WorldWideScience

Sample records for small terrestrial craters

  1. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    Science.gov (United States)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size

  2. Gully formation in terrestrial simple craters: Meteor Crater, USA and Lonar Crater, India

    Science.gov (United States)

    Kumar, P.; Head, J. W.; Kring, D. A.

    2007-12-01

    Geomorphic features such as gullies, valley networks, and channels on Mars have been used as a proxy to understand the climate and landscape evolution of Mars. Terrestrial analogues provide significant insight as to how the various exogenic and endogenic processes might contribute to the evolution of these martian landscapes. We describe here a terrestrial example from Meteor Crater, which shows a spectacular development of gullies throughout the inner wall in response to rainwater precipitation, snow melting and groundwater discharge. As liquid water has been envisaged as one of the important agents of landscape sculpturing, Meteor Crater remains a useful landmark, where planetary geologists can learn some lessons. We also show here how the lithology and structural framework of this crater controls the gully distribution. Like many martian impact craters, it was emplaced in layered sedimentary rocks with an exceptionally well-developed centripetal drainage pattern consisting of individual alcoves, channels and fans. Some of the gullies originate from the rim crest and others from the middle crater wall, where a lithologic transition occurs. Deeply incised alcoves are well-developed on the soft sandstones of the Coconino Formation exposed on the middle crater wall, beneath overlying dolomite. In general, the gully locations are along crater wall radial fractures and faults, which are favorable locales of groundwater flow and discharge; these structural discontinuities are also the locales where the surface runoff from rain precipitation and snow melting can preferentially flow, causing degradation. Like martian craters, channels are well developed on the talus deposits and alluvial fans on the periphery of the crater floor. In addition, lake sediments on the crater floor provide significant evidence of a past pluvial climate, when groundwater seeped from springs on the crater wall. Caves exposed on the lower crater level may point to percolation of surface runoff

  3. Some Studies of Terrestrial Impact Cratering Rate

    Directory of Open Access Journals (Sweden)

    Jetsu L.

    2011-06-01

    Full Text Available In 1984, a 28.4 Myr periodicity was detected in the ages of terrestrial impact craters and a 26 Myr periodicity in the epochs of mass extinctions of species. Periodic comet showers from the Oort cloud seemed to cause catastrophic events linked to mass extinctions of species. Our first study revealed that the only significant detected periodicity is the “human signal” caused by the rounding of these data into integer numbers. The second study confirmed that the original 28.4 Myr periodicity detection was not significant. The third study revealed that the quality and the quantity of the currently available data would allow detection of real periodicity only if all impacts have been periodic, which cannot be the case. The detection of a periodic signal, if present, requires that more craters should be discovered and the accuracy of age estimates improved. If we sometimes will be able to find the difference between the craters caused by asteroid and comet impacts, the aperiodic component could be removed. The lunar impact craters may eventually provide the required supplementary data.

  4. Cratering on Small Bodies: Lessons from Eros

    Science.gov (United States)

    Chapman, C. R.

    2003-01-01

    Cratering and regolith processes on small bodies happen continuously as interplanetary debris rains down on asteroids, comets, and planetary satellites. Butthey are very poorly observed and not well understood. On the one hand, we have laboratory experimentation at small scales and we have examination of large impact craters (e.g. Meteor Crater on Earth and imaging of abundant craters on terrestrial planets and outer planet moons). Understanding cratering on bodies of intermediate scales, tens of meters to hundreds of km in size, involves either extrapolation from our understanding of cratering phenomena at very different scales or reliance on very preliminary, incomplete examination of the observational data we now have for a few small bodies. I review the latter information here. It has been generally understood that the role of gravity is greatly diminished for smaller bodies, so a lot of cratering phenomena studied for larger bodies is less applicable. But it would be a mistake to imagine that laboratory experiments on gravitationless rocks (usually at 1 g) are directly applicable, except perhaps to those monolithic Near Earth Asteroids (NEAs) some tens of meters in size that spin very rapidly and can be assumed to be "large bare rocks" with "negative gravity". Whereas it had once been assumed that asteroids smaller than some tens of km diameter would retain little regolith, it is increasingly apparent that regolith and megoregolith processes extend down to bodies only hundreds of meters in size, perhaps smaller. Yet these processes are very different from those that pertain to the Moon, which is our chief prototype of regolith processes. The NEAR Shoemaker spacecraft's studies of Eros provide the best evidence to date about small-body cratering processes, as well as a warning that our theoretical understanding requires anchoring by direct observations. Eros: "Ponds", Paucity of Small Craters, and Other Mysteries. Although Eros is currently largely detached

  5. Surface age of venus: use of the terrestrial cratering record

    International Nuclear Information System (INIS)

    Schaber, G.G.; Shoemaker, E.M.; Kozak, R.C.

    1987-01-01

    The average crater age of Venus' northern hemisphere may be less than 250 m.y. assuming equivalence between the recent terrestrial cratering rate and that on Venus for craters ≥ 20 km in diameter. For craters larger than this threshold size, below which crater production is significantly affected by the Venusian atmosphere, there are fairly strong observational grounds for concluding that such an equivalence in cratering rates on Venus and Earth may exist. However, given the uncertainties in the role of both active and inactive comet nuclei in the cratering history of Earth, we conclude that the age of the observed surface in the northern hemisphere of Venus could be as great as the 450-m.y. mean age of the Earth's crust. The observed surface of Venus might be even older, but no evidence from the crater observations supports an age as great as 1 b.y. If the age of the observed Venusian surface were 1 b.y., it probably should bear the impact scars of a half dozen or more large comet nuclei that penetrated the atmosphere and formed craters well over 100 km in diameter. Venera 15/16 mapped only about 25% of Venus; the remaining 75% may tell us a completely different story

  6. SMALL CRATERS AND THEIR DIAGNOSTIC POTENTIAL

    Directory of Open Access Journals (Sweden)

    R. Bugiolacchi

    2017-07-01

    Full Text Available I analysed and compared the size-frequency distributions of craters in the Apollo 17 landing region, comprising of six mare terrains with varying morphologies and cratering characteristics, along with three other regions allegedly affected by the same secondary event (Tycho secondary surge. I propose that for the smaller crater sizes (in this work 9–30 m, a] an exponential curve of power −0.18D can approximate Nkm−2 crater densities in a regime of equilibrium, while b] a power function D−3 closely describes the factorised representation of craters by size (1 m. The saturation level within the Central Area suggests that c] either the modelled rates of crater erosion on the Moon should be revised, or that the Tycho event occurred much earlier in time than the current estimate. We propose that d] the size-frequency distribution of small secondary craters may bear the signature (in terms of size-frequency distribution of debris/surge of the source impact and that this observation should be tested further.

  7. Geological remote sensing signatures of terrestrial impact craters

    International Nuclear Information System (INIS)

    Garvin, J.B.; Schnetzler, C.; Grieve, R.A.F.

    1988-01-01

    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures

  8. Size-Frequency Distribution of Small Lunar Craters: Widening with Degradation and Crater Lifetime

    Science.gov (United States)

    Ivanov, B. A.

    2018-01-01

    The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small ( D model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.

  9. Laboratory and Field Investigations of Small Crater Repair Technologies

    National Research Council Canada - National Science Library

    Priddy, Lucy P; Tingle, Jeb S; McCaffrey, Timothy J; Rollings, Ray S

    2007-01-01

    .... This airfield damage repair (ADR) investigation consisted of laboratory testing of selected crater fill and capping materials, as well as full-scale field testing of small crater repairs to evaluate field mixing methods, installation...

  10. Large-scale impact cratering on the terrestrial planets

    International Nuclear Information System (INIS)

    Grieve, R.A.F.

    1982-01-01

    The crater densities on the earth and moon form the basis for a standard flux-time curve that can be used in dating unsampled planetary surfaces and constraining the temporal history of endogenic geologic processes. Abundant evidence is seen not only that impact cratering was an important surface process in planetary history but also that large imapact events produced effects that were crucial in scale. By way of example, it is noted that the formation of multiring basins on the early moon was as important in defining the planetary tectonic framework as plate tectonics is on the earth. Evidence from several planets suggests that the effects of very-large-scale impacts go beyond the simple formation of an impact structure and serve to localize increased endogenic activity over an extended period of geologic time. Even though no longer occurring with the frequency and magnitude of early solar system history, it is noted that large scale impact events continue to affect the local geology of the planets. 92 references

  11. Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars

    Science.gov (United States)

    Golombek, M.P.; Warner, N.H.; Ganti, V.; Lamb, M.P.; Parker, T.J.; Fergason, Robin L.; Sullivan, R.

    2014-01-01

    A morphometric and morphologic catalog of ~100 small craters imaged by the Opportunity rover over the 33.5 km traverse between Eagle and Endeavour craters on Meridiani Planum shows craters in six stages of degradation that range from fresh and blocky to eroded and shallow depressions ringed by planed off rim blocks. The age of each morphologic class from Mars over ~100 Myr and 3 Gyr timescales from the Amazonian and Hesperian are of order <0.01 m/Myr, which is 3–4 orders of magnitude slower than typical terrestrial rates. Erosion rates during the Middle-Late Noachian averaged over ~250 Myr, and ~700 Myr intervals are around 1 m/Myr, comparable to slow terrestrial erosion rates calculated over similar timescales. This argues for a wet climate before ~3 Ga in which liquid water was the erosional agent, followed by a dry environment dominated by slow eolian erosion.

  12. Geometric interpretation of the ratio of overall diameter to rim crest diameter for lunar and terrestrial craters.

    Science.gov (United States)

    Siegal, B. S.; Wickman, F. E.

    1973-01-01

    An empirical linear relationship has been established by Pike (1967) between the overall diameter and the rim crest diameter for rimmed, flat-floored as well as bowl-shaped, lunar and terrestrial craters formed by impact and explosion. A similar relationship for experimentally formed fluidization craters has been established by Siegal (1971). This relationship is examined in terms of the geometry of the crater and the slope angles of loose materials. The parameter varies from 1.40 to 1.65 and is found to be dependent on mean interior flat floor radius, exterior and interior rim slope angles, angle of aperture of the crater cone, and the volume fraction of crater void accounted for in the rim. The range of the observed parameter can be understood in terms of simple crater geometry by realistic values of the five parameters.

  13. Usability of small impact craters on small surface areas in crater count dating: Analysing examples from the Harmakhis Vallis outflow channel, Mars

    Science.gov (United States)

    Kukkonen, S.; Kostama, V.-P.

    2018-05-01

    The availability of very high-resolution images has made it possible to extend crater size-frequency distribution studies to small, deca/hectometer-scale craters. This has enabled the dating of small and young surface units, as well as recent, short-time and small-scale geologic processes that have occurred on the units. Usually, however, the higher the spatial resolution of space images is, the smaller area is covered by the images. Thus the use of single, very high-resolution images in crater count age determination may be debatable if the images do not cover the studied region entirely. Here we compare the crater count results for the floor of the Harmakhis Vallis outflow channel obtained from the images of the ConTeXt camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO). The CTX images enable crater counts for entire units on the Harmakhis Vallis main valley, whereas the coverage of the higher-resolution HiRISE images is limited and thus the images can only be used to date small parts of the units. Our case study shows that the crater count data based on small impact craters and small surface areas mainly correspond with the crater count data based on larger craters and more extensive counting areas on the same unit. If differences between the results were founded, they could usually be explained by the regional geology. Usually, these differences appeared when at least one cratering model age is missing from either of the crater datasets. On the other hand, we found only a few cases in which the cratering model ages were completely different. We conclude that the crater counts using small impact craters on small counting areas provide useful information about the geological processes which have modified the surface. However, it is important to remember that all the crater counts results obtained from a specific counting area always primarily represent the results from the counting area-not the whole

  14. Creation of High Resolution Terrain Models of Barringer Meteorite Crater (Meteor Crater) Using Photogrammetry and Terrestrial Laser Scanning Methods

    Science.gov (United States)

    Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.

    2010-01-01

    Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.

  15. Moon - 'Ghost' craters formed during Mare filling.

    Science.gov (United States)

    Cruikshank, D. P.; Hartmann, W. K.; Wood, C. A.

    1973-01-01

    This paper discusses formation of 'pathological' cases of crater morphology due to interaction of craters with molten lavas. Terrestrial observations of such a process are discussed. In lunar maria, a number of small impact craters (D less than 10 km) may have been covered by thin layers of fluid lavas, or formed in molten lava. Some specific lunar examples are discussed, including unusual shallow rings resembling experimental craters deformed by isostatic filling.

  16. Terrestrial Analogs for Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Treiman, Allan H; Morris, Richard V.; Bristow, Thomas; Ming, Douglas W.; Achillies, Cherie; Bish, David L.; Blake, David; Vaniman, David; Chipera, Steve

    2013-01-01

    Sediments of the Sheepbed unit, Gale Crater, were analyzed by the CheMin X-ray diffraction instrument on the Curiosity Rover. The sediments consist of typical basalt minerals (Fe-forsterite, augite, pigeonite, plagioclase), as well as Fe oxide/hydroxides, Fesulfides, amorphous material, and a phyllosilicate. The phyllosilicate has a broad 001 peak at approx 1.0 nm, consistent with a poorly ordered smectite. However, in the absence of diagnostic tests possible on Earth, its identity is not clear. The position of the 06L diffraction band is generally used to distinguish dioctahedral from trioctahedral smectite, but it is beyond CheMin's range of 2 Theta. The measured position of the 02L diffraction band (approx 22.5deg 2 Theta by CheMin), implies that the smectite is trioctahedral. The exact position and shape of the 02L band is determined by the cations in the 'M' sites of the smectite; to constrain those cations, we sought analogs among terrestrial smectites, emphasizing those developed from basaltic precursors. A potential analog for the Sheepbed smectite is 'griffithite,' a variety of trioctahedral smectite in altered basalt of the Topanga formation, Griffith Park, Los Angeles. 'Griffithite' has an 02L diffraction band that is close in position and shape to that of the Sheepbed smectite, although 'griffithite' has a very sharp 001 peak, indicating a high degree of layer ordering not seen in the Sheepbed smectite. A typical chemical formula for 'griffithite,' determined by electron microprobe, is (Ca0.59 Na0.03) (Mg4.28 Fe1.83) (Si6.64 Al1.36) O20 (OH)4, normalized to Si+Al=8. This formula is consistent with a fully trioctahedral Fe-Mg smectite with Ca and Na as interlayer cations. In the Topanga basalt, four types of 'griffithite' are present: fine-grained, filling cracks and vesicles; coarse-grained, filling vesicles; coarse-grained, replacing olivine phenocrysts; and coarse-grained, replacing glassy mesostasis. The fine-grained 'griffithite' formed first, and

  17. Characteristics of small young lunar impact craters focusing on current production and degradation on the Moon

    Science.gov (United States)

    Kereszturi, Akos; Steinmann, Vilmos

    2017-11-01

    Analysing the size-frequency distribution of very small lunar craters (sized below 100 m including ones below 10 m) using LROC images, spatial density and related age estimations were calculated for mare and terra terrains. Altogether 1.55 km2 area was surveyed composed of 0.1-0.2 km2 units, counting 2784 craters. The maximal areal density was present at the 4-8 m diameter range at every analysed terrain suggesting the bombardment is areally relatively homogeneous. Analysing the similarities and differences between various areas, the mare terrains look about two times older than the terra terrains using ages ranged between 13 and 20 Ma for mare, 4-6 Ma for terra terrains. Substantial fluctuation (min: 936 craters/km2, max: 2495 craters/km2) was observed without obvious source of nearby secondaries or fresh ejecta blanket produced fresh crater. Randomness analysis and visual inspection also suggested no secondary craters or ejecta blanket from fresh impact could contribute substantially in the observed heterogeneity of the areal distribution of small craters - thus distant secondaries or even other, poorly known resurfacing processes should be considered in the future. The difference between the terra/mare ages might come only partly from the easier identification of small craters on smooth mare terrains, as the differences were observed for larger (30-60 m diameter) craters too. Difference in the target hardness could more contribute in this effect. It was possible to separate two groups of small craters based on their appearance: a rimmed thus less eroded, and a rimless thus more eroded one. As the separate usage of different morphology groups of craters for age estimation at the same area is not justifiable, this was used only for comparison. The SFD curves of these two groups showed characteristic differences: the steepness of the fresh craters' SFD curves are similar to each other and were larger than the isochrones. The eroded craters' SFD curves also resemble

  18. Wildfires Caused by Formation of Small Impact Craters: A Kaali Crater Case

    Science.gov (United States)

    Losiak, Anna; Belcher, Claire; Hudspith, Victoria; Zhu, Menghua; Bronikowska, Malgorzata; Jõeleht, Argo; Plado, Juri

    2016-04-01

    Formation of ~200-km Chicxulub 65 Ma ago was associated with release of significant amount of thermal energy [1,2,3] which was sufficient to start wildfires that had either regional [4] or global [5] range. The evidence for wildfires caused by impacts smaller than Chicxulub is inconclusive. On one hand, no signs of fires are associated with the formation of 24-km Ries crater [6]. On the other hand, the Tunguska site was burned after the impact and the numerical models of the bolide-produced thermal radiation suggest that the Tunguska-like event would produce a thermal flux to the surface that is sufficient to ignite pine needles [7]. However, in case of Tunguska the only proof for the bolide starting the fire comes from an eyewitness description collected many years after the event. Some authors [8] suggest that this fire might have been caused "normaly" later during the same year, induced on dead trees killed by the Tunguska fall. More recently it was observed that the Chelyabinsk meteor [9] - smaller than Tunguska event - did not produced a fire. In order to explore this apparent relationship in more detail, we have studied the proximal ejecta from a 100-m in diameter, ~3500 years old [10] Kaali crater (Estonia) within which we find pieces of charred organic material. Those pieces appear to have been produced during the impact, according to their stratigraphic location and following 14C analysis [19] as opposed to pre- or post-impact forest fires. In order to determine the most probable formation mechanism of the charred organic material found within Kaali proximal ejecta blanket, we: 1) Analyzed charcoal under SEM to identify the charred plants and determine properties of the charcoal related to the temperature of its formation [11]. Detected homogenization of cell walls suggests that at least some pieces of charcoal were formed at >300 °C [11]. 2) Analyzed the reflectance properties of the charred particles in order to determine the intensity with which

  19. Terrestrial analogs to lunar sinuous rilles - Kauhako Crater and channel, Kalaupapa, Molokai, and other Hawaiian lava conduit systems

    International Nuclear Information System (INIS)

    Coombs, C.R.; Hawke, B.R.; Wilson, L.

    1990-01-01

    Two source vents, one explosive and one effusive erupted to form a cinder cone and low lava shield that together compose the Kalaupapa peninsula of Molokai, Hawaii, A 50-100-m-wide channel/tube system extends 2.3 km northward from kauhako crater in the center of the shield. Based on modeling, a volume of up to about 0.2 cu km of lava erupted at a rate of 260 cu m/sec to flow through the Kauhako conduit system in one of the last eruptive episodes on the peninsula. Channel downcutting by thermal erosion occurred at a rate of about 10 micron/sec to help form the 30-m-deep conduit. Two smaller, secondary tube systems formed east of the main lava channel/tube. Several other lava conduit systems on the islands of Oahu and Hawaii were also compared to the Kauhako and lunar sinuous rille systems. These other lava conduits include Whittington, Kupaianaha, and Mauna Ulu lava tubes. Morphologically, the Hawaiian tube systems studied are very similar to lunar sinuous rilles in that they have deep head craters, sinuous channels, and gentle slopes. Thermal erosion is postulated to be an important factor in the formation of these terrestrial channel systems and by analogy is inferred to be an important process involved in the formation of lunar sinuous rilles. 28 refs

  20. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Cratering histories of the intercrater plains. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The intercrater plains of Mercury and the Moon are defined, in part, by their high densities of small craters. The crater size frequency statistics presented in this chapter may help constrain the relative ages and origins of these surfaces. To this end, the effects of common geologic processes on crater frequency statistics are compared with the diameter frequency distributions of the intercrater regions of the Moon and Mercury. Such analyses may determine whether secondary craters dominate the distribution at small diameters, and whether volcanic plains or ballistic deposits form the intercrater surface. Determining the mass frequency distribution and flux of the impacting population is a more difficult problem. The necessary information such as scaling relationships between projectile energy and crater diameter, the relative fluxes of solar system objects, and the absolute ages of surface units is model dependent and poorly constrained, especially for Mercury.

  1. Sounding Cratonic Fill in Small Buried Craters Using Ground Penetrating Radar: Analog Study to the Martian Case

    OpenAIRE

    Heggy , Essam; Paillou , Philippe

    2006-01-01

    We report results from a 270 MHz GPR survey performed on a recently discovered impact field in the southwestern Egyptian desert. The investigation suggests the ability of radar techniques to detect small-buried craters and probe their filling

  2. Monturaqui meteorite impact crater, Chile: A field test of the utility of satellite-based mapping of ejecta at small craters

    Science.gov (United States)

    Rathbun, K.; Ukstins, I.; Drop, S.

    2017-12-01

    Monturaqui Crater is a small ( 350 m diameter), simple meteorite impact crater located in the Atacama Desert of northern Chile that was emplaced in Ordovician granite overlain by discontinuous Pliocene ignimbrite. Ejecta deposits are granite and ignimbrite, with lesser amounts of dark impact melt and rare tektites and iron shale. The impact restructured existing drainage systems in the area that have subsequently eroded through the ejecta. Satellite-based mapping and modeling, including a synthesis of photographic satellite imagery and ASTER thermal infrared imagery in ArcGIS, were used to construct a basic geological interpretation of the site with special emphasis on understanding ejecta distribution patterns. This was combined with field-based mapping to construct a high-resolution geologic map of the crater and its ejecta blanket and field check the satellite-based geologic interpretation. The satellite- and modeling-based interpretation suggests a well-preserved crater with an intact, heterogeneous ejecta blanket that has been subjected to moderate erosion. In contrast, field mapping shows that the crater has a heavily-eroded rim and ejecta blanket, and the ejecta is more heterogeneous than previously thought. In addition, the erosion rate at Monturaqui is much higher than erosion rates reported elsewhere in the Atacama Desert. The bulk compositions of the target rocks at Monturaqui are similar and the ejecta deposits are highly heterogeneous, so distinguishing between them with remote sensing is less effective than with direct field observations. In particular, the resolution of available imagery for the site is too low to resolve critical details that are readily apparent in the field on the scale of 10s of cm, and which significantly alter the geologic interpretation. The limiting factors for effective remote interpretation at Monturaqui are its target composition and crater size relative to the resolution of the remote sensing methods employed. This

  3. Multivariate analyses of crater parameters and the classification of craters

    Science.gov (United States)

    Siegal, B. S.; Griffiths, J. C.

    1974-01-01

    Multivariate analyses were performed on certain linear dimensions of six genetic types of craters. A total of 320 craters, consisting of laboratory fluidization craters, craters formed by chemical and nuclear explosives, terrestrial maars and other volcanic craters, and terrestrial meteorite impact craters, authenticated and probable, were analyzed in the first data set in terms of their mean rim crest diameter, mean interior relief, rim height, and mean exterior rim width. The second data set contained an additional 91 terrestrial craters of which 19 were of experimental percussive impact and 28 of volcanic collapse origin, and which was analyzed in terms of mean rim crest diameter, mean interior relief, and rim height. Principal component analyses were performed on the six genetic types of craters. Ninety per cent of the variation in the variables can be accounted for by two components. Ninety-nine per cent of the variation in the craters formed by chemical and nuclear explosives is explained by the first component alone.

  4. Morphology and chemistry of projectile residue in small experimental impact craters

    Science.gov (United States)

    Horz, F.; Fechtig, H.; Janicke, J.; Schneider, E.

    1983-01-01

    Small-scale impact craters (5-7 mm in diameter) were produced with a light gas gun in high purity Au and Cu targets using soda lime glass (SL) and man-made basalt glass (BG) as projectiles. Maximum impact velocity was 6.4 km/s resulting in peak pressures of approximately 120-150 GPa. Copious amounts of projectile melts are preserved as thin glass liners draping the entire crater cavity; some of this liner may be lost by spallation, however. SEM investigations reveal complex surface textures including multistage flow phenomena and distinct temporal deposition sequences of small droplets. Inasmuch as some of the melts were generated at peak pressures greater than 120 GPa, these glasses represent the most severely shocked silicates recovered from laboratory experiments to date. Major element analyses reveal partial loss of alkalis; Na2O loss of 10-15 percent is observed, while K2O loss may be as high as 30-50 percent. Although the observed volatile loss in these projectile melts is significant, it still remains uncertain whether target melts produced on planetary surfaces are severely fractionated by selective volatilization processes.

  5. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Directory of Open Access Journals (Sweden)

    Émilie Saulnier-Talbot

    Full Text Available African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2 adj  = 0.23, e.d.f. = 7, p<0.0001 in thermal stability over the past 20 years. This resulted in the expansion of anoxic waters and consequent deterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  6. Small changes in climate can profoundly alter the dynamics and ecosystem services of tropical crater lakes.

    Science.gov (United States)

    Saulnier-Talbot, Émilie; Gregory-Eaves, Irene; Simpson, Kyle G; Efitre, Jackson; Nowlan, Tobias E; Taranu, Zofia E; Chapman, Lauren J

    2014-01-01

    African tropical lakes provide vital ecosystem services including food and water to some of the fastest growing human populations, yet they are among the most understudied ecosystems in the world. The consequences of climate change and other stressors on the tropical lakes of Africa have been informed by long-term analyses, but these studies have largely focused on the massive Great Rift Valley lakes. Our objective was to evaluate how recent climate change has altered the functioning and services of smaller tropical lakes, which are far more abundant on the landscape. Based on a paired analysis of 20 years of high-resolution water column data and a paleolimnological record from a small crater lake in western Uganda, we present evidence that even a modest warming of the air (∼0.9°C increase over 20 years) and changes in the timing and intensity of rainfall can have significant consequences on the dynamics of this common tropical lake type. For example, we observed a significant nonlinear increase (R(2) adj  = 0.23, e.d.f. = 7, pdeterioration of fish habitat and appears to have abated primary production; processes that may impair ecosystem services for a vulnerable human population. This study on a system representative of small tropical crater lakes highlights the far-reaching effects of global climatic change on tropical waters. Increased research efforts into tropical aquatic ecosystem health and the development of sound management practices are necessary in order to strengthen adaptive capabilities in tropical regions.

  7. Small terrestrial mammals of Albania: annotated list and distribution

    Directory of Open Access Journals (Sweden)

    Ferdinand Bego

    2009-02-01

    Full Text Available Abstract: Abstract We report for Albania new records of small terrestrial mammals (Erinaceomorpha, Soricomorpha, Rodentia and outline previously published data. Twenty-four species (one hedgehog, six soricomorhps and 17 rodents have been collected in 161 localities surveyed throughout the country. Nine species (Neomys anomalus, Crocidura leucodon, Talpa stankovici, Dryomys nitedula, Muscardinus avellanarius, Micromys minutus, Mus macedonicus, Myodes glareolus, and Microtus thomasi are recorded for Albania for the first time. The present list is far from being complete and presence of a further 11 species has to be confirmed. Riassunto I Micromammiferi dell'Albania: status e distribuzione Viene presentato un quadro della distribuzione dei micromammiferi in Albania, evidenziando le specie di recente scoperta così come alcuni dati già pubblicati. L'esame di 161 località distribuite sull'intero territorio nazionale ha permesso di raccogliere informazioni sulla presenza di 24 specie di micromammiferi (1 Erinaceomorpha, 6 Soricomorpha e 17 Rodentia. Nove specie  (Neomys anomalus, Crocidura leucodon, Talpa stankovici, Dryomys nitedula, Muscardinus avellanarius, Micromys minutus, Mus macedonicus, Myodes glareolus, e Microtus thomasi vengono segnalate per la prima volta. L'elenco qui presentato non può essere considerato definitivo. Ulteriori ricerche potrebbero accertare la presenza di altre 11 specie.

  8. Potential for observing and discriminating impact craters and comparable volcanic landforms on Magellan radar images

    International Nuclear Information System (INIS)

    Ford, J.P.

    1989-01-01

    Observations of small terrestrial craters by Seasat synthetic aperture radar (SAR) at high resolution (approx. 25 m) and of comparatively large Venusian craters by Venera 15/16 images at low resolution (1000 to 2000 m) and shorter wavelength show similarities in the radar responses to crater morphology. At low incidence angles, the responses are dominated by large scale slope effects on the order of meters; consequently it is difficult to locate the precise position of crater rims on the images. Abrupt contrasts in radar response to changing slope (hence incidence angle) across a crater produce sharp tonal boundaries normal to the illumination. Crater morphology that is radially symmetrical appears on images to have bilateral symmetry parallel to the illumination vector. Craters are compressed in the distal sector and drawn out in the proximal sector. At higher incidence angles obtained with the viewing geometry of SIR-A, crater morphology appears less compressed on the images. At any radar incidence angle, the distortion of a crater outline is minimal across the medial sector, in a direction normal to the illumination. Radar bright halos surround some craters imaged by SIR-A and Venera 15 and 16. The brightness probably denotes the radar response to small scale surface roughness of the surrounding ejecta blankets. Similarities in the radar responses of small terrestrial impact craters and volcanic craters of comparable dimensions emphasize the difficulties in discriminating an impact origin from a volcanic origin in the images. Similar difficulties will probably apply in discriminating the origin of small Venusian craters, if they exist. Because of orbital considerations, the nominal incidence angel of Magellan radar at the center of the imaging swath will vary from about 45 deg at 10 deg N latitude to about 16 deg at the north pole and at 70 deg S latitude. Impact craters and comparable volcanic landforms will show bilateral symmetry

  9. A half-century of terrestrial analog studies: From craters on the Moon to searching for life on Mars

    Science.gov (United States)

    Léveillé, Richard

    2010-03-01

    Terrestrial analogs to the Moon and Mars have been used to advance knowledge in planetary science for over a half-century. They are useful in studies of comparative geology of the terrestrial planets and rocky moons, in astronaut training and testing of exploration technologies, and in developing hypotheses and exploration strategies in astrobiology. In fact, the use of terrestrial analogs can be traced back to the origins of comparative geology and astrobiology, and to the early phases of the Apollo astronaut program. Terrestrial analog studies feature prominently throughout the history of both NASA and the USGS' Astrogeology Research Program. In light of current international plans for a return missions to the Moon, and eventually to send sample return and manned missions to Mars, as well as the recent creation of various analog research and development programs, this historical perspective is timely.

  10. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Measurement and errors of crater statistics. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    Planetary imagery techniques, errors in measurement or degradation assignment, and statistical formulas are presented with respect to cratering data. Base map photograph preparation, measurement of crater diameters and sampled area, and instruments used are discussed. Possible uncertainties, such as Sun angle, scale factors, degradation classification, and biases in crater recognition are discussed. The mathematical formulas used in crater statistics are presented.

  11. Determining long-term regional erosion rates using impact craters

    Science.gov (United States)

    Hergarten, Stefan; Kenkmann, Thomas

    2015-04-01

    More than 300,000 impact craters have been found on Mars, while the surface of Moon's highlands is even saturated with craters. In contrast, only 184 impact craters have been confirmed on Earth so far with only 125 of them exposed at the surface. The spatial distribution of these impact craters is highly inhomogeneous. Beside the large variation in the age of the crust, consumption of craters by erosion and burial by sediments are the main actors being responsible for the quite small and inhomogeneous crater record. In this study we present a novel approach to infer long-term average erosion rates at regional scales from the terrestrial crater inventory. The basic idea behind this approach is a dynamic equilibrium between the production of new craters and their consumption by erosion. It is assumed that each crater remains detectable until the total erosion after the impact exceeds a characteristic depth depending on the crater's diameter. Combining this model with the terrestrial crater production rate, i.e., the number of craters per unit area and time as a function of their diameter, allows for a prediction of the expected number of craters in a given region as a function of the erosion rate. Using the real crater inventory, this relationship can be inverted to determine the regional long-term erosion rate and its statistical uncertainty. A limitation by the finite age of the crust can also be taken into account. Applying the method to the Colorado Plateau and the Deccan Traps, both being regions with a distinct geological history, yields erosion rates in excellent agreement with those obtained by other, more laborious methods. However, these rates are formally exposed to large statistical uncertainties due to the small number of impact craters. As higher crater densities are related to lower erosion rates, smaller statistical errors can be expected when large regions in old parts of the crust are considered. Very low long-term erosion rates of less than 4

  12. Temporal variation of phytoplankton in a small tropical crater lake, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gerardo Umaña-Villalobos

    2010-12-01

    Full Text Available The temporal variation in lake’s phytoplankton is important to understand its general biodiversity. For tropical lakes, it has been hypothesized that they follow a similar pattern as temperate ones, on a much accelerated pace; nevertheless, few case studies have tried to elucidate this. Most studies in Costa Rica have used a monthly sampling scheme and failed in showing the expected changes. In this study, the phytoplankton of the small Barvas’s crater lake was followed for more than three years, first with monthly and later with weekly samplings, that covered almost two years. Additional information on temperature and oxygen vertical profiles was obtained on a monthly basis, and surface temperature was measured during weekly samplings around noon. Results showed that in spite of its shallow condition (max. depth: 7m and low surface temperature (11 to 19°C, the lake stratifies at least for brief periods. The phytoplankton showed both, rapid change periods, and prolonged ones of relative stasis. The plankton composition fluctuated between three main phases, one characterized by the abundance of small sized desmids (Staurastrum paradoxum, Cosmarium asphaerosporum, a second phase dominated by equally small cryptomonads (Chryptochrysis minor, Chroomonas sp. and a third phase dominated by the green alga Eutetramorus tetrasporus. Although data evidenced that monthly sampling could miss short term events, the temporal variation did not follow the typical dry and rainy seasons of the region, or any particular annual pattern. Year to year variation was high. As this small lake is located at the summit of Barva Volcano and receives the influence from both the Caribbean and the Pacific weather, seasonality at the lake is not clearly defined as in the rest of the country and short term variations in the local weather might have a stronger effect than broad seasonal trends. The occurrence of this short term changes in the phytoplankton of small tropical

  13. Degraded Crater Rim

    Science.gov (United States)

    2002-01-01

    (Released 3 May 2002) The Science The eastern rim of this unnamed crater in Southern Arabia Terra is very degraded (beaten up). This indicates that this crater is very ancient and has been subjected to erosion and subsequent bombardment from other impactors such as asteroids and comets. One of these later (younger) craters is seen in the upper right of this image superimposed upon the older crater rim material. Note that this smaller younger crater rim is sharper and more intact than the older crater rim. This region is also mantled with a blanket of dust. This dust mantle causes the underlying topography to take on a more subdued appearance. The Story When you think of Arabia, you probably think of hot deserts and a lot of profitable oil reserves. On Mars, however, Southern Arabia Terra is a cold place of cratered terrain. This almost frothy-looking image is the badly battered edge of an ancient crater, which has suffered both erosion and bombardment from asteroids, comets, or other impacting bodies over the long course of its existence. A blanket of dust has also settled over the region, which gives the otherwise rugged landscape a soft and more subdued appearance. The small, round crater (upper left) seems almost gemlike in its setting against the larger crater ring. But this companionship is no easy romance. Whatever formed the small crater clearly whammed into the larger crater rim at some point, obliterating part of its edge. You can tell the small crater was formed after the first and more devastating impact, because it is laid over the other larger crater. How much younger is the small one? Well, its rim is also much sharper and more intact, which gives a sense that it is probably far more youthful than the very degraded, ancient crater.

  14. Dome craters on Ganymede

    International Nuclear Information System (INIS)

    Moore, J.M.; Malin, M.C.

    1987-01-01

    Voyager observations reveal impact craters on Ganymede that are characterized by the presence of broad, high albedo, topographic domes situated within a central pit. Fifty-seven craters with central domes were identified in images covering approx. 50% of the surface. Owing to limitations in resolution, and viewing and illumination angles, the features identified are most likely a subset of dome craters. The sample appears to be sufficiently large to infer statistically meaningful trends. Dome craters appear to fall into two distinct populations on plots of the ratio of dome diameter to crater rim diameter, large-dome craters and small-dome craters. The two classes are morphologically distinct from one another. In general, large dome craters show little relief and their constituent landforms appear subdued with respect to fresh craters. The physical attributes of small-dome craters are more sharply defined, a characteristic they share with young impact craters of comparable size observed elsewhere in the solar system. Both types of dome craters exhibit central pits in which the dome is located. As it is difficult to produce domes by impact and/or erosional processes, an endogenic origin for the domes is reasonably inferred. Several hypotheses for their origin are proposed. These hypotheses are briefly reviewed

  15. Regolith thickness over Sinus Iridum: Results from morphology and size-frequency distribution of small impact craters

    Science.gov (United States)

    Fa, Wenzhe; Liu, Tiantian; Zhu, Meng-Hua; Haruyama, Junichi

    2014-08-01

    High-resolution optical images returned from recent lunar missions provide a new chance for estimation of lunar regolith thickness using morphology and the size-frequency distribution of small impact craters. In this study, regolith thickness over the Sinus Iridum region is estimated using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NACs) images. A revised relationship between crater geometry and regolith thickness is proposed based on old experimental data that takes into considering the effect of the illumination angle of the images. In total, 227 high-resolution LROC NAC images are used, and 378,556 impact craters with diameters from 4.2 to 249.8 m are counted, and their morphologies are identified. Our results show that 50% of the Sinus Iridum region has a regolith thickness between 5.1 and 10.7 m, and the mean and median regolith thicknesses are 8.5 and 8.0 m, respectively. There are substantial regional variations in the regolith thickness, with its median value varying from 2.6 to 12.0 m for most regions. Local variations of regolith thickness are found to be correlated with the lunar surface age: the older the surface, the greater the thickness. In addition, sporadically distributed impact ejecta and crater rays are associated with relatively larger regolith thickness, which might result from excavation and transport of materials during the formation of the secondaries of Copernican-aged craters. Our estimated regolith thickness can help with future analysis of Chang'E-3 lunar penetrating radar echoes and studies of the subsurface stratigraphic structure of the Moon.

  16. Textural and mineralogical characteristics of microbial fossils associated with modern and ancient iron (oxyhydr)oxides: terrestrial analogue for sediments in Gale Crater.

    Science.gov (United States)

    Potter-McIntyre, Sally L; Chan, Marjorie A; McPherson, Brian J

    2014-01-01

    Iron (oxyhydr)oxide microbial mats in modern to ∼100 ka tufa terraces are present in a cold spring system along Ten Mile Graben, southeastern Utah, USA. Mats exhibit morphological, chemical, and textural biosignatures and show diagenetic changes that occur over millennial scales. The Jurassic Brushy Basin Member of the Morrison Formation in the Four Corners region of the USA also exhibits comparable microbial fossils and iron (oxyhydr)oxide biosignatures in the lacustrine unit. Both the modern spring system and Brushy Basin Member represent alkaline, saline, groundwater-fed systems and preserve diatoms and other similar algal forms with cellular elaboration. Two distinct suites of elements (1. C, Fe, As and 2. C, S, Se, P) are associated with microbial fossils in modern and ancient iron (oxyhydr)oxides and may be potential markers for biosignatures. The presence of ferrihydrite in ∼100 ka fossil microbial mats and Jurassic rocks suggests that this thermodynamically unstable mineral may also be a potential biomarker. One of the most extensive sedimentary records on Mars is exposed in Gale Crater and consists of non-acidic clays and sulfates possibly of lacustrine origin. These terrestrial iron (oxyhydr)oxide examples are a valuable analogue because of similar iron- and clay-rich host rock compositions and will help (1) understand diagenetic processes in a non-acidic, saline lacustrine environment such as the sedimentary rocks in Gale Crater, (2) document specific biomediated textures, (3) demonstrate how biomediated textures might persist or respond to diagenesis over time, and (4) provide a ground truth library of textures to explore and compare in extraterrestrial iron (oxyhydr)oxides, where future explorations hope to detect past evidence of life.

  17. Mycobacteria in Terrestrial Small Mammals on Cattle Farms in Tanzania

    DEFF Research Database (Denmark)

    Durnez, Lies; Katakweba, Abdul; Sadiki, Harrison

    2011-01-01

    The control of bovine tuberculosis and atypical mycobacterioses in cattle in developing countries is important but difficult because of the existence of wildlife reservoirs. In cattle farms in Tanzania, mycobacteria were detected in 7.3% of 645 small mammals and in cow's milk. The cattle farms we....... However, because of the high prevalence of mycobacteria in some small mammal species, these infected animals can pose a risk to humans, especially in areas with a high HIV-prevalence as is the case in Tanzania.......The control of bovine tuberculosis and atypical mycobacterioses in cattle in developing countries is important but difficult because of the existence of wildlife reservoirs. In cattle farms in Tanzania, mycobacteria were detected in 7.3% of 645 small mammals and in cow's milk. The cattle farms were...... and PCR in the small mammals were atypical mycobacteria. Analysis of the presence of mycobacteria in relation to the reactor status of the cattle farms does not exclude transmission between small mammals and cattle but indicates that transmission to cattle from another source of infection is more likely...

  18. Constraining the thickness of polar ice deposits on Mercury using the Mercury Laser Altimeter and small craters in permanently shadowed regions

    Science.gov (United States)

    Deutsch, Ariel N.; Head, James W.; Chabot, Nancy L.; Neumann, Gregory A.

    2018-05-01

    Radar-bright deposits at the poles of Mercury are located in permanently shadowed regions, which provide thermally stable environments for hosting and retaining water ice on the surface or in the near subsurface for geologic timescales. While the areal distribution of these radar-bright deposits is well characterized, their thickness, and thus their total mass and volume, remain poorly constrained. Here we derive thickness estimates for selected water-ice deposits using small, simple craters visible within the permanently shadowed, radar-bright deposits. We examine two endmember scenarios: in Case I, these craters predate the emplacement of the ice, and in Case II, these craters postdate the emplacement of the ice. In Case I, we find the difference between estimated depths of the original unfilled craters and the measured depths of the craters to find the estimated infill of material. The average estimated infilled material for 9 craters assumed to be overlain with water ice is ∼ 41-14+30 m, where 1-σ standard error of the mean is reported as uncertainty. Reported uncertainties are for statistical errors only. Additional systematic uncertainty may stem from georeferencing the images and topographic datasets, from the radial accuracy of the altimeter measurements, or from assumptions in our models including (1) ice is flat in the bowl-shaped crater and (2) there is negligible ice at the crater rims. In Case II, we derive crater excavation depths to investigate the thickness of the ice layer that may have been penetrated by the impact. While the absence of excavated regolith associated with the small craters observed suggests that impacts generally do not penetrate through the ice deposit, the spatial resolution and complex illumination geometry of images may limit the observations. Therefore, it is not possible to conclude whether the small craters in this study penetrate through the ice deposit, and thus Case II does not provide a constraint on the ice thickness

  19. Temporal variation of phytoplankton in a small tropical crater lake, Costa Rica

    Directory of Open Access Journals (Sweden)

    Gerardo Umaña-Villalobos

    2010-12-01

    Full Text Available The temporal variation in lake’s phytoplankton is important to understand its general biodiversity. For tropical lakes, it has been hypothesized that they follow a similar pattern as temperate ones, on a much accelerated pace; nevertheless, few case studies have tried to elucidate this. Most studies in Costa Rica have used a monthly sampling scheme and failed in showing the expected changes. In this study, the phytoplankton of the small Barvas’s crater lake was followed for more than three years, first with monthly and later with weekly samplings, that covered almost two years. Additional information on temperature and oxygen vertical profiles was obtained on a monthly basis, and surface temperature was measured during weekly samplings around noon. Results showed that in spite of its shallow condition (max. depth: 7m and low surface temperature (11 to 19°C, the lake stratifies at least for brief periods. The phytoplankton showed both, rapid change periods, and prolonged ones of relative stasis. The plankton composition fluctuated between three main phases, one characterized by the abundance of small sized desmids (Staurastrum paradoxum, Cosmarium asphaerosporum, a second phase dominated by equally small cryptomonads (Chryptochrysis minor, Chroomonas sp. and a third phase dominated by the green alga Eutetramorus tetrasporus. Although data evidenced that monthly sampling could miss short term events, the temporal variation did not follow the typical dry and rainy seasons of the region, or any particular annual pattern. Year to year variation was high. As this small lake is located at the summit of Barva Volcano and receives the influence from both the Caribbean and the Pacific weather, seasonality at the lake is not clearly defined as in the rest of the country and short term variations in the local weather might have a stronger effect than broad seasonal trends. The occurrence of this short term changes in the phytoplankton of small tropical

  20. A pheasantry as the habitat of small terrestrial mammals (Rodentia, Insectivora) in southern Moravia (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Suchomel, J.; Heroldová, Marta

    2007-01-01

    Roč. 53, č. 4 (2007), s. 185-191 ISSN 1212-4834 Grant - others:GA ČR(CZ) GP526/03/P051 Institutional research plan: CEZ:AV0Z60930519 Keywords : pheasantry * diversity * small terrestrial mammals Subject RIV: EH - Ecology, Behaviour http://journals.uzpi.cz:8050/uniqueFiles/00162.pdf/

  1. The impact of small terrestrial mammals on beech (Fagus sylvatica plantations in spruce monoculture

    Directory of Open Access Journals (Sweden)

    Luboš Purchart

    2007-01-01

    Full Text Available Little is known about the impact of small terrestrial mammals on forest regeneration as yet. In order to determine the level of small rodent impact on artificial forest regeneration, 508 saplings have been researched in a spruce monoculture in the Drahany Uplands. With the objective to hone the interpretation of the data, small terrestrial rodents were trapped to help determine species spectrum. The occurrence of Apodemus flavicollis, Clethrionomys glareolus and Sorex araneus was verified. In 52 cases damage to the trunk caused by small rodents was monitored (10.1% of all saplings. 8 specimens (1.6% had their branches nibbled and 9 saplings (1.8% had tips of branches or trunk tops browsed. Browsing by Lepus europaeus – 423 (83.3% of all damaged specimens was significant.

  2. A high-precision 40Ar/39Ar age for the Nördlinger Ries impact crater, Germany, and implications for the accurate dating of terrestrial impact events

    Science.gov (United States)

    Schmieder, Martin; Kennedy, Trudi; Jourdan, Fred; Buchner, Elmar; Reimold, Wolf Uwe

    2018-01-01

    40Ar/39Ar dating of specimens of moldavite, the formation of which is linked to the Ries impact in southern Germany, with a latest-generation ARGUS VI multi-collector mass spectrometer yielded three fully concordant plateau ages with a weighted mean age of 14.808 ± 0.021 Ma (± 0.038 Ma including all external uncertainties; 2σ; MSWD = 0.40, P = 0.67). This new best-estimate age for the Nördlinger Ries is in general agreement with previous 40Ar/39Ar results for moldavites, but constitutes a significantly improved precision with respect to the formation age of the distal Ries-produced tektites. Separates of impact glass from proximal Ries ejecta (suevite glass from three different surface outcrops) and partially melted feldspar particles from impact melt rock of the SUBO 18 Enkingen drill core failed to produce meaningful ages. These glasses show evidence for excess 40Ar introduction, which may have been incurred during interaction with hydrothermal fluids. Only partially reset 40Ar/39Ar ages could be determined for the feldspathic melt separates from the Enkingen core. The new 40Ar/39Ar results for the Ries impact structure constrain the duration of crater cooling, during the prevailing hydrothermal activity, to locally at least ∼60 kyr. With respect to the dating of terrestrial impact events, this paper briefly discusses a number of potential issues and effects that may be the cause for seemingly precise, but on a kyr-scale inaccurate, impact ages.

  3. Lead concentrations: bats vs. terrestrial small mammals collected near a major highway

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.R.

    1979-03-01

    Lead concentrations in two species of bats and three species of terrestrial small mammals (meadow voles, short-tailed shrews, and white-footed mice) collected near a heavily travelled highway are compared. Roosting bats away from the parkway contained as much or more lead as the terrestrial mammals that were collected within 18 m of the road. Estimated doses of lead ingested by little brown bats, shrews, and voles equal or exceed doses that have caused mortality or reproductive impairment in domestic mammals. (24 references, 3 tables)

  4. Hypervelocity impact cratering calculations

    Science.gov (United States)

    Maxwell, D. E.; Moises, H.

    1971-01-01

    A summary is presented of prediction calculations on the mechanisms involved in hypervelocity impact cratering and response of earth media. Considered are: (1) a one-gram lithium-magnesium alloys impacting basalt normally at 6.4 km/sec, and (2) a large terrestrial impact corresponding to that of Sierra Madera.

  5. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Crater statistical data. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The total number of craters within a bin of mean diameter, and the number of craters of each degradational type within that bin are tabulated. Rim-to-rim diameters were measured at arbitrary azimuths for rectified photos or photos taken at vertical incidence (most lunar photos), and at azimuths paralleling a local tangent to the limb for oblique images.

  6. Experimental impact crater morphology

    Science.gov (United States)

    Dufresne, A.; Poelchau, M. H.; Hoerth, T.; Schaefer, F.; Thoma, K.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    failure planes ("terraces") in the outer, near-surface region of the crater. We suggest that these differences are due to a reduction in tensile strength in pore-space saturated sandstone. Linking morphological characteristics to impact conditions might provide a tool to help reconstruct impact conditions in small, more strength- than gravity-dominated impact craters in nature. Findings in small-scale experiments can aid the identification of particular structures in the field, such as spallation induced uplift of strata outside of the crater margins.

  7. Cutting Craters

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 12 November 2003The rims of two old and degraded impact craters are intersected by a graben in this THEMIS image taken near Mangala Fossa. Yardangs and low-albedo wind streaks are observed at the top of the image as well as interesting small grooves on the crater floor. The origin of these enigmatic grooves may be the result of mud or lava and volatile interactions. Variable surface textures observed in the bottom crater floor are the result of different aged lava flows.Image information: VIS instrument. Latitude -15.2, Longitude 219.2 East (140.8 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Dry paths effectively reduce road mortality of small and medium-sized terrestrial vertebrates.

    Science.gov (United States)

    Niemi, Milla; Jääskeläinen, Niina C; Nummi, Petri; Mäkelä, Tiina; Norrdahl, Kai

    2014-11-01

    Wildlife passages are widely used mitigation measures designed to reduce the adverse impacts of roads on animals. We investigated whether road kills of small and medium-sized terrestrial vertebrates can be reduced by constructing dry paths adjacent to streams that pass under road bridges. The study was carried out in southern Finland during the summer of 2008. We selected ten road bridges with dry paths and ten bridges without them, and an individual dry land reference site for each study bridge on the basis of landscape and traffic features. A total of 307 dead terrestrial vertebrates were identified during the ten-week study period. The presence of dry paths decreased the amount of road-killed terrestrial vertebrates (Poisson GLMM; p road-kills on mammals was not such clear. In the mammal model, a lack of dry paths increased the amount of carcasses (p = 0.001) whereas the number of casualties at dry path bridges was comparable with dry land reference sites. A direct comparison of the dead ratios suggests an average efficiency of 79% for the dry paths. When considering amphibians and mammals alone, the computed effectiveness was 88 and 70%, respectively. Our results demonstrate that dry paths under road bridges can effectively reduce road-kills of small and medium-sized terrestrial vertebrates, even without guiding fences. Dry paths seemed to especially benefit amphibians which are a threatened species group worldwide and known to suffer high traffic mortality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Terrestrial Analogs for Surface Properties Associated with Impact Cratering on the Moon - Self-secondary Impact Features at Kings Bowl, Idaho

    Science.gov (United States)

    Matiella Novak, M. A.; Zanetti, M.; Neish, C.; Kukko, A.; Fan, K.; Heldmann, J.; Hughes, S. S.

    2017-12-01

    The Kings Bowl (KB) eruptive fissure and lava field, located in the southern end of Craters of the Moon National Monument, Idaho, is an ideal location for planetary analogue field studies of surface properties related to volcanic and impact processes. Here we look at possible impact features present in the KB lava field near the main vent that resulted in squeeze-ups of molten lava from beneath a semi-solid lava lake crust. These may have been caused by the ejection of blocks during the phreatic eruption that formed the Kings Bowl pit, and their subsequent impact into a partially solidified lava pond. We compare and contrast these features with analogous self-secondary impact features, such as irregular, rimless secondary craters ("splash craters") observed in lunar impact melt deposits, to better understand how self-secondary impacts determine the surface properties of volcanic and impact crater terrains. We do this by analyzing field measurements of these features, as well as high-resolution DEM data collected through the Kinematic LiDAR System (KLS), both of which give us feature dimensions and distributions. We then compare these data with self-secondary impact features on the Moon and related surface roughness constrained through Lunar Reconnaissance Orbiter observations (Mini-RF and LROC NACs). Possible self-secondary impact features can be found in association with many lunar impact craters. These are formed when ballistic ejecta from the crater falls onto the ejecta blanket and melt surrounding the newly formed crater. Self-secondary impact features involving impact melt deposits are particularly useful to study because the visibly smooth melt texture serves to highlight the impact points in spacecraft imagery. The unusual morphology of some of these features imply that they formed when the melt had not yet completely solidified, strongly suggesting a source of impactors from the primary crater itself. We will also discuss ongoing efforts to integrate field

  10. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact

  11. Contribution to the distribution of terrestrial small mammals in the Sǎlaj county, Romania

    Directory of Open Access Journals (Sweden)

    Gubányi A.

    2016-03-01

    Full Text Available During the research period (2014-2015 287 small mammals, five species of shrews and eight species of rodents (Crocidura leucodon, C. suaveolens, Sorex araneus, S. minutus, Neomys anomalus, Microtus agrestis M. arvalis, M. subterraneus, Myodes glareolus. Apodemus agrarius, A. flavicollis, A. sylvaticus, A. uralensis were detected in the Sǎlaj County. The striped field mouse (Apodemus agrarius and the common vole (Microtus arvalis proved to be the characteristic dominant species of the small mammal communities investigated in this area. The number of terrestrial small mammalian species lagged behind our expectations. Micromys minutus was not collected during the research period in the habitats characterized by reed-bed and/or tall sedge vegetation.

  12. Constraining the Depth of Polar Ice Deposits and Evolution of Cold Traps on Mercury with Small Craters in Permanently Shadowed Regions

    Science.gov (United States)

    Deutsch, Ariel N.; Head, James W.; Neumann, Gregory A.; Chabot, Nancy L.

    2017-01-01

    Earth-based radar observations revealed highly reflective deposits at the poles of Mercury [e.g., 1], which collocate with permanently shadowed regions (PSRs) detected from both imagery and altimetry by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [e.g., 2]. MESSENGER also measured higher hydrogen concentrations at the north polar region, consistent with models for these deposits to be composed primarily of water ice [3]. Enigmatic to the characterization of ice deposits on Mercury is the thickness of these radar-bright features. A current minimum bound of several meters exists from the radar measurements, which show no drop in the radar cross section between 13- and 70-cm wavelength observations [4, 5]. A maximum thickness of 300 m is based on the lack of any statistically significant difference between the height of craters that host radar-bright deposits and those that do not [6]. More recently, this upper limit on the depth of a typical ice deposit has been lowered to approximately 150 m, in a study that found a mean excess thickness of 50 +/- 35 m of radar-bright deposits for 6 craters [7]. Refining such a constraint permits the derivation of a volumetric estimate of the total polar ice on Mercury, thus providing insight into possible sources of water ice on the planet. Here, we take a different approach to constrain the thickness of water-ice deposits. Permanently shadowed surfaces have been resolved in images acquired with the broadband filter on MESSENGER's wide-angle camera (WAC) using low levels of light scattered by crater walls and other topography [8]. These surfaces are not featureless and often host small craters (less than a few km in diameter). Here we utilize the presence of these small simple craters to constrain the thickness of the radar-bright ice deposits on Mercury. Specifically, we compare estimated depths made from depth-to-diameter ratios and depths from individual Mercury Laser Altimeter (MLA

  13. Innovation in Deep Space Habitat Interior Design: Lessons Learned From Small Space Design in Terrestrial Architecture

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry

    2014-01-01

    Increased public awareness of carbon footprints, crowding in urban areas, and rising housing costs have spawned a 'small house movement' in the housing industry. Members of this movement desire small, yet highly functional residences which are both affordable and sensitive to consumer comfort standards. In order to create comfortable, minimum-volume interiors, recent advances have been made in furniture design and approaches to interior layout that improve both space utilization and encourage multi-functional design for small homes, apartments, naval, and recreational vehicles. Design efforts in this evolving niche of terrestrial architecture can provide useful insights leading to innovation and efficiency in the design of space habitats for future human space exploration missions. This paper highlights many of the cross-cutting architectural solutions used in small space design which are applicable to the spacecraft interior design problem. Specific solutions discussed include reconfigurable, multi-purpose spaces; collapsible or transformable furniture; multi-purpose accommodations; efficient, space saving appliances; stowable and mobile workstations; and the miniaturization of electronics and computing hardware. For each of these design features, descriptions of how they save interior volume or mitigate other small space issues such as confinement stress or crowding are discussed. Finally, recommendations are provided to provide guidance for future designs and identify potential collaborations with the small spaces design community.

  14. Mercury's Densely Cratered Surface

    Science.gov (United States)

    1974-01-01

    Mariner 10 took this picture (FDS 27465) of the densely cratered surface of Mercury when the spacecraft was 18,200 kilometers (8085 miles) from the planet on March 29. The dark line across top of picture is a 'dropout' of a few TV lines of data. At lower left, a portion of a 61 kilometer (38 mile) crater shows a flow front extending across the crater floor and filling more than half of the crater. The smaller, fresh crater at center is about 25 kilometers (15 miles) in diameter. Craters as small as one kilometer (about one-half mile) across are visible in the picture.The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.Image Credit: NASA/JPL/Northwestern University

  15. What Really Happened to Earth's Older Craters?

    Science.gov (United States)

    Bottke, William; Mazrouei, Sara; Ghent, Rebecca; Parker, Alex

    2017-10-01

    Most assume the Earth’s crater record is heavily biased, with erosion/tectonics destroying older craters. This matches expectations, but is it actually true? To test this idea, we compared Earth’s crater record, where nearly all D ≥ 20 km craters are pick out from older craters with eroded fragments. Moreover, an inverse relationship between rock abundance (RA) and crater age exists. Using measured RA values, we computed ages for 111 rocky craters with D ≥ 10 km that formed between 80°N and 80°S over the last 1 Gyr.We found several surprising results. First, the production rate of D ≥ 10 km lunar craters increased by a factor of 2.2 [-0.9, +4.4; 95% confidence limits] over the past 250 Myr compared to the previous 750 Myr. Thus, the NEO population is higher now than it has been for the last billion years. Second, the size and age distributions of lunar and terrestrial craters for D ≥ 20 km over the last 650 Myr have similar shapes. This implies that crater erasure must be limited on stable terrestrial terrains; in an average sense, for a given region, the Earth either keeps all or loses all of its D ≥ 20 craters at the same rate, independent of size. It also implies the observed deficit of large terrestrial craters between 250-650 Myr is not preservation bias but rather reflects a distinctly lower impact flux. We predict 355 ± 86 D ≥ 20 km craters formed on Earth over the last 650 Myr. Only 38 ± 6 are known, so the ratio, 10.7 ± 3.1%, is a measure of the Earth’s surface that is reasonably stable to large crater formation over 650 Myr. If erosion had dominated, the age distribution of terrestrial craters would be strongly skewed toward younger ages, which is not observed. We predict Chicxulub-type impacts were rare over the last Gyr, with the event 66 Ma a probable byproduct of the current high terrestrial impact flux.

  16. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen

    Science.gov (United States)

    Cole, J.J.; Carpenter, S.R.; Kitchell, J.; Pace, M.L.; Solomon, C.T.; Weidel, B.

    2011-01-01

    Cross-ecosystem subsidies to food webs can alter metabolic balances in the receiving (subsidized) system and free the food web, or particular consumers, from the energetic constraints of local primary production. Although cross-ecosystem subsidies between terrestrial and aquatic systems have been well recognized for benthic organisms in streams, rivers, and the littoral zones of lakes, terrestrial subsidies to pelagic consumers are more difficult to demonstrate and remain controversial. Here, we adopt a unique approach by using stable isotopes of H, C, and N to estimate terrestrial support to zooplankton in two contrasting lakes. Zooplankton (Holopedium, Daphnia, and Leptodiaptomus) are comprised of ???20-40% of organic material of terrestrial origin. These estimates are as high as, or higher than, prior measures obtained by experimentally manipulating the inorganic 13C content of these lakes to augment the small, natural contrast in 13C between terrestrial and algal photosynthesis. Our study gives credence to a growing literature, which we review here, suggesting that significant terrestrial support of pelagic crustaceans (zooplankton) is widespread.

  17. Craters on comets

    Science.gov (United States)

    Vincent, J.; Oklay, N.; Marchi, S.; Höfner, S.; Sierks, H.

    2014-07-01

    This paper reviews the observations of crater-like features on cometary nuclei. ''Pits'' have been observed on almost all cometary nuclei but their origin is not fully understood [1,2,3,4]. It is currently assumed that they are created mainly by the cometary activity with a pocket of volatiles erupting under a dust crust, leaving a hole behind. There are, however, other features which cannot be explained in this way and are interpreted alternatively as remnants of impact craters. This work focusses on the second type of pit features: impact craters. We present an in-depth review of what has been observed previously and conclude that two main types of crater morphologies can be observed: ''pit-halo'' and ''sharp pit''. We extend this review by a series of analysis of impact craters on cometary nuclei through different approaches [5]: (1) Probability of impact: We discuss the chances that a Jupiter Family Comet like 9P/Tempel 1 or the target of Rosetta 67P/Churyumov-Gerasimenko can experience an impact, taking into account the most recent work on the size distribution of small objects in the asteroid Main Belt [6]. (2) Crater morphology from scaling laws: We present the status of scaling laws for impact craters on cometary nuclei [7] and discuss their strengths and limitations when modeling what happens when a rocky projectile hits a very porous material. (3) Numerical experiments: We extend the work on scaling laws by a series of hydrocode impact simulations, using the iSALE shock physics code [8,9,10] for varying surface porosity and impactor velocity (see Figure). (4) Surface processes and evolution: We discuss finally the fate of the projectile and the effects of the impact-induced surface compaction on the activity of the nucleus. To summarize, we find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous

  18. Influence of parasitism on the use of small terrestrial rodents in environmental pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Jankovska, Ivana, E-mail: jankovska@af.czu.c [Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic); Miholova, Daniela [Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic); Langrova, Iva [Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic); Bejcek, Vladimir [Department of Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic); Vadlejch, Jaroslav [Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic); Kolihova, Dana; Sulc, Miloslav [Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Kamycka 129, 165 21 Prague 6 - Suchdol (Czech Republic)

    2009-08-15

    Bioaccumulation of cadmium, chromium, copper, manganese, nickel, lead and zinc in small terrestrial rodents - voles and their cestode parasite Paranoplocephala dentata was studied. Contents of Pb, Mn, Ni and Zn in the parasite were found to be higher than in the kidney and liver of the parasitized animals. Lead level in the cestode was 37 fold higher than in the liver of the infected rodents. Bioaccumulation factors of zinc, nickel and manganese in the cestode are mostly in the range from 2 to 4.5. Considering the different contents of manganese and zinc in livers of non-parasitized and parasitized rodents, kidney tissue was found to be more reliable than liver as an indicator of environmental pollution by manganese and zinc; the kidneys of parasitized animals showed no significant change in the concentrations of those elements that are accumulated in the cestode. - Liver tissue from voles infected by Paranoplocephala dentata was less suitable as a biomonitor for metal contamination than kidney tissue.

  19. Challenges to natural resource monitoring in a small border park: terrestrial mammals at Coronado National Memorial, Cochise County, Arizona

    Science.gov (United States)

    Swann, Don E.; Bucci, Melanie; Kuenzi, Amy J.; Alberti, Barbara N.; Schwalbe, Cecil R.; Halvorson, William L.; van Riper, Charles; Schwalbe, Cecil R.

    2010-01-01

    Long-term monitoring in national parks is essential to meet National Park Service and other important public goals. Terrestrial mammals are often proposed for monitoring because large mammals are of interest to visitors and small mammals are important as prey. However, traditional monitoring strategies for mammals are often too expensive and complex to sustain for long periods, particularly in small parks. To evaluate potential strategies for long-term monitoring in small parks, we conducted an intensive one-year inventory of terrestrial mammals at Coronado National Memorial, located in Arizona on the U.S.-Mexico international border, then continued less-intensive monitoring at the site for 7 additional years. During 1996-2003 we confirmed 44 species of terrestrial mammals. Most species (40) were detected in the intensive first year of the study, but we continued to detect new species in later years. Mark-recapture data on small mammals indicated large inter-annual fluctuations in population size, but no significant trend over the 7-year period. Issues associated with the international border affected monitoring efforts and increased sampling costs. Our study confirms that sustained annual monitoring of mammals is probably not feasible in small park units like Coronado. However, comparisons of our data with past studies provide insight into important changes in the mammal community since the 1970s, including an increase in abundance and diversity of grassland rodents. Our results suggest that intensive inventories every 10-20 years may be a valuable and cost-effective approach for detecting long-term trends in terrestrial mammal communities in small natural areas.

  20. New evidence for surface water ice in small-scale cold traps and in three large craters at the north polar region of Mercury from the Mercury Laser Altimeter

    Science.gov (United States)

    Deutsch, Ariel N.; Neumann, Gregory A.; Head, James W.

    2017-09-01

    The Mercury Laser Altimeter (MLA) measured surface reflectance, rs, at 1064 nm. On Mercury, most water-ice deposits have anomalously low rs values indicative of an insulating layer beneath which ice is buried. Previous detections of surface water ice (without an insulating layer) were limited to seven possible craters. Here we map rs in three additional permanently shadowed craters that host radar-bright deposits. Each crater has a mean rs value >0.3, suggesting that water ice is exposed at the surface without an overlying insulating layer. We also identify small-scale cold traps (rs >0.3 and permanent shadows have biannual maximum surface temperatures <100 K. We suggest that a substantial amount of Mercury's water ice is not confined to large craters but exists within microcold traps, within rough patches and intercrater terrain.

  1. Deposition and Burial Efficiency of Terrestrial Organic Carbon Exported from Small Mountainous Rivers to the Continental Margin, Southwest of Taiwan

    Science.gov (United States)

    Hsu, F.; Lin, S.; Wang, C.; Huh, C.

    2007-12-01

    Terrestrial organic carbon exported from small mountainous river to the continental margin may play an important role in global carbon cycle and it?|s biogeochemical process. A huge amount of suspended materials from small rivers in southwestern Taiwan (104 million tons per year) could serve as major carbon source to the adjacent ocean. However, little is know concerning fate of this terrigenous organic carbon. The purpose of this study is to calculate flux of terrigenous organic carbon deposited in the continental margin, offshore southwestern Taiwan through investigating spatial variation of organic carbon content, organic carbon isotopic compositions, organic carbon deposition rate and burial efficiency. Results show that organic carbon compositions in sediment are strongly influenced by terrestrial material exported from small rivers in the region, Kaoping River, Tseng-wen River and Er-jan Rver. In addition, a major part of the terrestrial materials exported from the Kaoping River may bypass shelf region and transport directly into the deep sea (South China Sea) through the Kaoping Canyon. Organic carbon isotopic compositions with lighter carbon isotopic values are found near the Kaoping River and Tseng-wen River mouth and rapidly change from heavier to lighter values through shelf to slope. Patches of lighter organic carbon isotopic compositions with high organic carbon content are also found in areas west of Kaoping River mouth, near the Kaoshiung city. Furthermore, terrigenous organic carbons with lighter isotopic values are found in the Kaoping canyon. A total of 0.028 Mt/yr of terrestrial organic carbon was found in the study area, which represented only about 10 percent of all terrestrial organic carbon deposited in the study area. Majority (~90 percent) of the organic carbon exported from the Kaoping River maybe directly transported into the deep sea (South China Sea) and become a major source of organic carbon in the deep sea.

  2. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 2: Small mammal food chains and bioavailability

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P.A.

    2000-06-01

    Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, {sup 226}Ra, {sup 210}Pb, and {sup 210}Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities.

  3. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 2: Small mammal food chains and bioavailability

    International Nuclear Information System (INIS)

    Thomas, P.A.

    2000-01-01

    Food chain transfer through the soil-vegetation-small mammal food chain was measured by concentration ratios (CRs) for uranium, 226 Ra, 210 Pb, and 210 Po at three sites near the Key Lake uranium mill in northern Saskatchewan. Plant/soil CRs, animal carcass/GI tract CRs, and animal/soil CRs were depressed at sites impacted by mill and tailings dusts relative to a nearby control site. Thus, radionuclides associated with large particulates in tailings and/or ore dusts may be less bioavailable to terrestrial plants and animals than natural sources of radioactive dust. These results show that reliance on default food chain transfer parameters, obtained from uncontaminated terrestrial ecosystems, may overpredict impacts at uranium mine and mill sites. Given the omnivorous diet of small mammals and birds, animal/soil CRs are recommended as the most cost-effective and robust means of predicting animal concentrations from environmental monitoring data at uranium mill facilities

  4. Centrifuge impact cratering experiment 5

    Science.gov (United States)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  5. Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact

    Science.gov (United States)

    Arakawa, M.; Wada, K.; Saiki, T.; Kadono, T.; Takagi, Y.; Shirai, K.; Okamoto, C.; Yano, H.; Hayakawa, M.; Nakazawa, S.; Hirata, N.; Kobayashi, M.; Michel, P.; Jutzi, M.; Imamura, H.; Ogawa, K.; Sakatani, N.; Iijima, Y.; Honda, R.; Ishibashi, K.; Hayakawa, H.; Sawada, H.

    2017-07-01

    The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ˜1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.

  6. SEM-EDS Analyses of Small Craters in Stardust Aluminum Foils: Implications for the Wild-2 Dust Distribution

    Science.gov (United States)

    Borg, J.; Horz, F.; Bridges, J. C.; Burchell, M. J.; Djouadi, Z.; Floss, C.; Graham, G. A.; Green, S. F.; Heck, P. R.; Hoppe, P.; hide

    2007-01-01

    Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.

  7. Feasibility study of a small, thorium-based fission power system for space and terrestrial applications

    Science.gov (United States)

    Worrall, Michael Jason

    One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the

  8. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Estimated thickness of ejecta deposits compared to to crater rim heights. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The area of the continuous ejecta deposits on mercury was calculated to vary from 2.24 to 0.64 times the crater's area for those of diameter 40 km to 300 km. Because crater boundaries on the geologic map include the detectable continuous ejecta blanket, plains exterior to these deposits must consist of farther-flung ejecta (of that or other craters), or volcanic deposits flooding the intervening areas. Ejecta models are explored.

  9. An assessment of non-volant terrestrial vertebrates response to wind farms--a study of small mammals.

    Science.gov (United States)

    Łopucki, Rafał; Mróz, Iwona

    2016-02-01

    The majority of studies on the effects of wind energy development on wildlife have been focused on birds and bats, whereas knowledge of the response of terrestrial, non-flying vertebrates is very scarce. In this paper, the impact of three functioning wind farms on terrestrial small mammal communities (rodents and shrews) and the population parameters of the most abundant species were studied. The study was carried out in southeastern Poland within the foothills of the Outer Western Carpathians. Small mammals were captured at 12 sites around wind turbines and at 12 control sites. In total, from 1200 trap-days, 885 individuals of 14 studied mammal species were captured. There was no difference in the characteristics of communities of small mammals near wind turbines and within control sites; i.e. these types of sites were inhabited by a similar number of species of similar abundance, similar species composition, species diversity (H' index) and species evenness (J') (Pielou's index). For the two species with the highest proportion in the communities (Apodemus agrarius and Microtus arvalis), the parameters of their populations (mean body mass, sex ratio, the proportion of adult individuals and the proportion of reproductive female) were analysed. In both species, none of the analysed parameters differed significantly between sites in the vicinity of turbines and control sites. For future studies on the impact of wind turbines on small terrestrial mammals in different geographical areas and different species communities, we recommend the method of paired 'turbine-control sites' as appropriate for animal species with pronounced fluctuations in population numbers.

  10. Drainage systems of Lonar Crater, India: Contributions to Lonar Lake hydrology and crater degradation

    Science.gov (United States)

    Komatsu, Goro; Senthil Kumar, P.; Goto, Kazuhisa; Sekine, Yasuhito; Giri, Chaitanya; Matsui, Takafumi

    2014-05-01

    Lonar, a 1.8-km-diameter impact crater in India, is a rare example of terrestrial impact craters formed in basaltic bedrock. The estimated age of the crater ranges widely from less than 12 ka to over 600 ka, but the crater preserves a relatively pristine morphology. We conducted a study of various drainage systems of Lonar Crater. The crater floor hosts a shallow 5-m-deep lake, which fluctuates seasonally. Our investigation reveals that the lake level is influenced by surface runoff that is active during the monsoon and groundwater input effective during both the rainy and the dry seasons. The groundwater discharge is observed as springs on the inner rim walls corresponding to weathered vesicular basalt and/or proximal ejecta, which are underlain by thick massive basalt layers. This observation indicates that groundwater movement is lithologically controlled: it passes preferentially through permeable vesicular basalt or proximal ejecta but is hindered in less permeable massive basalt. It is hypothesized that groundwater is also structurally controlled by dipping of basalt layers, interconnectivity of the permeable lithologic units through fractures, and preferential pathways such as fractures within the permeable lithologic units. Investigation on hydrological processes at Lonar Crater and its lake could provide useful insights into purported paleo-crater lakes presumably formed in the basaltic crust of Mars. The Lonar Crater interior shows signs of degradation in the forms of gullies and debris flows, and the Dhar valley incising in the rim leading to form a fan delta. The ejecta surface is characterized by the presence of channels, originating from the rim area and extending radially away from the crater center. The channels probably resulted from surface runoff, and its erosion contributes to the removal of the ejecta. Lonar Crater is a valuable analog site for studying degradation processes with potential application to impact craters occurring on

  11. A Tale of 3 Craters

    Science.gov (United States)

    2004-01-01

    11 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image captures some of the complexity of the martian upper crust. Mars does not simply have an impact-cratered surface, it's upper crust is a cratered volume. Over time, older craters on Mars have been eroded, filled, buried, and in some cases exhumed and re-exposed at the martian surface. The crust of Mars is layered to depths of 10 or more kilometers, and mixed in with the layered bedrock are a variety of ancient craters with diameters ranging from a few tens of meters (a few tens of yards) to several hundred kilometers (more than one or two hundred miles). The picture shown here captures some of the essence of the layered, cratered volume of the upper crust of Mars in a very simple form. The image shows three distinct circular features. The smallest, in the lower right quarter of the image, is a meteor crater surrounded by a mound of material. This small crater formed within a layer of bedrock that once covered the entire scene, but today is found only in this small remnant adjacent to the crater. The intermediate-sized crater, west (left) of the small one, formed either in the next layer down--that is, below the layer in which the small crater formed--or it formed in some layers that are now removed, but was big enough to penetrate deeply into the rock that is near the surface today. The largest circular feature in the image, in the upper right quarter of the image, is still largely buried. It formed in layers of rock that are below the present surface. Erosion has brought traces of its rim back to the surface of Mars. This picture is located near 50.0oS, 77.8oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this October 2004 image from the upper left.

  12. Terrestrial cometary tail and lunar corona induced by small comets: Predictions for Galileo

    International Nuclear Information System (INIS)

    Dessler, A.J.; Sandel, B.R.; Vasyliunas, V.M.

    1990-01-01

    A search for small comets near 1 AU is an objective of the Galileo mission. If small comets are as numerous and behave as has been proposed, two near-Earth signatures of small comets should be observable by the UVS experiment on the Earth flybys of Galileo; (1) a comet-like tail of Earth created by small comets that come close to Earth, break up and vaporize, but just miss the atmosphere and proceed back into interplanetary space, and (2) a corona surrounding the Moon induced by lunar impact of small comets

  13. The Global Contribution of Secondary Craters on the Icy Satellites

    Science.gov (United States)

    Hoogenboom, T.; Johnson, K. E.; Schenk, P.

    2014-12-01

    At present, surface ages of bodies in the Outer Solar System are determined only from crater size-frequency distributions (a method dependent on an understanding of the projectile populations responsible for impact craters in these planetary systems). To derive accurate ages using impact craters, the impactor population must be understood. Impact craters in the Outer Solar System can be primary, secondary or sesquinary. The contribution of secondary craters to the overall population has recently become a "topic of interest." Our objective is to better understand the contribution of dispersed secondary craters to the small crater populations, and ultimately that of small comets to the projectile flux on icy satellites in general. We measure the diameters of obvious secondary craters (determined by e.g. irregular crater shape, small size, clustering) formed by all primary craters on Ganymede for which we have sufficiently high resolution data to map secondary craters. Primary craters mapped range from approximately 40 km to 210 km. Image resolution ranges from 45 to 440 m/pixel. Bright terrain on Ganymede is our primary focus. These resurfaced terrains have relatively low crater densities and serve as a basis for characterizing secondary populations as a function of primary size on an icy body for the first time. Although focusing on Ganymede, we also investigate secondary crater size, frequency, distribution, and formation, as well as secondary crater chain formation on icy satellites throughout the Saturnian and Jovian systems principally Rhea. We compare our results to similar studies of secondary cratering on the Moon and Mercury. Using Galileo and Voyager data, we have identified approximately 3,400 secondary craters on Ganymede. In some cases, we measured crater density as a function of distance from a primary crater. Because of the limitations of the Galileo data, it is necessary to extrapolate from small data sets to the global population of secondary craters

  14. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Geologic map analyses: Correlation of geologic and cratering histories. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    Geologic map analyses are expanded, beginning with a discussion of particular regions which may illustrate volcanic and ballistic plains emplacement on Mercury. Major attention is focused on the surface history of Mercury through discussion of the areal distribution of plains and craters and the paleogeologic maps of the first quadrant. A summary of the lunar intercrater plains formation similarly interrelates the information from the Moon's geologic and cratering histories.

  15. Very small HTGR nuclear power plant concepts for special terrestrial applications

    International Nuclear Information System (INIS)

    McDonald, C.F.; Goodjohn, A.J.

    1983-01-01

    The role of the very small nuclear power plant, of a few megawatts capacity, is perceived to be for special applications where an energy source as required but the following prevail: 1) no indigenous fossil fuel source, in long transport distances that add substantially to the cost of oil, coal in gas, and 3) secure long-term power production for defense applications with freedom from fuel supply lines. A small High Temperature Gas-Cooled reactor (HTGR) plant could provide the total energy needs for 1) a military installation, 2) an island base of strategic significance, 3) an industrial community or 4) an urban area. The small HTGR is regarded as a fixed-base installation (as opposed to a mobile system). All of the major components would be factory fabricated and transported to the site where emphasis would be placed on minimizing the construction time. The very small HTGR plant, currently in an early stage of design definition, has the potential for meeting the unique needs of the small energy user in both the military and private sectors. The plant may find acceptance for specialized applications in the industrialized nations and to meet the energy needs of developing nations. Emphasis in the design has been placed on safety, simplicity and compactness

  16. Methodological considerations for detection of terrestrial small-body salamander eDNA and implications for biodiversity conservation

    Science.gov (United States)

    Walker, Donald M.; Leys, Jacob E.; Dunham, Kelly E.; Oliver, Joshua C.; Schiller, Emily E.; Stephenson, Kelsey S.; Kimrey, John T.; Wooten, Jessica; Rogers, Mark W.

    2017-01-01

    Environmental DNA (eDNA) can be used as an assessment tool to detect populations of threatened species and provide fine-scale data required to make management decisions. The objectives of this project were to use quantitative PCR (qPCR) to: (i) detect spiked salamander DNA in soil, (ii) quantify eDNA degradation over time, (iii) determine detectability of salamander eDNA in a terrestrial environment using soil, faeces, and skin swabs, (iv) detect salamander eDNA in a mesocosm experiment. Salamander eDNA was positively detected in 100% of skin swabs and 66% of faecal samples and concentrations did not differ between the two sources. However, eDNA was not detected in soil samples collected from directly underneath wild-caught living salamanders. Salamander genomic DNA (gDNA) was detected in all qPCR reactions when spiked into soil at 10.0, 5.0, and 1.0 ng/g soil and spike concentration had a significant effect on detected concentrations. Only 33% of samples showed recoverable eDNA when spiked with 0.25 ng/g soil, which was the low end of eDNA detection. To determine the rate of eDNA degradation, gDNA (1 ng/g soil) was spiked into soil and quantified over seven days. Salamander eDNA concentrations decreased across days, but eDNA was still amplifiable at day 7. Salamander eDNA was detected in two of 182 mesocosm soil samples over 12 weeks (n = 52 control samples; n = 65 presence samples; n = 65 eviction samples). The discrepancy in detection success between experiments indicates the potential challenges for this method to be used as a monitoring technique for small-bodied wild terrestrial salamander populations.

  17. Crater Highlands, Tanzania

    Science.gov (United States)

    2006-01-01

    The Shuttle Radar Topography Mission (SRTM), flown aboard Space Shuttle Endeavour in February 2000, acquired elevation measurements for nearly all of Earth's landmass between 60oN and 56oS latitudes. For many areas of the world SRTM data provide the first detailed three-dimensional observation of landforms at regional scales. SRTM data were used to generate this view of the Crater Highlands along the East African Rift in Tanzania. Landforms are depicted with colored height and shaded relief, using a vertical exaggeration of 2X and a southwestwardly look direction. Lake Eyasi is depicted in blue at the top of the image, and a smaller lake occurs in Ngorongoro Crater. Near the image center, elevations peak at 3648 meters (11,968 feet) at Mount Loolmalasin, which is south of Ela Naibori Crater. Kitumbeine (left) and Gelai (right) are the two broad mountains rising from the rift lowlands. Mount Longido is seen in the lower left, and the Meto Hills are in the right foreground. Tectonics, volcanism, landslides, erosion and deposition -- and their interactions -- are all very evident in this view. The East African Rift is a zone of spreading between the African (on the west) and Somali (on the east) crustal plates. Two branches of the rift intersect here in Tanzania, resulting in distinctive and prominent landforms. One branch trends nearly parallel the view and includes Lake Eyasi and the very wide Ngorongoro Crater. The other branch is well defined by the lowlands that trend left-right across the image (below center, in green). Volcanoes are often associated with spreading zones where magma, rising to fill the gaps, reaches the surface and builds cones. Craters form if a volcano explodes or collapses. Later spreading can fracture the volcanoes, which is especially evident on Kitumbeine and Gelai Mountains (left and right, respectively, lower center). The Crater Highlands rise far above the adjacent savannas, capture moisture from passing air masses, and host rain

  18. Meteor Crater (Barringer Meteorite Crater), Arizona: Summary of Impact Conditions

    Science.gov (United States)

    Roddy, D. J.; Shoemaker, E. M.

    1995-09-01

    Meteor Crater in northern Arizona represents the most abundant type of impact feature in our Solar System, i.e., the simple bowl-shaped crater. Excellent exposures and preservation of this large crater and its ejecta blanket have made it a critical data set in both terrestrial and planetary cratering research. Recognition of the value of the crater was initiated in the early 1900's by Daniel Moreau Barringer, whose 27 years of exploration championed its impact origin [1]. In 1960, Shoemaker presented information that conclusively demonstrated that Meteor Crater was formed by hypervelocity impact [2]. This led the U.S. Geological Survey to use the crater extensively in the 1960-70's as a prime training site for the Apollo astronauts. Today, Meteor Crater continues to serve as an important research site for the international science community, as well as an educational site for over 300,000 visitors per year. Since the late 1950's, studies of this crater have presented an increasingly clearer view of this impact and its effects and have provided an improved view of impact cratering in general. To expand on this data set, we are preparing an upgraded summary on the Meteor Crater event following the format in [3], including information and interpretations on: 1) Inferred origin and age of the impacting body, 2) Inferred ablation and deceleration history in Earth's atmosphere, 3) Estimated speed, trajectory, angle of impact, and bow shock conditions, 4) Estimated coherence, density, size, and mass of impacting body, 5) Composition of impacting body (Canyon Diablo meteorite), 6) Estimated kinetic energy coupled to target rocks and atmosphere, 7) Terrain conditions at time of impact and age of impact, 8) Estimated impact dynamics, such as pressures in air, meteorite, and rocks, 9) Inferred and estimated material partitioning into vapor, melt, and fragments, 10) Crater and near-field ejecta parameters, 11) Rock unit distributions in ejecta blanket, 12) Estimated far

  19. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10 8 kg, with a corresponding kinetic energy of 1.88 x 10 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references

  20. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    International Nuclear Information System (INIS)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-04-01

    A computational approach used for subsurface explosion cratering has been extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for our first computer simulation because it was the most thoroughly studied. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Shoemaker estimates that the impact occurred about 20,000 to 30,000 years ago [Roddy (1977)]. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s. meteorite mass of 1.57E + 08 kg, with a corresponding kinetic energy of 1.88E + 16 J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation a Tillotson equation-of-state description for iron and limestone was used with no shear strength. A color movie based on this calculation was produced using computer-generated graphics. Results obtained for this preliminary calculation of the formation of Meteor Crater, Arizona, are in good agreement with Meteor Crater Measurements

  1. Two-dimensional computer simulation of hypervelocity impact cratering: some preliminary results for Meteor Crater, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, J.B.; Burton, D.E.; Cunningham, M.E.; Lettis, L.A. Jr.

    1978-06-01

    A computational approach used for subsurface explosion cratering was extended to hypervelocity impact cratering. Meteor (Barringer) Crater, Arizona, was selected for the first computer simulation because it is one of the most thoroughly studied craters. It is also an excellent example of a simple, bowl-shaped crater and is one of the youngest terrestrial impact craters. Initial conditions for this calculation included a meteorite impact velocity of 15 km/s, meteorite mass of 1.67 x 10/sup 8/ kg, with a corresponding kinetic energy of 1.88 x 10/sup 16/ J (4.5 megatons). A two-dimensional Eulerian finite difference code called SOIL was used for this simulation of a cylindrical iron projectile impacting at normal incidence into a limestone target. For this initial calculation, a Tillotson equation-of-state description for iron and limestone was used with no shear strength. Results obtained for this preliminary calculation of the formation of Meteor Crater are in good agreement with field measurements. A color movie based on this calculation was produced using computer-generated graphics. 19 figures, 5 tables, 63 references.

  2. Thermal performance of a small-scale loop heat pipe for terrestrial application

    International Nuclear Information System (INIS)

    Chung, Won Bok; Boo, Joon Hong

    2004-01-01

    A small-scale loop heat pipe with polypropylene wick was fabricated and tested for its thermal performance. The container and tubing of the system was made of stainless steel and several working fluids were used to see the difference in performance including methanol, ethanol, acetone, R134a, and water. The heating area was 35 mm x 35 mm and there were nine axial grooves in the evaporator to provide a vapor passage. The pore size of the polypropylene wick inside the evaporator was varied from 0.5 m to 25 m. The size of condenser was 40 mm (W) x 50 mm (L) in which ten coolant paths were provided. The inner diameter of liquid and vapor transport lines were 2.0 mm and 4.0 mm, respectively and the length of which were 0.5 m. The PP wick LHP was operated with methanol, acetone, and ethanol normally. R134a was not compatible with PP wick and water was unsuitable within operating limit of 100 .deg. C. The minimum thermal load of 10 W (0.8 W/cm 2 ) and maximum thermal load of 80 W (6.5 W/cm 2 ) were achieved using methanol as working fluid with the condenser temperature of 20 .deg. C with horizontal position

  3. Cratering record in the inner solar system: Implications for earth

    International Nuclear Information System (INIS)

    Barlow, N.G.

    1988-01-01

    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters

  4. Meteor Crater, AZ

    Science.gov (United States)

    2002-01-01

    The Barringer Meteorite Crater (also known as 'Meteor Crater') is a gigantic hole in the middle of the arid sandstone of the Arizona desert. A rim of smashed and jumbled boulders, some of them the size of small houses, rises 50 m above the level of the surrounding plain. The crater itself is nearly a 1500 m wide, and 180 m deep. When Europeans first discovered the crater, the plain around it was covered with chunks of meteoritic iron - over 30 tons of it, scattered over an area 12 to 15 km in diameter. Scientists now believe that the crater was created approximately 50,000 years ago. The meteorite which made it was composed almost entirely of nickel-iron, suggesting that it may have originated in the interior of a small planet. It was 50 m across, weighed roughly 300,000 tons, and was traveling at a speed of 65,000 km per hour. This ASTER 3-D perspective view was created by draping an ASTER bands 3-2-1image over a digital elevation model from the US Geological Survey National Elevation Dataset.This image was acquired on May 17, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along

  5. Small-Scale Effect of Pine Stand Pruning on Snowpack Distribution in the Pyrenees Observed with a Terrestrial Laser Scanner

    Directory of Open Access Journals (Sweden)

    Jesús Revuelto

    2016-07-01

    Full Text Available Forests in snow-dominated areas have substantial effects on the snowpack and its evolution over time. Such interactions have significant consequences for the hydrological response of mountain rivers. Thus, the impact of forest management actions on the snow distribution, and hence the storage of water in the form of snow during winter and spring, is a major concern. The results of this study provide the first detailed comparison of the small-scale effect of forest characteristics on the snowpack distribution, assessed prior to and following major modification of the structure of the canopy by pruning of the lower branches of the trees to 3 m above the ground. This is a common management practice aimed at reducing the spread of forest fires. The snowpack distribution was determined using terrestrial laser scanning (LiDAR technology at a high spatial resolution (0.25 m over a 1000 m2 study area during 23 survey dates over three snow seasons in a small study area in the central Pyrenees. The pruning was conducted during summer following the snow season in the second year of the study (i.e., the study duration encompassed two seasons prior to canopy pruning and one following. Principal component analysis (PCA was used to identify recurring spatial patterns of snow distribution. The results showed that pruning reduced the average radius of the canopy of trees by 1.2 m, and increased the clearance around the trunks, as all the branches that formerly contacted the ground were removed. However, the impact on the snowpack was moderate. The PCA revealed that the spatial configuration of the snowpack did not change significantly, as the principal components included survey days from different periods of the snow season, and did not discriminate days surveyed prior to and following pruning. Nevertheless, removal of the lower branches reduced the area beneath the canopy by 36%, and led to an average increase in total snow depth of approximately 14%.

  6. Cratering statistics on asteroids: Methods and perspectives

    Science.gov (United States)

    Chapman, C.

    2014-07-01

    Crater size-frequency distributions (SFDs) on the surfaces of solid-surfaced bodies in the solar system have provided valuable insights about planetary surface processes and about impactor populations since the first spacecraft images were obtained in the 1960s. They can be used to determine relative age differences between surficial units, to obtain absolute model ages if the impactor flux and scaling laws are understood, to assess various endogenic planetary or asteroidal processes that degrade craters or resurface units, as well as assess changes in impactor populations across the solar system and/or with time. The first asteroid SFDs were measured from Galileo images of Gaspra and Ida (cf., Chapman 2002). Despite the superficial simplicity of these studies, they are fraught with many difficulties, including confusion by secondary and/or endogenic cratering and poorly understood aspects of varying target properties (including regoliths, ejecta blankets, and nearly-zero-g rubble piles), widely varying attributes of impactors, and a host of methodological problems including recognizability of degraded craters, which is affected by illumination angle and by the ''personal equations'' of analysts. Indeed, controlled studies (Robbins et al. 2014) demonstrate crater-density differences of a factor of two or more between experienced crater counters. These inherent difficulties have been especially apparent in divergent results for Vesta from different members of the Dawn Science Team (cf. Russell et al. 2013). Indeed, they have been exacerbated by misuse of a widely available tool (Craterstats: hrscview.fu- berlin.de/craterstats.html), which incorrectly computes error bars for proper interpretation of cumulative SFDs, resulting in derived model ages specified to three significant figures and interpretations of statistically insignificant kinks. They are further exacerbated, and for other small-body crater SFDs analyzed by the Berlin group, by stubbornly adopting

  7. Geomorphology of crater and basin deposits - Emplacement of the Fra Mauro formation

    Science.gov (United States)

    Morrison, R. H.; Oberbeck, V. R.

    1975-01-01

    Characteristics of continuous deposits near lunar craters larger than about 1 km wide are considered, and it is concluded that (1) concentric dunes, radial ridges, and braided lineations result from deposition of the collision products of ejecta from adjacent pairs of similarly oriented secondary-crater chains and are, therefore, concentrations of secondary-crater ejecta; (2) intracrater ridges are produced within preexisting craters surrounding a fresh primary crater by ricocheting and focusing of secondary-crater ejecta from the preexisting craters' walls; and (3) secondary cratering has produced many of the structures of the continuous deposits of relatively small lunar craters and is the dominant process for emplacement of most of the radial facies of the continuous deposits of large lunar craters and basins. The percentages of Imbrium ejecta in deposits and the nature of Imbrium sculpturing are investigated.

  8. Modeling the terrestrial N processes in a small mountain catchment through INCA-N: A case study in Taiwan.

    Science.gov (United States)

    Lu, Meng-Chang; Chang, Chung-Te; Lin, Teng-Chiu; Wang, Lih-Jih; Wang, Chiao-Ping; Hsu, Ting-Chang; Huang, Jr-Chuan

    2017-09-01

    Riverine dissolved inorganic nitrogen (DIN) is an important indicator of trophic status of aquatic ecosystems. High riverine DIN export in Taiwan, ~3800kg-Nkm -2 yr -1 , which is ~18 times higher than the global average, urges the need of thorough understanding of N cycling processes. We applied INCA-N (Integrated Nitrogen Catchment Model) to simulate riverine DIN export and infer terrestrial N processes using weekly rainwater and streamwater samples collected at the Fushan Experimental Forest (FEF) of northern Taiwan. Results showed that the modeled discharge and nitrate export are in good agreement with observations, suggesting the validity of our application. Based on our modeling, the three main N removal processes, in the order of descending importance, were plant uptake, riverine N transport and denitrification at FEF. The high plant uptake rate, 4920kg-Nkm -2 yr -1 , should have led to accumulation of large biomass but biomass at FEF was relatively small compared to other tropical forests, likely due to periodic typhoon disruptions. The low nitrate concentration but high DIN export highlights the importance of hydrological control over DIN export, particularly during typhoons. The denitrification rate, 750kg-Nkm -2 yr -1 , at FEF was also low compared to other tropical forest ecosystems, likely resulting from quick water drainage through the coarse-loamy top soils. The high DIN export to atmospheric deposition ratio, 0.45, suggests that FEF may be in advanced stages of N excess. This simulation provides useful insights for establishing monitoring programs and improves our understanding N cycling in subtropical watersheds. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Rock spatial densities on the rims of the Tycho secondary craters in Mare Nectaris

    Science.gov (United States)

    Basilevsky, A. T.; Michael, G. G.; Kozlova, N. A.

    2018-04-01

    The aim of this work is to check whether the technique of estimation of age of small lunar craters based on spatial density of rock boulders on their rims described in Basilevsky et al. (2013, 2015b) and Li et al. (2017) for the craters rock counts on the rims of four craters having diameters 1000, 1100, 1240 and 1400 m located in Mare Nectaris. These craters are secondaries of the primary crater Tycho, whose age was found to be 109 ± 4 Ma (Stoffler and Ryder, 2001) so this may be taken as the age of the four craters, too. Using the dependence of the rock spatial densities at the crater rims on the crater age for the case of mare craters (Li et al., 2017) our measured rock densities correspond to ages from ∼100 to 130 Ma. These estimates are reasonably close to the given age of the primary crater Tycho. This, in turn, suggests that this technique of crater age estimation is applicable to craters up to ∼1.5 km in diameter. For the four considered craters we also measured their depth/diameter ratios and the maximum angles of the crater inner slopes. For the considered craters it was found that with increasing crater diameter, the depth/diameter ratios and maximum angles of internal slopes increase, but the values of these parameters for specific craters may deviate significantly from the general trends. The deviations probably result from some dissimilarities in the primary crater geometries, that may be due to crater to crater differences in characteristics of impactors (e.g., in their bulk densities) and/or differences in the mechanical properties of the target. It may be possible to find secondaries of crater Tycho in the South pole area and, if so, they may be studied to check the specifics and rates of the rock boulder degradation in the lunar polar environment.

  10. Hailar crater - A possible impact structure in Inner Mongolia, China

    Science.gov (United States)

    Xiao, Zhiyong; Chen, Zhaoxu; Pu, Jiang; Xiao, Xiao; Wang, Yichen; Huang, Jun

    2018-04-01

    Hailar crater, a probable impact structure, is a circular depression about 300 m diameter in Inner Mongolia, northeast China. With broad elevated rims, the present rim-to-floor depth is 8-20 m. Regional geological background and geomorphological comparison suggest that this feature is likely not formed by surface processes such as salt diapir, karst, aeolian, glacial, or volcanic activity. Its unique occurrence in this region and well-preserved morphology are most consistent with it being a Cenozoic impact crater. Two field expeditions in 2016 and 2017 investigated the origin of this structure, recognizing that (1) no additional craters were identified around Hailar crater in the centimeter-scale digital topography models that were constructed using a drone imaging system and stereo photogrammetry; (2) no bedrock exposures are visible within or adjacent to the crater because of thick regolith coverage, and only small pieces of angular unconsolidated rocks are present on the crater wall and the gently-sloped crater rim, suggesting recent energetic formation of the crater; (3) most samples collected from the crater have identical lithology and petrographic characteristics with the background terrain, but some crater samples contain more abundant clasts and silicate hydrothermal veins, indicating that rocks from depths have been exposed by the crater; (4) no shock metamorphic features were found in the samples after thin section examinations; and (5) a systematic sample survey and iron detector scan within and outside of the crater found no iron-rich meteorites larger than 2 cm in size in a depth of 30 cm. Although no conclusive evidence for an impact origin is found yet, Hailar crater was most likely formed by an impact based on its unique occurrence and comparative geomorphologic study. We suggest that drilling in the crater center is required to verify the impact origin, where hypothesized melt-bearing impactites may be encountered.

  11. Centrifuge Impact Cratering Experiments

    Science.gov (United States)

    Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.

    1985-01-01

    The kinematics of crater growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and crater dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the crater dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and crater volume scaling relations were applied to Brent crater. The transport of melt and the validity of the melt volume scaling relations are examined.

  12. Buried Craters of Utopia

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-365, 19 May 2003Beneath the northern plains of Mars are numerous buried meteor impact craters. One of the most heavily-cratered areas, although buried, occurs in Utopia Planitia, as shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. The history of Mars is complex; impact craters provide a tool by which to understand some of that history. In this case, a very ancient, cratered surface was thinly-buried by younger material that is not cratered at all. This area is near 48.1oN, 228.2oW; less than 180 km (112 mi) west of the Viking 2 lander site. Sunlight illuminates the scene from the lower left.

  13. Melting phase relations in the Fe-S and Fe-S-O systems at core conditions in small terrestrial bodies

    Science.gov (United States)

    Pommier, Anne; Laurenz, Vera; Davies, Christopher J.; Frost, Daniel J.

    2018-05-01

    We report an experimental investigation of phase equilibria in the Fe-S and Fe-S-O systems. Experiments were performed at high temperatures (1400-1850 °C) and high pressures (14 and 20 GPa) using a multi-anvil apparatus. The results of this study are used to understand the effect of sulfur and oxygen on core dynamics in small terrestrial bodies. We observe that the formation of solid FeO grains occurs at the Fe-S liquid - Fe solid interface at high temperature ( > 1400 °C at 20 GPa). Oxygen fugacities calculated for each O-bearing sample show that redox conditions vary from ΔIW = -0.65 to 0. Considering the relative density of each phase and existing evolutionary models of terrestrial cores, we apply our experimental results to the cores of Mars and Ganymede. We suggest that the presence of FeO in small terrestrial bodies tends to contribute to outer-core compositional stratification. Depending on the redox and thermal history of the planet, FeO may also help form a transitional redox zone at the core-mantle boundary.

  14. Crater in Utopia

    Science.gov (United States)

    2004-01-01

    23 March 2004 Craters of the martian northern plains tend to be somewhat shallow because material has filled them in. Their ejecta blankets, too, are often covered by younger materials. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example--a crater in Utopia Planitia near 43.7oN, 227.3oW. Erosion has roughened some of the surfaces of the material that filled the crater and covered its ejecta deposit. The picture covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the lower left.

  15. Polygons on Crater Floor

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-357, 11 May 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows a pattern of polygons on the floor of a northern plains impact crater. These landforms are common on crater floors at high latitudes on Mars. Similar polygons occur in the arctic and antarctic regions of Earth, where they indicate the presence and freeze-thaw cycling of ground ice. Whether the polygons on Mars also indicate water ice in the ground is uncertain. The image is located in a crater at 64.8oN, 292.7oW. Sunlight illuminates the scene from the lower left.

  16. Impact cratering experiments in Bingham materials and the morphology of craters on Mars and Ganymede

    Science.gov (United States)

    Fink, J. H.; Greeley, R.; Gault, D. E.

    1982-01-01

    Results from a series of laboratory impacts into clay slurry targets are compared with photographs of impact craters on Mars and Ganymede. The interior and ejecta lobe morphology of rampart-type craters, as well as the progression of crater forms seen with increasing diameter on both Mars and Ganymede, are equalitatively explained by a model for impact into Bingham materials. For increasing impact energies and constant target rheology, laboratory craters exhibit a morphologic progression from bowl-shaped forms that are typical of dry planetary surfaces to craters with ejecta flow lobes and decreasing interior relief, characteristic of more volatile-rich planets. A similar sequence is seen for uniform impact energy in slurries of decreasing yield strength. The planetary progressions are explained by assuming that volatile-rich or icy planetary surfaces behave locally in the same way as Bingham materials and produce ejecta slurries with yield strenghs and viscosities comparable to terrestrial debris flows. Hypothetical impact into Mars and Ganymede are compared, and it is concluded that less ejecta would be produced on Ganymede owing to its lower gravitational acceleration, surface temperature, and density of surface materials.

  17. Fresh Impact Crater and Rays in Tharsis

    Science.gov (United States)

    2002-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission has included dozens of opportunities to point the spacecraft directly at features of interest so that pictures of things not seen during the earlier Mapping Mission can be obtained. The example shown here is a small meteorite impact crater in northern Tharsis near 17.2oN, 113.8oW. Viking Orbiter images from the late 1970's showed at this location what appeared to be a dark patch with dark rays emanating from a brighter center. The MOC team surmised that the dark rays may be indicating the location of afresh crater formed by impact sometime in the past few centuries (since dark ray are quickly covered by dust falling out of the martian atmosphere). All through MOC's Mapping Mission in 1999 and 2000, attempts were made to image the crater as predictions indicated that the spacecraft would pass over the site, but the crater was never seen. Finally, in June 2001, Extended Mission operations allowed the MOC team to point the spacecraft (and hence the camera, which is fixed to the spacecraft)directly at the center of the dark rays, where we expected to find the crater.The picture on the left (above, A) is a mosaic of three MOC high resolution images and one much lower-resolution Viking image. From left to right, the images used in the mosaic are: Viking 1 516A55, MOC E05-01904, MOCM21-00272, and MOC M08-03697. Image E05-01904 is the one taken in June 2001 by pointing the spacecraft. It captured the impact crater responsible for the rays. A close-up of the crater, which is only 130 meters (427 ft)across, is shown on the right (above, B). This crater is only one-tenth the size of the famous Meteor Crater in northern Arizona.The June 2001 MOC image reveals many surprises about this feature. For one, the crater is not located at the center of the bright area from which the dark rays radiate. The rays point to the center of this bright area, not the crater. Further, the dark material ejected from the

  18. Fluvial geomorphology and aquatic-to-terrestrial Hg export are weakly coupled in small urban streams of Columbus, Ohio

    Science.gov (United States)

    Sullivan, S. Mažeika P.; Boaz, Lindsey E.; Hossler, Katie

    2016-04-01

    Although mercury (Hg) contamination is common in stream ecosystems, mechanisms governing bioavailability and bioaccumulation in fluvial systems remain poorly resolved as compared to lentic systems. In particular, streams in urbanized catchments are subject to fluvial geomorphic alterations that may contribute to Hg distribution, bioaccumulation, and export across the aquatic-to-terrestrial boundary. In 12 streams of urban Columbus, Ohio, we investigated the influence of fluvial geomorphic characteristics related to channel geometry, streamflow, and sediment size and distribution on (1) Hg concentrations in sediment and body burdens in benthic larval and adult emergent aquatic insects and (2) aquatic-to-terrestrial contaminant transfer to common riparian spiders of the families Pisauridae and Tetragnathidae via changes in aquatic insect Hg body burdens as well as in aquatic insect density and community composition. Hydrogeomorphic characteristics were weakly related to Hg body burdens in emergent insects (channel geometry) and tetragnathid spiders (streamflow), but not to Hg concentrations in sediment or benthic insects. Streamflow characteristics were also related to emergent insect density, while wider channels were associated with benthic insect community shifts toward smaller-bodied and more tolerant taxa (e.g., Chironomidae). Thus, our results provide initial evidence that fluvial geomorphology may influence aquatic-to-terrestrial contaminant Hg transfer through the collective effects on emergent insect body burdens as well as on aquatic insect community composition and abundance.

  19. Evidence from Impact Crater Observations for Few Large Impacts on the Moon 0.8-1.7 Ga

    Science.gov (United States)

    Kirchoff, M. R.; Bottke, W. F.; Marchi, S.; Chapman, C. R.; Enke, B.

    2012-12-01

    Our Moon is a keystone for understanding the inner solar system impact flux through time, because it is the only body for which we have crater size-frequency distributions (SFDs) through most of bombardment history and radiometric ages of probable associated terrains. Even so, the bombardment rate over the last 3.5 Gyr is poorly understood. According to the spatial density of sub-km craters on dated lunar terrains, the lunar impact flux has been roughly constant over this interval [e.g., 1 and references therein]. If so, one may expect that craters with diameter (D) > 50 km should also be equally dispersed in time over the last 3.5 Gyr. Surprisingly, our new work indicates this may not be so. We have compiled SFDs for small, superposed craters with D~0.6-15 km on the original floors of several previously designated Copernican and Eratothenian craters (USGS Geological Atlas of the Moon and [2]) with D > 50 km using JMARS. Using these data we compute the large craters' formation model ages with the Model Production Function chronology developed by Marchi et al. [3]. Many of these craters, especially on the farside (e.g., Sharnov, Birkeland), can now be suitably examined only because of the excellent LROC imaging (we use the Wide Angle Camera mosaic). As a test of our methods, we calculated the model age of the 55 km crater Aristillus (34°N, 1°E), a relatively young crater thought to have showered the Apollo 15 landing site with ejecta. Interestingly, our model age of 2.2 ± 0.6 Ga is surprisingly consistent with a 2.1 Ga-old impact-derived clast (radiometric age) returned by the Apollo 15 astronauts [4]. We find that nearly all of our computed ages for the large craters are older than indicated by previous work, with very few having ages younger than 3 Ga. Reasons for these discrepancies include (i) use of poor resolution Lunar Orbiter images (especially away from the near side) and (ii) application of the unreliable "DL" method, which involves simplified

  20. Impact cratering on porous targets in the strength regime

    Science.gov (United States)

    Nakamura, Akiko M.

    2017-12-01

    Cratering on small bodies is crucial for the collision cascade and also contributes to the ejection of dust particles into interplanetary space. A crater cavity forms against the mechanical strength of the surface, gravitational acceleration, or both. The formation of moderately sized craters that are sufficiently larger than the thickness of the regolith on small bodies, in which mechanical strength plays the dominant role rather than gravitational acceleration, is in the strength regime. The formation of microcraters on blocks on the surface is also within the strength regime. On the other hand, the formation of a crater of a size comparable to the thickness of the regolith is affected by both gravitational acceleration and cohesion between regolith particles. In this short review, we compile data from the literature pertaining to impact cratering experiments on porous targets, and summarize the ratio of spall diameter to pit diameter, the depth, diameter, and volume of the crater cavity, and the ratio of depth to diameter. Among targets with various porosities studied in the laboratory to date, based on conventional scaling laws (Holsapple and Schmidt, J. Geophys. Res., 87, 1849-1870, 1982) the cratering efficiency obtained for porous sedimentary rocks (Suzuki et al., J. Geophys. Res. 117, E08012, 2012) is intermediate. A comparison with microcraters formed on a glass target with impact velocities up to 14 km s-1 indicates a different dependence of cratering efficiency and depth-to-diameter ratio on impact velocity.

  1. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage

    Science.gov (United States)

    Kenkmann, T.; Artemieva, N. A.; Wünnemann, K.; Poelchau, M. H.; Elbeshausen, D.; Núñez Del Prado, H.

    2009-08-01

    The recent Carancas meteorite impact event caused a worldwide sensation. An H4-5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye-witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter-sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100-1000 MJ (0.024- 0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12- 14 kms-1) and shallow entry angles (<20°) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40-60°), and an impact velocity of 350-600 ms-1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of

  2. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    Science.gov (United States)

    Hauptmann, Aviaja L.; Markussen, Thor N.; Stibal, Marek; Olsen, Nikoline S.; Elberling, Bo; Bælum, Jacob; Sicheritz-Pontén, Thomas; Jacobsen, Carsten S.

    2016-01-01

    Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns. PMID:27708629

  3. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia during the last decade.

    Science.gov (United States)

    O'Sullivan, Michael; Rap, Alex; Reddington, Carly; Spracklen, Dominick; Buermann, Wolfgang

    2016-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning have increased the diffuse fraction of incoming solar radiation and the efficiency of photosynthesis leading to increased plant carbon uptake. Using a combination of atmospheric and biospheric models, we find that changes in diffuse light associated with fossil fuel aerosol emission accounts for only 2.8% of the increase in global net primary production (1.221 PgC/yr) over the study period 1998 to 2007. This relatively small global signal is however a result of large regional compensations. Over East Asia, the strong increase in fossil fuel emissions contributed nearly 70% of the increased plant carbon uptake (21 TgC/yr), whereas the declining fossil fuel aerosol emissions in Europe and North America contributed negatively (-16% and -54%, respectively) to increased plant carbon uptake. At global scale, we also find the CO2 fertilization effect on photosynthesis to be the dominant driver of increased plant carbon uptake, in line with previous studies. These results suggest that further research into alternative mechanisms by which fossil fuel emissions could increase carbon uptake, such as nitrogen deposition and carbon-nitrogen interactions, is required to better understand a potential link between the recent changes in fossil fuel emissions and terrestrial carbon uptake.

  4. Upstream freshwater and terrestrial sources are differentially reflected in the bacterial community structure along a small Arctic river and its estuary

    Directory of Open Access Journals (Sweden)

    Aviaja Lyberth Hauptmann

    2016-09-01

    Full Text Available Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N. Samples were taken in August when there is maximum precipitation and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity and community composition. Bacteria of terrestrial origin were among the dominating OTUs in the main river, while the glacier and lake supplied the river with water containing fewer terrestrial organisms. Also, more psychrophilic taxa were found in the community supplied by the lake. At the river mouth, the presence of dominant bacterial taxa from the lake and glacier was unnoticeable, but these taxa increased their abundances again further into the estuary. On average 23% of the estuary community consisted of indicator OTUs from different sites along the river. Environmental variables showed only weak correlations with community composition, suggesting that hydrology largely influences the observed patterns.

  5. Ponds, Flows, and Ejecta of Impact Cratering and Volcanism: A Remote Sensing Perspective of a Dynamic Moon

    Science.gov (United States)

    Stopar, Julie D.

    Both volcanism and impact cratering produce ejecta and associated deposits incorporating a molten rock component. While the heat sources are different (exogenous vs. endogenous), the end results are landforms with similar morphologies including ponds and flows of impact melt and lava around the central crater. Ejecta from both impact and volcanic craters can also include a high percentage of melted rock. Using Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) images, crucial details of these landforms are finally revealed, suggesting a much more dynamic Moon than is generally appreciated. Impact melt ponds and flows at craters as small as several hundred meters in diameter provide empirical evidence of abundant melting during the impact cratering process (much more than was previously thought), and this melt is mobile on the lunar surface for a significant time before solidifying. Enhanced melt deposit occurrences in the lunar highlands (compared to the mare) suggest that porosity, target composition, and pre-existing topography influence melt production and distribution. Comparatively deep impact craters formed in young melt deposits connote a relatively rapid evolution of materials on the lunar surface. On the other end of the spectrum, volcanic eruptions have produced the vast, plains-style mare basalts. However, little was previously known about the details of small-area eruptions and proximal volcanic deposits due to a lack of resolution. High-resolution images reveal key insights into small volcanic cones (0.5-3 km in diameter) that resemble terrestrial cinder cones. The cones comprise inter-layered materials, spatter deposits, and lava flow breaches. The widespread occurrence of the cones in most nearside mare suggests that basaltic eruptions occur from multiple sources in each basin and/or that rootless eruptions are relatively common. Morphologies of small-area volcanic deposits indicate diversity in eruption behavior of lunar basaltic

  6. Attempted molecular detection of the thermally dimorphic human fungal pathogen Emergomyces africanus in terrestrial small mammals in South Africa.

    Science.gov (United States)

    Cronjé, Nadine; Schwartz, Ilan S; Retief, Liezl; Bastos, Armanda D S; Matthee, Sonja; Preiser, Wolfgang; Bennett, Nigel C; Maphanga, Tsidiso; Govender, Nelesh P; Colebunders, Robert; Kenyon, Chris

    2018-06-01

    The ecological niche of Emergomyces africanus (formerly Emmonsia species), a dimorphic fungus that causes an AIDS-related mycosis in South Africa, is unknown. We hypothesized that natural infection with E. africanus occurs in wild small mammals. Using molecular detection with primers specific for E. africanus, we examined 1402 DNA samples from 26 species of mole-rats, rodents, and insectivores trapped in South Africa that included 1324 lung, 37 kidney, and 41 liver specimens. DNA of E. africanus was not detected in any animals. We conclude that natural infection of wild small mammals in South Africa with E. africanus has not been proven.

  7. Small terrestrial mammals in two types of forest complexes in intensively managed landscape of South Moravia (the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Suchomel, J.; Heroldová, Marta

    2004-01-01

    Roč. 23, č. 4 (2004), s. 377-384 ISSN 1335-342X R&D Projects: GA ČR GP526/03/P051; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6093917 Keywords : small mammal community * windbreaks * small woods Subject RIV: EH - Ecology, Behaviour Impact factor: 0.078, year: 2004 http://ecology.aepress.sk/01AV_absinfo.php?h@t=&v=084e0343a0486ff05530df6c705c8bb4&rok=2004&mesiac=04&fileinfo=2004_04_377&find=

  8. Small martian valleys: Pristine and degraded morphology

    International Nuclear Information System (INIS)

    Baker, V.R.; Partridge, J.B.

    1986-01-01

    The equatorial heavily cratered uplands of Mars are dissected by two classes of small valleys that are intimately associated in compound networks. Pristine valleys with steep valley walls preferentially occupy downstream portions of compound basins. Degraded valleys with eroded walls are laterally more extensive and have higher drainage densities than pristine valleys. Morphometric and crater-counting studies indicate that relatively dense drainage networks were emplaced on Mars during the heavy bombardment about 4.0 b.y. ago. Over a period of approximately 10 8 years, these networks were degraded and subsequently invaded by headwardly extending pristine valleys. The pristine valleys locally reactivated the compound networks, probably through sapping processes dependent upon high water tables. Fluvial activity in the heavily cratered uplands generally ceased approximately 3.8--3.9 b.y. ago, coincident with the rapid decline in cratering rates. The relict compound valleys on Mars are morphometrically distinct from most terrestrial drainage systems. The differences might be caused by a Martian valley formation episode characterized by hyperaridity, by inadequate time for network growth, by very permeable rock types, or by a combination of factors

  9. The Planetary Terrestrial Analogues Library (PTAL)

    Science.gov (United States)

    Werner, S. C.; Dypvik, H.; Poulet, F.; Rull Perez, F.; Bibring, J.-P.; Bultel, B.; Casanova Roque, C.; Carter, J.; Cousin, A.; Guzman, A.; Hamm, V.; Hellevang, H.; Lantz, C.; Lopez-Reyes, G.; Manrique, J. A.; Maurice, S.; Medina Garcia, J.; Navarro, R.; Negro, J. I.; Neumann, E. R.; Pilorget, C.; Riu, L.; Sætre, C.; Sansano Caramazana, A.; Sanz Arranz, A.; Sobron Grañón, F.; Veneranda, M.; Viennet, J.-C.; PTAL Team

    2018-04-01

    The Planetary Terrestrial Analogues Library project aims to build and exploit a spectral data base for the characterisation of the mineralogical and geological evolution of terrestrial planets and small solar system bodies.

  10. Pizza or Pancake? Formation Models of Gas Escape Biosignatures in Terrestrial and Martian Sediments

    Science.gov (United States)

    Bonaccorsi, R.; Fairen, A. G.; Baker, L.; McKay, C. P.; Willson, D.

    2016-05-01

    Fine-grained sedimentary hollowed structures were imaged in Gale Crater, but no biomarkers identified to support biology. Our observation-based (gas escape) terrestrial model could inform on possible martian paleoenvironments at time of formation.

  11. Nevada Test Site craters used for astronaut training

    Science.gov (United States)

    Moore, H. J.

    1977-01-01

    Craters produced by chemical and nuclear explosives at the Nevada Test Site were used to train astronauts before their lunar missions. The craters have characteristics suitable for reconnaissance-type field investigations. The Schooner test produced a crater about 300 m across and excavated more than 72 m of stratigraphic section deposited in a fairly regular fashion so that systematic observations yield systematic results. Other features common on the moon, such as secondary craters and glass-coated rocks, are present at Schooner crater. Smaller explosive tests on Buckboard Mesa excavated rocks from three horizontal alteration zones within basalt flows so that the original sequence of the zones could be determined. One crater illustrated the characteristics of craters formed across vertical boundaries between rock units. Although the exercises at the Nevada Test Site were only a small part of the training of the astronauts, voice transcripts of Apollo missions 14, 16, and 17 show that the exercises contributed to astronaut performance on the moon.

  12. The Morphology of Craters on Mercury: Results from MESSENGER Flybys

    Science.gov (United States)

    Barnouin, Oliver S.; Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Herrick, Robert R.; Chappelow, John E.; Murchie, Scott L.; Prockter, Louise M.

    2012-01-01

    Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data.

  13. Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes

    Science.gov (United States)

    Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.

    1995-09-01

    Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on

  14. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 4: Flow Ejecta Crater Distribution

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Flow ejecta craters - craters surrounded by lobate ejecta blankets - are found throughout the study area. The ratio of the crater's diameter to that of the flow ejecta in this region is approximately 40 to 45%. Flow ejecta craters are dominantly sharply defined craters, with slightly degraded craters being somewhat less common. This is probably indicative of the ejecta's relatively low resistence to weathering and susceptibility to burial. Flow ejecta craters here seem to occur within a narrow range of crater sizes - the smallest being about 4km in diameter and the largest being about 27km in diameter. Ejecta blankets of craters at 4km are easily seen and those of smaller craters are simply not seen even in images with better than average resolution for the region. This may be due to the depth of excavation of small impacting bodies being insufficient to reach volatile-rich material. Flow ejecta craters above 24km are rare, and those craters above 27km do not display flow ejecta blankets. This may be a result of an excavation depth so great that the volatile content of the ejecta is insufficient to form a fluid ejecta blanket. The geomorphic/geologic unit appears also to play an important role in the formation of flow ejecta craters. Given the typical size range for the occurrence of flow ejecta craters for most units, it can be seen that the percentage of flow ejecta craters to the total number of craters within this size range varies significantly from one unit to the next. The wide variance in flow ejecta crater density over this relatively small geographical area argues strongly for a lithologic control of their distribution.

  15. Morphological and allozyme studies of small terrestrial snails (Opeas sp., Subulina sp. and Huttonella bicolor) collected from Peninsular Malaysia.

    Science.gov (United States)

    Choh, M S; Yap, C K; Tan, S G; Jambari, H A

    2006-01-01

    Shell morphological characters and allozyme electrophoresis were used to study the relationships among six geographical populations of land snails collected from Peninsular Malaysia. Allozyme electrophoresis was used to study the genetic variations to complement the morphological features studied that included shell lengths, numbers of whorls and shell colour. Ten loci coding for six enzymes (MDH, LAP, ALP, PGM, G6PDH and EST) could be reliably scored in samples from the six populations studied. The dendrogram showed two major clusters with one cluster comprising Subulinidae populations from Perak, Selangor, Johor, Terengganu and Pahang while the other cluster included only the Streptaxidae Huttonella bicolor (red) population. The Subulinidae populations were grouped into two subclusters: one subcluster included the Subulina sp. populations from Perak, Selangor an Johor while the other subcluster included the Opeas sp. populations from Terengganu and Pahang. Morphological features can identify the different families and therefore they can complement the allozyme genetic studies on the land snail populations. Like other reports in the literature, our results also underline the importance of a genetic approach in conjunction with a morphological approach, for discriminating land snail species. The present results suggest that small land snails, which were similar in colour but different in sizes, were not of the same family/genus.

  16. Transport and fluxes of terrestrial polycyclic aromatic hydrocarbons in a small mountain river and submarine canyon system.

    Science.gov (United States)

    Lin, Bing-Sian; Lee, Chon-Lin; Brimblecombe, Peter; Liu, James T

    2016-08-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations in the Gaoping River were investigated in the wet and dry seasons. PAH characteristics allowed us to trace the particulate matter transported in a river-sea system containing a small mountain river, continental shelf, and submarine canyon. PAH signatures of the Gaoping River showed that particles were rapidly transported from the high mountain to the Gaoping coastal areas in the wet season, even arriving at the deep ocean via the Gaoping Submarine Canyon. By contrast, in the dry season, the particles were delivered quite slowly and included mostly pyrogenic contaminants. The annual riverine flux estimates for PAHs were 2241 kg in the Gaoping river-sea system. Only 18.0 kg were associated with the dissolved phase; the rest was bound onto particles. The fluxes caused by typhoons and their effects accounted for 20.2% of the dissolved and 68.4% of the particulate PAH fluxes from the river. Normalized partition coefficients for organic carbon suggested that PAHs were rigid on the particles. Distinct source characteristics were evident for PAHs on riverine suspended particles and coastal surface sediments: the particles in the wet season (as background signals) were similar to petrogenic sources, whereas the particles in the dry season had characteristics of coal burning and vehicular emissions. The sediments in the northwestern shelf were similar to pyrogenic sources (including vehicular emissions and coal and biomass burning), whereas the sediments in the canyon and southeastern shelf arose from mixed sources, although some diesel signature was also evident. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Polygons and Craters

    Science.gov (United States)

    2005-01-01

    3 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygons enhanced by subliming seasonal frost in the martian south polar region. Polygons similar to these occur in frozen ground at high latitudes on Earth, suggesting that perhaps their presence on Mars is also a sign that there is or once was ice in the shallow subsurface. The circular features are degraded meteor impact craters. Location near: 72.2oS, 310.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  18. Mars Climate History: Insights From Impact Crater Wall Slope Statistics

    Science.gov (United States)

    Kreslavsky, Mikhail A.; Head, James W.

    2018-02-01

    We use the global distribution of the steepest slopes on crater walls derived from Mars Orbiter Laser Altimeter profile data to assess the magnitudes of degradational processes with latitude, altitude, and time. We independently confirm that Amazonian polar/high-latitude crater slope modification is substantial, but that craters in the low latitudes have essentially escaped significant slope modification since the Early Hesperian. We find that the total amount of crater wall degradation in the Late Noachian is very small in comparison to the circumpolar regions in the Late Amazonian, an observation that we interpret to mean that the Late Noachian climate was not characterized by persistent and continuous warm and wet conditions. A confirmed elevational zonality in degradation in the Early Hesperian is interpreted to mean that the atmosphere was denser than today.

  19. LU60645GT and MA132843GT Catalogues of Lunar and Martian Impact Craters Developed Using a Crater Shape-based Interpolation Crater Detection Algorithm for Topography Data

    Science.gov (United States)

    Salamuniccar, Goran; Loncaric, Sven; Mazarico, Erwan Matias

    2012-01-01

    For Mars, 57,633 craters from the manually assembled catalogues and 72,668 additional craters identified using several crater detection algorithms (CDAs) have been merged into the MA130301GT catalogue. By contrast, for the Moon the most complete previous catalogue contains only 14,923 craters. Two recent missions provided higher-quality digital elevation maps (DEMs): SELENE (in 1/16° resolution) and Lunar Reconnaissance Orbiter (we used up to 1/512°). This was the main motivation for work on the new Crater Shape-based interpolation module, which improves previous CDA as follows: (1) it decreases the number of false-detections for the required number of true detections; (2) it improves detection capabilities for very small craters; and (3) it provides more accurate automated measurements of craters' properties. The results are: (1) LU60645GT, which is currently the most complete (up to D>=8 km) catalogue of Lunar craters; and (2) MA132843GT catalogue of Martian craters complete up to D>=2 km, which is the extension of the previous MA130301GT catalogue. As previously achieved for Mars, LU60645GT provides all properties that were provided by the previous Lunar catalogues, plus: (1) correlation between morphological descriptors from used catalogues; (2) correlation between manually assigned attributes and automated measurements; (3) average errors and their standard deviations for manually and automatically assigned attributes such as position coordinates, diameter, depth/diameter ratio, etc; and (4) a review of positional accuracy of used datasets. Additionally, surface dating could potentially be improved with the exhaustiveness of this new catalogue. The accompanying results are: (1) the possibility of comparing a large number of Lunar and Martian craters, of e.g. depth/diameter ratio and 2D profiles; (2) utilisation of a method for re-projection of datasets and catalogues, which is very useful for craters that are very close to poles; and (3) the extension of the

  20. Layers of 'Cabo Frio' in 'Victoria Crater'

    Science.gov (United States)

    2006-01-01

    This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is an approximately true color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.

  1. Geological mapping of lunar highland crater Lalande: Topographic configuration, morphology and cratering process

    Science.gov (United States)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Liu, ChangQing; Bi, Xiangyu

    2018-02-01

    Highland crater Lalande (4.45°S, 8.63°W; D = 23.4 km) is located on the PKT area of the lunar near side, southeast of the Mare Insularum. It is a complex crater in Copernican era and has three distinguishing features: high silicic anomaly, the highest Th abundance and special landforms on its floor. There are some low-relief bulges on the left of Lalande's floor with regular circle or ellipse shapes. They are ∼250-680 m wide and ∼30-91 m high with maximum flank slopes >20°. There are two possible scenarios for the formation of these low-relief bulges which are impact melt products or young silicic volcanic eruptions. We estimated the absolute model ages of the ejecta deposits, several melt ponds and the hummocky floor and determined the ratio of diameter and depth of the crater Lalande. In addition, we found some similar bugle features within other Copernican-aged craters and there were no volcanic source vents on Lalande's floor. Thus, we hypothesized that these low-relief bulges were most consistent with an origin of impact melts during the crater formation instead of small and young volcanic activities occurring on the floor. Based on Kaguya Terrain Camera (TC) ortho-mosaic and Digital Terrain Model (DTM) data produced by TC imagery in stereo, geological units and some linear features on the floor and wall of Lalande have been mapped. Eight geological units are organized by crater floor units: hummocky floor, central peak and low-relief bulges; and crater wall units: terraced walls, channeled and veneered walls, interior walls, mass wasting areas, blocky areas, and melt ponds. These geological units and linear features provided us a chance to understand some details of the cratering process and elevation differences on the floor. We proposed that subsidence due to melt cooling, late-stage wall collapse and rocks uplifted from beneath the surface could be the possible causes of the observed elevation differences on Lalande's floor.

  2. Morphometry and Morphology of Fresh Craters on Titan

    Science.gov (United States)

    Kirk, R. L.; Wood, C. A.; Neish, C.; Lucas, A.; Hayes, A. G.; Cassini Radar Team

    2011-12-01

    Cassini RADAR imagery obtained on Titan flyby T77 revealed a 40-km diameter fresh impact crater at 11.6° N 44.6° W. This is only the 8th crater identified with high confidence (Wood et al., 2010, Icarus 206, 334), and the 3rd (after Sinlap D=79 km and Ksa D=30 km) for which the depth can be estimated by comparing the foreshortening of the near and far walls. This "autostereo" technique yields an estimated depth of 680 m. The T77 image forms a stereo pair with the T17 discovery image of Ksa from which we estimate the depth of Ksa at 750-800 m, in close agreement with SARTopo data. The depth of Sinlap is 760 m based on SARTopo. Depth-diameter ratios for these craters thus range from 0.01 to 0.025 and the depths are comparable to but 200-400 m shallower than fresh craters of the same size on Ganymede (Bray et al., 2008, Met. Planet Sci. 43, 1979). The depth differences could be explained by initial crater morphometry, by relaxation in a different thermal environment, or (perhaps most plausibly given the bland floors of even the freshest Titan craters) to sedimentary infill. In contrast, the 18x36 km elliptical depression at Sotra Facula is much deeper than Ganymede craters of similar size (d=1500 m from stereo), supporting the conclusion that it is not an impact crater. All three craters exhibit a relatively radar-bright annulus around the outer edge of the floor, possibly as the result of mass wasting of blocky materials from the crater walls. The central part of each crater is darker. The central darker floor of the new crater is symmetrical and featureless, whereas Ksa has a bright central ring 7 km in diameter. Stereo spot heights indicate the ring is 350±100 m above the outer floor. This height is in close agreement with the scaling for Ganymede crater central peaks from Bray et al. (2008). The darker floor area of Sinlap is substantially asymmetrical with a small bright central spot whose elevation is unknown. The new crater has continuous, radar

  3. Polygons near Lyot Crater

    Science.gov (United States)

    2003-01-01

    MGS MOC Release No. MOC2-564, 4 December 2003This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows patterned ground, arranged in the form of polygons, on the undulating plains associated with ejecta from the Lyot impact crater on the martian northern plains. This picture was acquired in October 2003 and shows that the polygon margins are ridges with large boulders--shown here as dark dots--on them. On Earth, polygon patterns like this are created in arctic and antarctic regions where there is ice in the ground. The seasonal and longer-term cycles of freezing and thawing of the ice-rich ground cause these features to form over time. Whether the same is true for Mars is unknown. The polygons are located near 54.6oN, 326.6oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.

  4. Terrestrial magnetosphere

    International Nuclear Information System (INIS)

    Pande, D.C.; Agarwal, D.C.

    1982-01-01

    This paper presents a review about terrestrial magnetosphere. During the last few years considerable investigation have been carried out about the properties of Solar Wind and its interaction with planetary magnetic fields. It is therefore of high importance to accumulate all the investigations in a comprehensive form. The paper reviews the property of earth's magnetosphere, magnetosheath, magneto pause, polar cusps, bow shook and plasma sheath. (author)

  5. How old is Autolycus crater?

    Science.gov (United States)

    Hiesinger, Harald; Pasckert, Jan Henrik; van der Bogert, Carolyn H.; Robinson, Mark S.

    2016-04-01

    Accurately determining the lunar cratering chronology is prerequisite for deriving absolute model ages (AMAs) across the lunar surface and throughout the Solar System [e.g., 1]. However, the lunar chronology is only constrained by a few data points over the last 1 Ga and there are no calibration data available between 1 and 3 Ga and beyond 3.9 Ga [2]. Rays from Autolycus and Aristillus cross the Apollo 15 landing site and presumably transported material to this location [3]. [4] proposed that at the Apollo 15 landing site about 32% of any exotic material would come from Autolycus crater and 25% would come from Aristillus crater. [5,6] proposed that the 39Ar-40Ar age of 2.1 Ga derived from three petrologically distinct, shocked Apollo 15 KREEP basalt samples, date Autolycus crater. Grier et al. [7] reported that the optical maturity (OMAT) characteristics of these craters are indistinguishable from the background values despite the fact that both craters exhibit rays that were used to infer relatively young, i.e., Copernican ages [8,9]. Thus, both OMAT characteristics and radiometric ages of 2.1 Ga and 1.29 Ga for Autolycus and Aristillus, respectively, suggest that these two craters are not Copernican in age. [10] interpreted newer U-Pb ages of 1.4 and 1.9 Ga from sample 15405 as the formation ages of Aristillus and Autolycus. If Autolycus is indeed the source of the dated exotic material collected at the Apollo 15 landing site, than performing crater size frequency distribution (CSFD) measurements for Autolycus offers the possibility to add a new calibration point to the lunar chronology, particularly in an age range that was previously unconstrained. We used calibrated and map-projected LRO NAC images to perform CSFD measurements within ArcGIS, using CraterTools [11]. CSFDs were then plotted with CraterStats [12], using the production and chronology functions of [13]. We determined ages of 3.72 and 3.85 Ga for the interior (Ai1) and ejecta area Ae3, which we

  6. Geology of Lofn Crater, Callisto

    Science.gov (United States)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  7. Histories of terrestrial planets

    International Nuclear Information System (INIS)

    Benes, K.

    1981-01-01

    The uneven historical development of terrestrial planets - Mercury, Venus, Earth, Moon and Mars - is probably due to the differences in their size, weight and rotational dynamics in association with the internal planet structure, their distance from the Sun, etc. A systematic study of extraterrestrial planets showed that the time span of internal activity was not the same for all bodies. It is assumed that the initial history of all terrestrial planets was marked with catastrophic events connected with the overall dynamic development of the solar system. In view of the fact that the cores of small terrestrial bodies cooled quicker, their geological development almost stagnated after two or three thousand million years. This is what probably happened to the Mercury and the Moon as well as the Mars. Therefore, traces of previous catastrophic events were preserved on the surface of the planets. On the other hand, the Earth is the most metamorphosed terrestrial planet and compared to the other planets appears to be atypical. Its biosphere is significantly developed as well as the other shell components, its hydrosphere and atmosphere, and its crust is considerably differentiated. (J.P.)

  8. Dynamics of crater formations in immersed granular materials

    Science.gov (United States)

    Varas, G.; Vidal, V.; Géminard, J.

    2009-12-01

    Craters are part of the widespread phenomena observed in nature. Among the main applications to natural phenomena, aside from meteorite impact craters, are the formation and growth of volcanic edifices, by successive ejecta emplacement and/or erosion. The time evolution and dynamics play a crucial role here, as the competition between volcanic-jet mass-flux (degassing and ejecta) and crater-size evolution may control directly the eruptive regime. Crater morphology in dry granular material has been extensively studied, both experimentally and theoretically. Most of these studies investigate the final, steady crater shape resulting from the collision of solid bodies with the material surface and scaling laws are derived. In immersed granular material, craters generated by an underwater vortex ring, or underwater impact craters generated by landslide, have been reported. In a previous experimental study, Gostiaux et al. [Gran. Matt., 2002] have investigated the dynamics of air flowing through an immersed granular layer. They reported that, depending on the flow rate, the system exhibits two qualitatively different regimes: At small flow rate, the bubbling regime during which bubbles escape the granular layer independently one from another; At large flow rate, the open-channel regime which corresponds to the formation of a channel crossing the whole thickness of the granular bed through which air escapes almost continuously. At intermediate flow rate, a spontaneous alternation between these two regimes is observed. Here, we report the dynamics of crater formations at the free surface of an immersed granular bed, locally crossed by an ascending gas flow. We reproduce the experimental conditions of Gostiaux et al. (2002) in two dimensions: In a vertical Hele-Shaw cell, the crater consists of two sand piles which develop around the location of the gas emission. We observe that the typical size of the crater increases logarithmically with time, independently of the gas

  9. Stability of nuclear crater slopes in rock

    International Nuclear Information System (INIS)

    Fleming, Robert W.; Frandsen, Alton D.; LaFrenz, Robert L.

    1970-01-01

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects

  10. Stability of nuclear crater slopes in rock

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, Robert W; Frandsen, Alton D; LaFrenz, Robert L [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    The United States Army Engineer Nuclear Cratering Group was established in 1962 to participate with the Atomic Energy Commission in a joint research and development program to develop nuclear engineering and construction technology. A major part of this research effort has been devoted to studies of the engineering properties of craters. The program to date has included field investigations of crater properties in various media over a broad range of chemical and nuclear explosive yields, studies of man-made and natural slopes, and studies directed toward the development of analytical and empirical methods of crater stability analysis. From this background, a general understanding has been developed of the effects of a cratering explosion on the surrounding medium and of physical nature of the various crater zones which are produced. The stability of nuclear crater slopes has been a subject of prime interest in the feasibility study being conducted for an Atlantic-Pacific sea-level canal. Based on experimental evidence assembled to date, nuclear crater slopes in dry dock and dry alluvium have an initially stable configuration. There have been five nuclear craters produced to date with yields of 0.4 kt or more on which observations are based and the initial configurations of these craters have remained stable for over seven years. The medium, yield, crater dimensions, and date of event for these craters are summarized. It is interesting to note that the Sedan Crater has been subjected to strong seismic motions from nearby detonations without adverse effects.

  11. Theory and experiments on centrifuge cratering

    International Nuclear Information System (INIS)

    Schmidt, R.M.; Holsapple, K.A.

    1980-01-01

    Centrifuge experimental techniques provide possibilities for laboratory simulation of ground motion and cratering effects due to explosive loadings. The results of a similarity analysis for the thermomechanical response of a continuun show that increased gravity is a necessary condition for subscale testing when identical materials for both model and prototype are being used. The general similarity requirements for this type of subscale testing are examined both theoretically and experimentally. The similarity analysis is used to derive the necessary and sufficient requirements due to the general balance and jump equations and gives relations among all the scale factors for size, density, stress, body forces, internal energy, heat supply, heat conduction, heat of detonation, and time. Additional constraints due to specific choices of material constitutive equations are evaluated separately. The class of consitutive equations that add no further requirements is identified. For this class of materials, direct simulation of large-scale cratering events at small scale on the centrifuge is possible and independent of the actual constitutive equations. For a rare-independent soil it is shown that a small experiment at gravity g and energy E is similar to a large event at 1 G but with energy equal to g 3 E. Consequently, experiments at 500 G with 8 grams of explosives can be used to

  12. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database

    Science.gov (United States)

    Graettinger, A. H.

    2018-05-01

    A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.

  13. Constraining the Source Craters of the Martian Meteorites: Implications for Prioritiziation of Returned Samples from Mars

    Science.gov (United States)

    Herd, C. D. K.; Tornabene, L. L.; Bowling, T. J.; Walton, E. L.; Sharp, T. G.; Melosh, H. J.; Hamilton, J. S.; Viviano, C. E.; Ehlmann, B. L.

    2018-04-01

    We have made advances in constraining the potential source craters of the martian meteorites to a relatively small number. Our results have implications for Mars chronology and the prioritization of samples for Mars Sample Return.

  14. Floor-fractured craters on the Moon: an evidence of past intrusive magmatic activity

    Science.gov (United States)

    Thorey, C.; Michaut, C.

    2012-12-01

    Floor-fractured lunar craters (FFC's) are a class of craters modified by post impact mechanisms. They are defined by distinctive shallow, often plate-like or convex floors, wide floor moats and radial, concentric and polygonal floor-fractures, suggesting an endogenous process of modification. Two main mechanisms have been proposed to account for such observations : 1) viscous relaxation and 2) spreading of magmatic intrusions at depth below the crater. Here, we propose to test the case of magmatic intrusions. We develop a model for the dynamics of magma spreading below an elastic crust with a crater-like topography and above a rigid horizontal surface. Results show first that the lithostatic pressure increase at the crater rim prevents the intrusion from spreading horizontally giving rise to intrusion thickening and to an uplift of the crater floor. Second, the deformation of the overlying crust exerts a strong control on the intrusion shape, and hence, on the nature of the crater floor uplift. As the deformation can only occur over a minimum flexural wavelength noted Λ, the intrusion shape shows a bell-shaped geometry for crater radius smaller than 3Λ, or a flat top with smooth edges for crater radius larger than 3Λ. For given crustal elastic properties, the crust flexural wavelength increases with the intrusion depth. Therefore, for a large intrusion depth or small crater size, we observe a convex uplift of the crater floor. On the contrary, for a small intrusion depth or large crater size, the crater floor undergoes a piston-like uplift and a circular moat forms just before the rim. The depth of the moat is controlled by the thickening of the crust at the crater rim. On the contrary to viscous relaxation models, our model is thus able to reproduce most of the features of FFC's, including small-scale features. Spreading of a magmatic intrusion at depth can thus be considered as the main endogenous mechanism at the origin of the deformations observed at FFC

  15. Origin of the outer layer of martian low-aspect ratio layered ejecta craters

    Science.gov (United States)

    Boyce, Joseph M.; Wilson, Lionel; Barlow, Nadine G.

    2015-01-01

    Low-aspect ratio layered ejecta (LARLE) craters are one of the most enigmatic types of martian layered ejecta craters. We propose that the extensive outer layer of these craters is produced through the same base surge mechanism as that which produced the base surge deposits generated by near-surface, buried nuclear and high-explosive detonations. However, the LARLE layers have higher aspect ratios compared with base surge deposits from explosion craters, a result of differences in thicknesses of these layers. This characteristics is probably caused by the addition of large amounts of small particles of dust and ice derived from climate-related mantles of snow, ice and dust in the areas where LARLE craters form. These deposits are likely to be quickly stabilized (order of a few days to a few years) from eolian erosion by formation of duricrust produced by diffusion of water vapor out of the deposits.

  16. Relaxed impact craters on Ganymede: Regional variation and high heat flows

    Science.gov (United States)

    Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.

    2018-01-01

    Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows—in excess of 30–40 mW m−2 over 2 Gyr, with many small (heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.

  17. Relaxed impact craters on Ganymede: Regional variation and high heat flows

    Science.gov (United States)

    Singer, Kelsi N.; Bland, Michael T.; Schenk, Paul M.; McKinnon, William B.

    2018-05-01

    Viscously relaxed craters provide a window into the thermal history of Ganymede, a satellite with copious geologic signs of past high heat flows. Here we present measurements of relaxed craters in four regions for which suitable imaging exists: near Anshar Sulcus, Tiamat Sulcus, northern Marius Regio, and Ganymede's south pole. We describe a technique to measure apparent depth, or depth of the crater with respect to the surrounding terrain elevation. Measured relaxation states are compared with results from finite element modeling to constrain heat flow scenarios [see companion paper: Bland et al. (2017)]. The presence of numerous, substantially relaxed craters indicates high heat flows-in excess of 30-40 mW m-2 over 2 Gyr, with many small (heat flows. Crater relaxation states are bimodal for some equatorial regions but not in the region studied near the south pole, which suggests regional variations in Ganymede's thermal history.

  18. Large sulfur isotope fractionations in Martian sediments at Gale crater

    Science.gov (United States)

    Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.

    2017-09-01

    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.

  19. Terrestrial ecology

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The main effort of the Terrestrial Ecology Division has been redirected to a comprehensive study of the Espiritu Santo Drainage Basin located in northeastern Puerto Rico. The general objective are to provide baseline ecological data for future environmental assessment studies at the local and regional levels, and to provide through an ecosystem approach data for the development of management alternatives for the wise utilization of energy, water, and land resources. The interrelationships among climate, vegetation, soils, and man, and their combined influence upon the hydrologic cycle will be described and evaluated. Environmental management involves planning and decision making, and both require an adequate data base. At present, little is known about the interworkings of a complete, integrated system such as a drainage basin. A literature survey of the main research areas confirmed that, although many individual ecologically oriented studies have been carried out in a tropical environment, few if any provide the data base required for environmental management. In view of rapidly changing socio-economic conditions and natural resources limitations, management urgently requires data from these systems: physical (climatological), biological, and cultural. This integrated drainage basin study has been designed to provide such data. The scope of this program covers the hydrologic cycle as it is affected by the interactions of the physical, biological, and cultural systems

  20. The Mechanics of Peak-Ring Impact Crater Formation from the IODP-ICDP Expedition 364

    Science.gov (United States)

    Melosh, H.; Collins, G. S.; Morgan, J. V.; Gulick, S. P. S.

    2017-12-01

    The Chicxulub impact crater is one of very few peak-ring impact craters on Earth. While small (less than 3 km on Earth) impact craters are typically bowl-shaped, larger craters exhibit central peaks, which in still larger (more than about 100 km on Earth) craters expand into mountainous rings with diameters close to half that of the crater rim. The origin of these peak rings has been contentious: Such craters are far too large to create in laboratory experiments and remote sensing of extraterrestrial examples has not clarified the mechanics of their formation. Two principal models of peak ring formation are currently in vogue, the "nested crater" model, in which the peak ring originates at shallow depths in the target, and the "dynamic collapse" model in which the peak ring is uplifted at the base of a collapsing, over-steepened central peak and its rocks originate at mid-crustal depths. IODP-ICDP Expedition 364 sought to elucidate, among other important goals, the mechanics of peak ring formation in the young (66 Myr), fresh, but completely buried Chicxulub impact crater. The cores from this borehole now show unambiguously that the rocks in the Chicxulub peak ring originated at mid-crustal depths, apparently ruling out the nested crater model. These rocks were shocked to pressures on the order of 10-35 GPa and were so shattered that their densities and seismic velocities now resemble those of sedimentary rocks. The morphology of the final crater, its structure as revealed in previous seismic imaging, and the results from the cores are completely consistent with modern numerical models of impact crater excavation and collapse that incorporate a model for post-impact weakening. Subsequent to the opening of a ca. 100 km diameter and 30 km deep transient crater, this enormous hole in the crust collapsed over a period of about 10 minutes. Collapse was enabled by movement of the underlying rocks, which briefly behaved in the manner of a high-viscosity fluid, a brittle

  1. Testing models for the formation of the equatorial ridge on Iapetus via crater counting

    Science.gov (United States)

    Damptz, Amanda L.; Dombard, Andrew J.; Kirchoff, Michelle R.

    2018-03-01

    Iapetus's equatorial ridge, visible in global views of the moon, is unique in the Solar System. The formation of this feature is likely attributed to a key event in the evolution of Iapetus, and various models have been proposed as the source of the ridge. By surveying imagery from the Cassini and Voyager missions, this study aims to compile a database of the impact crater population on and around Iapetus's equatorial ridge, assess the relative age of the ridge from differences in cratering between on ridge and off ridge, and test the various models of ridge formation. This work presents a database that contains 7748 craters ranging from 0.83 km to 591 km in diameter. The database includes the study area in which the crater is located, the latitude and longitude of the crater, the major and minor axis lengths, and the azimuthal angle of orientation of the major axis. Analysis of crater orientation over the entire study area reveals that there is no preference for long-axis orientation, particularly in the area with the highest resolution. Comparison of the crater size-frequency distributions show that the crater distribution on the ridge appears to be depleted in craters larger than 16 km with an abruptly enhanced crater population less than 16 km in diameter up to saturation. One possible interpretation is that the ridge is a relatively younger surface with an enhanced small impactor population. Finally, the compiled results are used to examine each ridge formation hypothesis. Based on these results, a model of ridge formation via a tidally disrupted sub-satellite appears most consistent with our interpretation of a younger ridge with an enhanced small impactor population.

  2. Effect of terrestrial radiation on brightness temperature at lunar nearside: Based on theoretical calculation and data analysis

    Science.gov (United States)

    Wei, Guangfei; Li, Xiongyao; Wang, Shijie

    2015-02-01

    Terrestrial radiation is another possible source of heat in lunar thermal environment at its nearside besides the solar illumination. On the basis of Clouds and the Earth's Radiant Energy System (CERES) data products, the effect of terrestrial radiation on the brightness temperature (TBe) of the lunar nearside has been theoretically calculated. It shows that the mafic lunar mare with high TBe is more sensitive to terrestrial radiation than the feldspathic highland with low TBe value. According to the synchronous rotation of the Moon, we extract TBe on lunar nearside using the microwave radiometer data from the first Chinese lunar probe Chang'E-1 (CE-1). Consistently, the average TBe at Mare Serenitatis is about 1.2 K while the highland around the Geber crater (19.4°S, 13.9°E) is relatively small at ∼0.4 K. Our results indicate that there is no significant effect of terrestrial radiation on TBe at the lunar nearside. However, to extract TBe accurately, effects of heat flow, rock abundance and subsurface rock fragments which are more significant should be considered in the future work.

  3. Stratigraphy of the crater Copernicus

    Science.gov (United States)

    Paquette, R.

    1984-01-01

    The stratigraphy of copernicus based on its olivine absorption bands is presented. Earth based spectral data are used to develop models that also employ cratering mechanics to devise theories for Copernican geomorphology. General geologic information, spectral information, upper and lower stratigraphic units and a chart for model comparison are included in the stratigraphic analysis.

  4. Atypical pit craters on Mars: new insights from THEMIS, CTX and HiRISE observations

    Science.gov (United States)

    Cushing, Glen; Okubo, Chris H.; Titus, Timothy N.

    2015-01-01

    More than 100 pit craters in the Tharsis region of Mars exhibit morphologies, diameters and thermal behaviors that diverge from the much larger bowl-shaped pit craters that occur in most regions across Mars. These Atypical Pit Craters (APCs) generally have sharp and distinct rims, vertical or overhanging walls that extend down to their floors, surface diameters of ~50-350 m, and high depth-to-diameter (d/D) ratios that are usually greater than 0.3 (which is an upper-range value for impacts and bowl-shaped pit craters), and can exceed values of 1.8. Observations by the Mars Odyssey THermal Emission Imaging System (THEMIS) show that APC floor temperatures are warmer at night, and fluctuate with much lower diurnal amplitudes than nearby surfaces or adjacent bowl-shaped pit craters. Kīlauea volcano, Hawai'i, hosts pit craters that formed through subsurface collapse into active volcanic dikes, resulting in pits that can appear morphologically analogous to either APCs or bowl-shaped pit craters. Partially-drained dikes are sometimes exposed within the lower walls and floors of these terrestrial APC analogs and can form extensive cave systems with unique microclimates. Similar caves in martian pit craters are of great interest for astrobiology. This study uses new observations by the Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) and Context Camera (CTX) to refine previous work where seven APCs were described from lower-resolution THEMIS visible-wavelength (VIS) observations. Here, we identify locations of 115 APCs, map their distribution across the Tharsis region, characterize their internal morphologies with high-resolution observations, and discuss possible formation mechanisms.

  5. Tuberculous and tuberculoid lesions in free living small terrestrial mammals and the risk of infection to humans and animals: a review

    Czech Academy of Sciences Publication Activity Database

    Skorič, M.; Shitaye, E. J.; Halouzka, R.; Fictum, P.; Trčka, I.; Heroldová, Marta; Tkadlec, Emil; Pavlík, I.

    2007-01-01

    Roč. 52, č. 4 (2007), s. 144-161 ISSN 0375-8427 R&D Projects: GA ČR GA206/04/2003 Grant - others:MZE(CZ) 1B53009 Program:1B Institutional research plan: CEZ:AV0Z60930519 Keywords : bovine tuberculosis * paratuberculosis * avian tuberculosis * mycobacteriosis * terrestrial mammals * zoonoses Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 0.645, year: 2007 http://www.vri.cz/docs/vetmed/52-4-144.pdf

  6. Blocky craters: implications about the lunar megaregolith

    International Nuclear Information System (INIS)

    Thompson, T.W.; Roberts, W.J.; Hartmann, W.K.; Shorthill, R.W.; Zisk, S.H.

    1979-01-01

    Radar, infrared, and photogeologic properties of lunar craters have been studied to determine whether there is a systematic difference in blocky craters between the maria and terrae and whether this difference may be due to a deep megaregolith of pulverized material forming the terra surface, as opposed to a layer of semi-coherent basalt flows forming the mare surface. Some 1310 craters from about 4 to 100 km diameter have been catalogued as radar and/or infrared anomalies. In addition, a study of Apollo Orbital Photography confirmed that the radar and infrared anomalies are correlated with blocky rubble around the crater. Analysis of the radar and infrared data indicated systematic terra-mare differences. Fresh terra craters smaller than 12 km were less likely to be infrared and radar anomalies than comparable mare craters: but terra and mare craters larger than 12 km had similar infrared and radar signatures. Also, there are many terra craters which are radar bright but not infrared anomalies. The authors interpretation of these data is that while the maria are rock layers (basaltic flow units) where craters eject boulder fields, the terrae are covered by relatively pulverized megaregolith at least 2 km deep, where craters eject less rocky rubble. Blocky rubble, either in the form of actual rocks or partly consolidated blocks, contributes to the radar and infrared signatures of the crater. However, aging by impacts rapidly destroys these effects, possibly through burial by secondary debris or by disintegration of the blocks themselves, especially in terra regions. (Auth.)

  7. Lunar Bouguer gravity anomalies - Imbrian age craters

    Science.gov (United States)

    Dvorak, J.; Phillips, R. J.

    1978-01-01

    The Bouguer gravity of mass anomalies associated with four Imbrian age craters, analyzed in the present paper, are found to differ considerably from the values of the mass anomalies associated with some young lunar craters. Of the Imbrian age craters, only Piccolomini exhibits a negative gravity anomaly (i.e., a low density region) which is characteristic of the young craters studied. The Bouguer gravity anomalies are zero for each of the remaining Imbrian age craters. Since, Piccolomini is younger, or at least less modified, than the other Imbrian age craters, it is suggested that the processes responsible for the post-impact modification of the Imbrian age craters may also be responsible for removing the negative mass anomalies initially associated with these features.

  8. Crater Degradation on Mercury: A Global Perspective

    Science.gov (United States)

    Kinczyk, M. J.; Byrne, P. K.; Prockter, L. M.; Susorney, H. C. M.; Chapman, C. R.; Barnouin, O. S.

    2017-12-01

    On geologic timescales, initially fresh craters are subjected to many weathering mechanisms. Whereas water and wind are, or were, effective erosive mechanisms such as on Earth and Mars, micrometeorite bombardment and modification due to subsequent impacts are the dominant processes that degrade craters and crater rays on airless bodies like the Moon and Mercury. Classifying craters based on their state of degradation can help determine the relative ages of landforms proximal to, and crosscut by, these craters. However, this method is most effective when used together with statistical analysis of crater distributions. Pre-MESSENGER degradation classification schemes lacked sufficient detail to be consistently applied to craters of various sizes and morphological types—despite evidence suggesting that the ejecta deposits of large basins persist much longer than those of smaller craters, for instance—yet broad assumptions have been made regarding the correlation of crater class to the planet's time-stratigraphic sequence. Moreover, previous efforts to categorize craters by degradation state have either been restricted to regional study sites or applied only to a subset of crater age or size. As a result, numerous interpretations of crater degradation state persist for Mercury, challenging a complete understanding of this process on the innermost planet. We report on the first global survey of crater degradation on Mercury. By modifying an established 5-class scheme, we have systematically applied a rigorous set of criteria to all craters ≥40 km in diameter on the planet. These criteria include the state and morphology of crater deposits separately (e.g., rim, floor, wall, ejecta) and degradation classes were assigned as the collection of these individual attributes. This approach yields a consistent classification of craters of different sizes. Our results provide the first comprehensive assessment of how craters of various states of degradation are distributed

  9. Cold-Based Glaciation on Mercury: Accumulation and Flow of Ice in Permanently-Shadowed Circum-Polar Crater Interiors

    Science.gov (United States)

    Fastook, J. L.; Head, J. W.

    2018-05-01

    Examining the potential for dynamic flow of ice deposits in permanently-shadowed craters, it is determined that the cold environment of the polar craters yields very small velocities and deformation is minimal on a time scale of millions of years.

  10. Slope activity in Gale crater, Mars

    Science.gov (United States)

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  11. Lunar and Planetary Science XXXV: Mars: Remote Sensing and Terrestrial Analogs

    Science.gov (United States)

    2004-01-01

    The session "Mars: Remote Sensing and Terrestrial Analogs" included the following:Physical Meaning of the Hapke Parameter for Macroscopic Roughness: Experimental Determination for Planetary Regolith Surface Analogs and Numerical Approach; Near-Infrared Spectra of Martian Pyroxene Separates: First Results from Mars Spectroscopy Consortium; Anomalous Spectra of High-Ca Pyroxenes: Correlation Between Ir and M ssbauer Patterns; THEMIS-IR Emissivity Spectrum of a Large Dark Streak near Olympus Mons; Geomorphologic/Thermophysical Mapping of the Athabasca Region, Mars, Using THEMIS Infrared Imaging; Mars Thermal Inertia from THEMIS Data; Multispectral Analysis Methods for Mapping Aqueous Mineral Depostis in Proposed Paleolake Basins on Mars Using THEMIS Data; Joint Analysis of Mars Odyssey THEMIS Visible and Infrared Images: A Magic Airbrush for Qualitative and Quantitative Morphology; Analysis of Mars Thermal Emission Spectrometer Data Using Large Mineral Reference Libraries ; Negative Abundance : A Problem in Compositional Modeling of Hyperspectral Images; Mars-LAB: First Remote Sensing Data of Mineralogy Exposed at Small Mars-Analog Craters, Nevada Test Site; A Tool for the 2003 Rover Mini-TES: Downwelling Radiance Compensation Using Integrated Line-Sight Sky Measurements; Learning About Mars Geology Using Thermal Infrared Spectral Imaging: Orbiter and Rover Perspectives; Classifying Terrestrial Volcanic Alteration Processes and Defining Alteration Processes they Represent on Mars; Cemented Volcanic Soils, Martian Spectra and Implications for the Martian Climate; Palagonitic Mars: A Basalt Centric View of Surface Composition and Aqueous Alteration; Combining a Non Linear Unmixing Model and the Tetracorder Algorithm: Application to the ISM Dataset; Spectral Reflectance Properties of Some Basaltic Weathering Products; Morphometric LIDAR Analysis of Amboy Crater, California: Application to MOLA Analysis of Analog Features on Mars; Airborne Radar Study of Soil Moisture at

  12. Ar-Ar dating techniques for terrestrial meteorite impacts

    Science.gov (United States)

    Kelley, S. P.

    2003-04-01

    The ages of the largest (>100 km) known impacts on Earth are now well characterised. However the ages of many intermediate sized craters (20-100 km) are still poorly known, often the only constraints are stratigraphic - the difference between the target rock age and the age of crater filling sediments. The largest impacts result in significant melt bodies which cool to form igneous rocks and can be dated using conventional radiometric techniques. Smaller impacts give rise to thin bands of melted rock or melt clasts intimately mixed with country rock clasts in breccia deposits, and present much more of a challenge to dating. The Ar-Ar dating technique can address a wide variety of complex and heterogeneous samples associated with meteorite impacts and obtain reasonable ages. Ar-Ar results will be presented from a series of terrestrial meteorite impact craters including Boltysh (65.17±0.64 Ma, Strangways (646±42 Ma), and St Martin (220±32 Ma) and a Late Triassic spherule bed, possibly representing distal deposits from Manicouagan (214±1 Ma) crater. Samples from the Boltysh and Strangways craters demonstrate the importance of rapid cooling upon the retention of old ages in glassy impact rocks. A Late Triassic spherule bed in SW England is cemented by both carbonate and K-feldspar cements allowing Ar-Ar dating of fine grained cement to place a mimimum age upon the age of the associated impact. An age of 214.7±2.5 Ma places the deposit with errors of the age of the Manicouagan impact, raising the possibility that it may represent a distal deposit (the deposit lay around 2000 km away from the site of the Manicouagan crater during the Late Triassic). Finally the limits of the technique will be demonstrated using an attempt to date melt rocks from the St Martin Crater in Canada.

  13. Investigation of Secondary Craters in the Saturnian System

    Science.gov (United States)

    Hoogenboom, T.; Schenk, P.; White, O. L.

    2012-03-01

    To derive accurate ages using impact craters, the impact source must be determined. We investigate secondary crater size, frequency, distribution, formation, and crater chain formation on icy satellites throughout the Jupiter and Saturn systems.

  14. Martian Low-Aspect-Ratio Layered Ejecta (LARLE) craters: Distribution, characteristics, and relationship to pedestal craters

    Science.gov (United States)

    Barlow, Nadine G.; Boyce, Joseph M.; Cornwall, Carin

    2014-09-01

    Low-Aspect-Ratio Layered Ejecta (LARLE) craters are a unique landform found on Mars. LARLE craters are characterized by a crater and normal layered ejecta pattern surrounded by an extensive but thin outer deposit which terminates in a sinuous, almost flame-like morphology. We have conducted a survey to identify all LARLE craters ⩾1-km-diameter within the ±75° latitude zone and to determine their morphologic and morphometric characteristics. The survey reveals 140 LARLE craters, with the majority (91%) located poleward of 40°S and 35°N and all occurring within thick mantles of fine-grained deposits which are likely ice-rich. LARLE craters range in diameter from the cut-off limit of 1 km up to 12.2 km, with 83% being smaller than 5 km. The radius of the outer LARLE deposit displays a linear trend with the crater radius and is greatest at higher polar latitudes. The LARLE deposit ranges in length between 2.56 and 14.81 crater radii in average extent, with maximum length extending up to 21.4 crater radii. The LARLE layer is very sinuous, with lobateness values ranging between 1.45 and 4.35. LARLE craters display a number of characteristics in common with pedestal craters and we propose that pedestal craters are eroded versions of LARLE craters. The distribution and characteristics of the LARLE craters lead us to propose that impact excavation into ice-rich fine-grained deposits produces a dusty base surge cloud (like those produced by explosion craters) that deposits dust and ice particles to create the LARLE layers. Salts emplaced by upward migration of water through the LARLE deposit produce a surficial duricrust layer which protects the deposit from immediate removal by eolian processes.

  15. Machine cataloging of impact craters on Mars

    Science.gov (United States)

    Stepinski, Tomasz F.; Mendenhall, Michael P.; Bue, Brian D.

    2009-09-01

    This study presents an automated system for cataloging impact craters using the MOLA 128 pixels/degree digital elevation model of Mars. Craters are detected by a two-step algorithm that first identifies round and symmetric topographic depressions as crater candidates and then selects craters using a machine-learning technique. The system is robust with respect to surface types; craters are identified with similar accuracy from all different types of martian surfaces without adjusting input parameters. By using a large training set in its final selection step, the system produces virtually no false detections. Finally, the system provides a seamless integration of crater detection with its characterization. Of particular interest is the ability of our algorithm to calculate crater depths. The system is described and its application is demonstrated on eight large sites representing all major types of martian surfaces. An evaluation of its performance and prospects for its utilization for global surveys are given by means of detailed comparison of obtained results to the manually-derived Catalog of Large Martian Impact Craters. We use the results from the test sites to construct local depth-diameter relationships based on a large number of craters. In general, obtained relationships are in agreement with what was inferred on the basis of manual measurements. However, we have found that, in Terra Cimmeria, the depth/diameter ratio has an abrupt decrease at ˜38°S regardless of crater size. If shallowing of craters is attributed to presence of sub-surface ice, a sudden change in its spatial distribution is suggested by our findings.

  16. Impact craters in South America

    CERN Document Server

    Acevedo, Rogelio Daniel; Ponce, Juan Federico; Stinco, Sergio G

    2015-01-01

    A complete and updated catalogue of impact craters and structures in South America from 2014 is presented here. Approximately eighty proven, suspected and disproven structures have been identified by several sources in this continent. All the impact sites of this large continent have been exhaustively reviewed: the proved ones, the possible ones and some very doubtful. Many sites remain without a clear geological ""in situ"" confirmation and some of them could be even rejected. Argentina and Brazil are leading the list containing almost everything detected. In Bolivia, Chile, Colombia, Guyana,

  17. Packaging a successful NASA mission to reach a large audience within a small budget. Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission

    Science.gov (United States)

    Fox, N. J.; Goldberg, R.; Barnes, R. J.; Sigwarth, J. B.; Beisser, K. B.; Moore, T. E.; Hoffman, R. A.; Russell, C. T.; Scudder, J.; Spann, J. F.; Newell, P. T.; Hobson, L. J.; Gribben, S. P.; Obrien, J. E.; Menietti, J. D.; Germany, G. G.; Mobilia, J.; Schulz, M.

    2004-12-01

    To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth’s dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story, and visualizations were created using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts in order to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA’s Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.

  18. Surface morphology of caldera-forming eruption deposits revealed by lidar mapping of Crater Lake National Park, Oregon- Implications for emplacement and surface modification

    Science.gov (United States)

    Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.

    2017-01-01

    Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The ~7,700 calendar year B.P. climactic eruption of Mount Mazama, USA vented ~50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Mazama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ±1 m lateral and ±4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow- parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of pit craters caused by phreatic explosions, fractures and cracks caused by extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented

  19. Layers of 'Cabo Frio' in 'Victoria Crater' (False Color)

    Science.gov (United States)

    2006-01-01

    This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is an enhanced false color rendering of images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 750-nanometer, 530-nanometer and 430-nanometer filters.

  20. Layers of 'Cabo Frio' in 'Victoria Crater' (Stereo)

    Science.gov (United States)

    2006-01-01

    This view of 'Victoria crater' is looking southeast from 'Duck Bay' towards the dramatic promontory called 'Cabo Frio.' The small crater in the right foreground, informally known as 'Sputnik,' is about 20 meters (about 65 feet) away from the rover, the tip of the spectacular, layered, Cabo Frio promontory itself is about 200 meters (about 650 feet) away from the rover, and the exposed rock layers are about 15 meters (about 50 feet) tall. This is a red-blue stereo anaglyph generated from images taken by the panoramic camera (Pancam) on NASA's Mars Exploration Rover Opportunity during the rover's 952nd sol, or Martian day, (Sept. 28, 2006) using the camera's 430-nanometer filters.

  1. Technical problems and future cratering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Knox, J B [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    This paper reviews some of the key technical problems that remain to be solved in nuclear cratering technology. These include: (1) developing a broader understanding of the effects that material properties and water content of the earth materials around the shot have on cratering behavior, (2) extending the experimental investigation of retarc formation to include intermediate yields and various materials, and (3) improving our ability to predict the escape of radioactive material to the atmosphere to form the cloud source responsible for fallout. The formation processes of ejecta craters, retarcs, and subsidence craters are described in the light of our present understanding, and the major gaps in our understanding are indicated. Methods of calculating crater and retarc formation are discussed, with particular reference to the input information needed. Methods for calculating fallout are presented, and their shortcomings are discussed. A preliminary analysis of the safety factors associated with the presently proposed nuclear excavation concepts is presented. (author)

  2. Technical problems and future cratering experiments

    International Nuclear Information System (INIS)

    Knox, J.B.

    1969-01-01

    This paper reviews some of the key technical problems that remain to be solved in nuclear cratering technology. These include: (1) developing a broader understanding of the effects that material properties and water content of the earth materials around the shot have on cratering behavior, (2) extending the experimental investigation of retarc formation to include intermediate yields and various materials, and (3) improving our ability to predict the escape of radioactive material to the atmosphere to form the cloud source responsible for fallout. The formation processes of ejecta craters, retarcs, and subsidence craters are described in the light of our present understanding, and the major gaps in our understanding are indicated. Methods of calculating crater and retarc formation are discussed, with particular reference to the input information needed. Methods for calculating fallout are presented, and their shortcomings are discussed. A preliminary analysis of the safety factors associated with the presently proposed nuclear excavation concepts is presented. (author)

  3. Asteroid families from cratering: Detection and models

    Science.gov (United States)

    Milani, A.; Cellino, A.; Knežević, Z.; Novaković, B.; Spoto, F.; Paolicchi, P.

    2014-07-01

    A new asteroid families classification, more efficient in the inclusion of smaller family members, shows how relevant the cratering impacts are on large asteroids. These do not disrupt the target, but just form families with the ejecta from large craters. Of the 12 largest asteroids, 8 have cratering families: number (2), (4), (5), (10), (87), (15), (3), and (31). At least another 7 cratering families can be identified. Of the cratering families identified so far, 7 have >1000 members. This imposes a remarkable change from the focus on fragmentation families of previous classifications. Such a large dataset of asteroids believed to be crater ejecta opens a new challenge: to model the crater and family forming event(s) generating them. The first problem is to identify which cratering families, found by the similarity of proper elements, can be formed at once, with a single collision. We have identified as a likely outcome of multiple collisions the families of (4), (10), (15), and (20). Of the ejecta generated by cratering, only a fraction reaches the escape velocity from the surviving parent body. The distribution of velocities at infinity, giving to the resulting family an initial position and shape in the proper elements space, is highly asymmetric with respect to the parent body. This shape is deformed by the Yarkovsky effect and by the interaction with resonances. All the largest asteroids have been subjected to large cratering events, thus the lack of a family needs to be interpreted. The most interesting case is (1) Ceres, which is not the parent body of the nearby family of (93). Two possible interpretations of the low family forming efficiency are based on either the composition of Ceres with a significant fraction of ice, protected by a thin crust, or with the larger escape velocity of ~500 m/s.

  4. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N; Stibal, Marek

    2016-01-01

    of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation...... and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity...

  5. Investigations of Ceres's Craters with Straightened Rim

    Science.gov (United States)

    Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Raponi, A.; Formisano, M.; Ciarniello, M.; Magni, G.; Combe, J. P.; Marchi, S.; Raymond, C. A.; Schwartz, S. J.

    2017-12-01

    Dwarf planet Ceres hosts some geological features that are unique in the solar system because its composition, rich in aqueously-altered silicates, is usually found on full-size planets, whereas its mean radius is smaller than most natural satellites in the solar system. For example, the local high-albedo, carbonate-rich areas or faculaeare specific to Ceres; also, the absence of big impact crater structures is key to understand the overall mechanical behaviour of the Cerean crust. After the first findings of water ice occurring in the shadowed areas of craters on Ceres by the NASA/Dawn mission (1, 2), we analyzed the morphology of craters looking for features similar to the ones where the water ice composition has been detected analyzing the data from the VIR spectrometer (3). These craters fall outside of the family of polygonal craters which are mainly related to regional or global scale tectonics (4). We analyzed the morphology on the base of the global mosaic, the digital terrain model derived by using the stereo photogrammetry method and the single data frames of the Framing Camera. Our investigation started from crater Juling, which is characterized by a portion of the rim which forms a straight segment instead of a portion of a circle. This linear crater wall is also steep enough that it forms a cliff that is in the shadowed area in all images acquired by Dawn. Very smooth and bright deposits lay at the foot of this crater-wall cliff. Then, we identified several other craters, relatively fresh, with radius of 2 to 10 kilometers, showing one or two sectors of the crater-rim being truncated by a mass-wasting process, probably a rockfall. Our first analysis show that in the selected craters, the truncated sectors are always in the north-eastern sector of the rim for the craters in the southern hemisphere. Conversely, the craters on the northern hemisphere exhibit a truncated rim in their south-eastern sector. Although a more detailed analysis is mandatory

  6. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry

    Science.gov (United States)

    Fassett, Caleb I.; Crowley, Malinda C.; Leight, Clarissa; Dyar, M. Darby; Minton, David A.; Hirabayashi, Masatoshi; Thomson, Bradley J.; Watters, Wesley A.

    2017-06-01

    Examining the topography of impact craters and their evolution with time is useful for assessing how fast planetary surfaces evolve. Here, new measurements of depth/diameter (d/D) ratios for 204 craters of 2.5 to 5 km in diameter superposed on Mercury's smooth plains are reported. The median d/D is 0.13, much lower than expected for newly formed simple craters ( 0.21). In comparison, lunar craters that postdate the maria are much less modified, and the median crater in the same size range has a d/D ratio that is nearly indistinguishable from the fresh value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have ages that are comparable, if not identical. Applying a topographic diffusion model, these results imply that crater degradation is faster by a factor of approximately two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.Plain Language SummaryMercury and the Moon are both airless bodies that have experienced numerous impact events over billions of years. These impacts form craters in a geologic instant. The question examined in this manuscript is how fast these craters erode after their formation. To simplify the problem, we examined craters of a particular size (2.5 to 5 km in diameter) on a particular geologic terrain type (volcanic smooth plains) on both the Moon and Mercury. We then measured the topography of hundreds of craters on both bodies that met these criteria. Our results suggest that craters on Mercury become shallower much more quickly than craters on the Moon. We estimate that Mercury's topography erodes at a rate at least a factor of two faster than the Moon's.

  7. Saying Goodbye to 'Bonneville' Crater

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Annotated Image NASA's Mars Exploration Rover Spirit took this panoramic camera image on sol 86 (March 31, 2004) before driving 36 meters (118 feet) on sol 87 toward its future destination, the Columbia Hills. This is probably the last panoramic camera image that Spirit will take from the high rim of 'Bonneville' crater, and provides an excellent view of the ejecta-covered path the rover has journeyed thus far. The lander can be seen toward the upper right of the frame and is approximately 321 meters (1060 feet) away from Spirit's current location. The large hill on the horizon is Grissom Hill. The Colombia Hills, located to the left, are not visible in this image.

  8. Upstream Freshwater and Terrestrial Sources Are Differentially Reflected in the Bacterial Community Structure along a Small Arctic River and Its Estuary

    DEFF Research Database (Denmark)

    Hauptmann, Aviaja Zenia Edna Lyberth; Markussen, Thor N; Stibal, Marek

    2016-01-01

    of different water sources on the microbial communities in Arctic rivers and estuaries remains unknown. In this study we used 16S rRNA gene amplicon sequencing to assess a small river and its estuary on the Disko Island, West Greenland (69°N). Samples were taken in August when there is maximum precipitation......Glacier melting and altered precipitation patterns influence Arctic freshwater and coastal ecosystems. Arctic rivers are central to Arctic water ecosystems by linking glacier meltwaters and precipitation with the ocean through transport of particulate matter and microorganisms. However, the impact...... and temperatures are high in the Disko Bay area. We describe the bacterial community through a river into the estuary, including communities originating in a glacier and a proglacial lake. Our results show that water from the glacier and lake transports distinct communities into the river in terms of diversity...

  9. Sands at Gusev Crater, Mars

    Science.gov (United States)

    Cabrol, Nathalie A.; Herkenhoff, Kenneth E.; Knoll, Andrew H.; Farmer, Jack D.; Arvidson, Raymond E.; Grin, E.A.; Li, Ron; Fenton, Lori; Cohen, B.; Bell, J.F.; Yingst, R. Aileen

    2014-01-01

    Processes, environments, and the energy associated with the transport and deposition of sand at Gusev Crater are characterized at the microscopic scale through the comparison of statistical moments for particle size and shape distributions. Bivariate and factor analyses define distinct textural groups at 51 sites along the traverse completed by the Spirit rover as it crossed the plains and went into the Columbia Hills. Fine-to-medium sand is ubiquitous in ripples and wind drifts. Most distributions show excess fine material, consistent with a predominance of wind erosion over the last 3.8 billion years. Negative skewness at West Valley is explained by the removal of fine sand during active erosion, or alternatively, by excess accumulation of coarse sand from a local source. The coarse to very coarse sand particles of ripple armors in the basaltic plains have a unique combination of size and shape. Their distribution display significant changes in their statistical moments within the ~400 m that separate the Columbia Memorial Station from Bonneville Crater. Results are consistent with aeolian and/or impact deposition, while the elongated and rounded shape of the grains forming the ripples, as well as their direction of origin, could point to Ma'adim Vallis as a possible source. For smaller particles on the traverse, our findings confirm that aeolian processes have dominated over impact and other processes to produce sands with the observed size and shape patterns across a spectrum of geologic (e.g., ripples and plains soils) and aerographic settings (e.g., wind shadows).

  10. Changes in abundance and nature of microimpact craters on the surfaces of Australasian microtektites with distance from the proposed source crater location

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Roy, S.K.; Gupta, A.

    of the craters are of erosive type (Fig. 2), i.e., those which contain a central pit which is surrounded by radial and concentric cracks, indicative of high velocity impacts (Hörz et al., 1971). This could be misleading, as observed in our earlier studies... of very small particles at high relative velocities. This location also has 9    the highest spatial density of impacts, i.e., it contains 230 micro-craters/cm 2 of the ocean floor (Table 2). AAS 22/8 (4052 km): Location : 07 0 05.289’S & 78 0...

  11. Aboriginal oral traditions of Australian impact craters

    Science.gov (United States)

    Hamacher, Duane W.; Goldsmith, John

    2013-11-01

    In this paper we explore Aboriginal oral traditions that relate to Australian meteorite craters. Using the literature, first-hand ethnographic records and field trip data, we identify oral traditions and artworks associated with four impact sites: Gosses Bluff, Henbury, Liverpool and Wolfe Creek. Oral traditions describe impact origins for Gosses Bluff, Henbury and Wolfe Creek Craters, and non-impact origins for Liverpool Crater, with Henbury and Wolfe Creek stories having both impact and non-impact origins. Three impact sites that are believed to have been formed during human habitation of Australia -- Dalgaranga, Veevers, and Boxhole -- do not have associated oral traditions that are reported in the literature.

  12. Geological Structures in the WaIls of Vestan Craters

    Science.gov (United States)

    Mittlefehldt, David; Nathues, A.; Beck, A. W.; Hoffmann, M.; Schaefer, M.; Williams, D. A.

    2014-01-01

    A compelling case can be made that Vesta is the parent asteroid for the howardite, eucrite and diogenite (HED) meteorites [1], although this interpretation has been questioned [2]. Generalized models for the structure of the crust of Vesta have been developed based on petrologic studies of basaltic eucrites, cumulate eucrites and diogenites. These models use inferred cooling rates for different types of HEDs and compositional variations within the clan to posit that the lower crust is dominantly diogenitic in character, cumulate eucrites occur deep in the upper crust, and basaltic eucrites dominate the higher levels of the upper crust [3-5]. These models lack fine-scale resolution and thus do not allow for detailed predictions of crustal structure. Geophysical models predict dike and sill intrusions ought to be present, but their widths may be quite small [6]. The northern hemisphere of Vesta is heavily cratered, and the southern hemisphere is dominated by two 400-500 km diameter basins that excavated deep into the crust [7-8]. Physical modeling of regolith formation on 300 km diameter asteroids predicts that debris layers would reach a few km in thickness, while on asteroids of Vesta's diameter regolith thicknesses would be less [9]. This agrees well with the estimated =1 km thickness of local debris excavated by a 45 km diameter vestan crater [10]. Large craters and basins may have punched through the regolith/megaregolith and exposed primary vestan crustal structures. We will use Dawn Framing Camera (FC) [11] images and color ratio maps from the High Altitude and Low Altitude Mapping Orbits (HAMO, 65 m/pixel; LAMO, 20 m/pixel) to evaluate structures exposed on the walls of craters: two examples are discussed here.

  13. Preliminary Results from Initial Investigations of Ceres' Cratering Record from Dawn Imaging Data

    Science.gov (United States)

    Schmedemann, Nico; Michael, Gregory; Ivanov, Boris A.; Kneissl, Thomas; Neesemann, Adrian; Hiesinger, Harald; Jaumann, Ralf; Raymond, Carol A.; Russell, Christopher T.

    2015-04-01

    takes much more time than is available and, thus, will not be available at the time of the presentation. First hi-res imaging data will also provide details about crater morphologies and the major geologic units that will be analyzed during later stages of the Dawn mission. Acknowledgment: This work has been supported by the German Space Agency (DLR) on behalf of the Federal Ministry of Economic Affairs and Energy, grants 50OW1101 (NS, TK, AN) and 50QM1301 (GM). BAI is supported by Program 22 RAS. References: [1] Russell C.T. et al. (2012) Science, 336, 684-686; [2] Sierks H. et al. (2011) Space Science Reviews, 163, 263-327; [3] Li J.Y. et al. (2006) Icarus, 182, 143-160; [4] Schmedemann N. et al. (2015): 46.LPSC, The Woodlands, #1418; [5] McCord T.B. et al. (2012) Ceres: Its Origin, Evolution and Structure and Dawn's Potential Contribution. In: Russell, C.T, Raymond, C.A. (eds.) The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. Springer, New York, 63-76; [6] Neukum G. and Ivanov B. A. (1994) Crater size distribu-tions and impact probabilities on Earth from Lunar, terrestrial planet, and asteroid cratering data. In: Gehrels T. (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, 359-416. [7] Ivanov B.A. (2001) Space Science Reviews, 96, 87-104; [8] Schmedemann N. et al. (2014), 103, 104-130.

  14. Characterizing Terrestrial Exoplanets

    Science.gov (United States)

    Meadows, V. S.; Lustig-Yaeger, J.; Lincowski, A.; Arney, G. N.; Robinson, T. D.; Schwieterman, E. W.; Deming, L. D.; Tovar, G.

    2017-11-01

    We will provide an overview of the measurements, techniques, and upcoming missions required to characterize terrestrial planet environments and evolution, and search for signs of habitability and life.

  15. Cratering efficiency on coarse-grain targets: Implications for the dynamical evolution of asteroid 25143 Itokawa

    Science.gov (United States)

    Tatsumi, Eri; Sugita, Seiji

    2018-01-01

    Remote sensing observations made by the spacecraft Hayabusa provided the first direct evidence of a rubble-pile asteroid: 25143 Itokawa. Itokawa was found to have a surface structure very different from other explored asteroids; covered with coarse pebbles and boulders ranging at least from cm to meter size. The cumulative size distribution of small circular depressions on Itokawa, most of which may be of impact origin, has a significantly shallower slope than that on the Moon; small craters are highly depleted on Itokawa compared to the Moon. This deficiency of small circular depressions and other features, such as clustered fragments and pits on boulders, suggest that the boulders on Itokawa might behave like armor, preventing crater formation: the ;armoring effect;. This might contribute to the low number density of small crater candidates. In this study, the cratering efficiency reduction due to coarse-grained targets was investigated based on impact experiments at velocities ranging from ∼ 70 m/s to ∼ 6 km/s using two vertical gas gun ranges. We propose a scaling law extended for cratering on coarse-grained targets (i.e., target grain size ≳ projectile size). We have found that the crater efficiency reduction is caused by energy dissipation at the collision site where momentum is transferred from the impactor to the first-contact target grain, and that the armoring effect can be classified into three regimes: (1) gravity scaled regime, (2) reduced size crater regime, or (3) no apparent crater regime, depending on the ratio of the impactor size to the target grain size and the ratio of the impactor kinetic energy to the disruption energy of a target grain. We found that the shallow slope of the circular depressions on Itokawa cannot be accounted for by this new scaling law, suggesting that obliteration processes, such as regolith convection and migration, play a greater role in the depletion of circular depressions on Itokawa. Based on the new extended

  16. Topography of the Martian Impact Crater Tooting

    Science.gov (United States)

    Mouginis-Mark, P. J.; Garbeil, H.; Boyce, J. M.

    2009-01-01

    Tooting crater is approx.29 km in diameter, is located at 23.4degN, 207.5degE, and is classified as a multi-layered ejecta crater [1]. Our mapping last year identified several challenges that can now be addressed with HiRISE and CTX images, but specifically the third dimension of units. To address the distribution of ponded sediments, lobate flows, and volatile-bearing units within the crater cavity, we have focused this year on creating digital elevation models (DEMs) for the crater and ejecta blanket from stereo CTX and HiRISE images. These DEMs have a spatial resolution of approx.50 m for CTX data, and 2 m for HiRISE data. Each DEM is referenced to all of the available individual MOLA data points within an image, which number approx.5,000 and 800 respectively for the two data types

  17. Buckets of ash track tephra flux from Halema'uma'u Crater, Hawai'i

    Science.gov (United States)

    Swanson, Don; Wooten, Kelly M.; Orr, Tim R.

    2009-01-01

    The 2008–2009 eruption at Kīlauea Volcano's summit made news because of its eight small discrete explosive eruptions and noxious volcanic smog (vog) created from outgassing sulfur dioxide. Less appreciated is the ongoing, weak, but continuous output of tephra, primarily ash, from the new open vent in Halema'uma'u Crater. This tephra holds clues to processes causing the eruption and forming the new crater-in-a-crater, and its flux is important to hazard evaluations.The setting of the vent–easily accessible from the Hawaiian Volcano Observatory (HVO)—is unusually favorable for neardaily tracking of tephra mass flux during this small prolonged basaltic eruption. Recognizing this, scientists from HVO are collecting ash and documenting how ejection masses, components, and chemical compositions vary through time.

  18. Are pre-crater mounds gas-inflated?

    Science.gov (United States)

    Leibman, Marina; Kizyakov, Alexandr; Khomutov, Artem; Dvornikov, Yury; Babkina, Elena; Arefiev, Stanislav; Khairullin, Rustam

    2017-04-01

    Gas-emission craters (GEC) on Yamal peninsula, which occupied minds of researches for the last couple of years since first discovered in 2014, appeared to form on the place of specifically shaped mounds. There was a number of hypotheses involving pingo as an origin of these mounds. This arouse an interest in mapping pingo thus marking the areas of GEC formation risk. Our field research allows us to suggest that remote-sensing-based mapping of pingo may result in mix up of mounds of various origin. Thus, we started with classification of the mounds based on remote-sensing, field observations and survey from helicopter. Then we compared indicators of mounds of various classes to the properties of pre-crater mounds to conclude on their origin. Summarizing field experience, there are three main mound types on Yamal. (1) Outliers (remnant hills), separated from the main geomorphic landform by erosion. Often these mounds comprise polygonal blocks, kind of "baydzherakh". Their indicators are asymmetry (short gentle slope towards the main landform, and steep slope often descending into a small pond of thermokarst-nivation origin), often quadrangle or conic shape, and large size. (2) Pingo, appear within the khasyrei (drain lake basin); often are characterized by open cracks resulting from expansion of polygonal network formed when re-freezing of lake talik prior to pingo formation; old pingo may bear traces of collapse on the top, with depression which differs from the GEC by absence of parapet. (3) Frost-heave mounds (excluding pingo) may form on deep active layer, reducing due to moss-peat formation and forming ice lenses from an active layer water, usually they appear in the drainage hollows, valley bottoms, drain-lake basins periphery. These features are smaller than the first two types of mounds. Their tops as a rule are well vegetated. We were unable to find a single or a set of indicators unequivocally defining any specific mound type, thus indicators of pre-crater

  19. Crater Mound Formation by Wind Erosion on Mars

    Science.gov (United States)

    Steele, L. J.; Kite, E. S.; Michaels, T. I.

    2018-01-01

    Most of Mars' ancient sedimentary rocks by volume are in wind-eroded sedimentary mounds within impact craters and canyons, but the connections between mound form and wind erosion are unclear. We perform mesoscale simulations of different crater and mound morphologies to understand the formation of sedimentary mounds. As crater depth increases, slope winds produce increased erosion near the base of the crater wall, forming mounds. Peak erosion rates occur when the crater depth is ˜2 km. Mound evolution depends on the size of the host crater. In smaller craters mounds preferentially erode at the top, becoming more squat, while in larger craters mounds become steeper sided. This agrees with observations where smaller craters tend to have proportionally shorter mounds and larger craters have mounds encircled by moats. If a large-scale sedimentary layer blankets a crater, then as the layer recedes across the crater it will erode more toward the edges of the crater, resulting in a crescent-shaped moat. When a 160 km diameter mound-hosting crater is subject to a prevailing wind, the surface wind stress is stronger on the leeward side than on the windward side. This results in the center of the mound appearing to "march upwind" over time and forming a "bat-wing" shape, as is observed for Mount Sharp in Gale crater.

  20. Nuclear cratering on a digital computer

    Energy Technology Data Exchange (ETDEWEB)

    Terhune, R W; Stubbs, T F; Cherry, J T [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Computer programs based on the artificial viscosity method are applied to developing an understanding of the physics of cratering, with emphasis on cratering by nuclear explosives. Two established codes, SOC (spherical symmetry) and TENSOR (cylindrical symmetry), are used to illustrate the effects of variations in the material properties of various media on the cratering processes, namely shock, spall, and gas acceleration. Water content is found to be the most important material property, followed by strength, porosity, and compressibility. Crater profile calculations are presented for Pre-Gondola Charley (20-ton nitromethane detonation in shale) and Sedan (100-kt nuclear detonation in alluvium). Calculations also are presented for three 1-Mt yields in saturated Divide basalt and 1-Mt yield in dry Buckboard basalt, to show crater geometry as a function of the burial depth for large explosive yields. The calculations show, for megaton-level yields, that gas acceleration is the dominate mechanism in determining crater size and depends in turn on the water content in the medium. (author)

  1. Nuclear cratering on a digital computer

    International Nuclear Information System (INIS)

    Terhune, R.W.; Stubbs, T.F.; Cherry, J.T.

    1970-01-01

    Computer programs based on the artificial viscosity method are applied to developing an understanding of the physics of cratering, with emphasis on cratering by nuclear explosives. Two established codes, SOC (spherical symmetry) and TENSOR (cylindrical symmetry), are used to illustrate the effects of variations in the material properties of various media on the cratering processes, namely shock, spall, and gas acceleration. Water content is found to be the most important material property, followed by strength, porosity, and compressibility. Crater profile calculations are presented for Pre-Gondola Charley (20-ton nitromethane detonation in shale) and Sedan (100-kt nuclear detonation in alluvium). Calculations also are presented for three 1-Mt yields in saturated Divide basalt and 1-Mt yield in dry Buckboard basalt, to show crater geometry as a function of the burial depth for large explosive yields. The calculations show, for megaton-level yields, that gas acceleration is the dominate mechanism in determining crater size and depends in turn on the water content in the medium. (author)

  2. V. Terrestrial vertebrates

    Science.gov (United States)

    Dean Pearson; Deborah Finch

    2011-01-01

    Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...

  3. Crater Lakes on Mars: Development of Quantitative Thermal and Geomorphic Models

    Science.gov (United States)

    Barnhart, C. J.; Tulaczyk, S.; Asphaug, E.; Kraal, E. R.; Moore, J.

    2005-01-01

    Impact craters on Mars have served as catchments for channel-eroding surface fluids, and hundreds of examples of candidate paleolakes are documented [1,2] (see Figure 1). Because these features show similarity to terrestrial shorelines, wave action has been hypothesized as the geomorphic agent responsible for the generation of these features [3]. Recent efforts have examined the potential for shoreline formation by wind-driven waves, in order to turn an important but controversial idea into a quantitative, falsifiable hypothesis. These studies have concluded that significant wave-action shorelines are unlikely to have formed commonly within craters on Mars, barring Earth-like weather for approx.1000 years [4,5,6].

  4. Relating sedimentary processes in the Bagnold Dunes to the development of crater basin aeolian stratification

    Science.gov (United States)

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M. D.; Stein, N.; Rubin, D. M.; Sullivan, R. J., Jr.; Banham, S.; Thomas, N. M.; Lamb, M. P.; Gupta, S.; Fischer, W. W.

    2017-12-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under martian conditions. Exploration of the Bagnold Dunes by the Curiosity Rover in Gale Crater, Mars provided the first opportunity to make in situ observations of martian dunes from the grain-to-dune scale. We used the suite of cameras on Curiosity, including Navigation Camera, Mast Camera, and Mars Hand Lens Imager. We measured grainsize and identified sedimentary processes similar to processes on terrestrial dunes, such as grainfall, grainflow, and impact ripples. Impact ripple grainsize had a median of 0.103 mm. Measurements of grainflow slopes indicate a relaxation angle of 29° and grainfall slopes indicate critical angles of at least 32°. Dissimilar to terrestrial dunes, large, meter-scale ripples form on all slopes of the dunes. The ripples form both sinuous and linear crestlines, have symmetric and asymmetric profiles, range in height between 12cm and 28cm, and host grainfall, grainflow, and impact ripples. The largest ripples are interpreted to integrate the annual wind cycle within the crater, whereas smaller large ripples and impact ripples form or reorient to shorter term wind cycling. Assessment of sedimentary processes in combination with dune type across the Bagnold Dunes shows that dune-field pattern development in response to a complex crater-basin wind regime dictates the distribution of geomorphic processes. From a stratigraphic perspective, zones of highest potential accumulation correlate with zones of wind convergence, which produce complex winds and dune field patterns thereby

  5. Open Access Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters

    Science.gov (United States)

    Ehlmann, Bethany L.; Swayze, Gregg A.; Milliken, Ralph E.; Mustard, John F.; Clark, Roger N.; Murchie, Scott L.; Breit, George N.; Wray, James J.; Gondet, Brigitte; Poulet, Francois; Carter, John; Calvin, Wendy M.; Benzel, William M.; Seelos, Kimberly D.

    2016-01-01

    Cross crater is a 65 km impact crater, located in the Noachian highlands of the Terra Sirenum region of Mars (30°S, 158°W), which hosts aluminum phyllosilicate deposits first detected by the Observatoire pour la Minéralogie, L’Eau, les Glaces et l’Activitié (OMEGA) imaging spectrometer on Mars Express. Using high-resolution data from the Mars Reconnaissance Orbiter, we examine Cross crater’s basin-filling sedimentary deposits. Visible/shortwave infrared (VSWIR) spectra from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show absorptions diagnostic of alunite. Combining spectral data with high-resolution images, we map a large (10 km × 5 km) alunite-bearing deposit in southwest Cross crater, widespread kaolin-bearing sediments with variable amounts of alunite that are layered in <10 m scale beds, and silica- and/or montmorillonite-bearing deposits that occupy topographically lower, heavily fractured units. The secondary minerals are found at elevations ranging from 700 to 1550 m, forming a discontinuous ring along the crater wall beneath darker capping materials. The mineralogy inside Cross crater is different from that of the surrounding terrains and other martian basins, where Fe/Mg-phyllosilicates and Ca/Mg-sulfates are commonly found. Alunite in Cross crater indicates acidic, sulfurous waters at the time of its formation. Waters in Cross crater were likely supplied by regionally upwelling groundwaters as well as through an inlet valley from a small adjacent depression to the east, perhaps occasionally forming a lake or series of shallow playa lakes in the closed basin. Like nearby Columbus crater, Cross crater exhibits evidence for acid sulfate alteration, but the alteration in Cross is more extensive/complete. The large but localized occurrence of alunite suggests a localized, high-volume source of acidic waters or vapors, possibly supplied by sulfurous (H2S- and/or SO2-bearing) waters in contact with a magmatic source, upwelling

  6. Pancam Peek into 'Victoria Crater' (Stereo)

    Science.gov (United States)

    2006-01-01

    [figure removed for brevity, see original site] Left-eye view of a stereo pair for PIA08776 [figure removed for brevity, see original site] Right-eye view of a stereo pair for PIA08776 A drive of about 60 meters (about 200 feet) on the 943rd Martian day, or sol, of Opportunity's exploration of Mars' Meridiani Planum region (Sept. 18, 2006) brought the NASA rover to within about 50 meters (about 160 feet) of the rim of 'Victoria Crater.' This crater has been the mission's long-term destination for the past 21 Earth months. Opportunity reached a location from which the cameras on top of the rover's mast could begin to see into the interior of Victoria. This stereo anaglyph was made from frames taken on sol 943 by the panoramic camera (Pancam) to offer a three-dimensional view when seen through red-blue glasses. It shows the upper portion of interior crater walls facing toward Opportunity from up to about 850 meters (half a mile) away. The amount of vertical relief visible at the top of the interior walls from this angle is about 15 meters (about 50 feet). The exposures were taken through a Pancam filter selecting wavelengths centered on 750 nanometers. Victoria Crater is about five times wider than 'Endurance Crater,' which Opportunity spent six months examining in 2004, and about 40 times wider than 'Eagle Crater,' where Opportunity first landed. The great lure of Victoria is the expectation that a thick stack of geological layers will be exposed in the crater walls, potentially several times the thickness that was previously studied at Endurance and therefore, potentially preserving several times the historical record.

  7. A Tale of Two Craters

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] In western Acidalia, two craters of similar size (a few km's) dramatically display the effects of geologic activity. The younger one on the left has been left relatively well preserved, retaining a sharp rim crest, a classic bowl shape, and a clearly defined ejecta blanket. The older one on the right likely has experienced a flood of lava that covered over the ejecta and filled in the bowl (note the breach in the rim). Its rim crest has been worn down by a multitude of subsequent impacts.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.Image information: VIS instrument. Latitude 35.9, Longitude 311.1 East (48.9 West). 19 meter/pixel resolution.

  8. Dune-Yardang Interactions in Becquerel Crater, Mars

    Science.gov (United States)

    Urso, Anna; Chojnacki, Matthew; Vaz, David A.

    2018-02-01

    Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr-1) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.

  9. Dune-Yardang Interactions in Becquerel Crater, Mars.

    Science.gov (United States)

    Urso, Anna; Chojnacki, Matthew; Vaz, David A

    2018-01-01

    Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr -1 ) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.

  10. Mafic Materials in Scott Crater? A Test for Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Cooper, Bonnie L.

    2007-01-01

    Clementine 750 nm and multispectral ratio data, along with Lunar Orbiter and radar data, were used to study the crater Scott in the lunar south polar region. The multispectral data provide evidence for mafic materials, impact melts, anorthositic materials, and a small pyroclastic deposit. High-resolution radar data and Lunar Orbiter photography for this area show differences in color and surface texture that correspond with the locations of the hypothesized mafic and anorthositic areas on the crater floor. This region provides a test case for the upcoming Lunar Reconnaissance Orbiter. Verification of the existence of a mafic deposit at this location is relevant to future lunar resource utilization planning.

  11. Cratering Equations for Zinc Orthotitanate Coated Aluminum

    Science.gov (United States)

    Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon

    2009-01-01

    The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the

  12. Pyroclastic Deposits in the Floor-fractured Crater Alphonsus

    Science.gov (United States)

    Allen, Carlton C.; Donaldson-Hanna, Kerri L.; Pieters, Carle M.; Moriarty, Daniel P.; Greenhagen, Benjamin T.; Bennett, Kristen A.; Kramer, Georgiana Y.; Paige, David A.

    2013-01-01

    samples, but within the range of analyzed pyroclastic glasses. The NAC images of the pyroclastic vents highlight their bright wall materials. The M3 spectra of the southeastern vent indicate that this bright material is noritic, likely crater floor material exposed by explosive eruption. These observations address the hypothesis that Nubium lavas intruded the fracture network beneath Alphonsus, leading to localized vulcanian-style eruptions. This model implies that the eruption products should be dominated by crystalline basalt fragments similar in elemental composition and mineralogy to mare lavas. The bright noritic material exposed in the vent walls is consistent with explosive eruptions. The estimated FeO abundances for the pyroclastic deposits are too low to be consistent with FeO abundances measured in mare basalts, but are within the range of pyroclastic glass samples. The visible- to near-infrared (VIS-NIR) spectra of the pyroclastic deposits and Nubium soils are significantly different, suggesting that the pyroclastics are unrelated to the mare basalts. The pyroclastic spectra are consistent with Fe-bearing glass plus small amounts of noritic wall rock. Similar glassy materials dominate regional pyroclastic deposits, suggesting a deep source for the pyroclastics observed in Alphonsus.

  13. Optimizing laser crater enhanced Raman scattering spectroscopy

    Science.gov (United States)

    Lednev, V. N.; Sdvizhenskii, P. A.; Grishin, M. Ya.; Fedorov, A. N.; Khokhlova, O. V.; Oshurko, V. B.; Pershin, S. M.

    2018-05-01

    The laser crater enhanced Raman scattering (LCERS) spectroscopy technique has been systematically studied for chosen sampling strategy and influence of powder material properties on spectra intensity enhancement. The same nanosecond pulsed solid state Nd:YAG laser (532 nm, 10 ns, 0.1-1.5 mJ/pulse) was used for laser crater production and Raman scattering experiments for L-aspartic acid powder. Increased sampling area inside crater cavity is the key factor for Raman signal improvement for the LCERS technique, thus Raman signal enhancement was studied as a function of numerous experimental parameters including lens-to-sample distance, wavelength (532 and 1064 nm) and laser pulse energy utilized for crater production. Combining laser pulses of 1064 and 532 nm wavelengths for crater ablation was shown to be an effective way for additional LCERS signal improvement. Powder material properties (particle size distribution, powder compactness) were demonstrated to affect LCERS measurements with better results achieved for smaller particles and lower compactness.

  14. Introduced Terrestrial Species (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data represent predicted future potential distributions of terrestrial plants, animals, and pathogens non-native to the Middle-Atlantic region. These data are...

  15. Crater size-frequency distributions and a revised Martian relative chronology

    International Nuclear Information System (INIS)

    Barlow, N.G.

    1988-01-01

    A relative plotting technique is applied to Viking 1:2M photomosaics of 25,826 Martian craters of diameter greater than 8 km and age younger than that of the Martian surface. The size-frequency distribution curves are calculated and analyzed in detail, and the results are presented in extensive tables and maps. It is found that about 60 percent of the crater-containing lithologic units, including many small volcanoes and the ridged planes, were formed during the heavy-bombardment period (HBP), while 40 percent arose after the HBP. Wide region-to-region variation in the crater density is noted, and localized age estimates are provided. 42 references

  16. Terrestrial ecosystems and biodiversity

    CSIR Research Space (South Africa)

    Davis-Reddy, Claire

    2017-10-01

    Full Text Available Ecoregions Terrestrial Biomes Protected Areas Climate Risk and Vulnerability: A Handbook for Southern Africa | 75 7.2. Non-climatic drivers of ecosystem change 7.2.1. Land-use change, habitat loss and fragmentation Land-use change and landscape... concentrations of endemic plant and animal species, but these mainly occur in areas that are most threatened by human activity. Diverse terrestrial ecosystems in the region include tropical and sub-tropical forests, deserts, savannas, grasslands, mangroves...

  17. In plain sight: the Chesapeake Bay crater ejecta blanket

    Science.gov (United States)

    Griscom, D. L.

    2012-02-01

    The discovery nearly two decades ago of a 90 km-diameter impact crater below the lower Chesapeake Bay has gone unnoted by the general public because to date all published literature on the subject has described it as "buried". To the contrary, evidence is presented here that the so-called "upland deposits" that blanket ∼5000 km2 of the U.S. Middle-Atlantic Coastal Plain (M-ACP) display morphologic, lithologic, and stratigraphic features consistent with their being ejecta from the 35.4 Ma Chesapeake Bay Impact Structure (CBIS) and absolutely inconsistent with the prevailing belief that they are of fluvial origin. Specifically supporting impact origin are the facts that (i) a 95 %-pure iron ore endemic to the upland deposits of southern Maryland, eastern Virginia, and the District of Columbia has previously been proven to be impactoclastic in origin, (ii) this iron ore welds together a small percentage of well-rounded quartzite pebbles and cobbles of the upland deposits into brittle sheets interpretable as "spall plates" created in the interference-zone of the CBIS impact, (iii) the predominantly non-welded upland gravels have long ago been shown to be size sorted with an extreme crater-centric gradient far too large to have been the work of rivers, but well explained as atmospheric size-sorted interference-zone ejecta, (iv) new evidence is provided here that ~60 % of the non-welded quartzite pebbles and cobbles of the (lower lying) gravel member of the upland deposits display planar fractures attributable to interference-zone tensile waves, (v) the (overlying) loam member of the upland deposits is attributable to base-surge-type deposition, (vi) several exotic clasts found in a debris flow topographically below the upland deposits can only be explained as jetting-phase crater ejecta, and (vii) an allogenic granite boulder found among the upland deposits is deduced to have been launched into space and sculpted by hypervelocity air friction during reentry. An

  18. The Chicxulub Multiring Impact Crater and the Cretaceous/Paleogene Boundary: Results From Geophysical Surveys and Drilling

    Science.gov (United States)

    Urrutia-Fucugauchi, J.; Perez-Cruz, Ligia

    2010-03-01

    The Chicxulub crater has attracted considerable attention as one of the three largest terrestrial impact structures and its association with the Cretaceous/Paleogene boundary (K/Pg). Chicxulub is a 200 km-diameter multi-ring structure formed 65.5 Ma ago in the Yucatan carbonate platform in the southern Gulf of Mexico and which has since been buried by Paleogene and Neogene carbonates. Chicxulub is one of few large craters with preserved ejecta deposits, which include the world-wide K/Pg boundary clay layer. The impact has been related to the global major environmental and climatic effects and the organism mass extinction that mark the K/Pg boundary, which affected more than 70 % of organisms, including the dinosaurs, marine and flying reptiles, ammonites and a large part of the marine microorganisms. The impact and crater formation occur instantaneously, with excavation of the crust down to 25 km depths in fractions of second and lower crust uplift and crater formation in a few hundreds of seconds. Energy released by impact and crustal deformation generates seismic waves traveling the whole Earth, and resulting in intense fracturing and deformation at the target site. Understanding of the physics of impacts on planetary surfaces and modeling of processes of crustal deformation, rheological behavior of materials at high temperatures and pressures remain a major challenge in geosciences. Study of the Chicxulub crater and the global effects and mass extinction requires inter- and multidisciplinary approaches, with researchers from many diverse fields beyond the geosciences. With no surface exposures, geophysical surveys and drilling are required to study the crater. Differential compaction between the impact breccias and the surrounding carbonate rocks has produced a ring-fracture structure that at the surface reflects in a small topographic depression and the karstic cenote ring. The crater structure, located half offshore and half on-land, has been imaged by

  19. Experimental investigation of crater growth dynamics

    Science.gov (United States)

    Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.; Holsapple, K. A.

    1985-01-01

    This work is a continuation of an ongoing program whose objective is to perform experiments and to develop scaling relationships for large-body impacts onto planetary surfaces. The centrifuge technique is used to provide experimental data for actual target materials of interest. With both power and gas guns mounted on the rotor arm, it is possible to match various dimensionless similarity parameters, which have been shown to govern the behavior of large-scale impacts. The development of the centrifuge technique has been poineered by the present investigators and is documented by numerous publications, the most recent of which are listed below. Understanding the dependence of crater size upon gravity has been shown to be key to the complete determination of the dynamic and kinematic behavior of crater formation as well as ejecta phenomena. Three unique time regimes in the formation of an impact crater have been identified.

  20. Crater monitoring through social media observations

    Science.gov (United States)

    Gialampoukidis, I.; Vrochidis, S.; Kompatsiaris, I.

    2017-09-01

    We have collected more than one lunar image per two days from social media observations. Each one of the collected images has been clustered into two main groups of lunar images and an additional cluster is provided (noise) with pictures that have not been assigned to any cluster. The proposed lunar image clustering process provides two classes of lunar pictures, at different zoom levels; the first showing a clear view of craters grouped into one cluster and the second demonstrating a complete view of the Moon at various phases that are correlated with the crawling date. The clustering stage is unsupervised, so new topics can be detected on-the-fly. We have provided additional sources of planetary images using crowdsourcing information, which is associated with metadata such as time, text, location, links to other users and other related posts. This content has crater information that can be fused with other planetary data to enhance crater monitoring.

  1. Physics of soft impact and cratering

    CERN Document Server

    Katsuragi, Hiroaki

    2016-01-01

    This book focuses on the impact dynamics and cratering of soft matter to describe its importance, difficulty, and wide applicability to planetary-related problems. A comprehensive introduction to the dimensional analysis and constitutive laws that are necessary to discuss impact mechanics and cratering is first provided. Then, particular coverage is given to the impact of granular matter, which is one of the most crucial constituents for geophysics. While granular matter shows both solid-like and fluid-like behaviors, neither solid nor fluid dynamics is sufficient to fully understand the physics of granular matter. In order to reveal its fundamental properties, extensive impact tests have been carried out recently. The author reveals the findings of these recent studies as well as what remains unsolved in terms of impact dynamics. Impact crater morphology with various soft matter impacts also is discussed intensively. Various experimental and observational results up to the recent Itokawa asteroid’s terrain...

  2. A concept of row crater enhancement

    International Nuclear Information System (INIS)

    Redpath, B.B.

    1970-01-01

    Linear craters formed by the simultaneous detonation of a row of buried explosives will probably have a wider application than single charges in the explosive excavation of engineering structures. Most cratering experience to date has been with single charges, and an analytical procedure for the design of a row of charges to excavate a crater with a specified configuration has been lacking. There are no digital computer codes having direct application to a row of charges as there are for single charges. This paper derives a simple relationship which can be used to design row charges with some assurance of achieving the desired result and with considerable flexibility in the choice of explosive yield of the individual charges

  3. Goat paddock cryptoexplosion crater, Western Australia

    Science.gov (United States)

    Harms, J.E.; Milton, D.J.; Ferguson, J.; Gilbert, D.J.; Harris, W.K.; Goleby, B.

    1980-01-01

    Goat Paddock, a crater slightly over 5 km in diameter (18??20??? S, 126??40???E), lies at the north edge of the King Leopold Range/Mueller Range junction in the Kimberley district, Western Australia (Fig. 1). It was noted as a geological anomaly in 1964 during regional mapping by the Bureau of Mineral Resources, Geology and Geophysics and the Geological Survey of Western Australia. The possibility of its being a meteorite impact crater has been discussed1, although this suggestion was subsequently ignored2. Two holes were drilled by a mining corporation in 1972 to test whether kimberlite underlay the structure. Here we report the findings of five days of reconnaissance in August 1979 which established that Goat Paddock is a cryptoexplosion crater containing shocked rocks and an unusually well exposed set of structural features. ?? 1980 Nature Publishing Group.

  4. Lomonosov Crater, Day and Night

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 16 June 2004 This pair of images shows part of Lomonosov Crater. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude 64.9, Longitude 350.7 East (9.3 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project

  5. Optimizing laser crater enhanced Raman spectroscopy.

    Science.gov (United States)

    Lednev, V N; Sdvizhenskii, P A; Grishin, M Ya; Filichkina, V A; Shchegolikhin, A N; Pershin, S M

    2018-03-20

    Raman signal enhancement by laser crater production was systematically studied for 785 nm continuous wave laser pumping. Laser craters were produced in L-aspartic acid powder by a nanosecond pulsed solid state neodymium-doped yttrium aluminum garnet laser (532 nm, 8 ns, 1 mJ/pulse), while Raman spectra were then acquired by using a commercial spectrometer with 785 nm laser beam pumping. The Raman signal enhancement effect was studied in terms of the number of ablating pulses used, the lens-to-sample distance, and the crater-center-laser-spot offset. The influence of the experiment parameters on Raman signal enhancement was studied for different powder materials. Maximum Raman signal enhancement reached 11 fold for loose powders but decreased twice for pressed tablets. Raman signal enhancement was demonstrated for several diverse powder materials like gypsum or ammonium nitrate with better results achieved for the samples tending to give narrow and deep craters upon the laser ablation stage. Alternative ways of cavity production (steel needle tapping and hole drilling) were compared with the laser cratering technique in terms of Raman signal enhancement. Drilling was found to give the poorest enhancement of the Raman signal, while both laser ablation and steel needle tapping provided comparable results. Here, we have demonstrated for the first time, to the best of our knowledge, that a Raman signal can be enhanced 10 fold with the aid of simple cavity production by steel needle tapping in rough highly reflective materials. Though laser crater enhancement Raman spectroscopy requires an additional pulsed laser, this technique is more appropriate for automatization compared to the needle tapping approach.

  6. Parallel Computing for Terrestrial Ecosystem Carbon Modeling

    International Nuclear Information System (INIS)

    Wang, Dali; Post, Wilfred M.; Ricciuto, Daniel M.; Berry, Michael

    2011-01-01

    Terrestrial ecosystems are a primary component of research on global environmental change. Observational and modeling research on terrestrial ecosystems at the global scale, however, has lagged behind their counterparts for oceanic and atmospheric systems, largely because the unique challenges associated with the tremendous diversity and complexity of terrestrial ecosystems. There are 8 major types of terrestrial ecosystem: tropical rain forest, savannas, deserts, temperate grassland, deciduous forest, coniferous forest, tundra, and chaparral. The carbon cycle is an important mechanism in the coupling of terrestrial ecosystems with climate through biological fluxes of CO 2 . The influence of terrestrial ecosystems on atmospheric CO 2 can be modeled via several means at different timescales. Important processes include plant dynamics, change in land use, as well as ecosystem biogeography. Over the past several decades, many terrestrial ecosystem models (see the 'Model developments' section) have been developed to understand the interactions between terrestrial carbon storage and CO 2 concentration in the atmosphere, as well as the consequences of these interactions. Early TECMs generally adapted simple box-flow exchange models, in which photosynthetic CO 2 uptake and respiratory CO 2 release are simulated in an empirical manner with a small number of vegetation and soil carbon pools. Demands on kinds and amount of information required from global TECMs have grown. Recently, along with the rapid development of parallel computing, spatially explicit TECMs with detailed process based representations of carbon dynamics become attractive, because those models can readily incorporate a variety of additional ecosystem processes (such as dispersal, establishment, growth, mortality etc.) and environmental factors (such as landscape position, pest populations, disturbances, resource manipulations, etc.), and provide information to frame policy options for climate change

  7. Terrestrial Zone Exoplanets and Life

    Science.gov (United States)

    Matthews, Brenda

    2018-01-01

    One of the most exciting results from ALMA has been the detection of significant substructure within protoplanetary disks that can be linked to planet formation processes. For the first time, we are able to observe the process of assembly of material into larger bodies within such disks. It is not possible, however, for ALMA to probe the growth of planets in protoplanetary disks at small radii, i.e., in the terrestrial zone, where we expect rocky terrestrial planets to form. In this regime, the optical depths prohibit observation at the high frequencies observed by ALMA. To probe the effects of planet building processes and detect telltale gaps and signatures of planetary mass bodies at such small separations from the parent star, we require a facility of superior resolution and sensitivity at lower frequencies. The ngVLA is just such a facility. We will present the fundamental science that will be enabled by the ngVLA in protoplanetary disk structure and the formation of planets. In addition, we will discuss the potential for an ngVLA facility to detect the molecules that are the building blocks of life, reaching limits well beyond those reachable with the current generation of telescopes, and also to determine whether such planets will be habitable based on studies of the impact of stars on their nearest planetary neighbours.

  8. Crater ejecta scaling laws: fundamental forms based on dimensional analysis

    International Nuclear Information System (INIS)

    Housen, K.R.; Schmidt, R.M.; Holsapple, K.A.

    1983-01-01

    A model of crater ejecta is constructed using dimensional analysis and a recently developed theory of energy and momentum coupling in cratering events. General relations are derived that provide a rationale for scaling laboratory measurements of ejecta to larger events. Specific expressions are presented for ejection velocities and ejecta blanket profiles in two limiting regimes of crater formation: the so-called gravity and strength regimes. In the gravity regime, ejectra velocities at geometrically similar launch points within craters vary as the square root of the product of crater radius and gravity. This relation implies geometric similarity of ejecta blankets. That is, the thickness of an ejecta blanket as a function of distance from the crater center is the same for all sizes of craters if the thickness and range are expressed in terms of crater radii. In the strength regime, ejecta velocities are independent of crater size. Consequently, ejecta blankets are not geometrically similar in this regime. For points away from the crater rim the expressions for ejecta velocities and thickness take the form of power laws. The exponents in these power laws are functions of an exponent, α, that appears in crater radius scaling relations. Thus experimental studies of the dependence of crater radius on impact conditions determine scaling relations for ejecta. Predicted ejection velocities and ejecta-blanket profiles, based on measured values of α, are compared to existing measurements of velocities and debris profiles

  9. Coesite from Wabar crater, near Al Hadida, Arabia

    Science.gov (United States)

    Chao, E.C.T.; Fahey, J.J.; Littler, J.

    1961-01-01

    The third natural occurrence of coesite, the high pressure polymorph of silica, is found at the Wabar meteorite crater, Arabia. The Wabar crater is about 300 feet in diameter and about 40 feet deep. It is the smallest of three craters where coesite has been found.

  10. 3D structure of the Gusev Crater region

    NARCIS (Netherlands)

    van Kan - Parker, M.; Zegers, T.E.; kneissl, T.; Ivanov, B.; Neukum, G.; Foing, B.

    2010-01-01

    Gusev Crater lies within the Aeolis Quadrangle of Mars at the boundary between the northern lowlands and southern highlands. The ancient valley Ma'adim Vallis dissects the highlands south of Gusev Crater and is thought to have fed the crater with sediments.High Resolution Stereo Camera data and

  11. Terrestrial Analogs to Mars

    Science.gov (United States)

    Farr, T. G.; Arcone, S.; Arvidson, R. W.; Baker, V.; Barlow, N. G.; Beaty, D.; Bell, M. S.; Blankenship, D. D.; Bridges, N.; Briggs, G.; Bulmer, M.; Carsey, F.; Clifford, S. M.; Craddock, R. A.; Dickerson, P. W.; Duxbury, N.; Galford, G. L.; Garvin, J.; Grant, J.; Green, J. R.; Gregg, T. K. P.; Guinness, E.; Hansen, V. L.; Hecht, M. H.; Holt, J.; Howard, A.; Keszthelyi, L. P.; Lee, P.; Lanagan, P. D.; Lentz, R. C. F.; Leverington, D. W.; Marinangeli, L.; Moersch, J. E.; Morris-Smith, P. A.; Mouginis-Mark, P.; Olhoeft, G. R.; Ori, G. G.; Paillou, P.; Reilly, J. F., II; Rice, J. W., Jr.; Robinson, C. A.; Sheridan, M.; Snook, K.; Thomson, B. J.; Watson, K.; Williams, K.; Yoshikawa, K.

    2002-08-01

    It is well recognized that interpretations of Mars must begin with the Earth as a reference. The most successful comparisons have focused on understanding geologic processes on the Earth well enough to extrapolate to Mars' environment. Several facets of terrestrial analog studies have been pursued and are continuing. These studies include field workshops, characterization of terrestrial analog sites, instrument tests, laboratory measurements (including analysis of Martian meteorites), and computer and laboratory modeling. The combination of all these activities allows scientists to constrain the processes operating in specific terrestrial environments and extrapolate how similar processes could affect Mars. The Terrestrial Analogs for Mars Community Panel has considered the following two key questions: (1) How do terrestrial analog studies tie in to the Mars Exploration Payload Assessment Group science questions about life, past climate, and geologic evolution of Mars, and (2) How can future instrumentation be used to address these questions. The panel has considered the issues of data collection, value of field workshops, data archiving, laboratory measurements and modeling, human exploration issues, association with other areas of solar system exploration, and education and public outreach activities.

  12. Evidence for a meteoritic origin of the September 15, 2007, Carancas crater

    Science.gov (United States)

    Le Pichon, A.; Antier, K.; Cansi, Y.; Hernandez, B.; Minaya, E.; Burgoa, B.; Drob, D.; Evers, L. G.; Vaubaillon, J.

    2008-11-01

    On September 15th, 2007, around 11:45 local time in Peru, near the Bolivian border, the atmospheric entry of a meteoroid produced bright lights in the sky and intense detonations. Soon after, a crater was discovered south of Lake Titicaca. These events have been detected by the Bolivian seismic network and two infrasound arrays operating for the Comprehensive Nuclear-Test-Ban Treaty Organization, situated at about 80 and 1620 km from the crater. The localization and origin time computed with the seismic records are consistent with the reported impact. The entry elevation and azimuthal angles of the trajectory are estimated from the observed signal time sequences and back-azimuths. From the crater diameter and the airwave amplitudes, the kinetic energy, mass and explosive energy are calculated. Using the estimated velocity of the meteoroid and similarity criteria between orbital elements, an association with possible parent asteroids is attempted. The favorable setting of this event provides a unique opportunity to evaluate physical and kinematic parameters of the object that generated the first actual terrestrial meteorite impact seismically recorded.

  13. Summary of results of cratering experiments

    Energy Technology Data Exchange (ETDEWEB)

    Toman, J [Lawrence Radiation Laboratory, Livermore, CA (United States)

    1969-07-01

    The use of nuclear excavation as a construction technique for producing harbors, canals, highway cuts, and other large excavations requires a high assurance that the yield and depth of burst selected for the explosive will produce the desired configuration within an acceptable degree of tolerance. Nuclear excavation technology advanced significantly during 1968 as a result of the successful execution of Projects Cabriolet, Buggy, and Schooner. Until these experiments were conducted, the only nuclear data available for designing large excavations were derived from Sedan (100 kt in alluvium), Danny Boy (0.42 kt in basalt), and Sulky (0.090 kt in basalt). Applicable experience has now been extended to include two additional rock types: tuff and porphyritic trachyte, non-homogeneous formations with severe geologic layering, and a nuclear row in hard rock. The continued development of cratering calculations using in situ geophysical measurements and high-pressure test data have provided a means for predicting the cratering characteristics of untested materials. Chemical explosive cratering experiments conducted in the pre-Gondola series during the past several years have been directed toward determining the behavior of weak, wet clay shales. This material is important to nuclear excavation because of potential long-term stability problems which may affect the cratered slopes. (author)

  14. Inclement Weather Crater Repair Tool Kit

    Science.gov (United States)

    2017-11-30

    9. Corrugated steel quadcons. ....................................................................................................... 14 Figure 10...Saw cutting around crater upheaval. ERDC/GSL TR-17-26 6 The excavation team is responsible for breaking up the damaged portland cement ...in the table located on Sheet 2 in Appendix A. The corrugated steel quadcons (Item 1) are equipped with double swing doors on both ends of the

  15. Summary of results of cratering experiments

    International Nuclear Information System (INIS)

    Toman, J.

    1969-01-01

    The use of nuclear excavation as a construction technique for producing harbors, canals, highway cuts, and other large excavations requires a high assurance that the yield and depth of burst selected for the explosive will produce the desired configuration within an acceptable degree of tolerance. Nuclear excavation technology advanced significantly during 1968 as a result of the successful execution of Projects Cabriolet, Buggy, and Schooner. Until these experiments were conducted, the only nuclear data available for designing large excavations were derived from Sedan (100 kt in alluvium), Danny Boy (0.42 kt in basalt), and Sulky (0.090 kt in basalt). Applicable experience has now been extended to include two additional rock types: tuff and porphyritic trachyte, non-homogeneous formations with severe geologic layering, and a nuclear row in hard rock. The continued development of cratering calculations using in situ geophysical measurements and high-pressure test data have provided a means for predicting the cratering characteristics of untested materials. Chemical explosive cratering experiments conducted in the pre-Gondola series during the past several years have been directed toward determining the behavior of weak, wet clay shales. This material is important to nuclear excavation because of potential long-term stability problems which may affect the cratered slopes. (author)

  16. Fluids, evaporation and precipitates at Gale Crater

    OpenAIRE

    Schwenzer, S. P.; Bridges, J. C.; Leveille, R.; Wiens, R. C.; Mangold, N.; McAdam, A.; Conrad, P.; Kelley, S. P.; Westall, F.; Martín-Torres, F.; Zorzano, M.-P.

    2015-01-01

    The Mars Science Laboratory (MSL) mission landed in Gale Crater, Mars, on 6th August 2012, and has explored the Yellowknife Bay area. The detailed mineralogical and sedimentological studies provide a unique opportunity to characterise the secondary fluids associated with this habitable environment.

  17. Implications of a Caldera Origin of the Lunar Crater Copernicus

    Science.gov (United States)

    Green, J.

    2007-12-01

    The forthcoming renaissance in lunar exploration will focus on many objectives such as Copernicus. Copernicus appears to be a caldera for at least 8 reasons. If a caldera we see (1) transient activity (2) no overturned impact flap at the crater margins (3) internal sinuous leveed lava flow channels (4) a lava covered floor (5) terraces of different ages (6) multiple central volcanoes, one showing a directed volcanic blast (7) olivine-rich komatiitic lavas on central volcanoes and (8) magmatic inflation/deflation on caldera flanks localizing craterlets and extinct fumaroles in "loop" patterns. Regarding (6), directed volcanic blasts can remove a segment of the volcano wall as evidenced in terrestrial analogs at Mt. St. Helens and Bezymianny. Impact mechanisms to produce this feature in Copernicus are contrived. For (7) Clementine spectral data show a high olivine content of the central mountains on Copernicus which I interpret as forsteritic spinifex mineralization in komatiitic lavas and not as impact rebound of olivine-rich deep seated rocks. (8) MacDonald (1956) documented loop patterns on the flank of Halemaumau in Hawaii defining arcuate fractures localizing fumaroles and craterlets. Inflation/deflation of subjacent magma bodies are interpreted as the cause for these loops. Inflation/deflation mechanisms on caldera flanks are common around terrestrial calderas. "Loop" patterns on the flank of Copernicus localizing "gouge" craterlets have been interpreted as ballistic features resulting from the meteorite impact of this crater. Questioned is the logic of a linear N26E trending array of fragments within Copernicus to serve as a source of ballistic projectiles to form the loops localizing conjugate craterlets. The fused craterlet axes on the lunar loops do not point back to a presumed impact center in Copernicus. The axes are oriented parallel to a regional northwest (N35-60W) fracture zone. Implications for an endogenic origin of Copernicus would involve

  18. Clastic polygonal networks around Lyot crater, Mars: Possible formation mechanisms from morphometric analysis

    Science.gov (United States)

    Brooker, L. M.; Balme, M. R.; Conway, S. J.; Hagermann, A.; Barrett, A. M.; Collins, G. S.; Soare, R. J.

    2018-03-01

    Polygonal networks of patterned ground are a common feature in cold-climate environments. They can form through the thermal contraction of ice-cemented sediment (i.e. formed from fractures), or the freezing and thawing of ground ice (i.e. formed by patterns of clasts, or ground deformation). The characteristics of these landforms provide information about environmental conditions. Analogous polygonal forms have been observed on Mars leading to inferences about environmental conditions. We have identified clastic polygonal features located around Lyot crater, Mars (50°N, 30°E). These polygons are unusually large (>100 m diameter) compared to terrestrial clastic polygons, and contain very large clasts, some of which are up to 15 metres in diameter. The polygons are distributed in a wide arc around the eastern side of Lyot crater, at a consistent distance from the crater rim. Using high-resolution imaging data, we digitised these features to extract morphological information. These data are compared to existing terrestrial and Martian polygon data to look for similarities and differences and to inform hypotheses concerning possible formation mechanisms. Our results show the clastic polygons do not have any morphometric features that indicate they are similar to terrestrial sorted, clastic polygons formed by freeze-thaw processes. They are too large, do not show the expected variation in form with slope, and have clasts that do not scale in size with polygon diameter. However, the clastic networks are similar in network morphology to thermal contraction cracks, and there is a potential direct Martian analogue in a sub-type of thermal contraction polygons located in Utopia Planitia. Based upon our observations, we reject the hypothesis that polygons located around Lyot formed as freeze-thaw polygons and instead an alternative mechanism is put forward: they result from the infilling of earlier thermal contraction cracks by wind-blown material, which then became

  19. Wind-Eroded Crater Floors and Intercrater Plains, Terra Sabaea, Mars

    Science.gov (United States)

    Irwin, Rossman P.; Wray, James J.; Mest, Scott C.; Maxwell, Ted A.

    2018-02-01

    Ancient impact craters with wind-eroded layering on their floors provide a record of resurfacing materials and processes on early Mars. In a 54 km Noachian crater in Terra Sabaea (20.2°S, 42.6°E), eolian deflation of a friable, dark-toned layer up to tens of meters thick has exposed more resistant, underlying light-toned material. These layers differ significantly from strata of similar tone described in other regions of Mars. The light-toned material has no apparent internal stratification, and visible/near-infrared spectral analysis suggests that it is rich in feldspar. Its origin is ambiguous, as we cannot confidently reject igneous, pyroclastic, or clastic alternatives. The overlying dark-toned layer is probably a basaltic siltstone or sandstone that was emplaced mostly by wind, although its weak cementation and inverted fluvial paleochannels indicate some modification by water. Negative-relief channels are not found on the crater floor, and fluvial erosion is otherwise weakly expressed in the study area. Small impacts onto this crater's floor have exposed deeper friable materials that appear to contain goethite. Bedrock outcrops on the crater walls are phyllosilicate bearing. The intercrater plains contain remnants of a post-Noachian thin, widespread, likely eolian mantle with an indurated surface. Plains near Hellas-concentric escarpments to the north are more consistent with volcanic resurfacing. A 48 km crater nearby contains similar dark-over-light outcrops but no paleochannels. Our findings indicate that dark-over-light stratigraphy has diverse origins across Mars and that some dark-toned plains with mafic mineralogy are not of igneous origin.

  20. Terrestrial and extraterrestrial fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Heymann, D.; Jenneskens, L.W.; Jehlicka, J; Koper, C.; Vlietstra, E. [Rice Univ, Houston, TX (United States). Dept. of Earth Science

    2003-07-01

    This paper reviews reports of occurrences of fullerenes in circumstellar media, interstellar media, meteorites, interplanetary dust particles (IDPs), lunar rocks, hard terrestrial rocks from Shunga (Russia), Sudbury (Canada) and Mitov (Czech Republic), coal, terrestrial sediments from the Cretaceous-Tertiary-Boundary and Pennian-Triassic-Boundary, fulgurite, ink sticks, dinosaur eggs, and a tree char. The occurrences are discussed in the context of known and postulated processes of fullerene formation, including the suggestion that some natural fullerenes might have formed from biological (algal) remains.

  1. Experimental simulation of impact cratering on icy satellites

    Science.gov (United States)

    Greeley, R.; Fink, J. H.; Gault, D. E.; Guest, J. E.

    1982-01-01

    Cratering processes on icy satellites were simulated in a series of 102 laboratory impact experiments involving a wide range of target materials. For impacts into homogeneous clay slurries with impact energies ranging from five million to ten billion ergs, target yield strengths ranged from 100 to 38 Pa, and apparent viscosities ranged from 8 to 200 Pa s. Bowl-shaped craters, flat-floored craters, central peak craters with high or little relief, and craters with no relief were observed. Crater diameters increased steadily as energies were raised. A similar sequence was seen for experiment in which impact energy was held constant but target viscosity and strength progressively decreases. The experiments suggest that the physical properties of the target media relative to the gravitationally induced stresses determined the final crater morphology. Crater palimpsests could form by prompt collapse of large central peak craters formed in low target strength materials. Ages estimated from crater size-frequency distributions that include these large craters may give values that are too high.

  2. Shallow and deep fresh impact craters in Hesperia Planum, Mars

    Science.gov (United States)

    Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1993-01-01

    The depths of 109 impact craters about 2-16 km in diameter, located on the ridged plains materials of Hesperia Planum, Mars, have been measured from their shadow lengths using digital Viking Orbiter images (orbit numbers 417S-419S) and the PICS computer software. On the basis of their pristine morphology (very fresh lobate ejecta blankets, well preserved rim crests, and lack of superposed impact craters), 57 of these craters have been selected for detailed analysis of their spatial distribution and geometry. We find that south of 30 deg S, craters less than 6.0 km in diameter are markedly shallower than similar-sized craters equatorward of this latitude. No comparable relationship is observed for morphologically fresh craters greater than 6.0 km diameter. We also find that two populations exist for older craters less than 6.0 km diameter. When craters that lack ejecta blankets are grouped on the basis of depth/diameter ratio, the deeper craters also typically lie equatorward of 30 S. We interpret the spatial variation in crater depth/diameter ratios as most likely due to a poleward increase in volatiles within the top 400 m of the surface at the times these craters were formed.

  3. Terrestrial Energy bets on molten salt reactors

    International Nuclear Information System (INIS)

    Anon.

    2015-01-01

    Terrestrial Energy is a Canadian enterprise, founded in 2013, for marketing the integral molten salt reactor (IMSR). A first prototype (called MSRE and with an energy output of 8 MW) was designed and operated between 1965 and 1969 by the Oak Ridge National Laboratory. IMSR is a small, modular reactor with a thermal energy output of 400 MW. According to Terrestrial Energy the technology of conventional power reactors is too complicated and too expensive. On the contrary IMSR's technology appears to be simple, easy to operate and affordable. With a staff of 30 people Terrestrial Energy appears to be a start-up in the nuclear sector. A process of pre-licensing will be launched in 2016 with the Canadian nuclear safety authority. (A.C.)

  4. Wrinkle Ridges and Young Fresh Crater

    Science.gov (United States)

    2002-01-01

    (Released 10 May 2002) The Science Wrinkle ridges are a very common landform on Mars, Mercury, Venus, and the Moon. These ridges are linear to arcuate asymmetric topographic highs commonly found on smooth plains. The origin of wrinkle ridges is not certain and two leading hypotheses have been put forth by scientists over the past 40 years. The volcanic model calls for the extrusion of high viscosity lavas along linear conduits. This thick lava accumulated over these conduits and formed the ridges. The other model is tectonic and advocates that the ridges are formed by compressional faulting and folding. Today's THEMIS image is of the ridged plains of Lunae Planum located between Kasei Valles and Valles Marineris in the northern hemisphere of the planet. Wrinkle ridges are found mostly along the eastern side of the image. The broadest wrinkle ridges in this image are up to 2 km wide. A 3 km diameter young fresh crater is located near the bottom of the image. The crater's ejecta blanket is also clearly seen surrounding the sharp well-defined crater rim. These features are indicative of a very young crater that has not been subjected to erosional processes. The Story The great thing about the solar system is that planets are both alike and different. They're all foreign enough to be mysterious and intriguing, and yet familiar enough to be seen as planetary 'cousins.' By comparing them, we can learn a lot about how planets form and then evolve geologically over time. Crinkled over smooth plains, the long, wavy raised landforms seen here are called 'wrinkle ridges,' and they've been found on Mars, Mercury, Venus, and the Moon - that is, on rocky bodies that are a part of our inner solar system. We know from this observation that planets (and large-enough moons) follow similar processes. What we don't know for sure is HOW these processes work. Scientists have been trying to understand how wrinkle ridges form for 40 years, and they still haven't reached a conclusion. That

  5. Terrestrial planet formation.

    Science.gov (United States)

    Righter, K; O'Brien, D P

    2011-11-29

    Advances in our understanding of terrestrial planet formation have come from a multidisciplinary approach. Studies of the ages and compositions of primitive meteorites with compositions similar to the Sun have helped to constrain the nature of the building blocks of planets. This information helps to guide numerical models for the three stages of planet formation from dust to planetesimals (~10(6) y), followed by planetesimals to embryos (lunar to Mars-sized objects; few 10(6) y), and finally embryos to planets (10(7)-10(8) y). Defining the role of turbulence in the early nebula is a key to understanding the growth of solids larger than meter size. The initiation of runaway growth of embryos from planetesimals ultimately leads to the growth of large terrestrial planets via large impacts. Dynamical models can produce inner Solar System configurations that closely resemble our Solar System, especially when the orbital effects of large planets (Jupiter and Saturn) and damping mechanisms, such as gas drag, are included. Experimental studies of terrestrial planet interiors provide additional constraints on the conditions of differentiation and, therefore, origin. A more complete understanding of terrestrial planet formation might be possible via a combination of chemical and physical modeling, as well as obtaining samples and new geophysical data from other planets (Venus, Mars, or Mercury) and asteroids.

  6. Radionuclides in terrestrial ecosystems

    International Nuclear Information System (INIS)

    Bocock, K.L.

    1981-01-01

    This report summarizes information on the distribution and movement of radionuclides in semi-natural terrestrial ecosystems in north-west England with particular emphasis on inputs to, and outputs from ecosystems; on plant and soil aspects; and on radionuclides in fallout and in discharges by the nuclear industry. (author)

  7. Mid-IR Reflectance (DRIFT) Spectral Variations in Basaltic Mineralogy with Direction of Impact at Lonar Crater, India

    Science.gov (United States)

    Basavaiah, N.; Chavan, R. S.; Arif, M.

    2012-12-01

    Identification of spectral changes with the direction of impact has important implications for understanding the impact cratering phenomenon occurring on both terrestrial and extraterrestrial planets and also for geology of the crater. Fortuitously, Lonar Impact Crater (India) is the only well-preserved terrestrial simple crater excavated on Deccan basalts and serves as an excellent analogue to craters on Mars and Moon. An ~570 ka old Lonar crater was suggested to be formed by an oblique impact of a chondritic impactor that struck the pre-impact target from the east into a sequence of six basaltic Deccan flows and created a 1.88 km diameter crater with two layers of ejecta blanket. Here we report preliminary laboratory studies of spectral results on fine-grained rock powers (IR (4000-400 cm-1) Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy. The basalts were collected from two profiles in the east and south sections of the crater wall and the upper most crater rim, which later subdivided into sector-wise samples to carry out a systematic study of spectral properties of Lonar basalts, together with impact related samples of breccias and impact melts. For the first time, data of the shock metamorphism of Lonar basalt is examined using DRIFT spectroscopy. Infrared spectra of rock powders of relatively unshocked and shocked basalts are obtained to document the mineralogical variations and the distribution of primary (e.g. Plagioclase Feldspar, Pyroxene), and secondary Phyllosilicate minerals (e.g. Illite, Smectite, Montmorillonite, Saponite, Serpentine) with direction of impact. The spectral data between pre-impact unshocked and post-impact shocked basalts are interpreted to reflect the effect of shock pressure and alteration that rock have undergone. On western crater rim sector, typical silicate spectral features in 900-1200 cm-1 which attributed to Si-O stretching, are observed to change slightly in the width and shift in position as a result of

  8. Geologic Structures in Crater Walls on Vesta

    Science.gov (United States)

    Mittlefehldt, David W.; Beck, A. W.; Ammannito, E.; Carsenty, U.; DeSanctis, M. C.; LeCorre, L.; McCoy, T. J.; Reddy, V.; Schroeder, S. E.

    2012-01-01

    The Framing Camera (FC) on the Dawn spacecraft has imaged most of the illuminated surface of Vesta with a resolution of apporpx. 20 m/pixel through different wavelength filters that allow for identification of lithologic units. The Visible and Infrared Mapping Spectrometer (VIR) has imaged the surface at lower spatial resolution but high spectral resolution from 0.25 to 5 micron that allows for detailed mineralogical interpretation. The FC has imaged geologic structures in the walls of fresh craters and on scarps on the margin of the Rheasilvia basin that consist of cliff-forming, competent units, either as blocks or semi-continuous layers, hundreds of m to km below the rims. Different units have different albedos, FC color ratios and VIR spectral characteristics, and different units can be juxtaposed in individual craters. We will describe different examples of these competent units and present preliminary interpretations of the structures. A common occurrence is of blocks several hundred m in size of high albedo (bright) and low albedo (dark) materials protruding from crater walls. In many examples, dark material deposits lie below coherent bright material blocks. In FC Clementine color ratios, bright material is green indicating deeper 1 m pyroxene absorption band. VIR spectra show these to have deeper and wider 1 and 2 micron pyroxene absorption bands than the average vestan surface. The associated dark material has subdued pyroxene absorption features compared to the average vestan surface. Some dark material deposits are consistent with mixtures of HED materials with carbonaceous chondrites. This would indicate that some dark material deposits in crater walls are megabreccia blocks. The same would hold for bright material blocks found above them. Thus, these are not intact crustal units. Marcia crater is atypical in that the dark material forms a semi-continuous, thin layer immediately below bright material. Bright material occurs as one or more layers. In

  9. Heavy Cratering near Callisto's South Pole

    Science.gov (United States)

    1997-01-01

    Images from NASA's Galileo spacecraft provide new insights into this region near Callisto's south pole. This two frame mosaic shows a heavily cratered surface with smooth plains in the areas between craters. North is to the top of the image. The smoothness of the plains appears to increase toward the south pole, approximately 480 kilometers (293 miles) south of the bottom of the image. This smoothness of Callisto's surface was not evident in images taken during the 1979 flyby of NASA's Voyager spacecraft because the resolution was insufficient to show the effect. This smooth surface, and the process(es) that cause it, are among the most intriguing aspects of Callisto. Although not fully understood, the process(es) responsible for this smoothing could include erosion by tiny meteorites and energetic ions. Some craters, such as Keelut, the 47 kilometer (29 mile) crater in the lower right corner, have sharp, well defined rims. Keelut contains an inner ring surrounding a central depression about 17 kilometers (11 miles) in diameter. Keelut, and the more irregularly shaped, degraded Reginleif, the 32 kilometer (19.5 mile) crater in the top center of the image, are very shallow and have flat floors. Crater forms can be seen down to less than 2 kilometers (1.2 miles) in diameter in the image. Each picture element (pixel) in this image is approximately 0.68 kilometers (0.41 miles) across.This image which was taken by the Galileo spacecraft's solid state imaging (CCD) system during its eighth orbit around Jupiter, on May 6th, 1997. The center of the image is located at 71.3 degrees south latitude, 97.6 degrees west longitude, and was taken when the spacecraft was approximately 35,470 kilometers (21,637 miles) from Callisto.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http

  10. Concentric Crater Fill in Utopia Planitia: Timing and Transitions Between Glacial and Periglacial Processes.

    Science.gov (United States)

    Levy, J.; Head, J.

    2008-09-01

    on steeply scalloped slopes. BTC surfaces are commonly found at the foot of crater wall interior slopes, and in topographic lows between BTsurfaced concentric ridges. BTC material is commonly draped on, and inter-fingered between, FBT mounds and HBT boundary walls at contacts between the two units, suggesting that BTC units superpose, and in places, embay BT units. FBT-covered hill surfaces are commonly ringed by HBT, which is in turn ringed by LC-BTC, and/or HCBTC. FBT-covered concentric ridges are commonly flanked by HBT in the lows between ridges, particularly in lows which also have exposures of LC- or HC-BTC polygons. Discussion Crater counts on BT material indicate an age of ~100 MY, consistent with counts on LDA [11]; crater counts on BTC units indicate an age of ~1 MY. This age difference suggests that BT and BTC are stratigraphically distinct units that were deposited at markedly different times. The small exposures of HBT and LC-BTC make distinguishing ages for these textures from ages of the more common FBT and HC-BTC surfaces impossible. However, the gradational contacts between each sub-texture, on both steep and gentle slopes, suggests that modification of two distinct units, rather than exposure of four radically different layers, accounts for the differences between sub-textures. On the basis of these observations, we propose the following formation sequence for BT and BTC units. BTC units are an atmospherically-emplaced, ice-rich deposit, temporally associated with recent latitude-dependent mantling events [12-14] containing sufficient dusty material to generate a surficial lag deposit during sublimation of near-surface ice [e.g., 15]. Thermal contraction cracking generates polygonal fractures, which initially enhance sublimation at polygon margins, generated HC-BTC polygons [15]. The lack of strongly lineated BTC polygons suggests that BTC deposits have not significantly flowed on ~1 MY timescales [e.g., 4, 16]. Infilling of polygonal fractures by

  11. Aqueous alteration detection in Tikhonravov crater, Mars

    Science.gov (United States)

    Mancarella, F.; Fonti, S.; Alemanno, G.; Orofino, V.; Blanco, A.

    2018-03-01

    The existence of a wet period lasting long enough to allow the development of elementary forms of life on Mars has always been a very interesting issue. Given this perspective, the research for geological markers of such occurrences has been continually pursued. Once a favorable site is detected, effort should be spent to get as much information as possible aimed at a precise assessment of the genesis and evolution of the areas showing the selected markers. In this work, we discuss the recent finding of possible deposits pointing to the past existence of liquid water in Tikhonravov crater located in Arabia Terra. Comparison of CRISM spectra and those of laboratory minerals formed by aqueous alteration has led us to the conclusion that the studied areas within the impact crater host phyllosilicates deposits. In addition, analysis of the CRISM spectra has resulted in the tentative identification of carbonates mixed with phyllosilicates.

  12. Low-velocity impact cratering experiments in granular slopes

    Science.gov (United States)

    Hayashi, Kosuke; Sumita, Ikuro

    2017-07-01

    Low-velocity impact cratering experiments are conducted in sloped granular targets to study the effect of the slope angle θ on the crater shape and its scales. We use two types of granular matter, sand and glass beads, former of which has a larger friction coefficient μs = tanθr , where θr is the angle of repose. Experiments show that as θ increases, the crater becomes shallower and elongated in the direction of the slope. Furthermore the crater floor steepens in the upslope side and a thick rim forms in the downslope side, thus forming an asymmetric profile. High-speed images show that these features are results of ejecta being dispersed farther towards the downslope side and the subsequent avalanche which buries much of the crater floor. Such asymmetric ejecta dispersal can be explained by combining the Z-model and a ballistic model. Using the topographic maps of the craters, we classify crater shape regimes I-III, which transition with increasing θ : a full-rim crater (I), a broken-rim crater (II), and a depression (III). The critical θ for the regime transitions are larger for sand compared to glass beads, but collapse to close values when we use a normalized slope θ^ = tanθ / tanθr . Similarly we derive θ^-dependences of the scaled crater depth, length, width and their ratios which collapse the results for different targets and impact energies. We compare the crater profiles formed in our experiments with deep craters on asteroid Vesta and find that some of the scaled profiles nearly overlap and many have similar depth / length ratios. This suggests that these Vestan craters may also have formed in the gravity regime and that the formation process can be approximated by a granular flow with a similar effective friction coefficient.

  13. Subaqueous geology and a filling model for Crater Lake, Oregon

    Science.gov (United States)

    Nathenson, M.; Bacon, C.R.; Ramsey, D.W.

    2007-01-01

    Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time

  14. The isostatic state of Mead crater

    Science.gov (United States)

    Banerdt, W. B.; Konopliv, A. S.; Rappaport, N. J.; Sjogren, W. L.; Grimm, R. E.; Ford, P. G.

    1994-01-01

    We have analyzed high-resolution Magellan Doppler tracking data over Mead crater, using both line-of-sight and spherical harmonic methods, and have found a negative gravity anomaly of about 4-5 mgal (at spacecraft altitude, 182 km). This is consistent with no isostatic compensation of the present topography; the uncertainty in the analysis allows perhaps as much as 30% compensation at shallow dpeths (approximately 25 km). This is similar to observations of large craters on Earth, which are not generally compensated, but contrasts with at least some lunar basins which are inferred to have large Moho uplifts and corresponding positive Bouguer anomalies. An uncompensated load of this size requires a lithosphere with an effective elastic lithosphere thickness greater than 30 km. In order for the crust-mantle boundary not to have participated in the deformation associated with the collapse of the transient cavity during the creation of the crater, the yield strength near the top of the mantle must have been significantly higher on Earth and Venus than on the Moon at the time of basin formation. This might be due to increased strength against frictional sliding at the higher confining pressures within the larger planets. Alternatively, the thinner crusts of Earth and Venus compared to that of the Moon may result in higher creep strength of the upper mantle at shallower depths.

  15. Ejecta from single-charge cratering explosions

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R H

    1970-05-15

    The objective was to obtain experimental data tracing the location of ejecta to its origin within the crater region. The experiment included ten high-explosive spherical charges weighing from 8 to 1000 pounds and detonated in a playa dry lake soil on the Tonopah Test Range. Each event included from 24 to 40 locations of distinctly different tracer material embedded in a plane in the expected crater region. Tracers consisted of glass, ceramic and bugle beads, chopped metal, and plastic wire. Results of this experiment yielded data on tracer dispersion as a function of charge weight, charge burial depth and tracer emplacement position. Tracer pattern parameters such as center-of-tracer mass, range to center-of-tracer mass, and angle to center-of-tracer mass were determined. There is a clear tendency for range (to center-of-tracer mass) and the size of the dispersion pattern to decrease as tracer emplacement depth increases. Increasing tracer emplacement depth and range tends to decrease the area over which tracers are dispersed on the ground surface. Tracers at the same scaled position relative to the charge were deposited closer to the crater (on a scaled basis) as charge weight was increased. (author)

  16. The central uplift of Ritchey crater, Mars

    Science.gov (United States)

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-01-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  17. The central uplift of Ritchey crater, Mars

    Science.gov (United States)

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-05-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  18. The terrestrial record of Late Heavy Bombardment

    Science.gov (United States)

    Lowe, Donald R.; Byerly, Gary R.

    2018-04-01

    Until recently, the known impact record of the early Solar System lay exclusively on the surfaces of the Moon, Mars, and other bodies where it has not been erased by later weathering, erosion, impact gardening, and/or tectonism. Study of the cratered surfaces of these bodies led to the concept of the Late Heavy Bombardment (LHB), an interval from about 4.1 to 3.8 billion years ago (Ga) during which the surfaces of the planets and moons in the inner Solar System were subject to unusually high rates of bombardment followed by a decline to present low impact rates by about 3.5 Ga. Over the past 30 years, however, it has become apparent that there is a terrestrial record of large impacts from at least 3.47 to 3.22 Ga and from 2.63 to 2.49 Ga. The present paper explores the earlier of these impact records, providing details about the nature of the 8 known ejecta layers that constitute the evidence for large terrestrial impacts during the earlier of these intervals, the inferred size of the impactors, and the potential effects of these impacts on crustal development and life. The existence of this record implies that LHB did not end abruptly at 3.8-3.7 Ga but rather that high impact rates, either continuous or as impact clusters, persisted until at least the close of the Archean at 2.5 Ga. It implies that the shift from external, impact-related controls on the long-term development of the surface system on the Earth to more internal, geodynamic controls may have occurred much later in geologic history than has been supposed previously.

  19. Working group 4: Terrestrial

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    A working group at a Canada/USA symposium on climate change and the Arctic identified major concerns and issues related to terrestrial resources. The group examined the need for, and the means of, involving resource managers and users at local and territorial levels in the process of identifying and examining the impacts and consequences of climatic change. Climatic change will be important to the Arctic because of the magnitude of the change projected for northern latitudes; the apparent sensitivity of its terrestrial ecosystems, natural resources, and human support systems; and the dependence of the social, cultural, and economic welfare of Arctic communities, businesses, and industries on the health and quality of their environment. Impacts of climatic change on the physical, biological, and associated socio-economic environment are outlined. Gaps in knowledge needed to quantify these impacts are listed along with their relationships with resource management. Finally, potential actions for response and adaptation are presented

  20. Phytopharmacology of Tribulus terrestris.

    Science.gov (United States)

    Shahid, M; Riaz, M; Talpur, M M A; Pirzada, T

    2016-01-01

    Tribulus terrestris is an annual herb which belongs to the Zygophyllaceae family. This plant has been used in traditional medicine for the treatment of various diseases for hundreds of decades. The main active phytoconstituents of this plant include flavonoids, alkaloids, saponins, lignin, amides, and glycosides. The plant parts have different pharmacological activities including aphrodisiac, antiinflammatory, antimicrobial and antioxidant potential. T. terrestris is most often used for infertility and loss of libido. It has potential application as immunomodulatory, hepatoprotective, hypolipidemic, anthelmintic and anticarcinogenic activities. The aim of the present article is to create a database for further investigation of the phytopharmacological properties of this plant to promote research. This study will definitely help to confirm its traditional use along with its value-added utility, eventually leading to higher revenues from the plant.

  1. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...... the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  2. Peaks, plateaus, canyons, and craters: The complex geometry of simple mid-domain effect models

    DEFF Research Database (Denmark)

    Colwell, Robert K.; Gotelli, Nicholas J.; Rahbek, Carsten

    2009-01-01

    dye algorithm to place assemblages of species of uniform We used a spreading dye algorithm to place assemblages of species of uniform range size in one-dimensional or two-dimensional bounded domains. In some models, we allowed dispersal to introduce range discontinuity. Results: As uniform range size...... increases from small to medium, a flat pattern of species As uniform range size increases from small to medium, a flat pattern of species richness is replaced by a pair of peripheral peaks, separated by a valley (one-dimensional models), or by a cratered ring (two-dimensional models) of species richness...... of a uniform size generate more complex patterns, including peaks, plateaus, canyons, and craters of species richness....

  3. 3d morphometric analysis of lunar impact craters: a tool for degradation estimates and interpretation of maria stratigraphy

    Science.gov (United States)

    Vivaldi, Valerio; Massironi, Matteo; Ninfo, Andrea; Cremonese, Gabriele

    2015-04-01

    In this study we have applied 3D morphometric analysis of impact craters on the Moon by means of high resolution DTMs derived from LROC (Lunar Reconnaissance Orbiter Camera) NAC (Narrow Angle Camera) (0.5 to 1.5 m/pixel). The objective is twofold: i) evaluating crater degradation and ii) exploring the potential of this approach for Maria stratigraphic interpretation. In relation to the first objective we have considered several craters with different diameters representative of the four classes of degradation being C1 the freshest and C4 the most degraded ones (Arthur et al., 1963; Wilhelms, 1987). DTMs of these craters were elaborated according to a multiscalar approach (Wood, 1996) by testing different ranges of kernel sizes (e.g. 15-35-50-75-100), in order to retrieve morphometric variables such as slope, curvatures and openness. In particular, curvatures were calculated along different planes (e.g. profile curvature and plan curvature) and used to characterize the different sectors of a crater (rim crest, floor, internal slope and related boundaries) enabling us to evaluate its degradation. The gradient of the internal slope of different craters representative of the four classes shows a decrease of the slope mean value from C1 to C4 in relation to crater age and diameter. Indeed degradation is influenced by gravitational processes (landslides, dry flows), as well as space weathering that induces both smoothing effects on the morphologies and infilling processes within the crater, with the main results of lowering and enlarging the rim crest, and shallowing the crater depth. As far as the stratigraphic application is concerned, morphometric analysis was applied to recognize morphologic features within some simple craters, in order to understand the stratigraphic relationships among different lava layers within Mare Serenitatis. A clear-cut rheological boundary at a depth of 200 m within the small fresh Linnè crater (diameter: 2.22 km), firstly hypothesized

  4. Cratering Studies in Thin Plastic Films

    Science.gov (United States)

    Shu, A. J.; Bugiel, S.; Gruen, E.; Hillier, J.; Horanyi, M.; Munsat, T. L.; Srama, R.

    2013-12-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions and shape of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. LS-Dyna, a smoothed particle hydrodynamics (SPH) code from the Livermore Software Technology Corp. was chosen to simulate micrometeorite impacts. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Material properties are accounted for using the Grüneisen Equation of State. The results of the SPH model can

  5. Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan

    Science.gov (United States)

    Bland, M. T.; Ermakov, A. I.; Raymond, C. A.; Williams, D. A.; Bowling, T. J.; Preusker, F.; Park, R. S.; Marchi, S.; Castillo-Rogez, J. C.; Fu, R. R.; Russell, C. T.

    2018-02-01

    Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long-term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact-induced uplift of the high-density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest-degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin-associated gravity anomalies, although their origin may differ substantially.

  6. A schematic model of crater modification by gravity

    Science.gov (United States)

    Melosh, H. J.

    1982-01-01

    The morphology of craters found on planets and moons of the solar system is examined and a development model which can account for the observed crater characteristics is discussed. The prompt collapse of craters to form flat floors, terraced walls, and central peak structures is considered to be the result of an approximate Bingham plastic rheology of the material surrounding the crater. This rheology is induced dynamically by the strong incoherent acoustic 'noise' accompanying excavation of the crater. Central pits, peak rings, and other multiple symmetric-profile rings originate by oscillation of this fluid. Large craters with transient depths comparable to the lithosphere thickness are subject to collapse by fragmentation of the lithosphere as well as fluidization. The considered concepts are developed mathematically. A model emerges which appears capable of explaining most of the qualitative features of large impact structures.

  7. Laboratory Evaluation of Expedient Low-Temperature Admixtures for Runway Craters in Cold Weather

    Science.gov (United States)

    2014-10-01

    it consists of a pre- blend of Type III Portland cement (calcium sulfoaluminate [CSA] cement with some small amount of admixtures for workability...more information on similar crater repair methods, equipment, and materials used by the U.S. Ar- my, see Center for Army Lessons Learned (2011). ERDC...all measurements with a TA Instrument TAM Air isothermal calorimeter operated at 23°C. To capture the initial wetting of the cement and early-age

  8. A Study by Remote Sensing Methods of Volcanism at Craters of the Moon National Park, Idaho

    Science.gov (United States)

    Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Lim, D. S. S.; Garry, B.; Sears, D. W. G.; Downs, M.; Busto, J.; Skok, J. R.; Elphic, R. C.; Kobayashi, L.; Heldmann, J. L.; Christensen, P. R.

    2014-12-01

    Craters of the Moon (COTM) National Park, on the eastern Snake River Plain, and its associated lava fields are currently a focus of the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team. COTM was selected for study owing to similarities with volcanic features observed on the Moon, Mars and Vesta. The COTM basaltic lava fields emanate from an 80 km long rift zone where at least eight eruptive episodes, occurring 15,000 to 2,000 BP, have created an expansive volcanic field covering an area of approximately 1,650 km2. This polygenetic volcanic field hosts a diverse collection of basaltic volcanic edifices such as phreatic explosion craters, eruptive fissures, cinder cones, spatter cones, shield volcanoes and expansive lava flows. Engineering challenges and high cost limit the number of robotic and human field investigations of planetary bodies and, due to these constraints, exhaustive remote sensing investigations of planetary surface properties are undertaken prior to field deployment. This creates an unavoidable dependence upon remote sensing, a critical difference between field investigations of planetary bodies and most terrestrial field investigations. Studies of this nature have utility in terrestrial investigations as they can help link spatially encompassing datasets and conserve field resources. We present preliminary results utilizing Earth orbital datasets to determine the efficacy of products derived from remotely sensed data when compared to geologic field observations. Multispectral imaging data (ASTER, AVIRIS, TIMS) collected at a range of spatial and spectral resolutions are paired with high resolution imagery from both orbit and unmanned aircraft systems. This enables the creation of derived products detailing morphology, compositional variation, mineralogy, relative age and vegetation. The surface morphology of flows within COTM differs from flow to flow and observations of these properties can aid in

  9. Impact spacecraft imagery and comparative morphology of craters

    International Nuclear Information System (INIS)

    Moutsoulas, M.; Piteri, S.

    1979-01-01

    The use of hard-landing 'simple' missions for wide-scale planetary exploration is considered. As an example of their imagery potentialities, Ranger VII data are used for the study of the morphological characteristics of 16 Mare Cognitum craters. The morphological patterns of lunar craters, expressed in terms of the Depth/Diameter ratios appear to be in most cases independent of the crater location or size. (Auth.)

  10. Crater populations in the early history of Mercury

    International Nuclear Information System (INIS)

    Guest, J.E.; Gault, D.E.

    1976-01-01

    Crater populations on two major geologic units of Mercury have been classified into three morphologic types which characterize their state of degradation. The results indicate that one or more processes either prior to or contemporary with the formation of the 1300 km diameter Caloris Planitia reduced the population of fresh craters smaller than 70--80 km diameter and totally erased the population of fresh craters smaller than 20--30 km

  11. Geologic map of Tooting crater, Amazonis Planitia region of Mars

    Science.gov (United States)

    Mouginis-Mark, Peter J.

    2015-01-01

    Tooting crater has a diameter of 27.2 km, and formed on virtually flat lava flows within Amazonis Planitia ~1,300 km west of the summit of Olympus Mons volcano, where there appear to have been no other major topographic features prior to the impact. The crater formed in an area ~185 x 135 km that is at an elevation between −3,870 m and −3,874 m relative to the Mars Orbiter Laser Altimeter (MOLA) Mars datum. This fortuitous situation (for example, a bland, horizontal target) allows the geometry of the crater and the thickness of the ejecta blanket to be accurately determined by subtracting the appropriate elevation of the surrounding landscape (−3,872 m) from the individual MOLA measurements across the crater. Thus, for the first time, it is possible to determine the radial decrease of ejecta thickness as a function of distance away from the rim crest. On the basis of the four discrete ejecta layers surrounding the crater cavity, Tooting crater is classified as a Multiple-Layered Ejecta (MLE) crater. By virtue of the asymmetric distribution of secondary craters and the greater thickness of ejecta to the northeast, Morris and others (2010) proposed that Tooting crater formed by an oblique impact from the southwest. The maximum range of blocks that produced identifiable secondary craters is ~500 km (~36.0 crater radii) from the northeast rim crest. In contrast, secondary craters are only identifiable ~215 km (15.8 radii) to the southeast and 225 km (16.5 radii) to the west.

  12. Floor-Fractured Craters through Machine Learning Methods

    Science.gov (United States)

    Thorey, C.

    2015-12-01

    Floor-fractured craters are impact craters that have undergone post impact deformations. They are characterized by shallow floors with a plate-like or convex appearance, wide floor moats, and radial, concentric, and polygonal floor-fractures. While the origin of these deformations has long been debated, it is now generally accepted that they are the result of the emplacement of shallow magmatic intrusions below their floor. These craters thus constitute an efficient tool to probe the importance of intrusive magmatism from the lunar surface. The most recent catalog of lunar-floor fractured craters references about 200 of them, mainly located around the lunar maria Herein, we will discuss the possibility of using machine learning algorithms to try to detect new floor-fractured craters on the Moon among the 60000 craters referenced in the most recent catalogs. In particular, we will use the gravity field provided by the Gravity Recovery and Interior Laboratory (GRAIL) mission, and the topographic dataset obtained from the Lunar Orbiter Laser Altimeter (LOLA) instrument to design a set of representative features for each crater. We will then discuss the possibility to design a binary supervised classifier, based on these features, to discriminate between the presence or absence of crater-centered intrusion below a specific crater. First predictions from different classifier in terms of their accuracy and uncertainty will be presented.

  13. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    Science.gov (United States)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  14. Mini-RF S- and X-band Bistatic Observations of the Floor of Cabeus Crater

    Science.gov (United States)

    Patterson, Gerald Wesley; Stickle, Angela; Turner, Franklin; Jensen, James; Cahill, Joshua; Mini-RF Team

    2017-10-01

    The Mini-RF instrument aboard NASA’s Lunar Reconnaissance Orbiter (LRO) is a hybrid dual-polarized synthetic aperture radar (SAR) and operates in concert with the Arecibo Observatory (AO) and the Goldstone deep space communications complex 34 meter antenna DSS-13 to collect S- and X-band bistatic radar data of the Moon. Bistatic radar data provide a means to probe the near subsurface for the presence of water ice, which exhibits a strong response in the form of a Coherent Backscatter Opposition Effect (CBOE). This effect has been observed in radar data for the icy surfaces of the Galilean satellites, the polar caps of Mars, polar craters on Mercury, and terrestrial ice sheets in Greenland. Previous work using Mini-RF S-band (12.6 cm) bistatic data suggests the presence of a CBOE associated with the floor of the lunar south polar crater Cabeus. The LRO spacecraft has begun its third extended mission. For this phase of operations Mini-RF is leveraging the existing AO architecture to make S-band radar observations of additional polar craters (e.g., Haworth, Shoemaker, Faustini). The purpose of acquiring these data is to determine whether other polar craters exhibit the response observed for Cabeus. Mini-RF has also initiated a new mode of operation that utilizes the X-band (4.2cm) capability of the instrument receiver and a recently commissioned X/C-band transmitter within the Deep Space Network’s (DSN) Goldstone complex to collect bistatic X-band data of the Moon. The purpose of acquiring these data is to constrain the depth/thickness of materials that exhibit a CBOE response - with an emphasis on observing the floor of Cabeus. Recent Mini-RF X-band observations of the floors of the craters Cabeus do not show evidence for a CBOE. This would suggest that the upper ~0.5 meters of the regolith for the floor of Cabeus do not harber water ice in a form detectable at 4.2 cm wavelengths.

  15. Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars

    Science.gov (United States)

    Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III; hide

    2015-01-01

    NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and

  16. Basalt-trachybasalt samples in Gale Crater, Mars

    International Nuclear Information System (INIS)

    Edwards, Peter H.; Anderson, Ryan B.; Dyar, Darby

    2017-01-01

    The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at ~55 wt% SiO 2 and 6 wt% total alkalis, with a minor secondary maximum at 47–51 wt% SiO 2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg# = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. Finally, the Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.

  17. A model for the dynamics of crater-centered intrusion: Application to lunar floor-fractured craters

    Science.gov (United States)

    Thorey, Clément; Michaut, Chloé

    2014-01-01

    Lunar floor-fractured craters are a class of craters modified by post-impact mechanisms. They are defined by distinctive shallow floors that are convex or plate-like, sometimes with a wide floor moat bordering the wall region. Radial, concentric, and polygonal floor fractures suggest an endogenous process of modification. Two mechanisms have been proposed to account for such deformations: viscous relaxation and spreading of a magma intrusion at depth below the crater. To test the second assumption and bring more constraints on the intrusion process, we develop a model for the dynamics of magma spreading below an elastic overlying layer with a crater-like topography. As predicted in earlier more qualitative studies, the increase in lithostatic pressure at the crater wall zone prevents the intrusion from spreading laterally, leading to the thickening of the intrusion. Additionally, our model shows that the final crater floor appearance after the uplift, which can be convex or flat, with or without a circular moat bordering the wall zone, depends on the elastic thickness of the layer overlying the intrusion and on the crater size. Our model provides a simple formula to derive the elastic thickness of the overlying layer hence a minimum estimate for the intrusion depth. Finally, our model suggests that crust redistribution by cratering must have controlled magma ascent below most of these craters.

  18. Mineral-produced high-pressure striae and clay polish: Key evidence for nonballistic transport of ejecta from Ries crater

    Science.gov (United States)

    Chao, E.C.T.

    1976-01-01

    Recently discovered mineral-produced, deeply incised striae and mirror-like polish on broken surfaces of limestone fragments from the sedimentary ejecta of the Ries impact crater of southern Germany are described. The striae and polish were produced under high confining pressures during high-velocity nonballistic transport of the ejecta mass within the time span of the cratering event (measured in terms of seconds). The striae on these fragments were produced by scouring by small mineral grains embedded in the surrounding clay matrix, and the polish was formed under the same condition, by movements of relatively fragment-free clay against the fragment surfaces. The occurrence of these striae and polish is key evidence for estimating the distribution and determining the relative importance of nonballistic and ballistic transport of ejecta from the shallow Ries stony meteorite impact crater.

  19. Distribution of small channels on the Martian surface

    Science.gov (United States)

    Pieri, D.

    1976-01-01

    The distribution of small channels on Mars has been mapped from Mariner 9 images at the 1:5,000,000 scale. The small channels referred to here are small valleys ranging in width from the resolution limit of the Mariner 9 wide-angle images (about 1 km) to about 10 km. The greatest density of small channels occurs in dark cratered terrain. This dark zone forms a broad subequatorial band around the planet. The observed distribution may be the result of decreased small-channel visibility in bright areas due to obscuration by a high albedo dust or sediment mantle. Crater densities within two small-channel segments show crater size-frequency distributions consistent with those of the oldest of the heavily cratered plains units. Such crater densities coupled with the almost exclusive occurrence of small channels in old cratered terrain and the generally degraded appearance of small channels in the high-resolution images (about 100 m) imply a major episode of small-channel formation early in Martian geologic history.

  20. Observational constraints on the identification of shallow lunar magmatism : insights from floor-fractured craters

    OpenAIRE

    Jozwiak, Lauren; Head, James; Neumann, G. A.; Wilson, Lionel

    2017-01-01

    Floor-fractured craters are a class of lunar crater hypothesized to form in response to the emplacement of a shallow magmatic intrusion beneath the crater floor. The emplacement of a shallow magmatic body should result in a positive Bouguer anomaly relative to unaltered complex craters, a signal which is observed for the average Bouguer anomaly interior to the crater walls. We observe the Bouguer anomaly of floor-fractured craters on an individual basis using the unfiltered Bouguer gravity so...

  1. Detection of lunar floor-fractured craters using machine learning methods

    Science.gov (United States)

    Thorey, C.

    2015-10-01

    About 200 Floor Fractured Craters (FFCs) have been identified by Schultz (1976) on the Moon, mainly around the lunar maria. These craters are a class of impact craters that are distinguished by having radi-ally and concentric floor-fractured networks and ab-normally shallow floors. In some cases, the uplift of the crater floor can be as large as 50% of the initial crater depth. These impact craters are interpreted to have undergone endogenous deformations after their formation.

  2. Moon/Mars Landing Commemorative Release: Gusev Crater and Ma'adim Vallis

    Science.gov (United States)

    1998-01-01

    the mouth of Ma'adim Vallis--are composed of sediment that eroded out of the highlands to the south of Gusev Crater. In 1995, the Exobiology Program Office at NASA Headquarters produced a report, An Exobiological Strategy for Mars Exploration (NASA SP-530), that included Gusev Crater as a possible priority site for future Mars exploration because it might once have been a lake.At 12:17 a.m. (PDT) on April 24, 1998-- during Mars Global Surveyor's 259th orbit--MOC obtained the high resolution image of Gusev Crater and Ma'adim Vallis shown above, in part to test some of the proposed hypotheses. The raw image has a scale of 7.3 meters (24 feet) per pixel. At this scale, there are no obvious shorelines that would indicate the past presence of a lake in either Ma'adim Vallis or Gusev Crater. There are several alternative explanations for this absence, including: It is possible that any lake in Gusev occurred so long ago that erosion by wind and hillslope processes have long since removed such features. It is possible that 7.3 meters per pixel is insufficient to identify key diagnostic lake features. It is possible that a lake once existed, but that shore- and near-shore processes as they occur in terrestrial lake environments did not occur on Mars. It is possible no lake ever existed. When Mars Global Surveyor achieves its Mapping Orbit in March 1999, MOC will have the ability to obtain pictures with resolutions around 1.5 meters (5 feet) per pixel. Sometime during the mapping mission, it may be possible to image Gusev Crater again to look for potential lake features and possible future landing sites.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from

  3. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    The Conservation of Arctic Flora and Fauna (CAFF), the biodiversity working group of the Arctic Council, established the Circumpolar Biodiversity Monitoring Program (CBMP) to address the need for coordinated and standardized monitoring of Arctic environments. The CBMP includes an international...... on developing and implementing long-term plans for monitoring the integrity of Arctic biomes: terrestrial, marine, freshwater, and coastal (under development) environments. The CBMP Terrestrial Expert Monitoring Group (CBMP-TEMG) has developed the Arctic Terrestrial Biodiversity Monitoring Plan (CBMP......-Terrestrial Plan/the Plan) as the framework for coordinated, long-term Arctic terrestrial biodiversity monitoring. The goal of the CBMP-Terrestrial Plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect, understand and report on long...

  4. Broad-Scale Comparison of Photosynthesis in Terrestrial and Aquatic Plant Communities

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Krause-Jensen, D.

    1997-01-01

    Comparisons of photosynthesis in terrestrial and aquatic habitats have been impaired by differences in methods and time-scales of measurements. We compiled information on gross photosynthesis at high irradiance and photosynthetic efficiency at low irradiance from 109 published terrestrial studies...... communities probably due to more efficient light utilization and gas exchange in the terrestrial habitats. By contrast only small differences were found within different aquatic plant communities or within different terrestrial plant communities....... of forests, grasslands and crops and 319 aquatic studies of phytoplankton, macrophyte and attached microalgal communities to test if specific differences existed between the communities. Maximum gross photosynthesis and photosynthetic efficiency were systematically higher in terrestrial than in aquatic...

  5. Contaminant exposure in terrestrial vertebrates

    International Nuclear Information System (INIS)

    Smith, Philip N.; Cobb, George P.; Godard-Codding, Celine; Hoff, Dale; McMurry, Scott T.; Rainwater, Thomas R.; Reynolds, Kevin D.

    2007-01-01

    Here we review mechanisms and factors influencing contaminant exposure among terrestrial vertebrate wildlife. There exists a complex mixture of biotic and abiotic factors that dictate potential for contaminant exposure among terrestrial and semi-terrestrial vertebrates. Chemical fate and transport in the environment determine contaminant bioaccessibility. Species-specific natural history characteristics and behavioral traits then play significant roles in the likelihood that exposure pathways, from source to receptor, are complete. Detailed knowledge of natural history traits of receptors considered in conjunction with the knowledge of contaminant behavior and distribution on a site are critical when assessing and quantifying exposure. We review limitations in our understanding of elements of exposure and the unique aspects of exposure associated with terrestrial and semi-terrestrial taxa. We provide insight on taxa-specific traits that contribute, or limit exposure to, transport phenomenon that influence exposure throughout terrestrial systems, novel contaminants, bioavailability, exposure data analysis, and uncertainty associated with exposure in wildlife risk assessments. Lastly, we identify areas related to exposure among terrestrial and semi-terrestrial organisms that warrant additional research. - Both biotic and abiotic factors determine chemical exposure for terrestrial vertebrates

  6. Constraints on the geomorphological evolution of the nested summit craters of Láscar volcano from high spatio-temporal resolution TerraSAR-X interferometry

    Science.gov (United States)

    Richter, Nicole; Salzer, Jacqueline Tema; de Zeeuw-van Dalfsen, Elske; Perissin, Daniele; Walter, Thomas R.

    2018-03-01

    Small-scale geomorphological changes that are associated with the formation, development, and activity of volcanic craters and eruptive vents are often challenging to characterize, as they may occur slowly over time, can be spatially localized, and difficult, or dangerous, to access. Using high-spatial and high-temporal resolution synthetic aperture radar (SAR) imagery collected by the German TerraSAR-X (TSX) satellite in SpotLight mode in combination with precise topographic data as derived from Pléiades-1A satellite data, we investigate the surface deformation within the nested summit crater system of Láscar volcano, Chile, the most active volcano of the central Andes. Our aim is to better understand the structural evolution of the three craters that comprise this system, to assess their physical state and dynamic behavior, and to link this to eruptive activity and associated hazards. Using multi-temporal SAR interferometry (MT-InSAR) from ascending and descending orbital geometries, we retrieve the vertical and east-west components of the displacement field. This time series indicates constant rates of subsidence and asymmetric horizontal displacements of all summit craters between June 2012 and July 2014, as well as between January 2015 and March 2017. The vertical and horizontal movements that we observe in the central crater are particularly complex and cannot be explained by any single crater formation mechanism; rather, we suggest that short-term activities superimposed on a combination of ongoing crater evolution processes, including gravitational slumping, cooling and compaction of eruption products, as well as possible piston-like subsidence, are responsible for the small-scale geomorphological changes apparent in our data. Our results demonstrate how high-temporal resolution synthetic aperture radar interferometry (InSAR) time series can add constraints on the geomorphological evolution and structural dynamics of active crater and vent systems at

  7. Evolution of Occator Crater on (1) Ceres

    Energy Technology Data Exchange (ETDEWEB)

    Nathues, A.; Platz, T.; Thangjam, G.; Hoffmann, M.; Corre, L. Le; Reddy, V.; Kallisch, J. [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Goettingen (Germany); Mengel, K. [IELF, TU Clausthal, Adolph-Roemer-Straße 2A, 38678 Clausthal-Zellerfeld (Germany); Cloutis, E. A. [University of Winnipeg, Winnipeg, MB R3B 2E (Canada); Crown, D. A., E-mail: nathues@mps.mpg.de, E-mail: platz@mps.mpg.de, E-mail: thangjam@mps.mpg.de, E-mail: hoffmann@mps.mpg.de, E-mail: kallisch@mps.mpg.de, E-mail: gkmengel@t-online.de, E-mail: e.cloutis@uwinnipeg.ca, E-mail: lecorre@psi.edu, E-mail: reddy@psi.edu, E-mail: crown@psi.edu [Planetary Science Institute, 1700 East Fort Lowell Rd, Suite 106, Tucson, AZ 85719-2395 (United States)

    2017-03-01

    The dwarf planet Ceres (diameter 939 km) is the largest object in the main asteroid belt. Recent investigations suggest that Ceres is a thermally evolved, volatile-rich body with potential geological activity, a body which was never completely molten but possibly differentiated into a rocky core, an ice-rich mantle, and which may contain remnant internal liquid water. Thermal alteration and exogenic material infall contribute to producing a (dark) carbonaceous chondritic-like surface containing ammoniated phyllosilicates. Here we report imaging and spectroscopic analyses of Occator crater derived from the Framing Camera and the Visible and Infrared Spectrometer onboard Dawn. We found that the central bright spot (Cerealia Facula) of Occator is ∼30 Myr younger than the crater itself. The central spot is located in a central pit which contains a dome that is spectrally homogenous, exhibiting absorption features that are consistent with carbonates. Multiple radial fractures across the dome indicate an extrusive formation process. Our results lead us to conclude that the floor region was subject to past endogenic activity. Dome and bright material in its vicinity formed likely due to a long-lasting, periodic, or episodic ascent of bright material from a subsurface reservoir rich in carbonates. Originally triggered by an impact event, gases, possibly dissolved from a subsurface water/brine layer, enabled material rich in carbonates to ascend through fractures and be deposited onto the surface.

  8. The Age of Lunar South Circumpolar Craters Haworth, Shoemaker, Faustini, and Shackleton: Implications for Regional Geology, Surface Processes, and Volatile Sequestration

    Science.gov (United States)

    Tye, A. R.; Fassett, C. I.; Head, J. W.; Mazarico, E.; Basilevsky, A. T.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2015-01-01

    The interiors of the lunar south circumpolar craters Haworth, Shoemaker, Faustini, and Shackleton contain permanently shadowed regions (PSRs) and have been interpreted to contain sequestered volatiles including water ice. Altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) onboard the Lunar Reconnaissance Orbiter provide a new means of examining the permanently shadowed interiors of these craters in unprecedented detail. In this study, we used extremely high-resolution gridded LOLA data of Haworth, Shoemaker, Faustini, and Shackleton to determine the size-frequency distributions and the spatial density of craters superposing their rims, inner slopes, and floors. Based on their population of superposed D greater than or equal to 2 km craters, Haworth, Shoemaker, and Faustini have pre-Nectarian formation ages. Shackleton is interpreted as having a Late Imbrian age on the basis of craters with diameter D greater than or equal to 0.5 km superposed on its rim. The local density of craters with sub-km diameters across our study area is strongly dependent on slope; because of its steep interior slopes, the lifetime of craters on the interior of Shackleton is limited. The slope-dependence of the small crater population implies that the population in this size range is controlled primarily by the rate at which craters are destroyed. This is consistent with the hypothesis that crater removal and resurfacing is a result of slopedependent processes such as diffusive mass wasting and seismic shaking, linked to micrometeorite and meteorite bombardment. Epithermal neutron flux data and UV albedo data show that these circumpolar PSRs, particularly Shoemaker, may have approximately 1-2% water ice by mass in their highly porous surface regolith, and that Shoemaker may have approximately 5% or more water ice by mass in the near subsurface. The ancient formation ages of Shoemaker, Faustini and Haworth, and the Late Imbrian (approximately 3.5 Ga) crater retention ages of their

  9. Geology of Pine and Crater Buttes: two basaltic constructs on the far eastern Snake River Plain

    International Nuclear Information System (INIS)

    Mazierski, P.F.; King, J.S.

    1987-01-01

    The emplacement history and petrochemical evolution of the volcanics associated with Pine Butte, Crater Butte, and other nearby vents are developed and described. Four major vents were identified in the study area and their associated eruptive products were mapped. All of the vents show a marked physical elongation or linear orientation coincident with the observed rift set. Planetary exploration has revealed the importance of volcanic processes in the genesis and modification of extraterrestrial surfaces. Interpretation of surface features has identified plains-type basaltic volcanism in various mare regions of the Moon and the volcanic provinces of Mars. Identification of these areas with features that appear analogous to those observed in the Pine Butte area suggests similar styles of eruption and mode of emplacement. Such terrestrial analogies serve as a method to interpret the evolution of volcanic planetary surfaces on the inner planets

  10. Mass movement on Vesta at steep scarps and crater rims

    Science.gov (United States)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; De Sanctis, M. C.; Kneissl, T.; Schmedemann, N.; Kersten, E.; Stephan, K.; Matz, K.-D.; Pieters, C. M.; Preusker, F.; Roatsch, T.; Schenk, P.; Russell, C. T.; Raymond, C. A.

    2014-12-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  11. Mass Movement on Vesta at Steep Scarps and Crater Rims

    Science.gov (United States)

    Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; hide

    2014-01-01

    The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.

  12. Postshot distribution and movement of radionuclides in nuclear crater ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, John J; Martin, John R; Wikkerink, Robert; Stuart, Marshall [Bio-Medical Division, Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    The distribution and postshot movement of radionuclides in nuclear crater ejecta are discussed in this report. Continuing studies of tritium movement in ejecta at SEDAN crater demonstrate that variations in tritium concentration are correlated with seasonal rainfall and soil water movements. Losses of 27 mCi H{sup 3}/ft{sup 2} are evident on SEDAN crater lip at the end of a three year period of measurements in -which an unusually large flux of rain was received. The distribution of gamma emitting radionuclides and tritium is described in the recently created SCHOONER crater ejecta field. The specific activity of radionuclides in the SCHOONER ejecta continuum is shown for ejecta collected from the crater lip to 17 miles from GZ. The movement of W{sup 181} and tritium into the sub-ejecta preshot soil is described at a site 3000 feet from GZ. (author)

  13. Acoustic fluidization and the scale dependence of impact crater morphology

    Science.gov (United States)

    Melosh, H. J.; Gaffney, E. S.

    1983-01-01

    A phenomenological Bingham plastic model has previously been shown to provide an adequate description of the collapse of impact craters. This paper demonstrates that the Bingham parameters may be derived from a model in which acoustic energy generated during excavation fluidizes the rock debris surrounding the crater. Experimental support for the theoretical flow law is presented. Although the Bingham yield stress cannot be computed without detailed knowledge of the initial acoustic field, the Bingham viscosity is derived from a simple argument which shows that it increases as the 3/2 power of crater diameter, consistent with observation. Crater collapse may occur in material with internal dissipation Q as low as 100, comparable to laboratory observations of dissipation in granular materials. Crater collapse thus does not require that the acoustic field be regenerated during flow.

  14. Mapping and interpretation of Sinlap crater on Titan using Cassini VIMS and RADAR data

    Science.gov (United States)

    Le, Mouelic S.; Paillou, P.; Janssen, M.A.; Barnes, J.W.; Rodriguez, S.; Sotin, Christophe; Brown, R.H.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Crapeau, M.; Encrenaz, P.J.; Jaumann, R.; Geudtner, D.; Paganelli, F.; Soderblom, L.; Tobie, G.; Wall, S.

    2008-01-01

    Only a few impact craters have been unambiguously detected on Titan by the Cassini-Huygens mission. Among these, Sinlap is the only one that has been observed both by the RADAR and VIMS instruments. This paper describes observations at centimeter and infrared wavelengths which provide complementary information about the composition, topography, and surface roughness. Several units appear in VIMS false color composites of band ratios in the Sinlap area, suggesting compositional heterogeneities. A bright pixel possibly related to a central peak does not show significant spectral variations, indicating either that the impact site was vertically homogeneous, or that this area has been recovered by homogeneous deposits. Both VIMS ratio images and dielectric constant measurements suggest the presence of an area enriched in water ice around the main ejecta blanket. Since the Ku-band SAR may see subsurface structures at the meter scale, the difference between infrared and SAR observations can be explained by the presence of a thin layer transparent to the radar. An analogy with terrestrial craters in Libya supports this interpretation. Finally, a tentative model describes the geological history of this area prior, during, and after the impact. It involves mainly the creation of ballistic ejecta and an expanding plume of vapor triggered by the impact, followed by the redeposition of icy spherules recondensed from this vapor plume blown downwind. Subsequent evolution is then driven by erosional processes and aeolian deposition. Copyright 2008 by the American Geophysical Union.

  15. Simple Impact Crater Shapes From Shadows - The Sequel

    Science.gov (United States)

    Chappelow, J. E.

    2008-12-01

    At the last LPSC meeting I presented the outline of a method for determining simple impact crater shapes from shadows. In theory the shadow cast within a simple crater provides enough information to derive its cross-sectional shape from shadow measurements, at least to the maximum depth to which the shadow extends. Under certain simple assumptions, this can be done analytically. If the crater is conic-section - shaped, then it can be shown that the down-sun bound of any shadow cast within it is elliptical, with one axis along the direction of illumination and the other (perpendicular to it) of semi-length D/2 (where D is diameter). The properties of this shadow-ellipse can be related to the parameters of the crater shape conic-section, thus measurements of the shadow-ellipse yield not only crater depth and diameter but also the approximate crater shape, in terms of conic sections. The method also does not depend upon the shadow crossing near the crater center, which avoids a pitfall of older shadow measurement methods. The technique is also amenable to computer implementation, which has already been largely completed. Once computerized, crater measurements can be made rapidly and repeatably. The program reads in an image, its resolution, and the solar elevation and azimuth. The user then defines the crater rim by 'clicking' on three points, and the shadow ellipse by clicking on two more. The program calculates and outputs the diameter, the depth, and parameters describing the crater's approximating conic-section. It is highly applicable to situations where only single-image photography is available, for example MESSENGER flybys of Mercury. At the meeting I will present the finished math for this method and give some examples of its use.

  16. Terrestrial Water Storage

    Science.gov (United States)

    Rodell, M.; Chambers, D. P.; Famiglietti, J. S.

    2015-01-01

    During 2014 dryness continued in the Northern Hemisphere and relative wetness continued in the Southern Hemisphere (Fig. 2.21; Plate 2.1g). These largely canceled out such that the global land surface began and ended the year with a terrestrial water storage (TWS) anomaly slightly below 0 cm (equivalent height of water; Fig. 2.22). TWS is the sum of groundwater, soil moisture, surface water, snow, and ice. Groundwater responds more slowly to meteorological phenomena than the other components because the overlying soil acts as a low pass filter, but often it has a larger range of variability on multiannual timescales (Rodell and Famiglietti 2001; Alley et al. 2002).In situ groundwater data are only archived and made and Tanzania. The rest of the continent experienced mixed to dry conditions. Significant reductions in TWS in Greenland, Antarctica, and southern coastal Alaska reflect ongoing ice sheet and glacier ablation, not groundwater depletion.

  17. High Resolution Digital Elevation Models of Pristine Explosion Craters

    Science.gov (United States)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  18. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Discussion of the nature, origin and role of the intercrater plains of Mercury and the Moon. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The nature and origin of the intercrater plains of Mercury and the Moon as determined through geologic mapping, crater statistics, and remotely sensed data are summarized. Implications of these results regarding scarp formation, absolute ages, and terrestrial planet surfaces are included. The role of the intercrater plains is defined and future work which might lead to a better understanding of these units and terrestrial planet evolution is outlined.

  19. Ancient aqueous environments at Endeavour crater, Mars

    Science.gov (United States)

    Arvidson, R. E.; Squyres, S. W.; Bell, J.F.; Catalano, J.G.; Clark, B. C.; Crumpler, L.S.; de Souza, P.A.; Fairén, A.G.; Farrand, W. H.; Fox, V.K.; Gellert, Ralf; Ghosh, A.; Golombeck, M.P.; Grotzinger, J.P.; Guinness, E.A.; Herkenhoff, Kenneth E.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Moore, Johnnie N.; Morris, R.V.; Murchie, S.L.; Parker, T.J.; Paulsen, G.; Rice, J.W.; Ruff, S.W.; Smith, M.D.; Wolff, M.J.

    2014-01-01

    Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.

  20. Martian Fluvial Conglomerates at Gale Crater

    Science.gov (United States)

    Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.; Gupta, S.; Sumner, D. Y.; Wiens, R. C.; Mangold, N.; Malin, M. C.; Edgett, K. S.; Maurice, S.; Forni, O.; Gasnault, O.; Ollila, A.; Newsom, H. E.; Dromart, G.; Palucis, M. C.; Yingst, R. A.; Anderson, R. B.; Herkenhoff, K. E.; Le Mouélic, S.; Goetz, W.; Madsen, M. B.; Koefoed, A.; Jensen, J. K.; Bridges, J. C.; Schwenzer, S. P.; Lewis, K. W.; Stack, K. M.; Rubin, D.; Kah, L. C.; Bell, J. F.; Farmer, J. D.; Sullivan, R.; Van Beek, T.; Blaney, D. L.; Pariser, O.; Deen, R. G.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Edgar, Lauren; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sobrón Sánchez, Pablo; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Aparicio, Carlos Armiens; Caride Rodríguez, Javier; Carrasco Blázquez, Isaías; Gómez Gómez, Felipe; Elvira, Javier Gómez; Hettrich, Sebastian; Lepinette Malvitte, Alain; Marín Jiménez, Mercedes; Frías, Jesús Martínez; Soler, Javier Martín; Torres, F. Javier Martín; Molina Jurado, Antonio; Sotomayor, Luis Mora; Muñoz Caro, Guillermo; Navarro López, Sara; González, Verónica Peinado; García, Jorge Pla; Rodriguez Manfredi, José Antonio; Planelló, Julio José Romeral; Alejandra Sans Fuentes, Sara; Sebastian Martinez, Eduardo; Torres Redondo, Josefina; O'Callaghan, Roser Urqui; Zorzano Mier, María-Paz; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; Uston, Claude d.; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Szopa, Cyril; Robert, François; Sautter, Violaine; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Mahaffy, Paul; Martin, David K.; McAdam, Amy; Pavlov, Alexander; Raaen, Eric; Smith, Michael D.; Stern, Jennifer; Tan, Florence; Trainer, Melissa; Meyer, Michael; Posner, Arik; Voytek, Mary; Anderson, Robert C.; Aubrey, Andrew; Beegle, Luther W.; Behar, Alberto; Brinza, David; Calef, Fred; Christensen, Lance; Crisp, Joy A.; DeFlores, Lauren; Feldman, Jason; Feldman, Sabrina; Flesch, Gregory; Hurowitz, Joel; Jun, Insoo; Keymeulen, Didier; Maki, Justin; Mischna, Michael; Morookian, John Michael; Parker, Timothy; Pavri, Betina; Schoppers, Marcel; Sengstacken, Aaron; Simmonds, John J.; Spanovich, Nicole; de la Torre Juarez, Manuel; Vasavada, Ashwin R.; Webster, Christopher R.; Yen, Albert; Archer, Paul Douglas; Cucinotta, Francis; Jones, John H.; Ming, Douglas; Morris, Richard V.; Niles, Paul; Rampe, Elizabeth; Nolan, Thomas; Fisk, Martin; Radziemski, Leon; Barraclough, Bruce; Bender, Steve; Berman, Daniel; Dobrea, Eldar Noe; Tokar, Robert; Vaniman, David; Leshin, Laurie; Cleghorn, Timothy; Huntress, Wesley; Manhès, Gérard; Hudgins, Judy; Olson, Timothy; Stewart, Noel; Sarrazin, Philippe; Grant, John; Vicenzi, Edward; Wilson, Sharon A.; Bullock, Mark; Ehresmann, Bent; Hamilton, Victoria; Hassler, Donald; Peterson, Joseph; Rafkin, Scot; Zeitlin, Cary; Fedosov, Fedor; Golovin, Dmitry; Karpushkina, Natalya; Kozyrev, Alexander; Litvak, Maxim; Malakhov, Alexey; Mitrofanov, Igor; Mokrousov, Maxim; Nikiforov, Sergey; Prokhorov, Vasily; Sanin, Anton; Tretyakov, Vladislav; Varenikov, Alexey; Vostrukhin, Andrey; Kuzmin, Ruslan; Clark, Benton; Wolff, Michael; McLennan, Scott; Botta, Oliver; Drake, Darrell; Bean, Keri; Lemmon, Mark; Lee, Ella Mae; Sucharski, Robert; Hernández, Miguel Ángel de Pablo; Blanco Ávalos, Juan José; Ramos, Miguel; Kim, Myung-Hee; Malespin, Charles; Plante, Ianik; Muller, Jan-Peter; González, Rafael Navarro; Ewing, Ryan; Boynton, William; Downs, Robert; Fitzgibbon, Mike; Harshman, Karl; Morrison, Shaunna; Kortmann, Onno; Williams, Amy; Lugmair, Günter; Wilson, Michael A.; Jakosky, Bruce; Zunic, Tonci Balic; Frydenvang, Jens; Kinch, Kjartan; Stipp, Susan Louise Svane; Boyd, Nick; Campbell, John L.; Gellert, Ralf; Perrett, Glynis; Pradler, Irina; VanBommel, Scott; Jacob, Samantha; Owen, Tobias; Rowland, Scott; Savijärvi, Hannu; Boehm, Eckart; Böttcher, Stephan; Burmeister, Sönke; Guo, Jingnan; Köhler, Jan; García, César Martín; Mellin, Reinhold Mueller; Schweingruber, Robert Wimmer; McConnochie, Timothy; Benna, Mehdi; Franz, Heather; Bower, Hannah; Brunner, Anna; Blau, Hannah; Boucher, Thomas; Carmosino, Marco; Atreya, Sushil; Elliott, Harvey; Halleaux, Douglas; Rennó, Nilton; Wong, Michael; Pepin, Robert; Elliott, Beverley; Spray, John; Thompson, Lucy; Gordon, Suzanne; Williams, Joshua; Vasconcelos, Paulo; Bentz, Jennifer; Nealson, Kenneth; Popa, Radu; Moersch, Jeffrey; Tate, Christopher; Day, Mackenzie; Kocurek, Gary; Hallet, Bernard; Sletten, Ronald; Francis, Raymond; McCullough, Emily; Cloutis, Ed; ten Kate, Inge Loes; Arvidson, Raymond; Fraeman, Abigail; Scholes, Daniel; Slavney, Susan; Stein, Thomas; Ward, Jennifer; Berger, Jeffrey; Moores, John E.

    2013-05-01

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  1. The Microstructure of Lunar Micrometeorite Impact Craters

    Science.gov (United States)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2016-01-01

    The peak of the mass flux of impactors striking the lunar surface is made up of objects approximately 200 micrometers in diameter that erode rocks, comminute regolith grains, and produce agglutinates. The effects of these micro-scale impacts are still not fully understood. Much effort has focused on evaluating the physical and optical effects of micrometeorite impacts on lunar and meteoritic material using pulsed lasers to simulate the energy deposited into a substrate in a typical hypervelocity impact. Here we characterize the physical and chemical changes that accompany natural micrometeorite impacts into lunar rocks with long surface exposure to the space environment (12075 and 76015). Transmission electron microscope (TEM) observations were obtained from cross-sections of approximately 10-20 micrometers diameter craters that revealed important micro-structural details of micrometeorite impact processes, including the creation of npFe (sup 0) in the melt, and extensive deformation around the impact site.

  2. Crater Topography on Titan: Implications for Landscape Evolution

    Science.gov (United States)

    Neish, Catherine D.; Kirk, R.L.; Lorenz, R. D.; Bray, V. J.; Schenk, P.; Stiles, B. W.; Turtle, E.; Mitchell, K.; Hayes, A.

    2013-01-01

    We present a comprehensive review of available crater topography measurements for Saturn's moon Titan. In general, the depths of Titan's craters are within the range of depths observed for similarly sized fresh craters on Ganymede, but several hundreds of meters shallower than Ganymede's average depth vs. diameter trend. Depth-to-diameter ratios are between 0.0012 +/- 0.0003 (for the largest crater studied, Menrva, D approximately 425 km) and 0.017 +/- 0.004 (for the smallest crater studied, Ksa, D approximately 39 km). When we evaluate the Anderson-Darling goodness-of-fit parameter, we find that there is less than a 10% probability that Titan's craters have a current depth distribution that is consistent with the depth distribution of fresh craters on Ganymede. There is, however, a much higher probability that the relative depths are uniformly distributed between 0 (fresh) and 1 (completely infilled). This distribution is consistent with an infilling process that is relatively constant with time, such as aeolian deposition. Assuming that Ganymede represents a close 'airless' analogue to Titan, the difference in depths represents the first quantitative measure of the amount of modification that has shaped Titan's surface, the only body in the outer Solar System with extensive surface-atmosphere exchange.

  3. Noachian and more recent phyllosilicates in impact craters on Mars.

    Science.gov (United States)

    Fairén, Alberto G; Chevrier, Vincent; Abramov, Oleg; Marzo, Giuseppe A; Gavin, Patricia; Davila, Alfonso F; Tornabene, Livio L; Bishop, Janice L; Roush, Ted L; Gross, Christoph; Kneissl, Thomas; Uceda, Esther R; Dohm, James M; Schulze-Makuch, Dirk; Rodríguez, J Alexis P; Amils, Ricardo; McKay, Christopher P

    2010-07-06

    Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times.

  4. Chemical hazards from acid crater lakes

    Science.gov (United States)

    van Bergen, M. J.; Sumarti, S.; Heikens, A.; Bogaard, T. A.; Hartiyatun, S.

    2003-04-01

    Acid crater lakes, which are hosted by a considerable number of active volcanoes, form a potential threat for local ecosystems and human health, as they commonly contain large amounts of dissolved chemicals. Subsurface seepage or overflow can lead to severe deterioration of the water quality of rivers and wells, as observations around several of these volcanoes have shown. The Ijen crater lake in East Java (Indonesia) is a striking example, as this reservoir of hyperacid (pHfluoride-rich water is the source of a ca. 50 km long acid river that transports substantial quantities of potentially toxic elements. A downstream trend of increasing pH from fluoride levels pose some of the most severe environmental threats. Its concentration decreases from ca. 1300 mg/kg in the lake to ca. 10 mg/kg in a coastal area downstream, where virtually all of the river water is used for irrigating rice fields and other cropland. Apart from serious problems for agriculture, our survey of 55 drinking water wells in the irrigation area shows that 50% contain fluoride above the 1.5 ppm WHO limit, in line with the observation that dental fluorosis is widespread among the ca. 100,000 residents of the area. A conspicuous spatial correlation between fluoride concentrations and the irrigation system suggest that long-term (century) infiltration of irrigation water may have affected the quality of groundwater. Fluorosis is also a problem in some villages within the caldera, where well water sources may have a more direct subsurface connection with the lake system. From our observations we conclude that water-quality monitoring is especially needed for health reasons in volcanic areas where volatile elements, derived from passively degassing magma, are intercepted by (sub) surface water bodies.

  5. Tidally Heated Terrestrial Exoplanets

    Science.gov (United States)

    Henning, Wade Garrett

    This work models the surface and internal temperatures for hypothetical terrestrial planets in situations involving extreme tidal heating. The feasibility of such planets is evaluated in terms of the orbital perturbations that may give rise to them, their required proximity to a hoststar, and the potential for the input tidal heating to cause significant partial melting of the mantle. Trapping terrestrial planets into 2:1 resonances with migrating Hot Jupiters is considered as a reasonable way for Earth-like worlds to both maintain high eccentricities and to move to short enough orbital periods (1-20 days) for extreme tidal heating to occur. Secular resonance and secular orbital perturbations may support moderate tidal heating at a low equilibrium eccentricity. At orbital periods below 10-30 days, with eccentricities from 0.01 to 0.1, tidal heat may greatly exceed radiogenic heat production. It is unlikely to exceed insolation, except when orbiting very low luminosity hosts, and thus will have limited surface temperature expression. Observations of such bodies many not be able to detect tidal surface enhancements given a few percent uncertainty in albedo, except on the nightside of spin synchronous airless objects. Otherwise detection may occur via spectral detection of hotspots or high volcanic gas concentrations including sulfur dioxide and hydrogen sulfide. The most extreme cases may be able to produce magma oceans, or magma slush mantles with up to 40-60% melt fractions. Tides may alter the habitable zones for smaller red dwarf stars, but are generally detrimental. Multiple viscoelastic models, including the Maxwell, Voigt-Kelvin, Standard Anelastic Solid, and Burgers rheologies are explored and applied to objects such as Io and the super-Earth planet GJ 876d. The complex valued Love number for the Burgers rheology is derived and found to be a useful improvement when modeling the low temperature behavior of tidal bodies, particularly during low eccentricity

  6. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution: Introduction. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The relative ages of various geologic units and structures place tight constraints on the origin of the Moon and the planet Mercury, and thus provide a better understanding of the geologic histories of these bodies. Crater statistics, a reexamination of lunar geologic maps, and the compilation of a geologic map of a quarter of Mercury's surface based on plains units dated relative to crater degradation classes were used to determine relative ages. This provided the basis for deducing the origin of intercrater plains and their role in terrestrial planet evolution.

  7. How old are lunar lobate scarps? 1. Seismic resetting of crater size-frequency distributions

    Science.gov (United States)

    van der Bogert, Carolyn H.; Clark, Jaclyn D.; Hiesinger, Harald; Banks, Maria E.; Watters, Thomas R.; Robinson, Mark S.

    2018-05-01

    Previous studies have estimated the ages of lunar lobate scarps, some of the youngest tectonic landforms on the Moon, based on the estimated life-times of their fresh morphologies and associated small graben, using crater degradation ages, or via buffered and traditional crater size-frequency distribution (CSFD) measurements. Here, we reexamine five scarps previously dated by Binder and Gunga (1985) with crater degradation ages to benchmark the evaluation of both the buffered and traditional CSFD approaches for determination of absolute model ages (AMAs) at scarps. Both CSFD methods yield similar ages for each individual scarp, indicating that fault activity not only can be measured on the scarp itself, but also in the surrounding terrain - an indication that tectonic activity causes surface renewal both adjacent to and even kilometers distant from scarps. Size-frequency variations in the regions surrounding the scarps are thus useful for studying the extent and severity of the ground motion caused by coseismic slip events during scarp formation. All age determination approaches continue to indicate that lunar lobate scarps were active in the late Copernican, with some scarps possibly experiencing activity within the last 100 Ma.

  8. How Old are Lunar Lobate Scarps? 1. Seismic Resetting of Crater Size-Frequency Distributions

    Science.gov (United States)

    Van Der Bogert, Carolyn H.; Clark, Jaclyn D.; Hiesinger, Harald; Banks, Maria E.; Watters, Thomas R.; Robinson, Mark S.

    2018-01-01

    Previous studies have estimated the ages of lunar lobate scarps, some of the youngest tectonic landforms on the Moon, based on the estimated life-times of their fresh morphologies and associated small graben, using crater degradation ages, or via buffered and traditional crater size-frequency distribution (CSFD) measurements. Here, we reexamine five scarps previously dated by Binder and Gunga (1985) with crater degradation ages to benchmark the evaluation of both the buffered and traditional CSFD approaches for determination of absolute model ages (AMAs) at scarps. Both CSFD methods yield similar ages for each individual scarp, indicating that fault activity not only can be measured on the scarp itself, but also in the surrounding terrain - an indication that tectonic activity causes surface renewal both adjacent to and even kilometers distant from scarps. Size-frequency variations in the regions surrounding the scarps are thus useful for studying the extent and severity of the ground motion caused by coseismic slip events during scarp formation. All age determination approaches continue to indicate that lunar lobate scarps were active in the late Copernican, with some scarps possibly experiencing activity within the last 100 Ma.

  9. Prediction of gamma exposure rates in large nuclear craters

    Energy Technology Data Exchange (ETDEWEB)

    Tami, Thomas M; Day, Walter C [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    In many civil engineering applications of nuclear explosives there is the need to reenter the crater and lip area as soon as possible after the detonation to carry out conventional construction activities. These construction activities, however, must be delayed until the gamma dose rate, or exposure rate, in and around the crater decays to acceptable levels. To estimate the time of reentry for post-detonation construction activities, the exposure rate in the crater and lip areas must be predicted as a function of time after detonation. An accurate prediction permits a project planner to effectively schedule post-detonation activities.

  10. Ecological transfer mechanisms - Terrestrial

    International Nuclear Information System (INIS)

    Martin, W.E.; Raines, Gilbert E.; Bloom, S.G.; Levin, A.A.

    1969-01-01

    Radionuclides produced by nuclear excavation detonations and released to the environment may enter a variety of biogeochemical cycles and follow essentially the same transfer pathways as their stable-element counterparts. Estimation of potential internal radiation doses to individuals and/or populations living in or near fallout-contaminated areas requires analysis of the food-chain and other ecological pathways by which radionuclides released to the environment may be returned to man. A generalized materials transfer diagram, applicable to the forest, agricultural, freshwater and marine ecosystems providing food and water to the indigenous population of Panama and Colombia in regions that could be affected by nuclear excavation of a sea-level canal between the Atlantic and Pacific Oceans, is presented. Transfer mechanisms effecting the movement of stable elements and radionuclides in terrestrial ecosystems are discussed, and methods used to simulate these processes by means of mathematical models are described to show how intake values are calculated for different radionuclides in the major ecological pathways leading to man. These data provide a basis for estimating potential internal radiation doses for comparison with the radiation protection criteria established by recognized authorities; and this, in turn, provides a basis for recommending measures to insure the radiological safety of the nuclear operation plan. (author)

  11. Solar-terrestrial physics

    International Nuclear Information System (INIS)

    Patel, V.L.

    1977-01-01

    The Glossary is designed to be a technical dictionary that will provide solar workers of various specialties, students, other astronomers and theoreticians with concise information on the nature and the properties of phenomena of solar and solar-terrestrial physics. Each term, or group of related terms, is given a concise phenomenological and quantitative description, including the relationship to other phenomena and an interpretation in terms of physical processes. The references are intended to lead the non-specialist reader into the literature. This section deals with: geomagnetic field; coordinate systems; geomagnetic indices; Dst index; auroral electrojet index AE; daily, 27-day and semi-annual variations of geomagnetic field; micropulsation; geomagnetic storms; storm sudden commencement (SSC) or sudden commencement (SC); initial phase; ring current; sudden impulses; ionosphere; D region; polar cap absorption; sudden ionospheric disturbance; E region; sporadic E; equatorial electrojet; solar flare effect; F 1 and F 2 regions; spread F; travelling ionospheric disturbances; magnetosphere; magnetospheric coordinate systems; plasmasphere; magnetosheath; magnetospheric tail; substorm; radiation belts or Van Allen belts; whistlers; VLF emissions; aurora; auroral forms; auroral oval and auroral zones; auroral intensity; stable auroral red arcs; pulsing aurora; polar glow aurora; and airglow. (B.R.H.)

  12. Ecological transfer mechanisms - Terrestrial

    Energy Technology Data Exchange (ETDEWEB)

    Martin, W E; Raines, Gilbert E; Bloom, S G; Levin, A A [Battelle Memorial Institute, CoIumbus, OH (United States)

    1969-07-01

    Radionuclides produced by nuclear excavation detonations and released to the environment may enter a variety of biogeochemical cycles and follow essentially the same transfer pathways as their stable-element counterparts. Estimation of potential internal radiation doses to individuals and/or populations living in or near fallout-contaminated areas requires analysis of the food-chain and other ecological pathways by which radionuclides released to the environment may be returned to man. A generalized materials transfer diagram, applicable to the forest, agricultural, freshwater and marine ecosystems providing food and water to the indigenous population of Panama and Colombia in regions that could be affected by nuclear excavation of a sea-level canal between the Atlantic and Pacific Oceans, is presented. Transfer mechanisms effecting the movement of stable elements and radionuclides in terrestrial ecosystems are discussed, and methods used to simulate these processes by means of mathematical models are described to show how intake values are calculated for different radionuclides in the major ecological pathways leading to man. These data provide a basis for estimating potential internal radiation doses for comparison with the radiation protection criteria established by recognized authorities; and this, in turn, provides a basis for recommending measures to insure the radiological safety of the nuclear operation plan. (author)

  13. Aquatic and Terrestrial Environment 2004

    DEFF Research Database (Denmark)

    Andersen, J. M.; Boutrup, S.; Bijl, L. van der

    This report presents the 2004 results of the Danish National Monitoring and Assess-ment Programme for the Aquatic and Terrestrial Environments (NOVANA). 2004 was the first year in which terrestrial nature was included in the monitoring pro-gramme. The report reviews the state of the groundwater......, watercourses, lakes and marine waters and the pressures upon them and reviews the monitoring of terrestrial natural habitats and selected plants and animals. The report is based on the annual reports prepared for each subprogramme by the Topic Centres. The latter reports are mainly based on data collected...

  14. The Surface and Interior Evolution of Ceres Revealed by Analysis of Fractures and Secondary Crater Chains Using Dawn Data

    Science.gov (United States)

    Scully, J. E. C.; Buczkowski, D.; King, S. D.; Castillo, J. C.; Schmedemann, N.; Raymond, C. A.; O'Brien, D. P.; Marchi, S.; Russell, C. T.; Mitri, G.; Bland, M. T.

    2016-12-01

    Dawn is the first spacecraft to visit and orbit Ceres, a dwarf planet and the largest body in the asteroid belt (radius 470 km) (Russell et al., 2016). Previously, telescopic observations and thermal evolution modeling indicated Ceres was at least partially differentiated, with a density of 2,100 kg/m3 (e.g. Drummond et al., 2014; Castillo-Rogez & McCord, 2010). Moreover, models of crater retention predicted that pervasive viscous relaxation in a water-ice-rich outer layer could erase most surface features (Bland, 2013). However, a full understanding of Ceres' surface and interior evolution remained elusive until Dawn explored Ceres. Here we present a global geologic map of Ceres' ≥1 km wide linear features, which we interpret as: 1) the surface expression of subsurface fractures, and 2) secondary crater chains formed when material ejected during impact-crater formation impacts and scours the surface. The formation and preservation of these linear features indicate Ceres' outer layer is relatively strong, and not dominated by viscous relaxation as predicted (Buczkowski et al., 2016). The fractures (called the Samhain Catenae) give us insights into the interior. Based on a fracture spacing to fractured layer thickness ratio of 1 (Bai & Pollard, 2000), the spacing of the Samhain Catenae indicates that the outer, fractured layer is 88 km thick. Moreover, consistent with geodynamic modeling (King et al., 2016), we interpret the Samhain Catenae formed because of uplift and extension induced by an upwelling region. Unlike many cerean secondary crater chains, the Junina Catenae secondary crater chains are not radial to their source impact crater(s). On account of Ceres' fast rotation (period of 9 hours) and relatively small radius, modeling indicates that the Junina Catenae originated from the Urvara/Yalode impact craters, which are located in a different hemisphere. Our results show Ceres has different surface and interior characteristics than predicted, and underwent

  15. Morphology, volcanism, and mass wasting in Crater Lake, Oregon

    Science.gov (United States)

    Bacon, C.R.; Gardner, J.V.; Mayer, L.A.; Buktenica, M.W.; Dartnell, P.; Ramsey, D.W.; Robinson, J.E.

    2002-01-01

    Crater Lake was surveyed nearly to its shoreline by high-resolution multibeam echo sounding in order to define its geologic history and provide an accurate base map for research and monitoring surveys. The bathymetry and acoustic backscatter reveal the character of landforms and lead to a chronology for the concurrent filling of the lake and volcanism within the ca. 7700 calibrated yr B.P. caldera. The andesitic Wizard Island and central-plattform volcanoes are composed of sequences of lava deltas that record former lake levels and demonstrate simultaneous activity at the two vents. Wizard Island eruptions ceased when the lake was ~80 m lower than at present. Lava streams from prominent channels on the surface of the central platform descended to feed extensive subaqueous flow fields on the caldera floor. The Wizard Island and central-platform volcanoes, andesitic Merriam Cone, and a newly discovered probable lava flow on the eastern floor of the lake apparently date from within a few hundred years of caldera collapse, whereas a small rhydacite dome was emplaced on the flank of Wizard Island at ca. 4800 cal. yr B.P. Bedrock outcrops on the submerged caldera walls are shown in detail and, in some cases, can be correlated with exposed geologic units of Mount Mazama. Fragmental debris making up the walls elsewhere consists of narrow talus cones forming a dendritic pattern that leads to fewer, wider ridges downslope. Hummocky topography and scattered blocks up to ~280 m long below many of the embayments in the caldera wall mark debris-avalanche deposits that probably formed in single events and commonly are affected by secondary failures. The flat-floored, deep basins contain relatively fine-grained sediment transported from the debris aprons by sheet-flow turbidity currents. Crater Lake apparently filled rapidly (ca. 400-750 yr) until reaching a permeable layer above glaciated lava identified by the new survey in the northeast caldera wall at ~1845 m elevation

  16. Crater topography on Titan: Implications for landscape evolution

    Science.gov (United States)

    Neish, C.; Kirk, R.; Lorenz, R.; Bray, V.; Schenk, P.; Stiles, B.; Turtle, E.; Cassini Radar Team

    2012-04-01

    Unique among the icy satellites, Titan’s surface shows evidence for extensive modification by fluvial and aeolian erosion, which act to change the topography of its surface over time. Quantifying the extent of this landscape evolution is difficult, since the original, ‘non-eroded’ surface topography is generally unknown. However, fresh craters on icy satellites have a well-known shape and morphology, which has been determined from extensive studies on the airless worlds of the outer solar system (Schenk et al., 2004). By comparing the topography of craters on Titan to similarly sized, pristine analogues on airless bodies, we can obtain one of the few direct measures of the amount of erosion that has occurred on Titan. Cassini RADAR has imaged >30% of the surface of Titan, and more than 60 potential craters have been identified in this data set (Wood et al., 2010; Neish and Lorenz, 2012). Topographic information for these craters can be obtained from a technique known as ‘SARTopo’, which estimates surface heights by comparing the calibration of overlapping synthetic aperture radar (SAR) beams (Stiles et al., 2009). We present topography data for several craters on Titan, and compare the data to similarly sized craters on Ganymede, for which topography has been extracted from stereo-derived digital elevation models (Bray et al., 2012). We find that the depths of craters on Titan are generally within the range of depths observed on Ganymede, but several hundreds of meters shallower than the average (Fig. 1). A statistical comparison between the two data sets suggests that it is extremely unlikely that Titan’s craters were selected from the depth distribution of fresh craters on Ganymede, and that is it much more probable that the relative depths of Titan are uniformly distributed between ‘fresh’ and ‘completely infilled’. This is consistent with an infilling process that varies linearly with time, such as aeolian infilling. Figure 1: Depth of

  17. Vegetation damage and recovery after Chiginagak Volcano Crater drainage event

    Data.gov (United States)

    Department of the Interior — From August 20 — 23, 2006, I revisited Chiginigak volcano to document vegetation recovery after the crater drainage event that severely damaged vegetation in May of...

  18. LRO MOON CRATER EDR RAWDATA VERSION 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set comprises the raw binary data from from the LRO Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument. The data consists of the...

  19. Extreme Access & Lunar Ice Mining in Permanently Shadowed Craters

    Data.gov (United States)

    National Aeronautics and Space Administration — Results from the recent NASA Lunar CRater Observation and Sensing Satellite, or LCROSS, mission in 2010, indicate that water (H2O), ice and other useful volatiles...

  20. Site characterization requirements for nuclear-cratering design

    International Nuclear Information System (INIS)

    Terhune, R.W.; Carlson, R.C.

    1977-01-01

    A material properties measurement program for the design of large engineering nuclear-excavation projects by computer calculation is presented. Material properties of the site and their relative effect on crater size are analyzed and ordered in relation to their importance in determining the overall cratering efficiency. The measurement program includes both in situ logging and laboratory measurement of core samples, together with the reason for each measurement and its use in the calculations

  1. A global catalogue of Ceres impact craters ≥ 1 km and preliminary analysis

    Science.gov (United States)

    Gou, Sheng; Yue, Zongyu; Di, Kaichang; Liu, Zhaoqin

    2018-03-01

    The orbital data products of Ceres, including global LAMO image mosaic and global HAMO DTM with a resolution of 35 m/pixel and 135 m/pixel respectively, are utilized in this research to create a global catalogue of impact craters with diameter ≥ 1 km, and their morphometric parameters are calculated. Statistics shows: (1) There are 29,219 craters in the catalogue, and the craters have a various morphologies, e.g., polygonal crater, floor fractured crater, complex crater with central peak, etc.; (2) The identifiable smallest crater size is extended to 1 km and the crater numbers have been updated when compared with the crater catalogue (D ≥ 20 km) released by the Dawn Science Team; (3) The d/D ratios for fresh simple craters, obviously degraded simple crater and polygonal simple crater are 0.11 ± 0.04, 0.05 ± 0.04 and 0.14 ± 0.02 respectively. (4) The d/D ratios for non-polygonal complex crater and polygonal complex crater are 0.08 ± 0.04 and 0.09 ± 0.03. The global crater catalogue created in this work can be further applied to many other scientific researches, such as comparing d/D with other bodies, inferring subsurface properties, determining surface age, and estimating average erosion rate.

  2. Terrestrial Ecology Guide.

    Science.gov (United States)

    Morrison, James W., Ed.; Hall, James A., Ed.

    This collection of study units focuses on the study of the ecology of land habitats. Considered are such topics as map reading, field techniques, forest ecosystem, birds, insects, small mammals, soils, plant ecology, preparation of terrariums, air pollution, photography, and essentials of an environmental studies program. Each unit contains…

  3. Morphological indicators of a mascon beneath Ceres' largest crater, Kerwan

    Science.gov (United States)

    Bland, Michael T.; Ermakov, Anton; Raymond, Carol A.; Williams, David A.; Bowling, Tim J.; Preusker, F.; Park, Ryan S.; Marchi, Simone; Castillo-Rogez, Julie C.; Fu, R.R.; Russell, Christopher T.

    2018-01-01

    Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long‐term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact‐induced uplift of the high‐density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest‐degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin‐associated gravity anomalies, although their origin may differ substantially.

  4. 100 New Impact Crater Sites Found on Mars

    Science.gov (United States)

    Kennedy, M. R.; Malin, M. C.

    2009-12-01

    Recent observations constrain the formation of 100 new impact sites on Mars over the past decade; 19 of these were found using the Mars Global Surveyor Mars Orbiter Camera (MOC), and the other 81 have been identified since 2006 using the Mars Reconnaissance Orbiter Context Camera (CTX). Every 6 meter/pixel CTX image is examined upon receipt and, where they overlap images of 0.3-240 m/pixel scale acquired by the same or other Mars-orbiting spacecraft, we look for features that may have changed. New impact sites are initially identified by the presence of a new dark spot or cluster of dark spots in a CTX image. Such spots may be new impact craters, or result from the effect of impact blasts on the dusty surface. In some (generally rare) cases, the crater is sufficiently large to be resolved in the CTX image. In most cases, however, the crater(s) cannot be seen. These are tentatively designated as “candidate” new impact sites, and the CTX team then creates an opportunity for the MRO spacecraft to point its cameras off-nadir and requests that the High Resolution Imaging Science Experiment (HiRISE) team obtain an image of ~0.3 m/pixel to confirm whether a crater or crater cluster is present. It is clear even from cursory examination that the CTX observations are areographically biased to dusty, higher albedo areas on Mars. All but 3 of the 100 new impact sites occur on surfaces with Lambert albedo values in excess of 23.5%. Our initial study of MOC images greatly benefited from the initial global observations made in one month in 1999, creating a baseline date from which we could start counting new craters. The global coverage by MRO Mars Color Imager is more than a factor of 4 poorer in resolution than the MOC Wide Angle camera and does not offer the opportunity for global analysis. Instead, we must rely on partial global coverage and global coverage that has taken years to accumulate; thus we can only treat impact rates statistically. We subdivide the total data

  5. Geological Mapping of Impact Melt Deposits at Lunar Complex Craters: New Insights into Morphological Diversity, Distribution and the Cratering Process

    Science.gov (United States)

    Dhingra, D.; Head, J. W., III; Pieters, C. M.

    2014-12-01

    We have completed high resolution geological mapping of impact melt deposits at the young lunar complex craters (wall and rim impact melt units and their relation to floor units have also been mapped. Among the distinctive features of these impact melt deposits are: 1) Impact Melt Wave Fronts: These are extensive (sometimes several kilometers in length) and we have documented their occurrence and distribution in different parts of the crater floor at Jackson and Tycho. These features emphasize melt mobility and style of emplacement during the modification stage of the craters. 2) Variations in Floor Elevations: Spatially extensive and coherent sections of crater floors have different elevations at all the three craters. The observed elevation differences could be caused by subsidence due to cooling of melt and/or structural failure, together with a contribution from regional slope. 3) Melt-Covered Megablocks: We also observe large blocks/rock-fragments (megablocks) covered in impact melt, which could be sections of collapsed wall or in some cases, subdued sections of central peaks. 4) Melt-Covered Central Peaks: Impact melt has also been mapped on the central peaks but varies in spatial extent among the craters. The presence of melt on peaks must be taken into account when interpreting peak mineralogy as exposures of deeper crust. 5) Boulder Distribution: Interesting trends are observed in the distribution of boulder units of various sizes; some impact melt units have spatially extensive boulders, while boulder distribution is very scarce in other units on the floor. We interpret these distributions to be influenced by a) the differential collapse of the crater walls during the modification stage, and b) the amount of relative melt volume retained in different parts of the crater floor. These observations provide important documentation of the morphological diversity and better understanding of the emplacement and final distribution of impact melt deposits.

  6. Temperature profiles from Pos Crater Lake

    Science.gov (United States)

    Neshyba, Steve; Fernandez, Walter; Diaz-Andrade, José

    In 1984, we took part in an expedition to measure the temperature field and bathymetry of the acid lake (Figure 1) that has formed in the crater of Poás volcano, Costa Rica, since its last eruption in 1953. Obtaining these data was the first step in a long-range study planned by researchers at the Center for Geophysical Research, University of Costa Rica (San Jose, Costa Rica), and the College of Oceanography, Oregon State University (Corvallis). The study will eventually consider all aspects of fluid behavior in a volcanic lake that is heated or otherwise convectively driven by energy injected at the lake bottom.Evidence of convection is clearly visible on the surface of the Poás lake most of the time. Fumarole activity has been continuous since 1953. Phreatic explosions are quite frequent, varying from weak to strong, and the height of the ejected column varies from 1 to more than 500 m. One immediately useful result of the research would be an estimate of the heat transfer from sources within the conduit to the overlying water column. As far as geophysical fluid behavior goes, we are interested in the turbulent and diffusive processes by which heat and chemical species are transferred. We are especially interested in the impact on the density stratification of the density changes that occur as particulates settle downward through the fluid column. The stratification would otherwise be controlled by the turbulent and diffusive processes driven by thermochemical factors.

  7. Visible and Near-Infrared Spectroscopy of Hephaestus Fossae Cratered Cones, Mars

    Science.gov (United States)

    Dapremont, A.; Wray, J. J.

    2017-12-01

    Hephaestus Fossae are a system of sub-parallel fractures on Mars (> 500 km long) interpreted as near-surface tensional cracks [1]. Images of the Martian surface from the High Resolution Imaging Science Experiment have revealed cratered cones within the Hephaestus Fossae region. A volcanic origin (cinder/tuff cones) has been proposed for these features based on morphometric measurements and fine-scale surface characteristics [2]. In an effort to further constrain the origin of these cones as the products of igneous or sedimentary volcanism, we use data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We take advantage of CRISM's S (0.4 - 1.0 microns) and L (1.0 - 3.9 microns) detector wavelength ranges to investigate the presence or absence of spectral signatures consistent with previous identifications of igneous and mud volcanism products on Mars [3,4]. Hephaestus Fossae cratered cone rims exhibit a consistent nanophase ferric oxide signature. We also identify ferrous phases and 3-micron absorptions (attributed to fundamental vibrational stretch frequencies in H2O) on the crater rims of several cones. Mafic signatures on cratered cone rims support an igneous provenance for these features. The 3-micron absorptions are consistent with the presence of structurally bound or adsorbed water. Our CRISM observations are similar to those of small edifice features in Chryse Planitia, which were interpreted as mud volcanism products based on their enrichment of nanophase ferric minerals and 3-micron absorptions on summit crater rims [3]. Hydrothermal activity was invoked for a Coprates Chasma pitted cone (scoria/tuff cone) based on CRISM identification of partially dehydrated opaline silica, which we do not observe in Hephaestus Fossae [4]. Our spectral observations are more consistent with mud volcanism, but we do not definitively rule out an igneous volcanic origin for the cones in our study region. We demonstrate that VNIR spectroscopy is a valuable

  8. The surface and interior evolution of Ceres revealed by fractures and secondary crater chains

    Science.gov (United States)

    Scully, Jennifer E. C.; Buczkowski, Debra; Schmedemann, Nico; King, Scott; O'Brien, David P.; Castillo-Rogez, Julie; Raymond, Carol; Marchi, Simone; Russell, Christopher T.; Mitri, Giuseppe; Bland, Michael T.

    2016-10-01

    Dawn became the first spacecraft to visit and orbit Ceres, a dwarf planet and the largest body in the asteroid belt (radius ~470 km) (Russell et al., 2016). Before Dawn's arrival, telescopic observations and thermal evolution modeling indicated Ceres was differentiated, with an average density of 2,100 kg/m3 (e.g. McCord & Sotin, 2005; Castillo-Rogez & McCord, 2010). Moreover, pervasive viscous relaxation in a water-ice-rich outer layer was predicted to erase most features on Ceres' surface (Bland, 2013). However, a full understanding of Ceres' surface and interior evolution remained elusive. On the basis of global geologic mapping, we identify prevalent ≥1 km wide linear features that formed: 1) as the surface expression of subsurface fractures, and 2) as material ejected during impact-crater formation impacted and scoured the surface, forming secondary crater chains. The formation and preservation of these linear features indicates Ceres' outer layer is relatively strong, and is not dominated by viscous relaxation as predicted. The fractures also give us insights into Ceres' interior: their spacing indicates the fractured layer is ~30 km thick, and we interpret the fractures formed because of uplift and extension induced by an upwelling region, which is consistent with geodynamic modeling (King et al., 2016). In addition, we find that some secondary crater chains do not form radial patterns around their source impact craters, and are located in a different hemisphere from their source impact craters, because of Ceres' fast rotation (period of ~9 hours) and relatively small radius. Our results show Ceres has a surface and outer layer with characteristics that are different than predicted, and underwent complex surface and interior evolution. Our fuller understanding of Ceres, based on Dawn data, gives us important insights into the evolution of bodies in the asteroid belt, and provides unique constraints that can be used to evaluate predictions of the surface

  9. Regolith thickness at the Chang'E-3 landing site from the Lunar Penetrating Radar and impact craters

    Science.gov (United States)

    Fa, W.; Zhu, M.-H.; Liu, T.

    2015-10-01

    The Chang'E-3 lunar penetrating radar (LPR) observations reveal a newly formed regolith layer (<1 m), an ejecta layer (~2-6 m), and a palaeoregolith layer (~4-9 m) from the surface to a depth of ~ 20 m. The thicknesses of the newly formed regolith layer and the palaeoregolith layer are consistent with the estimations based on the excavation depth and morphology of small fresh craters.

  10. Methane emissions form terrestrial plants

    Energy Technology Data Exchange (ETDEWEB)

    Bergamaschi, P.; Dentener, F.; Grassi, G.; Leip, A.; Somogyi, Z.; Federici, S.; Seufert, G.; Raes, F. [European Commission, DG Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy)

    2006-07-01

    In a recent issue of Nature Keppler et al. (2006) report the discovery that terrestrial plants emit CH4 under aerobic conditions. Until now it was thought that bacterial decomposition of plant material under anaerobic conditions, such as in wetlands and water flooded rice paddies, is the main process leading to emissions from terrestrial ecosystems. In a first attempt to upscale these measurements, the authors estimate that global total emissions may be 149 Tg CH4/yr (62-236 Tg CH4/yr), with the main contribution estimated from tropical forests and grasslands (107 Tg CH4/yr with a range of 46-169 Tg CH4/yr). If confirmed, this new source of emission would constitute a significant fraction of the total global methane sources (estimated 500-600 Tg CH4/yr for present day total natural and anthropogenic sources) and have important implications for the global CH4 budget. To accommodate it within the present budget some sources would need to be re-assessed downwards and/or some sinks re-assessed upwards. Furthermore, also considering that methane is a {approx}23 times more powerful greenhouse gas than CO2, the possible feedbacks of these hitherto unknown CH4 emissions on global warming and their impacts on greenhouse gases (GHG) mitigation strategies need to be carefully evaluated. The merit of the paper is without doubt related to the remarkable discovery of a new process of methane emissions active under aerobic conditions. However, we think that the applied approach of scaling up emissions from the leaf level to global totals by using only few measured data (mainly from herbaceous species) and the Net Primary Productivity of the main biomes is scientifically questionable and tends to overestimate considerably the global estimates, especially for forest biomes. Furthermore, some significant constraints on the upper limit of the global natural CH4 emissions arise from the pre-industrial CH4 budget. Pre-industrial atmospheric CH4 mixing ratios have been measured

  11. Planetary boundary layer and circulation dynamics at Gale Crater, Mars

    Science.gov (United States)

    Fonseca, Ricardo M.; Zorzano-Mier, María-Paz; Martín-Torres, Javier

    2018-03-01

    The Mars implementation of the Planet Weather Research and Forecasting (PlanetWRF) model, MarsWRF, is used here to simulate the atmospheric conditions at Gale Crater for different seasons during a period coincident with the Curiosity rover operations. The model is first evaluated with the existing single-point observations from the Rover Environmental Monitoring Station (REMS), and is then used to provide a larger scale interpretation of these unique measurements as well as to give complementary information where there are gaps in the measurements. The variability of the planetary boundary layer depth may be a driver of the changes in the local dust and trace gas content within the crater. Our results show that the average time when the PBL height is deeper than the crater rim increases and decreases with the same rate and pattern as Curiosity's observations of the line-of-sight of dust within the crater and that the season when maximal (minimal) mixing is produced is Ls 225°-315° (Ls 90°-110°). Thus the diurnal and seasonal variability of the PBL depth seems to be the driver of the changes in the local dust content within the crater. A comparison with the available methane measurements suggests that changes in the PBL depth may also be one of the factors that accounts for the observed variability, with the model results pointing towards a local source to the north of the MSL site. The interaction between regional and local flows at Gale Crater is also investigated assuming that the meridional wind, the dynamically important component of the horizontal wind at Gale, anomalies with respect to the daily mean can be approximated by a sinusoidal function as they typically oscillate between positive (south to north) and negative (north to south) values that correspond to upslope/downslope or downslope/upslope regimes along the crater rim and Mount Sharp slopes and the dichotomy boundary. The smallest magnitudes are found in the northern crater floor in a region that

  12. Radioactivity in terrestrial environment

    International Nuclear Information System (INIS)

    Queirazza, G.; Guzzi, L.

    1987-01-01

    The investigation demonstrated that in the first stage the contamination affected only the foliage; therefore, the concentration ratios observed were by several orders of magnitude higher than the transfer factors. The effect of direct contamination tends to diminish gradually as observed in the radiometric data relating to two subsequent mowings of alfalfa and a meadow of miscellaneous plants. For same vegetables of alimentary value (tomatoes, rice, barley and maize) it was ascertained due to soil-to-plant transfer alone, which normally represent a very small fraction on the amount present in the soil

  13. A Numerical Investigation into Low-Speed Impact Cratering Events

    Science.gov (United States)

    Schwartz, Stephen; Richardson, D. C.; Michel, P.

    2012-10-01

    Impact craters are the geological features most commonly observed on the surface of solid Solar System bodies. Crater shapes and features are crucial sources of information regarding past and present surface environments, and can provide indirect information about the internal structures of these bodies. In this study, we consider the effects of low-speed impacts into granular material. Studies of low-speed impact events are suitable for understanding the cratering process leading, for instance, to secondary craters. In addition, upcoming asteroid sample return missions will employ surface sampling strategies that use impacts into the surface by a projectile. An understanding of the process can lead to better sampling strategies. We use our implementation of the Soft-Sphere Discrete Element Method (SSDEM) (Schwartz et al. 2012, Granular Matter 14, 363-380) into the parallel N-body code PKDGRAV (cf. Richardson et al. 2011, Icarus 212, 427-437) to model the impact cratering process into granular material. We consider the effects of boundary conditions on the ejecta velocity profile and discuss how results relate to the Maxwell Z-Model during the crater growth phase. Cratering simulations are compared to those of Wada et al. 2006 (Icarus 180, 528-545) and to impact experiments performed in conjunction with Hayabusa 2. This work is supported in part by grants from the National Science Foundation under grant number AST1009579 and from the Office of Space Science of NASA under grant number NNX08AM39G. Part of this study resulted from discussions with the International Team (#202) sponsored by ISSI in Bern (Switzerland). Some simulations were performed on the YORP cluster administered by the Center for Theory and Computation of the Department of Astronomy at the University of Maryland in College Park and on the SIGGAM computer cluster hosted by the Côte d'Azur Observatory in Nice (France).

  14. Acid Sulfate Alteration in Gusev Crater, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    The Mars Exploration Rover (MER) Spirit landed on the Gusev Crater plains west of the Columbia Hills in January, 2004, during the Martian summer (sol 0; sol = 1 Martian day = 24 hr 40 min). Spirit explored the Columbia Hills of Gusev Crater in the vicinity of Home Plate at the onset on its second winter (sol approximately 900) until the onset of its fourth winter (sol approximately 2170). At that time, Spirit became mired in a deposit of fined-grained and sulfate-rich soil with dust-covered solar panels and unfavorable pointing of the solar arrays toward the sun. Spirit has not communicated with the Earth since sol 2210 (January, 2011). Like its twin rover Opportunity, which landed on the opposite side of Mars at Meridiani Planum, Spirit has an Alpha Particle X-Ray Spectrometer (APXS) instrument for chemical analyses and a Moessbauer spectrometer (MB) for measurement of iron redox state, mineralogical speciation, and quantitative distribution among oxidation (Fe(3+)/sigma Fe) and coordination (octahedral versus tetrahedral) states and mineralogical speciation (e.g., olivine, pyroxene, ilmenite, carbonate, and sulfate). The concentration of SO3 in Gusev rocks and soils varies from approximately 1 to approximately 34 wt%. Because the APXS instrument does not detect low atomic number elements (e.g., H and C), major-element oxide concentrations are normalized to sum to 100 wt%, i.e., contributions of H2O, CO2, NO2, etc. to the bulk composition care not considered. The majority of Gusev samples have approximately 6 plus or minus 5 wt% SO3, but there is a group of samples with high SO3 concentrations (approximately 30 wt%) and high total iron concentrations (approximately 20 wt%). There is also a group with low total Fe and SO3 concentrations that is also characterized by high SiO2 concentrations (greater than 70 wt%). The trend labeled "Basaltic Soil" is interpreted as mixtures in variable proportions between unaltered igneous material and oxidized and SO3-rich basaltic

  15. Atmospheric Tides in Gale Crater, Mars

    Science.gov (United States)

    Guzewich, Scott D,; Newman, C. E; de la Torre Juarez, M.; Wilson, R. J.; Lemmon, M.; Smith, M. D.; Kahanpaa, H.; Harri, A.-M.

    2015-01-01

    Atmospheric tides are the primary source of daily air pressure variation at the surface of Mars. These tides are forced by solar heating of the atmosphere and modulated by the presence of atmospheric dust, topography, and surface albedo and thermal inertia. This results in a complex mix of sun-synchronous and nonsun- synchronous tides propagating both eastward and westward around the planet in periods that are integer fractions of a solar day. The Rover Environmental Monitoring Station on board the Mars Science Laboratory has observed air pressure at a regular cadence for over 1 Mars year and here we analyze and diagnose atmospheric tides in this pressure record. The diurnal tide amplitude varies from 26 to 63 Pa with an average phase of 0424 local true solar time, while the semidiurnal tide amplitude varies from 5 to 20 Pa with an average phase of 0929. We find that both the diurnal and semidiurnal tides in Gale Crater are highly correlated to atmospheric opacity variations at a value of 0.9 and to each other at a value of 0.77, with some key exceptions occurring during regional and local dust storms. We supplement our analysis with MarsWRF general circulation modeling to examine how a local dust storm impacts the diurnal tide in its vicinity. We find that both the diurnal tide amplitude enhancement and regional coverage of notable amplitude enhancement linearly scales with the size of the local dust storm. Our results provide the first long-term record of surface pressure tides near the martian equator.

  16. Utilization of the terrestrial cyanobacteria

    Science.gov (United States)

    Katoh, Hiroshi; Tomita-Yokotani, Kaori; Furukawa, Jun; Kimura, Shunta; Yokoshima, Mika; Yamaguchi, Yuji; Takenaka, Hiroyuki

    The terrestrial, N _{2}-fixing cyanobacterium, Nostoc commune has expected to utilize for agriculture, food and terraforming cause of its extracellular polysaccharide, desiccation tolerance and nitrogen fixation. Previously, the first author indicated that desiccation related genes were analyzed and the suggested that the genes were related to nitrogen fixation and metabolisms. In this report, we suggest possibility of agriculture, using the cyanobacterium. Further, we also found radioactive compounds accumulated N. commune (cyanobacterium) in Fukushima, Japan after nuclear accident. Thus, it is investigated to decontaminate radioactive compounds from the surface soil by the cyanobacterium and showed to accumulate radioactive compounds using the cyanobacterium. We will discuss utilization of terrestrial cyanobacteria under closed environment. Keyword: Desiccation, terrestrial cyanobacteria, bioremediation, agriculture

  17. Chicxulub Impact Crater and Yucatan Carbonate Platform - PEMEX Oil Exploratory Wells Revisited

    Science.gov (United States)

    Pérez-Drago, G.; Gutierrez-Cirlos, A. G.; Pérez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-12-01

    Geophysical oil exploration surveys carried out by PEMEX in the 1940's revealed occurrence of an anomalous pattern of semi-circular concentric gravity anomalies. The Bouguer gravity anomalies covered an extensive area over the flat carbonate platform in the northwestern Yucatan Peninsula; strong density contrasts were suggestive of a buried igneous complex or basement uplift beneath the carbonates, which was referred as the Chicxulub structure. The exploration program carried out afterwards included a drilling program, starting with Chicxulub-1 well in 1952 and comprising eight deep boreholes through the 1970s. An aeromagnetic survey in late 1970's showed high amplitude anomalies in the gravity anomaly central sector. Thus, research showing Chicxulub as a large complex impact crater formed at the K/T boundary was built on the PEMEX decades-long exploration program. Despite frequent reference to PEMEX information and samples, original data and cores have not been openly available for detailed evaluation and integration with results from recent investigations. Core samples largely remain to be analyzed and interpreted in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we report on the stratigraphy and paleontological data for PEMEX wells: Chicxulub- 1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m), Ticul-1 (3575m) Yucatan-4 (2398m), Yucatan-2 (3474m), Yucatan-5A (3003m) and Yucatan-1 (3221m). These wells remain the deepest drilled in Chicxulub, providing samples of impact lithologies, carbonate sequences and basement, which give information on post- and pre-impact stratigraphy and crystalline basement. We concentrate on stratigraphic columns, lateral correlations and integration with UNAM and ICDP borehole data. Current plans for deep drilling in Chicxulub crater target the peak ring and central sector, with offshore and onshore boreholes proposed to the IODP and ICDP

  18. Soil and terrestrial biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Soil and terrestrial biology studies focused on developing an understanding of the uptake of gaseous substances from the atmosphere by plants, biodegradation of oil, and the movement of Pu in the terrestrial ecosystems of the southeastern United States. Mathematical models were developed for SO 2 and tritium uptake from the atmosphere by plants; the uptake of tritium by soil microorganisms was measured; and the relationships among the Pu content of soil, plants, and animals of the Savannah River Plant area were studied. Preliminary results are reported for studies on the biodegradation of waste oil on soil surfaces

  19. Structure of the terrestrial planets

    International Nuclear Information System (INIS)

    Lyttleton, R.A.

    1977-01-01

    Recent reviews (cf. Runcorn, 1968; or Cook, 1972, 1975) on the structure of the planets omit reference to the phase-change hypothesis for the nature of the terrestrial core, despite that numerous prior predictions of the theory based on this hypothesis have subsequently been borne out as correct. These reviews also ignore the existence of theoretical calculations of the internal structure of Venus which can be computed with high accuracy by use of the terrestrial seismic data. Several examples of numerous mistakes committed in these reviews are pointed out. (Auth.)

  20. Priapism caused by 'Tribulus terrestris'.

    Science.gov (United States)

    Campanelli, M; De Thomasis, R; Tenaglia, R L

    2016-01-01

    A 36-year-old Caucasian man was diagnosed with a 72-h-lasting priapism that occurred after the assumption of a Herbal supplement based on Tribulus terrestris, which is becoming increasingly popular for the treatment of sexual dysfunction. The patient underwent a cavernoglandular shunt (Ebbehoj shunt) in order to obtain complete detumescence, from which derived negative post-episode outcomes on sexual function. All patients consuming non-FDA-approved alternative supplements such as Tribulus terrestris should be warned about the possible serious side effects.

  1. A crater and its ejecta: An interpretation of Deep Impact

    Science.gov (United States)

    Holsapple, Keith A.; Housen, Kevin R.

    2007-03-01

    We apply recently updated scaling laws for impact cratering and ejecta to interpret observations of the Deep Impact event. An important question is whether the cratering event was gravity or strength-dominated; the answer gives important clues about the properties of the surface material of Tempel 1. Gravity scaling was assumed in pre-event calculations and has been asserted in initial studies of the mission results. Because the gravity field of Tempel 1 is extremely weak, a gravity-dominated event necessarily implies a surface with essentially zero strength. The conclusion of gravity scaling was based mainly on the interpretation that the impact ejecta plume remained attached to the comet during its evolution. We address that feature here, and conclude that even strength-dominated craters would result in a plume that appeared to remain attached to the surface. We then calculate the plume characteristics from scaling laws for a variety of material types, and for gravity and strength-dominated cases. We find that no model of cratering alone can match the reported observation of plume mass and brightness history. Instead, comet-like acceleration mechanisms such as expanding vapor clouds are required to move the ejected mass to the far field in a few-hour time frame. With such mechanisms, and to within the large uncertainties, either gravity or strength craters can provide the levels of estimated observed mass. Thus, the observations are unlikely to answer the questions about the mechanical nature of the Tempel 1 surface.

  2. Detection and characterization of buried lunar craters with GRAIL data

    Science.gov (United States)

    Sood, Rohan; Chappaz, Loic; Melosh, Henry J.; Howell, Kathleen C.; Milbury, Colleen; Blair, David M.; Zuber, Maria T.

    2017-06-01

    We used gravity mapping observations from NASA's Gravity Recovery and Interior Laboratory (GRAIL) to detect, characterize and validate the presence of large impact craters buried beneath the lunar maria. In this paper we focus on two prominent anomalies detected in the GRAIL data using the gravity gradiometry technique. Our detection strategy is applied to both free-air and Bouguer gravity field observations to identify gravitational signatures that are similar to those observed over buried craters. The presence of buried craters is further supported by individual analysis of regional free-air gravity anomalies, Bouguer gravity anomaly maps, and forward modeling. Our best candidate, for which we propose the informal name of Earhart Crater, is approximately 200 km in diameter and forms part of the northwestern rim of Lacus Somniorum, The other candidate, for which we propose the informal name of Ashoka Anomaly, is approximately 160 km in diameter and lies completely buried beneath Mare Tranquillitatis. Other large, still unrecognized, craters undoubtedly underlie other portions of the Moon's vast mare lavas.

  3. East Part of Sapas Mons with Flooded Crater

    Science.gov (United States)

    1991-01-01

    This Magellan image centered near 9.6 degrees north latitude, 189.5 degrees east longitude of an area 140 kilometers (87 miles) by 110 kilometers (68 miles) covers part of the eastern flank of the volcano Sapas Mons on the western edge of Atla Regio. The bright lobate features along the southern and the western part of the image, oriented in northeast to southwest directions, are lava flows that are rough at the 12.6 centimeter wavelength of the radar. These flows range in width from 5 kilometers to 25 kilometers (3 to 16 miles) with lengths of 50 kilometers to 100 kilometers (31 to 62 miles), extending off the area shown here. Additional radar-dark (smooth) flows are also present. The radar-bright linear structures in the northwest part of the image are interpreted to be faults and fractures possibly associated with the emplacement of magma in the subsurface. Located near the center of the image is a 20 kilometer (12 mile) diameter impact crater. This crater is superimposed on a northeast/southwest trending fracture while the southern part of the crater's ejecta blanket is covered by a 6 kilometer (4 mile) wide radar-bright lava flow. These relations indicate that the crater post dates an episode of fracturing and is older than the lava flows covering its southern edge. This is one of only a few places on Venus in which an impact crater is seen to be covered by volcanic deposits.

  4. Measuring impact crater depth throughout the solar system

    Science.gov (United States)

    Robbins, Stuart J.; Watters, Wesley A.; Chappelow, John E.; Bray, Veronica J.; Daubar, Ingrid J.; Craddock, Robert A.; Beyer, Ross A.; Landis, Margaret E.; Ostrach, Lillian; Tornabene, Livio L.; Riggs, Jamie D.; Weaver, Brian P.

    2018-01-01

    One important, almost ubiquitous, tool for understanding the surfaces of solid bodies throughout the solar system is the study of impact craters. While measuring a distribution of crater diameters and locations is an important tool for a wide variety of studies, so too is measuring a crater's “depth.” Depth can inform numerous studies including the strength of a surface and modification rates in the local environment. There is, however, no standard data set, definition, or technique to perform this data‐gathering task, and the abundance of different definitions of “depth” and methods for estimating that quantity can lead to misunderstandings in and of the literature. In this review, we describe a wide variety of data sets and methods to analyze those data sets that have been, are currently, or could be used to derive different types of crater depth measurements. We also recommend certain nomenclature in doing so to help standardize practice in the field. We present a review section of all crater depths that have been published on different solar system bodies which shows how the field has evolved through time and how some common assumptions might not be wholly accurate. We conclude with several recommendations for researchers which could help different data sets to be more easily understood and compared.

  5. Chicxulub Impact Crater and Yucatan Carbonate Platform - Stratigraphy and Petrography of PEMEX Borehole Cores

    Science.gov (United States)

    Gutierrez-Cirlos, A. G.; Perez-Drago, G.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-12-01

    Chicxulub impact crater is the best preserved of the three large multi-ring structures documented in the terrestrial record. Chicxulub, formed 65 Ma ago, is associated with the Cretaceous/Tertiary (K/T) boundary layer and the impact related to the organism extinctions and events marking the boundary. The crater is buried under Tertiary sediments in the Yucatan carbonate platform in the southern Gulf of Mexico. The structure was initially recognized from gravity and magnetic anomalies in the PEMEX exploration surveys of the northwestern Yucatan peninsula. The exploration program included eight deep boreholes completed from 1952 through the 1970s. The investigations showing Chicxulub as a large complex impact crater formed at the K/T boundary have relayed on the PEMEX decades-long exploration program. However, despite frequent use of PEMEX information and core samples, significant parts of the database and cores remain to be evaluated, analyzed and incorporated with results from recent efforts. Access to PEMEX Core Repository has permitted to study the cores and collect new samples from some of the boreholes. We analyzed cores from Yucatan-6, Chicxulub-1, Sacapuc-1, Ticul-1, Yucatan-1 and Yucatan-4 boreholes to make new detailed stratigraphic correlations and petrographic characterization, using information from PEMEX database and the recent studies. In C-1 cores, breccias show 4-8 cm clasts of fine grained altered melt dispersed in a medium to coarse grained matrix composed of pyroxene and feldspar with little macroscopic alteration. Clasts contain 0.2 to 0.1 cm fragments of silicate material (basement) that show variable degrees of digestion. Melt samples from C-1 N10 comes from interval 1,393-1,394 m, and show a fine-to-medium grained coherent microcrystalline groundmass. Melt and breccias in Y-6 extend from about 1,100 m to more than 1,400 m. Sequence is well sorted, with an apparent gradation in both the lithic and melt clasts. In this presentation we report on

  6. Crater Ejecta by Day and Night

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 24 June 2004 This pair of images shows a crater and its ejecta. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project

  7. Meridiani Crater in Day and Night

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 14 June 2004 This pair of images shows crater ejecta in the Terra Meridiani region. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -1.6, Longitude 4.1 East (355.9 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in

  8. Gusev Crater by Day and Night

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 23 June 2004 This pair of images shows part of Gusev Crater. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -14.5, Longitude 175.5 East (184.5 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project

  9. The Links Between Target Properties and Layered Ejecta Craters in Acidalia and Utopia Planitiae Mars

    Science.gov (United States)

    Jones, E.; Osinski, G. R.

    2013-08-01

    Layered ejecta craters on Mars may form from excavation into subsurface volatiles. We examine a new catalogue of martian craters to decipher differences between the single- and double-layered ejecta populations in Acidalia and Utopia.

  10. Automated Detection of Craters in Martian Satellite Imagery Using Convolutional Neural Networks

    Science.gov (United States)

    Norman, C. J.; Paxman, J.; Benedix, G. K.; Tan, T.; Bland, P. A.; Towner, M.

    2018-04-01

    Crater counting is used in determining surface age of planets. We propose improvements to martian Crater Detection Algorithms by implementing an end-to-end detection approach with the possibility of scaling the algorithm planet-wide.

  11. Parameters critical to the morphology of fluidization craters

    Science.gov (United States)

    Siegal, B. S.; Gold, D. P.

    1973-01-01

    In order to study further the role of fluidization on the moon, a laboratory investigation was undertaken on two particulate material size fractions to determine the effect of variables, such as, duration of gas streaming, gas pressure, and 'regolith' thickness on the morphology of fluidization craters. A 3.175-mm cylindrical vent was used to simulate a gas streaming conduit. Details of the fluidization chamber are discussed together with questions of experimental control, aspects of nomenclature, crater measurements, and the effect of variables.

  12. Extreme Access & Lunar Ice Mining in Permanently Shadowed Craters Project

    Science.gov (United States)

    Mueller, Robert P.

    2014-01-01

    Results from the recent LCROSS mission in 2010, indicate that H2O ice and other useful volatiles such as CO, He, and N are present in the permanently shadowed craters at the poles of the moon. However, the extreme topography and steep slopes of the crater walls make access a significant challenge. In addition temperatures have been measured at 40K (-233 C) so quick access and exit is desirable before the mining robot cold soaks. The Global Exploration Roadmap lists extreme access as a necessary technology for Lunar Exploration.

  13. The seismic expression and hydrocarbon potential of subsurface impact craters

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R.; Westbroek, H.H.; Lawton, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The seismic characteristics of meteorite impact craters and their potential as oil and gas reservoirs were discussed. Seismic data from James River, Alberta, in the Western Canada Sedimentary Basin show subsurface anomalies to be meteorite impact structures. The White Valley structure in Saskatchewan has similar features and seismic anomalies indicate that it too could be a meteorite impact structure, although other possibilities have been proposed. Other impact structures in western Canada such as the Steen River structure and the Viewfield crater have or are producing hydrocarbons. 5 refs., 2 figs.

  14. Geomorphometric analysis of selected Martian craters using polar coordinate transformation

    Science.gov (United States)

    Magyar, Zoltán; Koma, Zsófia; Székely, Balázs

    2016-04-01

    Centrally symmetric landform elements are very common features on the surface of the planet Mars. The most conspicuous ones of them are the impact craters of various size. However, a closer look on these features reveals that they show often asymmetric patterns as well. These are partially related to the geometry of the trajectory of the impacting body, but sometimes it is a result of surface processes (e.g., freeze/thaw cycles, mass movements). Geomorphometric studies have already been carried out to reveal these pecularities. Our approach, the application of polar coordinate transformation (PCT) very sensitively enhances the non-radial and non-circular shapes. We used digital terrain models (DTMs) derived from the ESA Mars Express HRSC imagery. The original DTM or its derivatives (e.g. slope angle or aspect) are PCT transformed. We analyzed the craters inter alia with scattergrams in polar coordinates. The resulting point cloud can be used directly for the analysis, but in some cases an interpolation should be applied to enhance certain non-circular features (especially in case of smaller craters). Visual inspection of the crater slopes, coloured by the aspect, reveals smaller features. Some of them are processing artefacts, but many of them are related to local undulations in the topography or indications of mass movements. In many cases the undulations of the crater rim are due to erosional processes. The drawbacks of the technology are related to the uneven resolution of the projected image: features in the crater centre should be left out from the analysis because PCT has a low resolution around the projection center. Furthermore, the success of the PCT depends on the correct definition of the projection centre: erroneously centered images are not suitable for analysis. The PCT transformed images are also suitable for radial averaging and calculation of standard deviations, resulting in typical, comparable craters shapes. These studies may lead to a deeper

  15. Ceres' intriguing Occator crater and its faculae: formation and evolution

    Science.gov (United States)

    Buczkowski, D.; Scully, J. E. C.; Bowling, T.; Bu, C.; Castillo, J. C.; Jaumann, R.; Longobardo, A.; Nathues, A.; Neesemann, A.; Palomba, E.; Platz, T.; Quick, L. C.; Raponi, A.; Raymond, C. A.; Ruesch, O.; Russell, C. T.; Schenk, P.; Stein, N.

    2017-12-01

    Since March 2015, the Dawn spacecraft has orbited and explored Ceres, which is a dwarf planet and the largest object in the asteroid belt (radius 470 km). One of the most intriguing features on Ceres' surface is Occator crater, a 92-km-diameter impact crater that contains distinctive bright spots, called faculae, within its floor (Nathues et al., 2015; Russell et al., 2016; Schenk et al., 2017). Occator crater has been dated to 20-30 million years old (Nathues et al., 2017; Neesemann et al., 2017). The single scattering albedo of Occator's faculae is 0.67-0.80, which is greater than Ceres' average single scattering albedo of 0.09-0.11 (Li et al., 2016). The central facula is named Cerealia Facula, and is located in a 9 km wide and 700 m deep pit. There are also multiple additional faculae in the eastern crater floor, which are named the Vinalia Faculae. The faculae are mostly composed of sodium carbonate, are distinct from Ceres' average surface composition and are proposed to be the solid residues of crystallized brines (De Sanctis et al., 2016). The presence of such bright, apparently fresh, material on the surface of a dwarf planet that is billions of years old is intriguing, and indicates that active processes involving brines occurred within the geologically recent past. The Dawn Science Team has investigated whether the processes that formed the crater and the faculae are entirely endogenic, entirely exogenic or a combination of both. For example, the extensive lobate materials within the crater floor have been proposed to be impact melt, mass wasting deposits or cryolava flows (e.g. Buczkowski et al., 2017; Jaumann et al., 2017; Nathues et al., 2017; Schenk et al., 2017). Each possibility has the potential to provide fascinating insights into Ceres' evolution, including the potential for liquids within Ceres' interior today. The team's in-depth investigation of Occator crater will be presented in an upcoming special issue of the journal Icarus. This special

  16. High concentrations of manganese and sulfur in deposits on Murray Ridge, Endeavour Crater, Mars

    Science.gov (United States)

    Arvidson, Raymond E.; Squyres, Steven W.; Morris, Richard V.; Knoll, Andrew H.; Gellert, Ralf; Clark, Benton C.; Catalano, Jeffrey G.; Jolliff, Bradley L.; McLennan, Scott M.; Herkenhoff, Kenneth E.; VanBommel, Scott; Mittelfehldt, David W.; Grotzinger, John P.; Guinness, Edward A.; Johnson, Jeffrey R.; Bell, James F.; Farrand, William H.; Stein, Nathan; Fox, Valerie K.; Golombek, Matthew P.; Hinkle, Margaret A. G.; Calvin, Wendy M.; de Souza, Paulo A.

    2016-01-01

    Mars Reconnaissance Orbiter HiRISE images and Opportunity rover observations of the ~22 km wide Noachian age Endeavour Crater on Mars show that the rim and surrounding terrains were densely fractured during the impact crater-forming event. Fractures have also propagated upward into the overlying Burns formation sandstones. Opportunity’s observations show that the western crater rim segment, called Murray Ridge, is composed of impact breccias with basaltic compositions, as well as occasional fracture-filling calcium sulfate veins. Cook Haven, a gentle depression on Murray Ridge, and the site where Opportunity spent its sixth winter, exposes highly fractured, recessive outcrops that have relatively high concentrations of S and Cl, consistent with modest aqueous alteration. Opportunity’s rover wheels serendipitously excavated and overturned several small rocks from a Cook Haven fracture zone. Extensive measurement campaigns were conducted on two of them: Pinnacle Island and Stuart Island. These rocks have the highest concentrations of Mn and S measured to date by Opportunity and occur as a relatively bright sulfate-rich coating on basaltic rock, capped by a thin deposit of one or more dark Mn oxide phases intermixed with sulfate minerals. We infer from these unique Pinnacle Island and Stuart Island rock measurements that subsurface precipitation of sulfate-dominated coatings was followed by an interval of partial dissolution and reaction with one or more strong oxidants (e.g., O2) to produce the Mn oxide mineral(s) intermixed with sulfate-rich salt coatings. In contrast to arid regions on Earth, where Mn oxides are widely incorporated into coatings on surface rocks, our results demonstrate that on Mars the most likely place to deposit and preserve Mn oxides was in fracture zones where migrating fluids intersected surface oxidants, forming precipitates shielded from subsequent physical erosion.

  17. The geology of Pine and Crater Buttes: Two basaltic constructs on the far eastern Snake River Plain

    Science.gov (United States)

    Mazierski, Paul F.; King, John S.

    1987-01-01

    The emplacement history and petrochemical evolution of the volcanics associated with Pine Butte, Crater Butte, and other nearby vents are developed and described. Four major vents were identified in the study area and their associated eruptive products were mapped. All of the vents show a marked physical elongation or linear orientation coincident with the observed rift set. Planetary exploration has revealed the importance of volcanic processes in the genesis and modification of extraterrestrial surfaces. Interpretation of surface features has identified plains-type basaltic volcanism in various mare regions of the Moon and the volcanic provinces of Mars. Identification of these areas with features that appear analogous to those observed in the Pine Butte area suggests similar styles of eruption and mode of emplacement. Such terrestrial analogies serve as a method to interpret the evolution of volcanic planetary surfaces on the inner planets.

  18. Miocene Antarctic Terrestrial Realm

    Science.gov (United States)

    Ashworth, A. C.; Lewis, A.; Marchant, D. R.

    2009-12-01

    The discovery of several locations in the Transantarctic Mountains that contain macrofossils and pollen is transforming our understanding of late Cenozoic Antarctica. The most southerly location is on the Beardmore Glacier (85.1°S) about 500 km from the South Pole. The environment was an active glacial margin in which plants, insects and freshwater mollusks inhabited the sand and gravel bars and small lakes on an outwash plain. In addition to leaves and wood of dwarf Nothofagus (Southern Beech) shrubs, achenes of Ranunculus (Buttercup), in situ cushion growth forms of mosses and a vascular plant, the assemblages contains various exoskeletal parts of carabid and curculionid beetles and a cyclorrhaphan fly, the shells of freshwater bivalve and gastropod species and a fish tooth. Initially the deposits were assigned a Pliocene age (3.5 Ma) but a mid- to early Miocene age is more probable (c. 14 - 25 Ma) based on correlation of fossil pollen from the deposits with 39Ar/40Ar dated pollen assemblages from the McMurdo Dry Valleys locations. The oldest location within the Dry Valleys also involved an active ice margin but was part of a valley system that was completely deglaciated for intervals long enough for thick paleosols to develop. The Friis Hills fossil deposits of the Taylor Valley region (77.8°S) are at least 19.76 Ma based on the 39Ar/40Ar age of a volcanic ash bed. The valley floor during the non-glacial phases had poorly-drained soils and the extensive development of mossy mires. Wood and leaves of Nothofagus are abundant in lacustrine deposits. The silts of shallow fluvial channels contain abundant megaspores and spiky leaves of the aquatic lycopod Isoetes (Quillwort). Fossils of beetles are also present in these deposits. During the glacial phases, proglacial lakes were surrounded by dwarfed, deciduous Nothofagus shrubs. The youngest fossils recovered from the Dry Valleys are from the Olympus Range (77.5°S) with an age of 14.07 Ma. The environment was an

  19. Importance of terrestrial arthropods as subsidies in lowland Neotropical rain forest stream ecosystems

    Science.gov (United States)

    Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.

    2013-01-01

    The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.

  20. Terrestrial Steering Group. 2014. Arctic Terrestrial Biodiversity Monitoring Plan

    DEFF Research Database (Denmark)

    Aastrup, Peter; Aronsson, Mora; Barry, Tom

    capacity and information may be currently available and (b) to outline near-term required steps to begin implementing the plan and reporting on an initial set of Arctic terrestrial biodiversity focal ecosystem component attributes. The specific objectives of the workshop were to: Identify key products...... for TSG for the next two years. Identify key components of a pan-Arctic status report for priority focal ecosystem components (FEC) attributes for policy and decision makers. Develop a prioritized set of activities to meet reporting objectives. Identify key milestones and timelines for the successful...... implementation of the Arctic Terrestrial Biodiversity Monitoring Plan for the next two years. Identify expert networks required for successful implementation of the plan. Identify key gaps and opportunities for the TSG related to plan implementation and identify near-term next steps to address gaps....

  1. Actinide elements in aquatic and terrestrial environments

    International Nuclear Information System (INIS)

    Bondietti, E.A.

    1978-01-01

    Progress is reported in terrestrial ecology studies with regard to plutonium in biota from the White Oak Creek forest; comparative distribution of plutonium in two forest ecosystems; an ecosystem model of plutonium dynamics; actinide element metabolism in cotton rats; and crayfish studies. Progress is reported in aquatic studies with regard to transuranics in surface waters, frogs, benthic algae, and invertebrates from pond 3513; and radioecology of transuranic elements in cotton rats bordering waste pond 3513. Progress is also reported in stability of trivalent plutonium in White Oak Lake water; chemistry of plutonium, americium, curium, and uranium in pond water; uranium, thorium, and plutonium in small mammals; and effect of soil pretreatment on the distribution of plutonium

  2. Heinrich event 4 characterized by terrestrial proxies in southwestern Europe

    Directory of Open Access Journals (Sweden)

    J. M. López-García

    2013-05-01

    Full Text Available Heinrich event 4 (H4 is well documented in the North Atlantic Ocean as a cooling event that occurred between 39 and 40 Ka. Deep-sea cores around the Iberian Peninsula coastline have been analysed to characterize the H4 event, but there are no data on the terrestrial response to this event. Here we present for the first time an analysis of terrestrial proxies for characterizing the H4 event, using the small-vertebrate assemblage (comprising small mammals, squamates and amphibians from Terrassa Riera dels Canyars, an archaeo-palaeontological deposit located on the seaboard of the northeastern Iberian Peninsula. This assemblage shows that the H4 event is characterized in northeastern Iberia by harsher and drier terrestrial conditions than today. Our results were compared with other proxies such as pollen, charcoal, phytolith, avifauna and large-mammal data available for this site, as well as with the general H4 event fluctuations and with other sites where H4 and the previous and subsequent Heinrich events (H5 and H3 have been detected in the Mediterranean and Atlantic regions of the Iberian Peninsula. We conclude that the terrestrial proxies follow the same patterns as the climatic and environmental conditions detected by the deep-sea cores at the Iberian margins.

  3. Determination of lunar surface ages from crater frequency–size ...

    Indian Academy of Sciences (India)

    and the images from Apollo missions have been calibrated from the lunar soil samples from Apollo and Luna landing sites (Head 1976; Neukum et al. 1975). ... Table 1 shows the ages as derived for the craters with errors. Mare Humorum is believed to be made up of six ring structures of 210, 340, 425, 570 and 1195km.

  4. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars

    NARCIS (Netherlands)

    Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Miller, K. E.; Eigenbrode, J. L.; Summons, R. E.; Brunner, A. E.; Buch, A.; Szopa, C.; Archer, P. D.; Franz, H. B.; Atreya, S. K.; Brinckerhoff, W. B.; Cabane, M.; Coll, P.; Conrad, P. G.; Des Marais, D. J.; Dworkin, J. P.; Fairén, A. G.; François, P.; Grotzinger, J. P.; Kashyap, S.; ten Kate, I. L.; Leshin, L. A.; Malespin, C. A.; Martin, M. G.; Martin-Torres, F. J.; Mcadam, A. C.; Ming, D. W.; Navarro-González, R.; Pavlov, A. A.; Prats, B. D.; Squyres, S. W.; Steele, A.; Stern, J. C.; Sumner, D. Y.; Sutter, B.; Zorzano, M. P.

    The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater.

  5. Role of impact cratering for Mars sample return

    International Nuclear Information System (INIS)

    Schultz, P.H.

    1988-01-01

    The preserved cratering record of Mars indicates that impacts play an important role in deciphering Martian geologic history, whether as a mechanism to modify the lithosphere and atmosphere or as a tool to sample the planet. The various roles of impact cratering in adding a broader understanding of Mars through returned samples are examined. Five broad roles include impact craters as: (1) a process in response to a different planetary localizer environment; (2) a probe for excavating crustal/mantle materials; (3) a possible localizer of magmatic and hydrothermal processes; (4) a chronicle of changes in the volcanic, sedimentary, atmospheric, and cosmic flux history; and (5) a chronometer for extending the geologic time scale to unsampled regions. The evidence for Earth-like processes and very nonlunar styles of volcanism and tectonism may shift the emphasis of a sampling strategy away from equally fundamental issues including crustal composition, unit ages, and climate history. Impact cratering not only played an important active role in the early Martian geologic history, it also provides an important tool for addressing such issues

  6. Wet Weather Crater Repair Technologies for Grooved and Smooth Pavements

    Science.gov (United States)

    2018-04-30

    Dean Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199...ORGANIZATION REPORT NUMBER U.S. Army Engineer Research and Development Center Geotechnical and Structures Laboratory 3909 Halls Ferry Road ...SUBJECT TERMS Crater Concrete Rain and rainfall ADR Grooved pavement Smooth pavement Runoff Runways (Aeronautics) – Maintenance and repair

  7. Malaria among the pastoral communities of the Ngorongoro Crater ...

    African Journals Online (AJOL)

    Malaria among the pastoral communities of the Ngorongoro Crater Area, northern Tanzania. L.E.G Mboera, R.C Malima, P.E Mangesho, K.P Senkoro, V Mwingira. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  8. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars

    NARCIS (Netherlands)

    Vaniman, D.T.; Bish, D.L.; Ming, D.W.; Bristow, T.F.; Morris, R.V.; Blake, D.F.; Chipera, S.J.; Morrison, S.M.; Treiman, A.H.; Rampe, E.B.; Rice, M.; Achilles, C.N.; Grotzinger, J.P.; McLennan, S.M.; Williams, J.; Bell III, J.F.; Newsom, H.E.; Downs, R.T.; Maurice, S.; Sarrazin, P.; Yen, A.S.; Morookian, J.M.; Farmer, J.D.; Stack, K.; Milliken, R.E.; Ehlmann, B.L.; Sumner, D.Y.; Berger, G.; Crisp, J.A.; Hurowitz, J.A.; Anderson, R.; Des Marais, D.J.; Stolper, E.M.; Edgett, K.S.; Gupta, S.; Spanovich, N.; MSL Science Team, the|info:eu-repo/dai/nl/292012217

    2014-01-01

    Sedimentary rocks at Yellowknife Bay (Gale crater) on Mars include mudstone sampled by the Curiosity rover. The samples, John Klein and Cumberland, contain detrital basaltic minerals, calcium sulfates, iron oxide or hydroxides, iron sulfides, amorphous material, and trioctahedral smectites. The John

  9. Crater formation by single ions, cluster ions and ion "showers"

    CERN Document Server

    Djurabekova, Flyura; Timko, Helga; Nordlund, Kai; Calatroni, Sergio; Taborelli, Mauro; Wuensch, Walter

    2011-01-01

    The various craters formed by giant objects, macroscopic collisions and nanoscale impacts exhibit an intriguing resemblance in shapes. At the same time, the arc plasma built up in the presence of sufficiently high electric fields at close look causes very similar damage on the surfaces. Although the plasma–wall interaction is far from a single heavy ion impact over dense metal surfaces or the one of a cluster ion, the craters seen on metal surfaces after a plasma discharge make it possible to link this event to the known mechanisms of the crater formations. During the plasma discharge in a high electric field the surface is subject to high fluxes (~1025 cm-2s-1) of ions with roughly equal energies typically of the order of a few keV. To simulate such a process it is possible to use a cloud of ions of the same energy. In the present work we follow the effect of such a flux of ions impinging the surface in the ‘‘shower’’ manner, to find the transition between the different mechanisms of crater formati...

  10. Geologic Map of Mount Mazama and Crater Lake Caldera, Oregon

    Science.gov (United States)

    Bacon, Charles R.

    2008-01-01

    Crater Lake partly fills one of the most spectacular calderas of the world, an 8-by-10-km basin more than 1 km deep formed by collapse of the volcano known as Mount Mazama (fig. 1) during a rapid series of explosive eruptions about 7,700 years ago. Having a maximum depth of 594 m, Crater Lake is the deepest lake in the United States. Crater Lake National Park, dedicated in 1902, encompasses 645 km2 of pristine forested and alpine terrain, including the lake itself, virtually all of Mount Mazama, and most of the area of the geologic map. The geology of the area was first described in detail by Diller and Patton (1902) and later by Williams (1942), whose vivid account led to international recognition of Crater Lake as the classic collapse caldera. Because of excellent preservation and access, Mount Mazama, Crater Lake caldera, and the deposits formed by the climactic eruption constitute a natural laboratory for study of volcanic and magmatic processes. For example, the climactic ejecta are renowned among volcanologists as evidence for systematic compositional zonation within a subterranean magma chamber. Mount Mazama's climactic eruption also is important as the source of the widespread Mazama ash, a useful Holocene stratigraphic marker throughout the Pacific Northwest, adjacent Canada, and offshore. A detailed bathymetric survey of the floor of Crater Lake in 2000 (Bacon and others, 2002) provides a unique record of postcaldera eruptions, the interplay between volcanism and filling of the lake, and sediment transport within this closed basin. Knowledge of the geology and eruptive history of the Mount Mazama edifice, greatly enhanced by the caldera wall exposures, gives exceptional insight into how large volcanoes of magmatic arcs grow and evolve. Lastly, the many smaller volcanoes of the High Cascades beyond the limits of Mount Mazama are a source of information on the flux of mantle-derived magma through the region. General principles of magmatic and eruptive

  11. Long-Term Recovery of Life in the Chicxulub Crater

    Science.gov (United States)

    Lowery, C.; Jones, H.; Bralower, T. J.; Smit, J.; Rodriguez-Tovar, F. J.; Whalen, M. T.; Owens, J. D.; Expedition 364 Science Party, I. I.

    2017-12-01

    The Chicxulub Crater on the Yucatán Peninsula of Mexico was formed by the impact of an asteroid 66 Ma that caused the extinction of 75% of genera on Earth. Immediately following the impact, the decimated ecosystem began the long process of recovery, both in terms of primary productivity and species diversity. This well-documented process was heterogeneous across the world ocean, but until the present time it has been inaccessible at ground zero of the impact. IODP/ICDP Exp. 364 recovered 9.5 m of pelagic limestone spanning the entire Paleocene, including a continuous section spanning the first 5 myr following the impact. The Chicxulub Crater is the largest known marine impact crater on Earth, and the recovery of the ecosystem presented here is the first such record of long-term primary succession in the sterile zone of a large impact crater. Planktic and benthic foraminifera, calcareous nannoplankton, calcispheres, bioturbation, and geochemical proxies all indicate that export productivity in the Chicxulub Crater recovered rapidly (within 30 kyr) following the impact. Recovery in terms of diversity and species abundance took much longer, and varied between groups. Planktic foraminifera quickly diversified, with all common Paleocene tropical/subtropical species appearing roughly when expected. Trace fossils appear rapidly after the event, with a progressive recovery through the lowermost Paleocene. Calcareous nannoplankton took much longer to recover, and disaster taxa like Braarudosphaera dominated the assemblage well into the late Paleocene. Paleoecology and geochemistry relate these trends to oceanographic conditions within the Chicxulub Crater. Planktic foraminifera from known depth habitats, including Morozovellids, Acarininids, Chiloguembelinids, and Subbotinids, track changes in the water column structure and paleoredox conditions within the crater. Diverse and abundant macro- and microbenthic organisms indicate food availability and good oxygen conditions

  12. Spatial vision in Bombus terrestris

    Directory of Open Access Journals (Sweden)

    Aravin eChakravarthi

    2016-02-01

    Full Text Available Bombus terrestris is one of the most commonly used insect models to investigate visually guided behavior and spatial vision in particular. Two fundamental measures of spatial vision are spatial resolution and contrast sensitivity. In this study, we report the threshold of spatial resolution in B. terrestris and characterize the contrast sensitivity function of the bumblebee visual system for a dual choice discrimination task. We trained bumblebees in a Y-maze experimental set-up to associate a vertical sinusoidal grating with a sucrose reward, and a horizontal grating with absence of a reward. Using a logistic psychometric function, we estimated a resolution threshold of 0.21 cycles deg-1 of visual angle. This resolution is in the same range but slightly lower than that found in honeybees (Apis mellifera and A. cerana and another bumblebee species (B. impatiens. We also found that the contrast sensitivity of B. terrestris was 1.57 for the spatial frequency 0.09 cycles deg-1 and 1.26. for 0.18 cycles deg-1.

  13. Ballistic Performance Model of Crater Formation in Monolithic, Porous Thermal Protection Systems

    Science.gov (United States)

    Miller, J. E.; Christiansen, E. L.; Deighton, K. D.

    2014-01-01

    Porous monolithic ablative systems insulate atmospheric reentry vehicles from reentry plasmas generated by atmospheric braking from orbital and exo-orbital velocities. Due to the necessity that these materials create a temperature gradient up to several thousand Kelvin over their thickness, it is important that these materials are near their pristine state prior to reentry. These materials may also be on exposed surfaces to space environment threats like orbital debris and meteoroids leaving a probability that these exposed surfaces will be below their prescribed values. Owing to the typical small size of impact craters in these materials, the local flow fields over these craters and the ablative process afford some margin in thermal protection designs for these locally reduced performance values. In this work, tests to develop ballistic performance models for thermal protection materials typical of those being used on Orion are discussed. A density profile as a function of depth of a typical monolithic ablator and substructure system is shown in Figure 1a.

  14. Geology and petrology of the basalts of Crater Flat: applications to volcanic risk assessment for the Nevada Nuclear Waste Storage investigations

    International Nuclear Information System (INIS)

    Vaniman, D.; Crowe, B.

    1981-06-01

    Volcanic hazard studies of the south-central Great Basin, Nevada, are being conducted for the Nevada Nuclear Waste Storage Investigations. This report presents the results of field and petrologic studies of the basalts of Crater Flat, a sequence of Pliocene to Quaternary-age volcanic centers located near the southwestern part of the Nevada Test Site. Crater Flat is one of several basaltic fields constituting a north-northeast-trending volcanic belt of Late Cenozoic age extending from southern Death Valley, California, through the Nevada Test Site region to central Nevada. The basalts of Crater Flat are divided into three distinct volcanic cycles. The cycles are characterized by eruption of basalt magma of hawaiite composition that formed cinder cone clusters and associated lava flows. Total volume of erupted magma for respective cycles is given. The basalts of Crater Flat are sparsely to moderately porphyritic; the major phenocryst phase is olivine, with lesser amounts of plagioclase, clinopyroxene, and rare amphibole. The consistent recurrence of evolved hawaiite magmas in all three cycles points to crystal fractionation from more primitive magmas at depth. A possible major transition in mantle source regions through time may be indicated by a transition from normal to Rb-depleted, Sr-enriched hawaiites in the younger basaltic cycles. The recurrence of small volumes of hawaiite magma at Crater Flat supports assumptions required for probability modeling of future volcanic activity and provides a basis for estimating the effects of volcanic disruption of a repository site in the southwestern Nevada Test Site region. Preliminary data suggest that successive basalt cycles at Crater Flat may be of decreasing volume but recurring more frequently

  15. Benthic invertebrate fauna, small streams

    Science.gov (United States)

    J. Bruce Wallace; S.L. Eggert

    2009-01-01

    Small streams (first- through third-order streams) make up >98% of the total number of stream segments and >86% of stream length in many drainage networks. Small streams occur over a wide array of climates, geology, and biomes, which influence temperature, hydrologic regimes, water chemistry, light, substrate, stream permanence, a basin's terrestrial plant...

  16. Crater Morphometry and Crater Degradation on Mercury: Mercury Laser Altimeter (MLA) Measurements and Comparison to Stereo-DTM Derived Results

    Science.gov (United States)

    Leight, C.; Fassett, C. I.; Crowley, M. C.; Dyar, M. D.

    2017-01-01

    Two types of measurements of Mercury's surface topography were obtained by the MESSENGER (MErcury Surface Space ENvironment, GEochemisty and Ranging) spacecraft: laser ranging data from Mercury Laser Altimeter (MLA) [1], and stereo imagery from the Mercury Dual Imaging System (MDIS) camera [e.g., 2, 3]. MLA data provide precise and accurate elevation meaurements, but with sparse spatial sampling except at the highest northern latitudes. Digital terrain models (DTMs) from MDIS have superior resolution but with less vertical accuracy, limited approximately to the pixel resolution of the original images (in the case of [3], 15-75 m). Last year [4], we reported topographic measurements of craters in the D=2.5 to 5 km diameter range from stereo images and suggested that craters on Mercury degrade more quickly than on the Moon (by a factor of up to approximately 10×). However, we listed several alternative explanations for this finding, including the hypothesis that the lower depth/diameter ratios we observe might be a result of the resolution and accuracy of the stereo DTMs. Thus, additional measurements were undertaken using MLA data to examine the morphometry of craters in this diameter range and assess whether the faster crater degradation rates proposed to occur on Mercury is robust.

  17. Characterization of the Morphometry of Impact Craters Hosting Polar Deposits in Mercury's North Polar Region

    Science.gov (United States)

    Talpe Matthieu; Zuber, Maria T.; Yang, Di; Neumann, Gregory A.; Solomon, Sean C.; Mazarico, Erwan; Vilas, Faith

    2012-01-01

    Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet s poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury s north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (< 170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.

  18. An investigation of Crater Diameter on Plain Slab Foamed Concrete Rice Husk Ash (FCRHA Exposed to Low Impact Loading

    Directory of Open Access Journals (Sweden)

    Hadipramana Josef

    2017-01-01

    Full Text Available As sustainable material building and construction, the foamed concrete (FC in this investigation was modified by adding the Rice Husk Ash (RHA as sand replacement to increase its strength. Furthermore, this modification material (is called FCRHA treated on impact loading. This investigation was motivated when the plain slab of FCRHA subjected to small impactor, then the nose impactor over all would penetrate into slab target due to porosity of FCRHA. The experimental produced plain slabs FCRHA and FC (as a control with 1400 kg/m3 and 1600 Kg/m3 of densities. In impact test all plain slabs exposed by 40 mm steel blunt nose impactor with various impact velocities. The result showed the crater which produced by impact loading was not found spalling, scabbing, radial crack and widely cratering. This local damage occurred when porosity of FCRHA took over the impact loading. The nose impactor over all considered have been successful penetrated into slab of FCRHA and FC. Therefore, the diameter of crater equals to diameter of impactor. With this certainty, the prediction penetration depth on plain slab FCRHA (also FC can be determined in future investigation. In addition, the penetration of impactor on FCRHA with low impact velocity give the same impression on penetration impactor with high impact velocity on FC.

  19. Smart Rotorcraft Field Assistants for Terrestrial and Planetary Science

    Science.gov (United States)

    Young, Larry A.; Aiken, Edwin W.; Briggs, Geoffrey A.

    2004-01-01

    Field science in extreme terrestrial environments is often difficult and sometimes dangerous. Field seasons are also often short in duration. Robotic field assistants, particularly small highly mobile rotary-wing platforms, have the potential to significantly augment a field season's scientific return on investment for geology and astrobiology researchers by providing an entirely new suite of sophisticated field tools. Robotic rotorcraft and other vertical lift planetary aerial vehicle also hold promise for supporting planetary science missions.

  20. Valley formation by groundwater seepage, pressurized groundwater outbursts and crater-lake overflow in flume experiments with implications for Mars

    Science.gov (United States)

    Marra, Wouter A.; Braat, Lisanne; Baar, Anne W.; Kleinhans, Maarten G.

    2014-04-01

    Remains of fluvial valleys on Mars reveal the former presence of water on the surface. However, the source of water and the hydrological setting is not always clear, especially in types of valleys that are rare on Earth and where we have limited knowledge of the processes involved. We investigated three hydrological scenarios for valley formation on Mars: hydrostatic groundwater seepage, release of pressurized groundwater and crater-lake overflow. Using physical modeling in laboratory experiments and numerical hydrological modeling we quantitatively studied the morphological development and processes involved in channel formation that result from these different sources of water in unconsolidated sediment. Our results show that valleys emerging from seeping groundwater by headward erosion form relatively slowly as fluvial transport takes place in a channel much smaller than the valley. Pressurized groundwater release forms a characteristic source area at the channel head by fluidization processes. This head consist of a pit in case of superlithostatic pressure and may feature small radial channels and collapse features. Valleys emerging from a crater-lake overflow event develop quickly in a run-away process of rim erosion and discharge increase. The valley head at the crater outflow point has a converging fan shape, and the rapid incision of the rim leaves terraces and collapse features. Morphological elements observed in the experiments can help in identifying the formative processes on Mars, when considerations of experimental scaling and lithological characteristics of the martian surface are taken into account. These morphological features might reveal the associated hydrological settings and formative timescales of a valley. An estimate of formative timescale from sediment transport is best based on the final channel dimensions for groundwater seepage valleys and on the valley dimensions for pressurized groundwater release and crater-lake overflow valleys. Our

  1. Pulses, linkages, and boundaries of coupled aquatic-terrestrial ecosystems

    Science.gov (United States)

    Tockner, K.

    2009-04-01

    Riverine floodplains are linked ecosystems where terrestrial and aquatic habitats overlap, creating a zone where they interact, the aquatic-terrestrial interface. The interface or boundary between aquatic and terrestrial habitats is an area of transition, contact or separation; and connectivity between these habitats may be defined as the ease with which organisms, matter or energy traverse these boundaries. Coupling of aquatic and terrestrial systems generates intertwining food webs, and we may predict that coupled systems are more productive than separated ones. For example, riparian consumers (aquatic and terrestrial) have alternative prey items external to their respective habitats. Such subsidized assemblages occupy a significant higher trophic position than assemblages in unsubsidized areas. Further, cross-habitat linkages are often pulsed; and even small pulses of a driver (e.g. short-term increases in flow) can cause major resource pulses (i.e. emerging aquatic insects) that control the recipient community. For example, short-term additions of resources, simulating pulsed inputs of aquatic food to terrestrial systems, suggest that due to resource partitioning and temporal separation among riparian arthropod taxa the resource flux from the river to the riparian zone increases with increasing riparian consumer diversity. I will discuss the multiple transfer and transformation processes of matter and organisms across aquatic-terrestrial habitats. Key landscape elements along river corridors are vegetated islands that function as instream riparian areas. Results from Central European rivers demonstrate that islands are in general more natural than fringing riparian areas, contribute substantially to total ecotone length, and create diverse habitats in the aquatic and terrestrial realm. In braided rivers, vegetated islands are highly productive landscape elements compared to the adjacent aquatic area. However, aquatic habitats exhibit a much higher decomposition

  2. Magma genesis at Gale Crater: Evidence for Pervasive Mantle Metasomatism

    Science.gov (United States)

    Filiberto, J.

    2017-12-01

    Basaltic rocks have been analyzed at Gale Crater with a larger range in bulk chemistry than at any other landing site [1]. Therefore, the rocks may have experienced significantly different formation conditions than those experienced by magmas at Gusev Crater or Meridiani Planum. Specifically, the rocks at Gale Crater have higher potassium than other Martian rocks, with a potential analog of the Nakhlite parental magma, and are consistent with forming from a metasomatized mantle source [2-4]. Mantle metasomatism would not only affect the bulk chemistry but mantle melting conditions, as metasomatism fluxes fluids into the source region. Here I will combine differences in bulk chemistry between Martian basalts to calculate formation conditions in the interior and investigate if the rocks at Gale Crater experienced magma genesis conditions consistent with metasomatism - lower temperatures and pressures of formation. To calculate average formation conditions, I rely on experimental results, where available, and silica-activity and Mg-exchange thermometry calculations for all other compositions following [5, 6]. The results show that there is a direct correlation between the calculated mantle potential temperature and the K/Ti ratio of Gale Crater rocks. This is consistent with fluid fluxed metasomatism introducing fluids to the system, which depressed the melting temperature and fluxed K but not Ti to the system. Therefore, all basalts at Gale Crater are consistent with forming from a metasomatized mantle source, which affected not only the chemistry of the basalts but also the formation conditions. References: [1] Cousin A. et al. (2017) Icarus. 288: 265-283. [2] Treiman A.H. et al. (2016) Journal of Geophysical Research: Planets. 121: 75-106. [3] Treiman A.H. and Medard E. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10.1130/abs/2016AM-285851. [4] Schmidt M.E. et al. (2016) Geological Society of America Abstracts with Programs. 48: doi: 10

  3. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2014-01-01

    Terrestrial water storage (TWS) comprises groundwater, soil moisture, surface water, snow,and ice. Groundwater typically varies more slowly than the other TWS components because itis not in direct contact with the atmosphere, but often it has a larger range of variability onmultiannual timescales (Rodell and Famiglietti, 2001; Alley et al., 2002). In situ groundwaterdata are only archived and made available by a few countries. However, monthly TWSvariations observed by the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,2004) satellite mission, which launched in 2002, are a reasonable proxy for unconfinedgroundwater at climatic scales.

  4. Isotope powered Stirling generator for terrestrial applications

    International Nuclear Information System (INIS)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995

  5. Comparative Climatology of Terrestrial Planets

    Science.gov (United States)

    Mackwell, Stephen J.; Simon-Miller, Amy A.; Harder, Jerald W.; Bullock, Mark A.

    Public awareness of climate change on Earth is currently very high, promoting significant interest in atmospheric processes. We are fortunate to live in an era where it is possible to study the climates of many planets, including our own, using spacecraft and groundbased observations as well as advanced computational power that allows detailed modeling. Planetary atmospheric dynamics and structure are all governed by the same basic physics. Thus differences in the input variables (such as composition, internal structure, and solar radiation) among the known planets provide a broad suite of natural laboratory settings for gaining new understanding of these physical processes and their outcomes. Diverse planetary settings provide insightful comparisons to atmospheric processes and feedbacks on Earth, allowing a greater understanding of the driving forces and external influences on our own planetary climate. They also inform us in our search for habitable environments on planets orbiting distant stars, a topic that was a focus of Exoplanets, the preceding book in the University of Arizona Press Space Sciences Series. Quite naturally, and perhaps inevitably, our fascination with climate is largely driven toward investigating the interplay between the early development of life and the presence of a suitable planetary climate. Our understanding of how habitable planets come to be begins with the worlds closest to home. Venus, Earth, and Mars differ only modestly in their mass and distance from the Sun, yet their current climates could scarcely be more divergent. Our purpose for this book is to set forth the foundations for this emerging science and to bring to the forefront our current understanding of atmospheric formation and climate evolution. Although there is significant comparison to be made to atmospheric processes on nonterrestrial planets in our solar system — the gas and ice giants — here we focus on the terrestrial planets, leaving even broader comparisons

  6. Influence of microplastics on feeding and energy reserves of terrestrial isopods Porcellio scaber

    OpenAIRE

    Crepulja, Tanja

    2016-01-01

    The main focus of this research was microplastic, the small plastic particles less than than 5 mm in diameter. Microplastics can also be obtained directly in the form of fibers from washing, as particles from cosmetic products or as by-product of larger plastic parts. In our thesis we wanted to prove, that the current concentration of microplastics in the environment (compost heap) has an impact on terrestrial organisms, in this case terrestrial isopod crustaceans, Porcelio scaber. We hypothe...

  7. Redox stratification of an ancient lake in Gale crater, Mars.

    Science.gov (United States)

    Hurowitz, J A; Grotzinger, J P; Fischer, W W; McLennan, S M; Milliken, R E; Stein, N; Vasavada, A R; Blake, D F; Dehouck, E; Eigenbrode, J L; Fairén, A G; Frydenvang, J; Gellert, R; Grant, J A; Gupta, S; Herkenhoff, K E; Ming, D W; Rampe, E B; Schmidt, M E; Siebach, K L; Stack-Morgan, K; Sumner, D Y; Wiens, R C

    2017-06-02

    In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized. Copyright © 2017, American Association for the Advancement of Science.

  8. Dietary characterization of terrestrial mammals.

    Science.gov (United States)

    Pineda-Munoz, Silvia; Alroy, John

    2014-08-22

    Understanding the feeding behaviour of the species that make up any ecosystem is essential for designing further research. Mammals have been studied intensively, but the criteria used for classifying their diets are far from being standardized. We built a database summarizing the dietary preferences of terrestrial mammals using published data regarding their stomach contents. We performed multivariate analyses in order to set up a standardized classification scheme. Ideally, food consumption percentages should be used instead of qualitative classifications. However, when highly detailed information is not available we propose classifying animals based on their main feeding resources. They should be classified as generalists when none of the feeding resources constitute over 50% of the diet. The term 'omnivore' should be avoided because it does not communicate all the complexity inherent to food choice. Moreover, the so-called omnivore diets actually involve several distinctive adaptations. Our dataset shows that terrestrial mammals are generally highly specialized and that some degree of food mixing may even be required for most species.

  9. A novel thermo-hydraulic coupling model to investigate the crater formation in electrical discharge machining

    Science.gov (United States)

    Tang, Jiajing; Yang, Xiaodong

    2017-09-01

    A novel thermo-hydraulic coupling model was proposed in this study to investigate the crater formation in electrical discharge machining (EDM). The temperature distribution of workpiece materials was included, and the crater formation process was explained from the perspective of hydrodynamic characteristics of the molten region. To better track the morphology of the crater and the movement of debris, the level-set method was introduced in this study. Simulation results showed that the crater appears shortly after the ignition of the discharge, and the molten material is removed by vaporizing in the initial stage, then by splashing at the following time. The driving force for the detachment of debris in the splashing removal stage comes from the extremely large pressure difference in the upper part of the molten region, and the morphology of the crater is also influenced by the shearing flow of molten material. It was found that the removal ratio of molten material is only about 7.63% under the studied conditions, leaving most to form the re-solidification layer on the surface of the crater. The size of the crater reaches the maximum at the end of discharge duration then experiences a slight reduction because of the reflux of molten material after the discharge. The results of single pulse discharge experiments showed that the morphologies and sizes between the simulation crater and actual crater are good at agreement, verifying the feasibility of the proposed thermo-hydraulic coupling model in explaining the mechanisms of crater formation in EDM.

  10. Workshop on Oxygen in the Terrestrial Planets

    Science.gov (United States)

    2004-01-01

    Lunar Metal Grains: Solar, Lunar or Terrestrial Origin? 22) Isotopic Zoning in the Inner Solar System; 23) Redox Conditions on Small Bodies; 24) Determining the Oxygen Fugacity of Lunar Pyroclastic Glasses Using Vanadium Valence - An Update; 25) Mantle Redox Evolution and the Rise of Atmospheric O2; 26) Variation of Kd for Fe-Mg Exchange Between Olivine and Melt for Compositions Ranging from Alkaline Basalt to Rhyolite; 27) Determining the Partial Pressure of Oxygen (PO,) in Solutions on Mars; 28) The Influence of Oxygen Environment on Kinetic Properties of Silicate Rocks and Minerals; 29) Redox Evolution of Magmatic Systems; 30) The Constancy of Upper Mantlefo, Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric 0 2; 31) Nitrogen Solubility in Basaltic Melt. Effects of Oxygen Fugacity, Melt Composition and Gas Speciation; 32) Oxygen Isotope Anomalies in the Atmospheres of Earth and Mars; 33) The Effect of Oxygen Fugacity on Interdiffusion of Iron and Magnesium in Magnesiowiistite 34) The Calibration of the Pyroxene Eu-Oxybarometer for the Martian Meteorites; 35) The Europium Oxybarometer: Power and Pitfalls; 36) Oxygen Fugacity of the Martian Mantle from PigeoniteMelt Partitioning of Samarium, Europium and Gadolinium; 37) Oxidation-Reduction Processes on the Moon: Experimental Verification of Graphite Oxidation in the Apollo 17 Orange Glasses; 38) Oxygen and Core Formation in the Earth; 39) Geologic Record of the Atmospheric Sulfur Chemistry Before the Oxygenation of the Early Earth s Atmosphere; 40) Comparative Planetary Mineralogy: V/(CrCAl) Systematics in Chromite as an Indicator of Relative Oxygen Fugacity; 41) How Well do Sulfur Isotopes Constrain Oxygen Abundance in the Ancient Atmospheres? 42) Experimental Constraints on the Oxygen Isotope (O-18/ O-16) Fractionation in the Ice vapor and Adsorbant vapor Systems of CO2 at Conditions Relevant to the Surface of Mars; 43) Micro-XANES Measurements on Experimental Spinels andhe

  11. Riparian vegetation in the alpine connectome: Terrestrial-aquatic and terrestrial-terrestrial interactions.

    Science.gov (United States)

    Zaharescu, Dragos G; Palanca-Soler, Antonio; Hooda, Peter S; Tanase, Catalin; Burghelea, Carmen I; Lester, Richard N

    2017-12-01

    Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment

  12. Martian Cratering 7: The Role of Impact Gardening

    Science.gov (United States)

    Hartmann, William K.; Anguita, Jorge; de la Casa, Miguel A.; Berman, Daniel C.; Ryan, Eileen V.

    2001-01-01

    Viking-era researchers concluded that impact craters of diameter Dduricrust at Viking and Pathfinder sites demonstrates the cementing process. These results affect lander/rover searches for intact ancient deposits. The upper tens of meters of exposed Noachian units cannot survive today in a pristine state. Intact Noachian deposits might best be found in cliffside strata, or in recently exhumed regions. The hematite-rich areas found in Terra Meridiani by the Mars Global Surveyor are probably examples of the latter.

  13. Continued monitoring of aeolian activity within Herschel Crater, Mars

    Science.gov (United States)

    Cardinale, Marco; Pozzobon, Riccardo; Michaels, Timothy; Bourke, Mary C.; Okubo, Chris H.; Chiara Tangari, Anna; Marinangeli, Lucia

    2017-04-01

    In this work, we study a dark dune field on the western side of Herschel crater, a 300 km diameter impact basin located near the Martian equator (14.4°S, 130°E), where the ripple and dune motion reflects the actual atmospheric wind conditions. We develop an integrated analysis using (1) automated ripple mapping that yields ripple orientations and evaluates the spatial variation of actual atmospheric wind conditions within the dunes, (2) an optical cross-correlation that allows us to quantify an average ripple migration rate of 0.42 m per Mars year, and (3) mesoscale climate modeling with which we compare the observed aeolian changes with modeled wind stresses and directions. Our observations are consistent with previous work [1] [2] that detected aeolian activity in the western part of the crater. It also demonstrates that not only are the westerly Herschel dunes movable, but that predominant winds from the north are able to keep the ripples and dunes active within most (if not all) of Herschel crater in the current atmospheric conditions. References: [1] Cardinale, M., Silvestro, S., Vaz, D.A., Michaels, T., Bourke, M.C., Komatsu, G., Marinangeli, L., 2016. Present-day aeolian activity in Herschel Crater, Mars. Icarus 265, 139-148. doi:10.1016/j.icarus.2015.10.022. [2] Runyon, K.D., Bridges, N.T., Ayoub, F., Newman, C.E. and Quade, J.J., 2017. An integrated model for dune morphology and sand fluxes on Mars. Earth and Planetary Science Letters, 457, pp.204-212.

  14. Stratigraphy and Evolution of Delta Channel Deposits, Jezero Crater, Mars

    Science.gov (United States)

    Goudge, T. A.; Mohrig, D.; Cardenas, B. T.; Hughes, C. M.; Fassett, C. I.

    2017-01-01

    The Jezero impact crater hosted an open-basin lake that was active during the valley network forming era on early Mars. This basin contains a well exposed delta deposit at the mouth of the western inlet valley. The fluvial stratigraphy of this deposit provides a record of the channels that built the delta over time. Here we describe observations of the stratigraphy of the channel deposits of the Jezero western delta to help reconstruct its evolution.

  15. Deep Drilling Into the Chicxulub Impact Crater: Pemex Oil Exploration Boreholes Revisited

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L.

    2007-05-01

    The Chicxulub structure was recognized in the 1940´s from gravity anomalies in oil exploration surveys by Pemex. Geophysical anomalies occur over the carbonate platform in NW Yucatan, where density and magnetic susceptibility contrasts with the carbonates suggested a buried igneous complex or basement uplift. The exploration program developed afterwards included several boreholes, starting with the Chicxulub-1 in 1952 and eventually comprising eight deep boreholes completed through the 1970s. The investigations showing Chicxulub as a large impact crater formed at the K/T boundary have relayed on the Pemex decades-long exploration program. Despite frequent reference to Pemex information, original data have not been openly available for detailed evaluation and incorporation with results from recent efforts. Logging data and core samples remain to be analyzed, reevaluated and integrated in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we discuss the paleontological data, stratigraphic columns and geophysical logs for the Chicxulub-1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m) and Ticul-1 (3575m) boreholes. These boreholes remain the deepest ones drilled in Chicxulub and the only ones providing samples of the melt-rich breccias and melt sheet. Other boreholes include the Y1 (3221m), Y2 (3474m), Y4 (2398m) and Y5A (3003m), which give information on pre-impact stratigraphy and crystalline basement. We concentrate on log and microfossil data, stratigraphic columns, lateral correlation, integration with UNAM and ICDP borehole data, and analyses of sections of melt, impact breccias and basal Paleocene carbonates. Current plans for deep drilling in Chicxulub crater focus in the peak ring zone and central sector, with proposed marine and on-land boreholes to the IODP and ICDP programs. Future ICDP borehole will be located close to Chicxulub-1 and Sacapuc-1, which intersected

  16. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    Science.gov (United States)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  17. An anthropogenic origin of the "Sirente crater," Abruzzi, Italy

    Science.gov (United States)

    Speranza, Fabio; Sagnotti, Leonardo; Rochette, Pierre

    2004-04-01

    In this paper, we review the recent hypothesis, based mostly on geomorphological features, that a ~130 m-wide sag pond, surrounded by a saddle-shaped rim from the Sirente plain (Abruzzi, Italy), is the first-discovered meteoritic crater of Italy. Sub-circular depressions (hosting ponds), with geomorphological features and size very similar to those exhibited by the main Sirente sag, are exposed in other neighboring intermountain karstic plains from Abruzzi. We have sampled present day soils from these sag ponds and from the Sirente sags (both the main "crater" and some smaller ones, recently interpreted as a crater field) and various Abruzzi paleosols from excavated trenches with an age range encompassing the estimated age of the "Sirente crater." For all samples, we measured the magnetic susceptibility and determined the Ni and Cr contents of selected specimens. The results show that the magnetic susceptibility values and the geochemical composition are similar for all samples (from Sirente and other Abruzzi sags) and are both significantly different from the values reported for soils contaminated by meteoritic dust. No solid evidence pointing at an impact origin exists, besides the circular shape and rim of the main sag. The available observations and data suggest that the "Sirente crater," together with analogous large sags in the Abruzzi intermountain plains, have to be attributed to the historical phenomenon of "transumanza" (seasonal migration of sheep and shepherds), a custom that for centuries characterized the basic social-economical system of the Abruzzi region. Such sags were excavated to provide water for millions of sheep, which spent summers in the Abruzzi karstic high pasture lands, on carbonatic massifs deprived of natural superficial fresh water. Conversely, the distribution of the smaller sags from the Sirente plain correlates with the local pattern of the calcareous bedrock and, together with the characteristics of their internal structure, are

  18. The Context of Carbonates in Gusev and Jezero Craters

    Science.gov (United States)

    Ruff, S. W.; Hamilton, V. E.

    2017-12-01

    Gusev and Jezero are Noachian-aged craters with evidence of a lake in early Mars history. Both are among three remaining candidates for the Mars 2020 rover mission, which is intended to collect and cache rock samples for possible future return to Earth. Gusev was explored by the Spirit rover from 2004 to 2010, revealing outcrops dubbed Comanche composed of olivine-rich volcanic tephra that hosts up to 30% Mg-Fe carbonate, clear evidence for the role of near-neutral pH fluids [1]. Jezero also displays evidence for olivine- and carbonate-bearing materials, likely Mg-carbonate based on orbital spectral observations [2]. In both craters, the carbonates occur in materials that are among the oldest stratigraphic units in each, perhaps an indication of more clement climatic conditions on early Mars compared to those that prevailed for most of its history. We are undertaking investigations of various rover-based and orbital measurements of the carbonates in Gusev to better understand their geologic context and origin. In doing so, the results shed light on carbonate occurrences in Jezero. The Comanche outcrops are contained in the Columbia Hills, which represent a kipuka or island of eroded older terrain fully encircled by lava flows, here with a crater retention age of 3.65 Ga (Fig. 1). In situ and orbital observations [3] demonstrate that carbonate-bearing outcrops extend beyond those visited by Spirit. The distinctive morphology and thermal inertia signature of these outcrops and their unaltered host rocks are recognizable in other kipukas on the floor of Gusev [4]. Carbonate also occurs in kipukas in Jezero (Fig. 2), but larger occurrences extend beyond the crater rim and in isolated places among the delta fan deposits [2]. The presence of carbonates outside of the crater suggests an origin unrelated to a former lake, unlike the Comanche carbonates, which may have arisen through evaporation of dilute brines from an ephemeral lake in Gusev [4]. In both cases, the clear

  19. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: T_MAMMAL (Terrestrial Mammal Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sensitive biological resource data for small terrestrial mammals (woodrats, myotis, muskrat, mink) for the Hudson River. Vector polygons in...

  20. Capture of terrestrial-sized moons by gas giant planets.

    Science.gov (United States)

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  1. Prospects for Detecting Thermal Emission from Terrestrial Exoplanets with JWST

    Science.gov (United States)

    Kreidberg, Laura

    2018-01-01

    A plethora of nearby, terrestrial exoplanets has been discovered recently by ground-based surveys. Excitingly, some of these are in the habitable zones of their host stars, and may be hospitable for life. However, all the planets orbit small, cool stars and have considerably different irradiation environments from the Earth, making them vulnerable to atmospheric escape, erosion and collapse. Atmosphere characterization is therefore critical to assessing the planets' habitability. I will discuss possible JWST thermal emission measurements to determine the atmospheric properties of nearby terrestrial planets. I will focus on prospects for detecting physically motivated atmospheres for planets orbiting LHS 1140, GJ 1132, and TRAPPIST-1. I will also discuss the potential for using phase curve observations to determine whether an atmosphere has survived on the non-transiting planet Proxima b.

  2. Terrestrial gamma-ray flashes

    Science.gov (United States)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  3. Terrestrial gamma-ray flashes

    International Nuclear Information System (INIS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-01-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models

  4. The Solar-Terrestrial Environment

    Science.gov (United States)

    Hargreaves, John Keith

    1995-05-01

    The book begins with three introductory chapters that provide some basic physics and explain the principles of physical investigation. The principal material contained in the main part of the book covers the neutral and ionized upper atmosphere, the magnetosphere, and structures, dynamics, disturbances, and irregularities. The concluding chapter deals with technological applications. The account is introductory, at a level suitable for readers with a basic background in engineering or physics. The intent is to present basic concepts, and for that reason, the mathematical treatment is not complex. SI units are given throughout, with helpful notes on cgs units where these are likely to be encountered in the research literature. This book is suitable for advanced undergraduate and graduate students who are taking introductory courses on upper atmospheric, ionospheric, or magnetospheric physics. This is a successor to The Upper Atmosphere and Solar-Terrestrial Relations, published in 1979.

  5. Radionuclide transfer in terrestrial animals

    International Nuclear Information System (INIS)

    DiGregorio, D.; Kitchings, T.; Van Voris, P.

    1978-01-01

    The analysis of dispersion of radionuclides in terrestrial food chains, generally, is a series of equations identifying the fractional input and outflow rates from trophic level to trophic level. Data that are prerequisite inputs for these food chain transport models include: (1) identification of specific transport pathway, (2) assimilation at each pathway link, and (3) the turnover rate or retention function by successive receptor species in the appropriate food chain. In this report, assimilation coefficients, biological half-lives, and excretion rates for a wide variety of vertebrate and invertebrate species and radionuclides have been compiled from an extensive search of the available literature. Using the information accumulated from the literature, correlations of nuclide metabolism and body weight are also discussed. (author)

  6. Methyl mercury in terrestrial compartments

    International Nuclear Information System (INIS)

    Stoeppler, M.; Burow, M.; Padberg, S.; May, K.

    1993-09-01

    On the basis of the analytical methodology available at present the state of the art for the determination of total mercury and of various organometallic compounds of mercury in air, precipitation, limnic systems, soils, plants and biota is reviewed. This is followed by the presentation and discussion of examples for the data obtained hitherto for trace and ultratrace levels of total mercury and mainly methyl mercury in terrestrial and limnic environments as well as in biota. The data discussed stem predominantly from the past decade in which, due to significant methodological progress, many new aspects were elucidated. They include the most important results in this area achieved by the Research Centre (KFA) Juelich within the project 'Origin and Fate of Methyl Mercury' (contracts EV4V-0138-D and STEP-CT90-0057) supported by the Commission of the European Communities, Brussels. (orig.) [de

  7. Traumatic insemination in terrestrial arthropods.

    Science.gov (United States)

    Tatarnic, Nikolai J; Cassis, Gerasimos; Siva-Jothy, Michael T

    2014-01-01

    Traumatic insemination is a bizarre form of mating practiced by some invertebrates in which males use hypodermic genitalia to penetrate their partner's body wall during copulation, frequently bypassing the female genital tract and ejaculating into their blood system. The requirements for traumatic insemination to evolve are stringent, yet surprisingly it has arisen multiple times within invertebrates. In terrestrial arthropods traumatic insemination is most prevalent in the true bug infraorder Cimicomorpha, where it has evolved independently at least three times. Traumatic insemination is thought to occur in the Strepsiptera and has recently been recorded in fruit fly and spider lineages. We review the putative selective pressures that may have led to the evolution of traumatic insemination across these lineages, as well as the pressures that continue to drive divergence in male and female reproductive morphology and behavior. Traumatic insemination mechanisms and attributes are compared across independent lineages.

  8. Phytopharmacological overview of Tribulus terrestris

    Science.gov (United States)

    Chhatre, Saurabh; Nesari, Tanuja; Somani, Gauresh; Kanchan, Divya; Sathaye, Sadhana

    2014-01-01

    Tribulus terrestris (family Zygophyllaceae), commonly known as Gokshur or Gokharu or puncture vine, has been used for a long time in both the Indian and Chinese systems of medicine for treatment of various kinds of diseases. Its various parts contain a variety of chemical constituents which are medicinally important, such as flavonoids, flavonol glycosides, steroidal saponins, and alkaloids. It has diuretic, aphrodisiac, antiurolithic, immunomodulatory, antidiabetic, absorption enhancing, hypolipidemic, cardiotonic, central nervous system, hepatoprotective, anti-inflammatory, analgesic, antispasmodic, anticancer, antibacterial, anthelmintic, larvicidal, and anticariogenic activities. For the last few decades or so, extensive research work has been done to prove its biological activities and the pharmacology of its extracts. The aim of this review is to create a database for further investigations of the discovered phytochemical and pharmacological properties of this plant to promote research. This will help in confirmation of its traditional use along with its value-added utility, eventually leading to higher revenues from the plant. PMID:24600195

  9. Terrestrial atmosphere, water and astrobiology

    Directory of Open Access Journals (Sweden)

    Coradini M.

    2010-12-01

    Full Text Available Primitive life, defined as a chemical system capable to transfer its molecular information via self-replication and also capable to evolve, originated about 4 billion years ago from the processing of organic molecules by liquid water. Terrestrial atmosphere played a key role in the process by allowing the permanent presence of liquid water and by participating in the production of carbon-based molecules. Water molecules exhibit specific properties mainly due to a dense network of hydrogen bonds. The carbon-based molecules were either home made in the atmosphere and/or in submarine hydrothermal systems or delivered by meteorites and micrometeorites. The search for possible places beyond the earth where the trilogy atmosphere/water/life could exist is the main objective of astrobiology. Within the Solar System, exploration missions are dedicated to Mars, Europa, Titan and the icy bodies. The discovery of several hundreds of extrasolar planets opens the quest to the whole Milky Way.

  10. Terrestrial pathways of radionuclide particulates

    International Nuclear Information System (INIS)

    Boone, F.W.; Ng, Y.C.

    1981-01-01

    Formulations are developed for computing potential human intake of 13 radionuclides via the terrestrial food chains. The formulations are an extension of the NRC methodology. Specific regional crop and livestock transfer and fractional distribution data from the southern part of the U.S.A. are provided and used in the computation of comparative values with those computed by means of USNRC Regulatory Guide 1.109 formulations. In the development of the model, emphasis was also placed on identifying the various time-delay compartments of the food chains and accounting for all of the activity initially deposited. For all radionuclides considered, except 137 Cs, the new formulations predict lower potential intakes from the total of all food chains combined than do the comparable Regulatory Guide formulations by as much as a factor of 40. For 137 Cs the new formulations predict 10% higher potential intakes. (author)

  11. A Spherical Aerial Terrestrial Robot

    Science.gov (United States)

    Dudley, Christopher J.

    This thesis focuses on the design of a novel, ultra-lightweight spherical aerial terrestrial robot (ATR). The ATR has the ability to fly through the air or roll on the ground, for applications that include search and rescue, mapping, surveillance, environmental sensing, and entertainment. The design centers around a micro-quadcopter encased in a lightweight spherical exoskeleton that can rotate about the quadcopter. The spherical exoskeleton offers agile ground locomotion while maintaining characteristics of a basic aerial robot in flying mode. A model of the system dynamics for both modes of locomotion is presented and utilized in simulations to generate potential trajectories for aerial and terrestrial locomotion. Details of the quadcopter and exoskeleton design and fabrication are discussed, including the robot's turning characteristic over ground and the spring-steel exoskeleton with carbon fiber axle. The capabilities of the ATR are experimentally tested and are in good agreement with model-simulated performance. An energy analysis is presented to validate the overall efficiency of the robot in both modes of locomotion. Experimentally-supported estimates show that the ATR can roll along the ground for over 12 minutes and cover the distance of 1.7 km, or it can fly for 4.82 minutes and travel 469 m, on a single 350 mAh battery. Compared to a traditional flying-only robot, the ATR traveling over the same distance in rolling mode is 2.63-times more efficient, and in flying mode the system is only 39 percent less efficient. Experimental results also demonstrate the ATR's transition from rolling to flying mode.

  12. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

    OpenAIRE

    Grotzinger, JP; Gupta, S; Malin, MC; Rubin, DM; Schieber, J; Siebach, K; Sumner, DY; Stack, KM; Vasavada, AR; Arvidson, RE; Calef, F; Edgar, L; Fischer, WF; Grant, JA; Griffes, J

    2015-01-01

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittentl...

  13. Volcanic Flooding Experiments in Impact Basins and Heavily Cratered Terrain Using LOLA Data: Patterns of Resurfacing and Crater Loss

    Science.gov (United States)

    Whitten, Jennifer L.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.

    2012-01-01

    Terrestrial planetary bodies are characterized by extensive, largely volcanic deposits covering their surfaces. On Earth large igneous provinces (LIPs) abound, maria cover the nearside of the Moon, and volcanic plains cover large portions of Venus, Mars and Mercury.

  14. The terrestrial biosphere in the SFR region

    Energy Technology Data Exchange (ETDEWEB)

    Jerling, L; Isaeus, M [Stockholm Univ. (Sweden). Dept. of Botany; Lanneck, J [Stockholm Univ. (Sweden). Dept. of Physical Geography; Lindborg, T; Schueldt, R [Danish Nature Council, Copenhagen (Denmark)

    2001-03-01

    coarse model of the future vegetation. To make this fully clear we have included a description of past development of environmental conditions and vegetation as a key to understand the discrepancy between past events and predictions of the future. Thus, the part dealing with the development of vegetation is started by a description of the past, followed by a prediction of future vegetation. The history of vegetation shows that the development is an interaction between changes in climate, shore displacement,local vegetation development and human activities. Differences in plant community structure can, to a large extent, be related to climatic change. When it got warmer and more humid, nemoral (thermophilus) species immigrated, and the distribution of land classes changed on a regional scale. The most important factors for the change of the biotic environment and plant community has been human impact and climate change, while shore displacement rather has an effect locally and on a short time scale. In the premises for future development of vegetation, change in climate and most of human activities are omitted. A general outline of the anticipated future development of the vegetation is described. There will be a major change in the vegetation of the area from year 3000 to 4000 in that vast areas will be transformed from aquatic to terrestrial. This probably means that new accumulation areas for water transported materials are formed. With the transformation from aquatic to terrestrial environment more stable sinks will be formed such as lakes and mires. In these, organic material will be accumulated and carbon will be concentrated to particular areas. In year 5000 practically no aquatic areas are to be found and at this stage very small amount of organic material will leave the area except by water transport and by gases. Since the mobility is higher in dryer areas where the organic material is decomposed at a faster rate one will expect an increased mobility whereas in

  15. The terrestrial biosphere in the SFR region

    International Nuclear Information System (INIS)

    Jerling, L.; Isaeus, M.

    2001-03-01

    model of the future vegetation. To make this fully clear we have included a description of past development of environmental conditions and vegetation as a key to understand the discrepancy between past events and predictions of the future. Thus, the part dealing with the development of vegetation is started by a description of the past, followed by a prediction of future vegetation. The history of vegetation shows that the development is an interaction between changes in climate, shore displacement,local vegetation development and human activities. Differences in plant community structure can, to a large extent, be related to climatic change. When it got warmer and more humid, nemoral (thermophilus) species immigrated, and the distribution of land classes changed on a regional scale. The most important factors for the change of the biotic environment and plant community has been human impact and climate change, while shore displacement rather has an effect locally and on a short time scale. In the premises for future development of vegetation, change in climate and most of human activities are omitted. A general outline of the anticipated future development of the vegetation is described. There will be a major change in the vegetation of the area from year 3000 to 4000 in that vast areas will be transformed from aquatic to terrestrial. This probably means that new accumulation areas for water transported materials are formed. With the transformation from aquatic to terrestrial environment more stable sinks will be formed such as lakes and mires. In these, organic material will be accumulated and carbon will be concentrated to particular areas. In year 5000 practically no aquatic areas are to be found and at this stage very small amount of organic material will leave the area except by water transport and by gases. Since the mobility is higher in dryer areas where the organic material is decomposed at a faster rate one will expect an increased mobility whereas in

  16. The terrestrial biosphere in the SFR region

    Energy Technology Data Exchange (ETDEWEB)

    Jerling, L.; Isaeus, M. [Stockholm Univ. (Sweden). Dept. of Botany; Lanneck, J. [Stockholm Univ. (Sweden). Dept. of Physical Geography; Lindborg, T.; Schueldt, R. [Danish Nature Council, Copenhagen (Denmark)

    2001-03-01

    in a coarse model of the future vegetation. To make this fully clear we have included a description of past development of environmental conditions and vegetation as a key to understand the discrepancy between past events and predictions of the future. Thus, the part dealing with the development of vegetation is started by a description of the past, followed by a prediction of future vegetation. The history of vegetation shows that the development is an interaction between changes in climate, shore displacement,local vegetation development and human activities. Differences in plant community structure can, to a large extent, be related to climatic change. When it got warmer and more humid, nemoral (thermophilus) species immigrated, and the distribution of land classes changed on a regional scale. The most important factors for the change of the biotic environment and plant community has been human impact and climate change, while shore displacement rather has an effect locally and on a short time scale. In the premises for future development of vegetation, change in climate and most of human activities are omitted. A general outline of the anticipated future development of the vegetation is described. There will be a major change in the vegetation of the area from year 3000 to 4000 in that vast areas will be transformed from aquatic to terrestrial. This probably means that new accumulation areas for water transported materials are formed. With the transformation from aquatic to terrestrial environment more stable sinks will be formed such as lakes and mires. In these, organic material will be accumulated and carbon will be concentrated to particular areas. In year 5000 practically no aquatic areas are to be found and at this stage very small amount of organic material will leave the area except by water transport and by gases. Since the mobility is higher in dryer areas where the organic material is decomposed at a faster rate one will expect an increased mobility

  17. Surveying Clay Mineral Diversity in the Murray Formation, Gale Crater, Mars

    Science.gov (United States)

    Bristow, T.F.; Blake, D. F..; Vaniman, D. T.; Chipera, S. J.; Rampe, E. B.; Grotzinger, J. P.; McAdam, A. C.; Ming, D. W..; Morrison, S. M.; Yen, A. S.; hide

    2017-01-01

    conditions. In terrestrial settings where alteration sequences of basaltic rocks or sediments are observed, first-stage alteration clay minerals are typically trioctahedral smectite species, as reported from YKB. In later alteration stages trioctahedral clay minerals are replaced by dioctahedral clays as a result of removal and/or oxidation of Fe2+ and Mg. Observed changes in clay mineralogy between YKB and Murray Buttes samples correspond with differences in bulk mineralogy, including: 1) a transition from magnetite to hematite as the main Fe-oxide, 2) increasing abundances of Ca-sulfates and 3) a reduction in the quantity of reactive mafic minerals. This mineralogical change indicates an increasing degree of aqueous alteration and oxidation of mafic detritus in the upper part of the Murray Formation. These results broaden the spectrum of mineralogical facies documented by MSL. Together sedimentology and mineralogy indicate a long-lasting, dynamic fluvial-lacustrine system encompassing a range aqueous geochemical processes under varying redox conditions. Future work is needed to unravel the influence of global and local controls on the range of ancient conditions observed at Gale Crater.

  18. Hepatoprotective and Antioxidant Activities of Tribulus Terrestris

    NARCIS (Netherlands)

    Harraz, Fathalla M; Ghazy, Nabila M; Hammoda, Hala M; Nafeaa, Abeer A.; Abdallah, Ingy I.

    2015-01-01

    Tribulus terrestris L. has been used in folk medicine throughout history. The present study examined the acute toxicity of the total ethanolic extract of T. Terrestris followed by investigation of the hepatoprotective activity of the total ethanolic extract and different fractions of the aerial

  19. Mars Methane at Gale Crater Shows Strong Seasonal Cycle: Updated Results from TLS-SAM on Curiosity

    Science.gov (United States)

    Webster, C. R.; Mahaffy, P. R.; Atreya, S. K.; Flesch, G.; Malespin, C.; McKay, C.; Martinez, G.; Moores, J.; Smith, C. L.; Martin-Torres, F. J.; Gomez-Elvira, J.; Zorzano, M. P.; Wong, M. H.; Trainer, M. G.; Eigenbrode, J. L.; Glavin, D. P.; Steele, A.; Archer, D., Jr.; Sutter, B.; Coll, P. J.; Freissinet, C.; Meslin, P. Y.; Pavlov, A.; Keymeulen, D.; Christensen, L. E.; Gough, R. V.; Schwenzer, S. P.; Navarro-Gonzalez, R.; Pla-García, J.; Rafkin, S. C.; Vicente-Retortillo, Á.; Kahanpää, H.; Viudez-Moreiras, D.; Smith, M. D.; Harri, A. M.; Genzer, M.; Hassler, D.; Lemmon, M. T.; Crisp, J. A.; Zurek, R. W.; Vasavada, A. R.

    2017-12-01

    In situ measurements of atmospheric methane have been made over a 5-year period at Gale Crater on Mars using the Tunable Laser Spectrometer (TLS) instrument in the Sample Analysis at Mars (SAM) suite on the Curiosity rover. We report two important observations: (i) a background level of mean value of 0.41 ±0.11 (2sem) that is about 5 times lower than some model predictions based on generation from UV degradation of micro-meteorites or interplanetary dust delivered to the martian surface; (ii) "spikes" of elevated levels of 7 ppbv attributed to episodic releases from small local sources, probably to the north of Gale crater1. Reports of plumes, patches or episodic releases of methane in the Martian atmosphere have to date eluded explanation in part because of their lack of repeatability in time or location. Our in situ measurements of the background methane levels exhibit a strong, repeatable seasonal variability. The amplitude of the observed seasonal cycle is 3 times greater than both that expected from the annual sublimation and freezing of polar carbon dioxide and that expected from methane production from ultraviolet (UV) degradation of exogenously-delivered surface material. The observed large seasonal variation in the background, and sporadic observations of higher pulses of 7 ppbv appear consistent with localized small sources of methane release from Martian surface reservoirs that may be occurring throughout the planet. We will present our updated data set, correlations of Mars methane with various other measurements from SAM, REMS, RAD and ChemCam instruments on Curiosity, as well as empirical models of UV surface insolation, and provide preliminary interpretation of results. 1 "Mars Methane Detection and Variability at Gale Crater", C. R. Webster et al., Science, 347, 415-417 (2015) and references therein. The research described here was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the

  20. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    Science.gov (United States)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  1. Oblique view of crater Theophilus at northwest edge of Sea of Nectar

    Science.gov (United States)

    1969-01-01

    An Apollo 11 oblique view of the large crater Theophilus located at the northwest edge of the Sea of Nectar on the lunar nearside. Theophilus is about 60 statute miles in diameter. the smooth area is Mare Nectaris. The smaller crater Madler, about 14 statute miles in diameter, is located to the east of Theophilus. Visible in the background are the large crater Fracastorius and the smaller crater Beaumont. The coordinates of the center of this photograph are 29 degrees east longitude and 11 degrees south latitude.

  2. The shape of terrestrial abundance distributions

    Science.gov (United States)

    Alroy, John

    2015-01-01

    Ecologists widely accept that the distribution of abundances in most communities is fairly flat but heavily dominated by a few species. The reason for this is that species abundances are thought to follow certain theoretical distributions that predict such a pattern. However, previous studies have focused on either a few theoretical distributions or a few empirical distributions. I illustrate abundance patterns in 1055 samples of trees, bats, small terrestrial mammals, birds, lizards, frogs, ants, dung beetles, butterflies, and odonates. Five existing theoretical distributions make inaccurate predictions about the frequencies of the most common species and of the average species, and most of them fit the overall patterns poorly, according to the maximum likelihood–related Kullback-Leibler divergence statistic. Instead, the data support a low-dominance distribution here called the “double geometric.” Depending on the value of its two governing parameters, it may resemble either the geometric series distribution or the lognormal series distribution. However, unlike any other model, it assumes both that richness is finite and that species compete unequally for resources in a two-dimensional niche landscape, which implies that niche breadths are variable and that trait distributions are neither arrayed along a single dimension nor randomly associated. The hypothesis that niche space is multidimensional helps to explain how numerous species can coexist despite interacting strongly. PMID:26601249

  3. Geology and mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A possible post impact-induced hydrothermal system

    Science.gov (United States)

    Carrozzo, F. G.; Di Achille, G.; Salese, F.; Altieri, F.; Bellucci, G.

    2017-01-01

    A variety of hydrothermal environments have been documented in terrestrial impact structures. Due to both past water interactions and meteoritic bombardment on the surface of Mars, several authors have predicted various scenarios that include the formation of hydrothermal systems. Geological and mineralogical evidence of past hydrothermal activity have only recently been found on Mars. Here, we present a geological and mineralogical study of the Auki Crater using the spectral and visible imagery data acquired by the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars), CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) instruments on board the NASA MRO mission. The Auki Crater is a complex crater that is ∼38 km in diameter located in Tyrrhena Terra (96.8°E and 15.7°S) and shows a correlation between its mineralogy and morphology. The presence of minerals, such as smectite, silica, zeolite, serpentine, carbonate and chlorite, associated with morphological structures, such as mounds, polygonal terrains, fractures and veins, suggests that the Auki Crater may have hosted a post impact-induced hydrothermal system. Although the distribution of hydrated minerals in and around the central uplift and the stratigraphic relationships of some morphological units could also be explained by the excavation and exhumation of carbonate-rich bedrock units as a consequence of crater formation, we favor the hypothesis of impact-induced hydrothermal circulation within fractures and subsequent mineral deposition. The hydrothermal system could have been active for a relatively long period of time after the impact, thus producing a potential transient habitable environment. It must be a spectrally neutral component to emphasize the spectral features; It is an average of spectra taken in the same column of the numerator spectra to correct the residual instrument artifacts and reduce detector noise that changes from column to column; It must be taken in

  4. Episodic vein formation in Gale crater, Mars: evidence for an extended history of liquid water

    Science.gov (United States)

    Kronyak, R. E.; Fedo, C.; Banham, S.; Edgett, K. S.; Newsom, H. E.; Nachon, M.; Kah, L. C.

    2017-12-01

    The sedimentary rock record of Gale crater is consistent with deposition in an ancient lake basin. These strata represent aqueous and potentially habitable past conditions that existed over a relatively small part of Mars' geologic history. Post-depositional fluid migration is recorded by the presence of veins, which have been prevalent features throughout Curiosity's mission. These veins record later episodes of fluid flow and represent an extended history of liquid water stability, and perhaps habitability. White Ca-sulfate veins are observed in the Bradbury (Yellowknife Bay), Mount Sharp (Murray formation), and Siccar Point (Stimson formation) groups across a range of lithologies. At Yellowknife Bay and in the Stimson, Ca-sulfate veins characteristically exhibit mm-scale thicknesses. In the Pahrump Hills (PH) area, 62% of measured veins in the Murray formation are material occurs along the interface between wall rock and Ca-sulfate and is interpreted as a precursor vein fill. Gray veins at PH are more erosionally resistant relative to Ca-sulfate and average 1 mm in width. Additionally, gray veins exhibit elevated Mg and depleted Ca, distinguishing them compositionally from Ca-sulfate veins. Veins continue locally throughout the stratigraphic section. The lowermost Stimson sandstones at the Missoula outcrop contain white clasts and elevated Ca-sulfate, suggesting the formation of Murray veins prior to the deposition of the Stimson formation. Near the Old Soaker outcrop, bedding-parallel sulfate may represent syndepositional gypsum precipitation. In the context of time, the multiple vein systems identified in the Gale crater sedimentary fill shed light on the sequence and evolution of fluids responsible for their deposition. It is envisioned that sulfates first precipitated contemporaneously with the deposition of the Murray formation, followed by burial, lithification, and fracturing to form the earliest gray and sulfate veins. The Murray was then exhumed and

  5. VNIR Multispectral Observations of Rocks at Spirit of St. Louis Crater and Marathon Valley on Th Rim of Endeavour Crater Made by the Opportunity Rover Pancam

    Science.gov (United States)

    Farrand, W. H.; Johnson, J. R.; Bell, J. F., III; Mittlefehldt, D.W.

    2016-01-01

    The Mars Exploration Rover Opportunity has been exploring the western rim of the 22 km diameter Endeavour crater since August, 2011. Recently, Opportunity has reached a break in the Endeavour rim that the rover team has named Mara-thon Valley. This is the site where orbital observations from the MRO CRISM imaging spectrometer indicated the presence of iron smectites. On the outer western portion of Marathon Valley, Opportunity explored the crater-form feature dubbed Spirit of St. Louis (SoSL) crater. This presentation describes the 430 to 1009 nm (VNIR) reflectance, measured by the rover's Pancam, of rock units present both at Spirit of St. Louis and within Marathon Valley.

  6. Stratigraphic architecture of bedrock reference section, Victoria Crater, Meridiani Planum, Mars

    Science.gov (United States)

    Edgar, Lauren A.; Grotzinger, John P.; Hayes, Alex G.; Rubin, David M.; Squyres, Steve W.; Bell, James F.; Herkenhoff, Ken E.

    2012-01-01

    The Mars Exploration Rover Opportunity has investigated bedrock outcrops exposed in several craters at Meridiani Planum, Mars, in an effort to better understand the role of surface processes in its geologic history. Opportunity has recently completed its observations of Victoria crater, which is 750 m in diameter and exposes cliffs up to ~15 m high. The plains surrounding Victoria crater are ~10 m higher in elevation than those surrounding the previously explored Endurance crater, indicating that the Victoria crater exposes a stratigraphically higher section than does the Endurance crater; however, Victoria strata overlap in elevation with the rocks exposed at the Erebus crater. Victoria crater has a well-developed geomorphic pattern of promontories and embayments that define the crater wall and that reveal thick bedsets (3–7m) of large-scale cross-bedding, interpreted as fossil eolian dunes. Opportunity was able to drive into the crater at Duck Bay, located on the western margin of Victoria crater. Data from the Microscopic Imager and Panoramic Camera reveal details about the structures, textures, and depositional and diagenetic events that influenced the Victoria bedrock. A lithostratigraphic subdivision of bedrock units was enabled by the presence of a light-toned band that lines much of the upper rim of the crater. In ascending order, three stratigraphic units are named Lyell, Smith, and Steno; Smith is the light-toned band. In the Reference Section exposed along the ingress path at Duck Bay, Smith is interpreted to represent a zone of diagenetic recrystallization; however, its upper contact also coincides with a primary erosional surface. Elsewhere in the crater the diagenetic band crosscuts the physical stratigraphy. Correlation with strata present at nearby promontory Cape Verde indicates that there is an erosional surface at the base of the cliff face that corresponds to the erosional contact below Steno. The erosional contact at the base of Cape Verde

  7. Estimating Exposure of Terrestrial Wildlife to Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E.

    1994-01-01

    This report presents a general model for exposure of terrestrial wildlife to contaminants (Sect. 2), methods for estimating parameters of the model (Sect. 3), species specific parameters for endpoint species on the Oak Ridge Reservation (ORR) (Sect. 4), and a sample application (Sect. 5). Exposure can be defined as the coincidence in both space and time of a receptor and a stressor, such that the receptor and stressor come into contact and interact (Risk Assessment Forum 1992). In the context of ecological risk assessment, receptors include all endpoint species or communities identified for a site [see Suter (1989) and Suter et al. (1994) for discussions of ecological endpoints for waste sites]. In the context of waste site assessments, stressors are chemical contaminations, and the contact and interaction are uptake of the contaminant by the receptor. Without sufficient exposure of the receptor to the contaminants, there is no ecological risk. Unlike some other endpoint assemblages, terrestrial wildlife are significantly exposed to contaminants in multiple media. They may drink or swim in contaminated water, ingest contaminated food and soil, and breath contaminated air. In addition, because most wildlife are mobile, moving among and within habitats, exposure is not restricted to a single location. They may integrate contamination from several spatially discrete sources. Therefore, exposure models for terrestrial wildlife must include multiple media. This document provides models and parameters for estimating exposure of birds and mammals. Reptiles and amphibians are not considered because few data exist with which to assess exposure to these organisms. In addition, because toxicological data are scarce for both classes, evaluation of the significance of exposure estimates is problematic. However, the general exposure estimation procedure developed herein for birds and mammals is applicable to reptiles and amphibians. Exposure models must be appropriate to the

  8. Petrogenesis of basalt-trachyte lavas from Olmoti Crater, Tanzania

    Science.gov (United States)

    Mollel, Godwin F.; Swisher, Carl C., III; McHenry, Lindsay J.; Feigenson, Mark D.; Carr, Michael J.

    2009-08-01

    Olmoti Crater is part of the Plio-Pleistocene Ngorongoro Volcanic Highland (NVH) in northern Tanzania to the south of Gregory Rift. The Gregory Rift is part of the eastern branch of the East African Rift System (EARS) that stretches some 4000 km from the Read Sea and Gulf of Aden in the north to the Zambezi River in Mozambique. Here, we (1) characterize the chemistry and mineral compositions of lavas from Olmoti Crater, (2) determine the age and duration of Olmoti volcanic activity through 40Ar/ 39Ar dating of Olmoti Crater wall lavas and (3) determine the genesis of Olmoti lavas and the relationship to other NVH and EARS volcanics and (4) their correlation with volcanics in the Olduvai and Laetoli stratigraphic sequences. Olmoti lavas collected from the lower part of the exposed crater wall section (OLS) range from basalt to trachyandesite whereas the upper part of the section (OUS) is trachytic. Petrography and major and trace element data reflect a very low degree partial melt origin for the Olmoti lavas, presumably of peridotite, followed by extensive fractionation. The 87Sr/ 86Sr data overlap whereas Nd and Pb isotope data are distinct between OLS and OUS samples. Interpretation of the isotope data suggests mixing of enriched mantle (EM I) with high-μ-like reservoirs, consistent with the model of Bell and Blenkinsop [Bell, K., Blenkinsop, J., 1987. Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 5, 99-102] for East African carbonatite lavas. The isotope ratios are within the range of values defined by Oceanic Island Basalt (OIB) globally and moderate normalized Tb/Yb ratios (2.3-1.6) in these lavas suggest melting in the lithospheric mantle consistent with other studies in the region. 40Ar/ 39Ar incremental-heating analyses of matrix and anorthoclase separates from Olmoti OLS and OUS lavas indicate that volcanic activity was short in duration, lasting ˜200 kyr from 2.01 ± 0.03 Ma to 1.80 ± 0

  9. Crystal-Chemical Analysis of Soil at Rocknest, Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analysis on Martian soil [1] at Rocknest in Gale Crater. In particular, crystalline phases from scoop 5 were identified and analyzed with the Rietveld method [2]. Refined unit-cell parameters are reported in Table 1. Comparing these unit-cell parameters with those in the literature provides an estimate of the chemical composition of the crystalline phases. For instance, Fig. 1 shows the Mg-content of Fa-Fo olivine as a function of the b unit-cell parameter using literature data. Our refined b parameter is indicated by the black triangle.

  10. A row-charge nuclear cratering explosion in alluvial rocks

    International Nuclear Information System (INIS)

    Kireev, V.V.; Kedrovskij, O.L.; Valentinov, Yu.A.; Myasnikov, K.V.; Nikiforov, G.A.; Prozorov, L.B.; Potapov, V.K.

    1975-01-01

    A brief description is given of the first row-charge nuclear cratering explosion in alluvial rocks carried out on the route of the Pechora-Kolva canal. The authors explain the purposes of the explosion, describe the geological conditions, indicate the emplacement parameters and yields of the charges, present data on the dynamics of development of the explosion and report on its seismic effects. The parameters of the resulting trench cut and the characteristics of the rock ejecta are also given. The possibility of using nuclear explosions for hydrotechnological projects requiring large excavations in a thick stratum of weak water-bearing rocks is considered

  11. Mineralogy of Rocks and Sediments at Gale Crater, Mars

    Science.gov (United States)

    Achilles, Cherie; Downs, Robert; Blake, David; Vaniman, David; Ming, Doug; Rampe, Elizabeth; Morris, Dick; Morrison, Shaunna; Treiman, Allan; Chipera, Steve; Yen, Albert; Bristow, Thomas; Craig, Patricia; Hazen, Robert; Crisp, Joy; Grotzinger, John; Des Marias, David; Farmer, Jack; Sarrazin, Philippe; Morookian, John Michael

    2017-04-01

    The Mars Science Laboratory rover, Curiosity, is providing in situ mineralogical, geochemical, and sedimentological assessments of rocks and soils in Gale crater. Since landing in 2012, Curiosity has traveled over 15 km, providing analyses of mudstones and sandstones to build a stratigraphic history of the region. The CheMin X-ray diffraction (XRD) instrument is the first instrument on Mars to provide quantitative mineralogical analyses of drilled powders and scooped sediment based on X-ray crystallography. CheMin identifies and determines mineral abundances and unit-cell parameters of major crystalline phases, and identifies minor phases at abundances >1 wt%. In conjunction with elemental analyses, CheMin-derived crystal chemistry allows for the first calculations of crystalline and amorphous material compositions. These mineralogy, crystal chemistry, and amorphous chemistry datasets are playing central roles in the characterization of Gale crater paleoenvironments. CheMin has analyzed 17 rock and sediment samples. In the first phase of the mission, Curiosity explored the sedimentary units of Aeolis Palus (Bradbury group), including two mudstones from Yellowknife Bay. CheMin analyses of the Yellowknife Bay mudstones identified clay minerals among an overall basaltic mineral assemblage. These mineralogical results, along with imaging and geochemical analyses, were used to characterize an ancient lacustrine setting that is thought to have once been a habitable environment. Following the investigations of the Bradbury group, Curiosity arrived at the lower reaches of Aeolis Mons, commonly called Mt. Sharp. A strategic sample campaign was initiated, drilling bedrock at X-ray amorphous phases. Adjacent to fractures, light-toned, halo-like zones are thought to result from significant aqueous alteration of the primary sandstone and show decreased abundances of feldspar and pyroxene, and an increase in the amorphous component, specifically high-silica phases. The Murray

  12. Does terrestrial epidemiology apply to marine systems?

    Science.gov (United States)

    McCallum, Hamish I.; Kuris, Armand M.; Harvell, C. Drew; Lafferty, Kevin D.; Smith, Garriet W.; Porter, James

    2004-01-01

    Most of epidemiological theory has been developed for terrestrial systems, but the significance of disease in the ocean is now being recognized. However, the extent to which terrestrial epidemiology can be directly transferred to marine systems is uncertain. Many broad types of disease-causing organism occur both on land and in the sea, and it is clear that some emergent disease problems in marine environments are caused by pathogens moving from terrestrial to marine systems. However, marine systems are qualitatively different from terrestrial environments, and these differences affect the application of modelling and management approaches that have been developed for terrestrial systems. Phyla and body plans are more diverse in marine environments and marine organisms have different life histories and probably different disease transmission modes than many of their terrestrial counterparts. Marine populations are typically more open than terrestrial ones, with the potential for long-distance dispersal of larvae. Potentially, this might enable unusually rapid propagation of epidemics in marine systems, and there are several examples of this. Taken together, these differences will require the development of new approaches to modelling and control of infectious disease in the ocean.

  13. Steroidal saponins from Tribulus terrestris.

    Science.gov (United States)

    Kang, Li-Ping; Wu, Ke-Lei; Yu, He-Shui; Pang, Xu; Liu, Jie; Han, Li-Feng; Zhang, Jie; Zhao, Yang; Xiong, Cheng-Qi; Song, Xin-Bo; Liu, Chao; Cong, Yu-Wen; Ma, Bai-Ping

    2014-11-01

    Sixteen steroidal saponins, including seven previously unreported compounds, were isolated from Tribulus terrestris. The structures of the saponins were established using 1D and 2D NMR spectroscopy, mass spectrometry, and chemical methods. They were identified as: 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-2α,3β,22α,26-tetrol-12-one (terrestrinin C), 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-22α,26-diol-3,12-dione (terrestrinin D), 26-O-β-d-glucopyranosyl-(25S)-furost-4-en-22α,26-diol-3,6,12-trione (terrestrinin E), 26-O-β-d-glucopyranosyl-(25R)-5α-furostan-3β,22α,26-triol-12-one (terrestrinin F), 26-O-β-d-glucopyranosyl-(25R)-furost-4-en-12β,22α,26-triol-3-one (terrestrinin G), 26-O-β-d-glucopyranosyl-(1→6)-β-d-glucopyranosyl-(25R)-furost-4-en-22α,26-diol-3,12-dione (terrestrinin H), and 24-O-β-d-glucopyranosyl-(25S)-5α-spirostan-3β,24β-diol-12-one-3-O-β-d-glucopyranosyl-(1→4)-β-d-galactopyranoside (terrestrinin I). The isolated compounds were evaluated for their platelet aggregation activities. Three of the known saponins exhibited strong effects on the induction of platelet aggregation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Biodiversity of Terrestrial Vegetation during Past Warm Periods

    Science.gov (United States)

    Davies-Barnard, T.; Valdes, P. J.; Ridgwell, A.

    2016-12-01

    Previous modelling studies of vegetation have generally used a small number of plant functional types to understand how the terrestrial biosphere responds to climate changes. Whilst being useful for understanding first order climate feedbacks, this climate-envelope approach makes a lot of assumptions about past vegetation being very similar to modern. A trait-based method has the advantage for paleo modelling in that there are substantially less assumptions made. In a novel use of the trait-based dynamic vegetation model JeDi, forced with output from climate model HadCM3, we explore past biodiversity and vegetation carbon changes. We use JeDi to model an optimal 2000 combinations of fifteen different traits to enable assessment of the overall level of biodiversity as well as individual growth strategies. We assess the vegetation shifts and biodiversity changes in past greenhouse periods to better understand the impact on the terrestrial biosphere. This work provides original insights into the response of vegetation and terrestrial carbon to climate and hydrological changes in high carbon dioxide climates over time, including during the Late Permian and Cretaceous. We evaluate how the location of biodiversity hotspots and species richness in past greenhouse climates is different to the present day.

  15. TERRESTRIAL EFFECTS OF NEARBY SUPERNOVAE IN THE EARLY PLEISTOCENE

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B. C.; Engler, E. E. [Department of Physics and Astronomy, Washburn University, Topeka, KS 66621 (United States); Kachelrieß, M. [Institutt for fysikk, NTNU, Trondheim (Norway); Melott, A. L. [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045 (United States); Overholt, A. C. [Department of Science and Mathematics, MidAmerica Nazarene University, Olathe, KS 66062 (United States); Semikoz, D. V., E-mail: brian.thomas@washburn.edu [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, F-119 75205 Paris (France)

    2016-07-20

    Recent results have strongly confirmed that multiple supernovae happened at distances of ∼100 pc, consisting of two main events: one at 1.7–3.2 million years ago, and the other at 6.5–8.7 million years ago. These events are said to be responsible for excavating the Local Bubble in the interstellar medium and depositing {sup 60}Fe on Earth and the Moon. Other events are indicated by effects in the local cosmic ray (CR) spectrum. Given this updated and refined picture, we ask whether such supernovae are expected to have had substantial effects on the terrestrial atmosphere and biota. In a first look at the most probable cases, combining photon and CR effects, we find that a supernova at 100 pc can have only a small effect on terrestrial organisms from visible light and that chemical changes such as ozone depletion are weak. However, tropospheric ionization right down to the ground, due to the penetration of ≥TeV CRs, will increase by nearly an order of magnitude for thousands of years, and irradiation by muons on the ground and in the upper ocean will increase twentyfold, which will approximately triple the overall radiation load on terrestrial organisms. Such irradiation has been linked to possible changes in climate and increased cancer and mutation rates. This may be related to a minor mass extinction around the Pliocene-Pleistocene boundary, and further research on the effects is needed.

  16. HOVE-Wedge-Filtering of Geomorphologic Terrestrial Laser Scan Data

    Directory of Open Access Journals (Sweden)

    Helmut Panholzer

    2018-02-01

    Full Text Available Terrestrial laser scanning has become an important surveying technique in many fields such as natural hazard assessment. To analyse earth surface processes, it is useful to generate a digital terrain model originated from laser scan point cloud data. To determine the terrain surface as precisely as possible, it is often necessary to filter out points that do not represent the terrain surface. Examples are vegetation, vehicles, and animals. In mountainous terrain with a small-structured topography, filtering is very difficult. Here, automatic filtering solutions usually designed for airborne laser scan data often lead to unsatisfactory results. In this work, we further develop an existing approach for automated filtering of terrestrial laser scan data, which is based on the assumption that no other surface point can be located in the area above a direct line of sight between scanner and another measured point. By taking into account several environmental variables and a repetitive calculation method, the modified method leads to significantly better results. The root-mean-square-error (RSME for the same test measurement area could be reduced from 5.284 to 1.610. In addition, a new approach for filtering and interpolation of terrestrial laser scanning data is presented using a grid with horizontal and vertical angular data and the measurement length.

  17. Sex ratio variation in the bumblebee Bombus terrestris

    DEFF Research Database (Denmark)

    Duchateau, Marie José; Velthuis, Hayo H. W.; Boomsma, Jacobus Jan

    2004-01-01

    Bombus terrestris, bumblebees, colony development, queen control, reproductive strategies, sex allocation......Bombus terrestris, bumblebees, colony development, queen control, reproductive strategies, sex allocation...

  18. The Circumpolar Biodiversity Monitoring Program Terrestrial Plan

    DEFF Research Database (Denmark)

    Christensen, Tom; Payne, J.; Doyle, M.

    , understand and report on long-term change in Arctic terrestrial ecosystems and biodiversity, and to identify knowledge gaps and priorities. This poster will outline the key management questions the plan aims to address and the proposed nested, multi-scaled approach linking targeted, research based monitoring...... and coastal environments. The CBMP Terrestrial Plan is a framework to focus and coordinate monitoring of terrestrial biodiversity across the Arctic. The goal of the plan is to improve the collective ability of Arctic traditional knowledge (TK) holders, northern communities, and scientists to detect...

  19. Strength and Deformability of Light-toned Layered Deposits Observed by MER Opportunity: Eagle to Erebus Craters

    Science.gov (United States)

    Okubo, C. H.; Schultz, R. A.; Nahm, A. L.

    2007-07-01

    The strength and deformability of light-toned layered deposits are estimated based on measurements of porosity from Microscopic Imager data acquired by MER Opportunity during its traverse from Eagle Crater to Erebus Crater.

  20. The alkaline volcanic rocks of Craters of the Moon National Monument, Idaho and the Columbia Hills of Gusev Crater, Mars

    Science.gov (United States)

    Neakrase, L. D.; Lim, D. S. S.; Haberle, C. W.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Christensen, P. R.

    2016-12-01

    Idaho's Eastern Snake River Plain (ESRP) is host to extensive expressions of basaltic volcanism dominated by non evolved olivine tholeiites (NEOT) with localized occurrences of evolved lavas. Craters of the Moon National Monument (COTM) is a polygenetic lava field comprised of more than 60 lava flows emplaced during 8 eruptive periods spanning the last 15 kyrs. The most recent eruptive period (period A; 2500-2000 yr B.P.) produced flows with total alkali vs. silica classifications spanning basalt to trachyte. Coeval with the emplacement of the COTM period A volcanic pile was the emplacement of the Wapi and King's Bowl NEOT 70 km SSE of COTM along the Great Rift. Previous investigations have determined a genetic link between these two compositionally distinct volcanic centers where COTM compositions can be generated from NEOT melts through complex ascent paths and variable degrees of fractionation and assimilation of lower-middle crustal materials. The Mars Exploration Rover, Spirit, conducted a robotic investigation of Gusev crater from 2004-2010. Spirit was equipped with the Athena science payload enabling the determination of mineralogy (mini-Thermal Emission Spectrometer, Pancam multispectral camera, and Mössbauer spectrometer), bulk chemistry (Alpha Particle X-ray Spectrometer) and context (Pancam and Microscopic Imager). During sol 32 Spirit investigated an olivine basalt named Adirondack, the type specimen for a class of rock that composes much of the plains material within Gusev Crater and embays the Columbia Hills. Following the characterization of the plains material, Spirit departed the plains targeting the Columbia Hills and ascending at Husband Hill. During Spirit's ascent of Husband Hill three additional classes of volcanic rock were identified as distinct by their mini-TES spectra; Wishstone, Backstay and Irvine. These rocks are classified as tephrite, trachy-basalt and basalt, respectively, and are the first alkaline rocks observed on Mars. These

  1. Proceedings of the Geophysical Laboratory/Lawrence Radiation Laboratory Cratering Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Nordyke, Milo D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    1961-10-01

    The geological papers in this morning's session will deal descriptively with surficial features and end products of impact craters caused by meteorite falls. Such items as breccia, structural deformation, normal and inverse stratigraphy, glass (fused rock), and coesite will frequently be mentioned. Meteor and explosion crater data are presented.

  2. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data

    Science.gov (United States)

    Martinot, M.; Besse, S.; Flahaut, J.; Quantin-Nataf, C.; Lozac'h, L.; van Westrenen, W.

    2018-02-01

    Moon Mineralogy Mapper (M3) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M3 data, using a custom-made method for M3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  3. Tectonic and volcanic implications of a cratered seamount off Nicobar Island, Andaman Sea

    Digital Repository Service at National Institute of Oceanography (India)

    KameshRaju, K.A.; Ray, D.; Mudholkar, A.V.; Murty, G.P.S.; Gahalaut, V.K.; Samudrala, K.; Paropkari, A.L.; Ramachandran, R.; SuryaPrakash, L.

    seamount with well-developed crater at the summit was discovered near to the center of the Nicobar swarm. Rock samples collected by TV-guided grab from the seamount crater are dacite, rhyolite and andesite type with a veneer of ferromanganese oxide coating...

  4. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data.

    Science.gov (United States)

    Martinot, M; Besse, S; Flahaut, J; Quantin-Nataf, C; Lozac'h, L; van Westrenen, W

    2018-02-01

    Moon Mineralogy Mapper (M 3 ) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M 3 data, using a custom-made method for M 3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  5. Enhancing Magnetic Interpretation Towards Meteorite Impact Crater at Bukit Bunuh, Perak, Malaysia

    Science.gov (United States)

    Nur Amalina, M. K. A.; Nordiana, M. M.; Saad, Rosli; Saidin, Mokhtar

    2017-04-01

    Bukit Bunuh is the most popular area of suspected meteorite impact crater. In the history of meteorite impact hitting the earth, Bukit Bunuh has complex crater of a rebound zone of positive magnetic anomaly value. This study area was located at Lenggong, Perak of peninsular Malaysia. The crater rim extended 5 km outwards with a clear subdued zone and immediately surround by a positive magnetic residual crater rim zone. A recent study was done to enhance the magnetic interpretation towards meteorite impact crater on this study area. The result obtained is being correlated with boreholes data to determine the range of local magnetic value. For the magnetic survey, the equipment used is Geometric G-856 Proton Precision magnetometers with the aids of other tools such as compass and GPS. In advance, the using of proton precision magnetometer causes it able in measures the magnetic fields separately within interval of second. Also, 18 boreholes are accumulated at study area to enhance the interpretation. The additional boreholes data had successfully described the structure of the impact crater at Bukit Bunuh in detailed where it is an eroded impact crater. Correlations with borehole records enlighten the results acquired from magnetic methods to be more reliable. A better insight of magnetic interpretation of Bukit Bunuh impact crater was done with the aid of geotechnical methods.

  6. Behavioral ecology of American Pikas (Ochotona princeps) at Mono Craters, California: living on the edge

    Science.gov (United States)

    Andrew T. Smith; John D. Nagy; Connie Millar

    2016-01-01

    The behavioral ecology of the American pika (Ochotona princeps) was investigated at a relatively hot south-facing, low-elevation site in the Mono Craters, California, a habitat quite different from the upper montane regions more typically inhabited by this species and where most prior investigations have been conducted. Mono Craters pikas exhibited...

  7. Crater Lake Controls on Volcano Stability: Insights From White Island, New Zealand

    Science.gov (United States)

    Hamling, Ian J.

    2017-11-01

    Many volcanoes around the world host summit crater lakes but their influence on the overall stability of the edifice remains poorly understood. Here I use satellite radar data acquired by TerraSAR-X from early 2015 to July 2017 over White Island, New Zealand, to investigate the interaction of the crater lake and deformation of the surrounding edifice. An eruption in April 2016 was preceded by a period of uplift within the crater floor and drop in the lake level. Modeling of the uplift indicates a shallow source located at ˜100 m depth in the vicinity of the crater lake, likely coinciding with the shallow hydrothermal system. In addition to the drop in the lake level, stress changes induced by the inflation suggest that the pressurization of the shallow hydrothermal system helped promote failure along the edge of the crater lake which collapsed during the eruption. After the eruption, and almost complete removal of the crater lake, large areas of the crater wall and lake edge began moving downslope at rates approaching 400 mm/yr. The coincidence between the rapid increase in the displacement rates and removal of the crater lake suggests that the lake provides a physical control on the stability of the surrounding edifice.

  8. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters.

    Science.gov (United States)

    Adcock, Christopher T; Hausrath, Elisabeth M

    2015-12-01

    Abundant evidence indicates that significant surface and near-surface liquid water has existed on Mars in the past. Evaluating the potential for habitable environments on Mars requires an understanding of the chemical and physical conditions that prevailed in such aqueous environments. Among the geological features that may hold evidence of past environmental conditions on Mars are weathering profiles, such as those in the phosphorus-rich Wishstone-class rocks in Gusev Crater. The weathering profiles in these rocks indicate that a Ca-phosphate mineral has been lost during past aqueous interactions. The high phosphorus content of these rocks and potential release of phosphorus during aqueous interactions also make them of astrobiological interest, as phosphorus is among the elements required for all known life. In this work, we used Mars mission data, laboratory-derived kinetic and thermodynamic data, and data from terrestrial analogues, including phosphorus-rich basalts from Idaho, to model a conceptualized Wishstone-class rock using the reactive transport code CrunchFlow. Modeling results most consistent with the weathering profiles in Wishstone-class rocks suggest a combination of chemical and physical erosion and past aqueous interactions with near-neutral waters. The modeling results also indicate that multiple Ca-phosphate minerals are likely in Wishstone-class rocks, consistent with observations of martian meteorites. These findings suggest that Gusev Crater experienced a near-neutral phosphate-bearing aqueous environment that may have been conducive to life on Mars in the past. Mars-Gusev Crater-Wishstone-Reactive transport modeling-CrunchFlow-Aqueous interactions-Neutral pH-Habitability.

  9. Electron microscope observations of impact crater debris amongst contaminating particulates on materials surfaces exposed in space in low-Earth orbit

    Science.gov (United States)

    Murr, L. E.; Rivas, J. M.; Quinones, S.; Niou, C.-S.; Advani, A. H.; Marquez, B.

    1993-01-01

    Debris particles extracted from a small sampling region on the leading edge of the Long Duration Exposure Facility (LDEF) spacecraft have been examined by analytical transmission electron microscopy and the elemental frequency observed by energy-dispersive X-ray spectrometry and compared with upper atmosphere (Earth) particle elemental frequency and the average elemental compositions of interplanetary dust particles. A much broader elemental distribution was observed for the exposed spacecraft surface debris milieu. Numerous metal microfragment analyses, particularly aluminum and stainless steel, were compared with scanning electron microscope observations-of impact crater features, and the corresponding elemental spectra on selected LDEF aluminium tray clamps and stainless steel bolts. The compositions and melt features for these impact craters and ejecta have been shown to be consistent with microcrystalline debris fragments in the case of aluminum, and these observations suggest an ever changing debris milieu on exposed surfaces for space craft and space system materials.

  10. Mapping nuclear craters on Enewetak Atoll, Marshall Islands

    Science.gov (United States)

    Hampson, John C., Jr.

    1986-01-01

    In 1984, the U.S. Geological Survey conducted a detailed geologic analysis of two nuclear test craters at Enewetak Atoll, Marshall Islands, on behalf of the Defense Nuclear Agency. A multidisciplinary task force mapped the morphology, surface character, and subsurface structure of two craters, OAK and KOA. The field mapping techniques include echo sounding, sidescan sonar imaging, single-channel and multichannel seismic reflection profiling, a seismic refraction survey, and scuba and submersible operations. All operations had to be navigated precisely and correlatable with subsequent drilling and sampling operations. Mapping with a high degree of precision at scales as large as 1:1500 required corrections that often are not considered in marine mapping. Corrections were applied to the bathymetric data for location of the echo- sounding transducer relative to the navigation transponder on the ship and for transducer depth, speed of sound, and tidal variations. Sidescan sonar, single-channel seismic reflection, and scuba and submersible data were correlated in depth and map position with the bathymetric data to provide a precise, internally consistent data set. The multichannel and refraction surveys were conducted independently but compared well with bathymetry. Examples drawn from processing the bathymetric, sidescan sonar, and single- channel reflection data help illustrate problems and procedures in precision mapping.

  11. The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    Science.gov (United States)

    Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; hide

    2014-01-01

    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts

  12. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa

    Science.gov (United States)

    Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.

    2018-03-01

    We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary

  13. Possible climates on terrestrial exoplanets.

    Science.gov (United States)

    Forget, F; Leconte, J

    2014-04-28

    What kind of environment may exist on terrestrial planets around other stars? In spite of the lack of direct observations, it may not be premature to speculate on exoplanetary climates, for instance, to optimize future telescopic observations or to assess the probability of habitable worlds. To begin with, climate primarily depends on (i) the atmospheric composition and the volatile inventory; (ii) the incident stellar flux; and (iii) the tidal evolution of the planetary spin, which can notably lock a planet with a permanent night side. The atmospheric composition and mass depends on complex processes, which are difficult to model: origins of volatiles, atmospheric escape, geochemistry, photochemistry, etc. We discuss physical constraints, which can help us to speculate on the possible type of atmosphere, depending on the planet size, its final distance for its star and the star type. Assuming that the atmosphere is known, the possible climates can be explored using global climate models analogous to the ones developed to simulate the Earth as well as the other telluric atmospheres in the solar system. Our experience with Mars, Titan and Venus suggests that realistic climate simulators can be developed by combining components, such as a 'dynamical core', a radiative transfer solver, a parametrization of subgrid-scale turbulence and convection, a thermal ground model and a volatile phase change code. On this basis, we can aspire to build reliable climate predictors for exoplanets. However, whatever the accuracy of the models, predicting the actual climate regime on a specific planet will remain challenging because climate systems are affected by strong positive feedbacks. They can drive planets with very similar forcing and volatile inventory to completely different states. For instance, the coupling among temperature, volatile phase changes and radiative properties results in instabilities, such as runaway glaciations and runaway greenhouse effect.

  14. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

    Science.gov (United States)

    Grotzinger, J. P.; Gupta, S.; Malin, M. C.; Rubin, D. M.; Schieber, J.; Siebach, K.; Sumner, D. Y.; Stack, K. M.; Vasavada, A. R.; Arvidson, R. E.; Calef, F.; Edgar, L.; Fischer, W. F.; Grant, J. A.; Griffes, J.; Kah, L. C.; Lamb, M. P.; Lewis, K. W.; Mangold, N.; Minitti, M. E.; Palucis, M.; Rice, M.; Williams, R. M. E.; Yingst, R. A.; Blake, D.; Blaney, D.; Conrad, P.; Crisp, J.; Dietrich, W. E.; Dromart, G.; Edgett, K. S.; Ewing, R. C.; Gellert, R.; Hurowitz, J. A.; Kocurek, G.; Mahaffy, P.; McBride, M. J.; McLennan, S. M.; Mischna, M.; Ming, D.; Milliken, R.; Newsom, H.; Oehler, D.; Parker, T. J.; Vaniman, D.; Wiens, R. C.; Wilson, S. A.

    2015-10-01

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).

  15. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars.

    Science.gov (United States)

    Grotzinger, J P; Gupta, S; Malin, M C; Rubin, D M; Schieber, J; Siebach, K; Sumner, D Y; Stack, K M; Vasavada, A R; Arvidson, R E; Calef, F; Edgar, L; Fischer, W F; Grant, J A; Griffes, J; Kah, L C; Lamb, M P; Lewis, K W; Mangold, N; Minitti, M E; Palucis, M; Rice, M; Williams, R M E; Yingst, R A; Blake, D; Blaney, D; Conrad, P; Crisp, J; Dietrich, W E; Dromart, G; Edgett, K S; Ewing, R C; Gellert, R; Hurowitz, J A; Kocurek, G; Mahaffy, P; McBride, M J; McLennan, S M; Mischna, M; Ming, D; Milliken, R; Newsom, H; Oehler, D; Parker, T J; Vaniman, D; Wiens, R C; Wilson, S A

    2015-10-09

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp). Copyright © 2015, American Association for the Advancement of Science.

  16. Brightening and Volatile Distribution Within Shackleton Crater Observed by the LRO Laser Altimeter.

    Science.gov (United States)

    Smith, D. E.; Zuber, M. T.; Head, J. W.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Aharonson, O.; Tye, A. R.; Fassett, C. I.; Rosengurg, M. A.; hide

    2012-01-01

    Shackleton crater, whose interior lies largely in permanent shadow, is of interest due to its potential to sequester volatiles. Observations from the Lunar Orbiter Laser Altimeter onboard the Lunar Reconnaissance Orbiter have enabled an unprecedented topographic characterization, revealing Shackleton to be an ancient, unusually well-preserved simple crater whose interior walls are fresher than its floor and rim. Shackleton floor deposits are nearly the same age as the rim, suggesting little floor deposition since crater formation over 3 billion years ago. At 1064 nm the floor of Shackleton is brighter than the surrounding terrain and the interiors of nearby craters, but not as bright as the interior walls. The combined observations are explainable primarily by downslope movement of regolith on the walls exposing fresher underlying material. The relatively brighter crater floor is most simply explained by decreased space weathering due to shadowing, but a 1-mm-thick layer containing approx 20% surficial ice is an alternative possibility.

  17. Durable terrestrial bedrock predicts submarine canyon formation

    Science.gov (United States)

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  18. Carbon dioxide efficiency of terrestrial enhanced weathering

    OpenAIRE

    Moosdorf, Nils; Renforth, Philip; Hartmann, Jens

    2014-01-01

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimi...

  19. Grazing livestock are exposed to terrestrial cyanobacteria

    OpenAIRE

    McGorum , Bruce C; Pirie , R Scott; Glendinning , Laura; McLachlan , Gerry; Metcalf , James S; Banack , Sandra A; Cox , Paul A; Codd , Geoffrey A

    2015-01-01

    While toxins from aquatic cyanobacteria are a well-recognised cause of disease in birds and animals, exposure of grazing livestock to terrestrial cyanobacteria has not been described. This study identified terrestrial cyanobacteria, predominantly Phormidium spp., in the biofilm of plants from most livestock fields investigated. Lower numbers of other cyanobacteria, microalgae and fungi were present on many plants. Cyanobacterial 16S rDNA, predominantly from Phormidium spp., was detected in al...

  20. Crater relaxation on Titan aided by low thermal conductivity sand infill

    Science.gov (United States)

    Schurmeier, Lauren R.; Dombard, Andrew J.

    2018-05-01

    Titan's few impact craters are currently many hundreds of meters shallower than the depths expected. Assuming these craters initially had depths equal to that of similar-size fresh craters on Ganymede and Callisto (moons of similar size, composition, and target lithology), then some process has shallowed them over time. Since nearly all of Titan's recognized craters are located within the arid equatorial sand seas of organic-rich dunes, where rain is infrequent, and atmospheric sedimentation is expected to be low, it has been suggested that aeolian infill plays a major role in shallowing the craters. Topographic relaxation at Titan's current heat flow was previously assumed to be an unimportant process on Titan due to its low surface temperature (94 K). However, our estimate of the thermal conductivity of Titan's organic-rich sand is remarkably low (0.025 W m-1 K-1), and when in thick deposits, will result in a thermal blanketing effect that can aid relaxation. Here, we simulate the relaxation of Titan's craters Afekan, Soi, and Sinlap including thermal effects of various amounts of sand inside and around Titan's craters. We find that the combination of aeolian infill and subsequent relaxation can produce the current crater depths in a geologically reasonable period of time using Titan's current heat flow. Instead of needing to fill completely the missing volume with 100% sand, only ∼62%, ∼71%, and ∼97%, of the volume need be sand at the current basal heat flux for Afekan, Soi, and Sinlap, respectively. We conclude that both processes are likely at work shallowing these craters, and this finding contributes to why Titan overall lacks impact craters in the arid equatorial regions.

  1. Terrestrial and aquatic mammals of the Pantanal

    Directory of Open Access Journals (Sweden)

    CJR. Alho

    Full Text Available Different works have registered the number of mammal species within the natural habitats of the Pantanal based on currently known records, with species richness ranging from 89 to 152 of annotated occurrences. Our present list sums 174 species. However, at least three factors have to be emphasised to deal with recorded numbers: 1 to establish the ecotone limit between the floodplain (which is the Pantanal and its neighbouring domain like the Cerrado, besides the existence of maps recently produced; 2 the lack of intensive surveys, especially on small mammals, rodents and marsupials; and 3 the constant taxonomic revision on bats, rodents and marsupials. Some species are very abundant - for example the capybara Hydrochoerus hydrochaeris and the crab-eating fox Cerdocyon thous, and some are rare, and others are still intrinsically rare - for example, the bush dog Speothos venaticus. Abundance of species is assumed to reflect ecological resources of the habitat. Local diversity and number of individuals of wild rodents and marsupials also rely on the offering of ecological resources and behavioural specialisation to microhabitat components. A large number of species interact with the type of the vegetation of the habitat, by means of habitat selection through active patterns of ecological behaviour, resulting on dependency on arboreal and forested habitats of the Pantanal. In addition, mammals respond to seasonal shrinking-and-expansion of habitats due to flooding regime of the Pantanal. The highest number of species is observed during the dry season, when there is a considerable expansion of terrestrial habitats, mainly seasonally flooded grassland. Major threats to mammal species are the loss and alteration of habitats due to human intervention, mainly deforestation, unsustainable agricultural and cattle-ranching practices, which convert the natural vegetation into pastures. The Pantanal still harbours about a dozen of species officially listened

  2. Linking animals aloft with the terrestrial landscape

    Science.gov (United States)

    Buler, Jeffrey J.; Barrow, Wylie; Boone, Matthew; Dawson, Deanna K.; Diehl, Robert H.; Moore, Frank R.; Randall, Lori A.; Schreckengost, Timothy; Smolinsky, Jaclyn A.

    2018-01-01

    Despite using the aerosphere for many facets of their life, most flying animals (i.e., birds, bats, some insects) are still bound to terrestrial habitats for resting, feeding, and reproduction. Comprehensive broad-scale observations by weather surveillance radars of animals as they leave terrestrial habitats for migration or feeding flights can be used to map their terrestrial distributions either as point locations (e.g., communal roosts) or as continuous surface layers (e.g., animal densities in habitats across a landscape). We discuss some of the technical challenges to reducing measurement biases related to how radars sample the aerosphere and the flight behavior of animals. We highlight a recently developed methodological approach that precisely and quantitatively links the horizontal spatial structure of birds aloft to their terrestrial distributions and provides novel insights into avian ecology and conservation across broad landscapes. Specifically, we present case studies that (1) elucidate how migrating birds contend with crossing ecological barriers and extreme weather events, (2) identify important stopover areas and habitat use patterns of birds along their migration routes, and (3) assess waterfowl response to wetland habitat management and restoration. These studies aid our understanding of how anthropogenic modification of the terrestrial landscape (e.g., urbanization, habitat management), natural geographic features, and weather (e.g., hurricanes) can affect the terrestrial distributions of flying animals.

  3. Anthropogenic transformation of the terrestrial biosphere.

    Science.gov (United States)

    Ellis, Erle C

    2011-03-13

    Human populations and their use of land have transformed most of the terrestrial biosphere into anthropogenic biomes (anthromes), causing a variety of novel ecological patterns and processes to emerge. To assess whether human populations and their use of land have directly altered the terrestrial biosphere sufficiently to indicate that the Earth system has entered a new geological epoch, spatially explicit global estimates of human populations and their use of land were analysed across the Holocene for their potential to induce irreversible novel transformation of the terrestrial biosphere. Human alteration of the terrestrial biosphere has been significant for more than 8000 years. However, only in the past century has the majority of the terrestrial biosphere been transformed into intensively used anthromes with predominantly novel anthropogenic ecological processes. At present, even were human populations to decline substantially or use of land become far more efficient, the current global extent, duration, type and intensity of human transformation of ecosystems have already irreversibly altered the terrestrial biosphere at levels sufficient to leave an unambiguous geological record differing substantially from that of the Holocene or any prior epoch. It remains to be seen whether the anthropogenic biosphere will be sustained and continue to evolve.

  4. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?

    Science.gov (United States)

    Rode, Karyn D.; Robbins, Charles T.; Nelson, Lynne; Amstrup, Steven C.

    2015-01-01

    Increased land use by polar bears (Ursus maritimus) due to climate-change-induced reduction of their sea-ice habitat illustrates the impact of climate change on species distributions and the difficulty of conserving a large, highly specialized carnivore in the face of this global threat. Some authors have suggested that terrestrial food consumption by polar bears will help them withstand sea-ice loss as they are forced to spend increasing amounts of time on land. Here, we evaluate the nutritional needs of polar bears as well as the physiological and environmental constraints that shape their use of terrestrial ecosystems. Only small numbers of polar bears have been documented consuming terrestrial foods even in modest quantities. Over much of the polar bear's range, limited terrestrial food availability supports only low densities of much smaller, resident brown bears (Ursus arctos), which use low-quality resources more efficiently and may compete with polar bears in these areas. Where consumption of terrestrial foods has been documented, polar bear body condition and survival rates have declined even as land use has increased. Thus far, observed consumption of terrestrial food by polar bears has been insufficient to offset lost ice-based hunting opportunities but can have ecological consequences for other species. Warming-induced loss of sea ice remains the primary threat faced by polar bears.

  5. Po-210 and other radionuclides in terrestrial and freshwater environments

    Energy Technology Data Exchange (ETDEWEB)

    Gjelsvik, Runhild; Brown, Justin [eds.; Norwegian Radiation Protection Authority (Norway); Holm, Elis [Univ. of Lund (Sweden); Roos, Per [Risoe DTU (Denmark); Saxen, Ritva; Outola, Iisa [STUK - Radiation and Nuclear Safety Authority (Finland)

    2009-01-15

    This report provides new information on Po-210 (and where appropriate its grandparent Pb-210) behaviour in environmental systems including humans. This has primarily been achieved through measurements of Po-210 in aquatic and terrestrial environments that has led to the derivation of information on the levels of this radioisotope in plants, animals and the biotic components of their habitat (i.e. water, soil) providing basic information on transfer where practicable. For freshwater environments, Po-210 concentration ratios derived for freshwater benthic fish and bivalve mollusc were substantially different to values collated from earlier review work. For terrestrial environments, activity concentrations of Po-210 in small mammals (although of a preliminary nature because no correction was made for ingrowth from Pb-210) were considerably higher than values derived from earlier data compilations. It was envisaged that data on levels of naturally occurring radionuclides would render underpinning data sets more comprehensive and would thus allow more robust background dose calculations to be performed subsequently. By way of example, unweighted background dose-rates arising from internal distributions of Po-210 were calculated for small mammals in the terrestrial study. The biokinetics of polonium in humans has been studied following chronic and acute oral intakes of selected Po radioisotopes. This work has provided information on gastrointestinal absorption factors and biological retention times thus improving the database upon which committed effective doses to humans are derived. The information generated in the report, in its entirety, should be of direct relevance for both human and non-human impact assessments. (au)

  6. Po-210 and other radionuclides in terrestrial and freshwater environments

    International Nuclear Information System (INIS)

    Gjelsvik, Runhild; Brown, Justin; Roos, Per; Saxen, Ritva; Outola, Iisa

    2009-01-01

    This report provides new information on Po-210 (and where appropriate its grandparent Pb-210) behaviour in environmental systems including humans. This has primarily been achieved through measurements of Po-210 in aquatic and terrestrial environments that has led to the derivation of information on the levels of this radioisotope in plants, animals and the biotic components of their habitat (i.e. water, soil) providing basic information on transfer where practicable. For freshwater environments, Po-210 concentration ratios derived for freshwater benthic fish and bivalve mollusc were substantially different to values collated from earlier review work. For terrestrial environments, activity concentrations of Po-210 in small mammals (although of a preliminary nature because no correction was made for ingrowth from Pb-210) were considerably higher than values derived from earlier data compilations. It was envisaged that data on levels of naturally occurring radionuclides would render underpinning data sets more comprehensive and would thus allow more robust background dose calculations to be performed subsequently. By way of example, unweighted background dose-rates arising from internal distributions of Po-210 were calculated for small mammals in the terrestrial study. The biokinetics of polonium in humans has been studied following chronic and acute oral intakes of selected Po radioisotopes. This work has provided information on gastrointestinal absorption factors and biological retention times thus improving the database upon which committed effective doses to humans are derived. The information generated in the report, in its entirety, should be of direct relevance for both human and non-human impact assessments. (au)

  7. Groundwater and Terrestrial Water Storage

    Science.gov (United States)

    Rodell, Matthew; Chambers, Don P.; Famiglietti, James S.

    2011-01-01

    Most people think of groundwater as a resource, but it is also a useful indicator of climate variability and human impacts on the environment. Groundwater storage varies slowly relative to other non-frozen components of the water cycle, encapsulating long period variations and trends in surface meteorology. On seasonal to interannual timescales, groundwater is as dynamic as soil moisture, and it has been shown that groundwater storage changes have contributed to sea level variations. Groundwater monitoring well measurements are too sporadic and poorly assembled outside of the United States and a few other nations to permit direct global assessment of groundwater variability. However, observational estimates of terrestrial water storage (TWS) variations from the GRACE satellites largely represent groundwater storage variations on an interannual basis, save for high latitude/altitude (dominated by snow and ice) and wet tropical (surface water) regions. A figure maps changes in mean annual TWS from 2009 to 2010, based on GRACE, reflecting hydroclimatic conditions in 2010. Severe droughts impacted Russia and the Amazon, and drier than normal weather also affected the Indochinese peninsula, parts of central and southern Africa, and western Australia. Groundwater depletion continued in northern India, while heavy rains in California helped to replenish aquifers that have been depleted by drought and withdrawals for irrigation, though they are still below normal levels. Droughts in northern Argentina and western China similarly abated. Wet weather raised aquifer levels broadly across western Europe. Rains in eastern Australia caused flooding to the north and helped to mitigate a decade long drought in the south. Significant reductions in TWS seen in the coast of Alaska and the Patagonian Andes represent ongoing glacier melt, not groundwater depletion. Figures plot time series of zonal mean and global GRACE derived non-seasonal TWS anomalies (deviation from the mean of

  8. Changes in Mass Flux of Tephra from the Lava Lake in Overlook Crater, Kīlauea Volcano, Hawai`i

    Science.gov (United States)

    Swanson, D. A.; Orr, T. R.; Patrick, M. R.

    2016-12-01

    The mass flux of tephra (mostly Pele's hair and tears, hollow spherules, and lithic clasts) from the lava lake in Overlook crater varies on short (seconds-minutes), intermediate (hours-days), and long (months) time scales. The tephra is collected almost daily from a network of 10 buckets within 400 m of, and 100-150 m above, the lava lake; bucket locations have not changed during the eruption. A mass accumulation rate (AR) is calculated for the network; since April 2008, the AR averages 0.17 g/m2/h ( 5×10-8 kg/m2/s). The tephra forms during almost constant spattering at the SE sink (the main downwelling site) and ephemeral sites along the crater wall, as well as from sporadic, rockfall-induced violent outgassing that can eject decimeter-size spatter clots onto the crater rim; the average AR excludes these violent events. The rockfalls, and nearly constant raveling from the crater wall, introduce lithic clasts into the tephra. The lithic content of the tephra has decreased with time, reflecting both greater wall stability and higher lake level, and was usually 7 m/s). At intermediate and long time scales, juvenile AR shows no correlation with measured SO2 output and only weak or no correlation with wind speed, but it often tracks the elevation of the lake surface—higher when lava is nearer the buckets. For example, both lava level and juvenile AR were unusually high in January-July 2016. Before 2016, however, 7-9 periods of heightened juvenile production (see figure below), each lasting several months, show no correlation with other monitored parameters—lake level, SO2, wind speed and direction, or downwelling location. Often AR gradually increased to a peak before falling off, sometimes to nearly zero. We speculate that such long-term variations result from changes in magma supply rate, gas concentration, or rise frequency of decoupled gas slugs. These changes may be too small or slow to detect by current geodetic and gas monitoring. They suggest a slowly

  9. High-Resolution Aeromagnetic Survey over the Yucatan Peninsula - Implications for Chicxulub Impact, Secondary Craters and Regional Crustal Structures

    Science.gov (United States)

    Fucugauchi, J. U.; Lopez-Loera, H.; Rebolledo-Vieyra, M.

    2011-12-01

    We present the initial results of a low-altitude high-resolution aeromagnetic study over the Yucatan peninsula. Area surveyed extends from 86W to 91W and 18N to 21N, covering the peninsula and adjacent continental margin of Gulf of Mexico and Caribbean Sea. Aeromagnetic surveys are integrated into a regional map, and regional and residual anomalies are separated using spectral and least-squares methods. For the study, aeromagnetic field was reduced to the pole and several data filtering techniques were used, including first and second vertical derivatives, analytical signal, and upward and downward analytical continuations. The region is characterized by large amplitude broad elongated magnetic anomalies oriented north-south in the northern sector of the continental shelf, and northwest-southeast and northeast-southwest over the western and eastern sides of the peninsula, respectively. Major regional anomalies extend from the continental shelf into the peninsula, whereas other anomaly trends in the central northern sector, at northeast limit of Chicxulub crater, are restricted to the shelf. Largest anomaly on the east extends over the Holbox fracture zone. At its southern end, south of Chetumal a parallel trend extends over the Rio Hondo fault zone between Quintana Roo and Belize. On the western peninsula the anomaly is characterized by two parallel trends offset between Yucatan and Campeche. The central zone of Chicxulub is characterized by a semi-circular anomaly pattern, surrounded by long wavelength small amplitude anomalies extending to the east on the peninsula and shelf, isolated from the regional broad anomalies. To the south of Chicxulub anomaly, there is an elongated low with a central high extending southward from the terrace zone inside the crater rim. The elongated magnetic anomaly correlates with a broad gravity low, which is apparent south of the concentric zone of anomalies. To the north of Chicxulub anomaly, a magnetic high inside the crater is

  10. The origin of Phobos grooves from ejecta launched from impact craters on Mars: Tests of the hypothesis

    Science.gov (United States)

    Ramsley, Kenneth R.; Head, James W.

    2013-01-01

    ejecta from martian impact events and the number of events that are necessary to supply sufficient bulk densities of secondary impactor fragments. On the basis of our analysis, we find that six major predictions of the Murray hypothesis are not consistent with a wide range of Mars ejecta emplacement models and observations as follows: (1) To emplace families of parallel grooves as observed in the most common features (grooves that manifest virtually no positional defects), and to reach the maximum geographic extent of Phobos, grid patterns of ejecta fragments must be produced with nearly identical diameters (often tens of thousands in number) and must launch with virtually zero rates of dispersion (segments that are observed in a region of Phobos that is shadowed from martian ejecta trajectories for flight durations up to 3 h. Where the Murray hypothesis predicts the emplacement of groove families from a single ejecta plume, this strongly suggests that these families of grooves could not have been produced by martian impact ejecta. (4) To reach increasingly westerly locations of Phobos ejecta must travel in space for substantially longer flight times (up to 20X) which would produce substantially lower secondary crater densities on the anti-Mars side of Phobos and observably reduce their pit organization. This is not observed. (5) The largest family of grooves cannot be emplaced by any valid trajectory from Mars in its present day or ancient orbit. (6) If emplaced by grid patterns of ejecta, the irregular topography and small-body radius of Phobos would clearly disrupt groove family linearity and parallelism due to the preponderance of oblique incident angle impacts. However, when viewed from any position, the vast majority of groove families and individual grooves appear to completely avoid the effects of Phobos' morphology. Based on our analysis we conclude that the Murray hypothesis, that many Phobos grooves are formed by intersection of ejecta from craters on Mars, is

  11. Insights and issues with simulating terrestrial DOC loading of Arctic river networks.

    Science.gov (United States)

    Kicklighter, David W; Hayes, Daniel J; McClelland, James W; Peterson, Bruce J; McGuire, A David; Melillo, Jerry M

    2013-12-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  12. Insights and issues with simulating terrestrial DOC loading of Arctic river networks

    Science.gov (United States)

    Kicklighter, David W.; Hayes, Daniel J.; McClelland, James W.; Peterson, Bruce J.; McGuire, A. David; Melillo, Jerry M.

    2013-01-01

    Terrestrial carbon dynamics influence the contribution of dissolved organic carbon (DOC) to river networks in addition to hydrology. In this study, we use a biogeochemical process model to simulate the lateral transfer of DOC from land to the Arctic Ocean via riverine transport. We estimate that, over the 20th century, the pan-Arctic watershed has contributed, on average, 32 Tg C/yr of DOC to river networks emptying into the Arctic Ocean with most of the DOC coming from the extensive area of boreal deciduous needle-leaved forests and forested wetlands in Eurasian watersheds. We also estimate that the rate of terrestrial DOC loading has been increasing by 0.037 Tg C/yr2 over the 20th century primarily as a result of climate-induced increases in water yield. These increases have been offset by decreases in terrestrial DOC loading caused by wildfires. Other environmental factors (CO2 fertilization, ozone pollution, atmospheric nitrogen deposition, timber harvest, agriculture) are estimated to have relatively small effects on terrestrial DOC loading to Arctic rivers. The effects of the various environmental factors on terrestrial carbon dynamics have both offset and enhanced concurrent effects on hydrology to influence terrestrial DOC loading and may be changing the relative importance of terrestrial carbon dynamics on this carbon flux. Improvements in simulating terrestrial DOC loading to pan-Arctic rivers in the future will require better information on the production and consumption of DOC within the soil profile, the transfer of DOC from land to headwater streams, the spatial distribution of precipitation and its temporal trends, carbon dynamics of larch-dominated ecosystems in eastern Siberia, and the role of industrial organic effluents on carbon budgets of rivers in western Russia.

  13. Characterizing dark mantle deposits in the lunar crater Alphonsus

    Science.gov (United States)

    Shkuratov, Y. G.; Ivanov, M. A.; Korokhin, V. V.; Kaydash, V. G.; Basilevsky, A. T.; Videen, G.; Hradyska, L. V.; Velikodsky, Y. I.; Marchenko, G. P.

    2018-04-01

    We analyze available remote-sensing data of the crater Alphonsus, focusing on the analysis of the crater's dark mantle deposits (DMDs), which includes images from NASA Clementine and Lunar Reconnaissance Orbiter (LRO), Japanese Selene (Kaguya), and Indian Chandrayaan-1 missions. The Alphonsus DMDs are gentle-sloped flat hills with typical heights of several meters, which are presented with pyroclastic materials. Our determination of the absolute ages of the Alphonsus DMDs by the technique of crater size-frequency distributions shows that they are ∼200-400 m.y. old. However, being geologically young, the Alphonsus DMDs are not seen in OMAT maps. The DMDs have noticeably lower content of TiO2 (2-3%) than the mare regions to the west (>4%). The assessment of total pyroxene shows it has a higher abundance in the DMDs, although LRO Diviner measurements of the Chirstiansen feature suggest, rather, a high abundance of olivine. The DMDs pyroclastic material has no signs of OH/H2O compounds. We may suggest that this characteristic of the DMDs either relates to their impact reworking and loss of the OH/H2O compounds or to the non-water volatiles as the driving agent of the pyroclastic activity. The compositional assessments of the DMDs may be flawed from contamination with the surrounding material due to horizontal and vertical transportation due to impacts. This effect probably can be observed in LROC NAC images of high resolution. A very dark material outcropping on the slopes of the vent depression is seen due to renovation of the regolith on the steep walls of the depression. Thus, at smaller phase angles, the pyroclastic material is dark and at larger phase angles it appears almost like the surrounding material. This means that the phase dependence of the outcropping dark material is shallow; i.e. the dark surface is smoother than its surroundings. This may suggest venting of gases resulting in fluidization of the granular pyroclastic material of the deposit.

  14. Characterizing Volcanic Processes using Near-bottom, High Resolution Magnetic Mapping of the Caldera and Inner Crater of the Kick'em Jenny Submarine Volcano

    Science.gov (United States)

    Ruchala, T. L.; Chen, M.; Tominaga, M.; Carey, S.

    2016-12-01

    Kick'em Jenny (KEJ) is an active submarine volcano located in the Lesser Antilles subduction zone, 7.5 km north of the Caribbean island Grenada. KEJ, known as one of the most explosive volcanoes in Caribbean, erupted 12 times since 1939 with recent eruptions in 2001 and possibly in 2015. Multiple generations of submarine landslides and canyons have been observed in which some of them can be attributed to past eruptions. The structure of KEJ can be characterized as a 1300 m high conical profile with its summit crater located around 180 m in depth. Active hydrothermal venting and dominantly CO2 composition gas seepage take place inside this 250m diameter crater, with the most activity occurring primarily within a small ( 70 x 110 m) depression zone (inner crater). In order to characterize the subsurface structure and decipher the processes of this volcanic system, the Nautilus NA054 expedition in 2014 deployed the underwater Remotely Operated Vehicle (ROV) Hercules to conduct near-bottom geological observations and magnetometry surveys transecting KEJ's caldera. Raw magnetic data was corrected for vehicle induced magnetic noise, then merged with ROV to ship navigation at 1 HZ. To extract crustal magnetic signatures, the reduced magnetic data was further corrected for external variations such as the International Geomagnetic Reference Field and diurnal variations using data from the nearby San Juan Observatory. We produced a preliminary magnetic anomaly map of KEJ's caldera for subsequent inversion and forward modeling to delineate in situ magnetic source distribution in understanding volcanic processes. We integrated the magnetic characterization of the KEJ craters with shipboard multibeam, ROV visual descriptions, and photomosaics. Initial observations show the distribution of short wavelength scale highly magnetized source centered at the north western part of the inner crater. Although locations of gas seeps are ubiquitous over the inner crater area along ROV

  15. Leakage of active crater lake brine through the north flank at Rincon de la Vieja volcano, northwest Costa Rica, and implications for crater collapse

    Science.gov (United States)

    Kempter, K.A.; Rowe, G.L.

    2000-01-01

    The Active Crater at Rincon de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincon de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams. Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincon de la Vieja volcano: acid chloride-sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH ~ 0) chloride-sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2-1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincon

  16. The Effects of Topography on Time Domain Controlled-Source Electromagnetic Data as it Applies to Impact Crater Sites

    Science.gov (United States)

    Hickey, M. S.

    2008-05-01

    Controlled-source electromagnetic geophysical methods provide a noninvasive means of characterizing subsurface structure. In order to properly model the geologic subsurface with a controlled-source time domain electromagnetic (TDEM) system in an extreme topographic environment we must first see the effects of topography on the forward model data. I run simulations using the Texas A&M University (TAMU) finite element (FEM) code in which I include true 3D topography. From these models we see the limits of how much topography we can include before our forward model can no longer give us accurate data output. The simulations are based on a model of a geologic half space with no cultural noise and focus on topography changes associated with impact crater sites, such as crater rims and central uplift. Several topographical variations of the model are run but the main constant is that there is only a small conductivity change on the range of 10-1 s/m between the host medium and the geologic body within. Asking the following questions will guide us through determining the limits of our code: What is the maximum step we can have before we see fringe effects in our data? At what location relative to the body does the topography cause the most effect? After we know the limits of the code we can develop new methods to increase the limits that will allow us to better image the subsurface using TDEM in extreme topography.

  17. Internal Representation and Memory Formation of Odor Preference Based on Oscillatory Activities in a Terrestrial Slug

    Science.gov (United States)

    Sekiguchi, Tatsuhiko; Furudate, Hiroyuki; Kimura, Tetsuya

    2010-01-01

    The terrestrial slug "Limax" exhibits a highly developed ability to learn odors with a small nervous system. When a fluorescent dye, Lucifer Yellow (LY), is injected into the slug's body cavity after odor-taste associative conditioning, a group of neurons in the procerebral (PC) lobe, an olfactory center of the slug, is labeled by LY. We examined…

  18. Incorporation of microplastics from litter into burrows of Lumbricus terrestris.

    Science.gov (United States)

    Huerta Lwanga, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A; Geissen, Violette

    2017-01-01

    Pollution caused by plastic debris is an urgent environmental problem. Here, we assessed the effects of microplastics in the soil surface litter on the formation and characterization of burrows built by the anecic earthworm Lumbricus terrestris in soil and quantified the amount of microplastics that was transported and deposited in L. terrestris burrows. Worms were exposed to soil surface litter treatments containing microplastics (Low Density Polyethylene) for 2 weeks at concentrations of 0%, 7%, 28%, 45% and 60%. The latter representing environmentally realistic concentrations found in hot spot soil locations. There were significantly more burrows found when soil was exposed to the surface treatment composed of 7% microplastics than in all other treatments. The highest amount of organic matter in the walls of the burrows was observed after using the treatments containing 28 and 45% microplastics. The highest microplastic bioturbation efficiency ratio (total microplastics (mg) in burrow walls/initial total surface litter microplastics (mg)) was found using the concentration of 7% microplastics, where L. terrestris introduced 73.5% of the surface microplastics into the burrow walls. The highest burrow wall microplastic content per unit weight of soil (11.8 ± 4.8 g kg- 1 ) was found using a concentration of 60% microplastics. L. terrestris was responsible for size-selective downward transport when exposed to concentrations of 7, 28 and 45% microplastics in the surface litter, as the fraction ≤50 μm microplastics in burrow walls increased by 65% compared to this fraction in the original surface litter plastic. We conclude that the high biogenic incorporation rate of the small-fraction microplastics from surface litter into burrow walls causes a risk of leaching through preferential flow into groundwater bodies. Furthermore, this leaching may have implications for the subsequent availability of microplastics to terrestrial organisms or for the transport

  19. Mars Hand Lens Imager (MAHLI) Efforts and Observations at the Rocknest Eolian Sand Shadow in Curiosity's Gale Crater Field Site

    Science.gov (United States)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Goetz, W.; Kah, L. C.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Beegle, L. W.; hide

    2013-01-01

    The Mars Science Laboratory (MSL) mission is focused on assessing the past or present habitability of Mars, through interrogation of environment and environmental records at the Curiosity rover field site in Gale crater. The MSL team has two methods available to collect, process and deliver samples to onboard analytical laboratories, the Chemistry and Mineralogy instrument (CheMin) and the Sample Analysis at Mars (SAM) instrument suite. One approach obtains samples by drilling into a rock, the other uses a scoop to collect loose regolith fines. Scooping was planned to be first method performed on Mars because materials could be readily scooped multiple times and used to remove any remaining, minute terrestrial contaminants from the sample processing system, the Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA). Because of this cleaning effort, the ideal first material to be scooped would consist of fine to very fine sand, like the interior of the Serpent Dune studied by the Mars Exploration Rover (MER) Spirit team in 2004 [1]. The MSL team selected a linear eolian deposit in the lee of a group of cobbles they named Rocknest (Fig. 1) as likely to be similar to Serpent Dune. Following the definitions in Chapter 13 of Bagnold [2], the deposit is termed a sand shadow. The scooping campaign occurred over approximately 6 weeks in October and November 2012. To support these activities, the Mars Hand Lens Imager (MAHLI) acquired images for engineering support/assessment and scientific inquiry.

  20. Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars

    Science.gov (United States)

    Archer, Paul Douglas; Franz, Heather B.; Sutter, Brad; Arevalo, Ricardo D.; Coll, Patrice; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Jones, John J.; Leshin, Laurie A.; Mahaffy, Paul R.; McAdam, Amy C.; McKay, Christopher P.; Ming, Douglas W.; Morris, Richard V.; Navarro-González, Rafael; Niles, Paul B.; Pavlov, Alex; Squyres, Steven W.; Stern, Jennifer C.; Steele, Andrew; Wray, James J.

    2014-01-01

    The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity detected evolved gases during thermal analysis of soil samples from the Rocknest aeolian deposit in Gale Crater. Major species detected (in order of decreasing molar abundance) were H2O, SO2, CO2, and O2, all at the µmol level, with HCl, H2S, NH3, NO, and HCN present at the tens to hundreds of nmol level. We compute weight % numbers for the major gases evolved by assuming a likely source and calculate abundances between 0.5 and 3 wt.%. The evolution of these gases implies the presence of both oxidized (perchlorates) and reduced (sulfides or H-bearing) species as well as minerals formed under alkaline (carbonates) and possibly acidic (sulfates) conditions. Possible source phases in the Rocknest material are hydrated amorphous material, minor clay minerals, and hydrated perchlorate salts (all potential H2O sources), carbonates (CO2), perchlorates (O2 and HCl), and potential N-bearing materials (e.g., Martian nitrates, terrestrial or Martian nitrogenated organics, ammonium salts) that evolve NH3, NO, and/or HCN. We conclude that Rocknest materials are a physical mixture in chemical disequilibrium, consistent with aeolian mixing, and that although weathering is not extensive, it may be ongoing even under current Martian surface conditions.

  1. Implications of Uncertainty in Fossil Fuel Emissions for Terrestrial Ecosystem Modeling

    Science.gov (United States)

    King, A. W.; Ricciuto, D. M.; Mao, J.; Andres, R. J.

    2017-12-01

    Given observations of the increase in atmospheric CO2, estimates of anthropogenic emissions and models of oceanic CO2 uptake, one can estimate net global CO2 exchange between the atmosphere and terrestrial ecosystems as the residual of the balanced global carbon budget. Estimates from the Global Carbon Project 2016 show that terrestrial ecosystems are a growing sink for atmospheric CO2 (averaging 2.12 Gt C y-1 for the period 1959-2015 with a growth rate of 0.03 Gt C y-1 per year) but with considerable year-to-year variability (standard deviation of 1.07 Gt C y-1). Within the uncertainty of the observations, emissions estimates and ocean modeling, this residual calculation is a robust estimate of a global terrestrial sink for CO2. A task of terrestrial ecosystem science is to explain the trend and variability in this estimate. However, "within the uncertainty" is an important caveat. The uncertainty (2σ; 95% confidence interval) in fossil fuel emissions is 8.4% (±0.8 Gt C in 2015). Combined with uncertainty in other carbon budget components, the 2σ uncertainty surrounding the global net terrestrial ecosystem CO2 exchange is ±1.6 Gt C y-1. Ignoring the uncertainty, the estimate of a general terrestrial sink includes 2 years (1987 and 1998) in which terrestrial ecosystems are a small source of CO2 to the atmosphere. However, with 2σ uncertainty, terrestrial ecosystems may have been a source in as many as 18 years. We examine how well global terrestrial biosphere models simulate the trend and interannual variability of the global-budget estimate of the terrestrial sink within the context of this uncertainty (e.g., which models fall outside the 2σ uncertainty and in what years). Models are generally capable of reproducing the trend in net terrestrial exchange, but are less able to capture interannual variability and often fall outside the 2σ uncertainty. The trend in the residual carbon budget estimate is primarily associated with the increase in atmospheric CO2

  2. Basaltic rocks analyzed by the Spirit rover in Gusev crater

    Science.gov (United States)

    McSween, H.Y.; Arvidson, R. E.; Bell, J.F.; Blaney, D.; Cabrol, N.A.; Christensen, P.R.; Clark, B. C.; Crisp, J.A.; Crumpler, L.S.; Des Marias, D.J.; Farmer, J.D.; Gellert, Ralf; Ghosh, A.; Gorevan, S.; Graff, T.; Grant, J.; Haskin, L.A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.L.; Klingelhoefer, G.; Knudson, A.T.; McLennan, S.; Milam, K.A.; Moersch, J.E.; Morris, R.V.; Rieder, R.; Ruff, S.W.; De Souza, P.A.; Squyres, S. W.; Wanke, H.; Wang, A.; Wyatt, M.B.; Yen, A.; Zipfel, J.

    2004-01-01

    The Spirit landing site in Gusev Crater on Mars contains dark, fine-grained, vesicular rocks interpreted as lavas. Pancam and Mini-Thermal Emission Spectrometer (Mini-TES) spectra suggest that all of these rocks are similar but have variable coatings and dust mantles. Magnified images of brushed and abraded rock surfaces show alteration rinds and veins. Rock interiors contain ???25% megacrysts. Chemical analyses of rocks by the Alpha Particle X-ray Spectrometer are consistent with picritic basalts, containing normative olivine, pyroxenes, plagioclase, and accessory FeTi oxides. Mo??ssbauer, Pancam, and Mini-TES spectra confirm the presence of olivine, magnetite, and probably pyroxene. These basalts extend the known range of rock compositions composing the martian crust.

  3. Mars methane detection and variability at Gale crater

    Science.gov (United States)

    Webster, Christopher R.; Mahaffy, Paul R.; Atreya, Sushil K.; Flesch, Gregory J.; Mischna, Michael A.; Meslin, Pierre-Yves; Farley, Kenneth A.; Conrad, Pamela G.; Christensen, Lance E.; Pavlov, Alexander A.; Martín-Torres, Javier; Zorzano, María-Paz; McConnochie, Timothy H.; Owen, Tobias; Eigenbrode, Jennifer L.; Glavin, Daniel P.; Steele, Andrew; Malespin, Charles A.; Archer, P. Douglas; Sutter, Brad; Coll, Patrice; Freissinet, Caroline; McKay, Christopher P.; Moores, John E.; Schwenzer, Susanne P.; Bridges, John C.; Navarro-Gonzalez, Rafael; Gellert, Ralf; Lemmon, Mark T.; MSL Science Team; Abbey, William; Achilles, Cherie; Agard, Christophe; Alexandre Alves Verdasca, José; Anderson, Dana; Anderson, Robert C.; Anderson, Ryan B.; Appel, Jan Kristoffer; Archer, Paul Douglas; Arevalo, Ricardo; Armiens-Aparicio, Carlos; Arvidson, Raymond; Atlaskin, Evgeny; Atreya, Andrew Sushil; Azeez, Aubrey Sherif; Baker, Burt; Baker, Michael; Balic-Zunic, Tonci; Baratoux, David; Baroukh, Julien; Barraclough, Bruce; Battalio, Michael; Beach, Michael; Bean, Keri; Beck, Pierre; Becker, Richard; Beegle, Luther; Behar, Alberto; Belgacem, Inès; Bell, James F., III; Bender, Steven; Benna, Mehdi; Bentz, Jennifer; Berger, Jeffrey; Berger, Thomas; Berlanga, Genesis; Berman, Daniel; Bish, David; Blacksberg, Jordana; Blake, David F.; José Blanco, Juan; Blaney, Ávalos Diana; Blank, Jennifer; Blau, Hannah; Bleacher, Lora; Boehm, Eckart; Bonnet, Jean-Yves; Botta, Oliver; Böttcher, Stephan; Boucher, Thomas; Bower, Hannah; Boyd, Nick; Boynton, William; Braswell, Shaneen; Breves, Elly; Bridges, John C.; Bridges, Nathan; Brinckerhoff, William; Brinza, David; Bristow, Thomas; Brunet, Claude; Brunner, Anna; Brunner, Will; Buch, Arnaud; Bullock, Mark; Burmeister, Sönke; Burton, John; Buz, Jennifer; Cabane, Michel; Calef, Fred; Cameron, James; Campbell, John L.; Cantor, Bruce; Caplinger, Michael; Clifton, Carey, Jr.; Caride Rodríguez, Javier; Carmosino, Marco; Carrasco Blázquez, Isaías; Cavanagh, Patrick; Charpentier, Antoine; Chipera, Steve; Choi, David; Christensen, Lance; Clark, Benton; Clegg, Sam; Cleghorn, Timothy; Cloutis, Ed; Cody, George; Coll, Patrice; Coman, Ecaterina I.; Conrad, Pamela; Coscia, David; Cousin, Agnès; Cremers, David; Crisp, Joy A.; Cropper, Kevin; Cros, Alain; Cucinotta, Francis; d'Uston, Claude; Davis, Scott; Day, Mackenzie; Daydou, Yves; DeFlores, Lauren; Dehouck, Erwin; Delapp, Dorothea; DeMarines, Julia; Dequaire, Tristan; Des Marais, David; Desrousseaux, Roch; Dietrich, William; Dingler, Robert; Domagal-Goldman, Shawn; Donny, Christophe; Downs, Robert; Drake, Darrell; Dromart, Gilles; Dupont, Audrey; Duston, Brian; Dworkin, Jason P.; Dyar, M. Darby; Edgar, Lauren; Edgett, Kenneth; Edwards, Christopher S.; Edwards, Laurence; Edwards, Peter; Ehlmann, Bethany; Ehresmann, Bent; Eigenbrode, Jennifer; Elliott, Beverley; Elliott, Harvey; Ewing, Ryan; Fabre, Cécile; Fairén, Alberto; Fairén, Alberto; Farley, Kenneth; Farmer, Jack; Fassett, Caleb; Favot, Laurent; Fay, Donald; Fedosov, Fedor; Feldman, Jason; Fendrich, Kim; Fischer, Erik; Fisk, Martin; Fitzgibbon, Mike; Flesch, Gregory; Floyd, Melissa; Flückiger, Lorenzo; Forni, Olivier; Fox, Valerie; Fraeman, Abigail; Francis, Raymond; François, Pascaline; Franz, Heather; Freissinet, Caroline; French, Katherine Louise; Frydenvang, Jens; Garvin, James; Gasnault, Olivier; Geffroy, Claude; Gellert, Ralf; Genzer, Maria; Getty, Stephanie; Glavin, Daniel; Godber, Austin; Goesmann, Fred; Goetz, Walter; Golovin, Dmitry; Gómez Gómez, Felipe; Gómez-Elvira, Javier; Gondet, Brigitte; Gordon, Suzanne; Gorevan, Stephen; Graham, Heather; Grant, John; Grinspoon, David; Grotzinger, John; Guillemot, Philippe; Guo, Jingnan; Gupta, Sanjeev; Guzewich, Scott; Haberle, Robert; Halleaux, Douglas; Hallet, Bernard; Hamilton, Victoria; Hand, Kevin; Hardgrove, Craig; Hardy, Keian; Harker, David; Harpold, Daniel; Harri, Ari-Matti; Harshman, Karl; Hassler, Donald; Haukka, Harri; Hayes, Alexander; Herkenhoff, Kenneth; Herrera, Paul; Hettrich, Sebastian; Heydari, Ezat; Hipkin, Victoria; Hoehler, Tori; Hollingsworth, Jeff; Hudgins, Judy; Huntress, Wesley; Hurowitz, Joel; Hviid, Stubbe; Iagnemma, Karl; Indyk, Stephen; Israël, Guy; Jackson, Ryan Steele; Jacob, Samantha; Jakosky, Bruce; Jean-Rigaud, Laurent; Jensen, Elsa; Kløvgaard Jensen, Jaqueline; Johnson, Jeffrey R.; Johnson, Micah; Johnstone, Stephen; Jones, Andrea; Jones, John H.; Joseph, Jonathan; Joulin, Mélissa; Jun, Insoo; Kah, Linda C.; Kahanpää, Henrik; Kahre, Melinda; Kaplan, Hannah; Karpushkina, Natalya; Kashyap, Srishti; Kauhanen, Janne; Keely, Leslie; Kelley, Simon; Kempe, Fabian; Kemppinen, Osku; Kennedy, Megan R.; Keymeulen, Didier; Kharytonov, Alexander; Kim, Myung-Hee; Kinch, Kjartan; King, Penelope; Kirk, Randolph; Kirkland, Laurel; Kloos, Jacob; Kocurek, Gary; Koefoed, Asmus; Köhler, Jan; Kortmann, Onno; Kotrc, Benjamin; Kozyrev, Alexander; Krau, Johannes; Krezoski, ß. Gillian; Kronyak, Rachel; Krysak, Daniel; Kuzmin, Ruslan; Lacour, Jean-Luc; Lafaille, Vivian; Langevin, Yves; Lanza, Nina; Lapôtre, Mathieu; Larif, Marie-France; Lasue, Jérémie; Le Deit, Laetitia; Le Mouélic, Stéphane; Lee, Ella Mae; Lee, Qiu-Mei; Lee, Rebekka; Lees, David; Lefavor, Matthew; Lemmon, Mark; Lepinette, Alain; Lepore, Malvitte Kate; Leshin, Laurie; Léveillé, Richard; Lewin, Éric; Lewis, Kevin; Li, Shuai; Lichtenberg, Kimberly; Lipkaman, Leslie; Lisov, Denis; Little, Cynthia; Litvak, Maxim; Liu, Lu; Lohf, Henning; Lorigny, Eric; Lugmair, Günter; Lundberg, Angela; Lyness, Eric; Madsen, Morten Bo; Magee, Angela; Mahaffy, Paul; Maki, Justin; Mäkinen, Teemu; Malakhov, Alexey; Malespin, Charles; Malin, Michael; Mangold, Nicolas; Manhes, Gerard; Manning, Heidi; Marchand, Geneviève; Marín Jiménez, Mercedes; Martín García, César; Martin, David K.; Martin, Mildred; Martin, Peter; Martínez Martínez, Germán; Martínez-Frías, Jesús; Martín-Sauceda, Jaime; Martín-Soler, Martín Javier; Martín-Torres, F. Javier; Mason, Emily; Matthews, Tristan; Matthiä, Daniel; Mauchien, Patrick; Maurice, Sylvestre; McAdam, Amy; McBride, Marie; McCartney, Elaina; McConnochie, Timothy; McCullough, Emily; McEwan, Ian; McKay, Christopher; McLain, Hannah; McLennan, Scott; McNair, Sean; Melikechi, Noureddine; Mendaza de Cal, Teresa; Merikallio, Sini; Merritt, Sean; Meslin, Pierre-Yves; Meyer, Michael; Mezzacappa, Alissa; Milkovich, Sarah; Millan, Maëva; Miller, Hayden; Miller, Kristen; Milliken, Ralph; Ming, Douglas; Minitti, Michelle; Mischna, Michael; Mitchell, Julie; Mitrofanov, Igor; Moersch, Jeffrey; Mokrousov, Maxim; Molina, Antonio; Moore, Jurado Casey; Moores, John E.; Mo