WorldWideScience

Sample records for small vertical source

  1. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Vertical Wire Feeding with Axisymmetric Multi-Laser Source

    Directory of Open Access Journals (Sweden)

    Jie Fu

    2017-02-01

    Full Text Available Vertical wire feeding with an axisymmetric multi-laser source (feeding the wire vertically into the molten pool has exhibited great advantages over LAM (laser additive manufacturing with paraxial wire feeding, which has an anisotropic forming problem in different scanning directions. This paper investigates the forming ability of vertical wire feeding with an axisymmetric multi-laser source, and the microstructure and mechanical properties of the fabricated components. It has been found that vertical wire feeding with an axisymmetric multi-laser source has a strong forming ability with no anisotropic forming problem when fabricating the complex parts in a three-axis machine tool. Most of the grains in the samples are equiaxed grains, and a small amount of short columnar grains exist which are parallel to each other. The microstructure of the fabricated samples exhibits a fine basket-weave structure and martensite due to the fast cooling rate which was caused by the small size of the molten pool and the additional heat dissipation from the feeding wire. The static tensile test shows that the average ultimate tensile strength is 1140 MPa in the scanning direction and 1115 MPa in the building direction, and the average elongation is about 6% in both directions.

  2. Numerical Analysis of a Small-Size Vertical-Axis Wind Turbine Performance and Averaged Flow Parameters Around the Rotor

    Directory of Open Access Journals (Sweden)

    Rogowski Krzysztof

    2017-06-01

    Full Text Available Small-scale vertical-axis wind turbines can be used as a source of electricity in rural and urban environments. According to the authors’ knowledge, there are no validated simplified aerodynamic models of these wind turbines, therefore the use of more advanced techniques, such as for example the computational methods for fluid dynamics is justified. The paper contains performance analysis of the small-scale vertical-axis wind turbine with a large solidity. The averaged velocity field and the averaged static pressure distribution around the rotor have been also analyzed. All numerical results presented in this paper are obtained using the SST k-ω turbulence model. Computed power coeffcients are in good agreement with the experimental results. A small change in the tip speed ratio significantly affects the velocity field. Obtained velocity fields can be further used as a base for simplified aerodynamic methods.

  3. New Vertical Marketing of Producers and Small Traders

    Directory of Open Access Journals (Sweden)

    Zdenko Segetlija

    2009-12-01

    Full Text Available In relations of producers and small traders, diferent forms of vertical marketing develop a long time. However, under the contemporary conditions of retail global companies, the question is frst about conception of products categories called category management – CM. Namely, the prerequisites of business success of contemporary retail economic subjects in new highly competitive environment hide in the implementation of new managing conceptions and new technologies. This paper first gives a short analysis of some former theoretical cooperation viewpoints of producers and traders in marketing channels; later, it analyzes the basic assumptions of new vertical marketing on which rests the conception of category management. Besides, the paper states the application possibilities of the stated conception from the trader’s point of view. The basic hypothesis from which the authors start is the indispensability of vertical marketing application in the relations of contemporary retail economic subjects and producers in all market economies and the implementation of category management in its structure.

  4. Small-Scale vertical axis wind turbine design

    OpenAIRE

    Castillo Tudela, Javier

    2011-01-01

    The thesis focuses on the design of a small vertical axis wind turbine rotor with solid wood as a construction material. The aerodynamic analysis is performed implementing a momentum based model on a mathematical computer program. A three bladed wind turbine is proposed as candidate for further prototype testing after evaluating the effect of several parameters in turbine efficiency, torque and acceleration. The results obtained indicate that wood is a suitable material for rotor cons...

  5. 75 FR 27583 - Job Corps: Final Finding of No Significant Impact (FONSI) for Small Vertical Wind Turbine and...

    Science.gov (United States)

    2010-05-17

    ... CFR 11.11(d), gives final notice of the proposed construction of a small vertical axis wind turbine... (FONSI) for Small Vertical Wind Turbine and Solar Installation at the Paul Simon Job Corps Center Located... impact. This notice serves as the Final Finding of No Significant Impact (FONSI) for Small Vertical Wind...

  6. Small Vertical Axis Wind Turbines: aerodynamics and starting behavior

    Directory of Open Access Journals (Sweden)

    Horia DUMITRESCU

    2013-12-01

    Full Text Available In urban areas the wind is very turbulent and unstable with fast changes in direction andvelocity. In these environments, the use of small vertical axis wind turbines (VAWT becomesincreasingly attractive due to several advantages over horizontal axis wind turbines (HAWT.However, such designs have received much less attention than the more common propeller-typedesigns and the understanding of same aspects of their operation remains, to this day, incomplete.This is particularly true of their starting characteristics. Indeed, same authors heuristically maintainthat they cannot start without external assistance. This paper reviews the cause of the inability of thelow solidity fixed pitch vertical axis wind turbines to self-start, and investigates the way ofovercoming this draw back.

  7. Flows and Stratification of an Enclosure Containing Both Localised and Vertically Distributed Sources of Buoyancy

    Science.gov (United States)

    Partridge, Jamie; Linden, Paul

    2013-11-01

    We examine the flows and stratification established in a naturally ventilated enclosure containing both a localised and vertically distributed source of buoyancy. The enclosure is ventilated through upper and lower openings which connect the space to an external ambient. Small scale laboratory experiments were carried out with water as the working medium and buoyancy being driven directly by temperature differences. A point source plume gave localised heating while the distributed source was driven by a controllable heater mat located in the side wall of the enclosure. The transient temperatures, as well as steady state temperature profiles, were recorded and are reported here. The temperature profiles inside the enclosure were found to be dependent on the effective opening area A*, a combination of the upper and lower openings, and the ratio of buoyancy fluxes from the distributed and localised source Ψ =Bw/Bp . Industrial CASE award with ARUP.

  8. Evaluating vertical concentration profile of carbon source released from slow-releasing carbon source tablets and in situ biological nitrate denitrification activity

    Science.gov (United States)

    Yeum, Y.; HAN, K.; Yoon, J.; Lee, J. H.; Song, K.; Kang, J. H.; Park, C. W.; Kwon, S.; Kim, Y.

    2017-12-01

    Slow-releasing carbon source tablets were manufactured during the design of a small-scale in situ biological denitrification system to reduce high-strength nitrate (> 30 mg N/L) from a point source such as livestock complexes. Two types of slow-releasing tablets, precipitating tablet (PT, apparent density of 2.0 g/mL) and floating tablet (FT), were prepared to achieve a vertically even distribution of carbon source (CS) in a well and an aquifer. Hydroxypropyl methylcellulose (HPMC) was used to control the release rate, and microcrystalline cellulose pH 101 (MCC 101) was added as a binder. The #8 sand was used as a precipitation agent for the PTs, and the floating agents for the FTs were calcium carbonate and citric acid. FTs floated within 30 min. and remained in water because of the buoyance from carbon dioxide, which formed during the acid-base reaction between citric acid and calcium carbonate. The longevities of PTs with 300 mg of HPMC and FTs with 400 mg of HPMC were 25.4 days and 37.3 days, respectively. We assessed vertical CS profile in a continuous flowing physical aquifer model (release test, RT) and its efficiency on biological nitrate denitrification (denitrification test, DT). During the RT, PTs, FTs and a tracer (as 1 mg rhodamine B/L) were initially injected into a well of physical aquifer model (PAM). Concentrations of CS and the tracer were monitored along the streamline in the PAM to evaluate vertical profile of CS. During the DT, the same experiment was performed as RT, except continuous injection of solution containing 30 mg N/L into the PAM to evaluate biological denitrification activity. As a result of RT, temporal profiles of CS were similar at 3 different depths of monitoring wells. These results suggest that simultaneous addition of PT and FT be suitable for achieving a vertically even distribution of the CS in the injection well and an aquifer. In DT, similar profile of CS was detected in the injection well, and nitrate was biologically

  9. Charge exchange K-tau scattering in the small Vertical BartVertical Bar range at momemtum 30 GeV/c

    International Nuclear Information System (INIS)

    Binon, F.; Gouanere, M.; Davydov, V.A.; Donskov, S.V.; Duteil, P.; Dufournaud, J.; Inayakin, A.V.; Kakauridze, D.B.; Kachanov, V.A.; Kulik, A.V.; Lagnaux, J.P.; Lednev, A.A.; Maisheev, V.A.; Mel'nik, Y.M.; Mikhailov, Y.V.; Peigneux, J.P.; Prokoshkin, Y.D.; Rodnov, Y.V.; Roosen, R.; Startsev, A.V.; Stroot, J.P.; Khaustov, G.V.

    1981-01-01

    Differential cross sections for the reaction K - p→K-bar 0 n at momentum 30 GeV/c have been measured with high angular resolution and statistical accuracy. The experiments were performed at the 70-GeV Serpukhov accelerator using a hodoscopic hadron calorimeter which recorded K 0 /sub L/ mesons. The t-dependence of the cross section shows a marked drop at small Vertical BartVertical Bar which corresponds to a dominant contribution from spin-flip in the rho- and A 2 -exchange amplitudes in the t-channel

  10. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Hossain

    2009-01-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  11. PREDICTION OF POWER GENERATION OF SMALL SCALE VERTICAL AXIS WIND TURBINE USING FUZZY LOGIC

    Directory of Open Access Journals (Sweden)

    Altab Md. Hossain

    2009-12-01

    Full Text Available Renewable energy from the wind turbine has been focused for the alternative source of power generation due to the following advances of the of the wind turbine. Firstly, the wind turbine is highly efficient and eco-friendly. Secondly, the turbine has the ability to response for the changeable power generation based on the wind velocity and structural framework. However, the competitive efficiency of the wind turbine is necessary to successfully alternate the conventional power sources. The most relevant factor which affects the overall efficiency of the wind turbine is the wind velocity and the relative turbine dimensions. Artificial intelligence systems are widely used technology that can learn from examples and are able to deal with non-linear problems. Compared with traditional approach, fuzzy logic approach is more efficient for the representation, manipulation and utilization. Therefore, the primary purpose of this work was to investigate the relationship between wind turbine power generation and wind velocity, and to illustrate how fuzzy expert system might play an important role in prediction of wind turbine power generation. The main purpose of the measurement over the small scaled prototype vertical axis wind turbine for the wind velocity is to predict the performance of full scaled H-type vertical axis wind turbine. Prediction of power generation at the different wind velocities has been tested at the Thermal Laboratory of Faculty of Engineering, Universiti Industri Selangor (UNISEL and results concerning the daily prediction have been obtained.

  12. Vertical characteristics and source identification of PM10 in Tianjin

    Institute of Scientific and Technical Information of China (English)

    Zhimei Xiao; Jianhui Wu; Suqin Han; Yufen Zhang; Hong Xu; Xiaoyong Zhang; Guoliang Shi; Yinchang Feng

    2012-01-01

    Ambient PM10 (particulate matter with a diameter less than 10 μm) concentrations were measured on a 255 meter tower in Tianjin,China.The samples were collected at four vertical levels (10,40,120 and 220 m).Vertical characteristics for PM10 samples were studied.The results showed that the concentrations of PM10 and constituent species had a negative correlation with the sampling height.The highest concentrations of PM10 and species were obtained at the 10 m level,and the lowest concentrations were measured at the 220 m level.For the fractions of species to total mass,SO42- and NO3- had higher values (fraction) at greater height; while Ca had a higher fraction at lower height.Possible source categories for the PM10 ambient dataset were identified by the principal component analysis method.The possible source categories included crustal dust,vehicles,cement dust,and incineration as well as secondary sulfate and nitrate sources.Analysis of meteorological factors on PM10 concentrations indicated that wind speed and inversion may be the main factors contributing to different concentrations of PM10 at different heights.

  13. China’s new-age small farms and their vertical integration: agribusiness or co-ops?

    Science.gov (United States)

    Huang, Philip C C

    2011-01-01

    The future of Chinese agriculture lies not with large mechanized farms but with small capital-labor dual intensifying family farms for livestock-poultry-fish raising and vegetable-fruit cultivation. Chinese food consumption patterns have been changing from the old 8:1:1 pattern of 8 parts grain, 1 part meat, and 1 part vegetables to a 4:3:3 pattern, with a corresponding transformation in agricultural structure. Small family-farming is better suited for the new-age agriculture, including organic farming, than large-scale mechanized farming, because of the intensive, incremental, and variegated hand labor involved, not readily open to economies of scale, though compatible with economies of scope. It is also better suited to the realities of severe population pressure on land. But it requires vertical integration from cultivation to processing to marketing, albeit without horizontal integration for farming. It is against such a background that co-ops have arisen spontaneously for integrating small farms with processing and marketing. The Chinese government, however, has been supporting aggressively capitalistic agribusinesses as the preferred mode of vertical integration. At present, Chinese agriculture is poised at a crossroads, with the future organizational mode for vertical integration as yet uncertain.

  14. Small accelerator-based pulsed cold neutron sources

    International Nuclear Information System (INIS)

    Lanza, Richard C.

    1997-09-01

    Small neutron sources could be used by individual researchers with the convenience of an adequate local facility. Although these sources would produce lower fluxes than the national facilities, for selected applications, the convenience and availability may overcome the limitations on source strength. Such sources might also be useful for preliminary testing of ideas before going to a larger facility. Recent developments in small, high-current pulsed accelerators makes possible such a local source for pulsed cold neutrons.

  15. Heat pumps using vertical boreholls as heat source; Varmepumper med lodrette boringer som varmeoptager

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Svend V. [Teknologisk Institut, Aarhus (Denmark); Thoegersen, L.; Soerensen, Inga [VIA University College, Risskov (Denmark)] [and others

    2013-01-15

    This report presents instructions on what to consider when you have to establish vertical wells as energy sources for ground source heating systems. The report provides an introduction into what to be aware of when it comes to sizing vertical ground hoses as heat absorbers for heat pumps. The initial geological assessments, you have to make are described and there are references to the available tools and websites that exist today. A calculation model is developed for the design of vertical ground hoses. This calculation model is intended as a tool for installers and consultants as well as well drillers. The calculation model contains two computational models, one can be used for initial calculations and dimensioning of vertical ground hoses, and the detailed model can be used for costing by well driller. The simple calculation is based on proven design approach from the German standard VDI 4640, and the detailed calculation is based on a known empirical calculation, which assumes that you know the geology in more detail. In the project measurements were carried out on four installations, and the calculations show that there is good agreement between the measurements and the calculation model. (LN)

  16. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration.

    Science.gov (United States)

    Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří

    2017-12-01

    The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Small vertical changes in jaw relation affect motor unit recruitment in the masseter.

    Science.gov (United States)

    Terebesi, S; Giannakopoulos, N N; Brüstle, F; Hellmann, D; Türp, J C; Schindler, H J

    2016-04-01

    Strategies for recruitment of masseter muscle motor units (MUs), provoked by constant bite force, for different vertical jaw relations have not previously been investigated. The objective of this study was to analyse the effect of small changes in vertical jaw relation on MU recruitment behaviour in different regions of the masseter during feedback-controlled submaximum biting tasks. Twenty healthy subjects (mean age: 24·6 ± 2·4 years) were involved in the investigation. Intra-muscular electromyographic (EMG) activity of the right masseter was recorded in different regions of the muscle. MUs were identified by the use of decomposition software, and root-mean-square (RMS) values were calculated for each experimental condition. Six hundred and eleven decomposed MUs with significantly (P recruitment behaviour were organised into localised MU task groups. MUs with different task specificity in seven examined tasks were observed. The RMS EMG values obtained from the different recording sites were also significantly (P recruitment was significantly (P recruited MUs and the RMS EMG values decreased significantly (P recruitment behaviour in discrete subvolumes of the masseter in response to small changes in vertical jaw relations. These fine-motor skills might be responsible for its excellent functional adaptability and might also explain the successful management of temporomandibular disorder patients by somatic intervention, in particular by the use of oral splints. © 2015 John Wiley & Sons Ltd.

  18. Experimental Optimization of Passive Cooling of a Heat Source Array Flush-Mounted on a Vertical Plate

    Directory of Open Access Journals (Sweden)

    Antoine Baudoin

    2016-11-01

    Full Text Available Heat sources, such as power electronics for offshore power, could be cooled passively—mainly by conduction and natural convection. The obvious advantage of this strategy is its high reliability. However, it must be implemented in an efficient manner (i.e., the area needs to be kept low to limit the construction costs. In this study, the placement of multiple heat sources mounted on a vertical plate was studied experimentally for optimization purposes. We chose a regular distribution, as this is likely to be the preferred choice in the construction process. We found that optimal spacing can be determined for a targeted source density by tuning the vertical and horizontal spacing between the heat sources. The optimal aspect ratio was estimated to be around two.

  19. ONLINE MINIMIZATION OF VERTICAL BEAM SIZES AT APS

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng

    2017-06-25

    In this paper, online minimization of vertical beam sizes along the APS (Advanced Photon Source) storage ring is presented. A genetic algorithm (GA) was developed and employed for the online optimization in the APS storage ring. A total of 59 families of skew quadrupole magnets were employed as knobs to adjust the coupling and the vertical dispersion in the APS storage ring. Starting from initially zero current skew quadrupoles, small vertical beam sizes along the APS storage ring were achieved in a short optimization time of one hour. The optimization results from this method are briefly compared with the one from LOCO (Linear Optics from Closed Orbits) response matrix correction.

  20. Gravity Compensation Technique Uses Small dc Motor

    Science.gov (United States)

    Hollow, Richard

    1988-01-01

    Small dc servomotor powered by simple constant-current source and with suitable gearing used to cancel effect of gravity upon load. Lead-screw positioning system has load counterbalanced by small supplementary motor powered by constant current source. Motor lighter and more compact alternative to counterbalance. Used in variety of mechanical systems where load positioned or accelerated in vertical plane.

  1. Sensitivity of the near-surface vertical electric field land Controlled-Source Electromagnetic monitoring

    NARCIS (Netherlands)

    Schaller, A.M.; Hunziker, J.W.; Streich, R.; Drijkoningen, G.G.

    2014-01-01

    We investigate potential benefits of measuring the vertical electric field component in addition to the routinely measured horizontal electric field components in onshore time-lapse controlled-source electromagnetics. Synthetic electromagnetic data based on a model of the Schoonebeek onshore oil

  2. Bio-mixing due to Diel Vertical Migration of Daphnia spp. in a Small Lake

    Science.gov (United States)

    Simoncelli, Stefano; Wain, Danielle; Thackeray, Stephen

    2016-04-01

    Bio-turbulence or bio-mixing refers to the contribution of living organisms towards the mixing of waters in oceans and lakes. Experimental measurements in an unstratified tank by Wilhelmus & Dabiri (2014) show that zooplankton can trigger fluid instabilities through collective motions and that energy is imparted to scales bigger than organism's size of few mm. Length scales analysis, for low-Reynolds-number organisms in stratified water by Leshansky & Pismen (2010) and Kunze (2011), estimate eddy diffusivity up two orders of magnitude larger than the molecular thermal diffusivity. Very recently, Wand & Ardekani (2015) showed a maximum diffusivity of 10-5 m2/s for millimetre-sized organisms from numerical simulations in the intermediate Reynolds number regime. Here we focus our attention on turbulence generated by the vertical migration of zooplankton in a small lake, mostly populated by Daphnia spp. This very common species, belonging to Cladocera order, is engaged in a vertical migration (DVM) at sunset, with many organisms crossing the thermocline despite the density stratification. During the ascension they may create hydrodynamic disturbances in the lake interior where the stratification usually suppresses the vertical diffusion. We have conducted five turbulence experiments in Vobster Quay, a small (area ˜ 59,000 m2), deep (40m) man-made basin with small wind fetch and steep sides, located in the South West UK. Turbulence was measured with a temperature microstructure profiler. To asses the zooplankton vertical concentration we used a 100 μm mesh net, by collecting and analyzing samples in 8 layers of the lake. A bottom-mounted acoustic Doppler current profiler was also employed to track their concentration and migration with the measured backscatter strength. Measured dissipation rates ɛ during the day showed low turbulence level (<= 10-8 W/Kg) in the thermocline and in the zooplankton layer. Turbulence, during the DVM in two different days, is highest on

  3. The Reduction of Vertical Interchannel Crosstalk: The Analysis of Localisation Thresholds for Natural Sound Sources

    Directory of Open Access Journals (Sweden)

    Rory Wallis

    2017-03-01

    Full Text Available In subjective listening tests, natural sound sources were presented to subjects as vertically-oriented phantom images from two layers of loudspeakers, ‘height’ and ‘main’. Subjects were required to reduce the amplitude of the height layer until the position of the resultant sound source matched that of the same source presented from the main layer only (the localisation threshold. Delays of 0, 1 and 10 ms were applied to the height layer with respect to the main, with vertical stereophonic and quadraphonic conditions being tested. The results of the study showed that the localisation thresholds obtained were not significantly affected by sound source or presentation method. Instead, the only variable whose effect was significant was interchannel time difference (ICTD. For ICTD of 0 ms, the median threshold was −9.5 dB, which was significantly lower than the −7 dB found for both 1 and 10 ms. The results of the study have implications both for the recording of sound sources for three-dimensional (3D audio reproduction formats and also for the rendering of 3D images.

  4. Anticrab cavities for the removal of spurious vertical bunch rotations caused by crab cavities

    Directory of Open Access Journals (Sweden)

    G. Burt

    2008-09-01

    Full Text Available Many particle accelerators are proposing the use of crab cavities to correct for accelerator crossing angles or for the production of short bunches in light sources. These cavities produce a rotation to the bunch in a well-defined polarization plane. If the plane of the rotation does not align with the horizontal axis of the accelerator, the bunch will receive a small amount of spurious vertical bunch rotation. For accelerators with small vertical beam sizes and large beam-beam effects, this can cause significant unwanted effects. In this paper we propose the use of a 2nd smaller crab cavity in the vertical plane in order to cancel this effect and investigate its use in numerical simulations.

  5. DEM study of granular discharge rate through a vertical pipe with a bend outlet in small absorber sphere system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tianjin, E-mail: tjli@tsinghua.edu.cn; Zhang, He; Liu, Malin; Huang, Zhiyong; Bo, Hanliang; Dong, Yujie

    2017-04-01

    Highlights: • The work concerns granular flow in a vertical pipe with a bend. • Discharge rate fluctuation in vertical pipe are mainly from velocity fluctuation. • Steady discharge rate decreases rapidly and saturates with μ{sub s} increasing. • Steady discharge rate W{sub s} still obey the 5/2 power law of pipe internal diameter. • A correlation developed for steady discharge rate for this new geometry. - Abstract: Absorber sphere pneumatic conveying is a special application of pneumatic conveying technique in the pebble bed High Temperature Gas-Cooled Reactor (HTGR or HTR). Granular discharge through a vertical pipe with a bend outlet is one of the control modes to determine solid mass flowrate which is an important parameter for the design of absorber sphere pneumatic conveying. Granular discharge rate through the vertical pipe with a bend outlet in the small absorber sphere system are investigated by discrete element method simulation. The effect of geometry parameters on discharge rate, the discharge rate fluctuation in the vertical pipe, and the effect of friction on steady discharge rate (W{sub s}) are analyzed and discussed. The phenomena of discharge rate fluctuation in the vertical pipe are observed, which are mainly resulted from the evolution of the average downward granular velocity. The steady discharge rate decreases rapidly with sliding friction coefficient increasing from 0.125 to 0.5, and gradually saturates with the friction coefficient further increasing from 0.5 to 1. It is interesting that the linear relation between W{sub s}{sup 2/5} and pipe internal diameter D with zero intercept are found for the vertical pipe discharge with a bend outlet, which is different from the orifice discharge through a hopper or silo with none-zero intercept. A correlation similar to Beverloo’s correlation is developed to predict the steady discharge rate through the vertical pipe with a bend outlet. These results are helpful for the design of sphere

  6. INNOVATIVE SOLUTIONS FOR SMALL SCALE VERTICAL AXIS WIND TURBINES USED IN HARBOURS AND SHORE AREAS

    Directory of Open Access Journals (Sweden)

    IONESCU Raluca Dora

    2014-09-01

    Full Text Available The paper aims to analyse the wind turbine solutions implemented in harbours and on shore areas. Also a thorough study of the blade design solutions for small power Vertical axis wind turbines (VAWTs has been conducted, with their advantages and disadvantages, in order to find the best solution that minimises the loads and helps with the self-starting capabilities of the wind turbine. First are presented all the solutions, next are discussed several research results for each solution and, in the end, a combination of solutions is chosen for our new small power VAWT with a pre-dimensioning analysis.

  7. 48 CFR 19.202-2 - Locating small business sources.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small business...

  8. 48 CFR 319.202-2 - Locating small business sources.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS acquisitions...

  9. 48 CFR 2919.202-2 - Locating small business sources.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Policies 2919.202-2 Locating small business sources. Any procurement conducted on an unrestricted basis will include solicitations to...

  10. Hydroacoustic resolution of small-scale vertical distribution in Baltic cod Gadus morhua - habitat choise and limits during spawning

    DEFF Research Database (Denmark)

    Schaber, Matthias; Hinrichsen, Hans-Harald; Neuenfeldt, Stefan

    2009-01-01

    to cod. The results showed a clear influence of ambient salinity and oxygen concentration on the distribution pattern and distributional limitation of cod during spawning time, and also consistency of data storage tag-derived distribution patterns with those based on individual echotracking. We therefore...... and hence the spatial structure of the ecosystem. Our aim here is to present a method to resolve small-scale distribution on an individual level, as needed for the behaviorally-based prediction of habitat choice and limits. We focused on the small-scale vertical distribution of cod Gadus morhua L....... in the Bornholm Basin, central Baltic Sea, during spawning time in 2 years with different vertical thermohaline and oxygen stratifications. Individual cod were identified by echotracking of real-time in situ hydroacoustic distribution data. In order to resolve and identify hydrographic preferences and limits...

  11. Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm

    International Nuclear Information System (INIS)

    Sayyaadi, Hoseyn; Amlashi, Emad Hadaddi; Amidpour, Majid

    2009-01-01

    Thermodynamic and thermoeconomic optimization of a vertical ground source heat pump system has been studied. A model based on the energy and exergy analysis is presented here. An economic model of the system is developed according to the Total Revenue Requirement (TRR) method. The objective functions based on the thermodynamic and thermoeconomic analysis are developed. The proposed vertical ground source heat pump system including eight decision variables is considered for optimization. An artificial intelligence technique known as evolutionary algorithm (EA) has been utilized as an optimization method. This approach has been applied to minimize either the total levelized cost of the system product or the exergy destruction of the system. Three levels of optimization including thermodynamic single objective, thermoeconomic single objective and multi-objective optimizations are performed. In Multi-objective optimization, both thermodynamic and thermoeconomic objectives are considered, simultaneously. In the case of multi-objective optimization, an example of decision-making process for selection of the final solution from available optimal points on Pareto frontier is presented. The results obtained using the various optimization approaches are compared and discussed. Further, the sensitivity of optimized systems to the interest rate, to the annual number of operating hours and to the electricity cost are studied in detail.

  12. Lateral, Vertical, and Longitudinal Source Area Connectivity Drive Runoff and Carbon Export Across Watershed Scales

    Science.gov (United States)

    Zimmer, Margaret A.; McGlynn, Brian L.

    2018-03-01

    Watersheds are three-dimensional hydrologic systems where the longitudinal expansion/contraction of stream networks, vertical connection/disconnection between shallow and deep groundwater systems, and lateral connectivity of these water sources to streams mediate runoff production and nutrient export. The connectivity of runoff source areas during both baseflow and stormflow conditions and their combined influence on biogeochemical fluxes remain poorly understood. Here we focused on a set of 3.3 and 48.4 ha nested watersheds (North Carolina, USA). These watersheds comprise ephemeral and intermittent runoff-producing headwaters and perennial runoff-producing lowlands. Within these landscape elements, we characterized the timing and magnitude of precipitation, runoff, and runoff-generating flow paths. The active surface drainage network (ASDN) reflected connectivity to, and contributions from, source areas that differed under baseflow and stormflow conditions. The baseflow-associated ASDN expanded and contracted seasonally, driven by the rise and fall of the seasonal water table. Superimposed on this were event-activated source area contributions driven by connectivity to surficial and shallow subsurface flow paths. Frequently activated shallow flow paths also caused increased in-stream dissolved organic carbon (DOC) concentrations with increases in runoff across both watershed scales. The spread and variability within this DOC-runoff relationship was driven by a seasonal depletion of DOC from continual shallow subsurface flow path activation and subsequent replenishment from autumn litterfall. Our findings suggest that hydrobiogeochemical signals at larger watershed outlets can be driven by the expansion, contraction, and connection of lateral, longitudinal, and vertical source areas with distinct runoff generation processes.

  13. Vertical architecture for enhancement mode power transistors based on GaN nanowires

    Science.gov (United States)

    Yu, F.; Rümmler, D.; Hartmann, J.; Caccamo, L.; Schimpke, T.; Strassburg, M.; Gad, A. E.; Bakin, A.; Wehmann, H.-H.; Witzigmann, B.; Wasisto, H. S.; Waag, A.

    2016-05-01

    The demonstration of vertical GaN wrap-around gated field-effect transistors using GaN nanowires is reported. The nanowires with smooth a-plane sidewalls have hexagonal geometry made by top-down etching. A 7-nanowire transistor exhibits enhancement mode operation with threshold voltage of 1.2 V, on/off current ratio as high as 108, and subthreshold slope as small as 68 mV/dec. Although there is space charge limited current behavior at small source-drain voltages (Vds), the drain current (Id) and transconductance (gm) reach up to 314 mA/mm and 125 mS/mm, respectively, when normalized with hexagonal nanowire circumference. The measured breakdown voltage is around 140 V. This vertical approach provides a way to next-generation GaN-based power devices.

  14. Facilities for small-molecule crystallography at synchrotron sources.

    Science.gov (United States)

    Barnett, Sarah A; Nowell, Harriott; Warren, Mark R; Wilcox, Andrian; Allan, David R

    2016-01-01

    Although macromolecular crystallography is a widely supported technique at synchrotron radiation facilities throughout the world, there are, in comparison, only very few beamlines dedicated to small-molecule crystallography. This limited provision is despite the increasing demand for beamtime from the chemical crystallography community and the ever greater overlap between systems that can be classed as either small macromolecules or large small molecules. In this article, a very brief overview of beamlines that support small-molecule single-crystal diffraction techniques will be given along with a more detailed description of beamline I19, a dedicated facility for small-molecule crystallography at Diamond Light Source.

  15. Physical Processes Contributing To Small-scale Vertical Movements During Changing Inplane Stresses In Rift Basins and At Passive Continental Margins

    Science.gov (United States)

    Paulsen, G. E.; Nielsen, S. B.; Hansen, D. L.

    The vertical movements during a regional stress reversal in a rifted basin or on a passive continental margin are examined using a numerical 2D thermo-mechanical finite element model with a visco-elastic-plastic rheology. Three different physical mechanisms are recognized in small-scale vertical movements at small inplane force variations: elastic dilatation, elastic flexure, and permanent deformation. Their rela- tive importance depend on the applied force, the duration of the force, and the thermal structure of the lithosphere. Elastic material dilatation occurs whenever the stress state changes. A reversal from extension to compression therefore immediately leads to elastic dilatation, and re- sults in an overall subsidence of the entire profile. Simultaneously with dilatation the lithosphere reacts with flexure. The significance of the flexural component strongly depends on the thermal structure of the lithosphere. The polarity and amplitude of the flexure depends on the initial (before compression) loading of the lithosphere. Gener- ally, the flexural effects lead to subsidence of the overdeep in the landward part of the basin and a small amount of uplift at the basin flanks. The amplitudes of the flexural response are small and comparable with the amplitudes of the elastic dilatation. With continuing compression permanent deformation and lithospheric thickening becomes increasingly important. Ultimately, the thickened part of the lithosphere stands out as an inverted zone. The amount of permanent deformation is directly connected with the size and duration of the applied force, but even a relatively small force leads to inversion tectonics in the landward part of the basin. The conclusions are: 1) small stress induced vertical movements in rift basins and at passive continental margins are the result of a complex interaction of at least three different processes, 2) the total sediment loaded amplitudes resulting from these pro- cesses are small (2-300 m) for

  16. Analysis of conditions favourable for small vertical axis wind turbines between building passages in urban areas of Sweden

    Science.gov (United States)

    Awan, Muhammad Rizwan; Riaz, Fahid; Nabi, Zahid

    2017-05-01

    This paper presents the analysis of installing the vertical axis wind turbines between the building passages on an island in Stockholm, Sweden. Based on the idea of wind speed amplification due to the venture effect in passages, practical measurements were carried out to study the wind profile for a range of passage widths in parallel building passages. Highest increment in wind speed was observed in building passages located on the periphery of sland as wind enters from free field. Wind mapping was performed in the island to choose the most favourable location to install the vertical axis wind turbines (VAWT). Using the annual wind speed data for location and measured amplification factor, energy potential of the street was calculated. This analysis verified that small vertical axis wind turbines can be installed in the passage centre line provided that enough space is provided for traffic and passengers.

  17. Vertical integration as a source of market power

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, J.H.

    1981-11-01

    This paper has put forward a theory of vertial integration where the ability of a group of firms to engage in noncompetitive pricing is increased by altering conjectural variations. An analysis of conditions faced by major oil companies at refining indicated little likelihood of market power, short of a complex, secret price fixing agreement. Vertical integration to branded retail outlets appears to have created the ability to price noncompetitively without overt collusion. More interesting for vertical policy are the results on non price rivalry where excess profits appear to have been turned into social costs.

  18. Vertical organic field effect phototransistor with two dissimilar source and drain contacts

    International Nuclear Information System (INIS)

    Woon, K.L.; Yeo, G.N.

    2014-01-01

    A solution processable vertical organic field effect phototransistor was fabricated using poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 as the photo-active materials while poly(methyl methacrylate) is used as a dielectric layer. Interdigitated conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) is used as a source and lithium flouride/aluminum as a drain. The device exhibits current modulation when the gate is positively biased. A significant photoeffect is observed in the reverse bias mode. Unlike conventional organic phototransistors, this device can operate at a zero source–drain bias with a photosensitivity and responsivity proportional to the gate voltage. A photosensitivity of up to 10 5 and a responsivity of up to 2 AW −1 are achieved in this mode. This effect is due to the presence of the weak photovoltaic behavior of this device. - Highlights: • A solution processable vertical field effect phototransistor is demonstrated. • Photosensitivity as high as ∼ 10 5 with responsivity of 2 AW −1 is achieved. • The gate can be used to modulate photocurrent with low leakage current. • The device shows weak photovoltaic behavior

  19. A 2D simulation study and characterization of a novel vertical SOI MOSFET with a smart source/body tie

    International Nuclear Information System (INIS)

    Lin, Jyi-Tsong; Lee, Tai-Yi; Lin, Kao-Cheng

    2008-01-01

    A novel vertical silicon-on-insulator (SOI) metal-oxide-semiconductor field-effect transistor (MOSFET) with a smart source/body contact, SSBVMOS, is presented here for the first time. 2D simulations reveal that the SSBVMOS reduces self-heating effects, with the lattice temperature reduced by 14% and the hole temperature reduced by 25%. The SSBVMOS also eliminates the floating body effect, something that other SOI vertical MOSFETs are unable to accomplish, regardless of the thickness of the thin film. The SSBVMOS is further found to have a better drain-induced barrier lowering and subthreshold swing than either a conventional vertical MOSFET or an SOI vertical MOSFET. Moreover, these results are achieved using typical pillar heights and buried oxide thicknesses. Should future technological advances allow for lower pillars or thinner buried oxides, the SSBVMOS performance would further increase

  20. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi

    2012-10-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed on the sidewall of the stack to bridge the source and drain. Both the effective gate dielectric and gate electrode were normal to the substrate surface. The channel length is determined by the dielectric thickness between source and drain electrodes, making it easier to fabricate sub-micrometer transistors without using time-consuming electron beam lithography. The transistor area is much smaller than the planar CNTFET due to the vertical arrangement of source and drain and the reduced channel area. © 2012 Elsevier Ltd. All rights reserved.

  1. Measuring Trace Gas Emission from Multi-Distributed Sources Using Vertical Radial Plume Mapping (VRPM and Backward Lagrangian Stochastic (bLS Techniques

    Directory of Open Access Journals (Sweden)

    Thomas K. Flesch

    2011-09-01

    Full Text Available Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The vertical radial plume mapping (VRPM and the backward Lagrangian stochastic (bLS techniques with an open-path optical spectroscopic sensor were evaluated for relative accuracy for multiple emission-source and sensor configurations. The relative accuracy was calculated by dividing the measured emission rate by the actual emission rate; thus, a relative accuracy of 1.0 represents a perfect measure. For a single area emission source, the VRPM technique yielded a somewhat high relative accuracy of 1.38 ± 0.28. The bLS technique resulted in a relative accuracy close to unity, 0.98 ± 0.24. Relative accuracies for dual source emissions for the VRPM and bLS techniques were somewhat similar to single source emissions, 1.23 ± 0.17 and 0.94 ± 0.24, respectively. When the bLS technique was used with vertical point concentrations, the relative accuracy was unacceptably low,

  2. Small compact pulsed electron source for radiation technologies

    International Nuclear Information System (INIS)

    Korenev, Sergey

    2002-01-01

    The small compact pulsed electron source for radiation technologies is considered in the report. The electron source consists of pulsed high voltage Marx generator and vacuum diode with explosive emission cathode. The main parameters of electron source are next: kinetic energy is 100-150 keV, beam current is 5-200 A and pulse duration is 100-400 nsec. The distribution of absorbed doses in irradiated materials is considered. The physical feasibility of pulsed low energy electron beam for applications is considered

  3. Aerodynamic performance of a small vertical axis wind turbine using an overset grid method

    Science.gov (United States)

    Bangga, Galih; Solichin, Mochammad; Daman, Aida; Sa'adiyah, Devy; Dessoky, Amgad; Lutz, Thorsten

    2017-08-01

    The present paper aims to asses the aerodynamic performance of a small vertical axis wind turbine operating at a small wind speed of 5 m/s for 6 different tip speed ratios (λ=2-7). The turbine consists of two blades constructed using the NACA 0015 airfoil. The study is carried out using computational fluid dynamics (CFD) methods employing an overset grid approach. The (URANS) SST k - ω is used as the turbulence model. For the preliminary study, simulations of the NACA 0015 under static conditions for a broad range of angle of attack and a rotating two-bladed VAWT are carried out. The results are compared with available measurement data and a good agreement is obtained. The simulations demonstrate that the maximum power coefficient attained is 0.45 for λ=4. The aerodynamic loads hysteresis are presented showing that the dynamic stall effect decreases with λ.

  4. Measuring trace gas emission from multi-distributed sources using vertical radial plume mapping (VRPM) and backward Lagrangian stochastic (bLS) techniques

    Science.gov (United States)

    Two micrometeorological techniques for measuring trace gas emission rates from distributed area sources were evaluated using a variety of synthetic area sources. The accuracy of the vertical radial plume mapping (VRPM) and the backward Lagrangian (bLS) techniques with an open-path optical spectrosco...

  5. Morphology versus Vertical Phase Segregation in Solvent Annealed Small Molecule Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Alexander Kovalenko

    2015-01-01

    Full Text Available The deep study of solvent annealed small molecules bulk heterojunction organic solar cells based on DPP(TBFu2 : PC60BM blend is carried out. To reveal the reason of the solvent annealing advantage over the thermal one, capacitance-voltage measurements were applied. It was found that controlling the vertical phase segregation in the solar cells a high fullerene population in the vicinity of the cathode could be achieved. This results in increase of the shunt resistance of the cell, thus improving the light harvesting efficiency.

  6. Small-scale Scheimpflug lidar for aerosol extinction coefficient and vertical atmospheric transmittance detection.

    Science.gov (United States)

    Sun, Guodong; Qin, Laian; Hou, Zaihong; Jing, Xu; He, Feng; Tan, Fengfu; Zhang, Silong

    2018-03-19

    In this paper, a new prototypical Scheimpflug lidar capable of detecting the aerosol extinction coefficient and vertical atmospheric transmittance at 1 km above the ground is described. The lidar system operates at 532 nm and can be used to detect aerosol extinction coefficients throughout an entire day. Then, the vertical atmospheric transmittance can be determined from the extinction coefficients with the equation of numerical integration in this area. CCD flat fielding of the image data is used to mitigate the effects of pixel sensitivity variation. An efficient method of two-dimensional wavelet transform according to a local threshold value has been proposed to reduce the Gaussian white noise in the lidar signal. Furthermore, a new iteration method of backscattering ratio based on genetic algorithm is presented to calculate the aerosol extinction coefficient and vertical atmospheric transmittance. Some simulations are performed to reduce the different levels of noise in the simulated signal in order to test the precision of the de-noising method and inversion algorithm. The simulation result shows that the root-mean-square errors of extinction coefficients are all less than 0.02 km -1 , and that the relative errors of the atmospheric transmittance between the model and inversion data are below 0.56% for all cases. The feasibility of the instrument and the inversion algorithm have also been verified by an optical experiment. The average relative errors of aerosol extinction coefficients between the Scheimpflug lidar and the conventional backscattering elastic lidar are 3.54% and 2.79% in the full overlap heights of two time points, respectively. This work opens up new possibilities of using a small-scale Scheimpflug lidar system for the remote sensing of atmospheric aerosols.

  7. Small-angle neutron scattering at pulsed sources compared to reactor sources

    International Nuclear Information System (INIS)

    Hjelm, R.P. Jr.; Seeger, P.A.; Thiyagarajan, P.

    1990-01-01

    Detailed comparisons of measurements made on small-angle neutron scattering instruments at pulsed spallation and reactor sources show that the results from the two types of instruments are comparable. It is further demonstrated that spallation instruments are preferable for measurements in the mid-momentum transfer domain or when a large domain is needed. 8 refs., 2 figs

  8. Volumetric dispenser for small particles from plural sources

    International Nuclear Information System (INIS)

    Bradley, R.A.; Miller, W.H.; Sease, J.D.

    1975-01-01

    Apparatus is described for rapidly and accurately dispensing measured volumes of small particles from a supply hopper. The apparatus includes an adjustable, vertically oriented measuring tube and orifice member defining the volume to be dispensed, a ball plug valve for selectively closing the bottom end of the orifice member, and a compression valve for selectively closing the top end of the measuring tube. A supply hopper is disposed above and in gravity flow communication with the measuring tube. Properly sequenced opening and closing of the two valves provides accurate volumetric discharge through the ball plug valve. A dispensing system is described wherein several appropriately sized measuring tubes, orifice members, and associated valves are arranged to operate contemporaneously to facilitate blending of different particles

  9. Enhancing photoresponsivity using MoTe2-graphene vertical heterostructures

    Science.gov (United States)

    Kuiri, Manabendra; Chakraborty, Biswanath; Paul, Arup; Das, Subhadip; Sood, A. K.; Das, Anindya

    2016-02-01

    MoTe2 with a narrow band-gap of ˜1.1 eV is a promising candidate for optoelectronic applications, especially for the near-infrared photo detection. However, the photo responsivity of few layers MoTe2 is very small (graphene vertical heterostructures have a much larger photo responsivity of ˜20 mA W-1. The trans-conductance measurements with back gate voltage show on-off ratio of the vertical transistor to be ˜(0.5-1) × 105. The rectification nature of the source-drain current with the back gate voltage reveals the presence of a stronger Schottky barrier at the MoTe2-metal contact as compared to the MoTe2-graphene interface. In order to quantify the barrier height, it is essential to measure the work function of a few layers MoTe2, not known so far. We demonstrate a method to determine the work function by measuring the photo-response of the vertical transistor as a function of the Schottky barrier height at the MoTe2-graphene interface tuned by electrolytic top gating.

  10. A Grazing-Incidence Small-Angle X-Ray Scattering View of Vertically Aligned ZnO Nano wires

    International Nuclear Information System (INIS)

    Lavcevic, M.L.; Silovic, L.; Dubcek, P.; Pavlovic, M.; Bernstorff, S.

    2013-01-01

    We report a grazing-incidence small-angle X-ray scattering study of ZnO films with vertically aligned and randomly distributed nano wires, grown through a hydrothermal growth process on nano structured ZnO seeding coatings and deposited by electron beam evaporation on silicon and glass, respectively. The comparison of the scattering patterns of seeding coatings and nano wires showed that the scattering of vertically aligned nano wires exhibited a specific feature: the dominant characteristic of their scattering patterns is the appearance of fine structure effects around the specular peak. These effects were clarified by the combined reflection and scattering phenomena, suggested for the aligned nano wires-substrate system. Furthermore, they enabled the calculation of the average gyration radius of nano wires in horizontal direction. The calculated value was in good agreement with the radii of nano wires estimated by surface electron microscopy. Therefore, the observed feature in the scattering pattern can serve as evidence of the aligned growth of nano wires.

  11. Vertical Phase Separation in Small Molecule:Polymer Blend Organic Thin Film Transistors Can Be Dynamically Controlled

    KAUST Repository

    Zhao, Kui

    2016-02-03

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Blending of small-molecule organic semiconductors (OSCs) with amorphous polymers is known to yield high performance organic thin film transistors (OTFTs). Vertical stratification of the OSC and polymer binder into well-defined layers is crucial in such systems and their vertical order determines whether the coating is compatible with a top and/or a bottom gate OTFT configuration. Here, we investigate the formation of blends prepared via spin-coating in conditions which yield bilayer and trilayer stratifications. We use a combination of in situ experimental and computational tools to study the competing effects of formulation thermodynamics and process kinetics in mediating the final vertical stratification. It is shown that trilayer stratification (OSC/polymer/OSC) is the thermodynamically favored configuration and that formation of the buried OSC layer can be kinetically inhibited in certain conditions of spin-coating, resulting in a bilayer stack instead. The analysis reveals here that preferential loss of the OSC, combined with early aggregation of the polymer phase due to rapid drying, inhibit the formation of the buried OSC layer. The fluid dynamics and drying kinetics are then moderated during spin-coating to promote trilayer stratification with a high quality buried OSC layer which yields unusually high mobility >2 cm2 V-1 s-1 in the bottom-gate top-contact configuration.

  12. Vertical field MR imaging of upper thorax and spine in small children

    International Nuclear Information System (INIS)

    Brockstedt, S.; Malmgren, N.; Malmgren, L.; Ivarsson, M.L.; Larsson, E.M.; Holtaas, S.; Staahlberg, F.

    1993-01-01

    To improve image quality in a vertical field MR imaging unit, operating at low field strength (0.3 T), we have designed a half-elliptical coil for use in the upper thoracic region of small children. Our intention was also to shorten the examination time, which until now has been long, because several scans with different coils have been necessary to cover the thoracic region. The experimental coil is designed so that a child's shoulders fit into the central region. The coil consists of 2 serially connected cable-loops, mounted on a foam rubber vest. The coil performance was tested in a phantom and improvements relative to standard coils were demonstrated in in vivo studies. The results indicate that by using the half-elliptical coil, the signal-to-noise (S/N) ratio can be improved by a factor of 2 to 3 in the thoracic region of a child. (orig.)

  13. Tolerances for the vertical emittance in damping rings

    International Nuclear Information System (INIS)

    Raubenheimer, T.O.

    1991-11-01

    Future damping rings for linear colliders will need to have very small vertical emittances. In the limit of low beam current, the vertical emittance is primarily determined by the vertical dispersion and the betatron coupling. In this paper, the contributions to these effects from random misalignments are calculated and tolerances are derived to limit the vertical emittance with a 95% confidence level. 10 refs., 5 figs

  14. Vertically aligned carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Zhao, Chao; Wang, Qingxiao; Zhang, Qiang; Wang, Zhihong; Zhang, Xixiang; Abutaha, Anas I.; Alshareef, Husam N.

    2012-01-01

    Vertically aligned carbon nanotube field-effect transistors (CNTFETs) have been developed using pure semiconducting carbon nanotubes. The source and drain were vertically stacked, separated by a dielectric, and the carbon nanotubes were placed

  15. Design of small ECR ion source for neutron generator

    International Nuclear Information System (INIS)

    Zhou Changgeng; Lou Benchao; Zu Xiulan; Yang Haisu; Xiong Riheng

    2003-01-01

    The principles, structures and characteristics of small ECR (Electron Cyclotron Resonance) ion source used in the neutron generator are introduced. The processes of the design and key technique and innovations are described. (authors)

  16. Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.

    Science.gov (United States)

    Ma, Ping; Lien, Fue-Sang; Yee, Eugene

    2017-01-01

    This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.

  17. Characterizing Sources of Small DC Motor Noise and Vibration

    Directory of Open Access Journals (Sweden)

    Yong Thung Cho

    2018-02-01

    Full Text Available Small direct current (DC motors are widely used due to their low cost and compact structure. Small DC motors of various designs are available on the market in different sizes. The smaller the motor, the more closely it may be used by individuals. Contrary to the size and simplicity of these motors in terms of structural design, sources of motor noise and vibration can be quite diverse and complicated. In this study, the source of motor noise and vibration was visualized over a very wide range of frequencies. The particle velocity of the motor was reconstructed from nearfield sound pressure measurements of motor noise. In addition to noncontact measurements conducted on a motor running at constant speed, the particle velocity of a stationary motor due to the impulse of an impact hammer was measured with an accelerometer. Furthermore, motor noise was measured under motor run-up conditions with different rotational speeds. As a result, by combination of these three methods, the sources of motor noise were accurately identified over a wide range of frequencies.

  18. A Study on the Ion Beam Extraction using Duo-PiGatron Ion source for Vertical Type Ion Beam Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bom Sok; Lee, Chan young; Lee, Jae Sang [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    In Korea Multipurpose Accelerator Complex (KOMAC), we have started ion beam service in the new beam utilization building since March this year. For various ion beam irradiation services, we are developed implanters such as metal (150keV/1mA), gaseous (200keV/5mA) and high current ion beam facility (20keV/150mA). One of the new one is a vertical type ion beam facility without acceleration tube (60keV/20mA) which is easy to install the sample. After the installation is complete, it is where you are studying the optimal ion beam extraction process. Detailed experimental results will be presented. Vertical Type Ion Beam Facility without acceleration tube of 60keV 20mA class was installed. We successfully extracted 60keV 20mA using Duo- PiGatron Ion source for Vertical Type Ion Beam Facility. Use the BPM and Faraday-cup, is being studied the optimum conditions of ion beam extraction.

  19. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    Science.gov (United States)

    Brines, Mariola; Dall'Osto, Manuel; Amato, Fulvio; Cruz Minguillón, María; Karanasiou, Angeliki; Alastuey, Andrés; Querol, Xavier

    2016-06-01

    During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies) PM10 samples at 12-hour resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain). A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS) site and the Urban Background (UB) site were located at street level, whereas the Torre Mapfre (TM) and the Torre Collserola (TC) sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements, allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (positive matrix factorisation, PMF) was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1) vehicle exhaust and wear (2-9 µg m-3, 10-27 % of PM10 mass on average), (2) road dust (2-4 µg m-3, 8-12 %), (3) mineral dust (5 µg m-3, 13-26 %), (4) aged marine (3-5 µg m-3, 13-20 %), (5) heavy oil (0.4-0.6 µg m-3, 2 %), (6) industrial (1 µg m-3, 3-5 %), (7) sulfate (3-4 µg m-3, 11-17 %) and (8) nitrate (4-6 µg m-3, 17-21 %). Three aerosol sources were found to be enhanced at the ground levels (confined within the urban ground levels of the city) relative to the upper levels: (1) vehicle exhaust and wear (2.8 higher), (2) road dust (1.8 higher) and (3) local urban industries/crafts workshops (1.6 higher). Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factor concentrations. The mineral dust and aged marine factors were found to be a mixture of natural and

  20. Surface dose characterisation of the Varian Ir-192 HDR conical surface applicator set with a vertically orientated source

    Energy Technology Data Exchange (ETDEWEB)

    Buchauer, Konrad; Henke, Guido; Schiefer, Hans; Plasswilm, Ludwig [Kantonsspital St. Gallen, Department of Radiation Oncology, St. Gallen (Switzerland)

    2014-12-15

    Conical surface applicators with an Ir-192 high-dose-rate brachytherapy source are a common modality for the treatment of non-melanomatous skin cancer with high tumour control rates. Surface dose characterisation of the Varian Varisource GammaMed+ IX afterloader vertical type surface applicators is performed two dimensionally using high-resolution film dosimetry. The focus of this study was to determine if Varian surface applicators with a vertical source suffer from the dose distribution irregularities reported for comparable applicators. Our goal was to evaluate if the irregularities found affected treatment and dose output verification procedures. Ionisation chamber-based verification of applicator output was established according to guidelines provided by the manufacturer. For additional measurement of surface dose Gafchromic EBT3 film dosimetry was used. The term ''therapeutic dose'' was defined as 85 % of the prescribed dose level. For the 10 different applicator inserts evaluated, cold spots were observed. Mean cold spot size was 2.0 mm x 3.6 mm (± 0.6 mm). The cold spots were dosimetrically well below 85 % of the prescribed dose. The cold spot was situated 2.2 mm (1.4-2.7 mm) unilaterally from the central axis and caused general asymmetry in the dose profiles intersecting the cold spot area. A source tilt of approximately 8 (± 1 ) was determined for the source used for irradiation. A central underdosed area exceeding 15 % of the prescribed dose has not been previously reported. Source tilt was observed and found to affect clinical use and possibly treatment outcome in applicators using a vertically arranged source. Surface applicators with a vertically orientated source were subject to dose irregularities that could impact on chamber-based applicator output verification procedures. We recommend film dosimetry-backed applicator commissioning to avoid systematic errors. (orig.) [German] Konische Oberflaechenapplikatoren sind ein

  1. Small scale distribution patterns and vertical migration of North Sea herring larvae (Clupea harengus, Teleostei: Clupeidea in relation to abiotic and biotic factors

    Directory of Open Access Journals (Sweden)

    Holger Haslob

    2009-10-01

    Full Text Available The distribution of herring larvae in relation to environmental conditions and the occurrence of possible prey and predator organisms was studied during a 4-day period on a permanent station in the northern North Sea in September 1999. The vertical distribution of herring larvae was sampled in 20-m intervals by means of a multiple-closing net. To resolve the small-scale patchiness of herring larvae and planktonic prey and predator organisms, a towed in-situ video system was used, the Ichthyoplankton Recorder. A diel vertical migration of herring larvae was observed with different intensities depending on their body length. Small larvae ( 16 mm showed the highest abundances in the upper water layers during the day and were concentrated in deeper water layers during the night. The presented results appear to be relevant for individual-based modelling of the fate of larval herring populations.

  2. Sediment sources in a small agricultural catchment: A composite fingerprinting approach based on the selection of potential sources

    Science.gov (United States)

    Zhou, Huiping; Chang, Weina; Zhang, Longjiang

    2016-08-01

    Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other

  3. A small, lightweight multipollutant sensor system for ground-mobile and aerial emission sampling from open area sources

    Science.gov (United States)

    Characterizing highly dynamic, transient, and vertically lofted emissions from open area sources poses unique measurement challenges. This study developed and applied a multipollutant sensor and integrated sampler system for use on mobile applications including tethered balloons ...

  4. COMPUTING VERTICES OF INTEGER PARTITION POLYTOPES

    Directory of Open Access Journals (Sweden)

    A. S. Vroublevski

    2015-01-01

    Full Text Available The paper describes a method of generating vertices of the polytopes of integer partitions that was used by the authors to calculate all vertices and support vertices of the partition polytopes for all n ≤ 105 and all knapsack partitions of n ≤ 165. The method avoids generating all partitions of n. The vertices are determined with the help of sufficient and necessary conditions; in the hard cases, the well-known program Polymake is used. Some computational aspects are exposed in more detail. These are the algorithm for checking the criterion that characterizes partitions that are convex combinations of two other partitions; the way of using two combinatorial operations that transform the known vertices to the new ones; and employing the Polymake to recognize a limited number (for small n of partitions that need three or more other partitions for being convexly expressed. We discuss the computational results on the numbers of vertices and support vertices of the partition polytopes and some appealing problems these results give rise to.

  5. Numerical study on small scale vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available The performance of a Vertical Axis Wind Turbine (VAWT is numerically analyzed. The set-up is Hdarrieus with three straight blades airfoils NACA attached to a rotating vertical shaft. The wind turbine has solidity equals to the unity operating with wind velocity of 7 m/s. Influence of pitch angle is tested to get design tendencies. 2D, transient, Navier Stokes equations are solved using the code Ansys-Fluent. Conservation equations were solved with a Third-Order MUSCL scheme using SIMPLE to couple pressure and velocity. More than six revolutions must be simulated to get the periodic behavior. Two models of turbulence have been contrasted Realizable k-epsilon and Transition SST concluding the last one show more realistic flow features. Pitch angles of 0º, -6º and -10º have been tested with Tip Speed Ratios ranging from 0.7 and 1.6. The no null pitch angles improve the performance of the wind turbine. Instantaneous and averaged power coefficients as well as detailed flow field around the airfoils are showed.

  6. Trends in Solar energy Driven Vertical Ground Source Heat Pump Systems in Sweden - An Analysis Based on the Swedish Well Database

    Science.gov (United States)

    Juhlin, K.; Gehlin, S.

    2016-12-01

    Sweden is a world leader in developing and using vertical ground source heat pump (GSHP) technology. GSHP systems extract passively stored solar energy in the ground and the Earth's natural geothermal energy. Geothermal energy is an admitted renewable energy source in Sweden since 2007 and is the third largest renewable energy source in the country today. The Geological Survey of Sweden (SGU) is the authority in Sweden that provides open access geological data of rock, soil and groundwater for the public. All wells drilled must be registered in the SGU Well Database and it is the well driller's duty to submit registration of drilled wells.Both active and passive geothermal energy systems are in use. Large GSHP systems, with at least 20 boreholes, are active geothermal energy systems. Energy is stored in the ground which allows both comfort heating and cooling to be extracted. Active systems are therefore relevant for larger properties and industrial buildings. Since 1978 more than 600 000 wells (water wells, GSHP boreholes etc) have been registered in the Well Database, with around 20 000 new registrations per year. Of these wells an estimated 320 000 wells are registered as GSHP boreholes. The vast majority of these boreholes are single boreholes for single-family houses. The number of properties with registered vertical borehole GSHP installations amounts to approximately 243 000. Of these sites between 300-350 are large GSHP systems with at least 20 boreholes. While the increase in number of new registrations for smaller homes and households has slowed down after the rapid development in the 80's and 90's, the larger installations for commercial and industrial buildings have increased in numbers over the last ten years. This poster uses data from the SGU Well Database to quantify and analyze the trends in vertical GSHP systems reported between 1978-2015 in Sweden, with special focus on large systems. From the new aggregated data, conclusions can be drawn about

  7. Natural ventilation in an enclosure induced by a heat source distributed uniformly over a vertical wall

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Z.D.; Li, Y.; Mahoney, J. [CSIRO Building, Construction and Engineering, Advanced Thermo-Fluids Technologies Lab., Highett, VIC (Australia)

    2001-05-01

    A simple multi-layer stratification model is suggested for displacement ventilation in a single-zone building driven by a heat source distributed uniformly over a vertical wall. Theoretical expressions are obtained for the stratification interface height and ventilation flow rate and compared with those obtained by an existing model available in the literature. Experiments were also carried out using a recently developed fine-bubble modelling technique. It was shown that the experimental results obtained using the fine-bubble technique are in good agreement with the theoretical predictions. (Author)

  8. Vertical and horizontal variability of PM10 source contributions in Barcelona during SAPUSS

    Directory of Open Access Journals (Sweden)

    M. Brines

    2016-06-01

    Full Text Available During the SAPUSS campaign (Solving Aerosol Problems by Using Synergistic Strategies PM10 samples at 12-hour resolution were simultaneously collected at four monitoring sites located in the urban agglomerate of Barcelona (Spain. A total of 221 samples were collected from 20 September to 20 October 2010. The Road Site (RS site and the Urban Background (UB site were located at street level, whereas the Torre Mapfre (TM and the Torre Collserola (TC sites were located at 150 m a.s.l. by the sea side within the urban area and at 415 m a.s.l. 8 km inland, respectively. For the first time, we are able to report simultaneous PM10 aerosol measurements, allowing us to study aerosol gradients at both horizontal and vertical levels. The complete chemical composition of PM10 was determined on the 221 samples, and factor analysis (positive matrix factorisation, PMF was applied. This resulted in eight factors which were attributed to eight main aerosol sources affecting PM10 concentrations in the studied urban environment: (1 vehicle exhaust and wear (2–9 µg m−3, 10–27 % of PM10 mass on average, (2 road dust (2–4 µg m−3, 8–12 %, (3 mineral dust (5 µg m−3, 13–26 %, (4 aged marine (3–5 µg m−3, 13–20 %, (5 heavy oil (0.4–0.6 µg m−3, 2 %, (6 industrial (1 µg m−3, 3–5 %, (7 sulfate (3–4 µg m−3, 11–17 % and (8 nitrate (4–6 µg m−3, 17–21 %. Three aerosol sources were found to be enhanced at the ground levels (confined within the urban ground levels of the city relative to the upper levels: (1 vehicle exhaust and wear (2.8 higher, (2 road dust (1.8 higher and (3 local urban industries/crafts workshops (1.6 higher. Surprisingly, the other aerosol sources were relatively homogeneous at both horizontal and vertical levels. However, air mass origin and meteorological parameters also played a key role in influencing the variability of the factor

  9. Open-Source Medical Devices (OSMD) Design of a Small Animal Radiotherapy System

    Science.gov (United States)

    Prajapati, S.; Mackie, T. R.; Jeraj, R.

    2014-03-01

    Open-Source Medical Devices (OSMD) was initiated with the goal of facilitating medical research by developing medical technologies including both hardware and software on an open-source platform. Our first project was to develop an integrated imaging and radiotherapy device for small animals that includes computed tomography (CT), positron emission tomography (PET) and radiation therapy (RT) modalities for which technical specifications were defined in the first OSMD conference held in Madison, Wisconsin, USA in December 2011. This paper specifically focuses on the development of a small animal RT (micro-RT) system by designing a binary micro multileaf collimator (bmMLC) and a small animal treatment planning system (SATPS) to enable intensity modulated RT (IMRT). Both hardware and software projects are currently under development and their current progresses are described. After the development, both bmMLC and TPS will be validated and commissioned for a micro-RT system. Both hardware design and software development will be open-sourced after completion.

  10. Natural radon as a limnological tracer for the study of vertical and horizontal eddy diffusion

    International Nuclear Information System (INIS)

    Imboden, D.M.

    1979-01-01

    Radon-222 (half-life 3.8 d) has been used successfully as a geochemical tracer for vertical near bottom mixing in the ocean. The parent nuclide radium-226 (half-life 1600 a) occurs in far greater quantities in sediments than in the water column, thus providing a boundary source for emanation of radon. Vertical mixing in lakes may be of central importance for the evolution of chemical and biological processes. Most lakes pass through a stagnation period during which the euphotic zone continuously loses nutrients by sedimentation of plankton through the thermocline. The return flux of nutrients from the sediments through the hypolimnion and thermocline to the euphotic layer can only be understood and quantified if vertical mixing processes are known. The traditional means by which vertical eddy diffusion is calculated is the temperature method. However, temperature changes near the bottom of deep lakes are often too small to be measured. Among various (natural or man-made) geochemical tracers radon-222 seems to be especially suitable for the study of vertical mixing since its 'memory' of about one week very often allows measured activities to be interpreted in terms of a relatively simple steady-state model

  11. A small-scale modular reactor for electric source for remote places

    International Nuclear Information System (INIS)

    Anon.

    2002-01-01

    Use of a small-scale modular reactor (SMR) as an electric source for remote places is one of scenarios for actual use of SMR parallel to alternative source of present nuclear power stations and co-generation source at urban suburbs, there is not only an actual experience to construct and operate for power source for military use in U.S.A. on 1950s to 1960s, but also four nuclear reactors (LWGR, 12 MW) in Vilyvino Nuclear Power Station in far northern district in Russia are under operation. Recently, Department of Energy in U.S.A. prepared the 'Report to Congress on Small Modular Nuclear Reactors' evaluating on feasibility of SMR as a power source for remote places according to requirement of the Congress. This report evaluated a feasibility study on nine SMRs in the world with 10 to 50 MW of output as electric source for remote places on economical efficiency and so on, together with analysis of their design concepts, to conclude that 'they could perform beginning of operations on 2000s because of no large technical problems and keeping a level capable of competing with power generation cost at remote place on its present economical efficiency'. Here was introduced on outlines of this report. (G.K.)

  12. Performance testing of a small vertical-axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.; Tullis, S.; Ziada, S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    Full-scale wind tunnel testing of a prototype 3.5 kW vertical-axis wind turbine (VAWT) was conducted in a low speed wind tunnel in Ottawa. The tests were conducted to determine nominal power curves as well as the system's structural integrity, safety and operational characteristics. Dimensionless power curves were used to assess the relation between the wind turbine's rotary speed and the produced power for various wind speeds. Tests began at the lowest wind speed and revolutions per minute (RPM) and were gradually increased. A proximity sensor was used to determine the passing frequency of spaced bolts. The aerodynamic performance of the turbine was evaluated using a servo-controlled mechanical variable load with a disc brake calliper and electro-hydraulic servo-actuator. A load cell was used to measure torque produced by the turbine. An active closed loop speed control system was used to regulate the rotary speed of the turbine. The system used a high gain proportional control law to guarantee stability. Calculated power was based on the average rotary speed measurement. Results of the study suggested that the dimensional power performance of the turbine could be predicted from the curve for all rotary speeds and for wind speeds between 8 and 16 m/s. The maximum power coefficient of 0.3 occurred at a tip speed ratio of 1.6. Test results demonstrated that the turbine reached its rated power at 14 m/s. However, the range of tip speed ratios for power production were lower than the range for most other small VAWT. 2 refs., 3 figs.

  13. Exergy analysis of a two-stage ground source heat pump with a vertical bore for residential space conditioning under simulated occupancy

    International Nuclear Information System (INIS)

    Ally, Moonis R.; Munk, Jeffrey D.; Baxter, Van D.; Gehl, Anthony C.

    2015-01-01

    Highlights: • Exergy and energy analysis of a vertical-bore ground source heat pump over a 12-month period is presented. • The ground provided more than 75% of the heating energy. • Performance metrics are presented. • Sources of systemic inefficiency are identified and prioritized using Exergy analysis. • Understanding performance metrics is vital for judicial use of renewable energy. - Abstract: This twelve-month field study analyzes the performance of a 7.56 W (2.16-ton) water-to-air-ground source heat pump (WA-GSHP) to satisfy domestic space conditioning loads in a 253 m 2 house in a mixed-humid climate in the United States. The practical feasibility of using the ground as a source of renewable energy is clearly demonstrated. Better than 75% of the energy needed for space heating was extracted from the ground. The average monthly electricity consumption for space conditioning was only 40 kW h at summer and winter thermostat set points of 24.4 °C and 21.7 °C, respectively. The WA-GSHP shared the same 94.5 m vertical bore ground loop with a separate water-to-water ground-source heat pump (WW-GSHP) for meeting domestic hot water needs in the same house. Sources of systemic irreversibility, the main cause of lost work, are identified using Exergy and energy analysis. Quantifying the sources of Exergy and energy losses is essential for further systemic improvements. The research findings suggest that the WA-GSHPs are a practical and viable technology to reduce primary energy consumption and greenhouse gas emissions under the IECC 2012 Standard, as well as the European Union (EU) 2020 targets of using renewable energy resources

  14. Ultrahigh Density Array of Vertically Aligned Small-molecular Organic Nanowires on Arbitrary Substrates

    Science.gov (United States)

    Starko-Bowes, Ryan; Pramanik, Sandipan

    2013-01-01

    In recent years π-conjugated organic semiconductors have emerged as the active material in a number of diverse applications including large-area, low-cost displays, photovoltaics, printable and flexible electronics and organic spin valves. Organics allow (a) low-cost, low-temperature processing and (b) molecular-level design of electronic, optical and spin transport characteristics. Such features are not readily available for mainstream inorganic semiconductors, which have enabled organics to carve a niche in the silicon-dominated electronics market. The first generation of organic-based devices has focused on thin film geometries, grown by physical vapor deposition or solution processing. However, it has been realized that organic nanostructures can be used to enhance performance of above-mentioned applications and significant effort has been invested in exploring methods for organic nanostructure fabrication. A particularly interesting class of organic nanostructures is the one in which vertically oriented organic nanowires, nanorods or nanotubes are organized in a well-regimented, high-density array. Such structures are highly versatile and are ideal morphological architectures for various applications such as chemical sensors, split-dipole nanoantennas, photovoltaic devices with radially heterostructured "core-shell" nanowires, and memory devices with a cross-point geometry. Such architecture is generally realized by a template-directed approach. In the past this method has been used to grow metal and inorganic semiconductor nanowire arrays. More recently π-conjugated polymer nanowires have been grown within nanoporous templates. However, these approaches have had limited success in growing nanowires of technologically important π-conjugated small molecular weight organics, such as tris-8-hydroxyquinoline aluminum (Alq3), rubrene and methanofullerenes, which are commonly used in diverse areas including organic displays, photovoltaics, thin film transistors

  15. An experimental study on two-phase pressure drop in small diameter horizontal, downward inclined and vertical tubes

    Directory of Open Access Journals (Sweden)

    Autee Arun

    2015-01-01

    Full Text Available An experimental study of two-phase pressure drop in small diameter tubes orientated horizontally, vertically and at two other downward inclinations of θ= 300 and θ = 600 is described in this paper. Acrylic transparent tubes of internal diameters 4.0, 6.0, and 8.0 mm with lengths of 400 mm were used as the test section. Air-water mixture was used as the working fluid. Two-phase pressure drop was measured and compared with the existing correlations. These correlations are commonly used for calculation of pressure drop in macro and mini-microchannels. It is observed that the existing correlations are inadequate in predicting the two-phase pressure drop in small diameter tubes. Based on the experimental data, a new correlation has been proposed for predicting the two-phase pressure drop. This correlation is developed by modification of Chisholm parameter C by incorporating different parameters. It was found that the proposed correlation predicted two-phase pressure drop at satisfactory level.

  16. Development of Uav Photogrammetry Method by Using Small Number of Vertical Images

    Science.gov (United States)

    Kunii, Y.

    2018-05-01

    This new and efficient photogrammetric method for unmanned aerial vehicles (UAVs) requires only a few images taken in the vertical direction at different altitudes. The method includes an original relative orientation procedure which can be applied to images captured along the vertical direction. The final orientation determines the absolute orientation for every parameter and is used for calculating the 3D coordinates of every measurement point. The measurement accuracy was checked at the UAV test site of the Japan Society for Photogrammetry and Remote Sensing. Five vertical images were taken at 70 to 90 m altitude. The 3D coordinates of the measurement points were calculated. The plane and height accuracies were ±0.093 m and ±0.166 m, respectively. These values are of higher accuracy than the results of the traditional photogrammetric method. The proposed method can measure 3D positions efficiently and would be a useful tool for construction and disaster sites and for other field surveying purposes.

  17. The vertical oscillations of coupled magnets

    International Nuclear Information System (INIS)

    Li Kewei; Lin Jiahuang; Kang Zi Yang; Liang, Samuel Yee Wei; Juan, Jeremias Wong Say

    2011-01-01

    The International Young Physicists' Tournament (IYPT) is a worldwide, annual competition for high school students. This paper is adapted from the winning solution to Problem 14, Magnetic Spring, as presented in the final round of the 23rd IYPT in Vienna, Austria. Two magnets were arranged on top of each other on a common axis. One was fixed, while the other could move vertically. Various parameters of interest were investigated, including the effective gravitational acceleration, the strength, size, mass and geometry of the magnets, and damping of the oscillations. Despite its simplicity, this setup yielded a number of interesting and unexpected relations. The first stage of the investigation was concerned only with the undamped oscillations of small amplitudes, and the period of small amplitude oscillations was found to be dependent only on the eighth root of important magnet properties such as its strength and mass. The second stage sought to investigate more general oscillations. A numerical model which took into account magnet size, magnet geometry and damping effects was developed to model the general oscillations. Air resistance and friction were found to be significant sources of damping, while eddy currents were negligible.

  18. X-ray of the stomach after vertical gastroplasty in the treatment of obesity

    International Nuclear Information System (INIS)

    Ovchinnikov, V.I.; Lipko, N.S.; Yashkov, Yu.I.; Timoshin, A.D.; Movchun, A.A; Oppel', T.A.

    1996-01-01

    The operation vertical gastroplasty is used to treat the socalled morbid obesity. It ends with the formation of a small stomach, Some experience gained with X-ray of the stomach is analyzed in 17 patients undergone vertical gastroplasty. X-ray evaluated the status of the small stomach arranged as a tube in the upper portions in the vicinity of the lesser curvature of the stomach. The shape, sizes, outlet of the small stomach, as well as emptying rates and the state of an internal vertical suture of the stomach are to be studies. 8 refs., 4 figs

  19. Swept-source optical coherence tomography powered by a 1.3-μm vertical cavity surface emitting laser enables 2.3-mm-deep brain imaging in mice in vivo

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K.

    2015-10-01

    We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.

  20. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1991-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments at pulsed sources are described and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is generally achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows optimization for maximum beam intensity at a given beam size over the full dynamic range with fixed collimation. Data-acquisition requirements at a pulsed source are more severe, requiring large fast histrograming memories. Data reduction is also more complex, as all wavelength-dependent and angle-dependent backgrounds and nonlinearities must be accounted for before data can be transformed to intensity vs momentum transfer (Q). A comparison is shown between the Los Alamos pulsed instrument and D11 (Institut Laue-Langevin) and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive of moderate Q and may be faster when a wide range of Q is required. (orig.)

  1. Vertical integration increases opportunities for patient flow.

    Science.gov (United States)

    Radoccia, R A; Benvenuto, J A; Blancett, L

    1991-08-01

    New sources of patients will become more and more important in the next decade as hospitals continue to feel the squeeze of a competitive marketplace. Vertical integration, a distribution tool used in other industries, will be a significant tool for health care administrators. In the following article, the authors explain the vertical integration model that shows promise for other institutions.

  2. Opportunities of energy supply of farm holdings on the basis of small-scale renewable energy sources

    Science.gov (United States)

    Efendiev, A. M.; Nikolaev, Yu. E.; Evstaf'ev, D. P.

    2016-02-01

    One of the major national economic problems of Russia is raising of agricultural production, which will provide strategic security and sustainable supply of the population with provisions. Creation of subsidiary small holdings, farm holdings, and peasant farm holdings will require addressing issues of energy supply. At considerable distance of small farms from centralized energy systems (by fuel, electricity and thermal energy) it is proposed to create a system of local energy networks on the basis of low-powered power plants using renewable energy sources (RES). There is economic unreasonableness of use of imported components of small power plants. Creation of new combined small power plants on renewable energy sources produced by domestic manufacturers is recommended. Schemes of arrangements of small power plants based on renewable energy sources are proposed, variants and characteristics of a basic source are provided—biogas plants developed by the authors. Calculations revealed that heat and power supply of self-contained farms distant from small power plants based on renewable energy sources is 2.5-2.6 times cheaper than from centralized networks. Production of biogas through anaerobic fermentation of organic waste of cattle complexes is considered as the basis. The analysis of biowaste output in various cattle farms is carried out, and the volume of biogas is determined to meet the requirements of these farms in electrical and thermal energy. The objective of the present article is to study the possibility of creating small combined power plants in Russia based on renewable sources of energy for independent consumers.

  3. Small-angle scattering at a pulsed neutron source: comparison with a steady-state reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borso, C S; Carpenter, J M; Williamson, F S; Holmblad, G L; Mueller, M H; Faber, J Jr; Epperson, J E; Danyluk, S S [Argonne National Lab., IL (USA)

    1982-08-01

    A time-of-flight small-angle diffractometer employing seven tapered collimator elements and a two-dimensional gas proportional counter was successfully utilized to collect small-angle scattering data from a solution sample of the lipid salt cetylpyridinium chloride, C/sub 21/H/sub 38/N/sup +/.Cl/sup -/, at the Argonne National Laboratory prototype pulsed spallation neutron source, ZING-P'. Comparison of the small-angle scattering observed from the same compound at the University of Missouri Research Reactor corroborated the ZING-P' results. The results are used to compare the neutron flux available from the ZING-P' source relative to the well characterized University of Missouri source. Calculations based on experimentally determined parameters indicated the time-averaged rate of detected neutrons at the ZING-P' pulsed spallation source to have been at least 33% higher than the steady-state count rate from the same sample. Differences between time-of-flight techniques and conventional steady-state techniques are discussed.

  4. Wide-band continuous-wave terahertz source with a vertically integrated photomixer

    Science.gov (United States)

    Peytavit, E.; Lampin, J.-F.; Hindle, F.; Yang, C.; Mouret, G.

    2009-10-01

    A transverse electromagnetic horn antenna is monolithically integrated with a low temperature grown GaAs vertical photodetector on a silicon substrate forming a vertically integrated photomixer. Continuous-wave terahertz radiation is generated at frequencies up to 3.5 THz with a power level reaching 20 nW around 3 THz. Microwave and material concepts allow both qualitative and quantitative explanations of the experimental results. The thin film microstrip line topology has been adapted for active devices by an Au-Au thermocompression layer transfer technique and seems to be a promising generic tool for a new generation of efficient terahertz devices.

  5. DEVELOPMENT OF UAV PHOTOGRAMMETRY METHOD BY USING SMALL NUMBER OF VERTICAL IMAGES

    Directory of Open Access Journals (Sweden)

    Y. Kunii

    2018-05-01

    Full Text Available This new and efficient photogrammetric method for unmanned aerial vehicles (UAVs requires only a few images taken in the vertical direction at different altitudes. The method includes an original relative orientation procedure which can be applied to images captured along the vertical direction. The final orientation determines the absolute orientation for every parameter and is used for calculating the 3D coordinates of every measurement point. The measurement accuracy was checked at the UAV test site of the Japan Society for Photogrammetry and Remote Sensing. Five vertical images were taken at 70 to 90 m altitude. The 3D coordinates of the measurement points were calculated. The plane and height accuracies were ±0.093 m and ±0.166 m, respectively. These values are of higher accuracy than the results of the traditional photogrammetric method. The proposed method can measure 3D positions efficiently and would be a useful tool for construction and disaster sites and for other field surveying purposes.

  6. Acoustic Source Localization via Subspace Based Method Using Small Aperture MEMS Arrays

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available Small aperture microphone arrays provide many advantages for portable devices and hearing aid equipment. In this paper, a subspace based localization method is proposed for acoustic source using small aperture arrays. The effects of array aperture on localization are analyzed by using array response (array manifold. Besides array aperture, the frequency of acoustic source and the variance of signal power are simulated to demonstrate how to optimize localization performance, which is carried out by introducing frequency error with the proposed method. The proposed method for 5 mm array aperture is validated by simulations and experiments with MEMS microphone arrays. Different types of acoustic sources can be localized with the highest precision of 6 degrees even in the presence of wind noise and other noises. Furthermore, the proposed method reduces the computational complexity compared with other methods.

  7. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...... (18, 19) for receiving light from the grating region (11) is formed within or to be connected to the grating region, and functions as an 5 output coupler for the VCL. Thereby, vertical lasing modes (16) are coupled to lateral in-plane modes (17, 20) of the in-plane waveguide formed in the silicon...

  8. Development of seismic isolation system in vertical direction

    International Nuclear Information System (INIS)

    Ohoka, Makoto; Horikiri, Morito

    1999-04-01

    A structure concept of vertical seismic isolation system which uses a common deck and a set of large dish springs was created in past studies. In this report, a series of dynamic tests on a small scale model of a common deck isolation structure were performed. The model was excited by random and seismic waves in the horizontal direction and 2-D excitation, horizontal and vertical, in order to identify the characteristics of isolation effect. The tests results are summarized as below. 1) This structure has three vibration mode. The second mode is rocking. 2) Rocking frequency depends on the excitation, for this structure has dish spring which contact with cylinders. Rocking damping varies from 2 to 8%, 3) Each mode's response peak frequency to 2-D(horizontal and vertical) excitation is almost the same the some to horizontal excitation. Vertical mode damping to 2-D excitation is about three times to horizontal excitation. 4) Isolation effect depends on a characteristics of frequency of input motion. The minimum response is to the Monju design seismic wave, soil shear wave:Vs=2000 m/sec, natural frequency of horizontal isolation in vertical direction:fv=20 Hz. A relative displacement is controlled. 5) A rocking angular displacement to 2-D excitation is about 2 times to 1-D excitation(vertical). However, it is about 1.2 E-4(rad), sufficiently small for a practical plant. (author)

  9. Structural reasons for vertical integration in the international oil industry

    International Nuclear Information System (INIS)

    Luciani, G.

    1991-01-01

    Once upon a time, the international oil industry was vertically integrated. A small group of companies controlled a very substantial share of international oil flows, extending their operations from the oil well to the gas pump, and relying on intracorporate transfers for most in-between transactions. The historical reasons for vertical disintegration, the market role, and structural reasons for vertical reintegration are examined. (author)

  10. Vertical Sampling Scales for Atmospheric Boundary Layer Measurements from Small Unmanned Aircraft Systems (sUAS

    Directory of Open Access Journals (Sweden)

    Benjamin L. Hemingway

    2017-09-01

    Full Text Available The lowest portion of the Earth’s atmosphere, known as the atmospheric boundary layer (ABL, plays an important role in the formation of weather events. Simple meteorological measurements collected from within the ABL, such as temperature, pressure, humidity, and wind velocity, are key to understanding the exchange of energy within this region, but conventional surveillance techniques such as towers, radar, weather balloons, and satellites do not provide adequate spatial and/or temporal coverage for monitoring weather events. Small unmanned aircraft, or aerial, systems (sUAS provide a versatile, dynamic platform for atmospheric sensing that can provide higher spatio-temporal sampling frequencies than available through most satellite sensing methods. They are also able to sense portions of the atmosphere that cannot be measured from ground-based radar, weather stations, or weather balloons and have the potential to fill gaps in atmospheric sampling. However, research on the vertical sampling scales for collecting atmospheric measurements from sUAS and the variabilities of these scales across atmospheric phenomena (e.g., temperature and humidity is needed. The objective of this study is to use variogram analysis, a common geostatistical technique, to determine optimal spatial sampling scales for two atmospheric variables (temperature and relative humidity captured from sUAS. Results show that vertical sampling scales of approximately 3 m for temperature and 1.5–2 m for relative humidity were sufficient to capture the spatial structure of these phenomena under the conditions tested. Future work is needed to model these scales across the entire ABL as well as under variable conditions.

  11. Analysis of vertical stability limits and vertical displacement event behavior on NSTX-U

    Science.gov (United States)

    Boyer, Mark; Battaglia, Devon; Gerhardt, Stefan; Menard, Jonathan; Mueller, Dennis; Myers, Clayton; Sabbagh, Steven; Smith, David

    2017-10-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) completed its first run campaign in 2016, including commissioning a larger center-stack and three new tangentially aimed neutral beam sources. NSTX-U operates at increased aspect ratio due to the larger center-stack, making vertical stabilization more challenging. Since ST performance is improved at high elongation, improvements to the vertical control system were made, including use of multiple up-down-symmetric flux loop pairs for real-time estimation, and filtering to remove noise. Similar operating limits to those on NSTX (in terms of elongation and internal inductance) were achieved, now at higher aspect ratio. To better understand the observed limits and project to future operating points, a database of vertical displacement events and vertical oscillations observed during the plasma current ramp-up on NSTX/NSTX-U has been generated. Shots were clustered based on the characteristics of the VDEs/oscillations, and the plasma parameter regimes associated with the classes of behavior were studied. Results provide guidance for scenario development during ramp-up to avoid large oscillations at the time of diverting, and provide the means to assess stability of target scenarios for the next campaign. Results will also guide plans for improvements to the vertical control system. Work supported by U.S. D.O.E. Contract No. DE-AC02-09CH11466.

  12. Acesso transeptal vertical ampliado em reoperações valvares mitrais com átrio esquerdo pequeno Extended vertical transseptal approach in mitral valve reoperation with a small left atrium

    Directory of Open Access Journals (Sweden)

    Walter Vosgrau Fagundes

    2004-03-01

    Full Text Available OBJETIVO: Avaliar a abordagem transeptal vertical ampliada em reoperações da valva mitral com átrio esquerdo pequeno. MÉTODO: De janeiro de 2001 a dezembro de 2002, 15 pacientes portadores de doença valvar mitral com indicação de reintervenção cirúrgica, átrio esquerdo pequeno (menor ou igual a 4,0 cm e fibrilação atrial crônica, foram submetidos à abordagem transeptal vertical ampliada da valva mitral. Nove pacientes (pt eram do sexo feminino. A idade variou de 22 a 48 anos. As indicações cirúrgicas foram: disfunção de prótese mitral (seis pt; insuficiência mitral (cinco pt e dupla lesão mitral (quatro pt. Três pacientes apresentavam insuficiência aórtica associada e um pt, insuficiência tricúspide. Nove (60% pacientes encontravam-se em ICC CF III da NYHA e seis (40%, em CF IV. RESULTADOS: A exposição do aparelho valvar mitral foi excelente. O tempo de circulação extracorpórea variou de 65 a 150 min (média = 95min. Foram implantadas próteses em todos os pacientes (15 mitrais, três aórticas e um tricúspide. A mortalidade hospitalar foi de 6,7%, com um óbito devido a baixo débito cardíaco e falência de múltiplos órgãos. Um (6,7% paciente apresentou broncopneumonia na fase hospitalar. Dez pacientes permaneceram com fibrilação atrial, três pt reverteram para ritmo sinusal e um evoluiu com ritmo juncional. A permanência hospitalar média foi de 8,2 dias. Doze (85,7% pacientes encontram-se em CF I e dois (14,3% em CF II. A curva atuarial de sobrevida é de 92,5 % em 22 meses de seguimento. CONCLUSÃO: A técnica cirúrgica empregada proporciona excelente visibilização do aparelho valvar mitral, com baixo índice de complicações.OBJECTIVE: To evaluate the efficacy of the extended vertical transseptal approach in mitral valve reoperation with a small left atrium. METHOD: From January 2001 to December 2002, 15 patients with previous mitral operations, small left atrium and atrial fibrillation

  13. Vertical profiles of ozone, carbon monoxide, and dew-point temperature obtained during GTE/CITE 1, October-November 1983. [Chemical Instrumentation Test and Evaluation

    Science.gov (United States)

    Fishman, Jack; Gregory, Gerald L.; Sachse, Glen W.; Beck, Sherwin M.; Hill, Gerald F.

    1987-01-01

    A set of 14 pairs of vertical profiles of ozone and carbon monoxide, obtained with fast-response instrumentation, is presented. Most of these profiles, which were measured in the remote troposphere, also have supporting fast-response dew-point temperature profiles. The data suggest that the continental boundary layer is a source of tropospheric ozone, even in October and November, when photochemical activity should be rather small. In general, the small-scale vertical variability between CO and O3 is in phase. At low latitudes this relationship defines levels in the atmosphere where midlatitude air is being transported to lower latitudes, since lower dew-point temperatures accompany these higher CO and O3 concentrations. A set of profiles which is suggestive of interhemispheric transport is also presented. Independent meteorological analyses support these interpretations.

  14. Vertical Josephson Interferometer for Tunable Flux Qubit

    Energy Technology Data Exchange (ETDEWEB)

    Granata, C [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Vettoliere, A [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Lisitskiy, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Rombetto, S [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Russo, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Ruggiero, B [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Corato, V [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Russo, R [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy)

    2006-06-01

    We present a niobium-based Josephson device as prototype for quantum computation with flux qubits. The most interesting feature of this device is the use of a Josephson vertical interferometer to tune the flux qubit allowing the control of the off-diagonal Hamiltonian terms of the system. In the vertical interferometer, the Josephson current is precisely modulated from a maximum to zero with fine control by a small transversal magnetic field parallel to the rf superconducting loop plane.

  15. Combined natural convection and mass transfer effects on unsteady flow past an infinite vertical porous plate embedded in a porous medium with heat source

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.S. [Department of Physics, K B D A V College, Nirakarpur, Khurda-752 019 (Orissa) (India); Tripathy, R.K. [Department of Physics, D R Nayapalli College, Bhubaneswar-751 012 (Orissa) (India); Padhy, R.K. [Department of Physics, D A V Public School, Chandrasekharpur, Bhubaneswar-751 021 (Orissa) (India); Sahu, M. [Department of Physics, Jupiter +2 Women’s Science College, IRC Village, Bhubaneswar-751 015 (Orissa) (India)

    2012-07-01

    This paper theoretically investigates the combined natural convection and mass transfer effects on unsteady flow of a viscous incompressible fluid past an infinite vertical porous plate embedded in a porous medium with heat source. The governing equations of the flow field are solved analytically for velocity, temperature, concentration distribution, skin friction and the rate of heat transfer using multi parameter perturbation technique and the effects of the flow parameters such as permeability parameter Kp, Grashof number for heat and mass transfer Gr, Gc; heat source parameter S, Schmidt number Sc, Prandtl number Pr etc. on the flow field are analyzed and discussed with the help of figures and tables. The permeability parameter Kp is reported to accelerate the transient velocity of the flow field at all points for small values of Kp (£1) and for higher values the effect reverses. The effect of increasing Grashof numbers for heat and mass transfer or heat source parameter is to enhance the transient velocity of the flow field at all points while a growing Schmidt number retards its effect at all points. A growing permeability parameter or heat source parameter increases the transient temperature of the flow field at all points, while a growing Prandtl number shows reverse effect. The effect of increasing Schmidt number is to decrease the concentration boundary layer thickness of the flow field at all points. Further, a growing permeability parameter enhances the skin friction at the wall and a growing Prandtl number shows reverse effect. The effect of increasing Prandtl number or permeability parameter leads to increase the magnitude of the rate of heat transfer at the wall.

  16. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    NARCIS (Netherlands)

    Banks, T.I.; Freedman, S.J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B.D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B.K.; Han, K.; Ichimura, K.; Murayama, H.; O'Donnell, T.; Steiner, H.M.; Winslow, L.A.; Dwyer, D.A.; McKeown, R.D.; Zhang, C.; Berger, B.E.; Lane, C.E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J.G.; Matsuno, S.; Sakai, M.; Horton-Smith, G.A.; Downum, K.E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H.J.; Markoff, D.M.; Tornow, W.; Heeger, K.M.; Detwiler, J.A.; Enomoto, S.; Decowski, M.P.

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an

  17. Preparation of very small point sources for high resolution radiography

    International Nuclear Information System (INIS)

    Case, F.N.

    1976-01-01

    The need for very small point sources of high specific activity 192 Ir, 169 Yb, 170 Tm, and 60 Co in non-destructive testing has motivated the development of techniques for the fabrication of these sources. To prepare 192 Ir point sources for use in examination of tube sheet welds in LMFBR heat exchangers, 191 Ir enriched to greater than 90 percent was melted in a helium blanketed arc to form spheres as small as 0.38 mm in diameter. Methods were developed to form the roughly spherical shaped arc product into nearly symmetrical spheres that could be used for high resolution radiography. Similar methods were used for spherical shaped sources of 169 Yb and 170 Tm. The oxides were arc melted to form rough spheres followed by grinding to precise dimensions, neutron irradiation of the spheres at a flux of 2 to 3 x 10 15 nv, and use of enriched 168 Yb to provide the maximum specific activity. Cobalt-60 with a specific activity of greater than 1100 Ci/g was prepared by processing 59 Co that had been neutron irradiated to nearly complete burnup of the 59 Co target to produce 60 Co, 61 Ni, and 62 Ni. Ion exchange methods were used to separate the cobalt from the nickel. The cobalt was reduced to metal by plating either onto aluminum foil which was dissolved away from the cobalt plate, or by plating onto mercury to prepare amalgam that could be easily formed into a pellet of cobalt with exclusion of the mercury. Both methods are discussed

  18. Hybrid III-V-on-Si Vertical Cavity laser for Optical Interconnects

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Semenova, Elizaveta; Chung, Il-Sug

    2013-01-01

    Combining a III-V active material onto the Si platform is an attractive approach for silicon photonics light source. We have developed fabrication methods for novel III-V on Si vertical cavity lasers.......Combining a III-V active material onto the Si platform is an attractive approach for silicon photonics light source. We have developed fabrication methods for novel III-V on Si vertical cavity lasers....

  19. Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae

    Directory of Open Access Journals (Sweden)

    Christopher L. Schardl

    2013-06-01

    Full Text Available The epichloae (Epichloë and Neotyphodium species, a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae. Most epichloae are vertically transmitted in seeds (endophytes, and most produce alkaloids that attack nervous systems of potential herbivores. These protective metabolites include ergot alkaloids and indole-diterpenes (tremorgens, which are active in vertebrate systems, and lolines and peramine, which are more specific against invertebrates. Several Epichloë species have been described which are sexual and capable of horizontal transmission, and most are vertically transmissible also. Asexual epichloae are mainly or exclusively vertically transmitted, and many are interspecific hybrids with genomic contributions from two or three ancestral Epichloë species. Here we employ genome-scale analyses to investigate the origins of biosynthesis gene clusters for ergot alkaloids (EAS, indole-diterpenes (IDT, and lolines (LOL in 12 hybrid species. In each hybrid, the alkaloid-gene and housekeeping-gene relationships were congruent. Interestingly, hybrids frequently had alkaloid clusters that were rare in their sexual ancestors. Also, in those hybrids that had multiple EAS, IDT or LOL clusters, one cluster lacked some genes, usually for late pathway steps. Possible implications of these findings for the alkaloid profiles and endophyte ecology are discussed.

  20. Currencies of Mutualisms: Sources of Alkaloid Genes in Vertically Transmitted Epichloae

    Science.gov (United States)

    Schardl, Christopher L.; Young, Carolyn A.; Pan, Juan; Florea, Simona; Takach, Johanna E.; Panaccione, Daniel G.; Farman, Mark L.; Webb, Jennifer S.; Jaromczyk, Jolanta; Charlton, Nikki D.; Nagabhyru, Padmaja; Chen, Li; Shi, Chong; Leuchtmann, Adrian

    2013-01-01

    The epichloae (Epichloë and Neotyphodium species), a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae). Most epichloae are vertically transmitted in seeds (endophytes), and most produce alkaloids that attack nervous systems of potential herbivores. These protective metabolites include ergot alkaloids and indole-diterpenes (tremorgens), which are active in vertebrate systems, and lolines and peramine, which are more specific against invertebrates. Several Epichloë species have been described which are sexual and capable of horizontal transmission, and most are vertically transmissible also. Asexual epichloae are mainly or exclusively vertically transmitted, and many are interspecific hybrids with genomic contributions from two or three ancestral Epichloë species. Here we employ genome-scale analyses to investigate the origins of biosynthesis gene clusters for ergot alkaloids (EAS), indole-diterpenes (IDT), and lolines (LOL) in 12 hybrid species. In each hybrid, the alkaloid-gene and housekeeping-gene relationships were congruent. Interestingly, hybrids frequently had alkaloid clusters that were rare in their sexual ancestors. Also, in those hybrids that had multiple EAS, IDT or LOL clusters, one cluster lacked some genes, usually for late pathway steps. Possible implications of these findings for the alkaloid profiles and endophyte ecology are discussed. PMID:23744053

  1. Currencies of mutualisms: sources of alkaloid genes in vertically transmitted epichloae.

    Science.gov (United States)

    Schardl, Christopher L; Young, Carolyn A; Pan, Juan; Florea, Simona; Takach, Johanna E; Panaccione, Daniel G; Farman, Mark L; Webb, Jennifer S; Jaromczyk, Jolanta; Charlton, Nikki D; Nagabhyru, Padmaja; Chen, Li; Shi, Chong; Leuchtmann, Adrian

    2013-06-06

    The epichloae (Epichloë and Neotyphodium species), a monophyletic group of fungi in the family Clavicipitaceae, are systemic symbionts of cool-season grasses (Poaceae subfamily Poöideae). Most epichloae are vertically transmitted in seeds (endophytes), and most produce alkaloids that attack nervous systems of potential herbivores. These protective metabolites include ergot alkaloids and indole-diterpenes (tremorgens), which are active in vertebrate systems, and lolines and peramine, which are more specific against invertebrates. Several Epichloë species have been described which are sexual and capable of horizontal transmission, and most are vertically transmissible also. Asexual epichloae are mainly or exclusively vertically transmitted, and many are interspecific hybrids with genomic contributions from two or three ancestral Epichloë species. Here we employ genome-scale analyses to investigate the origins of biosynthesis gene clusters for ergot alkaloids (EAS), indole-diterpenes (IDT), and lolines (LOL) in 12 hybrid species. In each hybrid, the alkaloid-gene and housekeeping-gene relationships were congruent. Interestingly, hybrids frequently had alkaloid clusters that were rare in their sexual ancestors. Also, in those hybrids that had multiple EAS, IDT or LOL clusters, one cluster lacked some genes, usually for late pathway steps. Possible implications of these findings for the alkaloid profiles and endophyte ecology are discussed.

  2. Evaluation of vertical coordinate and vertical mixing algorithms in the HYbrid-Coordinate Ocean Model (HYCOM)

    Science.gov (United States)

    Halliwell, George R.

    Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.

  3. Applications of Open Source 3-D Printing on Small Farms

    Directory of Open Access Journals (Sweden)

    Joshua M. Pearce

    2013-12-01

    Full Text Available There is growing evidence that low-cost open-source 3-D printers can reduce costs by enabling distributed manufacturing of substitutes for both specialty equipment and conventional mass-manufactured products. The rate of 3-D printable designs under open licenses is growing exponentially and there arealready hundreds of designs applicable to small-scale organic farming. It has also been hypothesized that this technology could assist sustainable development in rural communities that rely on small-scale organic agriculture. To gauge the present utility of open-source 3-D printers in this organic farm context both in the developed and developing world, this paper reviews the current open-source designs available and evaluates the ability of low-cost 3-D printers to be effective at reducing the economic costs of farming.This study limits the evaluation of open-source 3-D printers to only the most-developed fused filament fabrication of the bioplastic polylactic acid (PLA. PLA is a strong biodegradable and recyclable thermoplastic appropriate for a range of representative products, which are grouped into five categories of prints: handtools, food processing, animal management, water management and hydroponics. The advantages and shortcomings of applying 3-D printing to each technology are evaluated. The results show a general izabletechnical viability and economic benefit to adopting open-source 3-D printing for any of the technologies, although the individual economic impact is highly dependent on needs and frequency of use on a specific farm. Capital costs of a 3-D printer may be saved from on-farm printing of a single advanced analytical instrument in a day or replacing hundreds of inexpensive products over a year. In order for the full potential of open-source 3-D printing to be realized to assist organic farm economic resiliency and self-sufficiency, future work is outlined in five core areas: designs of 3-D printable objects, 3-D printing

  4. Combined effects of chemical reaction and temperature dependent heat source on MHD mixed convective flow of a couple-stress fluid in a vertical wavy porous space with travelling thermal waves

    Directory of Open Access Journals (Sweden)

    Muthuraj R.

    2012-01-01

    Full Text Available A mathematical model is developed to examine the effect of chemical reaction on MHD mixed convective heat and mass transfer flow of a couple-stress fluid in vertical porous space in the presence of temperature dependent heat source with travelling thermal waves. The dimensionless governing equations are assumed to be made up of two parts: a mean part corresponding to the fully developed mean flow, and a small perturbed part, using amplitude as a small parameter. The analytical solution of perturbed part have been carried out by using the long-wave approximation. The expressions for the zeroth-order and the first order solutions are obtained and the results of the heat and mass transfer characteristics are presented graphically for various values of parameters entering into the problem. It is noted that velocity of the fluid increases with the increase of the couple stress parameter and increasing the chemical reaction parameter leads suppress the velocity of the fluid. Cross velocity decreases with an increase of the phase angle. The increase of the chemical reaction parameter and Schmidt number lead to decrease the fluid concentration. The hydrodynamic case for a non-porous space in the absence of the temperature dependent heat source for Newtonian fluid can be captured as a limiting case of our analysis by taking, and α1→0, Da→∞, a→∞.

  5. The Dermond vertical axis wind turbine : a suitable solution for remote sites; L'eolienne a axe vertical Dermond : une eolienne particulierement bien adaptee aux milieux isoles

    Energy Technology Data Exchange (ETDEWEB)

    Martel, P. [Genivar, Montreal, PQ (Canada); Dery, J. [Dermond Inc., Ada, MI (United States)

    2005-07-01

    A new prototype of a 100 kW truncated Darrieus type vertical axis wind turbine was put into service at the University of Quebec in Abitibi-Temiscamingue. The prototype was developed by Dermond Inc., a subsidiary of Mckenzie Bay International, and has been connected to the internal power distribution network at the University since October 2004. The Dermond turbine is well suited for isolated communities in northern Canada and is an important part of power management that competes with other small autonomous diesel powered systems. In addition to its simple and reliable mechanics, the innovative turbine is easy to install and maintain. It is omni-directional, and as such, is always oriented towards the wind. It is also equipped with an advanced electronic control system that addresses the problem of power quality in small autonomous networks. Since its installation, the prototype has met its performance targets and Dermond Inc. plans to market a new 200 kW wind turbine in 2006 with improved characteristics. Dermond Inc. is confident that this technology can penetrate the markets of remote areas, including northern communities and islands. This paper described the origins of the vertical axis technology and how Dermond Inc. improved upon it to include the possibility of integrating other energy sources or energy storage for additional power gains. 8 figs.

  6. Location of aerodynamic noise sources from a 200 kW vertical-axis wind turbine

    Science.gov (United States)

    Ottermo, Fredric; Möllerström, Erik; Nordborg, Anders; Hylander, Jonny; Bernhoff, Hans

    2017-07-01

    Noise levels emitted from a 200 kW H-rotor vertical-axis wind turbine have been measured using a microphone array at four different positions, each at a hub-height distance from the tower. The microphone array, comprising 48 microphones in a spiral pattern, allows for directional mapping of the noise sources in the range of 500 Hz to 4 kHz. The produced images indicate that most of the noise is generated in a narrow azimuth-angle range, compatible with the location where increased turbulence is known to be present in the flow, as a result of the previous passage of a blade and its support arms. It is also shown that a semi-empirical model for inflow-turbulence noise seems to produce noise levels of the correct order of magnitude, based on the amount of turbulence that could be expected from power extraction considerations.

  7. Influences of some parameters on the performance of a small vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Dumitrache Alexandru

    2016-01-01

    Full Text Available The effects of various parameters on the performance of a straight bladed vertical axis wind turbine, using the vortex model, have been numerically investigated. A vortex model has been used to evaluate the performance of a vertical axis wind turbine, by means of aerodynamic characteristics of different airfoils for Reynolds numbers between 105 and 106. Parameters such as the thickness and the camber of the blade airfoil, the solidity, the type of blade profile, the number of blades and the pitch angle, which influence the power coefficient, CP, and the start-up regime. This study can be used in the designing an optimal vertical axis wind turbine in a specific location, when the prevailed wind regime is known.

  8. Small-scale Forearc Structure from Residual Bathymetry and Vertical Gravity Gradients at the Cocos-North America Subduction Zone offshore Mexico

    Science.gov (United States)

    Garcia, E. S. M.; Ito, Y.

    2017-12-01

    The subduction of topographic relief on the incoming plate at subduction zones causes deformation of the plate interface as well as the overriding plate. Whether the resulting geometric irregularities play any role in inhibiting or inducing seismic rupture is a topic of relevance for megathrust earthquake source studies. A method to discern the small-scale structure at subduction zone forearcs was recently developed by Bassett and Watts (2015). Their technique constructs an ensemble average of the trench-perpendicular topography, and the removal of this regional tectonic signal reveals the short-wavelength residual bathymetric anomalies. Using examples from selected areas at the Tonga, Mariana, and Japan subduction zones, they were able to link residual bathymetric anomalies to the subduction of seamount chains, given the similarities in wavelength and amplitude to the morphology of seamounts that have yet to subduct. We focus here on an analysis of forearc structures found in the Mexico segment of the Middle America subduction zone, and their potential mechanical interaction with areas on the plate interface that have been previously identified as source regions for earthquake ruptures and aseismic events. We identified several prominent residual bathymetric anomalies off the Guerrero and Oaxaca coastlines, mainly in the shallow portion of the plate interface and between 15 and 50 kilometers away from the trench axis. The residual amplitude of these bathymetric anomalies is typically in the hundreds of meters. Some of the residual bathymetric anomalies offshore Oaxaca are found landward of seamount chains on the incoming Cocos Plate, suggesting that these anomalies are associated with the prior subduction of seamounts at the margin. We also separated the residual and regional components of satellite-based vertical gravity gradient data using a directional median filter to isolate the possible gravity signals from the seamount edifices.

  9. Experimental and numerical study on density stratification erosion phenomena with a vertical buoyant jet in a small vessel

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Satoshi, E-mail: abe.satoshi@jaea.go.jp; Ishigaki, Masahiro; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2016-07-15

    Highlights: • This paper shows results of a small scale experiment and CFD analyses on a density stratification erosion with a vertical buoyant jet. • The particle image velocimetry (PIV) and quadrupole mass spectrometer (QMS) with a multiport rotating valve were applied. • Two typical well-used RANS models were applied. • The simulated stratification erosion was in agreement with the experimental result, which suggested that the turbulence mixing occurred only in the jet impinging region. - Abstract: The Japan Atomic Energy Agency (JAEA) has started the ROSA-SA project to investigate thermal hydraulic phenomena in a reactor containment vessel during a severe accident. The hydrogen distribution in the vessel is one of significant safety issues in discussing a potential of hydrogen combustion in the containment. Density stratification and its break-up are important phenomena affecting the hydrogen distribution. This paper focuses on a density stratification erosion and break-up mechanism with a vertical buoyant jet promoting the turbulent helium transport. Small scale experiment and computational fluid dynamics (CFD) analyses were carried out for investigating this phenomena. In the experiment, a rectangular vessel made with acrylic plates with a width of 1.5 m, a length of 1.5 m and a height of 1.8 m was used for visualizing flow field with particle image velocimetry (PIV) system. The quadrupole mass spectrometer (QMS) system with a multiport rotating valve was applied for measuring gaseous concentration at 20 elevation points. In CFD analysis with OpenFOAM, two typical well-used turbulence models were used: low-Reynolds number type k–ε model and SST k–ω model, with a turbulence model modification to consider the buoyant effect in the stratification. As a result, the stratification erosion in the CFD analyses with the modified turbulence model agreed well with the experimental data, indicating importance of the turbulence damping by the buoyant effect.

  10. Experimental and numerical study on density stratification erosion phenomena with a vertical buoyant jet in a small vessel

    International Nuclear Information System (INIS)

    Abe, Satoshi; Ishigaki, Masahiro; Sibamoto, Yasuteru; Yonomoto, Taisuke

    2016-01-01

    Highlights: • This paper shows results of a small scale experiment and CFD analyses on a density stratification erosion with a vertical buoyant jet. • The particle image velocimetry (PIV) and quadrupole mass spectrometer (QMS) with a multiport rotating valve were applied. • Two typical well-used RANS models were applied. • The simulated stratification erosion was in agreement with the experimental result, which suggested that the turbulence mixing occurred only in the jet impinging region. - Abstract: The Japan Atomic Energy Agency (JAEA) has started the ROSA-SA project to investigate thermal hydraulic phenomena in a reactor containment vessel during a severe accident. The hydrogen distribution in the vessel is one of significant safety issues in discussing a potential of hydrogen combustion in the containment. Density stratification and its break-up are important phenomena affecting the hydrogen distribution. This paper focuses on a density stratification erosion and break-up mechanism with a vertical buoyant jet promoting the turbulent helium transport. Small scale experiment and computational fluid dynamics (CFD) analyses were carried out for investigating this phenomena. In the experiment, a rectangular vessel made with acrylic plates with a width of 1.5 m, a length of 1.5 m and a height of 1.8 m was used for visualizing flow field with particle image velocimetry (PIV) system. The quadrupole mass spectrometer (QMS) system with a multiport rotating valve was applied for measuring gaseous concentration at 20 elevation points. In CFD analysis with OpenFOAM, two typical well-used turbulence models were used: low-Reynolds number type k–ε model and SST k–ω model, with a turbulence model modification to consider the buoyant effect in the stratification. As a result, the stratification erosion in the CFD analyses with the modified turbulence model agreed well with the experimental data, indicating importance of the turbulence damping by the buoyant effect.

  11. The B → D* vertical bar ν form factor at zero recoil and the determination of vertical bar Vcb vertical bar

    International Nuclear Information System (INIS)

    Simone, J.N.; Hashimoto, S.; Kronfeld, A.S.; Mackenzie, P.B.; Ryan, S.M.

    2002-01-01

    We summarize our lattice QCD study of the form factor at zero recoil in the decay B → D* vertical bar ν. After careful consideration of all sources of systematic uncertainty, we find, h A 1 (1) 0.913 +24+17 -17-30 , where the first uncertainty is from statistics and fitting while the second combined uncertainty is from all other systematic effects

  12. Production of vertical arrays of small diameter single-walled carbon nanotubes

    Science.gov (United States)

    Hauge, Robert H; Xu, Ya-Qiong

    2013-08-13

    A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.

  13. Small-angle neutron scattering at pulsed spallation sources

    International Nuclear Information System (INIS)

    Seeger, P.A.; Hjelm, R.P. Jr.

    1990-01-01

    The importance of small-angle neutron scattering (SANS) in biological, chemical, physical, and engineering research mandates that all intense neutron sources be equipped with SANS instruments. Four existing instruments are described, and the general differences between pulsed-source and reactor-based instrument designs are discussed. The basic geometries are identical, but dynamic range is achieved by using a broad band of wavelengths (with time-of-flight analysis) rather than by moving the detector. This allows a more optimized collimation system. Data acquisition requirements at a pulsed source are more severe, requiring large, fast histogramming memories. Data reduction is also more complex, as all wave length-dependent and angle-dependent backgrounds and non-linearities must be accounted for before data can be transformed to intensity vs Q. A comparison is shown between the Los Alamos pulsed instrument and D-11 (Institute Laue-Langevin), and examples from the four major topics of the conference are shown. The general conclusion is that reactor-based instruments remain superior at very low Q or if only a narrow range of Q is required, but that the current generation of pulsed-source instruments is competitive at moderate Q and may be faster when a wide range of Q is required. In principle, a user should choose which facility to use on the basis of optimizing the experiment; in practice the tradeoffs are not severe and the choice is usually made on the basis of availability

  14. Vertical-cavity surface-emitting lasers for medical diagnosis

    DEFF Research Database (Denmark)

    Ansbæk, Thor

    This thesis deals with the design and fabrication of tunable Vertical-Cavity Surface-Emitting Lasers (VCSELs). The focus has been the application of tunable VCSELs in medical diagnostics, specifically OCT. VCSELs are candidates as light sources for swept-source OCT where their high sweep rate, wide...

  15. Full-scale fire experiments on vertical horizontal cable trays

    International Nuclear Information System (INIS)

    Mangs, J.; Keski-Rahkonen, O.

    1997-10-01

    Two full-scale fire experiments on PVC cables used in nuclear power plants were carried out, one with cables in vertical position and one with cables in horizontal position. The vertical cable bundle, 3 m high, 300 mm wide and 30 mm thick, was attached to a steel cable ladder. The vertical bundle experiment was carried out in nearly free space with three walls near the cable ladder guiding air flow in order to stabilise flames. The horizontal cable experiment was carried out in a small room with five cable bundles attached to steel cable ladders. Three of the 2 m long cable bundles were located in an array, equally spaced above each other near one long side of the room and two correspondingly near the opposite long side. The vertical cable bundle was ignited with a small propane gas burner beneath the lower edge of the bundle. The horizontal cable bundles were ignited with a small propane burner beneath the lowest bundle in an array of three bundles. Rate of heat release by means of oxygen consumption calorimetry, mass change, CO 2 , CO and smoke production rate and gas, wall and cable surface temperatures were measured as a function of time, as well as time to sprinkler operation and failure of test voltage in cables. Additionally, the minimum rate of heat release needed to ignite the bundle was determined. This paper concentrates on describing and recording the experimental set-up and the data obtained. (orig.)

  16. Size of nuclear sources from measurements of proton-proton correlations at small relative momentum

    International Nuclear Information System (INIS)

    Rebreyend, D.; Kox, S.; Merchez, F.; Noren, B.; Perrin, C.; Khelfaoui, B.; Gondrand, J.C.; Bondorf, J.P.

    1990-01-01

    This contribution will present recent measurements performed on light heavy ion reactions at intermediate energies. Nuclear source sizes were determined by measuring the correlation at small relative momentum, between two protons detected in the EMRIC set-up. This technique allows the determination of the extent of the emitting source by constructing a correlation function for the coincident protons and analyzing it in the framework of a final state interaction model. We found the apparent source size to be large compared to the dimension of the studied system and low sensitivity of the extracted radii as a function of the target mass and detection angle. We will show that simulations may be needed to fully estimate the correlation induced by detectors with small angular acceptance

  17. Small-Scale Gravity Waves in ER-2 MMS/MTP Wind and Temperature Measurements during CRYSTAL-FACE

    Science.gov (United States)

    Wang, L.; Alexander, M. J.; Bui, T. P.; Mahoney, M. J.

    2006-01-01

    Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at the aircraft's flight level (typically approximately 20 km altitude). For a given flight segment, the S-transform (a Gaussian wavelet transform) was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of approximately 5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, approximately 20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus

  18. Small-scale gravity waves in ER-2 MMS/MTP wind and temperature measurements during CRYSTAL-FACE

    Directory of Open Access Journals (Sweden)

    L. Wang

    2006-01-01

    Full Text Available Lower stratospheric wind and temperature measurements made from NASA's high-altitude ER-2 research aircraft during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs at the aircraft's flight level (typically ~20 km altitude. For a given flight segment, the S-transform (a Gaussian wavelet transform was used to search for and identify small horizontal scale GW events, and to estimate their apparent horizontal wavelengths. The horizontal propagation directions of the events were determined using the Stokes parameter method combined with the cross S-transform analysis. The vertical temperature gradient was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100GW events were identified. They were generally high frequency waves with vertical wavelength of ~5 km and horizontal wavelength generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, ~20% of them had very short horizontal wavelength, very high intrinsic frequency, and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream of the locations of the events observed at the aircraft level. Finally, a probability density function of the reversible cooling rate due to GWs was obtained in this study, which may be useful for cirrus cloud models.

  19. Small wind turbines - Technical sheet

    International Nuclear Information System (INIS)

    2015-02-01

    This publication first proposes an overview of the technical context of small wind turbines (from less than 1 kW to 36 kW). It discusses issues related to mast height, indicates the various technologies in terms of machine geometry (vertical or horizontal axis), of mast and foundations, of mechanism of orientation with respect to the wind. It also outlines that power curves are not always reliable due to a lack of maturity of techniques and technologies. Other issues are discussed: wind characteristics, and the assessment of the national potential source. The next parts address the regulatory and economic context, environmental impacts (limited impact on landscape, noise), propose an overview of actors and market (supply and demand of small wind turbines in the USA and in France, actors involved in the chain value in France), and give some recommendations for the development of small wind turbines in France. The last part proposes a technical focus on self-consumption by professional in rural areas (production and consumption in farms)

  20. Global Sourcing and Firm Selection

    DEFF Research Database (Denmark)

    Kohler, Wilhelm; Smolka, Marcel

    2014-01-01

    We analyze the sourcing strategies of firms active in the Spanish manufacturing sector. We show that firms that select strategies of vertical integration and of foreign sourcing ex post tend to have been more productive, ex ante, than other firms.......We analyze the sourcing strategies of firms active in the Spanish manufacturing sector. We show that firms that select strategies of vertical integration and of foreign sourcing ex post tend to have been more productive, ex ante, than other firms....

  1. Use of a vibrating plate to enhance natural convection cooling of a discrete heat source in a vertical channel

    Energy Technology Data Exchange (ETDEWEB)

    Florio, L.A.; Harnoy, A. [Department of Mechanical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102 (United States)

    2007-09-15

    A numerical investigation was conducted into an alternative method of natural convection enhancement by the transverse oscillations of a thin short plate, strategically positioned in close proximity to a rectangular heat source. The heat source is attached to a mounting board in a vertical channel. Two-dimensional laminar flow finite element studies were carried out with the oscillation parameters, the oscillating plate-heat source mean clearance spacing, and the oscillating plate position varied. Significant cooling was found for displacement amplitudes of at least one-third of the mean clearance together with frequencies (Re/{radical}(Gr)) of over 2{pi} with the displacement being more critical to the cooling level. For the parameters investigated, up to a 52% increase in the local heat transfer coefficient relative to standard natural convection was obtained. The results indicate that this method can serve as a feasible, simpler, more energy and space efficient alternative to common methods of cooling for low power dissipating devices operating at conditions just beyond the reach of pure natural convection. (author)

  2. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2017-10-15

    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  3. Application of EM holographic methods to borehole vertical electric source data to map a fuel oil spill

    International Nuclear Information System (INIS)

    Bartel, L.C.

    1993-01-01

    The multifrequency, multisource holographic method used in the analysis of seismic data is to extended electromagnetic (EM) data within the audio frequency range. The method is applied to the secondary magnetic fields produced by a borehole, vertical electric source (VES). The holographic method is a numerical reconstruction procedure based on the double focusing principle for both the source array and the receiver array. The approach used here is to Fourier transform the constructed image from frequency space to time space and set time equal to zero. The image is formed when the in-phase part (real part) is a maximum or the out-of-phase (imaginary part) is a minimum; i.e., the EM wave is phase coherent at its origination. In the application here the secondary magnetic fields are treated as scattered fields. In the numerical reconstruction, the seismic analog of the wave vector is used; i.e., the imaginary part of the actual wave vector is ignored. The multifrequency, multisource holographic method is applied to calculated model data and to actual field data acquired to map a diesel fuel oil spill

  4. Applications of EM holographic methods to borehole vertical electric source data to map a fuel oil spill

    International Nuclear Information System (INIS)

    Bartel, L.C.

    1993-01-01

    The multifrequency, multisource holographic method used in the analysis of seismic data is to extended electromagnetic (EM) data within the audio frequency range. The method is applied to the secondary magnetic fields produced by a borehole, vertical electric source (VES). The holographic method is a numerical reconstruction procedure based on the double focusing principle for both the source array and the receiver array. The approach used here is to Fourier transform the constructed image from frequency space to time space and set time equal to zero. The image is formed when the in-phase part (real part) is a maximum or the out-of-phase (imaginary part) is a minimum; i.e., the EM wave is phase coherent at its origination. In the application here the secondary magnetic fields are treated as scattered fields. In the numerical reconstruction, the seismic analog of the wave vector is used; i.e., the imaginary part of the actual wave vector is ignore. The multifrequency, multisource holographic method is applied to calculated model data and to actual field data acquired to map a diesel fuel oil spill

  5. First application of liquid-metal-jet sources for small-animal imaging: High-resolution CT and phase-contrast tumor demarcation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna; Hertz, Hans M. [Department of Applied Physics, KTH Royal Institute of Technology/Albanova, 10691 Stockholm (Sweden); Westermark, Ulrica K.; Arsenian Henriksson, Marie [Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm (Sweden)

    2013-02-15

    Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  6. Evaluating sources and processing of nonpoint source nitrate in a small suburban watershed in China

    Science.gov (United States)

    Han, Li; Huang, Minsheng; Ma, Minghai; Wei, Jinbao; Hu, Wei; Chouhan, Seema

    2018-04-01

    Identifying nonpoint sources of nitrate has been a long-term challenge in mixed land-use watershed. In the present study, we combine dual nitrate isotope, runoff and stream water monitoring to elucidate the nonpoint nitrate sources across land use, and determine the relative importance of biogeochemical processes for nitrate export in a small suburban watershed, Longhongjian watershed, China. Our study suggested that NH4+ fertilizer, soil NH4+, litter fall and groundwater were the main nitrate sources in Longhongjian Stream. There were large changes in nitrate sources in response to season and land use. Runoff analysis illustrated that the tea plantation and forest areas contributed to a dominated proportion of the TN export. Spatial analysis illustrated that NO3- concentration was high in the tea plantation and forest areas, and δ15N-NO3 and δ18O-NO3 were enriched in the step ponds. Temporal analysis showed high NO3- level in spring, and nitrate isotopes were enriched in summer. Study as well showed that the step ponds played an important role in mitigating nitrate pollution. Nitrification and plant uptake were the significant biogeochemical processes contributing to the nitrogen transformation, and denitrification hardly occurred in the stream.

  7. Global sourcing risk management approaches: A study of small clothing and textile retailers in Gauteng

    Directory of Open Access Journals (Sweden)

    Wesley Niemann

    2018-02-01

    Full Text Available Background: Global sourcing has increased as buyers searched for new markets that offered better pricing, quality, variety and delivery lead times than their local markets. However, the increase in global sourcing has also exposed businesses to many supply risks. Purpose: The purpose of this descriptive qualitative study was to explore the global sourcing supply risks encountered by small clothing and textile retailers in Gauteng and to determine what supply risk identification and management approaches they utilise. Method: This study utilised semi-structured interviews conducted with 12 small clothing and textile retail owners. Results: The study found that the three major supply risks encountered by these retailers were fluctuating exchange rates, communication barriers and costly and complicated logistics, which included high customs costs. Furthermore, although aware of the supply risks, none of the small clothing and textile retailers had formal identification and management approaches in place. Instead, risks are dealt with at the sole discretion of the owner as and when they occur. The study also found that informal identification and management approaches were being applied by some of the retailers. These included factoring exchange rate fluctuations into the profit margins and using translators to combat communication barriers. Contribution: The study is one of the first empirical studies conducted on global supply risks and the associated identification and management approaches in the South African small business context, specifically focused on clothing and textile retailers. Conclusion: Small clothing and textile retailers need to proactively identify and manage global sourcing risk using the identified approaches in order to reduce and mitigate potential supply disruptions.

  8. Vertical dispersion generated by correlated closed orbit deviations

    International Nuclear Information System (INIS)

    Kewisch, J.; Limberg, T.; Rossbach, J.; Willeke, F.

    1986-02-01

    Vertical displacement of quadrupole magnets is one of the main causes of a vertical dispersion in a flat storage ring and thus a major contributor to the height of an electron beam. Computer simulations of the beam height in the HERA electron ring give a value of the ratio ε z /ε x of more than 10 percent. This large value occurs even for an rms value of the quadrupole vertical displacements Δz as small as 0.01 mm. Such a vertical emittance is much larger than one expects on the base of a theoretical estimate and it is clearly necessary to investigate the origin of the disagreements especially since the beam height has such an important influence on the machine performance. The key to the understanding of this discrepancy lies in the correlations of the closed orbit deviations at different position of the machine. This is investigated in the next section and in the section which follows we derive the expression for the rms value of dispersion and the vertical emittance. Finally the theoretical results are compared with computer simulations. (orig.)

  9. Vertical Transport of Momentum by the Inertial-Gravity Internal Waves in a Baroclinic Current

    Directory of Open Access Journals (Sweden)

    A. A. Slepyshev

    2017-08-01

    Full Text Available When the internal waves break, they are one of the sources of small-scale turbulence. Small-scale turbulence causes the vertical exchange in the ocean. However, internal waves with regard to the Earth rotation in the presence of vertically inhomogeneous two-dimensional current are able to contribute to the vertical transport. Free inertial-gravity internal waves in a baroclinic current in a boundless basin of a constant depth are considered in the Bussinesq approximation. Boundary value problem of linear approximation for the vertical velocity amplitude of internal waves has complex coefficients when current velocity component, which is transversal to the wave propagation direction, depends on the vertical coordinate (taking into account the rotation of the Earth. Eigenfunction and wave frequency are complex, and it is shown that a weak wave damping takes place. Dispersive relation and wave damping decrement are calculated in the linear approximation. At a fixed wave number damping decrement of the second mode is larger (in the absolute value than the one of the first mode. The equation for vertical velocity amplitude for real profiles of the Brunt – Vaisala frequency and current velocity are numerically solved according to implicit Adams scheme of the third order of accuracy. The dispersive curves of the first two modes do not reach inertial frequency in the low-frequency area due to the effect of critical layers in which wave frequency of the Doppler shift is equal to the inertial one. Termination of the second mode dispersive curves takes place at higher frequency than the one of the first mode. In the second order of the wave amplitude the Stokes drift speed is determined. It is shown that the Stokes drift speed, which is transversal to the wave propagation direction, differs from zero if the transversal component of current velocity depends on the vertical coordinate. In this case, the Stokes drift speed in the second mode is lower than

  10. On non-primitively divergent vertices of Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Markus Q. [Institute of Physics, University of Graz, NAWI Graz (Austria)

    2017-11-15

    Two correlation functions of Yang-Mills beyond the primitively divergent ones, the two-ghost-two-gluon and the four-ghost vertices, are calculated and their influence on lower vertices is examined. Their full (transverse) tensor structure is taken into account. As input, a solution of the full two-point equations - including two-loop terms - is used that respects the resummed perturbative ultraviolet behavior. A clear hierarchy is found with regard to the color structure that reduces the number of relevant dressing functions. The impact of the two-ghost-two-gluon vertex on the three-gluon vertex is negligible, which is explained by the fact that all non-small dressing functions drop out due to their color factors. Only in the ghost-gluon vertex a small net effect below 2% is seen. The four-ghost vertex is found to be extremely small in general. Since these two four-point functions do not enter into the propagator equations, these findings establish their small overall effect on lower correlation functions. (orig.)

  11. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1998-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  12. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1999-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  13. Surface tension effects on vertical upward annular flows in a small diameter pipe

    Energy Technology Data Exchange (ETDEWEB)

    Sadatomi, Michio, E-mail: sadatomi@mech.kumamoto-u.ac.jp [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Kawahara, Akimaro [Dept. of Advanced Mechanical Systems, Kumamoto Univ., 39-1, Kurokami 2-chome, Chuou-ku, Kumamoto 860-8555 (Japan); Suzuki, Aruta [Plant Design & Engineering Dept., Environment, Energy & Plant Headquarters, Hitachi Zosen Corporation, 7-89, Nankokita 1-chome, Suminoe-ku, Osaka, 559-8559 (Japan)

    2016-12-15

    Highlights: • Surface tension effects were clarified on annular flow in a small diameter pipe. • The mean liquid film thickness became thinner with decreasing of surface tension. • The liquid droplet fraction and the interfacial shear stress became higher with it. • New prediction methods for the above parameters were developed and validated. - Abstract: Experiments were conducted to study the surface tension effects on vertical upward annular flows in a 5 mm I.D. pipe using water and low surface tension water with a little surfactant as the test liquid and air as the test gas. Firstly, the experimental results on the mean liquid film thickness, the liquid droplet fraction and the interfacial shear stress in annular flows together with some flow pictures are presented to clarify the surface tension effects. From these, the followings are clarified: In the low surface tension case, the liquid film surface becomes rough, the liquid film thickness thin, the liquid droplet fraction high, and the interfacial shear stress high. Secondary, correlations in literatures for the respective parameters are tested against the present data. The test results show that no correlation for the respective parameters could predict well the present data. Thus, correlations are revised by accounting for the surface tension effects. The results of the experiments, the correlations tests and their revisions mentioned above are presented in the present paper.

  14. Small neutron sources as centers for innovation and science

    International Nuclear Information System (INIS)

    Baxter, D.V.

    2009-01-01

    The education and training of the next generation of scientists who will form the user base for the Spallation Neutron Source (SNS) remains a significant issue for the future success of this national facility. These scientists will be drawn from a wide variety of disciplines (physics, chemistry, biology, and engineering) and therefore the development of an effective interdisciplinary training program represents a significant challenge. In addition, effective test facilities to develop the full potential of pulsed neutron sources for science do not exist. Each of these problems represents a significant hurdle for the future health of neutron science in this country. An essential part of the solution to both problems is to get neutron sources of useful intensities into the hands of researchers and students at universities, where faculty can teach students about neutron production and the utility of neutrons for solving scientific problems. Due to a combination of developments in proton accelerator technology, neutron optics, cold neutron moderators, computer technology, and small-angle neutron scattering (SANS) instrumentation, it is now technically possible and cost effective to construct a pulsed cold neutron source suitable for use in a university setting and devoted to studies of nano structures in the fields of materials science, polymers, microemulsions, and biology. Such a source, based on (p,n) reactions in light nuclei induced by a few MeV pulsed proton beam coupled to a cold neutron moderator, would also be ideal for the study of a number of technical issues which are essential for the development of neutron science such as cold and perhaps ultracold neutron moderators, neutron optical devices, neutron detector technology, and transparent DAQ/user interfaces. At the Indiana University Cyclotron Facility (IUCF) we possess almost all of the required instrumentation and expertise to efficiently launch the first serious attempt to develop an intense pulsed cold

  15. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX

    Directory of Open Access Journals (Sweden)

    K. W. Wong

    2011-04-01

    Full Text Available Nitrous acid (HONO often plays an important role in tropospheric photochemistry as a major precursor of the hydroxyl radical (OH in early morning hours and potentially during the day. However, the processes leading to formation of HONO and its vertical distribution at night, which can have a considerable impact on daytime ozone formation, are currently poorly characterized by observations and models. Long-path differential optical absorption spectroscopy (LP-DOAS measurements of HONO during the 2006 TexAQS II Radical and Aerosol Measurement Project (TRAMP, near downtown Houston, TX, show nocturnal vertical profiles of HONO, with mixing ratios of up to 2.2 ppb near the surface and below 100 ppt aloft. Three nighttime periods of HONO, NO2 and O3 observations during TRAMP were used to perform model simulations of vertical mixing ratio profiles. By adjusting vertical mixing and NOx emissions the modeled NO2 and O3 mixing ratios showed very good agreement with the observations.

    Using a simple conversion of NO2 to HONO on the ground, direct HONO emissions, as well as HONO loss at the ground and on aerosol, the observed HONO profiles were reproduced by the model for 1–2 and 7–8 September in the nocturnal boundary layer (NBL. The unobserved increase of HONO to NO2 ratio (HONO/NO2 with altitude that was simulated by the initial model runs was found to be due to HONO uptake being too small on aerosol and too large on the ground. Refined model runs, with adjusted HONO uptake coefficients, showed much better agreement of HONO and HONO/NO2 for two typical nights, except during morning rush hour, when other HONO formation pathways are most likely active. One of the nights analyzed showed an increase of HONO mixing ratios together with decreasing NO2 mixing ratios that the model was unable to reproduce, most likely due to the impact of

  16. A note on unionized firms' incentive to integrate vertically

    OpenAIRE

    Grandner, Thomas

    2000-01-01

    In this paper I analyze a vertically structured monopolized market with unionized firms. I compare two types of contracts: vertical integration and franchising. With franchising and wage bargaining at the firm level the union in the downstream firm is either very powerful or has no bargaining power at all, depending on the specific time structure of the model. These arguments could make integration preferable for the profit owners even if integration is accompanied by small transaction costs....

  17. Plasma Vertical Control with Internal and External Coils in Nest Step Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Kessel; P. Heitzenroeder; C. Jun

    2000-11-03

    Vertical stability and control are examined for a tokamak configuration intended to be a generic representation of next step devices. Vertical stability calculations show that a critical resistive wall location can be determined for realistic structures, and that the introduction of small amounts of low resistivity material to an all steel structure can significantly reduce the vertical instability growth rate. Vertical control simulations show that internal control coils require significantly less feedback power than external coils, and that low resistivity materials can allow very low feedback powers or coils to be located externally with reasonable feedback powers.

  18. LOFT facility PSS experiments: analysis of wet well vertical loads resulting from transient initiation

    International Nuclear Information System (INIS)

    Berta, V.T.

    1977-05-01

    Fourteen experiments on the Loss-of-Fluid Test (LOFT) facility pressure suppression system (PSS) are analyzed in relation to the vertical load generated on the suppression tank in the first 0.5 sec of the transient. Variations in principle parameters affecting the generation of vertical loads were included in the experiments. The internal and external vent submergences are identified from the analysis as being parameters which are first order in influencing the magnitude of the vertical load. These parameters are geometric in nature and depend only on PSS design. Physical parameters of total energy input and rate of energy input to the dry well, which influence the dry well pressurization, also are identified as being first order in influencing the magnitude of the vertical loads. The vertical load magnitude is a direct function of these geometric and physical parameters. The analysis indicates that a small value in any one of the parameters will cause the vertical load to be small and to have little dependence on the magnitude of the other parameters. In addition, the phenomena of nonuniform nonsynchronized vent inlet pressures, which have origins that are either geometric, physical, or a combination of both, act as a significant vertical load reduction mechanism

  19. Decoration of vertical graphene with aerosol nanoparticles for gas sensing

    International Nuclear Information System (INIS)

    Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong

    2015-01-01

    A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor. (paper)

  20. Thermoelectric energy harvesting from small ambient temperature transients

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Andre

    2012-07-01

    Wireless sensor networks (WSNs) represent a key technology, used, for instance, in structural health monitoring, building automation systems, or traffic surveillance. Supplying power to a network of spatially distributed sensor nodes, especially at remote locations, is a large challenge: power grids are reliable but costly to install, whereas batteries provide a high flexibility in the installation but have a limited lifetime. This dilemma can be overcome by micro energy harvesting which offers both: reliability and flexibility. Micro energy harvesters are able to convert low grade ambient energy into useful electrical energy and thus provide power for wireless sensor networks or other electronic devices - in-situ, off-grid, and with an almost unlimited lifetime. Thermal energy is an omnipresent source of ambient energy: The day-night-cycle of the sun causes a temperature variation in the ambient air as well as arbitrary solids (soil, building walls, etc.). Unlike the air, solids have a large thermal inertia which dampens the temperature variation. This physical process leads to a temperature difference {Delta}T = T{sub air} - T{sub solid} between air and solid that can be converted directly into electrical energy by a thermoelectric generator (TEG). Thermal and electrical interfaces are necessary to connect the TEG to the thermal energy source (T{sub air}, T{sub solid}) and the electrical load (WSN). Reliable operation of the WSN may only be ensured if the harvester provides sufficient electrical energy, i.e. operates at its maximum power point. The goal of this thesis is to study, design, and test thermoelectric harvesters generating electrical energy from small ambient temperature transients in order to self-sufficiently power a WSN. Current research into thermoelectric energy harvesting, especially analytical modeling and application in the field are treated insufficiently. Therefore, a time-dependent analytical model of the harvester's output power is set

  1. Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source

    Science.gov (United States)

    Azhar, Waqas Ali; Vieru, Dumitru; Fetecau, Constantin

    2017-08-01

    Free convection flow of some water based fractional nanofluids over a moving infinite vertical plate with uniform heat flux and heat source is analytically and graphically studied. Exact solutions for dimensionless temperature and velocity fields, Nusselt numbers, and skin friction coefficients are established in integral form in terms of modified Bessel functions of the first kind. These solutions satisfy all imposed initial and boundary conditions and reduce to the similar solutions for ordinary nanofluids when the fractional parameters tend to one. Furthermore, they reduce to the known solutions from the literature when the plate is fixed and the heat source is absent. The influence of fractional parameters on heat transfer and fluid motion is graphically underlined and discussed. The enhancement of heat transfer in such flows is higher for fractional nanofluids in comparison with ordinary nanofluids. Moreover, the use of fractional models allows us to choose the fractional parameters in order to get a very good agreement between experimental and theoretical results.

  2. Single-exposure two-dimensional superresolution in digital holography using a vertical cavity surface-emitting laser source array.

    Science.gov (United States)

    Granero, Luis; Zalevsky, Zeev; Micó, Vicente

    2011-04-01

    We present a new implementation capable of producing two-dimensional (2D) superresolution (SR) imaging in a single exposure by aperture synthesis in digital lensless Fourier holography when using angular multiplexing provided by a vertical cavity surface-emitting laser source array. The system performs the recording in a single CCD snapshot of a multiplexed hologram coming from the incoherent addition of multiple subholograms, where each contains information about a different 2D spatial frequency band of the object's spectrum. Thus, a set of nonoverlapping bandpass images of the input object can be recovered by Fourier transformation (FT) of the multiplexed hologram. The SR is obtained by coherent addition of the information contained in each bandpass image while generating an enlarged synthetic aperture. Experimental results demonstrate improvement in resolution and image quality.

  3. Temperature and Relative Humidity Vertical Profiles within Planetary Boundary Layer in Winter Urban Airshed

    Science.gov (United States)

    Bendl, Jan; Hovorka, Jan

    2017-12-01

    The planetary boundary layer is a dynamic system with turbulent flow where horizontal and vertical air mixing depends mainly on the weather conditions and geomorphology. Normally, air temperature from the Earth surface decreases with height but inversion situation may occur, mainly during winter. Pollutant dispersion is poor during inversions so air pollutant concentration can quickly rise, especially in urban closed valleys. Air pollution was evaluated by WHO as a human carcinogen (mostly by polycyclic aromatic hydrocarbons) and health effects are obvious. Knowledge about inversion layer height is important for estimation of the pollution impact and it can give us also information about the air pollution sources. Temperature and relative humidity vertical profiles complement ground measurements. Ground measurements were conducted to characterize comprehensively urban airshed in Svermov, residential district of the city of Kladno, about 30 km NW of Prague, from the 2nd Feb. to the 3rd of March 2016. The Svermov is an air pollution hot-spot for long time benzo[a]pyrene (B[a]P) limit exceedances, reaching the highest B[a]P annual concentration in Bohemia - west part of the Czech Republic. Since the Svermov sits in a shallow valley, frequent vertical temperature inversion in winter and low emission heights of pollution sources prevent pollutant dispersal off the valley. Such orography is common to numerous small settlements in the Czech Republic. Ground measurements at the sports field in the Svermov were complemented by temperature and humidity vertical profiles acquired by a Vaisala radiosonde positioned at tethered He-filled balloon. Total number of 53 series of vertical profiles up to the height of 300 m was conducted. Meteorology parameters were acquired with 4 Hz frequency. The measurements confirmed frequent early-morning and night formation of temperature inversion within boundary layer up to the height of 50 m. This rather shallow inversion had significant

  4. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  5. Vertical distributions of particulate plutonium in the western North Pacific Ocean

    International Nuclear Information System (INIS)

    Okubo, Ayako; Zheng, Jian; Aono, Tatsuo; Kaeriyama, Hideki; Nakanishi, Takahiro; Yamada, Masatoshi; Kusakabe, Masashi

    2007-01-01

    We examined the vertical distributions of 239+240 Pu activity and 240 Pu / 239 Pu atom ratio in particles collected by large volume water in-situ pump in the western North Pacific Ocean (off Rokkasho, Japan). This is the first information of vertical distribution of plutonium activity and Plutonium atom ratio in small particle (1-70 μm) and large particle (>70 μm). (author)

  6. Turbulence and feeding behaviour affect the vertical distributions of Oithona similis and Microsetella norwegica

    DEFF Research Database (Denmark)

    Maar, M.; Visser, Andre; Nielsen, Torkel Gissel

    2006-01-01

    The small copepods Oithona similis and Microsetella norwegica are often numerically abundant and widely distributed, but the factors controlling their vertical distributions and role in carbon cycling are yet unknown. Here we examined the vertical distributions of copepods during spring and summer...

  7. Vrancea seismic source analysis using a small-aperture array

    International Nuclear Information System (INIS)

    Popescu, E.; Popa, M.; Radulian, M.; Placinta, A.O.

    2005-01-01

    A small-aperture seismic array (BURAR) was installed in 1999 in the northern part of the Romanian territory (Bucovina area). Since then, the array has been in operation under a joint cooperation programme between Romania and USA. The array consists of 10 stations installed in boreholes (nine short period instruments and one broadband instrument) with enough high sensitivity to properly detect earthquakes generated in Vrancea subcrustal domain (at about 250 km epicentral distance) with magnitude M w below 3. Our main purpose is to investigate and calibrate the source parameters of the Vrancea intermediate-depth earthquakes using specific techniques provided by the BURAR array data. Forty earthquakes with magnitudes between 2.9 and 6.0 were selected, including the recent events of September 27, 2004 (45.70 angle N, 26.45 angle E, h = 166 km, M w = 4.7), October 27, 2004 (45.84 angle N, 26.63 angle E, h = 105 km, M w = 6.0) and May 14, 2005 (45.66 angle N, 26.52 angle E, h = 146 km, M w = 5.1), which are the best ever recorded earthquakes on the Romanian territory: Empirical Green's function deconvolution and spectral ratio methods are applied for pairs of collocated events with similar focal mechanism. Stability tests are performed for the retrieved source time function using the array elements. Empirical scaling and calibration relationships are also determined. Our study shows the capability of the BURAR array to determine the source parameters of the Vrancea intermediate-depth earthquakes as a stand alone station and proves that the recordings of this array alone provides reliable and useful tools to efficiently constrain the source parameters and consequently source scaling properties. (authors)

  8. A solution to the vertical barΔI/sup →/vertical bar = 1/2 rule and other dynamical selection rules in particle physics

    International Nuclear Information System (INIS)

    Oneda, S.; Terasaki, K.

    1984-01-01

    Algebraic approach is developed in the framework of QCD and Electroweak theories. It is stressed that many seemingly different dynamical selection rules can share the same origin. In particular, derivation of vertical bar Δ I → vertical bar = 1/2 rule and explicit identification of its small violation are made for the Κ → 2 π decays, using new much milder soft-pion extrapolation. As a byproduct, the Β → ωπ decays are predicted to be predominantly λ = +-1 transitions in consistency with experiment

  9. Sources and distribution of anthropogenic radionuclides in different marine environments

    International Nuclear Information System (INIS)

    Holm, E.

    1997-01-01

    The knowledge of the distribution in time and space radiologically important radionuclides from different sources in different marine environments is important for assessment of dose commitment following controlled or accidental releases and for detecting eventual new sources. Present sources from nuclear explosion tests, releases from nuclear facilities and the Chernobyl accident provide a tool for such studies. The different sources can be distinguished by different isotopic and radionuclide composition. Results show that radiocaesium behaves rather conservatively in the south and north Atlantic while plutonium has a residence time of about 8 years. On the other hand enhanced concentrations of plutonium in surface waters in arctic regions where vertical mixing is small and iceformation plays an important role. Significantly increased concentrations of plutonium are also found below the oxic layer in anoxic basins due to geochemical concentration. (author)

  10. Vertical-aware click model-based effectiveness metrics

    NARCIS (Netherlands)

    Markov, I.; Kharitonov, E.; Nikulin, V.; Serdyukov, P.; de Rijke, M.; Crestani, F.; Li, J.; Wang, X.S.

    2014-01-01

    Today's web search systems present users with heterogeneous information coming from sources of different types, also known as verticals. Evaluating such systems is an important but complex task, which is still far from being solved. In this paper we examine the hypothesis that the use of models that

  11. Direct Lagrangian tracking simulations of particles in vertically-developing atmospheric clouds

    Science.gov (United States)

    Onishi, Ryo; Kunishima, Yuichi

    2017-11-01

    We have been developing the Lagrangian Cloud Simulator (LCS), which follows the so-called Euler-Lagrangian framework, where flow motion and scalar transportations (i.e., temperature and humidity) are computed with the Euler method and particle motion with the Lagrangian method. The LCS simulation considers the hydrodynamic interaction between approaching particles for robust collision detection. This leads to reliable simulations of collision growth of cloud droplets. Recently the activation process, in which aerosol particles become tiny liquid droplets, has been implemented in the LCS. The present LCS can therefore consider the whole warm-rain precipitation processes -activation, condensation, collision and drop precipitation. In this talk, after briefly introducing the LCS, we will show kinematic simulations using the LCS for quasi-one dimensional domain, i.e., vertically elongated 3D domain. They are compared with one-dimensional kinematic simulations using a spectral-bin cloud microphysics scheme, which is based on the Euler method. The comparisons show fairly good agreement with small discrepancies, the source of which will be presented. The Lagrangian statistics, obtained for the first time for the vertical domain, will be the center of discussion. This research was supported by MEXT as ``Exploratory Challenge on Post-K computer'' (Frontiers of Basic Science: Challenging the Limits).

  12. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, G.; Lambrecht, A.; Reynaud, S. [CNRS, ENS, UPMC, Laboratoire Kastler-Brossel, Paris (France); Debu, P. [CEA-Saclay, Institut de Recherche sur les lois Fondamentales de l' Univers, Gif-sur-Yvette (France); Nesvizhevsky, V.V. [Institut Max von Laue-Paul Langevin, Grenoble (France); Voronin, A.Yu. [P.N. Lebedev Physical Institute, Moscow (Russian Federation)

    2014-01-15

    GBAR is a project aiming at measuring the freefall acceleration of gravity for antimatter, namely antihydrogen atoms (H). The precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution.We propose to use a new method for shaping the distribution of the vertical velocities of H, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing H with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk.We estimate statistical and systematic uncertainties, and we show that the accuracy for measuring the free fall acceleration g of H could be pushed below 10{sup -3} under realistic experimental conditions. (orig.)

  13. Shaping the distribution of vertical velocities of antihydrogen in GBAR

    CERN Document Server

    Dufour, G.; Lambrecht, A.; Nesvizhevsky, V.V.; Reynaud, S.; Voronin, A.Yu.

    2014-01-30

    GBAR is a project aiming at measuring the free fall acceleration of gravity for antimatter, namely antihydrogen atoms ($\\overline{\\mathrm{H}}$). Precision of this timing experiment depends crucially on the dispersion of initial vertical velocities of the atoms as well as on the reliable control of their distribution. We propose to use a new method for shaping the distribution of vertical velocities of $\\overline{\\mathrm{H}}$, which improves these factors simultaneously. The method is based on quantum reflection of elastically and specularly bouncing $\\overline{\\mathrm{H}}$ with small initial vertical velocity on a bottom mirror disk, and absorption of atoms with large initial vertical velocities on a top rough disk. We estimate statistical and systematic uncertainties, and show that the accuracy for measuring the free fall acceleration $\\overline{g}$ of $\\overline{\\mathrm{H}}$ could be pushed below $10^{-3}$ under realistic experimental conditions.

  14. Meso- and small-scale vertical motions in the deep Western Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Haren, Hans van, E-mail: hans.van.haren@nioz.n [Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg (Netherlands)

    2011-01-21

    Acoustic reflections on particles larger than a few mm are compared with optical background data of bioluminescence at the ANTARES neutrino telescope site in the deep North-western Mediterranean Sea. Periodic increases of these data are associated with increases in horizontal and downward vertical currents. The observations provide unique knowledge of some oceanographic processes in the Mediterranean. Several periodicities are distinguished: seasonal, with large increase during spring, 20-day, which is associated with a meandering continental boundary current, 1-17.6 h, evidencing deep internal waves.

  15. Source of Global Scale Variations in the Midday Vertical Content of Ionospheric Metal Ions

    Science.gov (United States)

    Joiner, J.; Grebowsky, J. M.; Pesnell, W. D.; Aikin, A. C.; Goldberg, Richard A.

    1999-01-01

    An analysis of long baseline NIMBUS 7 SBUV (Solar Backscatter UV Spectrometer) observations of the latitudinal variation of the noontime vertical Mg' content above approx. 70 km have revealed seasonal, solar activity and magnetic activity dependencies in the Mg+ content. The distributions were categorized in terms of magnetic coordinates partially because transport processes lifting metallic ions from the main meteor ionization layer below 100 km up into the F- region and down again are controlled by electrodynamical processes. Alternatively, the Nimbus Mg+ distributions may simply be a result of ion/neutral chemistry changes resulting from atmospheric changes and not dynamics. In such a case magnetic control would not dominate the distributions. Using in situ satellite measurements of metal ions from the Atmosphere Explorer satellites in the region above the main meteor layer and published sounding rocket measurements of the main metallic ion layers, the effects of the dynamics on the vertical content are delineated. The consequences of atmospheric changes on the vertical content are explored by separating the Nimbus measurements in a geodetic frame of reference.

  16. Vertical Cable Seismic Survey for Hydrothermal Deposit

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2012-04-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques

  17. Design study of the vertical field power supply for JT-60

    International Nuclear Information System (INIS)

    Yabuno, Kohei; Tani, Keiji; Shimada, Ryuichi; Kishimoto, Hiroshi; Yoshida, Hidetoshi

    1977-09-01

    The results of a basic design study of the vertical field power supply for JT-60 (JAERI large tokamak) are described. The objective of the study is to evaluate several types of power supply circuits for fast excitation and control of the vertical field. A design requirement is to produce a rapidly increasing vertical field within accuracy of +-5% around the proper field strength required to center the plasma in the vacuum vessel. The plasma current is assumed to increase at the rate of about 100 MA/sec. To meet the requirement, a maximum voltage of 15 kV is necessary in the current build-up time, while generally relatively low voltage is necessary after the current flattop is reached. A hybrid power supply which consists of a dc power source (a thyristor converter) and an inductive energy storage system is proposed. The maximum voltage of the dc power source is determined as 4 kV from the voltage required in the current flattop time. This is sufficient also in the current build-up time if the dc power source is used together with the inductive energy storage system. (auth.)

  18. Correction of vertical dispersion and betatron coupling for the CLIC damping ring

    CERN Document Server

    Korostelev, M S

    2006-01-01

    The sensitivity of the CLIC damping ring to various kinds of alignment errors has been studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron coupling.

  19. Annual investigation of vertical type ground source heat pump system performance on a wall heating and cooling system in Istanbul

    Energy Technology Data Exchange (ETDEWEB)

    Akbulut, U.; Yoru, Y.; Kincay, O. [Department of Mechanical Engineering, Yildiz Technical University (Turkey)], email: akbulutugur@yahoo.com, email: yilmazyoru@gmail.com, email: okincay@yildiz.edu.tr

    2011-07-01

    Wall heating and cooling systems (WHCS) are equipped with heating serpentines or panels for water circulation. These systems operate in a low temperature range so they are preferable to other, conventional systems. Furthermore, when these systems are connected to a ground source heat pump (GSHP) system, energy performance and thermal comfort are further enhanced. The purpose of this paper is to report the results of an annual inspection done on a vertical type ground-coupled heat pump systems (V-GSHP) WHCS in Istanbul and present the results. The performance data from the Yildiz Renewable Energy House at Davutpasa Campus of Yildiz Technical University, Istanbul, Turkey, during the year 2010 were collected and analyzed. The conclusions drawn from the inspection and analysis were listed in this paper. Using renewable energy sources effectively will bring both economic and environmental benefits and it is hoped that the use of these energy efficient WHCS systems will become widespread.

  20. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.; Sutula, Martha; Caron, David A.; Chao, Yi; Farrara, John D.; Frenzel, Hartmut; Jones, Burton; Robertson, George; McLaughlin, Karen; Sengupta, Ashmita

    2014-01-01

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  1. Anthropogenic nutrient sources rival natural sources on small scales in the coastal waters of the Southern California Bight

    KAUST Repository

    Howard, Meredith D. A.

    2014-01-26

    Anthropogenic nutrients have been shown to provide significant sources of nitrogen (N) that have been linked to increased primary production and harmful algal blooms worldwide. There is a general perception that in upwelling regions, the flux of anthropogenic nutrient inputs is small relative to upwelling flux, and therefore anthropogenic inputs have relatively little effect on the productivity of coastal waters. To test the hypothesis that natural sources (e.g., upwelling) greatly exceed anthropogenic nutrient sources to the Southern California Bight (SCB), this study compared the source contributions of N from four major nutrient sources: (1) upwelling, (2) treated wastewater effluent discharged to ocean outfalls, (3) riverine runoff, and (4) atmospheric deposition. This comparison was made using large regional data sets combined with modeling on both regional and local scales. At the regional bight-wide spatial scale, upwelling was the largest source of N by an order of magnitude to effluent and two orders of magnitude to riverine runoff. However, at smaller spatial scales, more relevant to algal bloom development, natural and anthropogenic contributions were equivalent. In particular, wastewater effluent and upwelling contributed the same quantity of N in several subregions of the SCB. These findings contradict the currently held perception that in upwelling-dominated regions anthropogenic nutrient inputs are negligible, and suggest that anthropogenic nutrients, mainly wastewater effluent, can provide a significant source of nitrogen for nearshore productivity in Southern California coastal waters.

  2. Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics.

    Science.gov (United States)

    Kooi, Merel; Nes, Egbert H van; Scheffer, Marten; Koelmans, Albert A

    2017-07-18

    Recent studies suggest size-selective removal of small plastic particles from the ocean surface, an observation that remains unexplained. We studied one of the hypotheses regarding this size-selective removal: the formation of a biofilm on the microplastics (biofouling). We developed the first theoretical model that is capable of simulating the effect of biofouling on the fate of microplastic. The model is based on settling, biofilm growth, and ocean depth profiles for light, water density, temperature, salinity, and viscosity. Using realistic parameters, the model simulates the vertical transport of small microplastic particles over time, and predicts that the particles either float, sink to the ocean floor, or oscillate vertically, depending on the size and density of the particle. The predicted size-dependent vertical movement of microplastic particles results in a maximum concentration at intermediate depths. Consequently, relatively low abundances of small particles are predicted at the ocean surface, while at the same time these small particles may never reach the ocean floor. Our results hint at the fate of "lost" plastic in the ocean, and provide a start for predicting risks of exposure to microplastics for potentially vulnerable species living at these depths.

  3. Time-of-flight small-angle scattering spectrometers on pulsed neutron sources

    International Nuclear Information System (INIS)

    Ostanevich, Yu.M.

    1987-01-01

    The operation principles, constructions, advantages and shortcomings of known time-of-flight small angle neutron scattering (TOF SANS) spectrometers built up with pulsed neutron sources are reviewed. The most important characteristics of TOF SANS apparatuses are rather a high luminosity and the possibility for the measurement in an extremely wide range of scattering vector at a single exposure. This is achieved by simultaneous employment of white beam, TOF technique for wave length-scan and the commonly known angle-scan. However, the electronic equipment, data-matching programs, and the measurement procedure, necessary for accurate normalization of experimental data and their transformation into absolute cross-section scale, they all become more complex, as compared with those for SANS apparatuses operating on steady-state neutron sources, where only angle-scan is used

  4. A low vertical β mode for the LNLS UVX electron storage ring

    International Nuclear Information System (INIS)

    Lin, Liu; Tavares, P.

    1991-01-01

    An operation mode with low vertical betatron function in one of the long dispersion free straight sections of the LNLS UVX Electron Storage Ring is studied for applications with small gap insertions. The flexibility of this lattice is analyzed regarding two aspects: the range of variation of the vertical betatron tune and the ability to set the betatron functions to high/low values in the insertion straights

  5. Gate Tunable Transport in Graphene/MoS₂/(Cr/Au) Vertical Field-Effect Transistors.

    Science.gov (United States)

    Nazir, Ghazanfar; Khan, Muhammad Farooq; Aftab, Sikandar; Afzal, Amir Muhammad; Dastgeer, Ghulam; Rehman, Malik Abdul; Seo, Yongho; Eom, Jonghwa

    2017-12-28

    Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS₂/(Cr/Au) vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr), the electrical transport in our Gr/MoS₂/(Cr/Au) vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS₂ can be modified by back-gate voltage and the current bias. Vertical resistance (R vert ) of a Gr/MoS₂/(Cr/Au) transistor is compared with planar resistance (R planar ) of a conventional lateral MoS₂ field-effect transistor. We have also studied electrical properties for various thicknesses of MoS₂ channels in both vertical and lateral transistors. As the thickness of MoS₂ increases, R vert increases, but R planar decreases. The increase of R vert in the thicker MoS₂ film is attributed to the interlayer resistance in the vertical direction. However, R planar shows a lower value for a thicker MoS₂ film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.

  6. Brooks–Corey Modeling by One-Dimensional Vertical Infiltration Method

    Directory of Open Access Journals (Sweden)

    Xuguang Xing

    2018-05-01

    Full Text Available The laboratory methods used for the soil water retention curve (SWRC construction and parameter estimation is time-consuming. A vertical infiltration method was proposed to estimate parameters α and n and to further construct the SWRC. In the present study, the relationships describing the cumulative infiltration and infiltration rate with the depth of the wetting front were established, and simplified expressions for estimating α and n parameters were proposed. The one-dimensional vertical infiltration experiments of four soils were conducted to verify if the proposed method would accurately estimate α and n. The fitted values of α and n, obtained from the RETC software, were consistent with the calculated values obtained from the infiltration method. The comparison between the measured SWRCs obtained from the centrifuge method and the calculated SWRCs that were based on the infiltration method displayed small values of root mean square error (RMSE, mean absolute percentage error (MAPE, and mean absolute error. SWMS_2D-based simulations of cumulative infiltration, based on the calculated α and n, remained consistent with the measured values due to small RMSE and MAPE values. The experiments verified the proposed one-dimensional vertical infiltration method, which has applications in field hydraulic parameter estimation.

  7. Nanofiltration Membranes for Removal of Color and Pathogens in Small Public Drinking Water Sources

    Science.gov (United States)

    Small public water supplies that use surface water as a source for drinking water are frequently faced with elevated levels of color and natural organic matter (NOM) that are precursors for chlorinated disinfection byproduct (DBP) formation. Nanofiltration (NF) systems can preve...

  8. A fixed angle double mirror filter for preparing a pink undulator beam at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Dufresne, E.; Sanchez, T.; Nurushev, T.; Clarke, R.; Dierker, S.B.

    2000-01-01

    Recent advances in X-ray Photon Correlation Spectroscopy (XPCS) use the full bandwidth of an undulator harmonic in order to maximize the coherent flux for small angle X-ray scattering experiments. X-ray mirrors and filters are typically used to select a given harmonic of the spectrum. At the University of Michigan/Howard University/Lucent Technologies, Bell Labs, Collaborative Access Team (MHATT-CAT) undulator beamline of the Advanced Photon Source, we have designed a fixed-angle Double Mirror Filter which will provide a 'pink beam' (i.e., 2-3% bandwidth) for XPCS experiments. This device uses two small mirrors which vertically reflect a 0.1 mmx0.1 mm white beam in a symmetric geometry. The doubly reflected beam propagates parallel to the incident white beam, but is offset vertically by 35 mm. Using the standard offset of the APS allows one to stop the white beam with a standard APS beam stop. In this report, we will describe our design considerations for this instrument. We also report the results of preliminary tests of the performance. The mirrors preserve the transverse coherence of the source, and filter the undulator spectrum as expected

  9. Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.

    Science.gov (United States)

    Wang, Jian; Krejci, Radovan; Giangrande, Scott; Kuang, Chongai; Barbosa, Henrique M J; Brito, Joel; Carbone, Samara; Chi, Xuguang; Comstock, Jennifer; Ditas, Florian; Lavric, Jost; Manninen, Hanna E; Mei, Fan; Moran-Zuloaga, Daniel; Pöhlker, Christopher; Pöhlker, Mira L; Saturno, Jorge; Schmid, Beat; Souza, Rodrigo A F; Springston, Stephen R; Tomlinson, Jason M; Toto, Tami; Walter, David; Wimmer, Daniela; Smith, James N; Kulmala, Markku; Machado, Luiz A T; Artaxo, Paulo; Andreae, Meinrat O; Petäjä, Tuukka; Martin, Scot T

    2016-11-17

    The nucleation of atmospheric vapours is an important source of new aerosol particles that can subsequently grow to form cloud condensation nuclei in the atmosphere. Most field studies of atmospheric aerosols over continents are influenced by atmospheric vapours of anthropogenic origin (for example, ref. 2) and, in consequence, aerosol processes in pristine, terrestrial environments remain poorly understood. The Amazon rainforest is one of the few continental regions where aerosol particles and their precursors can be studied under near-natural conditions, but the origin of small aerosol particles that grow into cloud condensation nuclei in the Amazon boundary layer remains unclear. Here we present aircraft- and ground-based measurements under clean conditions during the wet season in the central Amazon basin. We find that high concentrations of small aerosol particles (with diameters of less than 50 nanometres) in the lower free troposphere are transported from the free troposphere into the boundary layer during precipitation events by strong convective downdrafts and weaker downward motions in the trailing stratiform region. This rapid vertical transport can help to maintain the population of particles in the pristine Amazon boundary layer, and may therefore influence cloud properties and climate under natural conditions.

  10. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mommsen, J.T.

    1977-01-01

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  11. Zooplankton grazing in a eutrophic lake: implications of diel vertical migration

    International Nuclear Information System (INIS)

    Lampert, W.; Taylor, B.E.

    1985-01-01

    During summer and fall, depth profiles of zooplankton community grazing were determined in situ during day and night in the Schoehsee, a small eutrophic lake. Labeled algae of two different sizes were mixed with the natural suspension of phytoplankton in a grazing chamber. A small blue-green alga (Synechococcus, 1 μm) was labeled with 32 P; a larger green alga (Scenedesmus, 4-15 μm) was labeled with 14 C. During summer, grazing in the upper 5 m was negligible during day but strong at night. Hence, algae grow relatively unimpeded by grazing during daytime but are harvested at night. Vertical and diel differences in grazing rates disappeared when the vertical migration ceased in fall. Selectivity of grazing was controlled by the zooplankton species composition. Eudiaptomus showed a strong preference for Scenedesmus. Daphnia showed a slight preference for Scenedesmus, but Ceriodaphnia preferred Synechococcus. Cyclopoid copepodites did not ingest the small blue-green. Because Daphnia and Eudiaptomus were dominant, grazing rates on larger cells were usually higher than grazing rates on the small cells. Negative electivity indices for scenedesmus occurred only when the biomass of large crustaceans was extremely low (near the surface, during day). Zooplankton biomass was the main factor controlling both vertical and seasonal variations in grazing. Highest grazing rates (65%/d) were measured during fall when zooplankton abundance was high. Because differential losses can produce substantial errors in the results, it was necessary to process the samples on the boat immediately after collection, without preservation

  12. Vertical distribution of soil saturated hydraulic conductivity and its influencing factors in a small karst catchment in Southwest China.

    Science.gov (United States)

    Fu, Tonggang; Chen, Hongsong; Zhang, Wei; Nie, Yunpeng; Wang, Kelin

    2015-03-01

    Saturated hydraulic conductivity (Ks) is one of the most important soil hydraulic parameters influencing hydrological processes. This paper aims to investigate the vertical distribution of Ks and to analyze its influencing factors in a small karst catchment in Southwest China. Ks was measured in 23 soil profiles for six soil horizons using a constant head method. These profiles were chosen in different topographical locations (upslope, downslope, and depression) and different land-use types (forestland, shrubland, shrub-grassland, and farmland). The influencing factors of Ks, including rock fragment content (RC), bulk density (BD), capillary porosity (CP), non-capillary porosity (NCP), and soil organic carbon (SOC), were analyzed by partial correlation analysis. The mean Ks value was higher in the entire profile in the upslope and downslope, but lower value, acting as a water-resisting layer, was found in the 10-20 cm soil depth in the depression. Higher mean Ks values were found in the soil profiles in the forestland, shrubland, and shrub-grassland, but lower in the farmland. These results indicated that saturation-excess runoff could occur primarily in the hillslopes but infiltration-excess runoff in the depression. Compared with other land-use types, surface runoff is more likely to occur in the farmlands. RC had higher correlation coefficients with Ks in all categories concerned except in the forestland and farmland with little or no rock fragments, indicating that RC was the dominant influencing factor of Ks. These results suggested that the vertical distributions of Ks and RC should be considered for hydrological modeling in karst areas.

  13. Effects of Isometric Scaling on Vertical Jumping Performance

    Science.gov (United States)

    Bobbert, Maarten F.

    2013-01-01

    Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli’s law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations. PMID:23936494

  14. Effects of isometric scaling on vertical jumping performance.

    Directory of Open Access Journals (Sweden)

    Maarten F Bobbert

    Full Text Available Jump height, defined as vertical displacement in the airborne phase, depends on vertical takeoff velocity. For centuries, researchers have speculated on how jump height is affected by body size and many have adhered to what has come to be known as Borelli's law, which states that jump height does not depend on body size per se. The underlying assumption is that the amount of work produced per kg body mass during the push-off is independent of size. However, if a big body is isometrically downscaled to a small body, the latter requires higher joint angular velocities to achieve a given takeoff velocity and work production will be more impaired by the force-velocity relationship of muscle. In the present study, the effects of pure isometric scaling on vertical jumping performance were investigated using a biologically realistic model of the human musculoskeletal system. The input of the model, muscle stimulation over time, was optimized using jump height as criterion. It was found that when the human model was miniaturized to the size of a mouse lemur, with a mass of about one-thousandth that of a human, jump height dropped from 40 cm to only 6 cm, mainly because of the force-velocity relationship. In reality, mouse lemurs achieve jump heights of about 33 cm. By implication, the unfavourable effects of the small body size of mouse lemurs on jumping performance must be counteracted by favourable effects of morphological and physiological adaptations. The same holds true for other small jumping animals. The simulations for the first time expose and explain the sheer magnitude of the isolated effects of isometric downscaling on jumping performance, to be counteracted by morphological and physiological adaptations.

  15. Measuring of vertical stroke Vub vertical stroke in the forthcoming decade

    International Nuclear Information System (INIS)

    Kim, C.S.

    1997-01-01

    I first introduce the importance of measuring V ub precisely. Then, from a theoretician's point of view, I review (a) past history, (b) present trials, and (c) possible future alternatives on measuring vertical stroke V ub vertical stroke and/or vertical stroke V ub /V cb vertical stroke. As of my main topic, I introduce a model-independent method, which predicts Γ(B→X u lν)/Γ(B→X c lν)≡(γ u /γ c ) x vertical stroke V ub /V cb vertical stroke 2 ≅(1.83±0.28) x vertical stroke V ub /V cb vertical stroke 2 and vertical stroke V ub /V cb vertical stroke ≡(γ c /γ u ) 1/2 x [B(B→X u lν)/B(B→ X c lν]) 1/2 ≅(0.74±0.06) x [B(B→X u lν/)B(B→X c lν)] 1/2 , based on the heavy quark effective theory I also explore the possible experimental options to separate B→X u lν from the dominant B→X c lν: the measurement of inclusive hadronic invariant mass distributions, and the 'D-π' (and 'K-π') separation conditions I also clarify the relevant experimental backgrounds. (orig.)

  16. Influence of marine current on vertical migration of Pb in marine bay

    Science.gov (United States)

    Yu, Chen; Hong, Ai; Danfeng, Yang; Huijuan, Zhao; Dongfang, Yang

    2018-02-01

    This paper analyzed that vertical migration of Pb contents waters in Jiaozhou Bay, and revealed the influence of marine current on vertical migration process. Results showed that Pb contents in bottom waters of Jiaozhou Bay in April and July 1988 were 1.49-18.53 μg L-1 and 12.68/-27.64 μg L-1, respectively. The pollution level of Pb in bottom waters was moderate to heavy, and were showing temporal variations and spatial heterogeneity. The vertical migration process of Pb in April 1988 included a drifting process from the southwest to the north by means of the marine current was rapid in this region. The vertical migration process of Pb in July 1988 in the open waters included no drifting process since the flow rate of marine current was relative low in this region. The vertical migration process of Pb was jointly determined by vertical water’s effect, source input and water exchange, and the influence of marine current on the vertical migration of Pb in marine bay was significant.

  17. Vertical dispersion from surface and elevated releases: An investigation of a Non-Gaussian plume model

    International Nuclear Information System (INIS)

    Brown, M.J.; Arya, S.P.; Snyder, W.H.

    1993-01-01

    The vertical diffusion of a passive tracer released from surface and elevated sources in a neutrally stratified boundary layer has been studied by comparing field and laboratory experiments with a non-Gaussian K-theory model that assumes power-law profiles for the mean velocity and vertical eddy diffusivity. Several important differences between model predictions and experimental data were discovered: (1) the model overestimated ground-level concentrations from surface and elevated releases at distances beyond the peak concentration; (2) the model overpredicted vertical mixing near elevated sources, especially in the upward direction; (3) the model-predicted exponent α in the exponential vertical concentration profile for a surface release [bar C(z)∝ exp(-z α )] was smaller than the experimentally measured exponent. Model closure assumptions and experimental short-comings are discussed in relation to their probable effect on model predictions and experimental measurements. 42 refs., 13 figs., 3 tabs

  18. Modal analysis of a small vertical axis wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Ion NILA

    2012-06-01

    Full Text Available This paper reports a brief study on free vibration analysis for determining parameters such as natural frequencies and mode shapes for vertical axis wind turbines (VAWT for an urban application. This study is focused on numerical work using available finite element software. For further understanding of the wind turbine dynamic analysis, two vibration parameters of dynamic response have been studied, namely natural frequencies and mode shapes.Block Lanczos method has been used to analyze the natural frequency while wind turbine mode shapes have been utilized because of their accuracy and faster solution. In this problem 12 modes of structure have been extracted.

  19. Gate Tunable Transport in Graphene/MoS2/(Cr/Au Vertical Field-Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ghazanfar Nazir

    2017-12-01

    Full Text Available Two-dimensional materials based vertical field-effect transistors have been widely studied due to their useful applications in industry. In the present study, we fabricate graphene/MoS2/(Cr/Au vertical transistor based on the mechanical exfoliation and dry transfer method. Since the bottom electrode was made of monolayer graphene (Gr, the electrical transport in our Gr/MoS2/(Cr/Au vertical transistors can be significantly modified by using back-gate voltage. Schottky barrier height at the interface between Gr and MoS2 can be modified by back-gate voltage and the current bias. Vertical resistance (Rvert of a Gr/MoS2/(Cr/Au transistor is compared with planar resistance (Rplanar of a conventional lateral MoS2 field-effect transistor. We have also studied electrical properties for various thicknesses of MoS2 channels in both vertical and lateral transistors. As the thickness of MoS2 increases, Rvert increases, but Rplanar decreases. The increase of Rvert in the thicker MoS2 film is attributed to the interlayer resistance in the vertical direction. However, Rplanar shows a lower value for a thicker MoS2 film because of an excess of charge carriers available in upper layers connected directly to source/drain contacts that limits the conduction through layers closed to source/drain electrodes. Hence, interlayer resistance associated with these layers contributes to planer resistance in contrast to vertical devices in which all layers contribute interlayer resistance.

  20. CFD simulations of power coefficients for an innovative Darrieus style vertical axis wind turbine with auxiliary straight blades

    Science.gov (United States)

    Arpino, F.; Cortellessa, G.; Dell'Isola, M.; Scungio, M.; Focanti, V.; Profili, M.; Rotondi, M.

    2017-11-01

    The increasing price of fossil derivatives, global warming and energy market instabilities, have led to an increasing interest in renewable energy sources such as wind energy. Amongst the different typologies of wind generators, small scale Vertical Axis Wind Turbines (VAWT) present the greatest potential for off grid power generation at low wind speeds. In the present work, Computational Fluid Dynamic (CFD) simulations were performed in order to investigate the performance of an innovative configuration of straight-blades Darrieus-style vertical axis micro wind turbine, specifically developed for small scale energy conversion at low wind speeds. The micro turbine under investigation is composed of three pairs of airfoils, consisting of a main and auxiliary blades with different chord lengths. The simulations were made using the open source finite volume based CFD toolbox OpenFOAM, considering different turbulence models and adopting a moving mesh approach for the turbine rotor. The simulated data were reported in terms of dimensionless power coefficients for dynamic performance analysis. The results from the simulations were compared to the data obtained from experiments on a scaled model of the same VAWT configuration, conducted in a closed circuit open chamber wind tunnel facility available at the Laboratory of Industrial Measurements (LaMI) of the University of Cassino and Lazio Meridionale (UNICLAM). From the proposed analysis, it was observed that the most suitable model for the simulation of the performances of the micro turbine under investigation is the one-equation Spalart-Allmaras, even if under the conditions analysed in the present work and for TSR values higher than 1.1, some discrepancies between numerical and experimental data can be observed.

  1. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  2. Open-source, small-animal magnetic resonance-guided focused ultrasound system.

    Science.gov (United States)

    Poorman, Megan E; Chaplin, Vandiver L; Wilkens, Ken; Dockery, Mary D; Giorgio, Todd D; Grissom, William A; Caskey, Charles F

    2016-01-01

    MR-guided focused ultrasound or high-intensity focused ultrasound (MRgFUS/MRgHIFU) is a non-invasive therapeutic modality with many potential applications in areas such as cancer therapy, drug delivery, and blood-brain barrier opening. However, the large financial costs involved in developing preclinical MRgFUS systems represent a barrier to research groups interested in developing new techniques and applications. We aim to mitigate these challenges by detailing a validated, open-source preclinical MRgFUS system capable of delivering thermal and mechanical FUS in a quantifiable and repeatable manner under real-time MRI guidance. A hardware and software package was developed that includes closed-loop feedback controlled thermometry code and CAD drawings for a therapy table designed for a preclinical MRI scanner. For thermal treatments, the modular software uses a proportional integral derivative controller to maintain a precise focal temperature rise in the target given input from MR phase images obtained concurrently. The software computes the required voltage output and transmits it to a FUS transducer that is embedded in the delivery table within the magnet bore. The delivery table holds the FUS transducer, a small animal and its monitoring equipment, and a transmit/receive RF coil. The transducer is coupled to the animal via a water bath and is translatable in two dimensions from outside the magnet. The transducer is driven by a waveform generator and amplifier controlled by real-time software in Matlab. MR acoustic radiation force imaging is also implemented to confirm the position of the focus for mechanical and thermal treatments. The system was validated in tissue-mimicking phantoms and in vivo during murine tumor hyperthermia treatments. Sonications were successfully controlled over a range of temperatures and thermal doses for up to 20 min with minimal temperature overshoot. MR thermometry was validated with an optical temperature probe, and focus

  3. Vertical Cable Seismic Survey for SMS exploration

    Science.gov (United States)

    Asakawa, Eiichi; Murakami, Fumitoshi; Tsukahara, Hotoshi; Mizohata, Shigeharu

    2014-05-01

    The Vertical Cable Seismic (VCS) survey is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by sea-surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because the VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed it for the SMS survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We have been developing the VCS survey system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of these surveys are from 100m up to 2100 m. Through these experiments, our VCS data acquisition system has been also completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system is available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed a new approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In 2013, we have carried out the second VCS survey using the surface-towed high-voltage sparker and ocean bottom source in the Izena Cauldron, which is one of the most promising SMS areas around Japan. The positions of ocean bottom source estimated by this method are consistent with the VCS field records. The VCS data with the sparker have been processed with 3D PSTM. It gives the very high resolution 3D volume deeper than two

  4. Development opportunities for small and medium scale accelerator driven neutron sources. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2005-02-01

    Neutron applications in the life sciences will be a rapidly growing research area in the near future, as neutrons can provide unique information on the reaction dynamics of complex biomolecular systems, complementing other analytical techniques such as electron microscopy, X rays and nuclear magnetic resonance. Small and medium power spallation neutron sources will become more important, as many small neutron producing research reactors are being phased out. Recent developments in accelerator technology have made it possible to produce useful neutron fluxes at accelerator facilities suitable for universities and industrial laboratories. In addition to basic research these alternative neutron sources will be important for educational and training purposes. In a wider perspective this technology should make it possible to introduce neutron research and applications to industrial and national research centres in IAEA Member States that are unable to afford a high energy spallation neutron source and have no access to a research reactor

  5. Case study of open-source enterprise resource planning implementation in a small business

    Science.gov (United States)

    Olson, David L.; Staley, Jesse

    2012-02-01

    Enterprise resource planning (ERP) systems have been recognised as offering great benefit to some organisations, although they are expensive and problematic to implement. The cost and risk make well-developed proprietorial systems unaffordable to small businesses. Open-source software (OSS) has become a viable means of producing ERP system products. The question this paper addresses is the feasibility of OSS ERP systems for small businesses. A case is reported involving two efforts to implement freely distributed ERP software products in a small US make-to-order engineering firm. The case emphasises the potential of freely distributed ERP systems, as well as some of the hurdles involved in their implementation. The paper briefly reviews highlights of OSS ERP systems, with the primary focus on reporting the case experiences for efforts to implement ERPLite software and xTuple software. While both systems worked from a technical perspective, both failed due to economic factors. While these economic conditions led to imperfect results, the case demonstrates the feasibility of OSS ERP for small businesses. Both experiences are evaluated in terms of risk dimension.

  6. Graphene and PbS quantum dot hybrid vertical phototransistor

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2017-04-01

    A field-effect phototransistor based on a graphene and lead sulfide quantum dot (PbS QD) hybrid in which PbS QDs are embedded in a graphene matrix has been fabricated with a vertical architecture through a solution process. The n-type Si/SiO2 substrate (gate), Au/Ag nanowire transparent source electrode, active layer and Au drain electrode are vertically stacked in the device, which has a downscaled channel length of 250 nm. Photoinduced electrons in the PbS QDs leap into the conduction band and fill in the trap states, while the photoinduced holes left in the valence band transfer to the graphene and form the photocurrent under biases from which the photoconductive gain is evaluated. The graphene/QD-based vertical phototransistor shows a photoresponsivity of 2 × 103 A W-1, and specific detectivity up to 7 × 1012 Jones under 808 nm laser illumination with a light irradiance of 12 mW cm-2. The solution-processed vertical phototransistor provides a new facile method for optoelectronic device applications.

  7. Vertically integrated simulation tools for self-consistent tracking and analysis

    International Nuclear Information System (INIS)

    Forest, E.; Nishimura, H.

    1989-03-01

    A modeling, simulation and analysis code complex, the Gemini Package, was developed for the study of single-particle dynamics in the Advanced Light Source (ALS), a 1--2 GeV synchrotron radiation source now being built at Lawrence Berkeley Laboratory. The purpose of this paper is to describe the philosophy behind the package, with special emphasis on our vertical approach. 8 refs., 2 figs

  8. Ion implantation in advanced planar and vertical devices

    International Nuclear Information System (INIS)

    Gossmann, Hans-Joachim L.

    2005-01-01

    The extent ('gate overlap') and slope ('abruptness') of the lateral junction are quickly replacing vertical junction depth as the most important physical junction metrics in advanced device architectures. This is in particular true for ultra-thin body devices, where the vertical junction is limited by a geometric constraint. The optimum gate overlap is quite small, or may even be negative, making a process without the need of high-tilt implantation feasible, even for dopant activation with negligible diffusion by flash annealing or laser thermal processing. Dopant activation by solid phase epitaxial regrowth might require high-tilt implants for a positive overlap. The use of such implants, however, is expected to lead to severe gate-poly and gate-oxide degradation. Scaling the 150 nm technology has drastically shrunk the overlap, accomplished by an equally aggressive reduction in thermal budget. For a 65 nm node device, a significant fraction of the overlap originates in the as-implanted dopant profile and the importance of diffusion is diminished. As a consequence small changes in the as-implanted profile are beginning to have a disproportionate impact on device characteristics. Small angular deviations of the incident beam from normal incidence, as seen by the wafer, lead to large changes in on-current. This can be alleviated significantly by a quad implant provided the tilt-angle is sufficiently large, in the order >5 deg.

  9. Development of Vertical Cable Seismic System (2)

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Ishikawa, K.

    2012-12-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have carried out two field surveys in 2011. One is a 3D survey with a boomer for a high-resolution surface source and the other one for an actual field survey in the Izena Cauldron an active hydrothermal area in the Okinawa Trough. Through these surveys, we have confirmed that the

  10. Interfacial area transport of bubbly flow in a small diameter pipe

    International Nuclear Information System (INIS)

    Hibiki, Takashi; Takamasa, Tomoji; Ishii, Mamoru

    2001-01-01

    In relation to the development of the interfacial area transport equation, this study focused on modeling of the interfacial area transport mechanism of vertical adiabatic air-water bubbly flows in a relatively small diameter pipe where the bubble size-to-pipe diameter ratio was relatively high and the radial motion of bubbles was restricted by the presence of the pipe wall. The sink term of the interfacial area concentration was modeled by considering wake entrainment as a possible bubble coalescence mechanism, whereas the source term was neglected by assuming negligibly small bubble breakup for low liquid velocity conditions based on visual observation. One-dimensional interfacial area transport equation with the derived sink term was evaluated by using five datasets of vertical adiabatic air-water bubbly flows measured in a 9.0 mm-diameter pipe (superficial gas velocity: 0.013-0.052 m/s, superficial liquid velocity: 0.58-1.0 m/s). The modeled interfacial area transport equation could reproduce the proper trend of the axial interfacial area transport and predict the measured interfacial area concentrations within an average relative deviation of ±11.1%. It was recognized that the present model would be promising for predicting the interfacial area transport of the examined bubbly flows. (author)

  11. The influence of mechanical gear on the efficiency of small hydropower

    Science.gov (United States)

    Ferenc, Zbigniew; Sambor, Aleksandra

    2017-11-01

    Pursuant to the "Strategy of development of renewable energy", an increase in the share of renewable energy sources in the national fuel-energy balance up to 14% by 2020 is planned in the structure of usage of primary energy carriers. The change in the participation of the clean energy in the energy balance may be done not only by the erection of new and renovation of the already existing plants, but also through an improvement of their energetic efficiency. The study presents the influence of the mechanical gear used on the quantity of energy produced by a small hydropower on the basis of SHP Rzepcze in Opole province in 2005-2010. The primary kinematic system was composed of a Francis turbine of a vertical axis, a toothed intersecting axis gear of 1:1 ratio, a belt gear of a double ratio. After a modernization the system was simplified by means of reducing the intersecting axis gear and the double ratio of the belt gear. The new kinematic system utilized a single-ratio belt gear of a vertical axis. After the kinematic system was rearranged, a significant improvement of efficiency of the small hydropower was concluded, which translates into an increase of the amount of energy produced.

  12. PHL10/460: Cancerfacts.com - Vertical Portal with Newly Developed Health Profiler

    OpenAIRE

    Lenz, C; Brucksch, M

    1999-01-01

    Introduction Unlike general health portals such as WebMD and Drkoop.com that cover everything from the flu to heart disease, Silicon Valley-based cancerfacts.com is a so-called vertical portal. It covers only one small vertical niche of health care: cancer, and in particular, prostate cancer. As a value-added proprietary technology, the company offers its newly developed profile engine to health information retrievers. Methods Users are enabled to insert their specific medical information - r...

  13. Pitch-verticality and pitch-size cross-modal interactions

    DEFF Research Database (Denmark)

    Bonetti, Leonardo; Costa, Marco

    2017-01-01

    Two studies were conducted on cross-modal matching between pitch and sound source localization on the vertical axis, and pitch and size. In the first study 100 Hz, 200 Hz, 600 Hz, and 800 Hz tones were emitted by a loudspeaker positioned 60 cm above or below to the participant’s ear level. Using...

  14. Efficient Extraction of High Centrality Vertices in Distributed Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Kumbhare, Alok [Univ. of Southern California, Los Angeles, CA (United States); Frincu, Marc [Univ. of Southern California, Los Angeles, CA (United States); Raghavendra, Cauligi S. [Univ. of Southern California, Los Angeles, CA (United States); Prasanna, Viktor K. [Univ. of Southern California, Los Angeles, CA (United States)

    2014-09-09

    Betweenness centrality (BC) is an important measure for identifying high value or critical vertices in graphs, in variety of domains such as communication networks, road networks, and social graphs. However, calculating betweenness values is prohibitively expensive and, more often, domain experts are interested only in the vertices with the highest centrality values. In this paper, we first propose a partition-centric algorithm (MS-BC) to calculate BC for a large distributed graph that optimizes resource utilization and improves overall performance. Further, we extend the notion of approximate BC by pruning the graph and removing a subset of edges and vertices that contribute the least to the betweenness values of other vertices (MSL-BC), which further improves the runtime performance. We evaluate the proposed algorithms using a mix of real-world and synthetic graphs on an HPC cluster and analyze its strengths and weaknesses. The experimental results show an improvement in performance of upto 12x for large sparse graphs as compared to the state-of-the-art, and at the same time highlights the need for better partitioning methods to enable a balanced workload across partitions for unbalanced graphs such as small-world or power-law graphs.

  15. Measurement of vertical stroke Vub vertical stroke using b hadron semileptonic decay

    International Nuclear Information System (INIS)

    Abbiendi, G.; Aakesson, P.F.

    2001-01-01

    The magnitude of the CKM matrix element vertical stroke V ub vertical stroke is determined by measuring the inclusive charmless semileptonic branching fraction of beauty hadrons at OPAL based on b → X u lν event topology and kinematics. This analysis uses OPAL data collected between 1991 and 1995, which correspond to about four million hadronic Z decays. We measure Br(b → X u lν) to be (1.63 ±0.53 +0.55 -0.62 ) x 10 -3 . The first uncertainty is the statistical error and the second is the systematic error. From this analysis, vertical stroke V ub vertical stroke is determined to be: vertical stroke V ub vertical stroke =(4.00±0.65(stat) +0.67 -0.76 (sys)±0.19(HQE)) x 10 -3 . The last error represents the theoretical uncertainties related to the extraction of vertical stroke V ub vertical stroke from Br(b→X u l ν) using the Heavy Quark Expansion. (orig.)

  16. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    Science.gov (United States)

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.

  17. Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles

    International Nuclear Information System (INIS)

    Marquez, F.; Morant, C.; Elizalde, E.; Roque-Malherbe, R.; Lopez, V.; Zamora, F.; Domingo, C.

    2010-01-01

    Arrays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800 degree C. The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.

  18. Source Distribution Method for Unsteady One-Dimensional Flows With Small Mass, Momentum, and Heat Addition and Small Area Variation

    Science.gov (United States)

    Mirels, Harold

    1959-01-01

    A source distribution method is presented for obtaining flow perturbations due to small unsteady area variations, mass, momentum, and heat additions in a basic uniform (or piecewise uniform) one-dimensional flow. First, the perturbations due to an elemental area variation, mass, momentum, and heat addition are found. The general solution is then represented by a spatial and temporal distribution of these elemental (source) solutions. Emphasis is placed on discussing the physical nature of the flow phenomena. The method is illustrated by several examples. These include the determination of perturbations in basic flows consisting of (1) a shock propagating through a nonuniform tube, (2) a constant-velocity piston driving a shock, (3) ideal shock-tube flows, and (4) deflagrations initiated at a closed end. The method is particularly applicable for finding the perturbations due to relatively thin wall boundary layers.

  19. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Brian; Lind, Rick [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States); Chatterjee, Sankar, E-mail: ricklind@ufl.edu [Department of Geology and Paleontology Museum, Texas Tech University, Lubbock, TX 79409 (United States)

    2011-06-15

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.

  20. Flight dynamics of a pterosaur-inspired aircraft utilizing a variable-placement vertical tail

    International Nuclear Information System (INIS)

    Roberts, Brian; Lind, Rick; Chatterjee, Sankar

    2011-01-01

    Mission performance for small aircraft is often dependent on the turn radius. Various biologically inspired concepts have demonstrated that performance can be improved by morphing the wings in a manner similar to birds and bats; however, the morphing of the vertical tail has received less attention since neither birds nor bats have an appreciable vertical tail. This paper investigates a design that incorporates the morphing of the vertical tail based on the cranial crest of a pterosaur. The aerodynamics demonstrate a reduction in the turn radius of 14% when placing the tail over the nose in comparison to a traditional aft-placed vertical tail. The flight dynamics associated with this configuration has unique characteristics such as a Dutch-roll mode with excessive roll motion and a skid divergence that replaces the roll convergence.

  1. Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China

    Science.gov (United States)

    Wang, Qingqing; Sun, Yele; Xu, Weiqi; Du, Wei; Zhou, Libo; Tang, Guiqian; Chen, Chen; Cheng, Xueling; Zhao, Xiujuan; Ji, Dongsheng; Han, Tingting; Wang, Zhe; Li, Jie; Wang, Zifa

    2018-02-01

    We conducted the first real-time continuous vertical measurements of particle extinction (bext), gaseous NO2, and black carbon (BC) from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of vertical profiles: (1) uniform vertical distributions (37 % of the time) with vertical differences less than 5 %, (2) higher values at lower altitudes (29 %), (3) higher values at higher altitudes (16 %), and (4) significant decreases at the heights of ˜ 100-150 m (14 %). Further analysis demonstrated that vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. Particularly, the formation of type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ˜ 20-30 % higher contributions of local sources (e.g., biomass burning and cooking) at lower altitudes. A more detailed evolution of vertical profiles and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar vertical profiles as those of bext (R2 = 0.92 and 0.69 in November and January, respectively). While NO2 was correlated with bext for most of the time, the vertical profiles of bext / NO2 varied differently for different profiles, indicating the impact of chemical transformation on vertical profiles. Our results also showed that more comprehensive vertical measurements (e.g., more aerosol and gaseous species) at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.

  2. Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe.

    Science.gov (United States)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Zhai, Lu-Sheng; Dang, Wei-Dong; Yu, Jia-Liang; Jin, Ning-De

    2016-02-02

    High water cut and low velocity vertical upward oil-water two-phase flow is a typical complex system with the features of multiscale, unstable and non-homogenous. We first measure local flow information by using distributed conductance sensor and then develop a multivariate multiscale complex network (MMCN) to reveal the dispersed oil-in-water local flow behavior. Specifically, we infer complex networks at different scales from multi-channel measurements for three typical vertical oil-in-water flow patterns. Then we characterize the generated multiscale complex networks in terms of network clustering measure. The results suggest that the clustering coefficient entropy from the MMCN not only allows indicating the oil-in-water flow pattern transition but also enables to probe the dynamical flow behavior governing the transitions of vertical oil-water two-phase flow.

  3. High-performance vertical organic transistors.

    Science.gov (United States)

    Kleemann, Hans; Günther, Alrun A; Leo, Karl; Lüssem, Björn

    2013-11-11

    Vertical organic thin-film transistors (VOTFTs) are promising devices to overcome the transconductance and cut-off frequency restrictions of horizontal organic thin-film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self-assembly processes which impedes a future large-area production. In this contribution, high-performance vertical organic transistors comprising pentacene for p-type operation and C60 for n-type operation are presented. The static current-voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self-assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high-performance applications of organic transistors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Vertical Stratification Engineering for Organic Bulk-Heterojunction Devices.

    Science.gov (United States)

    Huang, Liqiang; Wang, Gang; Zhou, Weihua; Fu, Boyi; Cheng, Xiaofang; Zhang, Lifu; Yuan, Zhibo; Xiong, Sixing; Zhang, Lin; Xie, Yuanpeng; Zhang, Andong; Zhang, Youdi; Ma, Wei; Li, Weiwei; Zhou, Yinhua; Reichmanis, Elsa; Chen, Yiwang

    2018-05-22

    High-efficiency organic solar cells (OSCs) can be produced through optimization of component molecular design, coupled with interfacial engineering and control of active layer morphology. However, vertical stratification of the bulk-heterojunction (BHJ), a spontaneous activity that occurs during the drying process, remains an intricate problem yet to be solved. Routes toward regulating the vertical separation profile and evaluating the effects on the final device should be explored to further enhance the performance of OSCs. Herein, we establish a connection between the material surface energy, absorption, and vertical stratification, which can then be linked to photovoltaic conversion characteristics. Through assessing the performance of temporary, artificial vertically stratified layers created by the sequential casting of the individual components to form a multilayered structure, optimal vertical stratification can be achieved. Adjusting the surface energy offset between the substrate results in donor and acceptor stabilization of that stratified layer. Further, a trade-off between the photocurrent generated in the visible region and the amount of donor or acceptor in close proximity to the electrode was observed. Modification of the substrate surface energy was achieved using self-assembled small molecules (SASM), which, in turn, directly impacted the polymer donor to acceptor ratio at the interface. Using three different donor polymers in conjunction with two alternative acceptors in an inverted organic solar cell architecture, the concentration of polymer donor molecules at the ITO (indium tin oxide)/BHJ interface could be increased relative to the acceptor. Appropriate selection of SASM facilitated a synchronized enhancement in external quantum efficiency and power conversion efficiencies over 10.5%.

  5. Design Of Rotor Blade For Vertical Axis Wind Turbine Using Double Aerofoil

    DEFF Research Database (Denmark)

    Chougule, Prasad; Ratkovich, Nicolas Rios; Kirkegaard, Poul Henning

    Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use because they generate less noise, have bird free turbines and lower cost. There is few vertical axis wind turbines design with good power curve....... However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design....... In this current work two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect...

  6. Measurement of the CKM matrix element vertical stroke Vts vertical stroke 2

    International Nuclear Information System (INIS)

    Unverdorben, Christopher Gerhard

    2015-03-01

    This is the first direct measurement of the CKM matrix element vertical stroke V ts vertical stroke, using data collected by the ATLAS detector in 2012 at √(s)= 8 TeV pp-collisions with a total integrated luminosity of 20.3 fb -1 . The analysis is based on 112 171 reconstructed t anti t candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 t anti t→W + W - b anti s decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element vertical stroke V ts vertical stroke 2 . To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K 0 s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called ''boosted decision trees''. The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of vertical stroke V ts vertical stroke 2 <1.74 % at 95 % confidence level is set, including all systematic and statistical uncertainties. So this analysis, using a direct measurement of the CKM matrix element vertical stroke V ts vertical stroke 2 , provides the best direct limit on vertical stroke V ts vertical stroke 2 up to now.

  7. Vertical distribution and fluxes of ammonia at Great Dun Fell

    Science.gov (United States)

    Sutton, M. A.; Perthue, E.; Fowler, D.; Storeton-West, R. L.; Cape, J. N.; Arends, B. G.; Möls, J. J.

    As part of the study of the ammonia budget over Great Dun Fell, measurements of fluxes of gaseous ammonia (NH 3) with the hill surface (grass moorland and blanket bog) were made using micrometeorological techniques, to provide information on NH 3 removal by the hill surface and on vertical concentration gradients. Measurements of vertical concentration, χ, profiles of NH 3 concentration were coupled with turbulent diffusivities to determine fluxes, Fg deposition velocities, and canopy resistances, Rc to uptake by the ground. Consistent with published measurements for this site, NH 3 was generally found to deposit efficiently to the vegetation canopy, with mean Rc of 5 and 27 s m - for example days shown. However, short periods of NH 3 emission from the moorland were also observed at small χ (cloud processing: depletion of χ by in-cloud reaction would be expected to favour NH 3 emission from down-wind agricultural land and moorland, though emission from the hill itself during immersion in cloud is unlikely. Comparison of two measurement techniques to determine air concentrations (batch wet rotating denuder, inlet 0.5 m height; continuous wet denuder, inlets 0.3, 2 m heights) showed acceptable agreement, although because vertical concentration gradients were large (small Rc) the height of sampling had a substantial effect. Vertical gradients are also relevant to the use of the measured concentrations as estimates of NH 3 in the air mass passing over the hill, for modelling atmospheric budgets. Where NH 3 deposition occurs at the maximum rate, concentrations measured at 1 m require a 35% correction in neutral conditions when scaling to a reference height of 10 m.

  8. Aerodynamics of small-scale vertical-axis wind turbines

    Science.gov (United States)

    Paraschivoiu, I.; Desy, P.

    1985-12-01

    The purpose of this work is to study the influence of various rotor parameters on the aerodynamic performance of a small-scale Darrieus wind turbine. To do this, a straight-bladed Darrieus rotor is calculated by using the double-multiple-streamtube model including the streamtube expansion effects through the rotor (CARDAAX computer code) and the dynamicstall effects. The straight-bladed Darrieus turbine is as expected more efficient with respect the curved-bladed rotor but for a given solidity is operates at higher wind speeds.

  9. Time-Dependent Moment Tensors of the First Four Source Physics Experiments (SPE) Explosions

    Science.gov (United States)

    Yang, X.

    2015-12-01

    We use mainly vertical-component geophone data within 2 km from the epicenter to invert for time-dependent moment tensors of the first four SPE explosions: SPE-1, SPE-2, SPE-3 and SPE-4Prime. We employ a one-dimensional (1D) velocity model developed from P- and Rg-wave travel times for Green's function calculations. The attenuation structure of the model is developed from P- and Rg-wave amplitudes. We select data for the inversion based on the criterion that they show consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, diagonal components of the moment tensors are well constrained. Nevertheless, the moment tensors, particularly their isotropic components, provide reasonable estimates of the long-period source amplitudes as well as estimates of corner frequencies, albeit with larger uncertainties. The estimated corner frequencies, however, are consistent with estimates from ratios of seismogram spectra from different explosions. These long-period source amplitudes and corner frequencies cannot be fit by classical P-wave explosion source models. The results motivate the development of new P-wave source models suitable for these chemical explosions. To that end, we fit inverted moment-tensor spectra by modifying the classical explosion model using regressions of estimated source parameters. Although the number of data points used in the regression is small, the approach suggests a way for the new-model development when more data are collected.

  10. On the electron extraction in a large RF-driven negative hydrogen ion source for the ITER NBI system

    International Nuclear Information System (INIS)

    Franzen, P; Wünderlich, D; Fantz, U

    2014-01-01

    The test facility ELISE, equipped with a large RF-driven ion source (1 × 0.9 m 2 ) of half the size of the ion source for the ITER neutral beam injection (NBI) system, has been constructed over the last three years at the Max-Planck-Institut für Plasmaphysik (IPP), Garching, and is now operational. The first measurements of the dependence of the co-extracted electron currents on various operational parameters have been performed. ELISE has the unique feature that the electron currents can be measured individually on both extraction grid segments, leading to vertical spatial resolution. Although performed in volume operation, where the negative hydrogen ions are created in the plasma volume solely, the results are very encouraging for operation with caesium, this being necessary in order to achieve the relevant negative ion currents for the ITER NBI injectors. The amount of co-extracted electrons could be suppressed sufficiently with moderate magnetic filter fields and by plasma grid bias. Furthermore, the electron extraction is more or less decoupled from the main plasma, as the observed vertical asymmetry of electron extraction is not correlated at all with the plasma asymmetry, which is anyway rather small. Both effects are superior to the experience from the small IPP prototype source; the reason for these encouraging results is most probably the larger size of the source as well as the new geometry of the source having unbiased areas in its centre. The reasons, however, for the observed asymmetry of the extracted electron currents and their dependencies on various operational parameters are not well understood. (paper)

  11. 3D correlation imaging of the vertical gradient of gravity data

    International Nuclear Information System (INIS)

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2011-01-01

    We present a new 3D correlation imaging approach for vertical gradient of gravity data for deriving a 3D equivalent mass distribution in the subsurface. In this approach, we divide the subsurface space into a 3D regular grid, and then at each grid node calculate a cross correlation between the vertical gradient of the observed gravity data and the theoretical gravity vertical gradient due to a point mass source. The resultant correlation coefficients are used to describe the equivalent mass distribution in a probability sense. We simulate a geological syncline model intruded by a dike and later broken by two vertical faults. The vertical gradient of gravity anomaly of the model is calculated and used to test the approach. The results demonstrate that the equivalent mass distribution derived by the approach reflects the basic geological structures of the model. We also test the approach on the transformed vertical gradient of real Bouguer gravity data from a geothermal survey area in Northern China. The thermal reservoirs are located in the lower portion of the sedimentary basin. From the resultant equivalent mass distribution, we produce the depth distribution of the bottom interface of the basin and predict possible hidden faults present in the basin

  12. Vertical Differentiation of Cassava Marketing Channels in Africa

    Directory of Open Access Journals (Sweden)

    Enete, AA.

    2008-01-01

    Full Text Available Farming systems in sub-Saharan Africa are inherently risky because they are fundamentally dependent on vagaries of weather. Sub-Saharan Africa is also a region in crises; poverty, civil strife and HIV/AIDS. Attention must therefore be focused on improving the production and marketing of crops that could thrive under these circumstances. Because of its tolerance of extreme drought and low input use conditions, Cassava is perhaps the best candidate in this regard. And cassava is a basic food staple and a major source of farm income for the people of the region. Efficiency in cassava marketing is a very important determinant of both consumers' living cost and producers' income in Africa. Vertical differentiation of marketing channels improves marketing efficiency. Identified in this paper are factors that drive vertical differentiation of cassava marketing channels. The paper is based on primary data collected within the framework of the Collaborative Study of Cassava in Africa. High population density, good market access conditions, availability of mechanized cassava processing technology and cassava price information stimulate vertical differentiation of the marketing channels.

  13. Structure of diffusion flames from a vertical burner

    Science.gov (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  14. Small-scale wind power design, analysis, and environmental impacts

    CERN Document Server

    Abraham, John P

    2014-01-01

    In today's world, clean and robust energy sources are being sought to provide power to residences, commercial operations, and manufacturing enterprises. Among the most appealing energy sources is wind power-with its high reliability and low environmental impact. Wind power's rapid penetration into markets throughout the world has taken many forms, and this book discusses the types of wind power, as well as the appropriate decisions that need to be made regarding wind power design, testing, installation, and analysis. Inside, the authors detail the design of various small-wind systems including horizontal-axis wind turbines (HAWTs) and vertical-axis wind turbines (VAWTs). The design of wind turbines takes advantage of many avenues of investigation, all of which are included in the book. Analytical methods that have been developed over the past few decades are major methods used for design. Alternatively, experimentation (typically using scaled models in wind tunnels) and numerical simulation (using modern comp...

  15. A mechanical velocity selector for a small angle scattering instrument on a pulsed neutron source

    International Nuclear Information System (INIS)

    Meardon, B.H.; Stewart, R.J.; Williams, W.G.

    1978-11-01

    Design parameters and performance calculations are given for a straight-slot velocity selector which can be used for discriminating between elastic and inelastic scattering events in small angle scattering experiments on a pulsed neutron source. The selector has a high transmittance over the wavelength range 3 A 5%. (author)

  16. Modification of the ''Coulomb'' interaction at small distances in finite quantum electrodynamics

    International Nuclear Information System (INIS)

    Manoukian, E.B.

    1982-01-01

    We investigate the ''Coulomb'' interaction in finite QED at small distances. By finite QED it is meant that we sum all photon self-energy subgraphs in renormalized QED and fix α, the renormalized fine-structure constant, as the (infinite order) zero of the Callan-Symanzik function: β(α) = 0/sup infinity/. We show that for mcVertical Barx-x 'Vertical Bar/h 1 and e 2 at x and x ', respectively, is given by V(Vertical Barx-x'Vertical Bar)approx. =(e 1 e 2 / 4πVertical Barx-x'Vertical Bar) [q 1 (α)-q 2 (α)mcVertical Barx-x'Vertical Bar / h+O(m 2 c 2 Vertical Barx-x'Vertical Bar 2 /h 2 )], where 1 1 (α) 2 (α)< infinity

  17. Risk analysis and assessment of vertical and incline small winder systems and peripheral activities.

    CSIR Research Space (South Africa)

    Moss, PS

    2000-01-01

    Full Text Available access .......................................................48 3.6.3 "ramped" design of station access ..................................................................49 3.6.4 Handling of material cars... vertical plane using a rope and counterweight mechanism, to allow the passage of cars when required. It is extensively used to prevent the inadvertent entry of material cars from stations into incline shafts, and to derail a runaway car so preventing...

  18. Noise Source Identification of Small Fan-BLDC Motor System for Refrigerators

    Directory of Open Access Journals (Sweden)

    Yong-Han Kim

    2006-01-01

    Full Text Available Noise levels in household appliances are increasingly attracting attention from manufacturers and customers. Legislation is becoming more severe on acceptable noise levels and low noise is a major marketing point for many products. The latest trend in the refrigerator manufacturing industry is to use brushless DC (BLDC motors instead of induction motors in order to reduce energy consumption and noise radiation. However, cogging torque from BLDC motor is an undesirable effect that prevents the smooth rotation of the rotor and results in noise. This paper presents a practical approach for identifying the source of excessive noise in the small fan-motor system for household refrigerators. The source is presumed to a mechanical resonance excited by torque ripple of the BLDC motor. By using finite element analysis, natural frequencies and mode shapes of the rotating part of the system are obtained and they are compared with experimental mode shapes obtained by electronic torsional excitation test which uses BLDC motor itself as an exciter. Two experimental validations are carried out to confirm the reduction of excessive noise.

  19. Design optimization and analysis of vertical axis wind turbine blade

    International Nuclear Information System (INIS)

    Jarral, A.; Ali, M.; Sahir, M.H.

    2013-01-01

    Wind energy is clean and renwable source of energy and is also the world's fastest growing energy resource. Keeping in view power shortages and growing cost of energy, the low cost wind energy has become a primary solution. It is imperative that economies and individuals begin to conserve energy and focus on the production of energy from renewable sources. Present study describes a wind turbine blade designed with enhanced aerodynamic properties. Vertical axis turbine is chosen because of its easy installment, less noisy and having environmental friendly characteristics. Vertical axis wind turbines are thought to be ideal for installations where wind conditions are not consistent. The presented turbine blade is best suitable for roadsides where the rated speed due to vehicles is most /sup -1/ often 8 ms .To get an optimal shape design symmetrical profile NACA0025 has been considered which is then analyzed for stability and aerodynamic characteristics at optimal conditions using analysis tools ANSYS and CFD tools. (author)

  20. A Vertical Organic Transistor Architecture for Fast Nonvolatile Memory.

    Science.gov (United States)

    She, Xiao-Jian; Gustafsson, David; Sirringhaus, Henning

    2017-02-01

    A new device architecture for fast organic transistor memory is developed, based on a vertical organic transistor configuration incorporating high-performance ambipolar conjugated polymers and unipolar small molecules as the transport layers, to achieve reliable and fast programming and erasing of the threshold voltage shift in less than 200 ns. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Solving vertical transport and chemistry in air pollution models

    International Nuclear Information System (INIS)

    Berkvens, P.J.F.; Botchev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    2000-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species. This complicates the chemistry solution, easily causing large errors for such species. In the framework of an operational global air pollution model, we focus on the problem formed by chemistry and vertical transport, which is based on diffusion, cloud-related vertical winds, and wet deposition. Its specific nature leads to full Jacobian matrices, ruling out standard implicit integration. We compare Strang operator splitting with two alternatives: source splitting and an (unsplit) Rosenbrock method with approximate matrix factorization, all having equal computational cost. The comparison is performed with real data. All methods are applied with half-hour time steps, and give good accuracies. Rosenbrock is the most accurate, and source splitting is more accurate than Strang splitting. Splitting errors concentrate in short-lived species sensitive to solar radiation and species with strong emissions and depositions. 30 refs

  2. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    Directory of Open Access Journals (Sweden)

    Qiulong Yang

    2018-01-01

    Full Text Available Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP and Volunteer Observation System (VOS were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line

  3. Spatial Vertical Directionality and Correlation of Low-Frequency Ambient Noise in Deep Ocean Direct-Arrival Zones

    Science.gov (United States)

    Yang, Qiulong; Yang, Kunde; Cao, Ran; Duan, Shunli

    2018-01-01

    Wind-driven and distant shipping noise sources contribute to the total noise field in the deep ocean direct-arrival zones. Wind-driven and distant shipping noise sources may significantly and simultaneously affect the spatial characteristics of the total noise field to some extent. In this work, a ray approach and parabolic equation solution method were jointly utilized to model the low-frequency ambient noise field in a range-dependent deep ocean environment by considering their calculation accuracy and efficiency in near-field wind-driven and far-field distant shipping noise fields. The reanalysis databases of National Center of Environment Prediction (NCEP) and Volunteer Observation System (VOS) were used to model the ambient noise source intensity and distribution. Spatial vertical directionality and correlation were analyzed in three scenarios that correspond to three wind speed conditions. The noise field was dominated by distant shipping noise sources when the wind speed was less than 3 m/s, and then the spatial vertical directionality and vertical correlation of the total noise field were nearly consistent with those of distant shipping noise field. The total noise field was completely dominated by near field wind generated noise sources when the wind speed was greater than 12 m/s at 150 Hz, and then the spatial vertical correlation coefficient and directionality pattern of the total noise field was approximately consistent with that of the wind-driven noise field. The spatial characteristics of the total noise field for wind speeds between 3 m/s and 12 m/s were the weighted results of wind-driven and distant shipping noise fields. Furthermore, the spatial characteristics of low-frequency ambient noise field were compared with the classical Cron/Sherman deep water noise field coherence function. Simulation results with the described modeling method showed good agreement with the experimental measurement results based on the vertical line array deployed near

  4. Implementation of vertically asymmetric toroidal-field ripple for beam heating of tokamak reactor plasmas

    International Nuclear Information System (INIS)

    Jassby, D.L.; Sheffield, G.V.; Towner, H.H.; Weissenburger, D.W.

    1976-10-01

    The neutral-beam energy required for adequate penetration of tokamak plasmas of high opacity can be reduced by a large factor if the beam is injected vertically into a region of large TF (toroidal-field) ripple. Energetic ions are trapped in local magnetic wells and drift vertically toward the midplane (z = 0). If the ripple is made very small on the opposite side of the midplane, drifting ions are detrapped and thermalized in the central plasma region. This paper discusses design considerations for establishing the required vertically asymmetric ripple. Examples are given of special TF-coil configurations, and of the use of auxiliary coil windings to create the prescribed ripple profiles

  5. Development of a hydrogen analysis using a small neutron source

    International Nuclear Information System (INIS)

    Ishikawa, I.; Tachikawa, N.; Tominaga, H.

    1998-01-01

    Most of industrial nuclear gauges are based on the use of radiation transmission through matter. This document presents new techniques to measure hydrogen using a small neutron source. A new technique has been developed for measuring the thickness of a thin layer of 30-200 μm thick plastic, which is sandwiched between two sheets of 0.6-4.2 mm in total thickness. Another technique allows to monitor residual moisture in wet refractory newly coated on the inner surface of a steel vessel from its outside through a thick steel plate. For saving on the use of coke and for strict control of furnace heating in the iron making process a new type moisture gauge was developed using simultaneous measurement of transmission rates of both fast neutrons and gamma rays from 252 Cf

  6. Vertically resolved characteristics of air pollution during two severe winter haze episodes in urban Beijing, China

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2018-02-01

    Full Text Available We conducted the first real-time continuous vertical measurements of particle extinction (bext, gaseous NO2, and black carbon (BC from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of vertical profiles: (1 uniform vertical distributions (37 % of the time with vertical differences less than 5 %, (2 higher values at lower altitudes (29 %, (3 higher values at higher altitudes (16 %, and (4 significant decreases at the heights of ∼ 100–150 m (14 %. Further analysis demonstrated that vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. Particularly, the formation of type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ∼ 20–30 % higher contributions of local sources (e.g., biomass burning and cooking at lower altitudes. A more detailed evolution of vertical profiles and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar vertical profiles as those of bext (R2 = 0.92 and 0.69 in November and January, respectively. While NO2 was correlated with bext for most of the time, the vertical profiles of bext ∕ NO2 varied differently for different profiles, indicating the impact of chemical transformation on vertical profiles. Our results also showed that more comprehensive vertical measurements (e.g., more aerosol and gaseous species at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.

  7. WC Nanocrystals Grown on Vertically Aligned Carbon Nanotubes: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Fan, Xiujun; Zhou, Haiqing; Guo, Xia

    2015-05-26

    Single nanocrystalline tungsten carbide (WC) was first synthesized on the tips of vertically aligned carbon nanotubes (VA-CNTs) with a hot filament chemical vapor deposition (HF-CVD) method through the directly reaction of tungsten metal with carbon source. The VA-CNTs with preservation of vertical structure integrity and alignment play an important role to support the nanocrystalline WC growth. With the high crystallinity, small size, and uniform distribution of WC particles on the carbon support, the formed WC-CNTs material exhibited an excellent catalytic activity for hydrogen evolution reaction (HER), giving a η10 (the overpotential for driving a current of 10 mA cm(-2)) of 145 mV, onset potential of 15 mV, exchange current density@ 300 mV of 117.6 mV and Tafel slope values of 72 mV dec(-1) in acid solution, and η10 of 137 mV, onset potential of 16 mV, exchange current density@ 300 mV of 33.1 mV and Tafel slope values of 106 mV dec(-1) in alkaline media, respectively. Electrochemical stability test further confirms the long-term operation of the catalyst in both acidic and alkaline media.

  8. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  9. Effect of Vertical, Horizontal, and Combined Plyometric Training on Explosive, Balance, and Endurance Performance of Young Soccer Players.

    Science.gov (United States)

    Ramírez-Campillo, Rodrigo; Gallardo, Francisco; Henriquez-Olguín, Carlos; Meylan, Cesar M P; Martínez, Cristian; Álvarez, Cristian; Caniuqueo, Alexis; Cadore, Eduardo L; Izquierdo, Mikel

    2015-07-01

    The aim of this study was to compare the effects of 6 weeks of vertical, horizontal, or combined vertical and horizontal plyometric training on muscle explosive, endurance, and balance performance. Forty young soccer players aged between 10 and 14 years were randomly divided into control (CG; n = 10), vertical plyometric group (VG; n = 10), horizontal plyometric group (HG; n = 10), and combined vertical and horizontal plyometric group (VHG; n = 10). Players performance in the vertical and horizontal countermovement jump with arms, 5 multiple bounds test (MB5), 20-cm drop jump reactive strength index (RSI20), maximal kicking velocity (MKV), sprint, change of direction speed (CODS), Yo-Yo intermittent recovery level 1 test (Yo-Yo IR1), and balance was measured. No significant or meaningful changes in the CG, apart from small change in the Yo-Yo IR1, were observed while all training programs resulted in meaningful changes in explosive, endurance, and balance performance. However, only VHG showed a statistically significant (p ≤ 0.05) increase in all performance test and most meaningful training effect difference with the CG across tests. Although no significant differences in performance changes were observed between experimental groups, the VHG program was more effective compared with VG (i.e., jumps, MKV, sprint, CODS, and balance performance) and HG (i.e., sprint, CODS, and balance performance) to small effect. The study demonstrated that vertical, horizontal, and combined vertical and horizontal jumps induced meaningful improvement in explosive actions, balance, and intermittent endurance capacity. However, combining vertical and horizontal drills seems more advantageous to induce greater performance improvements.

  10. New microfocus bremsstrahlung source based on betatron B-18 for high-resolution radiography and tomography

    Science.gov (United States)

    Rychkov, M. M.; Kaplin, V. V.; Malikov, E. L.; Smolyanskiy, V. A.; Stepanov, I. B.; Lutsenko, A. S.; Gentsel'man, V.; Vas'kovskiy, I. K.

    2018-01-01

    New microfocus source of hard bremsstrahlung (photon energy > 1 MeV), based on the betatron B-18 with a narrow Ta target inside, for high-resolution radiography and tomography is presented. The first studies of the source demonstrate its possibilities for practical applications to detect the microdefects in products made from heavy materials and to control gaps in joints of parts of composite structures of engineering facilities. The radiography method was used to investigate a compound object consisting of four vertically arranged steel bars between which surfaces were exposed gaps of 10 μm in width. The radiographic image of the object, obtained with a magnification of 2.4, illustrates the good sensitivity of detecting the gaps between adjacent bars, due to the small width of the linear focus of the bremsstrahlung source.

  11. Overview and Design of self-acting pitch control mechanism for vertical axis wind turbine using multi body simulation approach

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.

    2014-01-01

    Awareness about wind energy is constantly growing in the world. Especially a demand for small scale wind turbine is increasing and various products are available in market. There are mainly two types of wind turbines, horizontal axis wind turbine and vertical axis wind turbines. Horizontal axis...... wind turbines are suitable for high wind speed whereas vertical axis wind turbines operate relatively low wind speed area. Vertical axis wind turbines are cost effective and simple in construction as compared to the horizontal axis wind turbine. However, vertical axis wind turbines have inherent...

  12. Description of the IMR Standard Light Trap and the Vertical ...

    African Journals Online (AJOL)

    The construction of different versions of a cheap, robust, and easy to operate light trap for catching various aquatic organisms is shown. The trap can be used to > 300 m depth and meets a number of criteria. Small-scale vertical distribution of decapod larvae was investigated during trap trials. The traps (6-10) were set for 24 ...

  13. Vertical Phase Separation in Small Molecule:Polymer Blend Organic Thin Film Transistors Can Be Dynamically Controlled

    KAUST Repository

    Zhao, Kui; Wodo, Olga; Ren, Dingding; Khan, Hadayat Ullah; Niazi, Muhammad Rizwan; Hu, Hanlin; Abdelsamie, Maged; Li, Ruipeng; Li, Erqiang; Yu, Liyang; Yan, Buyi; Payne, Marcia M.; Smith, Jeremy; Anthony, John E.; Anthopoulos, Thomas D.; Thoroddsen, Sigurdur T; Ganapathysubramanian, Baskar; Amassian, Aram

    2016-01-01

    -coating in conditions which yield bilayer and trilayer stratifications. We use a combination of in situ experimental and computational tools to study the competing effects of formulation thermodynamics and process kinetics in mediating the final vertical stratification

  14. Stable Computation of the Vertical Gradient of Potential Field Data Based on Incorporating the Smoothing Filters

    Science.gov (United States)

    Baniamerian, Jamaledin; Liu, Shuang; Abbas, Mahmoud Ahmed

    2018-04-01

    The vertical gradient is an essential tool in interpretation algorithms. It is also the primary enhancement technique to improve the resolution of measured gravity and magnetic field data, since it has higher sensitivity to changes in physical properties (density or susceptibility) of the subsurface structures than the measured field. If the field derivatives are not directly measured with the gradiometers, they can be calculated from the collected gravity or magnetic data using numerical methods such as those based on fast Fourier transform technique. The gradients behave similar to high-pass filters and enhance the short-wavelength anomalies which may be associated with either small-shallow sources or high-frequency noise content in data, and their numerical computation is susceptible to suffer from amplification of noise. This behaviour can adversely affect the stability of the derivatives in the presence of even a small level of the noise and consequently limit their application to interpretation methods. Adding a smoothing term to the conventional formulation of calculating the vertical gradient in Fourier domain can improve the stability of numerical differentiation of the field. In this paper, we propose a strategy in which the overall efficiency of the classical algorithm in Fourier domain is improved by incorporating two different smoothing filters. For smoothing term, a simple qualitative procedure based on the upward continuation of the field to a higher altitude is introduced to estimate the related parameters which are called regularization parameter and cut-off wavenumber in the corresponding filters. The efficiency of these new approaches is validated by computing the first- and second-order derivatives of noise-corrupted synthetic data sets and then comparing the results with the true ones. The filtered and unfiltered vertical gradients are incorporated into the extended Euler deconvolution to estimate the depth and structural index of a magnetic

  15. Development of Vertical Cable Seismic System (3)

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Tsukahara, H.; Mizohata, S.; Ishikawa, K.

    2013-12-01

    The VCS (Vertical Cable Seismic) is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. We carried out several VCS surveys combining with surface towed source, deep towed source and ocean bottom source. The water depths of the survey are from 100m up to 2100m. The target of the survey includes not only hydrothermal deposit but oil and gas exploration. Through these experiments, our VCS data acquisition system has been completed. But the data processing techniques are still on the way. One of the most critical issues is the positioning in the water. The uncertainty in the positions of the source and of the hydrophones in water degraded the quality of subsurface image. GPS navigation system are available on sea surface, but in case of deep-towed source or ocean bottom source, the accuracy of shot position with SSBL/USBL is not sufficient for the very high-resolution imaging. We have developed another approach to determine the positions in water using the travel time data from the source to VCS hydrophones. In the data acquisition stage, we estimate the position of VCS location with slant ranging method from the sea surface. The deep-towed source or ocean bottom source is estimated by SSBL/USBL. The water velocity profile is measured by XCTD. After the data acquisition, we pick the first break times of the VCS recorded data. The estimated positions of

  16. BENEFITS AND SUCCESS FACTORS OF OPEN-SOURCE WEB SERVICES DEVELOPMENT PLATFORMS FOR SMALL SOFTWARE HOUSES

    Directory of Open Access Journals (Sweden)

    Valter de Assis Moreno Jr.

    2012-12-01

    Full Text Available It is usually difficult for companies to keep up with the development of new information technologies and adapt to them in face of the opportunities and threats their advances may represent. This is especially true for small and medium enterprises (SME in emerging economies, where resources tend to be scarce and markets more volatile. This paper describes an action research conducted in a small Brazilian software house that adopted an open-source Web Services development platform in order to improve its software development process. Data analysis revealed critical success factors (CSF in the adoption process, as well as specific benefits and barriers prone to be faced by small software houses in their adoption efforts. In the process of overcoming such barriers, SME may acquire intellectual capital that represents an essential resource to ensure their competitiveness and survival in emerging economies.

  17. vertical bar Vub vertical bar from exclusive semileptonic B→π decays

    International Nuclear Information System (INIS)

    Flynn, Jonathan M.; Nieves, Juan

    2007-01-01

    We use Omnes representations of the form factors f + and f 0 for exclusive semileptonic B→π decays, paying special attention to the treatment of the B* pole and its effect on f + . We apply them to combine experimental partial branching fraction information with theoretical calculations of both form factors to extract vertical bar V ub vertical bar. The precision we achieve is competitive with the inclusive determination and we do not find a significant discrepancy between our result, vertical bar V ub vertical bar=(3.90+/-0.32+/-0.18)x10 -3 , and the inclusive world average value (4.45+/-0.20+/-0.26)x10 -3 [Heavy Flavor Averaging Group (HFAG), hep-ex/0603003

  18. Unsteady MHD flow of a dusty nanofluid past a vertical stretching surface with non-uniform heat source/sink

    Directory of Open Access Journals (Sweden)

    C. Sulochana

    2016-02-01

    Full Text Available We analyzed the momentum and heat transfer characteristics of unsteady MHD flow of a dusty nanofluid over a vertical stretching surface in presence of volume fraction of dust and nano particles with non uniform heat source/sink. We considered two types of nanofluids namely Ag-water and Cu-water embedded with conducting dust particles. The governing equations are transformed in to nonlinear ordinary differential equations by using similarity transformation and solved numerically using Shooting technique. The effects of non-dimensional governing parameters on velocity and temperature profiles for fluid and dust phases are discussed and presented through graphs. Also, the skin friction coefficient and Nusselt number are discussed and presented for two dusty nanofluids separately in tabular form. Results indicate that an increase in the volume fraction of dust particles enhances the heat transfer in Cu-water nanofluid compared with Ag-water nanofluid and a raise in the volume fraction of nano particles shows uniform heat transfer in both Cu-water and Ag-water nanofluids.

  19. Distributions, Sources, and Backward Trajectories of Atmospheric Polycyclic Aromatic Hydrocarbons at Lake Small Baiyangdian, Northern China

    Directory of Open Access Journals (Sweden)

    Ning Qin

    2012-01-01

    Full Text Available Air samples were collected seasonally at Lake Small Baiyangdian, a shallow lake in northern China, between October 2007 and September 2008. Gas phase, particulate phase and dust fall concentrations of polycyclic aromatic hydrocarbons (PAHs were measured using a gas chromatograph-mass spectrometer (GC-MS. The distribution and partitioning of atmospheric PAHs were studied, and the major sources were identified; the backward trajectories of air masses starting from the center of Lake Small Baiyangdian were calculated for the entire year. The following results were obtained: (1 The total concentration of 16 priority controlled PAHs (PAH16 in the gas phase was 417.2±299.8 ng·m−3, in the particulate phase was 150.9±99.2 ng·m−3, and in dust fall was 6930.2±3206.5 ng·g−1. (2 Vehicle emission, coal combustion, and biomass combustion were the major sources in the Small Baiyangdian atmosphere and accounted for 28.9%, 45.1% and 26.0% of the total PAHs, respectively. (3 Winter was dominated by relatively greater PAHs polluted northwesterly air mass pathways. Summer showed a dominant relatively clean southern pathway, whereas the trajectories in autumn and spring might be associated with high pollution from Shanxi or Henan province.

  20. Modeling of self-potential anomalies near vertical dikes.

    Science.gov (United States)

    Fitterman, D.V.

    1983-01-01

    The self-potential (SP) Green's function for an outcropping vertical dike is derived from solutions for the dc resistivity problem for the same geometry. The Green's functions are numerically integrated over rectangular source regions on the contacts between the dike and the surrounding material to obtain the SP anomaly. The analysis is valid for thermoelectrical source mechanisms. Two types of anomalies can be produced by this geometry. When the two source planes are polarized in opposite directions, a monopolar anomaly is produced. This corresponds to the thermoelectrical properties of the dike being in contrast with the surrounding material. When the thermoelectric coefficients change monotonically across the dike, a dipolar anomaly is produced. In either case positive and negative anomalies are possible, and the greatest variation in potential will occur in the most resistive regions. -Author

  1. Mixed analytical-stochastic simulation method for the recovery of a Brownian gradient source from probability fluxes to small windows.

    Science.gov (United States)

    Dobramysl, U; Holcman, D

    2018-02-15

    Is it possible to recover the position of a source from the steady-state fluxes of Brownian particles to small absorbing windows located on the boundary of a domain? To address this question, we develop a numerical procedure to avoid tracking Brownian trajectories in the entire infinite space. Instead, we generate particles near the absorbing windows, computed from the analytical expression of the exit probability. When the Brownian particles are generated by a steady-state gradient at a single point, we compute asymptotically the fluxes to small absorbing holes distributed on the boundary of half-space and on a disk in two dimensions, which agree with stochastic simulations. We also derive an expression for the splitting probability between small windows using the matched asymptotic method. Finally, when there are more than two small absorbing windows, we show how to reconstruct the position of the source from the diffusion fluxes. The present approach provides a computational first principle for the mechanism of sensing a gradient of diffusing particles, a ubiquitous problem in cell biology.

  2. Distinguishing spatiotemporal variability of sediment sources in small urbanized catchment as a response to urban expansion

    Science.gov (United States)

    Belyaev, Vladimir; Feoktistov, Artem; Huygens, Dries; Shamshurina, Eugenia; Golosov, Valentin

    2014-05-01

    for distinguishing contributions of different sediment sources into catchment sediment budgets on a reliable quantitative basis. In combination with microstratigraphic differentiation and dating of sediment in continuous deposition zones by 137Cs depth distribution curves and available land use records, spatial and temporal variability of sediment sources and sinks can be reconstructed for the last several decades. That is especially important for catchments which experienced profound land use changes such as transition from pristine or agriculture-dominated to urbanized environment. The example presented here describes the results of reconstruction of changing sediment source types, contributions and spatial patterns for small reservoir catchment within the city of Kursk (Sredenerusskaya Upland, Central European Russia). Combination of compound specific stable isotopes, 137Cs, sediment grain size composition, land use information for several time intervals and daily rainfall record for the Kursk meteorological station (conveniently located within the study catchment) have been employed in order to evaluate major sediment sources within the catchment, their spatial pattern and temporal changes and compare those to history of reservoir sedimentation. The reservoir is situated on the Kur River - small river which gave its name to the city itself. The dam and reservoir were constructed and put into operation in 1969, thus the beginning of its infill is located stratigraphically later than the main peak of the global 137Cs fallout. It has been found that transition from dominantly agricultural land use to urbanized conditions caused decrease of contribution of soil erosion from cultivated land and increase of that of the active gullies into reservoir sedimentation. However, it is important to note that during extreme runoff events contribution of sediment originated from soil erosion on arable land still remains dominant, even though its area within the catchment recently

  3. Design and analysis of a small-scale vertical-axis wind turbine for rooftop power generation

    International Nuclear Information System (INIS)

    Abraham, J.P.; Mowry, G.S.; Erickson, R.A.

    2009-01-01

    This paper described a fluid flow model of a 2-blade vertical axis wind turbine designed for use in crowded urban and rooftop environments. The turbine featured a contoured blade developed to maximize rotational velocity and minimize drag forces. The model was used to determine the turbine's rotational velocities in a range of wind speeds. The analysis included a numerical simulation of air flow across the cup faces at all circumferential locations in order to determine pressure and drag forces. A rigid body dynamic analysis was then conducted to determine the rotational velocity of the turbine. Mass, momentum and turbulence closure equations were presented. Results of the study demonstrated that a turbine rotation rate of 137 rpm was achieved at wind velocities of 30 miles per hour. Wind speeds of 20 and 10 miles per hour resulted in rotational velocities of 91 and 43 rpm. It was concluded that the model can be used to predict the angular velocity of the vertical turbine system. 13 refs., 11 figs

  4. Characterising the vertical separation of shale-gas source rocks and aquifers across England and Wales (UK)

    Science.gov (United States)

    Loveless, Sian E.; Bloomfield, John P.; Ward, Robert S.; Hart, Alwyn J.; Davey, Ian R.; Lewis, Melinda A.

    2018-03-01

    Shale gas is considered by many to have the potential to provide the UK with greater energy security, economic growth and jobs. However, development of a shale gas industry is highly contentious due to environmental concerns including the risk of groundwater pollution. Evidence suggests that the vertical separation between exploited shale units and aquifers is an important factor in the risk to groundwater from shale gas exploitation. A methodology is presented to assess the vertical separation between different pairs of aquifers and shales that are present across England and Wales. The application of the method is then demonstrated for two of these pairs—the Cretaceous Chalk Group aquifer and the Upper Jurassic Kimmeridge Clay Formation, and the Triassic sandstone aquifer and the Carboniferous Bowland Shale Formation. Challenges in defining what might be considered criteria for `safe separation' between a shale gas formation and an overlying aquifer are discussed, in particular with respect to uncertainties in geological properties, aquifer extents and determination of socially acceptable risk levels. Modelled vertical separations suggest that the risk of aquifer contamination from shale exploration will vary greatly between shale-aquifer pairs and between regions and this will need to be considered carefully as part of the risk assessment and management for any shale gas development.

  5. Experience with vertical down-fired, coal-fuelled, low emissions air heaters incorporating automatic ash removal

    Energy Technology Data Exchange (ETDEWEB)

    Keller, M.; Noble, R.K.; Keller, J. [Tulsa Combustion LLC, Tulsa, OK (United States)

    2009-07-01

    This paper discussed the conversion of a horizontally-oriented air heater system with a vertically-oriented pulverized coal-fuelled air heater system. The vertically-oriented heater was used for automatic de-ashing and avoiding the ash accumulation often seen in horizontally-oriented systems. The study showed that the use of the vertical system significantly reduced emissions of nitrous oxides (NO{sub x}), carbon monoxide (CO) and volatile organic compounds (VOCs). Slag and salt attacks on the refractory were also reduced. The vertical systems provided automatic ash removal and eliminated hot spots on the refractory. The potential for variations in composition was also reduced. It was concluded that the system's smaller footprint means that it can be used in retrofits and can be installed in small spaces. 12 figs.

  6. Effects of morphological control on the characteristics of vertical-type OTFTs using Alq3.

    Science.gov (United States)

    Kim, Young Do; Park, Jong Wook; Kang, In Nam; Oh, Se Young

    2008-09-01

    We have fabricated vertical-type organic thin-film transistors (OTFTs) using tris-(8-hydroxyquinoline) aluminum (Alq(3)) as an n-type active material. Vertical-type OTFT using Alq(3) has a layered structure of Al(source electrode)/Alq(3)(active layer)/Al(gate electrode)/Alq(3)(active layer)/ITO glass(drain electrode). Alq(3) thin films containing various surface morphologies could be obtained by the control of evaporation rate and substrate temperature. The effects of the morphological control of Alq(3) thin layer on the grain size and the flatness of film surface were investigated. The characteristics of vertical-type OTFT significantly influenced the growth condition of Alq(3) layer.

  7. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  8. Calculation of economic viability of alternative energy sources considering its environmental costs for small communities of Northeast Brazil

    International Nuclear Information System (INIS)

    Stecher, Luiza Chourkalo

    2014-01-01

    There has been an increasing concern about current environmental issues caused by human activity, as the world searches for development. The production of electricity is an extremely relevant factor in this scenario since it is responsible for a large portion of the emissions that cause the greenhouse effect. Due to this fact, a sustainable development with alternative energy sources, which are attractive for such purpose, must be proposed, especially in places that are not supplied by the conventional electricity grid such as many communities in the Northeast Brazil. This work aims to calculate the environmental cost for the alternative sources of energy - solar, wind and biomass - during electricity generation, and to estimate the economic feasibility of those sources in small communities of Northeast Brazil, considering the avoided costs. The externalities must be properly identified and valued so the costs or benefits can be internalized and reflect accurately the economic feasibility or infeasibility of those sources. For this, the method of avoided costs was adopted for the calculation of externalities. This variable was included in the equation developed for all considered alternative energy sources. The calculations of economic feasibility were performed taking the new configurations in consideration, and the new equation was reprogrammed in the Programa de Calculo de Custos de Energias Alternativas, Solar, Eolica e Biomassa (PEASEB). The results demonstrated that the solar photovoltaic energy in isolated systems is the most feasible and broadly applicable source for small communities of Northeast Brazil. (author)

  9. 3D-vertical integration of sensors and electronics

    International Nuclear Information System (INIS)

    Lipton, R.

    2007-01-01

    Technologies are being developed which enable the vertical integration of sensors and electronics as well as multilayer electronic circuits. New thinning and wafer bonding techniques and the formation of small vias between resulting thin layers of electronics enable the design of dense integrated sensor/readout structures. We discuss candidate technologies based on SOI and bulk CMOS. A prototype 3D chip developed at Fermilab that incorporates three tiers of 0.18μm CMOS is described

  10. Monte Carlo modeling of small photon fields: Quantifying the impact of focal spot size on source occlusion and output factors, and exploring miniphantom design for small-field measurements

    International Nuclear Information System (INIS)

    Scott, Alison J. D.; Nahum, Alan E.; Fenwick, John D.

    2009-01-01

    The accuracy with which Monte Carlo models of photon beams generated by linear accelerators (linacs) can describe small-field dose distributions depends on the modeled width of the electron beam profile incident on the linac target. It is known that the electron focal spot width affects penumbra and cross-field profiles; here, the authors explore the extent to which source occlusion reduces linac output for smaller fields and larger spot sizes. A BEAMnrc Monte Carlo linac model has been used to investigate the variation in penumbra widths and small-field output factors with electron spot size. A formalism is developed separating head scatter factors into source occlusion and flattening filter factors. Differences between head scatter factors defined in terms of in-air energy fluence, collision kerma, and terma are explored using Monte Carlo calculations. Estimates of changes in kerma-based source occlusion and flattening filter factors with field size and focal spot width are obtained by calculating doses deposited in a narrow 2 mm wide virtual ''milliphantom'' geometry. The impact of focal spot size on phantom scatter is also explored. Modeled electron spot sizes of 0.4-0.7 mm FWHM generate acceptable matches to measured penumbra widths. However the 0.5 cm field output factor is quite sensitive to electron spot width, the measured output only being matched by calculations for a 0.7 mm spot width. Because the spectra of the unscattered primary (Ψ Π ) and head-scattered (Ψ Σ ) photon energy fluences differ, miniphantom-based collision kerma measurements do not scale precisely with total in-air energy fluence Ψ=(Ψ Π +Ψ Σ ) but with (Ψ Π +1.2Ψ Σ ). For most field sizes, on-axis collision kerma is independent of the focal spot size; but for a 0.5 cm field size and 1.0 mm spot width, it is reduced by around 7% mostly due to source occlusion. The phantom scatter factor of the 0.5 cm field also shows some spot size dependence, decreasing by 6% (relative) as

  11. A review of the cylindrical heat source method for the design and analysis of vertical ground-coupled heat pump systems

    Energy Technology Data Exchange (ETDEWEB)

    Bernier, M. [Ecole Polytechnique, Montreal, PQ (Canada). Dept. de Genie Mecanique

    2000-12-01

    The successful design and analysis of ground-coupled heat pump (GCHP) systems depends in large part on the adequate prediction of ground water heat transfer. The author presented a detailed review of the cylindrical heat source method utilized for the prediction of transient heat transfer in vertical U-tube ground heat exchangers. The physics that underlies the theory applicable to this technology is explained in a step-by-step manner. Explanations are also provided for the equations that govern the determination of design lengths for the cylindrical heat method, as presented in the ASHRAE handbook. Some improvements were recommended by the author, such as the calculation of the effective thermal resistances using the borehole diameter instead of the equivalent U-tube diameter now in use. Annual hour-by-hour building load calculations should be used to calculate ground loads. 8 refs., 2 tabs., 5 figs., 3 appendices.

  12. The Fragmentation Criteria in Local Vertically Stratified Self-gravitating Disk Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Baehr, Hans; Klahr, Hubert [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Kratter, Kaitlin M., E-mail: baehr@mpia.de [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States)

    2017-10-10

    Massive circumstellar disks are prone to gravitational instabilities, which trigger the formation of spiral arms that can fragment into bound clumps under the right conditions. Two-dimensional simulations of self-gravitating disks are useful starting points for studying fragmentation because they allow high-resolution simulations of thin disks. However, convergence issues can arise in 2D from various sources. One of these sources is the 2D approximation of self-gravity, which exaggerates the effect of self-gravity on small scales when the potential is not smoothed to account for the assumed vertical extent of the disk. This effect is enhanced by increased resolution, resulting in fragmentation at longer cooling timescales β . If true, it suggests that the 3D simulations of disk fragmentation may not have the same convergence problem and could be used to examine the nature of fragmentation without smoothing self-gravity on scales similar to the disk scale height. To that end, we have carried out local 3D self-gravitating disk simulations with simple β cooling with fixed background irradiation to determine if 3D is necessary to properly describe disk fragmentation. Above a resolution of ∼40 grid cells per scale height, we find that our simulations converge with respect to the cooling timescale. This result converges in agreement with analytic expectations which place a fragmentation boundary at β {sub crit} = 3.

  13. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.

    Science.gov (United States)

    Nowell, Harriott; Barnett, Sarah A; Christensen, Kirsten E; Teat, Simon J; Allan, David R

    2012-05-01

    The dedicated small-molecule single-crystal X-ray diffraction beamline (I19) at Diamond Light Source has been operational and supporting users for over three years. I19 is a high-flux tunable-wavelength beamline and its key details are described in this article. Much of the work performed on the beamline involves structure determination from small and weakly diffracting crystals. Other experiments that have been supported to date include structural studies at high pressure, studies of metastable species, variable-temperature crystallography, studies involving gas exchange in porous materials and structural characterizations that require analysis of the diffuse scattering between Bragg reflections. A range of sample environments to facilitate crystallographic studies under non-ambient conditions are available as well as a number of options for automation. An indication of the scope of the science carried out on the beamline is provided by the range of highlights selected for this paper.

  14. Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan.

    Science.gov (United States)

    Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di

    2016-03-01

    Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution reduction.

  15. A Remote Sensing Approach to Estimate Vertical Profile Classes of Phytoplankton in a Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Kun Xue

    2015-10-01

    Full Text Available The extension and frequency of algal blooms in surface waters can be monitored using remote sensing techniques, yet knowledge of their vertical distribution is fundamental to determine total phytoplankton biomass and understanding temporal variability of surface conditions and the underwater light field. However, different vertical distribution classes of phytoplankton may occur in complex inland lakes. Identification of the vertical profile classes of phytoplankton becomes the key and first step to estimate its vertical profile. The vertical distribution profile of phytoplankton is based on a weighted integral of reflected light from all depths and is difficult to determine by reflectance data alone. In this study, four Chla vertical profile classes (vertically uniform, Gaussian, exponential and hyperbolic were found to occur in three in situ vertical surveys (28 May, 19–24 July and 10–12 October in a shallow eutrophic lake, Lake Chaohu. We developed and validated a classification and regression tree (CART to determine vertical phytoplankton biomass profile classes. This was based on an algal bloom index (Normalized Difference algal Bloom Index, NDBI applied to both in situ remote sensing reflectance (Rrs and MODIS Rayleigh-corrected reflectance (Rrc data in combination with data of local wind speed. The results show the potential of retrieving Chla vertical profiles information from integrated information sources following a decision tree approach.

  16. OSO-7 observations of high galactic latitude x-ray sources

    International Nuclear Information System (INIS)

    Markert, T.H.; Canizares, C.R.; Clark, G.W.; Li, F.K.; Northridge, P.L.; Sprott, G.F.; Wargo, G.F.

    1976-01-01

    Six hundred days of observations by the MIT X-ray detectors aboard OSO-7 have been analyzed. All-sky maps of X-ray intensity have been constructed from these data. A sample map is displayed. Seven sources with galactic latitude vertical-barb/subi//subi/vertical-bar>10degree, discovered during the mapping process, are reported, and upper limits are set on other high-latitude sources. The OSO-7 results are compared with those of Uhuru and an implication of this comparison, that many of the high-latitude sources may be variable, is discussed

  17. NBS SURF 11: A small versatile synchrotron light source

    International Nuclear Information System (INIS)

    Rakowsky, G.

    1981-01-01

    Synchrotron radiation sources do not have to be large multi-megadollar installations. SURF II is based on a compact electron storage ring with a radius of only 0.84 m, an operating energy of 250 MeV, and useful light output down to 5 nm. Small beam size, high brightness and wide-angle light ports give SURF II unique capabilities. Presently five beamlines are instrumented and operational, supporting experiments in atomic and molecular physics, surface science and materials studies, as well as providing optical calibration services. Nearing completion is a large facility for calibrating optical instruments, especially those intended for space flight. The capability of determining the absolute light flux emitted by SURF II has recently been improved and is now operational. The technique employs ultralinear silicon photodiodes to detect and count individual electrons in the stored beam. Other user conveniences include close access to the machine, flexible scheduling and close interaction with the operations staff. The machine's simplicity contributes to reliability and a high ratio of beamtime to downtime

  18. Anthropogenic water sources and the effects on Sonoran Desert small mammal communities.

    Science.gov (United States)

    Switalski, Aaron B; Bateman, Heather L

    2017-01-01

    Anthropogenic water sources (AWS) are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert in Arizona. A total of 370 individual mammals representing three genera and eight species were captured in 4,800 trap nights from winter 2011 to spring 2012. A multi-response permutation procedure was used to identify differences in small mammal community abundance and biomass by season and treatment. Rodent abundance, biomass, and richness were greater at AWS compared to control sites. Patterns of abundance and biomass were driven by the desert pocket mouse ( Chaetodipus penicillatus ) which was the most common capture and two times more numerous at AWS compared to controls. Vegetation characteristics, explored using principal components analysis, were similar between AWS and controls. Two species that prefer vegetation structure, Bailey's pocket mouse ( C. baileyi ) and white-throated woodrat ( Neotoma albigula) , had greater abundances and biomass near AWS and were associated with habitat having high cactus density. Although small mammals do not drink free-water, perhaps higher abundances of some species of desert rodents at AWS could be related to artificial structure associated with construction or other resources. Compared to the 30-year average of precipitation for the area, the period of our study occurred during a dry winter. During dry periods, perhaps AWS provide resources to rodents related to moisture.

  19. Anthropogenic water sources and the effects on Sonoran Desert small mammal communities

    Directory of Open Access Journals (Sweden)

    Aaron B. Switalski

    2017-11-01

    Full Text Available Anthropogenic water sources (AWS are developed water sources used as a management tool for desert wildlife species. Studies documenting the effects of AWS are often focused on game species; whereas, the effects on non-target wildlife are less understood. We used live trapping techniques to investigate rodent abundance, biomass, and diversity metrics near AWS and paired control sites; we sampled vegetation to determine rodent-habitat associations in the Sauceda Mountains of the Sonoran Desert in Arizona. A total of 370 individual mammals representing three genera and eight species were captured in 4,800 trap nights from winter 2011 to spring 2012. A multi-response permutation procedure was used to identify differences in small mammal community abundance and biomass by season and treatment. Rodent abundance, biomass, and richness were greater at AWS compared to control sites. Patterns of abundance and biomass were driven by the desert pocket mouse (Chaetodipus penicillatus which was the most common capture and two times more numerous at AWS compared to controls. Vegetation characteristics, explored using principal components analysis, were similar between AWS and controls. Two species that prefer vegetation structure, Bailey’s pocket mouse (C. baileyi and white-throated woodrat (Neotoma albigula, had greater abundances and biomass near AWS and were associated with habitat having high cactus density. Although small mammals do not drink free-water, perhaps higher abundances of some species of desert rodents at AWS could be related to artificial structure associated with construction or other resources. Compared to the 30-year average of precipitation for the area, the period of our study occurred during a dry winter. During dry periods, perhaps AWS provide resources to rodents related to moisture.

  20. A new detection system for extremely small vertically mounted cantilevers

    International Nuclear Information System (INIS)

    Antognozzi, M; Ulcinas, A; Picco, L; Simpson, S H; Miles, M J; Heard, P J; Szczelkun, M D; Brenner, B

    2008-01-01

    Detection techniques currently used in scanning force microscopy impose limitations on the geometrical dimensions of the probes and, as a consequence, on their force sensitivity and temporal response. A new technique, based on scattered evanescent electromagnetic waves (SEW), is presented here that can detect the displacement of the extreme end of a vertically mounted cantilever. The resolution of this method is tested using different cantilever sizes and a theoretical model is developed to maximize the detection sensitivity. The applications presented here clearly show that the SEW detection system enables the use of force sensors with sub-micron size, opening new possibilities in the investigation of biomolecular systems and high speed imaging. Two types of cantilevers were successfully tested: a high force sensitivity lever with a spring constant of 0.17 pN nm -1 and a resonant frequency of 32 kHz; and a high speed lever with a spring constant of 50 pN nm -1 and a resonant frequency of 1.8 MHz. Both these force sensors were fabricated by modifying commercial microcantilevers in a focused ion beam system. It is important to emphasize that these modified cantilevers could not be detected by the conventional optical detection system used in commercial atomic force microscopes

  1. THE ACUTE EFFECTS OF BACK SQUATS ON VERTICAL JUMP PERFORMANCE IN MEN AND WOMEN

    Directory of Open Access Journals (Sweden)

    Gavin L. Moir

    2010-06-01

    Full Text Available The aim of the present study was to investigate the acute effects of performing back squats on subsequent performance during a series of vertical jumps in men and women. Twelve men and 12 women were tested on three separate occasions, the first of which was used to determine their 1-repetition maximum (1-RM parallel back squat. Following this, subjects performed a potentiation and a control treatment in a counterbalanced order. The potentiation treatment culminated with subjects performing parallel back squats with a load equivalent to 70% 1- RM for three repetitions, following which they performed one countermovement vertical jump (CMJ for maximal height every three minutes for a total of 10 jumps. During the control treatment, subjects performed only the CMJs. Jump height (JH and vertical stiffness (VStiff were calculated for each jump from the vertical force signal recorded from a force platform. There were no significant changes in JH or VStiff following the treatments and no significant differences in the responses between men and women (p > 0.05. Correlations between normalized 1-RM back squat load and the absolute change in JH and VStiff were small to moderate for both men and women, with most correlations being negative. Large variations in response to the back squats were noted in both men and women. The use of resistance exercises performed prior to a series of vertical jumps can result in improvements in performance in certain individuals, although the gains tend to be small and dependent upon the mechanical variable measured. There does not seem to be any differences between men and women in the response to dynamic potentiation protocols

  2. Vertical cryostat for guidance and propulsion of superconducting magnetic levitation vehicle

    International Nuclear Information System (INIS)

    Nakashima, H.; Arima, K.

    1974-01-01

    The superconducting magnetic levitation vehicle requires two types of magnet: one for levitation, and one for guidance and propulsion (linear synchronous motor). Cryostats for these magnets have to satisfy three fundamental conditions; lightness, small heat leak, and enough strength to ensure the electromagnetic forces. A prototype vertical cryostat was designed for research into on-board cryostats for guidance and propulsion. A small refrigerator can be connected to the cryostat, to facilitate testing of the fundamental refrigeration system on board. The performance of the cryostat, and the test results, are reported in this paper. (author)

  3. Operation of the ORNL High Particle Flux Helicon Plasma Source

    International Nuclear Information System (INIS)

    Goulding, Richard Howell; Biewer, Theodore M.; Caughman, John B.; Chen, Guangye; Owen, Larry W.; Sparks, Dennis O.

    2011-01-01

    A high power, high particle flux rf-based helicon plasma source has been constructed at ORNL and operated at power levels up to 30 kW. High-density hydrogen and helium plasmas have been produced. The source has been designed as the basis for a linear plasma materials interaction (PMI) test facility that will generate particle fluxes Gamma(p) > 10(23) M-3 s(-1), and utilize additional ion and electron cyclotron heating to produce high parallel (to the magnetic field) heat fluxes of similar to 10 MW/m(2). An rf-based source for PMI research is of interest because high plasma densities are generated with no internal electrodes, allowing true steady state operation with minimal impurity generation. The ORNL helicon source has a diameter of 15 cm and to-date has operated at a frequency f = 13.56 MHz, with magnetic field strength vertical bar B vertical bar in the antenna region up to similar to 0.15 T. Maximum densities of 3 x 10(19) M-3 in He and 2.5 x 10(19) m(-3) in H have been achieved. Radial density profiles have been seen to be dependent on the axial vertical bar B vertical bar profile.

  4. Nine-component vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Balch, A.H.; Erdemir, C.; Spengler, R.W.; Hunter, W.C.

    1996-01-01

    Nine-component vertical seismic profiling has been conducted at the UE-25 UZ No. 16 borehole at Yucca Mountain, Nevada, in support of investigation of the hydrologic significance of fault and fracture systems. A large data set from multi-component sources and receivers allows state-of-the-art advances in processing using polarization filtering and reverse time migration, for enhanced interpretation of geologic features

  5. The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe

    Science.gov (United States)

    Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde

    2017-08-01

    The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.

  6. Lead distribution and possible sources along vertical zone spectrum of typical ecosystems in the Gongga Mountain, eastern Tibetan Plateau

    Science.gov (United States)

    Luo, Ji; Tang, Ronggui; Sun, Shouqin; Yang, Dandan; She, Jia; Yang, Peijun

    2015-08-01

    A total of 383 samples from soil, plant, litterfall and precipitation in four typical ecosystems of Gongga Mountain were collected. Pb concentrations of samples were measured and analyzed. The results showed mean Pb concentrations in different soil layers were in the order of O > A > C, and mean Pb concentrations of the aboveground parts of plant was 3.60 ± 2.54 mg kg-1, with the minimum value of 0.77 mg kg-1 and the maximum value of 10.90 mg kg-1. Pb concentrations in soil's O-horizon and A-horizon showed a downward trend with increasing elevation (the determination coefficient R2 was 0.9478, 0.7918 and 0.9759 respectively). In contrast to other soil layers, the level of Pb concentrations in O-horizon (incomplete decomposition) was significantly high. Litterfall decomposition, atmospheric deposition and the unique climate could be main factors leading high Pb accumulation in soil's O-horizon. What's more, significant correlation (R2 = 0.8126, P soil's A-horizon confirms that fine roots could adsorb and accumulate Pb materials in soil. In general, the fact that Pb inputted into the typical ecosystems in the Gongga Mountain via long-range transportation and deposition of the atmosphere from external Pb sources could be confirmed by the HYSPLIT model and the ratio of CPb/CAl in plants (leaves) and CPb/CAl in litterfall. The mining activities and increasing anthropogenic activities (tourism development) could be main sources of Pb in this area. In order to better understand Pb sources and eco-risks of these typical ecosystems, litterfall decomposition characteristics, biomass of productivity of forest ecosystem, Pb isotopic tracing among air mass, twigs, leaves, litterfall and O-horizon soil in this vertical belt should also be taken into consideration.

  7. The sources of streamwater to small mountainous rivers in Taiwan during typhoon and non-typhoon seasons.

    Science.gov (United States)

    Lee, Tsung-Yu; Hong, Nien-Ming; Shih, Yu-Ting; Huang, Jr-Chuan; Kao, Shuh-Ji

    2017-12-01

    The dynamics and behaviors of streamwater chemistry are rarely documented for subtropical small mountainous rivers. A 1-year detailed time series of streamwater chemistry, using non-typhoon and typhoon samples, was monitored in two watersheds, with and without cultivation, in central Taiwan. Rainwater, soil leachate, and well water were supplemented to explain the streamwater chemistry. The concentrations of fluoride, chloride, sulfate, magnesium, potassium, calcium, strontium, silicon, and barium of all the water samples were measured. Principal component analysis and residual analysis were applied to examine the mechanisms of solute transport and investigate possible sources contributing to the streamwater chemistry. In addition to the influence of well water and soil leachate on streamwater chemistry during non-typhoon period, overland flow and surface erosion affect streamwater chemistry during the typhoon period. The latter has not been discussed in previous studies. Surface erosion is likely to be an end member and non-conservatively mixed with other end members, resulting in a previously unobserved blank zone in the mixing space. This has a particularly great impact on small mountainous watersheds, which suffer from rapid erosion. Moreover, fertilizer contaminates agricultural soil, making soil water end members more identifiable. To our knowledge, this study is the first to clearly illustrate the dynamics and sources of streamwater chemistry of small mountainous rivers that are analogous to rivers in Oceania.

  8. Development of Vertical Cable Seismic System

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by

  9. Turbulent vertical diffusivity in the sub-tropical stratosphere

    Directory of Open Access Journals (Sweden)

    I. Pisso

    2008-02-01

    Full Text Available Vertical (cross-isentropic mixing is produced by small-scale turbulent processes which are still poorly understood and paramaterized in numerical models. In this work we provide estimates of local equivalent diffusion in the lower stratosphere by comparing balloon borne high-resolution measurements of chemical tracers with reconstructed mixing ratio from large ensembles of random Lagrangian backward trajectories using European Centre for Medium-range Weather Forecasts analysed winds and a chemistry-transport model (REPROBUS. We focus on a case study in subtropical latitudes using data from HIBISCUS campaign. An upper bound on the vertical diffusivity is found in this case study to be of the order of 0.5 m2 s−1 in the subtropical region, which is larger than the estimates at higher latitudes. The relation between diffusion and dispersion is studied by estimating Lyapunov exponents and studying their variation according to the presence of active dynamical structures.

  10. Fabrication of a vertical channel field effect transistor and a study of its electrical performances

    International Nuclear Information System (INIS)

    Bhuiyan, A.S.

    1983-01-01

    A vertical channel field effect transistor on silicon was fabricated by diffusion technique and its electrical characteristics were studied as a function of voltage and temperature. It was found that this transistor has relatively high breakdown voltage of 65 volts for drain source and of 7.5 volts for gate source terminals. (author)

  11. Open Source Telecommunication Companies

    OpenAIRE

    Peter Liu

    2007-01-01

    Little is known about companies whose core business is selling telecommunications products that lever open source projects. Open source telecommunications (OST) companies operate in markets that are very different from typical software product markets. The telecommunications market is regulated, vertically integrated, and proprietary designs and special chips are widely used. For a telecommunications product to be useful, it must interact with both access network products and core network pro...

  12. Polarization measurement and vertical aperture optimization for obtaining circularly polarized bend-magnet radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kortright, J.B.; Rice, M.; Hussain, Z. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Growing interest in utilizing circular polarization prompted the design of bend-magnet beamline 9.3.2 at the Advanced Light Source, covering the 30-1500 eV spectral region, to include vertical aperturing capabilities for optimizing the collection of circular polarization above and below the orbit plane. After commissioning and early use of the beamline, a multilayer polarimeter was used to characterize the polarization state of the beam as a function of vertical aperture position. This report partially summarizes the polarimetry measurements and compares results with theoretical calculations intended to simulate experimental conditions.

  13. Determination of the quark coupling strength vertical bar V-ub vertical bar using baryonic decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Older, A. A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.

    In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, vertical bar V-ub vertical bar and vertical bar V-ub vertical bar, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron

  14. A global vertical reference frame based on four regional vertical datums

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 48, č. 3 (2004), s. 493-502 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotentinal * local vertical datums * global vertical reference frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.447, year: 2004

  15. Temperature distributions in pavement and bridge slabs heated by using vertical ground-source heat pump systems - doi: 10.4025/actascitechnol.v35i4.15712

    Directory of Open Access Journals (Sweden)

    Asım Balbay

    2013-10-01

    Full Text Available Temperature distribution which occurs in pavement and bridge slabs heated for de-icing and snow melting during cold periods is determined by using vertical ground-source heat pump (GSHP systems with U-tube ground heat exchanger (GHE. The bridge and pavement models (slabs for de-icing and snow melting were constructed. A three-dimensional finite element model (FEM was developed to simulate temperature distribution of bridge slab (BS and pavement slab (PS. The temperature distribution simulations of PS and BS were conducted numerically by computational fluid dynamics (CFD program named ‘Fluent’. Congruence between the simulations and experimental data was determined.   

  16. Modified Vertical Bearing Capacity for Circular Foundations in Sand Using Reduced Friction Angle

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Larsen, Kim André

    2012-01-01

    Recently Bucket foundation as a large cylindrical structure that is open as the base and closed at the top, has attracted much attention in offshore projects. In order to present relationship between vertical bearing capacity of a bucket foundation relative to the corresponding capacity of a circ......Recently Bucket foundation as a large cylindrical structure that is open as the base and closed at the top, has attracted much attention in offshore projects. In order to present relationship between vertical bearing capacity of a bucket foundation relative to the corresponding capacity...... of a circular plate, several loading tests on small scale bucket foundations including the circular surface footings are performed at Aalborg University. In current research, the vertical bearing capacity of circular surface footings is investigated using reduced friction angle. It is also presented a linear...

  17. Design analysis of vertical wind turbine with airfoil variation

    Science.gov (United States)

    Maulana, Muhammad Ilham; Qaedy, T. Masykur Al; Nawawi, Muhammad

    2016-03-01

    With an ever increasing electrical energy crisis occurring in the Banda Aceh City, it will be important to investigate alternative methods of generating power in ways different than fossil fuels. In fact, one of the biggest sources of energy in Aceh is wind energy. It can be harnessed not only by big corporations but also by individuals using Vertical Axis Wind Turbines (VAWT). This paper presents a three-dimensional CFD analysis of the influence of airfoil design on performance of a Darrieus-type vertical-axis wind turbine (VAWT). The main objective of this paper is to develop an airfoil design for NACA 63-series vertical axis wind turbine, for average wind velocity 2,5 m/s. To utilize both lift and drag force, some of designs of airfoil are analyzed using a commercial computational fluid dynamics solver such us Fluent. Simulation is performed for this airfoil at different angles of attach rearranging from -12°, -8°, -4°, 0°, 4°, 8°, and 12°. The analysis showed that the significant enhancement in value of lift coefficient for airfoil NACA 63-series is occurred for NACA 63-412.

  18. Vertical integration

    International Nuclear Information System (INIS)

    Antill, N.

    1999-01-01

    This paper focuses on the trend in international energy companies towards vertical integration in the gas chain from wellhead to power generation, horizontal integration in refining and marketing businesses, and the search for larger projects with lower upstream costs. The shape of the petroleum industry in the next millennium, the creation of super-major oil companies, and the relationship between size and risk are discussed. The dynamics of vertical integration, present events and future developments are considered. (UK)

  19. Relative Role of Horizontal and Vertical Processes in Arctic Amplification

    Science.gov (United States)

    Kim, K. Y.

    2017-12-01

    The physical mechanism of Arctic amplification is still controversial. Specifically, relative role of vertical processes resulting from the reduction of sea ice in the Barents-Kara Seas is not clearly understood in comparison with the horizontal advection of heat and moisture. Using daily data, heat and moisture budgets are analyzed during winter (Dec. 1-Feb. 28) over the region of sea ice reduction in order to delineate the relative roles of horizontal and vertical processes. Detailed heat and moisture budgets in the atmospheric column indicate that the vertical processes, release of turbulent heat fluxes and evaporation, are a major contributor to the increased temperature and specific humidity over the Barents-Kara Seas. In addition, greenhouse effect caused by the increased specific humidity, also plays an important role in Arctic amplification. Horizontal processes such as advection of heat and moisture are the primary source of variability (fluctuations) in temperature and specific humidity in the atmospheric column. Advection of heat and moisture, on the other hand, is little responsible for the net increase in temperature and specific humidity over the Barents-Kara Seas.

  20. Influence of vertically and obliquely propagating gravity waves on the polar summer mesosphere

    Science.gov (United States)

    Thurairajah, B.; Siskind, D. E.; Bailey, S. M.

    2017-12-01

    Polar Mesospheric Clouds (PMCs) are sensitive to changes in temperature of the cold polar summer mesosphere, which in turn are modulated by gravity waves (GWs). In this study we investigate the link between PMCs and GWs that propagate both vertically (i.e. wave propagation is directly above the source region) and obliquely (lateral or non-vertical propagation upward but away from the source region). Several observational studies have analyzed the link between PMCs and vertically propagating GWs and have reported both positive and negative correlations. Moreover, while modelling studies have noted the possibility of oblique propagation of GWs from the low-latitude stratosphere to the high-latitude mesosphere, observational studies of the influence of these waves on the polar summer mesosphere are sparse. We present a comprehensive analysis of the influence of vertically and obliquely propagating GWs on the northern hemisphere (NH) polar summer mesosphere using data from 8 PMC seasons. Temperature data from the SOFIE experiment on the AIM satellite and SABER instrument on the TIMED satellite are used to derive GW parameters. SOFIE PMC data in terms of Ice Water Content (IWC) are used to quantify the changes in the polar summer mesosphere. At high latitudes, preliminary analysis of vertically propagating waves indicate a weak but positive correlation between GWs at 50 km and GWs at the PMC altitude of 84 km. Overall there is a negative correlation between GWs at 50 km and IWC and a positive correlation between GWs at 84 km and IWC. These results and the presence of a slanted structure (slanted from the low-latitude stratosphere to the high-latitude mesosphere) in GW momentum flux suggest the possibility of a significant influence of obliquely propagating GWs on the polar summer mesosphere

  1. Stenting of vertical vein in an infant with obstructed supracardiac total anomalous pulmonary venous drainage

    Directory of Open Access Journals (Sweden)

    W K Lim

    2016-01-01

    Full Text Available A 1.7 kg infant with obstructed supracardiac total anomalous pulmonary venous drainage (TAPVD presented with severe pulmonary hypertension secondary to vertical vein obstruction. The child, in addition, had a large omphalocele that was being managed conservatively. The combination of low weight, unoperated omphalocele, and severe pulmonary hypertension made corrective cardiac surgery very high-risk. Therefore, transcatheter stenting of the stenotic vertical vein, as a bridge to corrective surgery was carried out. The procedure was carried out through the right internal jugular vein (RIJ. The stenotic segment of the vertical vein was stented using a coronary stent. After procedure, the child was discharged well to the referred hospital for weight gain and spontaneous epithelialization of the omphalocele. Stenting of the vertical vein through the internal jugular vein can be considered in very small neonates as a bridge to repair obstructed supracardiac total anomalous venous drainage.

  2. Wind: small is beautiful

    International Nuclear Information System (INIS)

    Vries, E. de

    2005-01-01

    The small wind sector (0.5-100 kW) is often overlooked but could provide decentralised energy systems. Small wind turbines have been used for homes, farms and small businesses for over 80 years (e.g. in the USA and the Netherlands), receiving a boost in the 1970s and 1980s following the 1973 oil crisis when a new generation of turbines entered the European and US markets. Bergey Windpower and Southwest Windpower from the USA are the market leaders in this sector in terms of sales volume but are still classed as medium-sized enterprises. Small turbines have the disadvantage of higher costs compared with large turbines due to higher manufacturing costs, technical factors associated with the tendency to use small turbines on relatively short towers, small production runs and a failure to keep up with the latest design developments such as cost-effective state-of-the-art frequency converters. Most small turbines are horizontal axis turbines, though vertical axis turbines are produced by some manufacturers. Examples of the systems available from European suppliers are described

  3. Design of a vertical wiggler with superconducting coils

    International Nuclear Information System (INIS)

    Huke, K.; Yamakawa, T.

    1980-01-01

    A vertical wiggler has been designed, which will be installed in the 2.5 GeV electron storage ring under construction at KEK-PF. The wiggler magnet with superconducting coils produces magnetic fields of 6 T and wiggles electron beams in a vertical plane. Synchrotron radiation generated by the wiggler has a critical wavelength of 0.5 Angstroem and has an electric field-vector in the vertical direction, which is very important for precise experiments in various fields of the material sciences. The wiggler consists of three pairs of superconducting coils, an iron magnetic shield, a beam pipe and a liquid helium cryogenic system and is contained in a vacuum vessel which can move up and down together with the wiggler. During the injection time, the vessel is pushed up, so that electron beams with a large spatial spread go through the lower part of the beam pipe, where the aperture of the beam pipe is large enough. After the beam size becomes small due to radiation damping, the vessel is pushed down so that the electron beams go through the narrow gap of the wiggler magnet. Using the iron magnetic shield with iron pole pieces, the ratio between the magnetic field in the gap and the maximum field on the superconductor coils is reduced to 1.1. (orig.)

  4. Vertical distribution of (241)Pu in the southern Baltic Sea sediments.

    Science.gov (United States)

    Strumińska-Parulska, Dagmara I

    2014-12-15

    The vertical distribution of plutonium (241)Pu in marine sediments can assist in determining the deposition history and sedimentation process of analyzed regions. In addition, (241)Pu/(239+240)Pu activity ratio could be used as a sensitive fingerprint for radioactive source identification. The present preliminary studies on vertical distribution of (241)Pu in sediments from four regions of the southern Baltic Sea are presented. The distribution of (241)Pu was not uniform and depended on sediment geomorphology and depth as well as location. The highest concentrations of plutonium were found in the surface layers of all analyzed sediments and originated from the Chernobyl accident. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Global Sourcing of Heterogeneous Firms: Theory and Evidence

    DEFF Research Database (Denmark)

    Kohler, Wilhelm; Smolka, Marcel

    the Encuesta sobre Estrategias Empresariales (ESEE). We find a pattern of effects whereby productivity stimulates vertical integration in industries of low sourcing intensity, but favors outsourcing in industries of high sourcing intensity. Moreover, we find that productivity boosts offshoring throughout all...

  6. Performance of the Advanced Photon Source

    International Nuclear Information System (INIS)

    Decker, G.

    1997-01-01

    The Advanced Photon Source (APS) positron storage ring is a 100-mA, 7-GeV, third-generation x-ray synchrotron radiation source which began operation in March 1995. Since that time, significant progress on beamline construction and commissioning has taken place, with many of the x-ray user beamlines in operation. Operational design goals which have been met or exceeded include 10-hour lifetime, > 90% availability, > 100-mA average current, > 5-mA single-bunch current, < 10% uncorrected coupling, 8-mm full vertical apertures for insertion devices, and ultra-stable orbit (<4.5 microm rms vertically, 17 microm horizontally). Progress beyond these design goals and a report on development plans, including top-up operation (injection with x-ray beamline shutters open), are presented

  7. Investigating vertical distribution patterns of lower tropospheric PM2.5 using unmanned aerial vehicle measurements

    Science.gov (United States)

    Li, Xiao-Bing; Wang, Dong-Sheng; Lu, Qing-Chang; Peng, Zhong-Ren; Wang, Zhan-Yong

    2018-01-01

    A lightweight unmanned aerial vehicle (UAV) was outfitted with miniaturized sensors to investigate the vertical distribution patterns and sources of fine aerosol particles (PM2.5) within the 1 000 m lower troposphere. A total of 16 UAV flights were conducted in the Yangtze River Delta (YRD) region, China, from the summer to winter in 2014. The associated ground-level measurements from two environmental monitoring stations were also used for background analysis. The results show that ground-level PM2.5 concentrations demonstrated a decreasing trend from Feb. to Jul. and an increasing trend from Aug. to Jan. (the following year). Higher PM2.5 concentrations during the day were mainly observed in the morning (Local Time, LT 05-09) in the spring and summer. However, higher PM2.5 concentrations occurred mainly in the late afternoon and evening (LT 16-20) in the autumn and winter, excluding severe haze pollution days when higher PM2.5 concentrations were also observed during the morning periods. Lower tropospheric PM2.5 concentrations exhibited similar diurnal vertical distribution patterns from the summer to winter. The PM2.5 concentrations decreased with height in the morning, with significantly large vertical gradients from the summer to winter. By contrast, the aerosol particles were well mixed with PM2.5 concentrations of lower than 35 μg ṡm-3 in the early afternoon (LT 12-16) due to sufficient expansions of the planetary boundary layer. The mean vertical PM2.5 concentrations within the 1 000 m lower troposphere in the morning were much larger in the winter (∼87.5 μg ṡm-3) than in the summer and autumn (∼20 μg ṡm-3). However, subtle differences of ∼11 μg ṡm-3 in the mean vertical PM2.5 concentrations were observed in the early afternoon from the summer to winter. The vertical distribution patterns of black carbon and its relationships with PM2.5 indicated that the lower tropospheric aerosol particles might be mainly derived from fossil

  8. Bangbang controller design and implementation for EAST vertical instability control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuehang, E-mail: wagn8901@mail.ustc.edu.cn [University of Science and Technology of China, Hefei (China); Xiao, Bingjia, E-mail: bjxiao@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); University of Science and Technology of China, Hefei (China); Liu, Lei, E-mail: liulei@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yuan, Qiping, E-mail: qpyuan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China)

    2016-11-15

    Highlights: • The linearized plasma vertical response model is designed and analysed. • The Bangbang controller for EAST vertical displacement is designed. • The Bangbang controller is optimized for time delay of control system. • We investigate efficacy of Bangbang controller with simulations. • Performance of the controller is roughly given by experiments. - Abstract: In the EAST 2014 campaign, a new internal coil (IC) power supply was used in order to enhance the control over the plasma’s vertical instabilities. The IC power supply now allows for current and voltage working modes with much higher peak voltages and currents and faster response time. In comparison the previous power supply only allowed for the current mode. A Bangbang and PID composite controller has been designed for the voltage mode based on optimal control theory and the RZIP rigid plasma response model. This paper will demonstrate that faster and enhanced controllability are realized with the combination of Bangbang and PID controller. For the large z position drift, the Bangbang controller will export the maximum voltage to achieve much faster power supply response and slow the vertical displacement events (VDEs). The PID controller is used for the small z drifts which will finally stabilize the VDEs with minimum z position oscillation. Furthermore, to evaluate the time latency of this control system and power supply, the stability and performance of the closed loop were simulated and analysed. This controller was finally implementation and test on EAST using the Quasi-snowflake shape which achieved growth rates of 500 s{sup −1}. This paper shows that the new power supply using the bangbang + PID controller can significantly enhance the control over vertical instabilities.

  9. Forced and free convection hydromagnetic flow past a vertical flat plate

    International Nuclear Information System (INIS)

    Abdelkhalek, M.M.

    2004-01-01

    The effects of magnetic field and temperature heat source on the free and forced convection flow past an infinite vertical plate is studied analytically. Solutions of the reduced equation appropriate in the forced convection and free convection regime are obtained using perturbation technique. The expression for the velocity field, skin friction and Nusselt number have been obtained

  10. VERTIGO (VERtical Transport In the Global Ocean): A study of particle sources and flux attenuation in the North Pacific

    Science.gov (United States)

    Buesseler, K. O.; Trull, T. W.; Steinberg, D. K.; Silver, M. W.; Siegel, D. A.; Saitoh, S.-I.; Lamborg, C. H.; Lam, P. J.; Karl, D. M.; Jiao, N. Z.; Honda, M. C.; Elskens, M.; Dehairs, F.; Brown, S. L.; Boyd, P. W.; Bishop, J. K. B.; Bidigare, R. R.

    2008-07-01

    The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and fluxes through the ocean's "twilight zone" (defined here as depths below the euphotic zone to 1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii (ALOHA) and in the NW Pacific (K2) during 3-week occupations in 2004 and 2005, respectively. We examine in this overview paper the contrasting physical, chemical and biological settings and how these conditions impact the source characteristics of the sinking material and the transport efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower transfer efficiency ( Teff) of particulate organic carbon (POC), POC flux 500/150 m, at ALOHA (20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and suggests that shallow remineralization above our 150-m trap is significant, especially for N relative to Si. We explore here also surface export ratios (POC flux/primary production) and possible reasons why this ratio is higher at K2, especially during the first trap deployment. When we compare the 500-m fluxes to deep moored traps, both sites lose about half of the sinking POC by >4000 m, but this comparison is limited in that fluxes at depth may have both a local and distant component. Certainly, the greatest difference in particle flux attenuation is in the mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately, we contend that at least three types of processes need to be considered: heterotrophic degradation of sinking particles, zooplankton migration and surface feeding, and lateral sources of suspended and sinking

  11. VERTIGO (VERtical Transport In the Global Ocean): A study of particle sources and flux attenuation in the North Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Buesseler, K.O.; Trull, T.W.; Steinberg, D.K.; Silver, M.W.; Siegel, D.A.; Saitoh, S.-I.; Lamborg, C.H.; Lam, P.J.; Karl, D.M.; Jiao, N.Z.; Honda, M.C.; Elskens, M.; Dehairs, F.; Brown, S.L.; Boyd, P.W.; Bishop, J.K.B.; Bidigare, R.R.

    2008-06-10

    The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and fluxes through the ocean's 'twilight zone' (defined here as depths below the euphotic zone to 1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii (ALOHA) and in the NW Pacific (K2) during 3 week occupations in 2004 and 2005, respectively. We examine in this overview paper the contrasting physical, chemical and biological settings and how these conditions impact the source characteristics of the sinking material and the transport efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower transfer efficiency (T{sub eff}) of particulate organic carbon (POC), POC flux 500/150 m, at ALOHA (20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and suggests that shallow remineralization above our 150 m trap is significant, especially for N relative to Si. We explore here also surface export ratios (POC flux/primary production) and possible reasons why this ratio is higher at K2, especially during the first trap deployment. When we compare the 500 m fluxes to deep moored traps, both sites lose about half of the sinking POC by >4000 m, but this comparison is limited in that fluxes at depth may have both a local and distant component. Certainly, the greatest difference in particle flux attenuation is in the mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately, we contend that at least three types of processes need to be considered: heterotrophic degradation of sinking particles, zooplankton migration and surface feeding, and lateral sources of

  12. Adaptation of the vertical vestibulo-ocular reflex in cats during low-frequency vertical rotation.

    Science.gov (United States)

    Fushiki, Hiroaki; Maruyama, Motoyoshi; Shojaku, Hideo

    2018-04-01

    We examined plastic changes in the vestibulo-ocular reflex (VOR) during low-frequency vertical head rotation, a condition under which otolith inputs from the vestibular system are essential for VOR generation. For adaptive conditioning of the vertical VOR, 0.02Hz sinusoidal pitch rotation for one hour about the earth's horizontal axis was synchronized with out-of-phase vertical visual stimulation from a random dot pattern. A vertical VOR was well evoked when the upright animal rotated around the earth-horizontal axis (EHA) at low frequency due to the changing gravity stimulus and dynamic stimulation of the otoliths. After adaptive conditioning, the amplitude of the vertical VOR increased by an average of 32.1%. Our observations showing plasticity in the otolithic contribution to the VOR may provide a new strategy for visual-vestibular mismatch training in patients with otolithic disorders. This low-frequency vertical head rotation protocol also provides a model for investigating the mechanisms underlying the adaptation of VORs mediated by otolith activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The Vertical Farm: A Review of Developments and Implications for the Vertical City

    Directory of Open Access Journals (Sweden)

    Kheir Al-Kodmany

    2018-02-01

    Full Text Available This paper discusses the emerging need for vertical farms by examining issues related to food security, urban population growth, farmland shortages, “food miles”, and associated greenhouse gas (GHG emissions. Urban planners and agricultural leaders have argued that cities will need to produce food internally to respond to demand by increasing population and to avoid paralyzing congestion, harmful pollution, and unaffordable food prices. The paper examines urban agriculture as a solution to these problems by merging food production and consumption in one place, with the vertical farm being suitable for urban areas where available land is limited and expensive. Luckily, recent advances in greenhouse technologies such as hydroponics, aeroponics, and aquaponics have provided a promising future to the vertical farm concept. These high-tech systems represent a paradigm shift in farming and food production and offer suitable and efficient methods for city farming by minimizing maintenance and maximizing yield. Upon reviewing these technologies and examining project prototypes, we find that these efforts may plant the seeds for the realization of the vertical farm. The paper, however, closes by speculating about the consequences, advantages, and disadvantages of the vertical farm’s implementation. Economic feasibility, codes, regulations, and a lack of expertise remain major obstacles in the path to implementing the vertical farm.

  14. Sediment source detection by stable isotope analysis, carbon and nitrogen content and CSSI in a small river of the Swiss Plateau

    Science.gov (United States)

    SchindlerWildhaber, Yael; Alewell, Christine; Birkholz, Axel

    2014-05-01

    Suspended sediment (SS) and organic matter in rivers can harm the fauna by affecting health and fitness of free swimming fish and by causing siltation of the riverbed. The temporal and spatial dynamics of sediment, carbon (C) and nitrogen (N) during the brown trout spawning season in a small river of the Swiss Plateau were assessed and C isotopes as well as the C/N atomic ratio were used to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the temporal and spatial sources of SS. We determined compound specific stable carbon isotopes (CSSI) in fatty acids of possible sediment source areas to the stream in addition and compared them to SS from selected high flow and low flow events. Organic matter concentrations in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and high rainfall, probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to an increase in sediment delivery from pasture and arable land downstream of the river. While the major sources of SS are pasture and arable land during base flow conditions, SS from forest soils increased during heavy rain events and warmer winter periods most likely due to snow melt which triggered erosion. Preliminary results of CSSI analysis of sediment source areas and comparison to SS of selected events indicate that differences in d13C values of individual fatty acids are too small to differentiate unambiguously between sediment sources.

  15. Vertical pump assembly

    International Nuclear Information System (INIS)

    Dohnal, M.; Rosel, J.; Skarka, V.

    1988-01-01

    The mounting is described of the drive assembly of a vertical pump for nuclear power plants in areas with seismic risk. The assembly is attached to the building floor using flexible and damping elements. The design allows producing seismically resistant pumps without major design changes in the existing types of vertical pumps. (E.S.). 1 fig

  16. Threshold Dynamics of a Stochastic SIR Model with Vertical Transmission and Vaccination

    OpenAIRE

    Miao, Anqi; Zhang, Jian; Zhang, Tongqian; Pradeep, B. G. Sampath Aruna

    2017-01-01

    A stochastic SIR model with vertical transmission and vaccination is proposed and investigated in this paper. The threshold dynamics are explored when the noise is small. The conditions for the extinction or persistence of infectious diseases are deduced. Our results show that large noise can lead to the extinction of infectious diseases which is conducive to epidemic diseases control.

  17. Unsteady free convection MHD flow between two heated vertical parallel conducting plates

    International Nuclear Information System (INIS)

    Sanyal, D.C.; Adhikari, A.

    2006-01-01

    Unsteady free convection flow of a viscous incompressible electrically conducting fluid between two heated conducting vertical parallel plates subjected to a uniform transverse magnetic field is considered. The approximate analytical solutions for velocity, induced field and temperature distribution are obtained for small and large values of magnetic Reynolds number. The problem is also extended to thermometric case. (author)

  18. Vertical Scope, Turbulence, and the Benefits of Commitment and Flexibility

    DEFF Research Database (Denmark)

    Claussen, Jörg; Kretschmer, Tobias; Stieglitz, Nils

    2015-01-01

    We address the contested state of theory and the mixed empirical evidence on the relationship between turbulence and vertical scope by studying how turbulence affects the benefits of commitment from integrated development of components and the benefits of flexibility from sourcing components...... externally. We show that increasing turbulence first increases but then decreases the relative value of vertical integration. Moderate turbulence reduces the value of flexibility by making supplier selection more difficult and increases the value of commitment by mitigating the status quo bias of integrated...... structures. Both effects improve the value of integration. Higher levels of turbulence undermine the adaptive benefits of commitment, but have a less adverse effect on flexibility, making nonintegration more attractive. We also show how complexity and uneven rates of turbulence moderate the nonmonotonic...

  19. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    Energy Technology Data Exchange (ETDEWEB)

    Kanaki, Toshiki, E-mail: kanaki@cryst.t.u-tokyo.ac.jp; Asahara, Hirokatsu; Ohya, Shinobu, E-mail: ohya@cryst.t.u-tokyo.ac.jp; Tanaka, Masaaki, E-mail: masaaki@ee.t.u-tokyo.ac.jp [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-14

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I{sub DS} by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I{sub DS} by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale.

  20. Spin-dependent transport properties of a GaMnAs-based vertical spin metal-oxide-semiconductor field-effect transistor structure

    International Nuclear Information System (INIS)

    Kanaki, Toshiki; Asahara, Hirokatsu; Ohya, Shinobu; Tanaka, Masaaki

    2015-01-01

    We fabricate a vertical spin metal-oxide-semiconductor field-effect transistor (spin-MOSFET) structure, which is composed of an epitaxial single-crystal heterostructure with a ferromagnetic-semiconductor GaMnAs source/drain, and investigate its spin-dependent transport properties. We modulate the drain-source current I DS by ∼±0.5% with a gate-source voltage of ±10.8 V and also modulate I DS by up to 60% with changing the magnetization configuration of the GaMnAs source/drain at 3.5 K. The magnetoresistance ratio is more than two orders of magnitude higher than that obtained in the previous studies on spin MOSFETs. Our result shows that a vertical structure is one of the hopeful candidates for spin MOSFET when the device size is reduced to a sub-micron or nanometer scale

  1. Field determination of vertical permeability to air in the unsaturated zone

    Science.gov (United States)

    Weeks, Edwin P.

    1978-01-01

    The vertical permeability to air of layered materials in the unsaturated zone may be determined from air pressure data obtained at depth during a period when air pressure is changing at land surface. Such data may be obtained by monitoring barometric pressure with a microbarograph or surveying altimeter and simultaneously measuring down-hole pneumatic head differences in specially constructed piezometers. These data, coupled with air-filled porosity data from other sources, may be compared with the results of electric-analog or numerical solution of the one-dimensional diffusion equation to make a trial-and-error determination of the air permeability for each layer. The permeabilities to air may in turn be converted to equivalent hydraulic conductivity values if the materials are well drained, are permeable enough that the Klinkenberg effect is small, and are structurally unaffected by wetting. The method offers potential advantages over present methods to evaluate sites for artificial recharge by spreading; to evaluate ground-water pollution hazards from feedlots, sanitary landfills , and land irrigated with sewage effluent; and to evaluate sites for temporary storage of gas in the unsaturated zone. (Woodard-USGS)

  2. Vertical stability, high elongation, and the consequences of loss of vertical control on DIII-D

    International Nuclear Information System (INIS)

    Kellman, A.G.; Ferron, J.R.; Jensen, T.H.; Lao, L.L.; Luxon, J.L.; Skinner, D.G.; Strait, E.J.; Reis, E.; Taylor, T.S.; Turnbull, A.D.; Lazarus, E.A.; Lister, J.B.

    1990-09-01

    Recent modifications to the vertical control system for DIII-D has enabled operation of discharges with vertical elongation κ, up to 2.5. When vertical stability is lost, a disruption follows and a large vertical force on the vacuum vessel is observed. The loss of plasma energy begins when the edge safety factor q is 2 but the current decay does not begin until q ∼1.3. Current flow on the open field lines in the plasma scrapeoff layer has been measured and the magnitude and distribution of these currents can explain the observed force on the vessel. Equilibrium calculations and simulation of this vertical displacement episode are presented. 7 refs., 4 figs

  3. Micro-electrodeposition techniques for the preparation of small actinide counting sources for ultra-high resolution alpha spectrometry by microcalorimetry

    International Nuclear Information System (INIS)

    Plionis, A.A.; Hastings, E.P.; LaMont, S.P.; Dry, D.E.; Bacrania, M.K.; Rabin, M.W.; Rim, J.H.

    2009-01-01

    Special considerations and techniques are desired for the preparation of small actinide counting sources. Counting sources have been prepared on metal disk substrates (planchets) with an active area of only 0.079 mm 2 . This represents a 93.75% reduction in deposition area from standard electrodeposition methods. The actinide distribution upon the smaller planchet must remain thin and uniform to allow alpha particle emissions to escape the counting source with a minimal amount of self-attenuation. This work describes the development of micro-electrodeposition methods and optimization of the technique with respect to deposition time and current density for various planchet sizes. (author)

  4. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 33, - (2004), s. 404-407 ISSN 1436-3445 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotential WO * vertical systems * global vertical frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  5. Small VTOL UAV Acoustics Measurement and Prediction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Interest in civilian use of small Unmanned Aerial Vehicles (UAVs) with Vertical Takeoff and Landing (VTOL) capability has increased greatly in recent years, and is...

  6. The capillary interaction between two vertical cylinders

    KAUST Repository

    Cooray, Himantha

    2012-06-27

    Particles floating at the surface of a liquid generally deform the liquid surface. Minimizing the energetic cost of these deformations results in an inter-particle force which is usually attractive and causes floating particles to aggregate and form surface clusters. Here we present a numerical method for determining the three-dimensional meniscus around a pair of vertical circular cylinders. This involves the numerical solution of the fully nonlinear Laplace-Young equation using a mesh-free finite difference method. Inter-particle force-separation curves for pairs of vertical cylinders are then calculated for different radii and contact angles. These results are compared with previously published asymptotic and experimental results. For large inter-particle separations and conditions such that the meniscus slope remains small everywhere, good agreement is found between all three approaches (numerical, asymptotic and experimental). This is as expected since the asymptotic results were derived using the linearized Laplace-Young equation. For steeper menisci and smaller inter-particle separations, however, the numerical simulation resolves discrepancies between existing asymptotic and experimental results, demonstrating that this discrepancy was due to the nonlinearity of the Laplace-Young equation. © 2012 IOP Publishing Ltd.

  7. Design and Fabrication of Small Vertical-Take-Off-Landing Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Abd Rahman Yasir Ashraf

    2018-01-01

    Full Text Available Modern UAVs available in the market have well-developed to cater to the countless field of application. UAVs have their own limitations in terms of flight range and manoeuvrability. The traditional fixed-wing UAVs can fly for long distance but require runways or wide-open spaces for take-off and landing. On the other hand, the more trending multirotor UAVs are extremely manoeuvrable but cannot be used for long-distance flights because of their slower speeds and relatively higher consumption of energy. This study proposed the implementation of hybrid VTOL UAV which has the manoeuvring advantage of a multirotor UAV while having the ability to travel fast to reach a further distance. The design methodology and fabrication method are discussed extensively which would be followed by a number of flight tests to prove the concept. The proposed UAV would be equipped with quadcopter motors and a horizontal thrust motor for vertical and horizontal flight modes respectively.

  8. Small heating reactors for local heating of communities

    International Nuclear Information System (INIS)

    Seifritz, W.

    1985-08-01

    The incentives to introduce relatively small heating reactors for local heating of communities are presented and the reasons why this vertically integrated energy system will meet the requirement of an emission - free substitution system are outlined. (author)

  9. Vertical-borehole ground-coupled heat pumps: A review of models and systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.; Cui, P. [Renewable Energy Research Group, Department of Building Services Engineering, The Hong Kong Polytechnic University, Hong Kong (China); Fang, Z. [Ground Source Heat Pump Research Center, Shandong Jianzhu University, Jinan (China)

    2010-01-15

    A large number of ground-coupled heat pump (GCHP) systems have been used in residential and commercial buildings throughout the world due to the attractive advantages of high efficiency and environmental friendliness. This paper gives a detailed literature review of the research and developments of the vertical-borehole GCHP technology for applications in air-conditioning. A general introduction on the ground source heat pump system and its development is briefly presented first. Then, the most typical simulation models of the vertical ground heat exchangers currently available are summarized in detail including the heat transfer processes outside and inside the boreholes. The various design/simulation programs for vertical GCHP systems primarily based on the typical simulation models are also reviewed in this paper. Finally, the various hybrid GCHP systems for cooling or heating-dominated buildings are well described. It is found that the GCHP technology can be used both in cold and hot weather areas and the energy saving potential is significant. (author)

  10. Mechanism of vertical migration of Am 241 in peaty-gley soil

    International Nuclear Information System (INIS)

    Kalinin, V.N.

    2002-01-01

    Nowadays soil in the Chernobyl zone has become a source from which radionuclides can come to other objects of biosphere. The vertical migration determines distribution of the radionuclides in the soil. For research of vertical migration of Am 241 in soil the distribution of the radionuclide in granulometric fractions of the soil particles was measured, humus was extracted from the soil with the help of a sodium pyrophosphate solution by the accelerated method of Kononova and Beltchikova. For an estimation of a share of a mobile form of radionuclide the soil was dissolved in ammonium acetate solution. The conclusion is made, that nowadays significant part of Am 241 is strongly fixed on a mineral matrix of the soil and migrates together with the soil particles

  11. A measurement system for vertical seawater profiles close to the air-sea interface

    Science.gov (United States)

    Sims, Richard P.; Schuster, Ute; Watson, Andrew J.; Yang, Ming Xi; Hopkins, Frances E.; Stephens, John; Bell, Thomas G.

    2017-09-01

    This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s-1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  12. Retrieving Vertical Air Motion and Raindrop Size Distributions from Vertically Pointing Doppler Radars

    Science.gov (United States)

    Williams, C. R.; Chandra, C. V.

    2017-12-01

    The vertical evolution of falling raindrops is a result of evaporation, breakup, and coalescence acting upon those raindrops. Computing these processes using vertically pointing radar observations is a two-step process. First, the raindrop size distribution (DSD) and vertical air motion need to be estimated throughout the rain shaft. Then, the changes in DSD properties need to be quantified as a function of height. The change in liquid water content is a measure of evaporation, and the change in raindrop number concentration and size are indicators of net breakup or coalescence in the vertical column. The DSD and air motion can be retrieved using observations from two vertically pointing radars operating side-by-side and at two different wavelengths. While both radars are observing the same raindrop distribution, they measure different reflectivity and radial velocities due to Rayleigh and Mie scattering properties. As long as raindrops with diameters greater than approximately 2 mm are in the radar pulse volumes, the Rayleigh and Mie scattering signatures are unique enough to estimate DSD parameters using radars operating at 3- and 35-GHz (Williams et al. 2016). Vertical decomposition diagrams (Williams 2016) are used to explore the processes acting on the raindrops. Specifically, changes in liquid water content with height quantify evaporation or accretion. When the raindrops are not evaporating, net raindrop breakup and coalescence are identified by changes in the total number of raindrops and changes in the DSD effective shape as the raindrops. This presentation will focus on describing the DSD and air motion retrieval method using vertical profiling radar observations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in Northern Oklahoma.

  13. Design of rotor blade for vertical axis wind turbine using double aerofoil

    Energy Technology Data Exchange (ETDEWEB)

    Chougule, P.D.; Ratkovich, N.; Kirkegaard, P.H.; Nielsen, Soeren R.K. [Aalborg Univ.. Dept. of Civil Engineering, Aalborg (Denmark)

    2012-07-01

    Nowadays, small vertical axis wind turbines are receiving more attention compared to horizontal wind turbines due to their suitability in urban use,because they generate less noise, have bird free turbines and lower cost. There are few vertical axis wind turbines design with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology in practice for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double aerofoil elements mainly used in aeroplane wing design. In this current work, two aerofoils are used to design a rotor blade for a vertical axis wind turbine to improve the power efficiency on the rotor. Double aerofoil blade design consists of a main aerofoil and a slat aerofoil. The parameters related to position and orientation of the slat aerofoil with respect to the main aerofoil defines the high lift. Orientation of slat aerofoil is a parameter of investigation in this paper. Computational fluid dynamics (CFD) have been used to obtain the aerodynamic characteristics of double aerofoil. The CFD simulations were carried out using Star CCM+ v7.04 (CD-adapco, UK) software. Aerofoils used in this work are selected from standard aerofoil shapes. (Author)

  14. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor intensity as observed in data. Final......-good producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all...... increasing when intermediate-input or final-goods trade is liberalised and when the fixed cost of vertical integration is reduced. At the same time, one observes firms that shift away from either vertical integration, offshoring, or exporting. Further, we provide guidance for testing the open...

  15. An evaporation source pellet or slug feeding system

    International Nuclear Information System (INIS)

    Cross, K.B.; O'Donnell, J.

    1979-01-01

    The development of two material feeding systems for resistive evaporation sources for an ion plating system is reported. A vertical magazine system is used for films up to 15 μm in thickness and a carousel type for films up to 25 μm. Both feed systems are compact and may be used in 12 in. ion plating systems. The vertical magazine system is easily automated. (UK)

  16. Experimental investigation on enhanced heat transfer of vertical condensers with trisection helical baffles

    International Nuclear Information System (INIS)

    Wu, Jiafeng; Zhou, Jiahao; Chen, Yaping; Wang, Mingchao; Dong, Cong; Guo, Ya

    2016-01-01

    Highlights: • Trisection helical baffles are introduced for vertical condenser enhancement. • Condensation in short-section and intermediate drainage is applied in new schemes. • Helical baffles with liquid dam and drainage gaps can promote condenser performance. • Dual-thread baffle scheme is superior to that of single-thread one by about 19%. • Condensation enhancement ratio of helical schemes is 1.5–2.5 over segment one. - Abstract: The vertical condensers have advantages of small occupation area, convenient in assemble or dismantle tube bundle and simple structure etc. However, the low heat transfer performance limits their applications. To enhance the heat transfer, a novel type of vertical condensers was designed by introducing trisection helical baffles with liquid dams and gaps for facilitating condensate drainage. Four configurations of vertical condensers with trisection helical baffle are experimentally studied and compared to a traditional segment baffle condenser. The enhancement ratio of trisection helical baffle schemes is about 1.5–2.5 and the heat transfer coefficient of the dual-thread trisection helical baffle scheme is superior to that of the single-thread one by about 19%. Assistant by the theoretical study, the experimental data is simulated and the condensation enhancement mechanisms by applying trisection helical baffle in vertical condenser are summarized as condensate drainage, short tube construct and reduce steam dead zone functions of the helical baffles.

  17. Theoretical and conditional monitoring of a small three-bladed vertical-axis micro-hydro turbine

    International Nuclear Information System (INIS)

    Huang, Sy-Ruen; Ma, Yen-Huai; Chen, Chia-Fu; Seki, Kazuichi; Aso, Toshiyuki

    2014-01-01

    Highlights: • This paper presents a novel 3 three-bladed vertical-axis micro-hydro turbine system. • This paper presents structure and performance of micro-hydroelectric turbine system. • The paper reveal that using VAMHT system in water is distinct from using in wind. • This paper present an experimental results of VAMHT system. • The paper show that the status transformation from cut-into stable power generation is short. - Abstract: This paper presents a novel 3-kW three-bladed vertical-axis micro-hydro turbine (VAMHT) system. The experimental results reveal that using this type of turbine in water is distinct from using it in wind. The micro-hydro turbine system uses a three-phase permanent magnet symmetric generator that transforms mechanical energy into electrical energy. The output voltage and frequency of the generator depend on water flow speed, and voltage steady equipment is used to maintain the maximum output power of the DC bus. According to the maximum power point tracking of the micro-hydro turbine system, the condition monitoring of the novel micro-hydro turbine requires no water flow meter. Furthermore, the construction and installation of the new micro-hydro turbine is simple, economical, and stable. This system combines a micro-hydro generator and electrical state-monitoring system, which can measure the speed, output power, DC-bus voltage, and all electrical characteristics of the micro-hydro turbine system. The results of comparing turbine between wind and water show that the speed ranges of water flow is narrower than that of wind, and the status transformation from cut-into stable power generation is short

  18. SU-F-T-670: From the OR to the Radiobiology Lab: The Journey of a Small X-Ray Source

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, J [Calvary Mater, Newcastle, NSW (Australia); The University of Sydney, Sydney, NSW (Australia); The University of Newcastle, Newcastle, NSW (Australia); Barry, M; Jones, R; Fay, M [Calvary Mater, Newcastle, NSW (Australia)

    2016-06-15

    Purpose: Irradiation of small animal tumor models within laboratories is vital to radiobiological experiments. Often the animals are not able to be brought back into the lab after being taken out for irradiation. Cell biology laboratories benefit from irradiation capability available around the clock without regard to patient load in an associated radiotherapy clinic. Commercial systems are available, but bulky and expensive. Methods: An intraoperative kV irradiation system (IntraBeam™) designed to deliver spherical dose distributions to surgical cavities has been repurposed for the irradiation of cell plates and small laboratory animals. An applicator has been altered to allow for simple, open fields. Special collimators are being developed. BEAMnrc Monte Carlo simulations with the “NRC swept BEAM” source model have been performed to characterize the dose distributions, to develop optimal collimators and as basis for dose prescription. Measurements with radiochromic film and with an ionization chamber were performed to characterize the beam and to validate the simulations. Results: Using its highest setting (50 kV and 40 µA) the x-ray unit is capable of delivering dose rates over 1 Gy/min homogeneously to standard cell plates even without an optimized collimator. Smaller areas (tumors in animals) can be irradiated with significantly higher dose rates (> 20 Gy/min) depending on distance of the source to the tumor. The HVL was found to be 0.21 mm Al which means the shielding requirements for the device are easily achievable in the lab. Conclusion: A mobile irradiation facility is feasible. It will allow easier access to radiation for radiobiology experiments. The modified system is versatile in that for cell plates homogenous irradiations can be achieved through distance from the source, while for high dose rate small field irradiations the source can be brought in close proximity to the target.

  19. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    Science.gov (United States)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  20. Small-angle scattering instruments on a 1 MW long pulse spallation source

    Energy Technology Data Exchange (ETDEWEB)

    Olah, G.A. [Los Alamos National Lab., Chemical Science and Tehcnology Div., Biosciences and Biotechnology Group, Los aalamos, NM (United States); Hjelm, R.P. [Los Alamos National Lab., Neutron Scattering Center, Los Alamos, NM (United States); Seeger, P.A.

    1995-11-01

    We have designed and optimized two small-angle neutron scattering instruments for installation at a 1 MW long pulse spallation source. The first of these instruments measures a Q-domain from 0.002 to 0.44 A{sup -1}, and the second instrument from 0.00069-0.17 A{sup -1}, Design characteristics were determined and optimization was done using a Monte Carlo instrument simulation package under development at Los alamos. A performance comparison was made between these instruments with D11 at the ILL by evaluating the scattered intensity and rms resolution for the instrument response function at different Q values for various instrument configurations needed to spn a Q-range of 0.0007-0.44 A{sup -1}. We concluded that the first of these instruments outperforms D11 in both intensity and resolution over most of the Q-domain and that the second is comparable to D11. Comparisons were also made of the performance of the optimized long pulse instruments with different reflectors and with a short pulse source, from which we concluded that there is an optimal moderator-reflector combination, and that a short pulse does not substantially improve the instrument performance. (author) 7 figs., 2 tabs., 9 refs.

  1. Small-angle scattering instruments on a 1 MW long pulse spallation source

    International Nuclear Information System (INIS)

    Olah, G.A.; Hjelm, R.P.; Seeger, P.A.

    1995-01-01

    We have designed and optimized two small-angle neutron scattering instruments for installation at a 1 MW long pulse spallation source. The first of these instruments measures a Q-domain from 0.002 to 0.44 A -1 , and the second instrument from 0.00069-0.17 A -1 , Design characteristics were determined and optimization was done using a Monte Carlo instrument simulation package under development at Los alamos. A performance comparison was made between these instruments with D11 at the ILL by evaluating the scattered intensity and rms resolution for the instrument response function at different Q values for various instrument configurations needed to spn a Q-range of 0.0007-0.44 A -1 . We concluded that the first of these instruments outperforms D11 in both intensity and resolution over most of the Q-domain and that the second is comparable to D11. Comparisons were also made of the performance of the optimized long pulse instruments with different reflectors and with a short pulse source, from which we concluded that there is an optimal moderator-reflector combination, and that a short pulse does not substantially improve the instrument performance. (author) 7 figs., 2 tabs., 9 refs

  2. Vertical distribution and sources of tropospheric ozone over South China in spring 2004: Ozonesonde measurements and modeling analysis

    Science.gov (United States)

    Zhang, Y.; Liu, H.; Crawford, J. H.; Considine, D. B.; Chan, C.; Scientific Team Of Tapto

    2010-12-01

    The Transport of Air Pollutant and Tropospheric Ozone over China (TAPTO-China) science initiative is a two-year (TAPTO 2004 and 2005) field measurement campaign to help improve our understanding of the physical and chemical processes that control the tropospheric ozone budget over the Chinese subcontinent (including the Asian Pacific rim) and its surrounding SE Asia. In this paper, we use two state-of-the-art 3-D global chemical transport models (GEOS-Chem and Global Modeling Initiative or GMI) to examine the characteristics of vertical distribution and quantify the sources of tropospheric ozone by analysis of TAPTO in-situ ozonesonde data obtained at five stations in South China during spring (April and May) 2004: Lin’an (30.30N, 119.75E), Tengchong (25.01N, 98.30E), Taipei (25.0N, 121.3E), Hong Kong (22.21N, 114.30E) and Sanya (18.21N, 110.31E). The observed tropospheric ozone concentrations show strong spatial and temporal variability, which is largely captured by the models. The models simulate well the observed vertical gradients of tropospheric ozone at higher latitudes but are too low at lower latitudes. Model tagged ozone simulations suggest that stratosphere has a large impact on the upper and middle troposphere (UT/MT) at Lin’an and Tengchong. Continental SE Asian biomass burning emissions are maximum in March but still contribute significantly to the photochemical production of tropopheric ozone in South China in early April. Asian anthropogenic emissions are the major contribution to lower tropospheric ozone at all stations. On the other hand, there are episodes of influence from European/North American anthropogenic emissions. For example, model tagged ozone simulations show that over Lin’an in April 2004, stratosphere contributes 20% (13 ppbv) at 5 km, Asian boundary layer contributes 70% (46 ppbv) to ozone in the boundary layer, European boundary layer contributes 5% (3-4 ppbv) at 1.2 km, and North American boundary layer contributes 4.5% (3

  3. Threshold Dynamics of a Stochastic SIR Model with Vertical Transmission and Vaccination

    Directory of Open Access Journals (Sweden)

    Anqi Miao

    2017-01-01

    Full Text Available A stochastic SIR model with vertical transmission and vaccination is proposed and investigated in this paper. The threshold dynamics are explored when the noise is small. The conditions for the extinction or persistence of infectious diseases are deduced. Our results show that large noise can lead to the extinction of infectious diseases which is conducive to epidemic diseases control.

  4. Effect of the shaft on the aerodynamic performance of urban vertical axis wind turbines

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Montazeri, H.; Blocken, B.J.E.

    2017-01-01

    The central shaft is an inseparable part of a vertical axis wind turbine (VAWT). For small turbines such as those typically used in urban environments, the shaft could operate in the subcritical regime, resulting in large drag and considerable aerodynamic power loss. The current study aims to (i)

  5. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  6. Vertical poloidal asymmetries of low-Z element radiation in the PDX tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Brau, K.; Suckewer, S.; Wong, S.K.

    1983-06-01

    Vertical poloidal asymmetries of hydrogen isotopes and low-Z impurity radiation in the PDX tokamak may be caused by poloidally asymmetric sources of these elements at gas inlet valves, limiters or vacuum vessel walls, asymmetric magnetic field geometry in the region beyond the plasma boundary, or by ion curvature drifts. Low ionization states of carbon (C II- C IV) are more easily influenced by edge conditions than is CV. Vertical poloidal asymmetries of CV are correlated with the direction of the toroidal field. The magnitude of the asymmetry agrees with the predictions of a quasifluid neoclassical model. Experimental data and numerical simulations are presented to investigate different models of impurity poloidal asymmetries.

  7. Vertical poloidal asymmetries of low-Z element radiation in the PDX tokamak

    International Nuclear Information System (INIS)

    Brau, K.; Suckewer, S.; Wong, S.K.

    1983-06-01

    Vertical poloidal asymmetries of hydrogen isotopes and low-Z impurity radiation in the PDX tokamak may be caused by poloidally asymmetric sources of these elements at gas inlet valves, limiters or vacuum vessel walls, asymmetric magnetic field geometry in the region beyond the plasma boundary, or by ion curvature drifts. Low ionization states of carbon (C II- C IV) are more easily influenced by edge conditions than is CV. Vertical poloidal asymmetries of CV are correlated with the direction of the toroidal field. The magnitude of the asymmetry agrees with the predictions of a quasifluid neoclassical model. Experimental data and numerical simulations are presented to investigate different models of impurity poloidal asymmetries

  8. Spectral-Modulation Characteristics of Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Vas'kovskaya, M. I.; Vasil'ev, V. V.; Zibrov, S. A.; Yakovlev, V. P.; Velichanskii, V. L.

    2018-01-01

    The requirements imposed on vertical-cavity surface-emitting lasers in a number of metrological problems in which optical pumping of alkali atoms is used are considered. For lasers produced by different manufacturers, these requirements are compared with the experimentally observed spectral characteristics at a constant pump current and in the microwave modulation mode. It is shown that a comparatively small number of lasers in the microwave modulation mode make it possible to obtain the spectrum required for atomic clocks based on the coherent population-trapping effect.

  9. The gyri of the octopus vertical lobe have distinct neurochemical identities.

    Science.gov (United States)

    Shigeno, Shuichi; Ragsdale, Clifton W

    2015-06-15

    The cephalopod vertical lobe is the largest learning and memory structure known in invertebrate nervous systems. It is part of the visual learning circuit of the central brain, which also includes the superior frontal and subvertical lobes. Despite the well-established functional importance of this system, little is known about neuropil organization of these structures and there is to date no evidence that the five longitudinal gyri of the vertical lobe, perhaps the most distinctive morphological feature of the octopus brain, differ in their connections or molecular identities. We studied the histochemical organization of these structures in hatchling and adult Octopus bimaculoides brains with immunostaining for serotonin, octopus gonadotropin-releasing hormone (oGNRH), and octopressin-neurophysin (OP-NP). Our major finding is that the five lobules forming the vertical lobe gyri have distinct neurochemical signatures. This is most prominent in the hatchling brain, where the median and mediolateral lobules are enriched in OP-NP fibers, the lateral lobule is marked by oGNRH innervation, and serotonin immunostaining heavily labels the median and lateral lobules. A major source of input to the vertical lobe is the superior frontal lobe, which is dominated by a neuropil of interweaving fiber bundles. We have found that this neuropil also has an intrinsic neurochemical organization: it is partitioned into territories alternately enriched or impoverished in oGNRH-containing fascicles. Our findings establish that the constituent lobes of the octopus superior frontal-vertical system have an intricate internal anatomy, one likely to reflect the presence of functional subsystems within cephalopod learning circuitry. © 2015 Wiley Periodicals, Inc.

  10. 小企业融资缺口及来源特征分析%Analysis on Financing Gap and Financing Source in Small Businesses

    Institute of Scientific and Technical Information of China (English)

    蔡真

    2012-01-01

    According to the investigation of financing gap and financing source of small businesses, we find that the business size and age are typical factors impacting financing of small business.Comparing the current financing source and willingness of small businesses with their start-up period,we can find that the problem of financing difficulty is still serious,although the choices of small businesses' financing expand with their growth age.The analysis on loan's source shows that small business get more proportions of loan from big banks than from small ones for the development of small businesses' loan technology based on "hard information". However,big banks scarcely provide long-term capital for small businesses.%根据对小企业融资缺口和来源特征的调查分析,小企业融资难存在典型的规模和年龄特征。对小企业初创和当前融资来源以及融资意愿的比较发现,尽管伴随企业成长,融资方式的选择有所扩展,但依然存在深度的融资难问题。对贷款来源的分析表明,基于"硬信息"的小企业贷款技术的发展,大银行对小企业的融资比例超过小银行,但小企业依然很难从大银行获得长期资金。

  11. Effects of asymmetric vertical disruptions on ITER components

    International Nuclear Information System (INIS)

    Albanese, R.; Carpentieri, B.; Cavinato, M.; Minucci, S.; Palmaccio, R.; Portone, A.; Rubinacci, G.; Testoni, P.; Ventre, S.; Villone, F.

    2015-01-01

    Highlights: • Halo current analysis of AVDEs (asymmetric VDEs) is performed. • Both resistive and inductive effects are considered. • Suitable compression techniques and supercomputing resources are used. • The vertical force on the sectors is nearly uniform. • The radial loads on the various sectors are very different. - Abstract: This paper deals with the halo current distribution due to asymmetric vertical displacement events (VDEs) and the subsequent force distributions on the conducting structures in the ITER tokamak. Both the eddy and halo current analyses have been carried out using the 3D code CARIDDI, based on an integral formulation in the conducting region. The plasma plays the role of a source term. The axisymmetric time evolution of the plasma is taken by 2D axisymmetric simulations. The most critical case is a slow VDE downward combined with an n = 1 kink, which may yield large horizontal forces and peaking factors. A simplified n = 1, m = 1 kink model is taken, given by a rigid horizontal displacement accompanied by a tilt. The halo currents are treated as injected currents on the faces of the first wall hit by the plasma. To take into account the inductive effects, which are important especially in the transient phases, suitable compression techniques and supercomputing resources have been utilized. In the worst case the total vertical force on the structure due to the halo currents is about 90 MN downwards (about 30 of which on the divertor); the horizontal force is about 4 MN (about half of which on the divertor); the distribution of the vertical force on the sectors is nearly uniform, whereas the radial loads on the various sectors are very different from each other

  12. Effects of asymmetric vertical disruptions on ITER components

    Energy Technology Data Exchange (ETDEWEB)

    Albanese, R. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Carpentieri, B. [Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, Groningen (Netherlands); Cavinato, M. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Minucci, S. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Palmaccio, R. [Associazione EURATOM/ENEA/CREATE, DIEI, Università di Cassino e del Lazio Meridionale, Cassino, FR (Italy); Portone, A. [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Rubinacci, G. [Associazione EURATOM/ENEA/CREATE, DIETI, Università di Napoli Federico II, Napoli (Italy); Testoni, P., E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy, Torres Diagonal Litoral B3, c/ Josep Plá n.2, Barcelona (Spain); Ventre, S.; Villone, F. [Associazione EURATOM/ENEA/CREATE, DIEI, Università di Cassino e del Lazio Meridionale, Cassino, FR (Italy)

    2015-05-15

    Highlights: • Halo current analysis of AVDEs (asymmetric VDEs) is performed. • Both resistive and inductive effects are considered. • Suitable compression techniques and supercomputing resources are used. • The vertical force on the sectors is nearly uniform. • The radial loads on the various sectors are very different. - Abstract: This paper deals with the halo current distribution due to asymmetric vertical displacement events (VDEs) and the subsequent force distributions on the conducting structures in the ITER tokamak. Both the eddy and halo current analyses have been carried out using the 3D code CARIDDI, based on an integral formulation in the conducting region. The plasma plays the role of a source term. The axisymmetric time evolution of the plasma is taken by 2D axisymmetric simulations. The most critical case is a slow VDE downward combined with an n = 1 kink, which may yield large horizontal forces and peaking factors. A simplified n = 1, m = 1 kink model is taken, given by a rigid horizontal displacement accompanied by a tilt. The halo currents are treated as injected currents on the faces of the first wall hit by the plasma. To take into account the inductive effects, which are important especially in the transient phases, suitable compression techniques and supercomputing resources have been utilized. In the worst case the total vertical force on the structure due to the halo currents is about 90 MN downwards (about 30 of which on the divertor); the horizontal force is about 4 MN (about half of which on the divertor); the distribution of the vertical force on the sectors is nearly uniform, whereas the radial loads on the various sectors are very different from each other.

  13. Optimization and control of a small angle ion source using an adaptive neural network controller

    Energy Technology Data Exchange (ETDEWEB)

    Brown, S.K.; Mead, W.C.; Bowling, P.S.; Jones, R.D.; Barnes, C.W.

    1993-09-01

    This project developed an automated controller based on an artificial neural network and evaluated its applicability in a real-time environment. This capability was developed within the context of a small angle negative ion source on the Discharge Test Stand at Los Alamos. The controller processes information obtained from the beam current waveform, developing a figure of merit (fom) to determine the ion source operating conditions. The fom is composed of the magnitude of the beam current, the stability of operation, and the quietness of the beam. Using no knowledge of operating conditions, the controller begins by making of rough scan of the four-dimensional operating surface. This surface uses as independent variables the anode and cathode temperatures, the hydrogen flow rate, and the arc voltage. `Me dependent variable is the fom described above. Once the rough approximation of the surface has been determined, the network formulates a model from which it determines the best operating point. The controller takes the ion source to that operating point for a reality check. As real data is fed in, the model of the operating surface is updated until the neural network`s model agrees with reality. The controller then uses a gradient ascent method to optimize the operation of the ion source. Initial tests of the controller indicate that it is remarkably capable. It has optimized the operation of the ion source on six different occasions bringing the beam to excellent quality and stability.

  14. Tip displacement variance of manipulator to simultaneous horizontal and vertical stochastic base excitations

    International Nuclear Information System (INIS)

    Rahi, A.; Bahrami, M.; Rastegar, J.

    2002-01-01

    The tip displacement variance of an articulated robotic manipulator to simultaneous horizontal and vertical stochastic base excitation is studied. The dynamic equations for an n-links manipulator subjected to both horizontal and vertical stochastic excitations are derived by Lagrangian method and decoupled for small displacement of joints. The dynamic response covariance of the manipulator links is computed in the coordinate frame attached to the base and then the principal variance of tip displacement is determined. Finally, simulation for a two-link planner robotic manipulator under base excitation is developed. Then sensitivity of the principal variance of tip displacement and tip velocity to manipulator configuration, damping, excitation parameters and manipulator links length are investigated

  15. A small-plane heat source method for measuring the thermal conductivities of anisotropic materials

    Science.gov (United States)

    Cheng, Liang; Yue, Kai; Wang, Jun; Zhang, Xinxin

    2017-07-01

    A new small-plane heat source method was proposed in this study to simultaneously measure the in-plane and cross-plane thermal conductivities of anisotropic insulating materials. In this method the size of the heat source element is smaller than the sample size and the boundary condition is thermal insulation due to no heat flux at the edge of the sample during the experiment. A three-dimensional model in a rectangular coordinate system was established to exactly describe the heat transfer process of the measurement system. Using the Laplace transform, variable separation, and Laplace inverse transform methods, the analytical solution of the temperature rise of the sample was derived. The temperature rises calculated by the analytical solution agree well with the results of numerical calculation. The result of the sensitivity analysis shows that the sensitivity coefficients of the estimated thermal conductivities are high and uncorrelated to each other. At room temperature and in a high-temperature environment, experimental measurements of anisotropic silica aerogel were carried out using the traditional one-dimensional plane heat source method and the proposed method, respectively. The results demonstrate that the measurement method developed in this study is effective and feasible for simultaneously obtaining the in-plane and cross-plane thermal conductivities of the anisotropic materials.

  16. Unraveling the growth of vertically aligned multi-walled carbon nanotubes by chemical vapor deposition

    International Nuclear Information System (INIS)

    Ramirez, A; Royo, C; Latorre, N; Mallada, R; Monzón, A; Tiggelaar, R M

    2014-01-01

    The interaction between the main operational variables during the growth of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) by catalytic chemical vapor deposition is studied. In this contribution, we report the influence of the carbon source (i.e. acetylene, ethylene and propylene), the reaction/activation temperature, the rate of heating, the reaction time, the metal loading, and the metallic nanoparticle size and distribution on the growth and alignment of carbon nanotubes. Fe/Al thin films deposited onto silicon samples by electron-beam evaporation are used as catalyst. A phenomenological growth mechanism is proposed to explain the interaction between these multiple factors. Three different outcomes of the synthesis process are found: i) formation of forests of non-aligned, randomly oriented multi-walled carbon nanotubes, ii) growth of vertically aligned tubes with a thin and homogeneous carbonaceous layer on the top, and iii) formation of vertically aligned carbon nanotubes. This carbonaceous layer (ii) has not been reported before. The main requirements to promote vertically aligned carbon nanotube growth are determined. (paper)

  17. Vertical grid of retrieved atmospheric profiles

    International Nuclear Information System (INIS)

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera

    2016-01-01

    The choice of the vertical grid of atmospheric profiles retrieved from remote sensing observations is discussed considering the two cases of profiles used to represent the results of individual measurements and of profiles used for subsequent data fusion applications. An ozone measurement of the MIPAS instrument is used to assess, for different vertical grids, the quality of the retrieved profiles in terms of profile values, retrieval errors, vertical resolutions and number of degrees of freedom. In the case of individual retrievals no evident advantage is obtained with the use of a grid finer than the one with a reduced number of grid points, which are optimized according to the information content of the observations. Nevertheless, this instrument dependent vertical grid, which seems to extract all the available information, provides very poor results when used for data fusion applications. A loss of about a quarter of the degrees of freedom is observed when the data fusion is made using the instrument dependent vertical grid relative to the data fusion made using a vertical grid optimized for the data fusion product. This result is explained by the analysis of the eigenvalues of the Fisher information matrix and leads to the conclusion that different vertical grids must be adopted when data fusion is the expected application. - Highlights: • Data fusion application is taken into account for the choice of the vertical grid. • The study is performed using ozone profiles retrieved from MIPAS measurements. • A very fine vertical grid is not needed for the analysis of a single instrument. • The instrument dependent vertical grid is not the best choice for data fusion. • A data fusion dependent vertical grid must be used for profiles that will be fused.

  18. Ultra-thin flexible GaAs photovoltaics in vertical forms printed on metal surfaces without interlayer adhesives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juho; Song, Kwangsun; Kim, Namyun; Lee, Jongho, E-mail: jong@gist.ac.kr [School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Hwang, Jeongwoo [Photonic Bio Research Center, Korea Photonics Technology Institute (KOPTI), 9 Cheomdanventure-ro 108beon-gil, Gwangju 61007 (Korea, Republic of); Shin, Jae Cheol [Department of Physics, Yeungnam University, Gyeongsan, Gyeongbuk 38541 (Korea, Republic of)

    2016-06-20

    Wearable flexible electronics often require sustainable power sources that are also mechanically flexible to survive the extreme bending that accompanies their general use. In general, thinner microelectronic devices are under less strain when bent. This paper describes strategies to realize ultra-thin GaAs photovoltaics through the interlayer adhesiveless transfer-printing of vertical-type devices onto metal surfaces. The vertical-type GaAs photovoltaic devices recycle reflected photons by means of bottom electrodes. Systematic studies with four different types of solar microcells indicate that the vertical-type solar microcells, at only a quarter of the thickness of similarly designed lateral-type cells, generate a level of electric power similar to that of thicker cells. The experimental results along with the theoretical analysis conducted here show that the ultra-thin vertical-type solar microcells are durable under extreme bending and thus suitable for use in the manufacturing of wearable flexible electronics.

  19. Compilation of Instantaneous Source Functions for Varying ...

    African Journals Online (AJOL)

    Compilation of Instantaneous Source Functions for Varying Architecture of a Layered Reservoir with Mixed Boundaries and Horizontal Well Completion Part III: B-Shaped Architecture with Vertical Well in the Upper Layer.

  20. Proposal for the design of a small-angle neutron scattering facility at a pulsed neutron source

    International Nuclear Information System (INIS)

    Kley, W.

    1980-01-01

    The intensity-resolution-background considerations of an optimized small angle neutron scattering facility are reviewed for the special case of a pulsed neutron source. In the present proposal we conclude that for 'true elastic scattering experiments' filters can be used instead of expensive neutron guide tubes since low background conditions can be achieved by a combined action of filters as well as a proper time gating of the twodimensional detector. The impinging neutron beam is monochromatized by phasing a disk chopper to the neutron source pulses and in the scattered beam a second disk chopper is used to eliminate the inelastically scattered neutrons. Therefore, no time of fligh analysis is necessary for the scattered neutron intensity and true-elastic conditions are obtained by simply gating the two-dimensional detector. Considering a 4 m thick shield for the pulsed neutron source and choosing for optimum conditions a detector area element of (2.5 cm) 2 and a sample area of (1.25 cm) 2 , than for a minimum sample-detector-distance of 1.5 m, a maximum neutron source diameter of 6.67 cm is required in order to maintain always the optimum intensity- and resolution requirements

  1. BRIGITTE, Dose Rate and Heat Source and Energy Flux for Self-Absorbing Rods

    International Nuclear Information System (INIS)

    Jegu, M.; Clement, M.

    1978-01-01

    1 - Nature of physical problem solved: Calculation of dose rate, heat sources or energy flux. The sources are self-absorbing radioactive rods. The shielding consists of blocks of which the cross section can be defined. 2 - Method of solution: Exponential attenuation and build-up factor between source points and detector points. Source integration with error estimate. Automatic or controlled build-up with monitor print-out. 3 - Restrictions on the complexity of the problem: Number of energy points, regions, detector points, abscissa points of the rod, vertical position of the rod, are all limited to ten. The maximum total number of vertical steps is 124

  2. The acute effects of back squats on vertical jump performance in men and women.

    Science.gov (United States)

    Witmer, Chad A; Davis, Shala E; Moir, Gavin L

    2010-01-01

    The aim of the present study was to investigate the acute effects of performing back squats on subsequent performance during a series of vertical jumps in men and women. Twelve men and 12 women were tested on three separate occasions, the first of which was used to determine their 1-repetition maximum (1-RM) parallel back squat. Following this, subjects performed a potentiation and a control treatment in a counterbalanced order. The potentiation treatment culminated with subjects performing parallel back squats with a load equivalent to 70% 1- RM for three repetitions, following which they performed one countermovement vertical jump (CMJ) for maximal height every three minutes for a total of 10 jumps. During the control treatment, subjects performed only the CMJs. Jump height (JH) and vertical stiffness (VStiff) were calculated for each jump from the vertical force signal recorded from a force platform. There were no significant changes in JH or VStiff following the treatments and no significant differences in the responses between men and women (p > 0.05). Correlations between normalized 1-RM back squat load and the absolute change in JH and VStiff were small to moderate for both men and women, with most correlations being negative. Large variations in response to the back squats were noted in both men and women. The use of resistance exercises performed prior to a series of vertical jumps can result in improvements in performance in certain individuals, although the gains tend to be small and dependent upon the mechanical variable measured. There does not seem to be any differences between men and women in the response to dynamic potentiation protocols. Key pointsSubstantial individual responses were noted in both men and women in response to the PAP protocol used in the present study.The choice of dependent variable influences the ef-ficacy of the PAP protocol, with JH and VStiff demonstrating disparate responses in individual sub-jects.Such individual responses

  3. Mobility Engineering in Vertical Field Effect Transistors Based on Van der Waals Heterostructures.

    Science.gov (United States)

    Shin, Yong Seon; Lee, Kiyoung; Kim, Young Rae; Lee, Hyangsook; Lee, I Min; Kang, Won Tae; Lee, Boo Heung; Kim, Kunnyun; Heo, Jinseong; Park, Seongjun; Lee, Young Hee; Yu, Woo Jong

    2018-03-01

    Vertical integration of 2D layered materials to form van der Waals heterostructures (vdWHs) offers new functional electronic and optoelectronic devices. However, the mobility in vertical carrier transport in vdWHs of vertical field-effect transistor (VFET) is not yet investigated in spite of the importance of mobility for the successful application of VFETs in integrated circuits. Here, the mobility in VFET of vdWHs under different drain biases, gate biases, and metal work functions is first investigated and engineered. The traps in WSe 2 are the main source of scattering, which influences the vertical mobility and three distinct transport mechanisms: Ohmic transport, trap-limited transport, and space-charge-limited transport. The vertical mobility in VFET can be improved by suppressing the trap states by raising the Fermi level of WSe 2 . This is achieved by increasing the injected carrier density by applying a high drain voltage, or decreasing the Schottky barrier at the graphene/WSe 2 and metal/WSe 2 junctions by applying a gate bias and reducing the metal work function, respectively. Consequently, the mobility in Mn vdWH at +50 V gate voltage is about 76 times higher than the initial mobility of Au vdWH. This work enables further improvements in the VFET for successful application in integrated circuits. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Coexistence of Strategic Vertical Separation and Integration

    DEFF Research Database (Denmark)

    Jansen, Jos

    2003-01-01

    This paper gives conditions under which vertical separation is chosen by some upstream firms, while vertical integration is chosen by others in the equilibrium of a symmetric model. A vertically separating firm trades off fixed contracting costs against the strategic benefit of writing a (two......-part tariff, exclusive dealing) contract with its retailer. Coexistence emerges when more than two vertical Cournot oligopolists supply close substitutes. When vertical integration and separation coexist, welfare could be improved by reducing the number of vertically separating firms. The scope...

  5. Core Cutting Test with Vertical Rock Cutting Rig (VRCR)

    Science.gov (United States)

    Yasar, Serdar; Osman Yilmaz, Ali

    2017-12-01

    Roadheaders are frequently used machines in mining and tunnelling, and performance prediction of roadheaders is important for project economics and stability. Several methods were proposed so far for this purpose and, rock cutting tests are the best choice. Rock cutting tests are generally divided into two groups which are namely, full scale rock cutting tests and small scale rock cutting tests. These two tests have some superiorities and deficiencies over themselves. However, in many cases, where rock sampling becomes problematic, small scale rock cutting test (core cutting test) is preferred for performance prediction, since small block samples and core samples can be conducted to rock cutting testing. Common problem for rock cutting tests are that they can be found in very limited research centres. In this study, a new mobile rock cutting testing equipment, vertical rock cutting rig (VRCR) was introduced. Standard testing procedure was conducted on seven rock samples which were the part of a former study on cutting rocks with another small scale rock cutting test. Results showed that core cutting test can be realized successfully with VRCR with the validation of paired samples t-test.

  6. Effects of the airwave in time-domain marine controlled-source electromagnetics

    NARCIS (Netherlands)

    Hunziker, J.W.; Slob, E.C.; Mulder, W.

    2011-01-01

    In marine time-domain controlled-source electromagnetics (CSEM), there are two different acquisition methods: with horizontal sources for fast and simple data acquisition or with vertical sources for minimizing the effects of the airwave. Illustrations of the electric field as a function of space

  7. Measurement of vertical bar Vub vertical bar in semi-inclusive charmless B → πX decays

    International Nuclear Information System (INIS)

    Kim, C.S.; Lee, Jake; Oha, Sechul

    2002-01-01

    We study semi-inclusive charmless decays B → πX, where X does not contain a charm (anti)quark. The mode B-bar 0 → π - X turns out to be be particularly useful for determination of the CKM matrix element vertical bar V ub vertical bar. We present the branching ratio (BR) of B-bar 0 → π - X as a function of vertical bar V ub vertical bar, with an estimation of possible uncertainty. The BR is expected to be an order of 10 -4

  8. Measurement and Simulation of Radon Transport in East Asia and Their Implication on Source Distribution

    International Nuclear Information System (INIS)

    Hirao, S.; Yamazawa, H.; Moriizumi, J.; Iida, T.

    2012-01-01

    Outlines of the continuous monitoring of atmospheric radon concentration at several locations in East Asia, the development and validation of a long-range atmospheric transport model, and a trial of estimating and reducing uncertainty in radon exhalation flux density maps were presented. Atmospheric radon concentration data observed at a small solitary island in the Pacific Ocean were successfully used to improve the vertical diffusion scheme in the model although the uncertainty in the radon flux density data was the limitation. It was also pointed out that a kind of source-receptor analysis using the radon concentration observed at these islands would reduce uncertainty in the radon flux density maps. (author)

  9. Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts.

    Science.gov (United States)

    Longdon, Ben; Day, Jonathan P; Schulz, Nora; Leftwich, Philip T; de Jong, Maaike A; Breuker, Casper J; Gibbs, Melanie; Obbard, Darren J; Wilfert, Lena; Smith, Sophia C L; McGonigle, John E; Houslay, Thomas M; Wright, Lucy I; Livraghi, Luca; Evans, Luke C; Friend, Lucy A; Chapman, Tracey; Vontas, John; Kambouraki, Natasa; Jiggins, Francis M

    2017-01-25

    A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts. © 2017 The Authors.

  10. Vertically transmitted rhabdoviruses are found across three insect families and have dynamic interactions with their hosts

    Science.gov (United States)

    Day, Jonathan P.; Schulz, Nora; Leftwich, Philip T.; de Jong, Maaike A.; Wilfert, Lena; Smith, Sophia C. L.; McGonigle, John E.; Houslay, Thomas M.; Livraghi, Luca; Evans, Luke C.; Friend, Lucy A.; Vontas, John; Kambouraki, Natasa

    2017-01-01

    A small number of free-living viruses have been found to be obligately vertically transmitted, but it remains uncertain how widespread vertically transmitted viruses are and how quickly they can spread through host populations. Recent metagenomic studies have found several insects to be infected with sigma viruses (Rhabdoviridae). Here, we report that sigma viruses that infect Mediterranean fruit flies (Ceratitis capitata), Drosophila immigrans, and speckled wood butterflies (Pararge aegeria) are all vertically transmitted. We find patterns of vertical transmission that are consistent with those seen in Drosophila sigma viruses, with high rates of maternal transmission, and lower rates of paternal transmission. This mode of transmission allows them to spread rapidly in populations, and using viral sequence data we found the viruses in D. immigrans and C. capitata had both recently swept through host populations. The viruses were common in nature, with mean prevalences of 12% in C. capitata, 38% in D. immigrans and 74% in P. aegeria. We conclude that vertically transmitted rhabdoviruses may be widespread in a broad range of insect taxa, and that these viruses can have dynamic interactions with their hosts. PMID:28100819

  11. Modeling the ascent of sounding balloons: derivation of the vertical air motion

    Directory of Open Access Journals (Sweden)

    A. Gallice

    2011-10-01

    Full Text Available A new model to describe the ascent of sounding balloons in the troposphere and lower stratosphere (up to ∼30–35 km altitude is presented. Contrary to previous models, detailed account is taken of both the variation of the drag coefficient with altitude and the heat imbalance between the balloon and the atmosphere. To compensate for the lack of data on the drag coefficient of sounding balloons, a reference curve for the relationship between drag coefficient and Reynolds number is derived from a dataset of flights launched during the Lindenberg Upper Air Methods Intercomparisons (LUAMI campaign. The transfer of heat from the surrounding air into the balloon is accounted for by solving the radial heat diffusion equation inside the balloon. In its present state, the model does not account for solar radiation, i.e. it is only able to describe the ascent of balloons during the night. It could however be adapted to also represent daytime soundings, with solar radiation modeled as a diffusive process. The potential applications of the model include the forecast of the trajectory of sounding balloons, which can be used to increase the accuracy of the match technique, and the derivation of the air vertical velocity. The latter is obtained by subtracting the ascent rate of the balloon in still air calculated by the model from the actual ascent rate. This technique is shown to provide an approximation for the vertical air motion with an uncertainty error of 0.5 m s−1 in the troposphere and 0.2 m s−1 in the stratosphere. An example of extraction of the air vertical velocity is provided in this paper. We show that the air vertical velocities derived from the balloon soundings in this paper are in general agreement with small-scale atmospheric velocity fluctuations related to gravity waves, mechanical turbulence, or other small-scale air motions measured during the SUCCESS campaign (Subsonic Aircraft: Contrail and Cloud Effects

  12. A Multiagent Energy Management System for a Small Microgrid Equipped with Power Sources and Energy Storage Units

    Science.gov (United States)

    Radziszewska, Weronika; Nahorski, Zbigniew

    An Energy Management System (EMS) for a small microgrid is presented, with both demand and production side management. The microgrid is equipped with renewable and controllable power sources (like a micro gas turbine), energy storage units (batteries and flywheels). Energy load is partially scheduled to avoid extreme peaks of power demand and to possibly match forecasted energy supply from the renewable power sources. To balance the energy in the network on line, a multiagent system is used. Intelligent agents of each device are proactively acting towards balancing the energy in the network, and at the same time optimizing the cost of operation of the whole system. A semi-market mechanism is used to match a demand and a production of the energy. Simulations show that the time of reaching a balanced state does not exceed 1 s, which is fast enough to let execute proper balancing actions, e.g. change an operating point of a controllable energy source. Simulators of sources and consumption devices were implemented in order to carry out exhaustive tests.

  13. Interactive effects of large- and small-scale sources of feral honey-bees for sunflower in the Argentine Pampas.

    Directory of Open Access Journals (Sweden)

    Agustín Sáez

    Full Text Available Pollinators for animal pollinated crops can be provided by natural and semi-natural habitats, ranging from large vegetation remnants to small areas of non-crop land in an otherwise highly modified landscape. It is unknown, however, how different small- and large-scale habitat patches interact as pollinator sources. In the intensively managed Argentine Pampas, we studied the additive and interactive effects of large expanses (up to 2200 ha of natural habitat, represented by untilled isolated "sierras", and narrow (3-7 m wide strips of semi-natural habitat, represented by field margins, as pollinator sources for sunflower (Helianthus annus. We estimated visitation rates by feral honey-bees, Apis mellifera, and native flower visitors (as a group at 1, 5, 25, 50 and 100 m from a field margin in 17 sunflower fields 0-10 km distant from the nearest sierra. Honey-bees dominated the pollinator assemblage accounting for >90% of all visits to sunflower inflorescences. Honey-bee visitation was strongly affected by proximity to the sierras decreasing by about 70% in the most isolated fields. There was also a decline in honey-bee visitation with distance from the field margin, which was apparent with increasing field isolation, but undetected in fields nearby large expanses of natural habitat. The probability of observing a native visitor decreased with isolation from the sierras, but in other respects visitation by flower visitors other than honey-bees was mostly unaffected by the habitat factors assessed in this study. Overall, we found strong hierarchical and interactive effects between the study large and small-scale pollinator sources. These results emphasize the importance of preserving natural habitats and managing actively field verges in the absence of large remnants of natural habitat for improving pollinator services.

  14. Interactive effects of large- and small-scale sources of feral honey-bees for sunflower in the Argentine Pampas.

    Science.gov (United States)

    Sáez, Agustín; Sabatino, Malena; Aizen, Marcelo A

    2012-01-01

    Pollinators for animal pollinated crops can be provided by natural and semi-natural habitats, ranging from large vegetation remnants to small areas of non-crop land in an otherwise highly modified landscape. It is unknown, however, how different small- and large-scale habitat patches interact as pollinator sources. In the intensively managed Argentine Pampas, we studied the additive and interactive effects of large expanses (up to 2200 ha) of natural habitat, represented by untilled isolated "sierras", and narrow (3-7 m wide) strips of semi-natural habitat, represented by field margins, as pollinator sources for sunflower (Helianthus annus). We estimated visitation rates by feral honey-bees, Apis mellifera, and native flower visitors (as a group) at 1, 5, 25, 50 and 100 m from a field margin in 17 sunflower fields 0-10 km distant from the nearest sierra. Honey-bees dominated the pollinator assemblage accounting for >90% of all visits to sunflower inflorescences. Honey-bee visitation was strongly affected by proximity to the sierras decreasing by about 70% in the most isolated fields. There was also a decline in honey-bee visitation with distance from the field margin, which was apparent with increasing field isolation, but undetected in fields nearby large expanses of natural habitat. The probability of observing a native visitor decreased with isolation from the sierras, but in other respects visitation by flower visitors other than honey-bees was mostly unaffected by the habitat factors assessed in this study. Overall, we found strong hierarchical and interactive effects between the study large and small-scale pollinator sources. These results emphasize the importance of preserving natural habitats and managing actively field verges in the absence of large remnants of natural habitat for improving pollinator services.

  15. The Advanced Light Source Upgrade

    International Nuclear Information System (INIS)

    Chemla, Daniel S.; Feinberg, Benjamin; Hussain, Zahid; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2003-01-01

    The ALS, a third-generation synchrotron light source at Berkeley Lab, has been operating for almost a decade and is generating forefront science by exploiting the high brightness of a third-generation source in three areas: (1) high resolving power for spectroscopy; (2) high spatial resolution for microscopy and spectromicroscopy; and (3) high coherence for experiments such as speckle. However, the ALS was one of the first third-generation machines to be designed, and accelerator and insertion-device technology have significantly changed since its conception. As a result, its performance will inevitably be outstripped by newer, more advanced sources. To remain competitive and then set a new standard, the performance of the ALS, in particular its brightness, must be enhanced. Substantial improvements in brightness and current have always been feasible in principle, but they incur the penalty of a much reduced lifetime, which is totally unacceptable to our users. Significant brightness improvements can be realized in the core soft x-ray region by going to top-off operation, where injection would be quasi-continuous and the lifetime objections disappear. In top-off mode with higher average current, a reduced vertical emittance and beta function, and small-gap permanent-magnet or superconducting insertion devices, one to two orders of magnitude improvement in brightness can be had in the soft x-ray range. These improvements also extend the high energy range of the undulator radiation beyond the current limit of 2000 eV. Descriptions of the upgrade and the important new science achievable are presented

  16. Neutron gauging applications using a small 252Cf source

    International Nuclear Information System (INIS)

    Helf, S.

    1975-01-01

    The use of a small 252 Cf source, in the 3 to 4 μg range, for neutron gauging applications is described. Emphasis is placed on determination of low concentrations of moisture in homogeneous media, e.g., solvents, explosives, dried food products, etc. and on measurement of charge or fill weight of hydrogenous materials in sealed items, e.g., propellant in a cartridge case. Both moderation of fast neutrons and attenuation of thermalized neutrons have been explored for these applications. Parameters related to the attainment of optimum sensitivity for each method are discussed. Fast neutron moderation is superior for low level moisture measurement whereas thermal neutron attenuation is more sensitive for ''neutron weighing'' applications. Under optimum conditions, sensitivity for moisture measurement approaches 0.1 weight percent whereas ''neutron weighing'' can detect changes in hydrogeneous material content as little as a fraction of a gram. Examples are given for each technique. A number of different thermal neutron detectors are compared for neutron gauging measurements. A 6 LiI (Eu) scintillation detector is judged to be superior with regard to high thermal neutron detection efficiency and low fast neutron and gamma ray response. In this study, emphasis is placed on the use of simple, portable equipment easily adaptable to field or plant use and for on-line process or quality control. (U.S.)

  17. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  18. Regional difference of the vertical structure of seasonal thermocline and its impact on sea surface temperature in the North Pacific

    Science.gov (United States)

    Yamaguchi, R.; Suga, T.

    2016-12-01

    Recent observational studies show that, during the warming season, a large amount of heat flux is penetrated through the base of thin mixed layer by vertical eddy diffusion, in addition to penetration of solar radiation [1]. In order to understand this heat penetration process due to vertical eddy diffusivity and its contribution to seasonal variation of sea surface temperature, we investigated the evolution of thermal stratification below the summertime thin mixed layer (i.e. evolution of seasonal thermocline) and its vertical structure in the North Pacific using high vertical resolution temperature profile observed by Argo floats. We quantified the vertical structure of seasonal thermocline as deviations from the linear structure where the vertical gradient of temperature is constant, that is, "shape anomaly". The shape anomaly is variable representing the extent of the bend of temperature profiles. We found that there are larger values of shape anomaly in the region where the seasonal sea surface temperature warming is relatively faster. To understand the regional difference of shape anomalies, we investigated the relationship between time changes in shape anomalies and net surface heat flux and surface kinetic energy flux. From May to July, the analysis indicated that, in a large part of North Pacific, there's a tendency for shape anomalies to develop strongly (weakly) under the conditions of large (small) downward net surface heat flux and small (large) downward surface kinetic energy flux. Since weak (strong) development of shape anomalies means efficient (inefficient) downward heat transport from the surface, these results suggest that the regional difference of the downward heat penetration below mixed layer is explained reasonably well by differences in surface heat forcing and surface wind forcing in a vertical one dimensional framework. [1] Hosoda et al. (2015), J. Oceanogr., 71, 541-556.

  19. A measurement system for vertical seawater profiles close to the air–sea interface

    Directory of Open Access Journals (Sweden)

    R. P. Sims

    2017-09-01

    Full Text Available This paper describes a near-surface ocean profiler, which has been designed to precisely measure vertical gradients in the top 10 m of the ocean. Variations in the depth of seawater collection are minimized when using the profiler compared to conventional CTD/rosette deployments. The profiler consists of a remotely operated winch mounted on a tethered yet free-floating buoy, which is used to raise and lower a small frame housing sensors and inlet tubing. Seawater at the inlet depth is pumped back to the ship for analysis. The profiler can be used to make continuous vertical profiles or to target a series of discrete depths. The profiler has been successfully deployed during wind speeds up to 10 m s−1 and significant wave heights up to 2 m. We demonstrate the potential of the profiler by presenting measured vertical profiles of the trace gases carbon dioxide and dimethylsulfide. Trace gas measurements use an efficient microporous membrane equilibrator to minimize the system response time. The example profiles show vertical gradients in the upper 5 m for temperature, carbon dioxide and dimethylsulfide of 0.15 °C, 4 µatm and 0.4 nM respectively.

  20. Major and Trace Element Fluxes to the Ganges River: Significance of Small Flood Plain Tributary as Non-Point Pollution Source

    Science.gov (United States)

    Lakshmi, V.; Sen, I. S.; Mishra, G.

    2017-12-01

    There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga river downstream of its confluence point. We further speculate that small floodplain rivers is an important source that contributes to the dissolved chemical

  1. Vertical and horizontal subsidiarity

    Directory of Open Access Journals (Sweden)

    Ivan V. Daniluk

    2016-02-01

    Full Text Available This article makes an attempt to analyze the principle of subsidiarity in its two main manifestations, namely vertical and horizontal, to outline the principles of relations between the state and regions within the vertical subsidiarity, and features a collaboration of the government and civil society within the horizontal subsidiarity. Scientists identify two types, or two levels of the subsidiarity principle: vertical subsidiarity and horizontal subsidiarity. First, vertical subsidiarity (or territorial concerning relations between the state and other levels of subnational government, such as regions and local authorities; second, horizontal subsidiarity (or functional concerns the relationship between state and citizen (and civil society. Vertical subsidiarity expressed in the context of the distribution of administrative responsibilities to the appropriate higher level lower levels relative to the state structure, ie giving more powers to local government. However, state intervention has subsidiary-lower action against local authorities in cases of insolvency last cope on their own, ie higher organisms intervene only if the duties are less authority is insufficient to achieve the goals. Horizontal subsidiarity is within the relationship between power and freedom, and is based on the assumption that the concern for the common good and the needs of common interest community, able to solve community members (as individuals and citizens’ associations and role of government, in accordance horizontal subsidiarity comes to attracting features subsidiarity assistance, programming, coordination and possibly control.

  2. Experimental investigation on flow instability of forced circulation in a vertical mini-rectangular channel

    International Nuclear Information System (INIS)

    Yu Zhiting; Tan Sichao; Yuan Hongsheng; Zhuang Nailiang; Chen Hanying

    2015-01-01

    An experimental study was conducted to investigate the flow instability in a vertical mini-rectangular channel with distilled water as the working fluid. The rotational speed of the primary pump is gradually reduced to lower the inlet flow rate until the flow becomes unstable, while maintaining all other thermal parameters unchanged. Three types of instability, characterized by large amplitude oscillation, small amplitude oscillation and flow excursion, were identified from the experimental data. A stability map for the vertical mini-rectangular channel under forced circulation was established based on the Subcooling number and Phase Change number. The oscillation periods were correlated with the fluid transit time and the boiling delay time. A flow pattern map for vertical upward flow in a mini-rectangular channel was applied to confirm the flow patterns during the oscillation. The mechanisms of the three types of instability were obtained by considering several types of flow instabilities and comparing them with the oscillations observed in this work. (author)

  3. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Science.gov (United States)

    Banks, T. I.; Freedman, S. J.; Wallig, J.; Ybarrolaza, N.; Gando, A.; Gando, Y.; Ikeda, H.; Inoue, K.; Kishimoto, Y.; Koga, M.; Mitsui, T.; Nakamura, K.; Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B. D.; Yoshida, H.; Yoshida, S.; Kozlov, A.; Grant, C.; Keefer, G.; Piepke, A.; Bloxham, T.; Fujikawa, B. K.; Han, K.; Ichimura, K.; Murayama, H.; O`Donnell, T.; Steiner, H. M.; Winslow, L. A.; Dwyer, D. A.; McKeown, R. D.; Zhang, C.; Berger, B. E.; Lane, C. E.; Maricic, J.; Miletic, T.; Batygov, M.; Learned, J. G.; Matsuno, S.; Sakai, M.; Horton-Smith, G. A.; Downum, K. E.; Gratta, G.; Efremenko, Y.; Perevozchikov, O.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Heeger, K. M.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  4. A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector

    Energy Technology Data Exchange (ETDEWEB)

    Banks, T.I., E-mail: tbanks@berkeley.edu [Physics Department, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Freedman, S.J. [Physics Department, University of California, Berkeley, CA 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Wallig, J.; Ybarrolaza, N. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gando, A.; Gando, Y.; Ikeda, H. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Inoue, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Kishimoto, Y. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Koga, M. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Mitsui, T. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Nakamura, K. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Shimizu, I.; Shirai, J.; Suzuki, A.; Takemoto, Y.; Tamae, K.; Ueshima, K.; Watanabe, H.; Xu, B.D. [Research Center for Neutrino Science, Tohoku University, Sendai 980-8578 (Japan); and others

    2015-01-01

    We describe a compact, ultra-clean device used to deploy radioactive sources along the vertical axis of the KamLAND liquid-scintillator neutrino detector for purposes of calibration. The device worked by paying out and reeling in precise lengths of a hanging, small-gauge wire rope (cable); an assortment of interchangeable radioactive sources could be attached to a weight at the end of the cable. All components exposed to the radiopure liquid scintillator were made of chemically compatible UHV-cleaned materials, primarily stainless steel, in order to avoid contaminating or degrading the scintillator. To prevent radon intrusion, the apparatus was enclosed in a hermetically sealed housing inside a glove box, and both volumes were regularly flushed with purified nitrogen gas. An infrared camera attached to the side of the housing permitted real-time visual monitoring of the cable's motion, and the system was controlled via a graphical user interface.

  5. Explicit wave action conservation for water waves on vertically sheared flows

    Science.gov (United States)

    Quinn, Brenda; Toledo, Yaron; Shrira, Victor

    2016-04-01

    Water waves almost always propagate on currents with a vertical structure such as currents directed towards the beach accompanied by an under-current directed back toward the deep sea or wind-induced currents which change magnitude with depth due to viscosity effects. On larger scales they also change their direction due to the Coriolis force as described by the Ekman spiral. This implies that the existing wave models, which assume vertically-averaged currents, is an approximation which is far from realistic. In recent years, ocean circulation models have significantly improved with the capability to model vertically-sheared current profiles in contrast with the earlier vertically-averaged current profiles. Further advancements have coupled wave action models to circulation models to relate the mutual effects between the two types of motion. Restricting wave models to vertically-averaged non-turbulent current profiles is obviously problematic in these cases and the primary goal of this work is to derive and examine a general wave action equation which accounts for these shortcoming. The formulation of the wave action conservation equation is made explicit by following the work of Voronovich (1976) and using known asymptotic solutions of the boundary value problem which exploit the smallness of the current magnitude compared to the wave phase velocity and/or its vertical shear and curvature. The adopted approximations are shown to be sufficient for most of the conceivable applications. This provides correction terms to the group velocity and wave action definition accounting for the shear effects, which are fitting for application to operational wave models. In the limit of vanishing current shear, the new formulation reduces to the commonly used Bretherton & Garrett (1968) no-shear wave action equation where the invariant is calculated with the current magnitude taken at the free surface. It is shown that in realistic oceanic conditions, the neglect of the vertical

  6. Vertical Distribution of Structural Components in Corn Stover

    Directory of Open Access Journals (Sweden)

    Jane M. F. Johnson

    2014-11-01

    Full Text Available In the United States, corn (Zea mays L. stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg−1, but with an alkalinity measure of 0.83 g MJ−1, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha−1, but it would be only 1000 L ha−1 if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  7. Vertical distribution of structural components in corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham; Keri B. Cantrell; David W. Archer; Brian J. Wienhold; Gary E. Varvel; David A. Laird; John Baker; Tyson E. Ochsner; Jeff M. Novak; Ardell D. Halvorson; Francisco Arriaga; David T. Lightle; Amber Hoover; Rachel Emerson; Nancy W. Barbour

    2014-11-01

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg?¹, but with an alkalinity measure of 0.83 g MJ?¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?¹, but it would be only 1000 L ha?¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  8. Vertical sounding balloons for stratospheric photochemistry

    Science.gov (United States)

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  9. CHARACTERIZING THE POPULATION OF BRIGHT INFRARED SOURCES IN THE SMALL MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, K. E. [Institute for Scientific Research, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467 (United States); Sloan, G. C. [Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853-6801 (United States); Wood, P. R. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611 (Australia); Jones, O. C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Egan, M. P., E-mail: kathleen.kraemer@bc.edu, E-mail: sloan@astro.cornell.edu, E-mail: wood@mso.anu.edu.au, E-mail: michael.p.egan@nga.mil [National Geospatial Intelligence Agency, 7500 GEOINT Drive, Springfield, VA 22150 (United States)

    2017-01-10

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks more like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μ m. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z  = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer , and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope ( JWST ). Color–color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.

  10. CHARACTERIZING THE POPULATION OF BRIGHT INFRARED SOURCES IN THE SMALL MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Kraemer, K. E.; Sloan, G. C.; Wood, P. R.; Jones, O. C.; Egan, M. P.

    2017-01-01

    We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to observe stars in the Small Magellanic Cloud (SMC) selected from the Point Source Catalog of the Midcourse Space Experiment (MSX). We concentrate on the dust properties of the oxygen-rich evolved stars. The dust composition has smaller contributions from alumina compared to the Galaxy. This difference may arise from the lower metallicity in the SMC, but it could be a selection effect, as the SMC sample includes more stars that are brighter and thus more massive. The distribution of the SMC stars along the silicate sequence looks more like the Galactic sample of red supergiants than asymptotic giant branch stars (AGBs). While many of the SMC stars are definitively on the AGB, several also show evidence of hot bottom burning. Three of the supergiants show PAH emission at 11.3 μ m. Two other sources show mixed chemistry, with both carbon-rich and oxygen-rich spectral features. One, MSX SMC 134, may be the first confirmed silicate/carbon star in the SMC. The other, MSX SMC 049, is a candidate post-AGB star. MSX SMC 145, previously considered a candidate OH/IR star, is actually an AGB star with a background galaxy at z  = 0.16 along the same line of sight. We consider the overall characteristics of all the MSX sources, the most infrared-bright objects in the SMC, in light of the higher sensitivity and resolution of Spitzer , and compare them with the object types expected from the original selection criteria. This population represents what will be seen in more distant galaxies by the upcoming James Webb Space Telescope ( JWST ). Color–color diagrams generated from the IRS spectra and the mid-infrared filters on JWST show how one can separate evolved stars from young stellar objects (YSOs) and distinguish among different classes of YSOs.

  11. Global Sourcing: Evidence from Spanish Firm-level Data

    DEFF Research Database (Denmark)

    Kohler, Wilhelm; Smolka, Marcel

    2012-01-01

    We investigate the link between productivity of firms and their sourcing behavior. Following Antràs and Helpman (2004) we distinguish between domestic and foreign sourcing, as well as between outsourcing and vertical integration. A firm's choice is driven by a hold-up problem caused by lack of en...... of enforceable contracts. We use Spanish firm-level data to examine the productivity premia associated with the different sourcing strategies....

  12. Metal Oxide Vertical Graphene Hybrid Supercapacitors

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2018-01-01

    A metal oxide vertical graphene hybrid supercapacitor is provided. The supercapacitor includes a pair of collectors facing each other, and vertical graphene electrode material grown directly on each of the pair of collectors without catalyst or binders. A separator may separate the vertical graphene electrode materials.

  13. Insects traversing grass-like vertical compliant beams

    Science.gov (United States)

    Li, Chen; Fearing, Ronald; Full, Robert

    2014-03-01

    Small running animals encounter many challenging terrains. These terrains can be filled with 3D, multi-component obstacles. Here, we study cockroaches (Blaberus discoidalis) moving through grass-like vertical compliant beams during escape. We created an apparatus to control and vary geometric parameters and mechanical properties of model grass including height, width, thickness, lateral and fore-aft spacings, angle, number of layers, stiffness, and damping. We observed a suite of novel locomotor behaviors not previously described on simpler 2D ground. When model grass height was >2 × body length and lateral spacing was test our hypothesis, we modified body shape by adding either a rectangular or an oval plate onto its dorsal surface, and found that P dropped by an order of magnitude and t more than doubled. Upon removal of either plate, both P and t recovered. Locomotor kinematics and geometry effectively coupled to terrain properties enables negotiation of 3D, multi-component obstacles, and provides inspiration for small robots to navigate such terrain with minimal sensing and control.

  14. 137Cs vertical migration in a deciduous forest soil following the Fukushima Dai-ichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Nakanishi, Takahiro; Matsunaga, Takeshi; Koarashi, Jun; Atarashi-Andoh, Mariko

    2014-01-01

    The large amount of 137 Cs deposited on the forest floor because of the Fukushima Dai-ichi Nuclear Power Plant accident represents a major potential long-term source for mobile 137 Cs. To investigate 137 Cs mobility in forest soils, we investigated the vertical migration of 137 Cs through seepage water, using a lysimetric method. The study was conducted in a deciduous forest soil over a period spanning 2 month to 2 y after the Fukushima nuclear accident. Our observations demonstrated that the major part of 137 Cs in the litter layer moved into the mineral soil within one year after the accident. On the other hand, the topsoil prevented migration of 137 Cs, and only 2% of 137 Cs in the leachate from litter and humus layer penetrated below a 10 cm depth. The annual migration below a 10 cm depth accounted for 0.1% of the total 137 Cs inventory. Therefore, the migration of 137 Cs by seepage water comprised only a very small part of the total 137 Cs inventory in the mineral soil, which was undetectable from the vertical distribution of 137 Cs in the soil profile. In the present and immediate future, most of the 137 Cs deposited on the forest floor will probably remain in the topsoil successively, although a small but certain amount of bioavailable 137 Cs exists in forest surface soil. -- Highlights: • Lysimeter captured 137 Cs mobility in a forest soil after the Fukushima accident. • Major part of 137 Cs in the litter layer moved into the mineral soil within a year. • Litter-leachate 137 Cs was predominantly adsorbed within the topsoil. • The annual migration below a 10 cm depth was 0.1% of the total 137 Cs inventory

  15. Vertical seismic profile data from well Mallik 2L-38 for gas hydrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics; Walia, R [Victoria Univ., BC (Canada) School of Earth and Ocean Sciences; Hyndman, R [Geological Survey of Canada, Sidney, BC (Canada) Pacific Geoscience Centre

    1999-07-01

    A gas hydrate research well was drilled in the Canadian Arctic to study gas hydrates in a permafrost setting in a collaborative research project between the Japan National Oil Corp., the Geological Survey of Canada and other agencies. The multidisciplinary study included an electromagnetic survey, permafrost and gas hydrate coring, comprehensive downhole geophysical logging and measurement. Laboratory studies concerned studies on recovered cuttings and core including sedimentology, physical properties, geochemistry, and reservoir characteristics of the Mallik gas accumulation. As part of the Mallik 2L-38 field program, a vertical seismic profiling survey was conducted at zero and other offset source positions with three component receiver tools and horizontal and vertical vibration sources. A special effort was made to record shear wave data, which will be used to estimate the effect of gas hydrate on formation velocities and to determine gas hydrate concentration as a function of the Mallik gas accumulation. From the initial VSP analysis, certain conclusions follow: 1) zero offset vertical vibration component Z and horizontal X component data give reliable velocity determination within the gas hydrate formation zone. P wave velocities from offset VSP data show an excellent consistency with that from offset data and with the sonic log. And 2) the VSP data permit reliable identification of gas hydrate bearing zones. Abstract only included.

  16. Experimental determinations of correction factors as a function of vertical displacement of radioactive sources in the radionuclide calibrators of the CRCN-NE, Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Fragoso, Maria da Conceiao de Farias; Albuquerque, Antonio Morais de Sa; Lacerda, Isabelle Viviane Batista de; Oliveira, Mercia L.

    2011-01-01

    In nuclear medicine, the accurate knowledge of the activity of radio-pharmaceuticals which will be administered to the patients is an important factor to ensure the success of diagnosis or therapy. The activity measurements are performed in reentrant ionization chambers, also known as radionuclide calibrators. These equipment are sensitive to changes in radioactive sample geometry and its position within the chamber well. The purpose this work was to evaluate the behavior of radionuclide calibrators by means of vertical displacement of radioactive sources in the well and to determine experimentally the correction factors for each radionuclide, recognizing the specific positions in which the measurements must be made to ensure the highest sensitivity. The highest activity was obtained between 6 and 8 cm from the bottom of the well for both radionuclide calibrators utilized at this work. (author)

  17. Experimental determinations of correction factors as a function of vertical displacement of radioactive sources in the radionuclide calibrators of the CRCN-NE, Pernambuco, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fragoso, Maria da Conceiao de Farias; Albuquerque, Antonio Morais de Sa; Lacerda, Isabelle Viviane Batista de; Oliveira, Mercia L. [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, MG (Brazil)

    2011-07-01

    In nuclear medicine, the accurate knowledge of the activity of radio-pharmaceuticals which will be administered to the patients is an important factor to ensure the success of diagnosis or therapy. The activity measurements are performed in reentrant ionization chambers, also known as radionuclide calibrators. These equipment are sensitive to changes in radioactive sample geometry and its position within the chamber well. The purpose this work was to evaluate the behavior of radionuclide calibrators by means of vertical displacement of radioactive sources in the well and to determine experimentally the correction factors for each radionuclide, recognizing the specific positions in which the measurements must be made to ensure the highest sensitivity. The highest activity was obtained between 6 and 8 cm from the bottom of the well for both radionuclide calibrators utilized at this work. (author)

  18. Response of pontomedullary reticulospinal neurons to vestibular stimuli in vertical planes. Role in vertical vestibulospinal reflexes of the decerebrate cat

    Science.gov (United States)

    Bolton, P. S.; Goto, T.; Schor, R. H.; Wilson, V. J.; Yamagata, Y.; Yates, B. J.

    1992-01-01

    1. To investigate the neural substrate of vestibulospinal reflexes in decerebrate cats, we studied the responses of pontomedullary reticulospinal neurons to natural stimulation of the labyrinth in vertical planes. Our principal aim was to determine whether reticulospinal neurons that terminate in, or are likely to give off collaterals to, the upper cervical segments had properties similar to those of the vestibulocollic reflex (VCR). 2. Antidromic stimulation was used to determine whether the neurons projected to the neck, lower cervical, thoracic, or lumbar levels. Dynamics of the responses of spontaneously firing neurons were studied with sinusoidal stimuli delivered at 0.05-1 Hz and aligned to the plane of body rotation, that produced maximal modulation of the neuron (response vector orientation). Each neuron was assigned a vestibular input classification of otolith, vertical canal, otolith + canal, or spatial-temporal convergence (STC). 3. We found, in agreement with previous studies, that the largest fraction of pontomedullary reticulospinal neurons projected to the lumbar cord, and that only a small number ended in the neck segments. Neurons projecting to all levels of the spinal cord had similar responses to labyrinth stimulation. 4. Reticulospinal neurons that received only vertical canal inputs were rare (1 of 67 units). Most reticulospinal neurons (48%) received predominant otolith inputs, 18% received otolith + canal input, and only 9% had STC behavior. These data are in sharp contrast to the results of our previous studies of vestibulospinal neurons. A considerable portion of vestibulospinal neurons receives vertical canal input (38%), fewer receive predominantly otolith input (22%), whereas the proportion that have otolith + canal input or STC behavior is similar to our present reticulospinal data. 5. The response vector orientations of our reticulospinal neurons, particularly those with canal inputs (canal, otolith + canal, STC) were predominantly in

  19. Simple passive methods for the assessment of the directional and vertical distributions of wind-blown particulates

    International Nuclear Information System (INIS)

    Orza, J. A.G.; Cabello, M.; Mateo, J.

    2009-01-01

    We have designed and tested two types of passive collectors to study aeolian erosion in the field. The first passive sampler is a sticky pad that allows for directional particulate assessment by an automatic particle counting procedure. the second one features an omni-directional capture opening, and mass of retained particles is gravimetric ally quantified. Vertical arrays of these passive collectors have been constructed to obtain vertical profiles of the horizontal particle flux as a function of soil properties, nearby sources and wind speed. We present some first results from field campaigns. (Author) 3 refs.

  20. The' effect 'of feeding position,and body size on the capacity of small ...

    African Journals Online (AJOL)

    2Selian Agricultural Research'Institute; PO Box 6024, Arusha; Tarizania ... Abstract, '. Small ruminant systems, espedally with intensification in the tropics, are ... placed on a horizontal platform through a vertical tombstone barrier. ... the integration of crop and aninial enterprises ..... Market-Oriented Small Dairying ReSearch.

  1. E-line: A new crystal collimator beam line for source size measurements at CHESS

    International Nuclear Information System (INIS)

    White, Jeffrey A.; Revesz, Peter; Finkelstein, Ken

    2007-01-01

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring

  2. a Point Cloud Classification Approach Based on Vertical Structures of Ground Objects

    Science.gov (United States)

    Zhao, Y.; Hu, Q.; Hu, W.

    2018-04-01

    This paper proposes a novel method for point cloud classification using vertical structural characteristics of ground objects. Since urbanization develops rapidly nowadays, urban ground objects also change frequently. Conventional photogrammetric methods cannot satisfy the requirements of updating the ground objects' information efficiently, so LiDAR (Light Detection and Ranging) technology is employed to accomplish this task. LiDAR data, namely point cloud data, can obtain detailed three-dimensional coordinates of ground objects, but this kind of data is discrete and unorganized. To accomplish ground objects classification with point cloud, we first construct horizontal grids and vertical layers to organize point cloud data, and then calculate vertical characteristics, including density and measures of dispersion, and form characteristic curves for each grids. With the help of PCA processing and K-means algorithm, we analyze the similarities and differences of characteristic curves. Curves that have similar features will be classified into the same class and point cloud correspond to these curves will be classified as well. The whole process is simple but effective, and this approach does not need assistance of other data sources. In this study, point cloud data are classified into three classes, which are vegetation, buildings, and roads. When horizontal grid spacing and vertical layer spacing are 3 m and 1 m respectively, vertical characteristic is set as density, and the number of dimensions after PCA processing is 11, the overall precision of classification result is about 86.31 %. The result can help us quickly understand the distribution of various ground objects.

  3. Vertical interlocks of executives and performance of affiliated firms in state owned Chinese business groups

    DEFF Research Database (Denmark)

    Arnoldi, Jakob; Chen, Xin; Na, Chaohong

    . Further, the positive effects of vertically interlocking chairmen decrease as the number of pyramidal layers increases or regional marketization index improves. Such positive effects of interlocks, however, become greater as the divergence between cash flow rights and control rights of business groups...... increases. Our findings are consistent with the hypotheses that vertically interlocking executives can increase firm value by providing better protection against political interference and expropriation by the ultimate controllers of business groups. Our study sheds new light in the role and function...... of interlocks and adds to a small body of literature on the dynamics of state owned business groups in emerging markets generally and China particularly....

  4. Small power wind turbine (Type DARRIEUS

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2012-03-01

    Full Text Available This presentation focuses on the calculation for small vertical axis wind turbines (VAWT for an urban application. The fixed-pitch straight – bladed vertical axis wind turbine (SB-VAWT is one of the simplest types of wind turbine and accepts wind from any angle (no yaw system. This turbine is useful for moderate wind speeds (3 - 6 m/s. A case study is presented based upon the use of well documented symmetrical NACA 0012 turbine blade profile. We describe a solution for VAWT. To perform a linear static analysis in the structure, the commercial finite element analysis code ANSYS is used because of its flexibility for handling information in files written in a more or less free format.

  5. Characterization of a new open jet wind tunnel to optimize and test vertical axis wind turbines

    DEFF Research Database (Denmark)

    Tourn, Silvana; Pallarès, Jordi; Cuesta, Ildefonso

    2017-01-01

    Based on the increasing interest in urban environmental technologies, the study of small scale vertical axis wind turbines shows motivating challenges. In this paper, we present the characteristics and potentials of a new open jet wind tunnel. It has a nozzle exit area of 1.5 × 1.5 m2, and it can......%. The detailed characterization of the flow carried out indicates that the wind tunnel can be used to test small scale models of wind turbines....

  6. Comparison of simple, small, full-scale sewage treatment systems in Brazil: UASB-maturation ponds-coarse filter; UASB-horizontal subsurface-flow wetland; vertical-flow wetland (first stage of French system).

    Science.gov (United States)

    von Sperling, M

    2015-01-01

    This paper presents a comparison between three simple sewage treatment lines involving natural processes: (a) upflow anaerobic sludge blanket (UASB) reactor-three maturation ponds in series-coarse rock filter; (b) UASB reactor-horizontal subsurface-flow constructed wetland; and (c) vertical-flow constructed wetlands treating raw sewage (first stage of the French system). The evaluation was based on several years of practical experience with three small full-scale plants receiving the same influent wastewater (population equivalents of 220, 60 and 100 inhabitants) in the city of Belo Horizonte, Brazil. The comparison included interpretation of concentrations and removal efficiencies based on monitoring data (organic matter, solids, nitrogen, phosphorus, coliforms and helminth eggs), together with an evaluation of practical aspects, such as land and volume requirements, sludge production and handling, plant management, clogging and others. Based on an integrated evaluation of all aspects involved, it is worth emphasizing that each system has its own specificities, and no generalization can be made on the best option. The overall conclusion is that the three lines are suitable for sewage treatment in small communities in warm-climate regions.

  7. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders Rosenstand

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between four different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor (headquarter) intensity. Final......-good producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all...... increasing when intermediate-input trade or final-goods trade is liberalised. Finally, we provide guidance for testing the open-economy property rights theory of the firm using firm-level data and surprisingly show that the relationship between factor (headquarter) intensity and the likelihood of vertical...

  8. The complete vertical stroke ΔS vertical stroke =2-hamiltonian in the next-to-leading order

    International Nuclear Information System (INIS)

    Herrlich, S.; Nierste, U.

    1996-04-01

    We present the complete next-to-leading order short-distance QCD corrections to the effective vertical stroke ΔS vertical stroke =2-hamiltonian in the Standard Model. The calculation of the coefficient η 3 is described in great detail. It involves the two-loop mixing of bilocal structures composed of two vertical stroke ΔS vertical stroke =1 operators into vertical stroke ΔS vertical stroke =2 operators. The next-to-leading order corrections enhance η 3 by 27% to η 3 =0.47(+0.03-0.04) thereby affecting the phenomenology of ε K sizeably. η 3 depends on the physical input parameters m t , m c and Λsub(anti M anti S) only weakly. The quoted error stems from renormalization scale dependences, which have reduced compared to the old leading log result. The known calculation of η 1 and η 2 is repeated in order to compare the structure of the three QCD coefficients. We further discuss some field theoretical aspects of the calculation such as the renormalization group equation for Green's functions with two operator insertions and the renormalization scheme dependence caused by the presence of evanescent operators. (orig.)

  9. Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films

    International Nuclear Information System (INIS)

    Chen, Aiping; Bi, Zhenxing; Jia, Quanxi; MacManus-Driscoll, Judith L.; Wang, Haiyan

    2013-01-01

    Vertically aligned nanocomposite (VAN) oxide thin films have recently stimulated a significant amount of research interest owing to their novel architecture, vertical interfacial strain control and tunable material functionalities. In this work, the growth mechanisms of VAN thin films have been investigated by varying the composite material system, the ratio of the two constituent phases, and the thin film growth conditions including deposition temperature and oxygen pressure as well as growth rate. It has been shown that thermodynamic parameters, elastic and interfacial energies and the multiple phase ratio play dominant roles in the resulting microstructure. In addition, vertical interfacial strain has been observed in BiFeO 3 (BFO)- and La 0.7 Sr 0.3 MnO 3 (LSMO)-based VAN thin film systems; the vertical strain could be tuned by the growth parameters and selection of a suitable secondary phase. The tunability of physical properties such as dielectric loss in BFO:Sm 2 O 3 VAN and low-field magnetoresistance in LSMO-based VAN systems has been demonstrated. The enhancement and tunability of those physical properties have been attributed to the unique VAN architecture and vertical strain control. These results suggest that VAN architecture with novel microstructure and unique vertical strain tuning could provide a general route for tailoring and manipulating the functionalities of oxide thin films

  10. SU-G-BRB-12: Polarity Effects in Small Volume Ionization Chambers in Small Fields

    International Nuclear Information System (INIS)

    Arora, V; Parsai, E; Mathew, D; Tanny, S; Sperling, N

    2016-01-01

    Purpose: Dosimetric quantities such as the polarity correction factor (Ppol) are important parameters for determining the absorbed dose and can influence the choice of dosimeter. Ppol has been shown to depend on beam energy, chamber design, and field size. This study is to investigate the field size and detector orientation dependence of Ppol in small fields for several commercially available micro-chambers. Methods: We evaluate the Exradin A26, Exradin A16, PTW 31014, PTW 31016, and two prototype IBA CC-01 micro-chambers in both horizontal and vertical orientations. Measurements were taken at 10cm depth and 100cm SSD in a Wellhofer BluePhantom2. Measurements were made at square fields of 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.4, 3.0, and 5.0 cm on each side using 6MV with both ± 300VDC biases. PPol was evaluated as described in TG-51, reported using −300VDC bias for Mraw. Ratios of PPol measured in the clinical field to the reference field are presented. Results: A field size dependence of Ppol was observed for all chambers, with increased variations when mounted vertically. The maximum variation observed in PPol over all chambers mounted horizontally was <1%, and occurred at different field sizes for different chambers. Vertically mounted chambers demonstrated variations as large as 3.2%, always at the smallest field sizes. Conclusion: Large variations in Ppol were observed for vertically mounted chambers compared to horizontal mountings. Horizontal mountings demonstrated a complicated relationship between polarity variation and field size, probably relating to differing details in each chambers construction. Vertically mounted chambers consistently demonstrated the largest PPol variations for the smallest field sizes. Measurements obtained with a horizontal mounting appear to not need significant polarity corrections for relative measurements, while those obtained using a vertical mounting should be corrected for variations in PPol.

  11. SU-G-BRB-12: Polarity Effects in Small Volume Ionization Chambers in Small Fields

    Energy Technology Data Exchange (ETDEWEB)

    Arora, V; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States); Mathew, D [University of Minnesota, Minneapolis, MN (United States); Tanny, S [SUNY Upstate Medical University, Syracuse NY (United States); Sperling, N [University of Toledo Medical Center, Sylvania, OH (United States)

    2016-06-15

    Purpose: Dosimetric quantities such as the polarity correction factor (Ppol) are important parameters for determining the absorbed dose and can influence the choice of dosimeter. Ppol has been shown to depend on beam energy, chamber design, and field size. This study is to investigate the field size and detector orientation dependence of Ppol in small fields for several commercially available micro-chambers. Methods: We evaluate the Exradin A26, Exradin A16, PTW 31014, PTW 31016, and two prototype IBA CC-01 micro-chambers in both horizontal and vertical orientations. Measurements were taken at 10cm depth and 100cm SSD in a Wellhofer BluePhantom2. Measurements were made at square fields of 0.6, 0.8, 1.0, 1.2, 1.4, 2.0, 2.4, 3.0, and 5.0 cm on each side using 6MV with both ± 300VDC biases. PPol was evaluated as described in TG-51, reported using −300VDC bias for Mraw. Ratios of PPol measured in the clinical field to the reference field are presented. Results: A field size dependence of Ppol was observed for all chambers, with increased variations when mounted vertically. The maximum variation observed in PPol over all chambers mounted horizontally was <1%, and occurred at different field sizes for different chambers. Vertically mounted chambers demonstrated variations as large as 3.2%, always at the smallest field sizes. Conclusion: Large variations in Ppol were observed for vertically mounted chambers compared to horizontal mountings. Horizontal mountings demonstrated a complicated relationship between polarity variation and field size, probably relating to differing details in each chambers construction. Vertically mounted chambers consistently demonstrated the largest PPol variations for the smallest field sizes. Measurements obtained with a horizontal mounting appear to not need significant polarity corrections for relative measurements, while those obtained using a vertical mounting should be corrected for variations in PPol.

  12. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen

    1998-01-01

    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra......Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids...

  13. Vertical Protocol Composition

    DEFF Research Database (Denmark)

    Groß, Thomas; Mödersheim, Sebastian Alexander

    2011-01-01

    The security of key exchange and secure channel protocols, such as TLS, has been studied intensively. However, only few works have considered what happens when the established keys are actually used—to run some protocol securely over the established “channel”. We call this a vertical protocol.......e., that the combination cannot introduce attacks that the individual protocols in isolation do not have. In this work, we prove a composability result in the symbolic model that allows for arbitrary vertical composition (including self-composition). It holds for protocols from any suite of channel and application...

  14. Effect of settling particles on the stability of a particle-laden flow in a vertical plane channel

    Science.gov (United States)

    Boronin, S. A.; Osiptsov, A. N.

    2018-03-01

    The stability of a viscous particle-laden flow in a vertical plane channel in the presence of the gravity force is studied. The flow is described using a two-fluid "dusty-gas" model with negligibly small volume fraction of fines and two-way coupling of the phases. Two different profiles of the particle number density in the main flow are considered: homogeneous and non-homogeneous in the form of two layers symmetric about the channel axis. The novel element of the linear-stability problem formulation is a particle velocity slip in the main flow caused by the gravity-induced settling of the dispersed phase. The eigenvalue problem for a linearized system of governing equations is solved using the orthonormalization and QZ algorithms. For a uniform particle number density distribution, it is found that there exists a domain in the plane of Froude and Stokes numbers, in which the two-phase flow in a vertical channel is stable for an arbitrary Reynolds number. This stability domain corresponds to relatively small-inertia particles and large velocity-slip in the main flow. In contrast to the flow with a uniform particle number density distribution, the stratified dusty-gas flow in a vertical channel is unstable over a wide range of governing parameters. The instability at small Reynolds numbers is determined by the gravitational mode characterized by small wavenumbers (long-wave instability), while at larger Reynolds numbers the instability is dominated by the shear mode with the time-amplification factor larger than that of the gravitational mode. The results of the study can be used for optimization of a large number of technological processes, including those in riser reactors, pneumatic conveying in pipeline systems, hydraulic fracturing, and well cementing.

  15. Advantages of a vertical integration process in the design of DNW MAPS

    International Nuclear Information System (INIS)

    Ratti, L.; Gaioni, L.; Manazza, A.; Manghisoni, M.; Re, V.; Traversi, G.

    2015-01-01

    This work discusses the main features of a CMOS Deep N-well (DNW) monolithic active pixel sensor (MAPS) fabricated in a vertically integrated technology, where two 130 nm CMOS homogeneous tiers are processed to obtain a 3D integrated circuit (3D-IC). The 3D CMOS MAPS, which was designed in view of vertexing applications to experiments at high luminosity colliders, features a 20 μm pitch for a point resolution of about 5 μm and data sparsification capabilities for high data rate systems. Results from the characterization of different test structures, including single pixels, 3×3 and 8×8 matrices, are presented. In particular, measurements have been performed with an infrared laser source to evaluate the charge collection properties of the proposed vertically integrated sensors

  16. Advantages of a vertical integration process in the design of DNW MAPS

    Energy Technology Data Exchange (ETDEWEB)

    Ratti, L. [Università di Pavia, Dipartimento di Elettronica, Via Ferrata 1, I-27100 Pavia (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Gaioni, L. [Università di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); Manazza, A. [INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Manghisoni, M.; Re, V.; Traversi, G. [Università di Bergamo, Dipartimento di Ingegneria Industriale, Via Marconi 5, I-24044 Dalmine (Italy); INFN, Sezione di Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2015-06-01

    This work discusses the main features of a CMOS Deep N-well (DNW) monolithic active pixel sensor (MAPS) fabricated in a vertically integrated technology, where two 130 nm CMOS homogeneous tiers are processed to obtain a 3D integrated circuit (3D-IC). The 3D CMOS MAPS, which was designed in view of vertexing applications to experiments at high luminosity colliders, features a 20 μm pitch for a point resolution of about 5 μm and data sparsification capabilities for high data rate systems. Results from the characterization of different test structures, including single pixels, 3×3 and 8×8 matrices, are presented. In particular, measurements have been performed with an infrared laser source to evaluate the charge collection properties of the proposed vertically integrated sensors.

  17. Critical investigations and model development on countercurrent flow of gas and liquid in horizontal and vertical channels

    International Nuclear Information System (INIS)

    Mewes, D.; Beckmann, H.

    1989-01-01

    Countercurrent flow of steam and water occurs in the horizontal and vertical lines of a PWR in case of a LOCA. In order to predict the emergency core cooling behaviour in case of a large or small break LOCA it is important to calculate the volumetric flow rate of water which will get to the reactor core. Theoretical and experimental results of countercurrent flow in horizontal and vertical channels given by publication and reports are critically reviewed for the purpose of a more physical understanding of the flow phenomena. The influence of geometry, pressure and other boundary conditions are emphasized. The existing models which are developed to calculate the onset of flooding are based on experimental results of small test facilities. The applicability of these models to large geometries and high pressures as well as the consideration of condensation and entrainment are investigated. (orig./HP) [de

  18. The Threshold of a Stochastic SIRS Model with Vertical Transmission and Saturated Incidence

    Directory of Open Access Journals (Sweden)

    Chunjuan Zhu

    2017-01-01

    Full Text Available The threshold of a stochastic SIRS model with vertical transmission and saturated incidence is investigated. If the noise is small, it is shown that the threshold of the stochastic system determines the extinction and persistence of the epidemic. In addition, we find that if the noise is large, the epidemic still prevails. Finally, numerical simulations are given to illustrate the results.

  19. Flash propagation and inferred charge structure relative to radar-observed ice alignment signatures in a small Florida mesoscale convective system

    Science.gov (United States)

    Biggerstaff, Michael I.; Zounes, Zackery; Addison Alford, A.; Carrie, Gordon D.; Pilkey, John T.; Uman, Martin A.; Jordan, Douglas M.

    2017-08-01

    A series of vertical cross sections taken through a small mesoscale convective system observed over Florida by the dual-polarimetric SMART radar were combined with VHF radiation source locations from a lightning mapping array (LMA) to examine the lightning channel propagation paths relative to the radar-observed ice alignment signatures associated with regions of negative specific differential phase (KDP). Additionally, charge layers inferred from analysis of LMA sources were related to the ice alignment signature. It was found that intracloud flashes initiated near the upper zero-KDP boundary surrounding the negative KDP region. The zero-KDP boundary also delineated the propagation path of the lightning channel with the negative leaders following the upper boundary and positive leaders following the lower boundary. Very few LMA sources were found in the negative KDP region. We conclude that rapid dual-polarimetric radar observations can diagnose strong electric fields and may help identify surrounding regions of charge.

  20. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Wang, Qingxiao; Yue, Weisheng; Guo, Zaibing; LI, LIANG; Zhao, Chao; Wang, Xianbin; Abutaha, Anas I.; Alshareef, Husam N.; Zhang, Yafei; Zhang, Xixiang

    2014-01-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. This journal is © the Partner Organisations 2014.

  1. Relato de caso: transmissão vertical de dengue Case report: vertical dengue infection

    Directory of Open Access Journals (Sweden)

    Samara L. C. Maroun

    2008-12-01

    Full Text Available OBJETIVOS: Relatar um caso de transmissão vertical de dengue ocorrido durante epidemia de 2008 pelo vírus tipo II no Rio de Janeiro e revisar a literatura sobre transmissão vertical de dengue. DESCRIÇÃO: Relatamos um caso de transmissão vertical de dengue. Recém-nascido a termo do sexo feminino, peso de nascimento de 3.940 g, foi admitida na unidade de terapia intensiva neonatal com rash cutâneo, hipoatividade e febre no quinto dia de vida. O hemograma evidenciava plaquetopenia importante (38.000 plaquetas. A mãe apresentou quadro clínico compatível com dengue 3 dias antes do parto. Foram colhidos então IgM para dengue da mãe e do recém-nascido, realizados pelo método de ELISA, sendo positivos em ambos. Dengue tipo 2 foi detectado no recém-nascido através de reação em cadeia da polimerase. COMENTÁRIOS: Este relato enfatiza a importância do pediatra estar alerta para a possibilidade de transmissão vertical de dengue iniciando precocemente o tratamento.OBJECTIVES: To report a case of vertical dengue infection in a newborn from Rio de Janeiro, Brazil, and to review the literature concerning this problem. DESCRIPTION: We report a case of vertical dengue infection. Female neonate, birth weight 3,940 g, term, was admitted to a neonatal intensive care unit on the fifth day of life with fever and erythematous rash. Her mother had had dengue fever 3 days before delivery. Her platelet count was 38,000, dropping to 15,000. She did not have any hemorrhagic episodes, including cerebral hemorrhages. Anti-dengue antibodies (IgM were positive in the mother and infant. Dengue type 2 was detected in the infant using polymerase chain reaction. COMMENTS: This report emphasizes that pediatricians should be aware of the possibility of vertical dengue infection so that early management can be instituted.

  2. Mitigating the negative impacts of tall wind turbines on bats: Vertical activity profiles and relationships to wind speed.

    Science.gov (United States)

    Wellig, Sascha D; Nusslé, Sébastien; Miltner, Daniela; Kohle, Oliver; Glaizot, Olivier; Braunisch, Veronika; Obrist, Martin K; Arlettaz, Raphaël

    2018-01-01

    Wind turbines represent a source of hazard for bats, especially through collision with rotor blades. With increasing technical development, tall turbines (rotor-swept zone 50-150 m above ground level) are becoming widespread, yet we lack quantitative information about species active at these heights, which impedes proposing targeted mitigation recommendations for bat-friendly turbine operation. We investigated vertical activity profiles of a bat assemblage, and their relationships to wind speed, within a major valley of the European Alps where tall wind turbines are being deployed. To monitor bat activity we installed automatic recorders at sequentially increasing heights from ground level up to 65 m, with the goal to determine species-specific vertical activity profiles and to link them to wind speed. Bat call sequences were analysed with an automatic algorithm, paying particular attention to mouse-eared bats (Myotis myotis and Myotis blythii) and the European free-tailed bat (Tadarida teniotis), three locally rare species. The most often recorded bats were the Common pipistrelle (Pipistrellus pipistrellus) and Savi's pipistrelle (Hypsugo savii). Mouse-eared bats were rarely recorded, and mostly just above ground, appearing out of risk of collision. T. teniotis had a more evenly distributed vertical activity profile, often being active at rotor level, but its activity at that height ceased above 5 ms-1 wind speed. Overall bat activity in the rotor-swept zone declined with increasing wind speed, dropping below 5% above 5.4 ms-1. Collision risk could be drastically reduced if nocturnal operation of tall wind turbines would be restricted to wind speeds above 5 ms-1. Such measure should be implemented year-round because T. teniotis remains active in winter. This operational restriction is likely to cause only small energy production losses at these tall wind turbines, although further analyses are needed to assess these losses precisely.

  3. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects.

    Science.gov (United States)

    Jones, S K; Laurenza, R; Hedrick, T L; Griffith, B E; Miller, L A

    2015-11-07

    We used computational fluid dynamics to determine whether lift- or drag-based mechanisms generate the most vertical force in the flight of the smallest insects. These insects fly at Re on the order of 4-60 where viscous effects are significant. Detailed quantitative data on the wing kinematics of the smallest insects is not available, and as a result both drag- and lift-based strategies have been suggested as the mechanisms by which these insects stay aloft. We used the immersed boundary method to solve the fully-coupled fluid-structure interaction problem of a flexible wing immersed in a two-dimensional viscous fluid to compare three idealized hovering kinematics: a drag-based stroke in the vertical plane, a lift-based stroke in the horizontal plane, and a hybrid stroke on a tilted plane. Our results suggest that at higher Re, a lift-based strategy produces more vertical force than a drag-based strategy. At the Re pertinent to small insect hovering, however, there is little difference in performance between the two strategies. A drag-based mechanism of flight could produce more vertical force than a lift-based mechanism for insects at Re<5; however, we are unaware of active fliers at this scale. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Vertical integration: hospital ownership of physician practices is associated with higher prices and spending.

    Science.gov (United States)

    Baker, Laurence C; Bundorf, M Kate; Kessler, Daniel P

    2014-05-01

    We examined the consequences of contractual or ownership relationships between hospitals and physician practices, often described as vertical integration. Such integration can reduce health spending and increase the quality of care by improving communication across care settings, but it can also increase providers' market power and facilitate the payment of what are effectively kickbacks for inappropriate referrals. We investigated the impact of vertical integration on hospital prices, volumes (admissions), and spending for privately insured patients. Using hospital claims from Truven Analytics MarketScan for the nonelderly privately insured in the period 2001-07, we constructed county-level indices of prices, volumes, and spending and adjusted them for enrollees' age and sex. We measured hospital-physician integration using information from the American Hospital Association on the types of relationships hospitals have with physicians. We found that an increase in the market share of hospitals with the tightest vertically integrated relationship with physicians--ownership of physician practices--was associated with higher hospital prices and spending. We found that an increase in contractual integration reduced the frequency of hospital admissions, but this effect was relatively small. Taken together, our results provide a mixed, although somewhat negative, picture of vertical integration from the perspective of the privately insured.

  5. Wavelength variation of a standing wave along a vertical spring

    Science.gov (United States)

    Welsch, Dylan; Baker, Blane

    2018-03-01

    Hand-driven resonance can be observed readily in a number of mechanical systems including thin boards, rods, strings, and springs. In order to show such behavior in the vertical spring pictured in Fig. 1, a section of spring is grasped at a location about one meter from its free end and driven by small, circular motions of the hand. At driving frequencies of a few hertz, a dramatic standing wave is generated. One of the fascinating features of this particular standing wave is that its wavelength varies along the length of the spring.

  6. Wind tower with vertical rotors

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, A

    1978-08-03

    The invention concerns a wind tower with vertical rotors. A characteristic is that the useful output of the rotors is increased by the wind pressure, which is guided to the rotors at the central opening and over the whole height of the structure by duct slots in the inner cells. These duct slots start behind the front nose of the inner cell and lead via the transverse axis of the pillar at an angle into the space between the inner cells and the cell body. This measure appreciably increases the useful output of the rotors, as the rotors do not have to provide any displacement work from their output, but receive additional thrust. The wind pressure pressing from inside the rotor and accelerating from the outside produces a better outflow of the wind from the power plant pillar with only small tendency to turbulence, which appreciably improves the effect of the adjustable turbulence smoothers, which are situated below the rotors over the whole height.

  7. The Medial Stitch in Transosseous-Equivalent Rotator Cuff Repair: Vertical or Horizontal Mattress?

    Science.gov (United States)

    Montanez, Anthony; Makarewich, Christopher A; Burks, Robert T; Henninger, Heath B

    2016-09-01

    Despite advances in surgical technique, rotator cuff repair retears continue to occur at rates of 10%, 22%, and 57% for small, medium, and large tears, respectively. A common mode of failure in transosseous-equivalent rotator cuff repairs is tissue pullout of the medial mattress stitch. While the medial mattress stitch has been studied extensively, no studies have evaluated a vertical mattress pattern placed near the musculotendinous junction in comparison with a horizontal mattress pattern. Vertical mattress stitches will have higher load to failure and lower gapping compared with horizontal mattress stitches in a transosseous-equivalent rotator cuff repair. Controlled laboratory study. Double-row transosseous-equivalent rotator cuff repairs were performed in 9 pairs of human male cadaveric shoulders (mean age ± SD, 58 ± 10 years). One shoulder in each pair received a medial-row suture pattern using a vertical mattress stitch, and the contralateral shoulder received a horizontal mattress. Specimens were mounted in a materials testing machine and tested in uniaxial tensile deformation for cyclic loading (500 cycles at 1 Hz to 1.0 MPa of effective stress), followed by failure testing carried out at a rate of 1 mm/s. Construct gapping and applied loads were monitored continuously throughout the testing. Vertical mattress sutures were placed in 5 right and 4 left shoulders. Peak cyclic gapping did not differ between vertical (mean ± SD, 2.8 ± 1.1 mm) and horizontal mattress specimens (3.0 ± 1.2 mm) (P = .684). Vertical mattress sutures failed at higher loads compared with horizontal mattress sutures (568.9 ± 140.3 vs 451.1 ± 174.3 N; P = .025); however, there was no significant difference in failure displacement (8.0 ± 1.6 vs 6.0 ± 2.1 mm; P = .092). Failure stiffness did not differ between the suture patterns (P = .204). In transosseous-equivalent rotator cuff repairs near the musculotendinous junction, a vertical mattress suture used as the medial stitch

  8. Vertical profiles of black carbon concentration and particle number size distribution in the North China Plain

    Science.gov (United States)

    Ran, L.; Deng, Z.

    2013-12-01

    The vertical distribution of aerosols is of great importance to our understanding in the impacts of aerosols on radiation balance and climate, as well as air quality and public health. To better understand and estimate the effects of atmospheric components including trace gases and aerosols on atmospheric environment and climate, an intensive field campaign, Vertical Observations of trace Gases and Aerosols in the North China Plain (VOGA-NCP), was carried out from late July to early August 2013 over a rural site in the polluted NCP. During the campaign, vertical profiles of black carbon (BC) concentration and particle number size distribution were measured respectively by a micro-Aethalometer and an optical particle counter attached to a tethered balloon within 1000 m height. Meteorological parameters, including temperature, relative humidity, wind speed and wind direction, were measured simultaneously by a radiosonde also attached to the tethered balloon. Preliminary results showed distinct diurnal variations of the vertical distribution of aerosol total number concentration and BC concentration, following the development of the mixing layer. Generally, there was a well mixing of aerosols within the mixing layer and a sharp decrease above the mixing layer. Particularly, a small peak of BC concentrations was observed around 400-500 m height for several profiles. Further analysis would be needed to explain such phenomenon. It was also found that measured vertical profiles of BC using the filter-based method might be affected by the vertical distribution of relative humidity.

  9. Equatorial 150 km echoes and daytime F region vertical plasma drifts in the Brazilian longitude sector

    Directory of Open Access Journals (Sweden)

    F. S. Rodrigues

    2013-10-01

    Full Text Available Previous studies showed that conventional coherent backscatter radar measurements of the Doppler velocity of the so-called 150 km echoes can provide an alternative way of estimating ionospheric vertical plasma drifts during daytime hours (Kudeki and Fawcett, 1993; Chau and Woodman, 2004. Using observations made by a small, low-power 30 MHz coherent backscatter radar located in the equatorial site of São Luís (2.59° S, 44.21° W; −2.35° dip lat, we were able to detect and monitor the occurrence of 150 km echoes in the Brazilian sector. Using these measurements we estimated the local time variation of daytime vertical ionospheric drifts in the eastern American sector. Here, we present a few interesting cases of 150 km-echoes observations made by the São Luís radar and estimates of the diurnal variation of vertical drifts. These cases exemplify the variability of the vertical drifts in the Brazilian sector. Using same-day 150 km-echoes measurements made at the Jicamarca Radio Observatory in Peru, we also demonstrate the variability of the equatorial vertical drifts across the American sector. In addition to first estimates of the absolute vertical plasma drifts in the eastern American (Brazilian sector, we also present observations of abnormal drifts detected by the São Luís radar associated with the 2009 major sudden stratospheric warming event.

  10. Small Business Innovation Research and Small Business Technology Transfer Programs

    Science.gov (United States)

    Garrison, Lynn; Jasper, Gwen

    2015-01-01

    The Small Business Innovation Research (SBIR)/Small Business Technology Transfer (STTR) programs fund the research, development, and demonstration of innovative technologies that fulfill NASA's needs as described in the annual Solicitations and have significant potential for successful commercialization. The only eligible participants are small business concern (SBC) with 500 or fewer employees or a nonprofit research institute such as a university or a research laboratory with ties to an SBC. These programs are potential sources of seed funding for the development of small business innovations.

  11. E-line: A new crystal collimator beam line for source size measurements at CHESS

    Energy Technology Data Exchange (ETDEWEB)

    White, Jeffrey A. [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)], E-mail: jaw7@cornell.edu; Revesz, Peter; Finkelstein, Ken [CHESS, Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14850-8001 (United States)

    2007-11-11

    A new X-ray beam line has been constructed at cornell high energy synchrotron source (CHESS) to measure the vertical and horizontal source size of the positron particle beam. The cornell laboratory of elementary particle physics (LEPP) operates the storage ring (CESR) for X-ray generation for the CHESS user community by circulating electrons and their antimatter counterpart positrons in counter-rotating beams. As the laboratory reduces the emittances of particle beams to increase X-ray brilliance, there has been an increasing need for diagnostic tools to measure and monitor source size. A beam line front end that accesses the positron synchrotron light has been fitted with an experimental chamber and apparatus of compact design capable of horizontal and vertical source size measurement using the 'crystal collimator' technique, and an additional setup for vertical beam position monitoring using a luminescence-based X-ray video beam position monitoring system. The crystal collimators each consist of two Si(2 2 0) crystals in a dispersive (+,+) arrangement that diffract X-rays to a fluorescent material coated on a view port observed with a CCD camera. Measurements of the positron vertical beam size using the crystal collimation method at E-line are compared with measurements of visible synchrotron light at a remotely located dedicated port on the storage ring.

  12. Vertical seismic profile data from well Mallik 2L-38 for gas hydrate studies

    Energy Technology Data Exchange (ETDEWEB)

    Mi, Y [Calgary Univ., AB (Canada); Walia, R [Victoria Univ., BC (Canada); Hyndman, R D; Sakai, A

    1999-01-01

    A gas hydrate research well was drilled in the Canadian Arctic to determine gas hydrates in a permafrost setting in a collaborative research project between the Japan National Oil Corp., and the Geological Survey of Canada with the participation of other agencies. The multidisciplinary study included an electromagnetic survey, permafrost and gas hydrate coring, and comprehensive downhole geophysical logging and measurement. Laboratory studies on recovered cores and cuttings included sedimentology, physical properties, geochemistry, and reservoir characteristics of the Mallik gas accumulation. As part of the field program, a vertical seismic profiling survey was conducted at zero and offset source positions with 3 component receiver tools and horizontal and vertical vibration sources. A special effort was made to record shear wave data, and results from this work were combined with down hole logs and regional surface seismic data. The data will be used also to determine the effect of gas hydrates on formation velocities and to measure gas hydrate concentrations as a function of depth in the formation penetrated by the well. Certain conclusions followed from the initial VSP analysis. 1) Zero offset vertical vibration Z component and horizontal X component data give reliable velocity estimation within the gas hydrate formation zone, and P wave velocities from offset data indicate excellent consistency with that from zero offset data and with the sonic log. 2) The VSP data permitted reliable identification of gas hydrate bearing zones. 4 refs.

  13. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  14. Estimation of in-canopy ammonia sources and sinks in a fertilized Zea mays field

    Science.gov (United States)

    An analytical model was developed that describes the in-canopy vertical distribution of NH3 source and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy concentration and wind speed profiles. This model was applied to quantify in-canopy air-s...

  15. Measurement of τ decays into a charged hadron accompanied by neutral π-mesons and determination of the CKM matrix element vertical stroke V{sub us} vertical stroke

    Energy Technology Data Exchange (ETDEWEB)

    Adametz, Aleksandra

    2011-07-06

    This thesis presents the branching fraction measurement of the τ{sup -}→K{sup -}(nπ{sup 0})ν{sub τ} (n=0,1,2,3) and τ{sup -}→π{sup -}(nπ{sup 0})ν{sub τ} (n=3,4) decays. The measurement is based on a data sample of 435 million τ pairs produced in e{sup +}e{sup -} collisions and collected with the BABAR detector in 1999-2008. The analysis is validated using precisely known τ decays as control modes. The measured branching fractions are B(τ{sup -}→K{sup -}ν{sub τ})=(7.100±0.033±0.156) x 10{sup -3}, B(τ{sup -}→K{sup -}π{sup 0}ν{sub τ})=(5.000±0.020±0.139) x 10{sup -3}, B(τ{sup -}→K{sup -}(2π{sup 0})ν{sub τ})=(5.654±0.144±0.323) x 10{sup -4}, B(τ{sup -}→K{sup -}(3π{sup 0})ν{sub τ})=(1.642±0.279±0.375) x 10{sup -4}, B(τ{sup -}→π{sup -}(3π{sup 0})ν{sub τ})=(1.216±0.010±0.047) x 10{sup -2}, B(τ{sup -}→π{sup -}(4π{sup 0})ν{sub τ})=(1.041±0.067±0.090) x 10{sup -3}, where the first uncertainty is statistical and the second systematic. The branching fraction B(τ{sup -}→π{sup -}(4π{sup 0})ν{sub τ}) is measured for the first time. The precision of the results is comparable or significantly improved with respect to previous measurements. The branching fraction B(τ{sup -}→K{sup -}ν{sub τ}) is combined with a lattice QCD calculation of the kaon decay constant to obtain the Cabibbo-Kobayashi-Maskawa matrix element vertical stroke V{sub us} vertical stroke =0.2224±0.0025(exp)±0.0029(theo). The branching fractions of the τ decays into a kaon are combined with the current world averages. The resulting averages are used in the determination of the total τ branching fraction, B{sub s}, into strangeness vertical stroke S vertical stroke =1 final states. B{sub s} is used in conjunction with vertical stroke V{sub ud} vertical stroke and a small SU(3)-symmetry breaking correction to compute vertical stroke V{sub us} vertical stroke =0.2176±0.0025(exp)±0.0010(theo).

  16. Vertical distribution and environmental significance of sulfur and oxygen heterocyclic aromatic hydrocarbons in soil samples collected from Beijing, China

    International Nuclear Information System (INIS)

    Zhang Zhihuan; He Fengpeng; Bu Qingwei; Lu Song

    2008-01-01

    Vertical distribution of the concentration and composition of some sulfur and oxygen heterocyclic aromatic hydrocarbons (SOHAHs), such as, fluorene, dibenzofuran, dibenzothiophene and their alkyl homologues in 10 soil profiles in Beijing have been investigated. The results showed that the concentrations and composition of SOHAHs in topsoil (0-30 cm) from different profiles are different. The concentrations of SOHAHs in topsoils are much higher than that in bottom soils where the concentrations are relatively constant. The fingerprints of SOHAHs from same profile are similar in topsoil samples, which are obviously different at the deep part, which suggested that the sources of these compounds are consistent in topsoil and are discriminating between surface and bottom soils. The main sources of SOHAHs in surface soil were fossil fuel combustion, petroleum and wastewater irrigation, while those at deep part were likely derived from the degradation products of soil organic matters. - The vertical distribution of SOHAHs was provided and possible sources were different between topsoils and deep part

  17. Vertical Structure of Radiation-pressure-dominated Thin Disks: Link between Vertical Advection and Convective Stability

    International Nuclear Information System (INIS)

    Gong, Hong-Yu; Gu, Wei-Min

    2017-01-01

    In the classic picture of standard thin accretion disks, viscous heating is balanced by radiative cooling through the diffusion process, and the radiation-pressure-dominated inner disk suffers convective instability. However, recent simulations have shown that, owing to the magnetic buoyancy, the vertical advection process can significantly contribute to energy transport. In addition, in comparing the simulation results with the local convective stability criterion, no convective instability has been found. In this work, following on from simulations, we revisit the vertical structure of radiation-pressure-dominated thin disks and include the vertical advection process. Our study indicates a link between the additional energy transport and the convectively stable property. Thus, the vertical advection not only significantly contributes to the energy transport, but it also plays an important role in making the disk convectively stable. Our analyses may help to explain the discrepancy between classic theory and simulations on standard thin disks.

  18. A relaxed eddy accumulation system for measuring vertical fluxes of nitrous acid

    Directory of Open Access Journals (Sweden)

    X. Ren

    2011-10-01

    Full Text Available A relaxed eddy accumulation (REA system combined with a nitrous acid (HONO analyzer was developed to measure atmospheric HONO vertical fluxes. The system consists of three major components: (1 a fast-response sonic anemometer measuring both vertical wind velocity and air temperature, (2 a fast-response controlling unit separating air motions into updraft and downdraft samplers by the sign of vertical wind velocity, and (3 a highly sensitive HONO analyzer based on aqueous long path absorption photometry that measures HONO concentrations in the updrafts and downdrafts. A dynamic velocity threshold (±0.5σw, where σw is a standard deviation of the vertical wind velocity was used for valve switching determined by the running means and standard deviations of the vertical wind velocity. Using measured temperature as a tracer and the average values from two field deployments, the flux proportionality coefficient, β, was determined to be 0.42 ± 0.02, in good agreement with the theoretical estimation. The REA system was deployed in two ground-based field studies. In the California Research at the Nexus of Air Quality and Climate Change (CalNex study in Bakersfield, California in summer 2010, measured HONO fluxes appeared to be upward during the day and were close to zero at night. The upward HONO flux was highly correlated to the product of NO2 and solar radiation. During the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX 2009 at Blodgett Forest, California in July 2009, the overall HONO fluxes were small in magnitude and were close to zero. Causes for the different HONO fluxes in the two different environments are briefly discussed.

  19. Plans to increase source brightness of NSLS x-ray ring

    International Nuclear Information System (INIS)

    Safranek, J.; Krinsky, S.

    1993-01-01

    We discuss plans to increase the NSLS X-Ray ring source brightness by an order of magnitude. Proposed improvements include doubling current from 250 mA to 500 mA, reducing vertical emittance by a factor of 6 and reducing insertion device gaps and periods by up to a factor of two. Experimental results are reported which indicate we have succeeded in reducing the vertical emittance below 2 Angstrom

  20. A Physician's Perspective On Vertical Integration.

    Science.gov (United States)

    Berenson, Robert A

    2017-09-01

    Vertical integration has been a central feature of health care delivery system change for more than two decades. Recent studies have demonstrated that vertically integrated health care systems raise prices and costs without observable improvements in quality, despite many theoretical reasons why cost control and improved quality might occur. Less well studied is how physicians view their newfound partnerships with hospitals. In this article I review literature findings and other observations on five aspects of vertical integration that affect physicians in their professional and personal lives: patients' access to physicians, physician compensation, autonomy versus system support, medical professionalism and culture, and lifestyle. I conclude that the movement toward physicians' alignment with and employment in vertically integrated systems seems inexorable but that policy should not promote such integration either intentionally or inadvertently. Instead, policy should address the flaws in current payment approaches that reward high prices and excessive service use-outcomes that vertical integration currently produces. Project HOPE—The People-to-People Health Foundation, Inc.

  1. Study on development and actual application of scientific crime detection technique using small scale neutron radiation source

    International Nuclear Information System (INIS)

    Suzuki, Yasuhiro; Kishi, Toru; Tachikawa, Noboru; Ishikawa, Isamu.

    1997-01-01

    PGA (Prompt γ-ray Analysis) is an analytic method of γ-ray generated from atomic nuclei of elements in the specimen just after irradiation (within 10(exp-14)sec.) of neutron to it. As using neutron with excellent transmission for an exciting source, this method can be used for inspecting the matters in closed containers non-destructively, and can also detect non-destructively light elements such as boron, nitrogen and others difficult by other non-destructive analysis. Especially, it is found that this method can detect such high concentration of nitrogen, chlorine and others which are characteristic elements for the explosives. However, as there are a number of limitations at the nuclear reactor site, development of an analytical apparatus for small scale neutron radiation source was begun, at first. In this fiscal year, analysis of the light elements such as nitrogen, chlorine and others using PGA was attempted by using 252-Cf as the simplest neutron source in its operation. As the 252-Cf neutron flux was considerably lower than that of nuclear reactor, its analytical sensitivity was also investigated. (G.K.)

  2. Small scale wind energy harvesting with maximum power tracking

    Directory of Open Access Journals (Sweden)

    Joaquim Azevedo

    2015-07-01

    Full Text Available It is well-known that energy harvesting from wind can be used to power remote monitoring systems. There are several studies that use wind energy in small-scale systems, mainly with wind turbine vertical axis. However, there are very few studies with actual implementations of small wind turbines. This paper compares the performance of horizontal and vertical axis wind turbines for energy harvesting on wireless sensor network applications. The problem with the use of wind energy is that most of the time the wind speed is very low, especially at urban areas. Therefore, this work includes a study on the wind speed distribution in an urban environment and proposes a controller to maximize the energy transfer to the storage systems. The generated power is evaluated by simulation and experimentally for different load and wind conditions. The results demonstrate the increase in efficiency of wind generators that use maximum power transfer tracking, even at low wind speeds.

  3. Estimates of gradient Richardson numbers from vertically smoothed data in the Gulf Stream region

    Directory of Open Access Journals (Sweden)

    Paul van Gastel

    2004-12-01

    Full Text Available We use several hydrographic and velocity sections crossing the Gulf Stream to examine how the gradient Richardson number, Ri, is modified due to both vertical smoothing of the hydrographic and/or velocity fields and the assumption of parallel or geostrophic flow. Vertical smoothing of the original (25 m interval velocity field leads to a substantial increase in the Ri mean value, of the same order as the smoothing factor, while its standard deviation remains approximately constant. This contrasts with very minor changes in the distribution of the Ri values due to vertical smoothing of the density field over similar lengths. Mean geostrophic Ri values remain always above the actual unsmoothed Ri values, commonly one to two orders of magnitude larger, but the standard deviation is typically a factor of five larger in geostrophic than in actual Ri values. At high vertical wavenumbers (length scales below 3 m the geostrophic shear only leads to near critical conditions in already rather mixed regions. At these scales, hence, the major contributor to shear mixing is likely to come from the interaction of the background flow with internal waves. At low vertical wavenumbers (scales above 25 m the ageostrophic motions provide the main source for shear, with cross-stream movements having a minor but non-negligible contribution. These large-scale motions may be associated with local accelerations taking place during frontogenetic phases of meanders.

  4. Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.

    Science.gov (United States)

    Han, Zhao Jun; Ostrikov, Kostya

    2012-04-04

    Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.

  5. Vertical structures in vibrated wormlike micellar solutions

    Science.gov (United States)

    Epstein, Tamir; Deegan, Robert

    2008-11-01

    Vertically vibrated shear thickening particulate suspensions can support a free-standing interfaces oriented parallel to gravity. We find that shear thickening worm-like micellar solutions also support such vertical interfaces. Above a threshold in acceleration, the solution spontaneously accumulates into a labyrinthine pattern characterized by a well-defined vertical edge. The formation of vertical structures is of interest because they are unique to shear-thickening fluids, and they indicate the existence of an unknown stress bearing mechanism.

  6. Neutron beam design for low intensity neutron and gamma-ray radioscopy using small neutron sources

    CERN Document Server

    Matsumoto, T

    2003-01-01

    Two small neutron sources of sup 2 sup 5 sup 2 Cf and sup 2 sup 4 sup 1 Am-Be radioisotopes were used for design of neutron beams applicable to low intensity neutron and gamma ray radioscopy (LINGR). In the design, Monte Carlo code (MCNP) was employed to generate neutron and gamma ray beams suited to LINGR. With a view to variable neutron spectrum and neutron intensity, various arrangements were first examined, and neutron-filter, gamma-ray shield and beam collimator were verified. Monte Carlo calculations indicated that with a suitable filter-shield-collimator arrangement, thermal neutron beam of 3,900 ncm sup - sup 2 s sup - sup 1 with neutron/gamma ratio of 7x10 sup 7 , and 25 ncm sup - sup 2 s sup - sup 1 with very large neutron/gamma ratio, respectively, could be produced by using sup 2 sup 5 sup 2 Cf(122 mu g) and a sup 2 sup 4 sup 1 Am-Be(37GBq)radioisotopes at the irradiation port of 35 cm from the neutron sources.

  7. Vertical Propagation and Temporal Growth of Perturbations in the Winter Atmosphere

    Science.gov (United States)

    Christiansen, B.

    2001-12-01

    We present a general circulation model study of the temporal growth and vertically propagation of perturbations following vertical confined forcings. Both transient and sustained forcings are considered. The motivation for the study is the recent recognition of downward propagation of anomalies from the stratosphere to the troposphere and its implications both for medium range forecasts and for a possible physical mechanism for stratospheric impacts on weather and climate. The dynamical link might also offer a mechanism for changes in the upper atmosphere to affect the tropospheric climate. Here we are thinking of changes in trace gases such as ozone, but also of modulations of the upper atmospheric structure related to the 11-year solar cycle. The model atmosphere is chaotic and shows growth of perturbations no matter which level is forced. The perturbations grow to a size comparable to the variability of the unperturbed atmosphere on a time-scale of 20 - 25 days in the troposphere and 30 - 40 days in the stratosphere. After the initial period of growth the perturbations have the same structure as the unperturbed atmosphere. Although the forcing is restricted to the northern hemisphere the perturbations encompass the whole atmosphere and develop on the same time scale on both hemispheres. Perturbations grow with time squared both when zonal mean and single cell values are considered. Such a power law growth suggest the existence of a finite predictability time which is independent of the initial perturbation as long as it is small. In the unperturbed atmosphere the stratospheric variability has the form of downward propagating stratospheric vacillations. However, in the initial period of growth the perturbations do not propagate downward and seem in general uncoupled to the background vacillations. This suggests that the downward propagation is a robust feature determined more by the processes in the troposphere than the state of the stratosphere. We note that

  8. ESTIMATION OF SOLAR ENERGY ON VERTICAL 3D BUILDING WALLS ON CITY QUARTER SCALE

    Directory of Open Access Journals (Sweden)

    F. Jaugsch

    2016-10-01

    Full Text Available In urban areas, solar energy is one promising source of renewable energy to achieve the EU parliament’s goal of reducing CO2 emissions by 20 % compared to 1990. Although annual radiation on vertical walls is lower than that on roof surfaces, they are larger in area and, therefore may contribute to energy production. On the other hand, the modelling of shadowing effects is cost intensive in an complex urban environment. Here we present a method for the calculation of solar potential on vertical walls for simple 2D maps with additional building height information. We introduced observer point columns that enable a fast decision whether a whole vertical set of observer points is illuminated or not. By the introduction of a maximum shade length, we reduce processing time in ArcGIS. 206,291 points of 130 buildings have been analysed in time steps of 15 minutes resulting in 15 769 pairs of solar angles. Results disprove the potential of vertical walls serving to fill the winter gap of roof mounted solar energy plants. Best wall orientation for the deployment of solar panels are west and east in summer, whereas it is southeast in winter.

  9. Processing vertical size disparities in distinct depth planes.

    Science.gov (United States)

    Duke, Philip A; Howard, Ian P

    2012-08-17

    A textured surface appears slanted about a vertical axis when the image in one eye is horizontally enlarged relative to the image in the other eye. The surface appears slanted in the opposite direction when the same image is vertically enlarged. Two superimposed textured surfaces with different horizontal size disparities appear as two surfaces that differ in slant. Superimposed textured surfaces with equal and opposite vertical size disparities appear as a single frontal surface. The vertical disparities are averaged. We investigated whether vertical size disparities are averaged across two superimposed textured surfaces in different depth planes or whether they induce distinct slants in the two depth planes. In Experiment 1, two superimposed textured surfaces with different vertical size disparities were presented in two depth planes defined by horizontal disparity. The surfaces induced distinct slants when the horizontal disparity was more than ±5 arcmin. Thus, vertical size disparities are not averaged over surfaces with different horizontal disparities. In Experiment 2 we confirmed that vertical size disparities are processed in surfaces away from the horopter, so the results of Experiment 1 cannot be explained by the processing of vertical size disparities in a fixated surface only. Together, these results show that vertical size disparities are processed separately in distinct depth planes. The results also suggest that vertical size disparities are not used to register slant globally by their effect on the registration of binocular direction of gaze.

  10. Small Business and Strategic Sourcing: Lessons from Past Research and Current Data

    Science.gov (United States)

    2014-01-01

    to receipts, variation of firms by stage of production or degree of vertical integration , or horizontally structured firms (SBA, 2009). Receipt-size...and Recommendations 41 deciding whether to approve mergers and acquisitions . The cutoffs used to characterize indus- try concentration are • less...Department of Justice and Federal Trade Commission, “ Horizontal Merger Guidelines,” August 19, 2010. As of May 7, 2013: http://www.justice.gov/atr

  11. In vivo quantitative imaging of point-like bioluminescent and fluorescent sources: Validation studies in phantoms and small animals post mortem

    Science.gov (United States)

    Comsa, Daria Craita

    2008-10-01

    There is a real need for improved small animal imaging techniques to enhance the development of therapies in which animal models of disease are used. Optical methods for imaging have been extensively studied in recent years, due to their high sensitivity and specificity. Methods like bioluminescence and fluorescence tomography report promising results for 3D reconstructions of source distributions in vivo. However, no standard methodology exists for optical tomography, and various groups are pursuing different approaches. In a number of studies on small animals, the bioluminescent or fluorescent sources can be reasonably approximated as point or line sources. Examples include images of bone metastases confined to the bone marrow. Starting with this premise, we propose a simpler, faster, and inexpensive technique to quantify optical images of point-like sources. The technique avoids the computational burden of a tomographic method by using planar images and a mathematical model based on diffusion theory. The model employs in situ optical properties estimated from video reflectometry measurements. Modeled and measured images are compared iteratively using a Levenberg-Marquardt algorithm to improve estimates of the depth and strength of the bioluminescent or fluorescent inclusion. The performance of the technique to quantify bioluminescence images was first evaluated on Monte Carlo simulated data. Simulated data also facilitated a methodical investigation of the effect of errors in tissue optical properties on the retrieved source depth and strength. It was found that, for example, an error of 4 % in the effective attenuation coefficient led to 4 % error in the retrieved depth for source depths of up to 12mm, while the error in the retrieved source strength increased from 5.5 % at 2mm depth, to 18 % at 12mm depth. Experiments conducted on images from homogeneous tissue-simulating phantoms showed that depths up to 10mm could be estimated within 8 %, and the relative

  12. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force-Time Characteristics.

    Science.gov (United States)

    Lake, Jason; Mundy, Peter; Comfort, Paul; McMahon, John J; Suchomel, Timothy J; Carden, Patrick

    2018-05-29

    This study examined concurrent validity of countermovement vertical jump (CMJ) reactive strength index modified and force-time characteristics recorded using a one dimensional portable and laboratory force plate system. Twenty-eight men performed bilateral CMJs on two portable force plates placed on top of two in-ground force plates, both recording vertical ground reaction force at 1000 Hz. Time to take-off, jump height, reactive strength index modified, braking and propulsion impulse, mean net force, and duration were calculated from the vertical force from both force plate systems. Results from both systems were highly correlated (r≥.99). There were small (dbraking impulse, braking mean net force, propulsion impulse, and propulsion mean net force (psystem (95% CL: .9% to 2.5%), indicating very good agreement across all of the dependent variables. The largest limits of agreement belonged to jump height (2.1%), time to take-off (3.4%), and reactive strength index modified (3.8%). The portable force plate system provides a valid method of obtaining reactive strength measures, and several underpinning force-time variables, from unloaded CMJ and practitioners can use both force plates interchangeably.

  13. Moisture profile measurements of concrete samples in vertical flow by gamma ray attenuation method. Medidas do perfil de umidade de amostras de concreto em infiltracao vertical, atraves da atenuacao de raios gama

    Energy Technology Data Exchange (ETDEWEB)

    Appoloni, C R; Nardocci, A C; Obuti, M M [Universidade Estadual de Londrina, PR (Brazil). Dept. de Fisica

    1988-04-01

    This work deals with the study of the water diffusion in concrete by the gamma ray attenuation method. The moisture profiles, [theta] (z,t), of the vertical water flow were determined in concrete samples of different trace and porosity. The data were taken with a vertical and horizontal measurement table, a [sup 60] Co gamma ray source, a NaI (T) scintillation detector and the standard gamma ray spectrometry electronic. The [theta] (z,t) data analysis is presented using a phenomenological model of the moisture profile temporal evolution in heterogeneous materials. Two other models, Cell and Sandwich, were also applied to determine the attenuation coefficient of a non-homogeneous media from the attenuation coefficients of the components, taking into account particles-size effects. (author).

  14. Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.

    2010-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.

  15. Analysis and simulation of a small-angle neutron scattering instrument on a 1 MW long pulse spallation source

    International Nuclear Information System (INIS)

    Olah, G.A.; Hjelm, R.P.; Lujan, M. Jr.

    1996-01-01

    We studied the design and performance of a small-angle neutron scattering (SANS) instrument for a proposed 1 MW, 60 Hz long pulsed spallation source at the Los Alamos Neutron Science Center (LANSCE). An analysis of the effects of source characteristics and chopper performance combined with instrument simulations using the LANSCE Monte Carlo instrument simulations package shows that the T 0 chopper should be no more than 5 m from the source with the frame overlap and frame definition choppers at 5.6 and greater than 7 m, respectively. The study showed that an optimal pulse structure has an exponential decaying tail with τ ∼ 750 μs. The Monte Carlo simulations were used to optimize the LPSS SANS, showing that an optimal length is 18 m. The simulations show that an instrument with variable length is best to match the needs of a given measurement. The performance of the optimized LPSS instrument was found to be comparable with present world standard instruments

  16. Multiple Spectral Ratio Analyses Reveal Earthquake Source Spectra of Small Earthquakes and Moment Magnitudes of Microearthquakes

    Science.gov (United States)

    Uchide, T.; Imanishi, K.

    2016-12-01

    Spectral studies for macroscopic earthquake source parameters are helpful for characterizing earthquake rupture process and hence understanding earthquake source physics and fault properties. Those studies require us mute wave propagation path and site effects in spectra of seismograms to accentuate source effect. We have recently developed the multiple spectral ratio method [Uchide and Imanishi, BSSA, 2016] employing many empirical Green's function (EGF) events to reduce errors from the choice of EGF events. This method helps us estimate source spectra more accurately as well as moment ratios among reference and EGF events, which are useful to constrain the seismic moment of microearthquakes. First, we focus on earthquake source spectra. The source spectra have generally been thought to obey the omega-square model with single corner-frequency. However recent studies imply the existence of another corner frequency for some earthquakes. We analyzed small shallow inland earthquakes (3.5 multiple spectral ratio analyses. For 20000 microearthquakes in Fukushima Hamadori and northern Ibaraki prefecture area, we found that the JMA magnitudes (Mj) based on displacement or velocity amplitude are systematically below Mw. The slope of the Mj-Mw relation is 0.5 for Mj 5. We propose a fitting curve for the obtained relationship as Mw = (1/2)Mj + (1/2)(Mjγ + Mcorγ)1/γ+ c, where Mcor is a corner magnitude, γ determines the sharpness of the corner, and c denotes an offset. We obtained Mcor = 4.1, γ = 5.6, and c = -0.47 to fit the observation. The parameters are useful for characterizing the Mj-Mw relationship. This non-linear relationship affects the b-value of the Gutenberg-Richter law. Quantitative discussions on b-values are affected by the definition of magnitude to use.

  17. Opportunity's Surroundings After Sol 1820 Drive (Vertical)

    Science.gov (United States)

    2009-01-01

    NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings during the 1,820th to 1,822nd Martian days, or sols, of Opportunity's surface mission (March 7 to 9, 2009). This view is presented as a vertical projection with geometric seam correction. North is at the top. The rover had driven 20.6 meters toward the northwest on Sol 1820 before beginning to take the frames in this view. Tracks from that drive recede southwestward. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). The terrain in this portion of Mars' Meridiani Planum region includes dark-toned sand ripples and small exposures of lighter-toned bedrock.

  18. A short review of recent research activities for characterization of aerodynamic optimization of vertical axis wind turbines

    NARCIS (Netherlands)

    Rezaeiha, A.; Kalkman, I.; Blocken, B.J.E.

    2017-01-01

    There is a growing interest in wind energy harvesting in the built environment. Vertical axis wind turbines (VAWT) seem to represent an ideal candidate for this purpose due to their omni-directional operation. However, as a result of a comparatively small amount of research on VAWTs during the last

  19. Simulation and experiment on the thermal performance of U-vertical ground coupled heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinguo; Chen, Zhihao; Zhao, Jun [Department of Thermal Engineering, School of Mechanical Engineering, Tianjin University, Tianjin 300072 (China)

    2006-10-15

    This paper presented both the numerical simulations and experiments on the thermal performance of U-vertical ground coupled heat exchanger (UGCHE). The variation of the ground temperature and heat balance of the system were analyzed and compared in different operation modes in the numerical simulation. Experiments on the operation performance of the ground-coupled heat pump (GCHP) with the UGCHE were carried out. It shows that the ground source can be used as the heat source/sink for GCHP systems to have higher efficiency in saving energy. To preserve the ground resource for the sustainable utilization as heat source/sink, the heat emitted to ground and heat extracted from ground should be balanced. (author)

  20. Heat transfer through natural convection in a porous saturated medium between two vertical cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Hasnaoui, M. [Faculte des Sciences Semlalia, Marrakech (Morocco); Vasseur, P.; Bilgen, E.; Robillard, L. [Ecole Polytechnique, Montreal, PQ (Canada)

    1993-12-31

    A numerical and analytical study of two dimensional, laminar and near steady convection in a vertical porous annular region. The mathematical model was established, basing on Darcy-Oberbeck-Boussinesq equations. The analytical resolution is in the limit where the width of the porous layer is small compared to the cylinders height and it is based on the hypothesis of the parallel flow. (Authors). 4 refs., 4 figs.

  1. An injector for the proposed Berkeley Ultrafast X-Ray Light Source

    International Nuclear Information System (INIS)

    Lidia, Steven; Corlett, John; Pusina, Jan; Staples, John; Zholents, Alexander

    2003-01-01

    Berkeley Lab has proposed to build a recirculating linac based X-ray source for ultra-fast dynamic studies [1]. This machine requires a flat electron beam with a small vertical emittance and large x/y emittance ratio to allow for compression of spontaneous undulator emission of soft and hard x-ray pulses, and a low-emittance, round electron beam for coherent emission of soft x-rays via the FEL process based on cascaded harmonic generation [2]. We propose an injector system consisting of two high gradient high repetition rate photo cathode guns [3] (one for each application), an ∼120 MeV super conducting linear accelerator, a 3rd harmonic cavity for linearization of the longitudinal phase space, and a bunch compressor. We present details of the design and the results of particle tracking studies using several computer codes

  2. A 34-meter VAWT (Vertical Axis Wind Turbine) point design

    Science.gov (United States)

    Ashwill, T. D.; Berg, D. E.; Dodd, H. M.; Rumsey, M. A.; Sutherland, H. J.; Veers, P. S.

    The Wind Energy Division at Sandia National Laboratories recently completed a point design based on the 34-m Vertical Axis Wind Turbine (VAWT) Test Bed. The 34-m Test Bed research machine incorporates several innovations that improve Darrieus technology, including increased energy production, over previous machines. The point design differs minimally from the Test Bed; but by removing research-related items, its estimated cost is substantially reduced. The point design is a first step towards a Test-Bed-based commercial machine that would be competitive with conventional sources of power in the mid-1990s.

  3. Variations in the small-scale galactic magnetic field and short time-scale intensity variations of extragalactic radio sources

    International Nuclear Information System (INIS)

    Simonetti, J.H.

    1985-01-01

    Structure functions of the Faraday rotation measures (RMs) of extragalactic radio sources are used to investigate variations in the interstellar magnetic field on length scales of approx.0.01 to 100 pc. Model structure functions derived assuming a power-law power spectrum of irregularities in n/sub e/B, are compared with those observed. The results indicate an outer angular scale for RM variations of approximately less than or equal to 5 0 and evidence for RM variations on scales as small as 1'. Differences in the variance of n/sub e/B fluctuations for various lines of sight through the Galaxy are found. Comparison of pulsar scintillations in right- and left-circular polarizations yield an upper limit to the variations in n/sub e/ on a length scale of approx.10 11 cm. RMs were determined through high-velocity molecular flows in galactic star-formation regions, with the goal of constraining magnetic fields in and near the flows. RMs of 7 extragalactic sources with a approx.20 arcmin wide area seen through Cep A, fall in two groups separated by approx.150 rad m -2 - large given our knowledge of RM variations on small angular scales and possibly a result of the anisotropy of the high-velocity material

  4. Concept for a vertical maintenance remote handling system for multi module blanket segments in DEMO

    International Nuclear Information System (INIS)

    Coleman, M.; Sykes, N.; Cooper, D.; Iglesias, D.; Bastow, R.; Loving, A.; Harman, J.

    2014-01-01

    Highlights: •A conceptual architectural model for a vertical maintenance DEMO is presented. •Novel concepts for a set of DEMO remote handling equipment are put forward. •Remote maintenance of a multi module segment blanket is found to be feasible. •The criticality of space in the vertical port is highlighted. -- Abstract: The anticipated high neutron flux, and the consequent damage to plasma-facing components in DEMO, results in the need to regularly replace the tritium breeding and radiation shielding blanket. The current European multi module segment (MMS) blanket concept favours a less invasive small port entry maintenance system over large sector transport concepts, because of the reduced impact on other tokamak systems – particularly the magnetic coils. This paper presents a novel conceptual remote maintenance strategy for a Vertical Maintenance Scheme DEMO, incorporating substantiated designs for an in-vessel mover, to detach and attach the blanket segments, and cask-housed vertical maintenance devices to open and close access ports, cut and join service connections, and extract blanket segments from the vessel. In addition, a conceptual architectural model for DEMO was generated to capture functional and spatial interfaces between the remote maintenance equipment and other systems. Areas of further study are identified in order to comprehensively establish the feasibility of the proposed maintenance system

  5. Source term estimation for small sized HTRs

    International Nuclear Information System (INIS)

    Moormann, R.

    1992-08-01

    Accidents which have to be considered are core heat-up, reactivity transients, water of air ingress and primary circuit depressurization. The main effort of this paper belongs to water/air ingress and depressurization, which requires consideration of fission product plateout under normal operation conditions; for the latter it is clearly shown, that absorption (penetration) mechanisms are much less important than assumed sometimes in the past. Source term estimation procedures for core heat-up events are shortly reviewed; reactivity transients are apparently covered by them. Besides a general literature survey including identification of areas with insufficient knowledge this paper contains some estimations on the thermomechanical behaviour of fission products in water in air ingress accidents. Typical source term examples are also presented. In an appendix, evaluations of the AVR experiments VAMPYR-I and -II with respect to plateout and fission product filter efficiency are outlined and used for a validation step of the new plateout code SPATRA. (orig.)

  6. Vertical designs and agriculture joined for food production in the modules for urban vertical gardens.

    Directory of Open Access Journals (Sweden)

    Fritz Hammerling Navas Navarro

    2012-10-01

    Full Text Available Modules for Vertical Urban Gardens (MHUG are a hybrid of vertical gardens and urban agriculture. Vertical gardens have been recognized for the past 2500 years, mainly in the form of the Hanging Gardens of Babylon, while urban agriculture is being practiced today by more than 700 million people worldwide. The benefits that MHUV offers are multiple, but perhaps the most significant is the consumption of foods free of chemicals, free of GMO’s, irrigated with potable water, and that are 100% organic. It is presented a “culinary and medicinal module” that can be implemented in the kitchen area, on roofs, terraces, balconies or patios, where species such as thyme, mint, peppermint, parsley, lemon balm and rosemary can be at hand when preparing dishes. The module consists of three plastic baskets that are recyclable and resistant to decay. Each basket has four rows with space for fourteen seedlings. The baskets are first lined on the interior with a black geotextile, and then are covered with a mesh (polisombra which helps support the substrate and seedlings. Each basket rests on a structure made of recycled wood (from pallets or crates that both holds the basket vertically and serves as a rain cover. The cages measure 0.33m by 0.55m by 0.14m. Each module comes with hosing and connectors for a drip irrigation system, and an instructional manual. The modules demonstrate the benefits of urban agriculture combined with the beauty and modality of vertical gardens, leading to useful applications for food production and decoration in the spaces where vertical urban gardens are possible.

  7. Vertical distribution of 241Pu in the southern Baltic Sea sediments

    International Nuclear Information System (INIS)

    Strumińska-Parulska, Dagmara I.

    2014-01-01

    Highlights: • The unique study on 241 Pu in sediments from the southern Baltic Sea was presented. • 241 Pu was determined using alpha spectrometry by indirect method. • The biggest amount of 241 Pu existed in the surface layers of all analyzed sediments. • The highest 241 Pu amount comes from the Chernobyl accident. - Abstract: The vertical distribution of plutonium 241 Pu in marine sediments can assist in determining the deposition history and sedimentation process of analyzed regions. In addition, 241 Pu/ 239+240 Pu activity ratio could be used as a sensitive fingerprint for radioactive source identification. The present preliminary studies on vertical distribution of 241 Pu in sediments from four regions of the southern Baltic Sea are presented. The distribution of 241 Pu was not uniform and depended on sediment geomorphology and depth as well as location. The highest concentrations of plutonium were found in the surface layers of all analyzed sediments and originated from the Chernobyl accident

  8. Effect of Vertical Canopy Architecture on Transpiration, Thermoregulation and Carbon Assimilation

    Directory of Open Access Journals (Sweden)

    Tirtha Banerjee

    2018-04-01

    Full Text Available Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This manuscript demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation in a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.

  9. Methodological foundations of evaluation of effectiveness indicators of small-scale business activities

    Directory of Open Access Journals (Sweden)

    Ivanova T.

    2013-01-01

    Full Text Available The methodological approach to the measurement of financial indicators of small-scale enterprises has been developed. It enables to secure the comparability of financial condition indicators and the results of small-scale enterprise activities, and also to develop the methods of vertical integral estimate calculation at separate aspects of financial condition and the results of smallscale enterprise activities.

  10. Relationship between diversity and the vertical structure of the upper ocean

    Science.gov (United States)

    Longhurst, Alan R.

    1985-12-01

    The sources of diversity in the plankton ecosystem of the upper 250 m in the eastern tropical Pacific Ocean are explored in the data from LHPR plankton profiles. Though there is good evidence for resource partitioning among feeding guilds of congeners, and for specialization in predation—both known to create diversity in simple aquatic ecosystems—the existence of a stable vertical structure, including a thermocline, may be one of the more important causes of variation in regional plankton diversity in the euphotic zone.

  11. Source placement for equalization in small enclosures

    DEFF Research Database (Denmark)

    Stefanakis, Nick; Sarris, J.; Cambourakis, G.

    2008-01-01

    ) but not with those that will deteriorate it (the "undesired" modes). Simulation results in rectangular rooms and in a car cavity show the benefits of source placement in terms of reduced overall error and increased spatial robustness in the equalization process. Additional benefits, which can be derived by proper...

  12. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered balloon measurements in Milan, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Sangiorgi, G., E-mail: giorgia.sangiorgi1@unimib.it [POLARIS Research Centre, Department of Environmental Sciences, University of Milano-Bicocca, piazza della Scienza 1, 20126 Milano (Italy); Ferrero, L.; Perrone, M.G.; Bolzacchini, E. [POLARIS Research Centre, Department of Environmental Sciences, University of Milano-Bicocca, piazza della Scienza 1, 20126 Milano (Italy); Duane, M. [Institute for Environment and Sustainability, EU Joint Research Centre Ispra, 21020 Ispra, Varese (Italy); Larsen, B.R. [Institute for Health and Consumer Protection, EU Joint Research Centre Ispra, 21020 Ispra, Varese (Italy)

    2011-12-15

    A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 {+-} 20 min. - Graphical abstract: Display Omitted Highlights: > Experimental vertical profiles of HCs and particle concentration by tethered balloon. > Effect of mixing height on the vertical distribution of HCs and particles. > Effect of tropospheric reactivity on vertical profiles of HCs. > Pseudo-first order kinetic reaction of HCs in convective systems. - Vertical transport and photochemical loss of HCs below and above the mixing height were studied by means of a novel and simple approach.

  13. High efficiency optoelectronic terahertz sources

    Science.gov (United States)

    Lampin, Jean-François; Peytavit, Emilien; Akalin, Tahsin; Ducournau, G.; Hindle, Francis; Mouret, Gael

    2010-08-01

    We have developed a new generation of optoelectronic large bandwidth terahertz sources based on TEM horn antennas monolithically integrated with several types of photodetectors: low-temperature grown GaAs (LTG-GaAs) planar photoconductors, vertically integrated LTG-GaAs photoconductors on silicon substrate and uni-travelling-carrier photodiodes. Results of pulsed (time-domain) and photomixing (CW, frequency domain) experiments are presented.

  14. Determination of performance parameters of vertical axis wind turbines in wind tunnel

    Directory of Open Access Journals (Sweden)

    Nguyen Van Bang

    2017-01-01

    Full Text Available The paper deals with the determination of the performance parameters of a small vertical axis wind turbines (VAWT, which operate by the utilization of drag forces acting on the blades of the turbine. The performance was evaluated by investigating the electrical power output and torque moment of the wind machine. Measurements were performed on the full-scale model and the experimental data are assessed and compared to other types of wind turbines, with respect to its purpose.

  15. Inservice testing of vertical pumps

    International Nuclear Information System (INIS)

    Cornman, R.E. Jr.; Schumann, K.E.

    1994-01-01

    This paper focuses on the problems that may occur with vertical pumps while inservice tests are conducted in accordance with existing American Society of Mechanical Engineers Code, Section XI, standards. The vertical pump types discussed include single stage, multistage, free surface, and canned mixed flow pumps. Primary emphasis is placed on the hydraulic performance of the pump and the internal and external factors to the pump that impact hydraulic performance. In addition, the paper considers the mechanical design features that can affect the mechanical performance of vertical pumps. The conclusion shows how two recommended changes in the Code standards may increase the quality of the pump's operational readiness assessment during its service life

  16. Neutron production and thermal moderation at the PSI UCN source

    Energy Technology Data Exchange (ETDEWEB)

    Becker, H. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Bison, G.; Blau, B.; Chowdhuri, Z.; Eikenberg, J.; Fertl, M. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Kirch, K. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Institute for Particle Physics, Eidgenössische Technische Hochschule, Zürich (Switzerland); Lauss, B., E-mail: bernhard.lauss@psi.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Perret, G.; Reggiani, D.; Ries, D.; Schmidt-Wellenburg, P. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Talanov, V., E-mail: vadim.talanov@psi.ch [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Wohlmuther, M.; Zsigmond, G. [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2015-03-21

    We report on gold foil activation measurements performed along a vertical channel along the tank of the ultracold neutron source at the Paul Scherrer Institute. The activities obtained at various distances from the spallation target are in very good agreement with MCNPX simulations which take into account the detailed description of the source as built.

  17. Modeling tides and vertical tidal mixing: A reality check

    International Nuclear Information System (INIS)

    Robertson, Robin

    2010-01-01

    Recently, there has been a great interest in the tidal contribution to vertical mixing in the ocean. In models, vertical mixing is estimated using parameterization of the sub-grid scale processes. Estimates of the vertical mixing varied widely depending on which vertical mixing parameterization was used. This study investigated the performance of ten different vertical mixing parameterizations in a terrain-following ocean model when simulating internal tides. The vertical mixing parameterization was found to have minor effects on the velocity fields at the tidal frequencies, but large effects on the estimates of vertical diffusivity of temperature. Although there was no definitive best performer for the vertical mixing parameterization, several parameterizations were eliminated based on comparison of the vertical diffusivity estimates with observations. The best performers were the new generic coefficients for the generic length scale schemes and Mellor-Yamada's 2.5 level closure scheme.

  18. Vertical steam generator

    International Nuclear Information System (INIS)

    Cuda, F.; Kondr, M.; Kresta, M.; Kusak, V.; Manek, O.; Turon, S.

    1982-01-01

    A vertical steam generator for nuclear power plants and dual purpose power plants consists of a cylindrical vessel in which are placed heating tubes in the form upside-down U. The heating tubes lead to the jacket of the cylindrical collector placed in the lower part of the steam generator perpendicularly to its vertical axis. The cylindrical collector is divided by a longitudinal partition into the inlet and outlet primary water sections of the heating tubes. One ends of the heating tube leads to the jacket of the collector for primary water feeding and the second ends of the heating tubes into the jacket of the collector which feeds and offtakes primary water from the heating tubes. (B.S.)

  19. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Deglaire, Paul

    2010-01-01

    Wind power is a renewable energy source that is today the fastest growing solution to reduce CO 2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed

  20. Design of a new engine mount for vertical and horizontal vibration control using magnetorheological fluid

    International Nuclear Information System (INIS)

    Phu, D X; Choi, S B; Lee, Y S; Han, M S

    2014-01-01

    This paper presents a new design of a magnetorheological fluid (MR) mount for vibration control considering both vertical forces and horizontal moments such as are met in various engine systems, including a medium high-speed engine of ship. The newly designed mount, called a MR brake mount, offers several salient benefits such as small size and relatively high load capacity compared with a conventional MR engine mount that can control vertical vibration only. The principal design parameters of the proposed mount are optimally determined to achieve maximum torque with geometric and spatial constraints. Subsequently, the proposed MR mount is designed and manufactured based on the optimized design parameters. It is shown from experimental testing that the proposed mount, which combines MR mount with MR brake, can produce the desired force and torque to reduce unwanted vibration of a medium high-speed engine system of ship subjected to both vertical and horizontal exciting motions. In addition, it is verified that there is no large difference between experiment results and simulation results that are obtained from an analytical model derived in this work. (technical note)

  1. Optimizing the design of vertical seismic profiling (VSP) for imaging fracture zones over hardrock basement geothermal environments

    Science.gov (United States)

    Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf

    2017-04-01

    A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions

  2. Monitoring Vertical Crustal Deformation and Gravity Variations during Water Level Changes at the Three Gorges Reservoir

    Directory of Open Access Journals (Sweden)

    WANG Wei

    2017-06-01

    Full Text Available Monitoring vertical crustal deformation and gravity changes during water level changes at the Three Gorges reservoir is important for the safe operation of the Three Gorges Dam and for the monitoring and prevention of a regional geological disaster. In this study, we determined vertical crustal deformation and gravity changes during water level variations of the Three Gorges reservoir from direct calculations and actual measurements and a comprehensive solution. We used water areas extracted image data from the ZY-3 satellite and water level data to calculate gravity changes and vertical crustal deformation caused by every 5 m change in the water level due to storage and drainage of the Three Gorges reservoir from 145 m to 175 m. The vertical crustal deformation was up to 30 mm. The location of gravity change above 20 μ Gal(1 Gal=10-2 m/s2 was less than 2 km from the centerline of the Yangtze River. The CORS ES13 in Badong, near the reservoir, measured the vertical crustal deformation during water level changes. Because of the small number of CORS and gravity stations in the Three Gorges reservoir area, monitoring deformation and gravity related to changes in the Three Gorges reservoir water level cannot be closely followed. Using 26 CORS and some of the gravity stations in the Three Gorges area and based on loading deformation and the spherical harmonic analysis method, an integrated solution of vertical deformation and gravity variations during water level changes of the reservoir was determined, which is consistent with the actual CORS monitoring results. By comparison, we found that an integrated solution based on a CORS network can effectively enhance the capability of monitoring vertical crustal deformation and gravity changes during water level variations of the reservoir.

  3. The transition from flooding to upwards cocurrent annular flow in a vertical pipe

    International Nuclear Information System (INIS)

    Wallis, G.B.

    1962-02-01

    The limits of countercurrent flow in a vertical pipe are related to the onset of cocurrent upwards annual flow. The results are confirmed by evidence from several sources and lead to the criterion v g =(0.8→0.9)p g -1/2 [D g (p f -p g )] 1/2 for the minimum gas superficial velocity which will support a liquid film in concurrent flow. (author)

  4. Vertical vs. Horizontal Integration: Pre-emptive Merging.

    OpenAIRE

    Colangelo, Giuseppe

    1995-01-01

    Preemption plays a crucial role in arms merger decisions. The author studies whether and under which circumstances preemptive merging occurs in vertically related industries. He finds that vertical mergers often preempt horizontal mergers and are dominant outcomes. Preempting the threat of a detrimental horizontal integration may be the main reason for vertically integrating. Copyright 1995 by Blackwell Publishing Ltd.

  5. Performance of a DOI-encoding small animal PET system with monolithic scintillators

    International Nuclear Information System (INIS)

    Carles, M.; Lerche, Ch.W.; Sánchez, F.; Orero, A.; Moliner, L.; Soriano, A.; Benlloch, J.M.

    2012-01-01

    PET systems designed for specific applications require high resolution and sensitivity instrumentation. In dedicated system design smaller ring diameters and deeper crystals are widely used in order to increase the system sensitivity. However, this design increases the parallax error, which degrades the spatial image resolution gradually from the center to the edge of the field-of-view (FOV). Our group has designed a depth of interaction(DOI)-encoding small animal PET system based on monolithic crystals. In this work we investigate the restoration of radial resolution for transaxially off-center sources using the DOI information provided by our system. For this purpose we have designed a support for point like sources adapted to our system geometry that allows a spatial compression and resolution response study. For different point source radial positions along vertical and horizontal axes of a FOV transaxial plane we compare the results obtained by three methods: without DOI information, with the DOI provided by our system and with the assumption that all the γ-rays interact at half depth of the crystal thickness. Results show an improvement of the mean resolution of 10% with the half thickness assumption and a 16% achieved using the DOI provided by the system. Furthermore, a 10% restoration of the resolution uniformity is obtained using the half depth assumption and an 18% restoration using measured DOI.

  6. A test of vertical economies for non-vertically integrated firms: The case of rural electric cooperatives

    International Nuclear Information System (INIS)

    Greer, Monica L.

    2008-01-01

    This paper seeks to evaluate unrealized economies of vertical integration for rural electric cooperatives. Given the well-established network economies that are inherent in the generation, transmission, and distribution of electricity, the coops long-standing choice of market structure is questionable (especially if their strategy is welfare maximization). Organized as either generation-and-transmission or distribution-only, the traditional measures of vertical economies will not work. Thus, I have devised an alternative method by which to measure such economies and find that, on average, cost savings in excess of 39% could have been realized had the coops adopted a vertically integrated structure. (author)

  7. A Success Story of Organizing Small Scale Farmers in Kenya

    DEFF Research Database (Denmark)

    Buch-Hansen, Mogens

    2012-01-01

    , but not least to be used in PES schemes. The article emphasizes vertical integration and production diversification, enabling market conditions, and democratization as the main factors in KTDA’s success that could possibly be replicated in promoting small scale farmers participating in the post-Kyoto carbon...

  8. A role of vertical mixing on nutrient supply into the subsurface chlorophyll maximum in the shelf region of the East China Sea

    Science.gov (United States)

    Lee, Keunjong; Matsuno, Takeshi; Endoh, Takahiro; Ishizaka, Joji; Zhu, Yuanli; Takeda, Shigenobu; Sukigara, Chiho

    2017-07-01

    In summer, Changjiang Diluted Water (CDW) expands over the shelf region of the northern East China Sea. Dilution of the low salinity water could be caused by vertical mixing through the halocline. Vertical mixing through the pycnocline can transport not only saline water, but also high nutrient water from deeper layers to the surface euphotic zone. It is therefore very important to quantitatively evaluate the vertical mixing to understand the process of primary production in the CDW region. We conducted extensive measurements in the region during the period 2009-2011. Detailed investigations of the relative relationship between the subsurface chlorophyll maximum (SCM) and the nitracline suggested that there were two patterns relating to the N/P ratio. Comparing the depths of the nitracline and SCM, it was found that the SCM was usually located from 20 to 40 m and just above the nitracline, where the N/P ratio within the nitracline was below 15, whereas it was located from 10 to 30 m and within the nitracline, where the N/P ratio was above 20. The large value of the N/P ratio in the latter case suggests the influence of CDW. Turbulence measurements showed that the vertical flux of nutrients with vertical mixing was large (small) where the N/P ratio was small (large). A comparison with a time series of primary production revealed a consistency with the pattern of snapshot measurements, suggesting that the nutrient supply from the lower layer contributes considerably to the maintenance of SCM.

  9. Cryogenic system for the Energy Recovery Linac and vertical test facility at BNL

    International Nuclear Information System (INIS)

    Than, R.; Soria, V.; Lederle, D.; Orfin, P.; Porqueddu, R.; Talty, P.; Zhang, Y.; Tallerico, T.; Masi, L.

    2011-01-01

    A small cryogenic system and warm helium vacuum pumping system provides cooling to either the Energy Recovery Linac's (ERL) cryomodules that consist of a 5-cell cavity and an SRF gun or a large Vertical Test Dewar (VTD) at any given time. The cryogenic system consists of a model 1660S PSI piston plant, a 3800 liter storage dewar, subcooler, a wet expander, a 50 g/s main helium compressor, and a 170 m 3 storage tank. A system description and operating plan of the cryogenic plant and cryomodules is given. The cryogenic system for ERL and the Vertical Test Dewar has a plant that can produce the equivalent of 300W at 4.5K with the addition of a wet expander 350 W at 4.5K. Along with this system, a sub-atmospheric, warm compression system provides pumping to produce 2K at the ERL cryomodules or the Vertical Test Dewar. The cryogenic system for ERL and the Vertical Test Dewar makes use of existing equipment for putting a system together. It can supply either the ERL side or the Vertical Test Dewar side, but not both at the same time. Double valve isolation on the liquid helium supply line allows one side to be warmed to room temperature and worked on while the other side is being held at operating temperature. The cryogenic system maintain the end loads from 4.4K to 2K or colder depending on capacity. Liquid helium storage dewar capacity allows ERL or the VTD to operate above the plant's capacity when required and ERL cryomodules ballast reservoirs and VTD reservoir allows the end loads to operate on full vacuum pump capacity when required.

  10. Coupled vertical-rocking response of base-isolated structures

    International Nuclear Information System (INIS)

    Pan, T.C.; Kelly, J.M.

    1984-01-01

    A base-isolated building can have a small horizontal eccentricity between the center of mass of the superstructure and the center of rigidity of the supporting bearings. The structure can be modeled as a rigid block with tributary masses supported on massless rubber bearings placed at a constant elevation below the center of mass. Perturbation methods are implemented to find the dynamic characteristics for both the detuned and the perfectly tuned cases. The Green's functions for the displacement response of the system are derived for the undamped and the damped conditions. The response spectrum modal superposition method is used in estimating the maximum acceleration. A simple method, accounting for the effect of closely spaced modes, is proposed for combining modal maxima and results in an approximate single-degree-of-freedom solution. This approximate solution may be used for thepreliminary design of a base-isolated structure. Numerical results for a base-isolated building subjected to the vertical component of the El Centro earthquake of 1940 were carried out for comparison with analytical results. It is shown that the effect of rocking coupling on the vertical seismic response of baseisolated structures can generally be neglected because of the combined effects of the time lag between the maximum translational and rotational responses and the influence of damping in the isolation system

  11. Neglected locked vertical patellar dislocation

    Science.gov (United States)

    Gupta, Rakesh Kumar; Gupta, Vinay; Sangwan, Sukhbir Singh; Kamboj, Pradeep

    2012-01-01

    Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge. PMID:23162154

  12. Neglected locked vertical patellar dislocation

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Gupta

    2012-01-01

    Full Text Available Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge.

  13. Global Sourcing of Heterogeneous Firms: Theory and Evidence

    DEFF Research Database (Denmark)

    Kohler, Wilhelm; Smolka, Marcel

    2015-01-01

    The share of international trade within firm boundaries varies greatly across countries. This column presents new evidence on how the productivity of a firm affects the choice between vertical integration and outsourcing, as well as between foreign and domestic sourcing. The productivity effects...

  14. Statistical analysis of the limitation of half integer resonances on the available momentum acceptance of the High Energy Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yi, E-mail: jiaoyi@ihep.ac.cn; Duan, Zhe

    2017-01-01

    In a diffraction-limited storage ring, half integer resonances can have strong effects on the beam dynamics, associated with the large detuning terms from the strong focusing and strong sextupoles as required for an ultralow emittance. In this study, the limitation of half integer resonances on the available momentum acceptance (MA) was statistically analyzed based on one design of the High Energy Photon Source (HEPS). It was found that the probability of MA reduction due to crossing of half integer resonances is closely correlated with the level of beta beats at the nominal tunes, but independent of the error sources. The analysis indicated that for the presented HEPS lattice design, the rms amplitude of beta beats should be kept below 1.5% horizontally and 2.5% vertically to reach a small MA reduction probability of about 1%.

  15. The Milky Way Project: A Census of Small Bubbles

    Science.gov (United States)

    Arvidsson, Kim; Wolf-Chase, G. A.; Way Project, Milky

    2013-01-01

    The first data release (DR1) from the Milky Way Project (MWP) contains 1362 visually identified small bubbles drawn by users. These small infrared bubbles typically have diameters MSX6C point source catalog; >90% of all small bubbles are MSX point sources.

  16. High-performance ambipolar self-assembled Au/Ag nanowire based vertical quantum dot field effect transistor.

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Yating; Zhang, Haiting; Yu, Yu; Cao, Mingxuan; Che, Yongli; Wang, Jianlong; Dai, Haitao; Yang, Junbo; Ding, Xin; Yao, Jianquan

    2016-10-07

    Most lateral PbSe quantum dot field effect transistors (QD FETs) show a low on current/off current (I on/I off) ratio in charge transport measurements. A new strategy to provide generally better performance is to design PbSe QD FETs with vertical architecture, in which the structure parameters can be tuned flexibly. Here, we fabricated a novel room-temperature operated vertical quantum dot field effect transistor with a channel of 580 nm, where self-assembled Au/Ag nanowires served as source transparent electrodes and PbSe quantum dots as active channels. Through investigating the electrical characterization, the ambipolar device exhibited excellent characteristics with a high I on/I off current ratio of about 1 × 10(5) and a low sub-threshold slope (0.26 V/decade) in the p-type regime. The all-solution processing vertical architecture provides a convenient way for low cost, large-area integration of the device.

  17. Vertical barriers with increased sorption capacities

    International Nuclear Information System (INIS)

    Bradl, H.B.

    1997-01-01

    Vertical barriers are commonly used for the containment of contaminated areas. Due to the very small permeability of the barrier material which is usually in the order of magnitude of 10-10 m/s or less the advective contaminant transport can be more or less neglected. Nevertheless, there will always be a diffusive contaminant transport through the barrier which is caused by the concentration gradient. Investigations have been made to increase the sorption capacity of the barrier material by adding substances such as organoclays, zeolites, inorganic oxides and fly ashes. The contaminants taken into account where heavy metals (Pb) and for organic contaminants Toluole and Phenantrene. The paper presents results of model calculations and experiments. As a result, barrier materials can be designed 'tailor-made' depending on the individual contaminant range of each site (e.g. landfills, gasworks etc.). The parameters relevant for construction such as rheological properties, compressive strength and permeability are not affected by the addition of the sorbents

  18. Vertically Integrated Edgeless Photon Imaging Camera

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Fermilab; Deptuch, Grzegorz [Fermilab; Shenai, Alpana [Fermilab; Maj, Piotr [AGH-UST, Cracow; Kmon, Piotr [AGH-UST, Cracow; Grybos, Pawel [AGH-UST, Cracow; Szczygiel, Robert [AGH-UST, Cracow; Siddons, D. Peter [Brookhaven; Rumaiz, Abdul [Brookhaven; Kuczewski, Anthony [Brookhaven; Mead, Joseph [Brookhaven; Bradford, Rebecca [Argonne; Weizeorick, John [Argonne

    2017-01-01

    The Vertically Integrated Photon Imaging Chip - Large, (VIPIC-L), is a large area, small pixel (65μm), 3D integrated, photon counting ASIC with zero-suppressed or full frame dead-time-less data readout. It features data throughput of 14.4 Gbps per chip with a full frame readout speed of 56kframes/s in the imaging mode. VIPIC-L contain 192 x 192 pixel array and the total size of the chip is 1.248cm x 1.248cm with only a 5μm periphery. It contains about 120M transistors. A 1.3M pixel camera module will be developed by arranging a 6 x 6 array of 3D VIPIC-L’s bonded to a large area silicon sensor on the analog side and to a readout board on the digital side. The readout board hosts a bank of FPGA’s, one per VIPIC-L to allow processing of up to 0.7 Tbps of raw data produced by the camera.

  19. Measurement of disintegration rates of small [60Co]Co sources in lead containers by the sum-peak method

    International Nuclear Information System (INIS)

    Kawano, Takao; Ebihara, Hiroshi

    1991-01-01

    The sum-peak method has been applied to determine the disintegration rates of two small [ 60 Co]Co sources (30 and 350 kBq) in lead containers with several thickness by using a NaI(Tl) detector. The experimental results showed that the sum-peak method was perfectly effective for the determination of the disintegration rates (unrelated to the thicknesses of the containers) of the 350 kBq source. The sum-peak method was also absolutely effective for the 30 kBq source in the case of containers with thicknesses of 15 mm and less, but in the cases of those with thicknesses of 21, 27 and 33 mm, the disintegration rates were under-estimated and the deviations from the true disintegration rate increased rapidly with increasing thicknesses of the containers. We presume that the under-estimation of the disintegration rates was the result of the over-estimation of the areas under the sum peaks, caused by the interference of the γ-ray (2614 keV) emitted from the naturally occurring radionuclide 208 Tl. (author)

  20. Updated Vertical Extent of Collision Damage

    DEFF Research Database (Denmark)

    Tagg, R.; Bartzis, P.; Papanikolaou, P.

    2002-01-01

    The probabilistic distribution of the vertical extent of collision damage is an important and somewhat controversial component of the proposed IMO harmonized damage stability regulations for cargo and passenger ships. The only pre-existing vertical distribution, currently used in the international...

  1. Plasmon Modes of Vertically Aligned Superlattices

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2017-01-01

    By using the Finite Element Method we visualize the modes of vertically aligned superlattice composed of gold and dielectric nanocylinders and investigate the emitter-plasmon interaction in approximation of weak coupling. We find that truncated vertically aligned superlattice can function...

  2. Vertical transport of organic matter in the various oceanic areas

    International Nuclear Information System (INIS)

    Handa, Nobuhiko; Hayakawa, Kazuhide

    1993-01-01

    Organic matter produced by the photosynthesis of the phytoplankton is removed from the euphotic layer to the underlying waters by sinking of the particles consisting of both marine snow and fecal pellet. Phytoplankton bloom always enhances the vertical flux of organic matter from the subsurface to deep waters. Turbidity current is another factor to govern the vertical flux of organic carbon especially in the continental shelf to its slope areas. However, no information are available to distinguish the organic materials from these two sources. Stable carbon isotope ratio and fatty acid composition give most promising informations to diagnose the physiological state of the phytoplankton which is one of the source of the organic materials of the sinking particle, because of the extensive variations of the δ 13 C of the phytoplankton cellular organic matter and fatty acid composition due to the phytoplankton growth rate (O'Leary, 1981; Morris et al., 1985). Δ 14 C of the organic matter of the sinking particle will provide an information as to how much organic materials are derived from the phytoplankton growing in the surface and subsurface waters and/or from the resuspended particles of the surface sediment in the continental shelf and its slope areas. Recently we analyzed various samples of the sinking particles collected from the coastal areas of the Antarctica and off Hokkaido, Japan for fatty acids and found that ratios as biomarker to diagnose these growth phases of the phytoplankton growing in the surface to subsurface waters. Thus, we intend to report here these data obtained. (J.P.N.)

  3. Reliability of Source Mechanisms for a Hydraulic Fracturing Dataset

    Science.gov (United States)

    Eyre, T.; Van der Baan, M.

    2016-12-01

    Non-double-couple components have been inferred for induced seismicity due to fluid injection, yet these components are often poorly constrained due to the acquisition geometry. Likewise non-double-couple components in microseismic recordings are not uncommon. Microseismic source mechanisms provide an insight into the fracturing behaviour of a hydraulically stimulated reservoir. However, source inversion in a hydraulic fracturing environment is complicated by the likelihood of volumetric contributions to the source due to the presence of high pressure fluids, which greatly increases the possible solution space and therefore the non-uniqueness of the solutions. Microseismic data is usually recorded on either 2D surface or borehole arrays of sensors. In many cases, surface arrays appear to constrain source mechanisms with high shear components, whereas borehole arrays tend to constrain more variable mechanisms including those with high tensile components. The abilities of each geometry to constrain the true source mechanisms are therefore called into question.The ability to distinguish between shear and tensile source mechanisms with different acquisition geometries is investigated using synthetic data. For both inversions, both P- and S- wave amplitudes recorded on three component sensors need to be included to obtain reliable solutions. Surface arrays appear to give more reliable solutions due to a greater sampling of the focal sphere, but in reality tend to record signals with a low signal to noise ratio. Borehole arrays can produce acceptable results, however the reliability is much more affected by relative source-receiver locations and source orientation, with biases produced in many of the solutions. Therefore more care must be taken when interpreting results.These findings are taken into account when interpreting a microseismic dataset of 470 events recorded by two vertical borehole arrays monitoring a horizontal treatment well. Source locations and

  4. Generating picosecond x-ray pulses in synchrotron light sources using dipole kickers

    Directory of Open Access Journals (Sweden)

    W. Guo

    2007-02-01

    Full Text Available The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle, we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1–2 kHz, which can be used for pump-probe experiments.

  5. A systematic review of vertical integration and quality of care, efficiency, and patient-centered outcomes.

    Science.gov (United States)

    Machta, Rachel M; Maurer, Kristin A; Jones, David J; Furukawa, Michael F; Rich, Eugene C

    2018-04-02

    Small independent practices are increasingly giving way to more complex affiliations between provider organizations and hospital systems. There are several ways in which vertically integrated health systems could improve quality and lower the costs of care. But there are also concerns that integrated systems may increase the price and costs of care without commensurate improvements in quality and outcomes. Despite a growing body of research on vertically integrated health systems, no systematic review that we know of compares vertically integrated health systems (defined as shared ownership or joint management of hospitals and physician practices) to nonintegrated hospitals or physician practices. We conducted a systematic search of the literature published from January 1996 to November 2016. We considered articles for review if they compared the performance of a vertically integrated health system and examined an outcome related to quality of care, efficiency, or patient-centered outcomes. Database searches generated 7,559 articles, with 29 articles included in this review. Vertical integration was associated with better quality, often measured as optimal care for specific conditions, but showed either no differences or lower efficiency as measured by utilization, spending, and prices. Few studies evaluated a patient-centered outcome; among those, most examined mortality and did not identify any effects. Across domains, most studies were observational and did not address the issue of selection bias. Recent evidence suggests the trend toward vertical integration will likely continue as providers respond to changing payment models and market factors. A growing body of research on comparative health system performance suggests that integration of physician practices with hospitals might not be enough to achieve higher-value care. More information is needed to identify the health system attributes that contribute to improved outcomes, as well as which policy levers

  6. Difference in quick phases induced by horizontal and vertical vestibular stimulations: role of the otolithic input.

    Science.gov (United States)

    Pettorossi, V E; Errico, P; Ferraresi, A

    1997-01-01

    Quick phases (QPs) induced by horizontal and vertical sinusoidal vestibular stimulations were studied in rabbits, cats, and humans. In all the animals, large and frequent horizontal QPs were observed following yaw stimulation in prone position. By contrast, QPs were almost absent during roll stimulation in rabbits, and they were small and oblique during pitch stimulation in cats and humans. As a result of these differences, the range of gaze displacement induced by vestibular stimulations was greater in the horizontal plane than in the vertical one. We also found that the trajectory of the QPs in rabbits was kept horizontal even when the yaw rotation was off vertical axis of +/- 45 degrees in the sagittal plane. Moreover, in the rabbit, the rare horizontal QPs induced by roll stimulation did not change their orientation at various pitch angles of roll stimulation axis. The QPs were also analyzed following roll stimulation of the rabbit in supine position. In this condition, in which the otolithic receptors were activated in the opposite way compared to prone position, large vertical QPs were elicited. We concluded that these results provide evidence that the otolithic signal plays a role in controlling occurrence and trajectory orientation of the QPs.

  7. Expected sliding distance of vertical slit caisson breakwater

    Science.gov (United States)

    Kim, Dong Hyawn

    2017-06-01

    Evaluating the expected sliding distance of a vertical slit caisson breakwater is proposed. Time history for the wave load to a vertical slit caisson is made. It consists of two impulsive wave pressures followed by a smooth sinusoidal pressure. In the numerical analysis, the sliding distance for an attack of single wave was shown and the expected sliding distance during 50 years was also presented. Those results were compared with a vertical front caisson breakwater without slit. It was concluded that the sliding distance of a vertical slit caisson may be over-estimated if the wave pressure on the caisson is evaluated without considering vertical slit.

  8. Vertical specialization and industrial upgrading: a preliminary note

    OpenAIRE

    Xiao Jiang; William Milberg

    2012-01-01

    Abstract Vertical specialization is a measure of the import content of exports. Given the widely recognized importance of trade in tasks and global production networks, vertical specialization has recently gained the attention of international trade researchers and policy makers. In this note, we use measured changes in the within-country pattern of vertical specialization to gauge the relevance of task trade for industrial upgrading and economic development. We first calculate vertical speci...

  9. 2.5D inversion of CSEM data in a vertically anisotropic earth

    International Nuclear Information System (INIS)

    Ramananjaona, Christophe; MacGregor, Lucy

    2010-01-01

    The marine Controlled-Source Electromagnetic (CSEM) method is a low frequency (diffusive) electromagnetic subsurface imaging technique aimed at mapping the electric resistivity of the earth by measuring the response to a source dipole emitting an electromagnetic field in a marine environment. Although assuming isotropy for the inversion is the most straightforward approach, in many situations horizontal layering of the earth strata and grain alignment within earth materials creates electric anisotropy. Ignoring this during interpretation may create artifacts in the inversion results. Accounting for this effect therefore requires adequate forward modelling and inversion procedures. We present here an inversion algorithm for vertically anisotropic media based on finite element modelling, the use of Frechet derivatives, and different types of regularisation. Comparisons between isotropic and anisotropic inversion results are given for the characterisation of an anisotropic earth from data measured in line with the source dipole for both synthetic and real data examples.

  10. A Vertical-Axis Off-Grid Squirrel-Cage Induction Generator Wind Power System

    Directory of Open Access Journals (Sweden)

    Peifeng Xu

    2016-10-01

    Full Text Available In order to broaden the limited utilization range of wind power and improve the charging and discharging control performance of the storage battery in traditional small wind power generation systems, a wind power system based on a vertical-axis off-grid induction generator is proposed in this paper. The induction generator not only can run in a wide wind speed range but can also assist the vertical-axis wind turbine to realize self-starting at low wind speed. Combined with the maximum power point tracking method, the slip frequency control strategy is employed to regulate the pulse width modulation (PWM converter to control the output power of the proposed system when the wind speed and load change. The charge and discharge of the storage battery is realized by the segmented current-limiting control strategy by means of an electric power unloader device connected to the DC bus. All these implement a balanced and stable operation of the proposed power generation system. The experimental research on the 5.5 kW prototype system is developed, and the corresponding results verify the correctness and feasibility of the system design and control strategy. Some comparison experiments with a magnetic suspension permanent magnet synchronous generator (PMSG demonstrate the application prospect of the proposed vertical-axis off-grid induction generator wind power system.

  11. GISAXS analysis of 3D nanoparticle assemblies—effect of vertical nanoparticle ordering

    International Nuclear Information System (INIS)

    Vegso, K; Siffalovic, P; Benkovicova, M; Jergel, M; Luby, S; Majkova, E; Capek, I; Kocsis, T; Perlich, J; Roth, S V

    2012-01-01

    We report on grazing-incidence small-angle x-ray scattering (GISAXS) study of 3D nanoparticle arrays prepared by two different methods from colloidal solutions—layer-by-layer Langmuir–Schaefer deposition and spontaneous self-assembling during the solvent evaporation. GISAXS results are evaluated within the distorted wave Born approximation (DWBA) considering the multiple scattering effects and employing a simplified multilayer model to reduce the computing time. In the model, particular layers are represented by nanoparticle chains where the positions of individual nanoparticles are generated following a model of cumulative disorder. The nanoparticle size dispersion is considered as well. Three model cases are distinguished—no shift between the neighboring chains (AA stacking), a shift equal to half of the mean interparticle distance (AB stacking) and random shift between the chains. The first two cases correspond to vertically correlated nanoparticle positions across different chains. A comparison of the experimental GISAXS patterns with the model cases enabled us to distinguish important differences between the 3D arrays prepared by the two methods. In particular, laterally ordered layers without vertical correlation of the nanoparticle positions were found in the nanoparticle multilayers prepared by the Langmuir–Schaefer method. On the other hand, the solvent evaporation under particular conditions produced highly ordered 3D nanoparticle assemblies where both laterally and vertically correlated nanoparticle positions were found. (paper)

  12. Vertical profile of 137Cs in soil.

    Science.gov (United States)

    Krstić, D; Nikezić, D; Stevanović, N; Jelić, M

    2004-12-01

    In this paper, a vertical distribution of 137Cs in undisturbed soil was investigated experimentally and theoretically. Soil samples were taken from the surroundings of the city of Kragujevac in central Serbia during spring-summer of 2001. The sampling locations were chosen in such a way that the influence of soil characteristics on depth distribution of 137Cs in soil could be investigated. Activity of 137Cs in soil samples was measured using a HpGe detector and multi-channel analyzer. Based on vertical distribution of 137Cs in soil which was measured for each of 10 locations, the diffusion coefficient of 137Cs in soil was determined. In the next half-century, 137Cs will remain as the source of the exposure. Fifteen years after the Chernobyl accident, and more than 30 years after nuclear probes, the largest activity of 137Cs is still within 10 cm of the upper layer of the soil. This result confirms that the penetration of 137Cs in soil is a very slow process. Experimental results were compared with two different Green functions and no major differences were found between them. While both functions fit experimental data well in the upper layer of soil, the fitting is not so good in deeper layers. Although the curves obtained by these two functions are very close to each other, there are some differences in the values of parameters acquired by them.

  13. Estimating tropical vertical motion profile shapes from satellite observations

    Science.gov (United States)

    Back, L. E.; Handlos, Z.

    2013-12-01

    The vertical structure of tropical deep convection strongly influences interactions with larger scale circulations and climate. This research focuses on investigating this vertical structure and its relationship with mesoscale tropical weather states. We test the hypothesis that vertical motion shape varies in association with weather state type. We estimate mean state vertical motion profile shapes for six tropical weather states defined using cloud top pressure and optical depth properties from the International Satellite Cloud Climatology Project. The relationship between vertical motion and the dry static energy budget are utilized to set up a regression analysis that empirically determines two modes of variability in vertical motion from reanalysis data. We use these empirically determined modes, this relationship and surface convergence to estimate vertical motion profile shape from observations of satellite retrievals of rainfall and surface convergence. We find that vertical motion profile shapes vary systematically between different tropical weather states. The "isolated systems" regime exhibits a more ''bottom-heavy'' profile shape compared to the convective/thick cirrus and vigorous deep convective regimes, with maximum upward vertical motion occurring in the lower troposphere rather than the middle to upper troposphere. The variability we observe with our method does not coincide with that expected based on conventional ideas about how stratiform rain fraction and vertical motion are related.

  14. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting.

    Science.gov (United States)

    Zhu, Jixin; Sakaushi, Ken; Clavel, Guylhaine; Shalom, Menny; Antonietti, Markus; Fellinger, Tim-Patrick

    2015-04-29

    The synthesis of vertically aligned functional graphitic carbon nanosheets (CNS) is challenging. Herein, we demonstrate a general approach for the fabrication of vertically aligned CNS and metal carbide@CNS composites via a facile salt templating induced self-assembly. The resulting vertically aligned CNS and metal carbide@CNS structures possess ultrathin walls, good electrical conductivity, strong adhesion, excellent structural robustness, and small particle size. In electrochemical energy conversion and storage such unique features are favorable for providing efficient mass transport as well as a large and accessible electroactive surface. The materials were tested as electrodes in a lithium ion battery and in electrochemical water splitting. The vertically aligned nanosheets exhibit remarkable lithium ion storage properties and, concurrently, excellent properties as electrocatalysts for hydrogen evolution.

  15. Using an Explicit Emission Tagging Method in Global Modeling of Source-Receptor Relationships for Black Carbon in the Arctic: Variations, Sources and Transport Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong; Rasch, Philip J.; Easter, Richard C.; Singh, Balwinder; Zhang, Rudong; Ma, Po-Lun; Qian, Yun; Ghan, Steven J.; Beagley, Nathaniel

    2014-11-27

    We introduce an explicit emission tagging technique in the Community Atmosphere Model to quantify source-region-resolved characteristics of black carbon (BC), focusing on the Arctic. Explicit tagging of BC source regions without perturbing the emissions makes it straightforward to establish source-receptor relationships and transport pathways, providing a physically consistent and computationally efficient approach to produce a detailed characterization of the destiny of regional BC emissions and the potential for mitigation actions. Our analysis shows that the contributions of major source regions to the global BC burden are not proportional to the respective emissions due to strong region-dependent removal rates and lifetimes, while the contributions to BC direct radiative forcing show a near-linear dependence on their respective contributions to the burden. Distant sources contribute to BC in remote regions mostly in the mid- and upper troposphere, having much less impact on lower-level concentrations (and deposition) than on burden. Arctic BC concentrations, deposition and source contributions all have strong seasonal variations. Eastern Asia contributes the most to the wintertime Arctic burden. Northern Europe emissions are more important to both surface concentration and deposition in winter than in summer. The largest contribution to Arctic BC in the summer is from Northern Asia. Although local emissions contribute less than 10% to the annual mean BC burden and deposition within the Arctic, the per-emission efficiency is much higher than for major non-Arctic sources. The interannual variability (1996-2005) due to meteorology is small in annual mean BC burden and radiative forcing but is significant in yearly seasonal means over the Arctic. When a slow aging treatment of BC is introduced, the increase of BC lifetime and burden is source-dependent. Global BC forcing-per-burden efficiency also increases primarily due to changes in BC vertical distributions. The

  16. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.

    Science.gov (United States)

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-05-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.

  17. Parameters determining efficiency and degradation of TiO2 vertical bar dye vertical bar CuI solar cells

    International Nuclear Information System (INIS)

    Sirimanne, P.M.; Tributsch, Helmut

    2004-01-01

    The influence of the micro-morphological structure of the TiO 2 film, the distribution of CuI in TiO 2 pores and the concentration of added surfactant in the CuI coating solution on the photocurrent of solid-state TiO 2 vertical bar dye vertical bar CuI solar cells was examined by space resolved photocurrent imaging technique. Iodine is found to be competing with the oxidized dye molecules in accepting electrons from CuI and decreases the efficiency of the cell. TiO 2 vertical bar dye vertical bar CuI cell degrade two hundred times faster than wet sensitization cells. This instability is considered to be due to the decomposition of the electron transfer-bridge between the sensitizer and CuI

  18. Quality Assessment of Vertical Angular Deviations for Photometer Calibration Benches

    International Nuclear Information System (INIS)

    Ribeiro, A Silva; Santos, A Costa; E Sousa, J Alves; Forbes, A B

    2015-01-01

    Lighting, both natural and electric, constitutes one of the most important aspects of the life of human beings, allowing us to see and perform our daily tasks in outdoor and indoor environments. The safety aspects of lighting are self-evident in areas such as road lighting, urban lighting and also indoor lighting. The use of photometers to measure lighting levels requires traceability obtained in accredited laboratories, which must provide an associated uncertainty. It is therefore relevant to study the impact of known uncertainty sources like the vertical angular deviation of photometer calibration benches, in order to define criteria to its quality assessment

  19. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered balloon measurements in Milan, Italy

    International Nuclear Information System (INIS)

    Sangiorgi, G.; Ferrero, L.; Perrone, M.G.; Bolzacchini, E.; Duane, M.; Larsen, B.R.

    2011-01-01

    A novel approach for measuring vertical profiles of HCs and particle number concentrations was described and applied in the low troposphere over Milan (Italy) during typical spring and summer days. Particle profiles yielded nearly homogeneous concentrations below the mixing height, with level-to-ground concentration ratios of 92-97%, while HCs showed a more pronounced decrease (74-95%). Vertical mixing and photochemical loss of HCs were demonstrated to cause these gradients. Much lower concentrations were observed for the profiles above the mixing height, where the HC mixtures showed also a different composition, which was partially explained by the horizontal advection of air with HC sources different to those prevailing at the site. The application of pseudo-first order kinetics for reactions between HCs and the hydroxyl radical allowed for the estimation of the vertical mixing time scale in the order of 100 ± 20 min. - Graphical abstract: Display Omitted Highlights: → Experimental vertical profiles of HCs and particle concentration by tethered balloon. → Effect of mixing height on the vertical distribution of HCs and particles. → Effect of tropospheric reactivity on vertical profiles of HCs. → Pseudo-first order kinetic reaction of HCs in convective systems. - Vertical transport and photochemical loss of HCs below and above the mixing height were studied by means of a novel and simple approach.

  20. Direct growth of vertically aligned carbon nanotubes on silicon substrate by spray pyrolysis of Glycine max oil

    Directory of Open Access Journals (Sweden)

    K. T. Karthikeyan

    2017-11-01

    Full Text Available Vertically aligned carbon nanotubes have been synthesized by spray pyrolysis from Glycine max oil on silicon substrate using ferrocene as catalyst at 650 °C. Glycine max oil, a plant-based hydrocarbon precursor was used as a source of carbon and argon as a carrier gas. The as-grown vertically aligned carbon nanotubes were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, and Raman spectroscopy. Scanning electron microscopic images reveal that the dense bundles of aligned carbon nanotubes. High resolution transmission electron microscopy and Raman spectroscopy observations indicate that as-grown aligned carbon nanotubes are well graphitized.