for CO2 microemulsions/emulsions. The implications of the presence of cylindrical micelles and droplets for applications of CO2, and viscosity enhancements are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.