WorldWideScience

Sample records for small subunit final

  1. Role of the Rubisco small subunit. Final report for period May 1, 1997--April 30,2000

    Energy Technology Data Exchange (ETDEWEB)

    Spreitzer, Robert J.

    2000-10-04

    CO{sub 2} and O{sub 2} are mutually competitive at the active site of ribulose-1,5-biphosphate (RuBP) carboxylase/oxygenase (Rubisco). Rubisco contains two subunits, each present in eight copies. The 15-kD small subunit is coded by a family of nuclear RbcS genes. Until now, the role of the small subunit in Rubisco structure or catalytic efficiency is not known. Because of other work in eliminating the two RbcS genes in the green algo Chlamydomonas reinhardtii, it is now possible to address questions about the structure-function relationships of the eukaryotic small subunit. There are three specific aims in this project: (1) Alanine scanning mutagenesis is being used to dissect the importance of the {beta}A/{beta}B loop, a feature unique to the eukaryotic small subunit. (2) Random mutagenesis is being used to identify additional residues or regions of the small subunit that are important for holoenzyme assembly and function. (3) Attempts are being made to express foreign small subunits in Chlamydomonas to examine the contribution of small subunits to holoenzyme assembly, catalytic efficiency, and CO{sub 2}/O{sub 2} specificity.

  2. Role of the Rubisco Small Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Spreitzer, Robert Joseph [Univ. of Nebraska, Lincoln, NE (United States)

    2016-11-05

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of CO2 fixation in photosynthesis. However, it is a slow enzyme, and O2 competes with CO2 at the active site. Oxygenation initiates the photorespiratory pathway, which also results in the loss of CO2. If carboxylation could be increased or oxygenation decreased, an increase in net CO2 fixation would be realized. Because Rubisco provides the primary means by which carbon enters all life on earth, there is much interest in engineering Rubisco to increase the production of food and renewable energy. Rubisco is located in the chloroplasts of plants, and it is comprised of two subunits. Much is known about the chloroplast-gene-encoded large subunit (rbcL gene), which contains the active site, but much less is known about the role of the nuclear-gene-encoded small subunit in Rubisco function (rbcS gene). Both subunits are coded by multiple genes in plants, which makes genetic engineering difficult. In the eukaryotic, green alga Chlamydomonas reinhardtii, it has been possible to eliminate all the Rubisco genes. These Rubisco-less mutants can be maintained by providing acetate as an alternative carbon source. In this project, focus has been placed on determining whether the small subunit might be a better genetic-engineering target for improving Rubisco. Analysis of a variable-loop structure (βA-βB loop) of the small subunit by genetic selection, directed mutagenesis, and construction of chimeras has shown that the small subunit can influence CO2/O2 specificity. X-ray crystal structures of engineered chimeric-loop enzymes have indicated that additional residues and regions of the small subunit may also contribute to Rubisco function. Structural dynamics of the small-subunit carboxyl terminus was also investigated. Alanine-scanning mutagenesis of the most-conserved small-subunit residues has identified a

  3. Highly conserved small subunit residues influence rubisco large subunit catalysis.

    Science.gov (United States)

    Genkov, Todor; Spreitzer, Robert J

    2009-10-30

    The chloroplast enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the rate-limiting step of photosynthetic CO(2) fixation. With a deeper understanding of its structure-function relationships and competitive inhibition by O(2), it may be possible to engineer an increase in agricultural productivity and renewable energy. The chloroplast-encoded large subunits form the active site, but the nuclear-encoded small subunits can also influence catalytic efficiency and CO(2)/O(2) specificity. To further define the role of the small subunit in Rubisco function, the 10 most conserved residues in all small subunits were substituted with alanine by transformation of a Chlamydomonas reinhardtii mutant that lacks the small subunit gene family. All the mutant strains were able to grow photosynthetically, indicating that none of the residues is essential for function. Three of the substitutions have little or no effect (S16A, P19A, and E92A), one primarily affects holoenzyme stability (L18A), and the remainder affect catalysis with or without some level of associated structural instability (Y32A, E43A, W73A, L78A, P79A, and F81A). Y32A and E43A cause decreases in CO(2)/O(2) specificity. Based on the x-ray crystal structure of Chlamydomonas Rubisco, all but one (Glu-92) of the conserved residues are in contact with large subunits and cluster near the amino- or carboxyl-terminal ends of large subunit alpha-helix 8, which is a structural element of the alpha/beta-barrel active site. Small subunit residues Glu-43 and Trp-73 identify a possible structural connection between active site alpha-helix 8 and the highly variable small subunit loop between beta-strands A and B, which can also influence Rubisco CO(2)/O(2) specificity.

  4. Photoinduced reduction of the medial FeS center in the hydrogenase small subunit HupS from Nostoc punctiforme.

    Science.gov (United States)

    Raleiras, Patrícia; Hammarström, Leif; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2015-07-01

    The small subunit from the NiFe uptake hydrogenase, HupSL, in the cyanobacterium Nostoc punctiforme ATCC 29133, has been isolated in the absence of the large subunit (P. Raleiras, P. Kellers, P. Lindblad, S. Styring, A. Magnuson, J. Biol. Chem. 288 (2013) 18,345-18,352). Here, we have used flash photolysis to reduce the iron-sulfur clusters in the isolated small subunit, HupS. We used ascorbate as electron donor to the photogenerated excited state of Ru(II)-trisbipyridine (Ru(bpy)3), to generate Ru(I)(bpy)3 as reducing agent. Our results show that the isolated small subunit can be reduced by the Ru(I)(bpy)3 generated through flash photolysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. In Search of Small Molecule Inhibitors Targeting the Flexible CK2 Subunit Interface

    Directory of Open Access Journals (Sweden)

    Benoît Bestgen

    2017-02-01

    Full Text Available Protein kinase CK2 is a tetrameric holoenzyme composed of two catalytic (α and/or α’ subunits and two regulatory (β subunits. Crystallographic data paired with fluorescence imaging techniques have suggested that the formation of the CK2 holoenzyme complex within cells is a dynamic process. Although the monomeric CK2α subunit is endowed with a constitutive catalytic activity, many of the plethora of CK2 substrates are exclusively phosphorylated by the CK2 holoenzyme. This means that the spatial and high affinity interaction between CK2α and CK2β subunits is critically important and that its disruption may provide a powerful and selective way to block the phosphorylation of substrates requiring the presence of CK2β. In search of compounds inhibiting this critical protein–protein interaction, we previously designed an active cyclic peptide (Pc derived from the CK2β carboxy-terminal domain that can efficiently antagonize the CK2 subunit interaction. To understand the functional significance of this interaction, we generated cell-permeable versions of Pc, exploring its molecular mechanisms of action and the perturbations of the signaling pathways that it induces in intact cells. The identification of small molecules inhibitors of this critical interaction may represent the first-choice approach to manipulate CK2 in an unconventional way.

  6. Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Kazak, L; Wood, S R; Mao, C C; Fearnley, I M; Walker, J E; Holt, I J

    2012-07-01

    The bacterial homologue of C4orf14, YqeH, has been linked to assembly of the small ribosomal subunit. Here, recombinant C4orf14 isolated from human cells, co-purified with the small, 28S subunit of the mitochondrial ribosome and the endogenous protein co-fractionated with the 28S subunit in sucrose gradients. Gene silencing of C4orf14 specifically affected components of the small subunit, leading to decreased protein synthesis in the organelle. The GTPase of C4orf14 was critical to its interaction with the 28S subunit, as was GTP. Therefore, we propose that C4orf14, with bound GTP, binds to components of the 28S subunit facilitating its assembly, and GTP hydrolysis acts as the release mechanism. C4orf14 was also found to be associated with human mitochondrial nucleoids, and C4orf14 gene silencing caused mitochondrial DNA depletion. In vitro C4orf14 is capable of binding to DNA. The association of C4orf14 with mitochondrial translation factors and the mitochondrial nucleoid suggests that the 28S subunit is assembled at the mitochondrial nucleoid, enabling the direct transfer of messenger RNA from the nucleoid to the ribosome in the organelle.

  7. Late-assembly of human ribosomal protein S20 in the cytoplasm is essential for the functioning of the small subunit ribosome

    International Nuclear Information System (INIS)

    Tai, Lin-Ru; Chou, Chang-Wei; Wu, Jing-Ying; Kirby, Ralph; Lin, Alan

    2013-01-01

    Using immuno-fluorescent probing and Western blotting analysis, we reveal the exclusive cytoplasm nature of the small subunit ribosomal protein S20. To illustrate the importance of the cellular compartmentation of S20 to the function of small subunit 40S, we created a nuclear resident S20 NLS mutant gene and examined polysome profile of cells that had been transfected with the S20 NLS gene. As a result, we observed the formation of recombinant 40S carried S20 NLS but this recombinant 40S was never found in the polysome, suggesting such a recombinant 40S was translation incompetent. Moreover, by the tactic of the energy depletion and restoration, we were able to restrain the nuclear-resided S20 NLS in the cytoplasm. Yet, along a progressive energy restoration, we observed the presence of recombinant 40S subunits carrying the S20 NLS in the polysome. This proves that S20 needs to be cytoplasmic in order to make a functional 40S subunit. Furthermore, it also implies that the assembly order of ribosomal protein in eukaryote is orderly regulated. - Highlights: • The step of S20 assembled on 40S is happened in the cytoplasm. • A small subunit assembled with a nuclear S20 NLS is translational incompetence. • Using energy depletion and recovery to manipulate the cellular compartment of S20 NLS . • Cytoplasm-retained S20 NLS is crucial for creating a functional small subunit

  8. DNA binding properties of the small cascade subunit Csa5.

    Directory of Open Access Journals (Sweden)

    Michael Daume

    Full Text Available CRISPR-Cas systems provide immunity against viral attacks in archaeal and bacterial cells. Type I systems employ a Cas protein complex termed Cascade, which utilizes small CRISPR RNAs to detect and degrade the exogenic DNA. A small sequence motif, the PAM, marks the foreign substrates. Previously, a recombinant type I-A Cascade complex from the archaeon Thermoproteus tenax was shown to target and degrade DNA in vitro, dependent on a native PAM sequence. Here, we present the biochemical analysis of the small subunit, Csa5, of this Cascade complex. T. tenax Csa5 preferentially bound ssDNA and mutants that showed decreased ssDNA-binding and reduced Cascade-mediated DNA cleavage were identified. Csa5 oligomerization prevented DNA binding. Specific recognition of the PAM sequence was not observed. Phylogenetic analyses identified Csa5 as a universal member of type I-A systems and revealed three distinct groups. A potential role of Csa5 in R-loop stabilization is discussed.

  9. Late-assembly of human ribosomal protein S20 in the cytoplasm is essential for the functioning of the small subunit ribosome

    Energy Technology Data Exchange (ETDEWEB)

    Tai, Lin-Ru [Institute of Genome Sciences, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC (China); Chou, Chang-Wei [Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC (China); Wu, Jing-Ying; Kirby, Ralph [Institute of Genome Sciences, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC (China); Lin, Alan, E-mail: alin@ym.edu.tw [Institute of Genome Sciences, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, ROC (China); Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan, ROC (China)

    2013-11-15

    Using immuno-fluorescent probing and Western blotting analysis, we reveal the exclusive cytoplasm nature of the small subunit ribosomal protein S20. To illustrate the importance of the cellular compartmentation of S20 to the function of small subunit 40S, we created a nuclear resident S20{sub NLS} mutant gene and examined polysome profile of cells that had been transfected with the S20{sub NLS} gene. As a result, we observed the formation of recombinant 40S carried S20{sub NLS} but this recombinant 40S was never found in the polysome, suggesting such a recombinant 40S was translation incompetent. Moreover, by the tactic of the energy depletion and restoration, we were able to restrain the nuclear-resided S20{sub NLS} in the cytoplasm. Yet, along a progressive energy restoration, we observed the presence of recombinant 40S subunits carrying the S20{sub NLS} in the polysome. This proves that S20 needs to be cytoplasmic in order to make a functional 40S subunit. Furthermore, it also implies that the assembly order of ribosomal protein in eukaryote is orderly regulated. - Highlights: • The step of S20 assembled on 40S is happened in the cytoplasm. • A small subunit assembled with a nuclear S20{sub NLS} is translational incompetence. • Using energy depletion and recovery to manipulate the cellular compartment of S20{sub NLS}. • Cytoplasm-retained S20{sub NLS} is crucial for creating a functional small subunit.

  10. Assessing subunit dependency of the Plasmodium proteasome using small molecule inhibitors and active site probes.

    Science.gov (United States)

    Li, Hao; van der Linden, Wouter A; Verdoes, Martijn; Florea, Bogdan I; McAllister, Fiona E; Govindaswamy, Kavitha; Elias, Joshua E; Bhanot, Purnima; Overkleeft, Herman S; Bogyo, Matthew

    2014-08-15

    The ubiquitin-proteasome system (UPS) is a potential pathway for therapeutic intervention for pathogens such as Plasmodium, the causative agent of malaria. However, due to the essential nature of this proteolytic pathway, proteasome inhibitors must avoid inhibition of the host enzyme complex to prevent toxic side effects. The Plasmodium proteasome is poorly characterized, making rational design of inhibitors that induce selective parasite killing difficult. In this study, we developed a chemical probe that labels all catalytic sites of the Plasmodium proteasome. Using this probe, we identified several subunit selective small molecule inhibitors of the parasite enzyme complex. Treatment with an inhibitor that is specific for the β5 subunit during blood stage schizogony led to a dramatic decrease in parasite replication while short-term inhibition of the β2 subunit did not affect viability. Interestingly, coinhibition of both the β2 and β5 catalytic subunits resulted in enhanced parasite killing at all stages of the blood stage life cycle and reduced parasite levels in vivo to barely detectable levels. Parasite killing was achieved with overall low host toxicity, something that has not been possible with existing proteasome inhibitors. Our results highlight differences in the subunit dependency of the parasite and human proteasome, thus providing a strategy for development of potent antimalarial drugs with overall low host toxicity.

  11. Crystallization and preliminary X-ray crystallographic analysis of the small subunit of the heterodimeric laccase POXA3b from Pleurotus ostreatus

    Science.gov (United States)

    Ferraroni, Marta; Scozzafava, Andrea; Ullah, Sana; Tron, Thierry; Piscitelli, Alessandra; Sannia, Giovanni

    2014-01-01

    Laccases are multicopper oxidases of great biotechnological potential. While laccases are generally monomeric glycoproteins, the white-rot fungus Pleurotus ostreatus produces two closely related heterodimeric isoenzymes composed of a large subunit, homologous to the other fungal laccases, and a small subunit. The sequence of the small subunit does not show significant homology to any other protein or domain of known function and consequently its function is unknown. The highest similarity to proteins of known structure is to a putative enoyl-CoA hydratase/isomerase from Acinetobacter baumannii, which shows an identity of 27.8%. Diffraction-quality crystals of the small subunit of the heterodimeric laccase POXA3b (sPOXA3b) from P. ostreatus were obtained using the sitting-drop vapour-diffusion method at 294 K from a solution consisting of 1.8 M sodium formate, 0.1 M Tris–HCl pH 8.5. The crystals belonged to the tetragonal space group P41212 or P43212, with unit-cell parameters a = 126.6, c = 53.9 Å. The asymmetric unit contains two molecules related by a noncrystallographic twofold axis. A complete data set extending to a maximum resolution of 2.5 Å was collected at 100 K using a wavelength of 1.140 Å. PMID:24419623

  12. CSNAP Is a Stoichiometric Subunit of the COP9 Signalosome

    Directory of Open Access Journals (Sweden)

    Shelly Rozen

    2015-10-01

    Full Text Available The highly conserved COP9 signalosome (CSN complex is a key regulator of all cullin-RING-ubiquitin ligases (CRLs, the largest family of E3 ubiquitin ligases. Until now, it was accepted that the CSN is composed of eight canonical components. Here, we report the discovery of an additional integral and stoichiometric subunit that had thus far evaded detection, and we named it CSNAP (CSN acidic protein. We show that CSNAP binds CSN3, CSN5, and CSN6, and its incorporation into the CSN complex is mediated through the C-terminal region involving conserved aromatic residues. Moreover, depletion of this small protein leads to reduced proliferation and a flattened and enlarged morphology. Finally, on the basis of sequence and structural properties shared by both CSNAP and DSS1, a component of the related 19S lid proteasome complex, we propose that CSNAP, the ninth CSN subunit, is the missing paralogous subunit of DSS1.

  13. Small-angle neutron scattering from the reconstituted TF sub 1 of H sup + -ATPase from thermophilic bacterium PS3 with deuterated subunits

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuji [Univ. of Tokyo (Japan) Brookhaven National Lab., Upton, NY (United States); Harada, Mitsuo [Univ. of Tokyo (Japan); Ohta, Shigeo; Kagawa, Yasuo; Aono, Osamu [Jichi Medical School, Tochigi (Japan); Schefer, J; Schoenborn, B P [Brookhaven National Lab., Upton (United States)

    1990-01-01

    Subunits {alpha}, {beta} and {gamma} of adenosine triphosphatase (H{sup +}-ATPase) from the thermophilic bacterium PS3 (TF{sub 1}) have been over-expressed in Escherichia coli. {alpha} and {beta} subunits deuterated to the level of 90% were obtained by culturing E. coli in {sup 2}H{sub 2}O medium. Both the subunits and the reconstituted {alpha}{beta}{gamma} complex, TF{sub 1}, which contain the deuterated components in various combinations, were studied in solution by small-angle neutron scattering. The individual shapes of the subunits and their organization in the {alpha}{beta}{gamma}-TF{sub 1} complex were examined using the techniques of selective deuteration and contrast variation. The {alpha} and {beta} subunits are well approximated as ellipsoids of revolution having minor semi-axes of 20{center dot}4({plus minus}0{center dot}4) and 20{center dot}0({plus minus}0{center dot}2) {angstrom}, and major semi-axes of 53{center dot}0({plus minus}1{center dot}4) and 55{center dot}8({plus minus}0{center dot}9) {angstrom}, respectively. In the TF{sub 1} complex, three {beta} subunits are aligned to form an equilateral triangle, with their major axes tilted by 35{degree} with respect to the 3-fold axis of the complex. The {beta}-{beta} distance is about 53 {angstrom}. Three {alpha} subunits are similarly arranged, positioned between the {beta} subunits, and with their direction of tilt opposite to that of the {beta} subunits. The centers of the {alpha} and {beta} subunits lie in the same plane, forming a hexagon. Adjacent subunits overlap in this model, suggesting that they are not simple ellipsoids of revolution.

  14. PCR amplification and sequences of cDNA clones for the small and large subunits of ADP-glucose pyrophosphorylase from barley tissues.

    Science.gov (United States)

    Villand, P; Aalen, R; Olsen, O A; Lüthi, E; Lönneborg, A; Kleczkowski, L A

    1992-06-01

    Several cDNAs encoding the small and large subunit of ADP-glucose pyrophosphorylase (AGP) were isolated from total RNA of the starchy endosperm, roots and leaves of barley by polymerase chain reaction (PCR). Sets of degenerate oligonucleotide primers, based on previously published conserved amino acid sequences of plant AGP, were used for synthesis and amplification of the cDNAs. For either the endosperm, roots and leaves, the restriction analysis of PCR products (ca. 550 nucleotides each) has revealed heterogeneity, suggesting presence of three transcripts for AGP in the endosperm and roots, and up to two AGP transcripts in the leaf tissue. Based on the derived amino acid sequences, two clones from the endosperm, beps and bepl, were identified as coding for the small and large subunit of AGP, respectively, while a leaf transcript (blpl) encoded the putative large subunit of AGP. There was about 50% identity between the endosperm clones, and both of them were about 60% identical to the leaf cDNA. Northern blot analysis has indicated that beps and bepl are expressed in both the endosperm and roots, while blpl is detectable only in leaves. Application of the PCR technique in studies on gene structure and gene expression of plant AGP is discussed.

  15. Crystallization of the Nonameric Small Terminase Subunit of Bacteriophage P22

    Energy Technology Data Exchange (ETDEWEB)

    A Roy; A Bhardwaj; G Cingolani

    2011-12-31

    The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometry of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.

  16. Crystallization of the Nonameric Small Terminase Subunit of bacteriophage P22

    Energy Technology Data Exchange (ETDEWEB)

    A Roy; A Bhardwaj; G Cingoloni

    2011-12-31

    The packaging of viral genomes into preformed empty procapsids is powered by an ATP-dependent genome-translocating motor. This molecular machine is formed by a heterodimer consisting of large terminase (L-terminase) and small terminase (S-terminase) subunits, which is assembled into a complex of unknown stoichiometry, and a dodecameric portal protein. There is considerable confusion in the literature regarding the biologically relevant oligomeric state of terminases, which, like portal proteins, form ring-like structures. The number of subunits in a hollow oligomeric protein defines the internal diameter of the central channel and the ability to fit DNA inside. Thus, knowledge of the exact stoichiometry of terminases is critical to decipher the mechanisms of terminase-dependent DNA translocation. Here, the gene encoding bacteriophage P22 S-terminase in Escherichia coli has been overexpressed and the protein purified under native conditions. In the absence of detergents and/or denaturants that may cause disassembly of the native oligomer and formation of aberrant rings, it was found that P22 S-terminase assembles into a concentration-independent nonamer of {approx}168 kDa. Nonameric S-terminase was crystallized in two different crystal forms at neutral pH. Crystal form I belonged to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 144.2, b = 144.2, c = 145.3 {angstrom}, and diffracted to 3.0 {angstrom} resolution. Crystal form II belonged to space group P2{sub 1}, with unit-cell parameters a = 76.48, b = 100.9, c = 89.95 {angstrom}, {beta} = 93.73{sup o}, and diffracted to 1.75 {angstrom} resolution. Preliminary crystallographic analysis of crystal form II confirms that the S-terminase crystals contain a nonamer in the asymmetric unit and are suitable for high-resolution structure determination.

  17. Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia.

    Science.gov (United States)

    Hershey, H P; Schwartz, L J; Gale, J P; Abell, L M

    1999-07-01

    Acetolactate synthase (ALS) is the first committed step of branched-chain amino acid biosynthesis in plants and bacteria. The bacterial holoenzyme has been well characterized and is a tetramer of two identical large subunits (LSUs) of 60 kDa and two identical small subunits (SSUs) ranging in molecular mass from 9 to 17 kDa depending on the isozyme. The enzyme from plants is much less well characterized. Attempts to purify the protein have yielded an enzyme which appears to be an oligomer of LSUs, with the potential existence of a SSU for the plant enzyme remaining a matter of considerable speculation. We report here the discovery of a cDNA clone that encodes a SSU of plant ALS based upon the homology of the encoded peptide with various bacterial ALS SSUs. The plant ALS SSU is more than twice as large as any of its prokaryotic homologues and contains two domains that each encode a full-length copy of the prokaryotic SSU polypeptide. The cDNA clone was used to express Nicotiana plumbaginifolia SSU in Escherichia coli. Mixing a partially purified preparation of this SSU with the LSU of ALS from either N. plumbaginifolia or Arabidopsis thaliana results in both increased specific activity and increased stability of the enzymic activity. These results are consistent with those observed for the bacterial enzyme in similar experiments and represent the first functional demonstration of the existence of a SSU for plant ALS.

  18. Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex.

    Science.gov (United States)

    Tsai, Ming-Feng; Phillips, Charles B; Ranaghan, Matthew; Tsai, Chen-Wei; Wu, Yujiao; Willliams, Carole; Miller, Christopher

    2016-04-21

    Mitochondrial Ca(2+) uptake, a process crucial for bioenergetics and Ca(2+) signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca(2+)-activated Ca(2+) channel, with the Ca(2+) pore formed by the MCU protein and Ca(2+)-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca(2+) permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca(2+) landscape.

  19. Distribution of protein and RNA in the 30S ribosomal subunit

    International Nuclear Information System (INIS)

    Ramakrishnan, V.

    1986-01-01

    In Escherichia coli, the small ribosomal subunit has a sedimentation coefficient of 30S, and consists of a 16S RNA molecule of 1541 nucleotides complexed with 21 proteins. Over the last few years, a controversy has emerged regarding the spatial distribution of RNA and protein in the 30S subunit. Contrast variation with neutron scattering was used to suggest that the RNA was located in a central core of the subunit and the proteins mainly in the periphery, with virtually no separation between the centers of mass of protein and RNA. However, these findings are incompatible with the results of efforts to locate individual ribosomal proteins by immune electron microscopy and triangulation with interprotein distance measurements. The conflict between these two views is resolved in this report of small-angle neutron scattering measurements on 30S subunits with and without protein S1, and on subunits reconstituted from deuterated 16S RNA and unlabeled proteins. The results show that (i) the proteins and RNA are intermingled, with neither component dominating at the core or the periphery, and (ii) the spatial distribution of protein and RNA is asymmetrical, with a separation between their centers of mass of about 25 angstroms

  20. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA

    International Nuclear Information System (INIS)

    Medina, Monica; Collins, Allen G.; Silberman, Jeffrey; Sogin, Mitchell L.

    2001-01-01

    We studied the evolutionary relationships among basal metazoan lineages by using complete large subunit (LSU) and small subunit (SSU) ribosomal RNA sequences for 23 taxa. After identifying competing hypotheses, we performed maximum likelihood searches for trees conforming to each hypothesis. Kishino-Hasegawa tests were used to determine whether the data (LSU, SSU, and combined) reject any of the competing hypotheses. We also conducted unconstrained tree searches, compared the resulting topologies, and calculated bootstrap indices. Shimodaira-Hasegawa tests were applied to determine whether the data reject any of the topologies resulting from the constrained and unconstrained tree searches. LSU, SSU, and the combined data strongly contradict two assertions pertaining to sponge phylogeny. Hexactinellid sponges are not likely to be the basal lineage of amonophyletic Porifera or the sister group to all other animals. Instead, Hexactinellida and Demospongia form a well-supported clade of siliceous sponges, Silicea. It remains unclear, on the basis of these data alone, whether the calcarean sponges are more closely related to Silicea or to nonsponge animals. The SSU and combined data reject the hypothesis that Bilateria is more closely related to Ctenophora than it is to Cnidaria, whereas LSU data alone do not refute either hypothesis. LSU and SSU data agree in supporting the monophyly of Bilateria, Cnidaria, Ctenophora, and Metazoa. LSU sequence data reveal phylogenetic structure in a data set with limited taxon sampling. Continued accumulation of LSU sequences should increase our understanding of animal phylogeny

  1. Dynamic properties of motor proteins with two subunits

    International Nuclear Information System (INIS)

    Kolomeisky, Anatoly B; III, Hubert Phillips

    2005-01-01

    The dynamics of motor protein molecules consisting of two subunits is investigated using simple discrete stochastic models. Exact steady-state analytical expressions are obtained for velocities and dispersions for any number of intermediate states and conformations between the corresponding binding states of proteins. These models enable us to provide a detailed description and comparison of two different mechanisms of the motion of motor proteins along the linear tracks: the hand-over-hand mechanism, when the motion of subunits alternate; and the inchworm mechanism, when one subunit is always trailing another one. It is shown that the proteins in the hand-over-hand mechanism move faster and fluctuate more than the molecules in the inchworm mechanism. The effect of external forces on dynamic properties of motor proteins is also discussed. Finally, a quantitative method, based on experimental observations for single motor proteins, is proposed for distinguishing between two mechanisms of motion

  2. Small machine tools for small workpieces final report of the DFG priority program 1476

    CERN Document Server

    Sanders, Adam

    2017-01-01

    This contributed volume presents the research results of the program “Small machine tools for small work pieces” (SPP 1476), funded by the German Research Society (DFG). The book contains the final report of the priority program, presenting novel approached for size-adapted, reconfigurable micro machine tools. The target audience primarily comprises research experts and practitioners in the field of micro machine tools, but the book may also be beneficial for graduate students.

  3. Moessbauer spectroscopic studies of hemoglobin and its isolated subunits

    International Nuclear Information System (INIS)

    Hoy, G.R.; Cook, D.C.; Berger, R.L.; Friedman, F.K.

    1986-01-01

    Samples of 90% enriched 57Fe hemoglobin and its isolated subunits have been prepared. Moessbauer spectroscopic measurements have been made on three such samples. Sample one contained contributions of oxyhemoglobin, deoxyhemoglobin, and carbonmonoxyhemoglobin. This sample was studied from a temperature of 90 K down to 230 mK. Measurements were also made at 4.2 K using a small applied magnetic field of 1.0 T. In general, the measured quadrupole splittings and isomer shifts for each component agreed with previous measurements on single component samples in the literature, and thus demonstrated that chemically enriched hemoglobin has not been altered. The second and third samples were isolated alpha and beta subunits, respectively. We have found measurable Moessbauer spectral differences between the HbO 2 sites in the alpha subunit sample and the beta subunit sample. The measured Moessbauer spectral areas indicate that the iron ion has the largest mean-square displacement at the deoxy Hb sites as compared to that at the oxy- and carbonmonoxy Hb sites. The mean-square displacement at the HbO 2 sites is the smallest

  4. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  5. Differential transcription and message stability of two genes encoding soybean ribulose 1,5-bisphosphate carboxylase small subunit

    International Nuclear Information System (INIS)

    Shirley, B.W.; Berry-Lowe, S.L.; Grandbastien, M.A.; Zurfluh, L.L.; Shah, D.M.; Meagher, R.B.

    1987-01-01

    The expression of two closely related soybean ribulose bisphosphate carboxylase small subunit (Rubisco ss) genes, SRS1 and SRS4, has been compared. These genes account for approximately 2-4% of the total transcription in light grown leaves, SRS4 being twice as transcriptionally active as SRS1. The transcription of these genes is reduced more than 30 fold after a pulse of far-red light or extended periods of darkness. When etiolated seedlings are shifted to the light the transcription of both genes increases 30-50 fold. Despite this 30-fold range in transcriptional expression the steady state mRNA levels in light and dark grown tissue differ by less than 8 fold. This suggests that the mRNAs are less stable in light grown tissue. 38 refs., 5 figs

  6. Inhibition of herpesvirus and influenza virus replication by blocking polymerase subunit interactions.

    Science.gov (United States)

    Palù, Giorgio; Loregian, Arianna

    2013-09-01

    Protein-protein interactions (PPIs) play a key role in many biological processes, including virus replication in the host cell. Since most of the PPIs are functionally essential, a possible strategy to inhibit virus replication is based on the disruption of viral protein complexes by peptides or small molecules that interfere with subunit interactions. In particular, an attractive target for antiviral drugs is the binding between the subunits of essential viral enzymes. This review describes the development of new antiviral compounds that inhibit herpesvirus and influenza virus replication by blocking interactions between subunit proteins of their polymerase complexes. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. N-linked glycans are required on epithelial Na+ channel subunits for maturation and surface expression.

    Science.gov (United States)

    Kashlan, Ossama B; Kinlough, Carol L; Myerburg, Michael M; Shi, Shujie; Chen, Jingxin; Blobner, Brandon M; Buck, Teresa M; Brodsky, Jeffrey L; Hughey, Rebecca P; Kleyman, Thomas R

    2018-03-01

    Epithelial Na + channel (ENaC) subunits undergo N-linked glycosylation in the endoplasmic reticulum where they assemble into an αβγ complex. Six, 13, and 5 consensus sites (Asn-X-Ser/Thr) for N-glycosylation reside in the extracellular domains of the mouse α-, β-, and γ-subunits, respectively. Because the importance of ENaC N-linked glycans has not been fully addressed, we examined the effect of preventing N-glycosylation of specific subunits on channel function, expression, maturation, and folding. Heterologous expression in Xenopus oocytes or Fischer rat thyroid cells with αβγ-ENaC lacking N-linked glycans on a single subunit reduced ENaC activity as well as the inhibitory response to extracellular Na + . The lack of N-linked glycans on the β-subunit also precluded channel activation by trypsin. However, channel activation by shear stress was N-linked glycan independent, regardless of which subunit was modified. We also discovered that the lack of N-linked glycans on any one subunit reduced the total and surface levels of cognate subunits. The lack of N-linked glycans on the β-subunit had the largest effect on total levels, with the lack of N-linked glycans on the γ- and α-subunits having intermediate and modest effects, respectively. Finally, channels with wild-type β-subunits were more sensitive to limited trypsin proteolysis than channels lacking N-linked glycans on the β-subunit. Our results indicate that N-linked glycans on each subunit are required for proper folding, maturation, surface expression, and function of the channel.

  8. Unexpected High Digestion Rate of Cooked Starch by the Ct-Maltase-Glucoamylase Small Intestine Mucosal α-Glucosidase Subunit

    Science.gov (United States)

    Lin, Amy Hui-Mei; Nichols, Buford L.; Quezada-Calvillo, Roberto; Avery, Stephen E.; Sim, Lyann; Rose, David R.; Naim, Hassan Y.; Hamaker, Bruce R.

    2012-01-01

    For starch digestion to glucose, two luminal α-amylases and four gut mucosal α-glucosidase subunits are employed. The aim of this research was to investigate, for the first time, direct digestion capability of individual mucosal α-glucosidases on cooked (gelatinized) starch. Gelatinized normal maize starch was digested with N- and C-terminal subunits of recombinant mammalian maltase-glucoamylase (MGAM) and sucrase-isomaltase (SI) of varying amounts and digestion periods. Without the aid of α-amylase, Ct-MGAM demonstrated an unexpected rapid and high digestion degree near 80%, while other subunits showed 20 to 30% digestion. These findings suggest that Ct-MGAM assists α-amylase in digesting starch molecules and potentially may compensate for developmental or pathological amylase deficiencies. PMID:22563462

  9. Comparison of the kinetic parameters of the truncated catalytic subunit and holoenzyme of human DNA polymerase ε

    Science.gov (United States)

    Zahurancik, Walter J.; Baranovskiy, Andrey G.; Tahirov, Tahir H.; Suo, Zucai

    2015-01-01

    Numerous genetic studies have provided compelling evidence to establish DNA polymerase ε (Polε) as the primary DNA polymerase responsible for leading strand synthesis during eukaryotic nuclear genome replication. Polε is a heterotetramer consisting of a large catalytic subunit that contains the conserved polymerase core domain as well as a 3′ → 5′ exonuclease domain common to many replicative polymerases. In addition, Polε possesses three small subunits that lack a known catalytic activity but associate with components involved in a variety of DNA replication and maintenance processes. Previous enzymatic characterization of the Polε heterotetramer from budding yeast suggested that the small subunits slightly enhance DNA synthesis by Polε in vitro. However, similar studies of the human Polε heterote-tramer (hPolε) have been limited by the difficulty of obtaining hPolε in quantities suitable for thorough investigation of its catalytic activity. Utilization of a baculovirus expression system for overexpression and purification of hPolε from insect host cells has allowed for isolation of greater amounts of active hPolε, thus enabling a more detailed kinetic comparison between hPolε and an active N-terminal fragment of the hPolε catalytic subunit (p261N), which is readily overexpressed in Escherichia coli. Here, we report the first pre-steady-state studies of fully-assembled hPolε. We observe that the small subunits increase DNA binding by hPolε relative to p261N, but do not increase processivity during DNA synthesis on a single-stranded M13 template. Interestingly, the 3′ → 5′ exonuclease activity of hPolε is reduced relative to p261N on matched and mismatched DNA substrates, indicating that the presence of the small subunits may regulate the proofreading activity of hPolε and sway hPolε toward DNA synthesis rather than proofreading. PMID:25684708

  10. Structural insights into methyltransferase KsgA function in 30S ribosomal subunit biogenesis.

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C; Rife, Jason P; Ban, Nenad

    2012-03-23

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3'-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation.

  11. Structural Insights into Methyltransferase KsgA Function in 30S Ribosomal Subunit Biogenesis*

    Science.gov (United States)

    Boehringer, Daniel; O'Farrell, Heather C.; Rife, Jason P.; Ban, Nenad

    2012-01-01

    The assembly of the ribosomal subunits is facilitated by ribosome biogenesis factors. The universally conserved methyltransferase KsgA modifies two adjacent adenosine residues in the 3′-terminal helix 45 of the 16 S ribosomal RNA (rRNA). KsgA recognizes its substrate adenosine residues only in the context of a near mature 30S subunit and is required for the efficient processing of the rRNA termini during ribosome biogenesis. Here, we present the cryo-EM structure of KsgA bound to a nonmethylated 30S ribosomal subunit. The structure reveals that KsgA binds to the 30S platform with the catalytic N-terminal domain interacting with substrate adenosine residues in helix 45 and the C-terminal domain making extensive contacts to helix 27 and helix 24. KsgA excludes the penultimate rRNA helix 44 from adopting its position in the mature 30S subunit, blocking the formation of the decoding site and subunit joining. We suggest that the activation of methyltransferase activity and subsequent dissociation of KsgA control conformational changes in helix 44 required for final rRNA processing and translation initiation. PMID:22308031

  12. Submitochondrial distributions and stabilities of subunits 4, 5, and 6 of yeast cytochrome oxidase in assembly defective mutants.

    Science.gov (United States)

    Glerum, D M; Tzagoloff, A

    1997-08-04

    The concentration and submitochondrial distribution of the subunit polypeptides of cytochrome oxidase have been studied in wild type yeast and in different mutants impaired in assembly of this respiratory complex. All the subunit polypeptides of the enzyme are associated with mitochondrial membranes of wild type cells, except for a small fraction of subunits 4 and 6 that is recovered in the soluble protein fraction of mitochondria. Cytochrome oxidase mutants consistently display a severe reduction in the steady-state concentration of subunit 1 due to its increased turnover. As a consequence, most of subunit 4, which normally is associated with subunit 1, is found in the soluble fraction. A similar shift from membrane-bound to soluble subunit 6 is seen in mutants blocked in expression of subunit 5a. In contrast, null mutations in COX6 coding for subunit 6 promote loss of subunit 5a. The absence of subunit 5a in the cox6 mutant is the result of proteolytic degradation rather than regulation of its expression by subunit 6. The possible role of the ATP-dependent proteases Rca1p and Afg3p in proteolysis of subunits 1 and 5a has been assessed in strains with combined mutations in COX6, RCA1, and/or AFG3. Immunochemical assays indicate that another protease(s) must be responsible for most of the proteolytic loss of these proteins.

  13. Structure-function of proteins interacting with the alpha1 pore-forming subunit of high voltage-activated calcium channel

    Directory of Open Access Journals (Sweden)

    Alan eNeely

    2014-06-01

    Full Text Available Openings of high-voltage-activated calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, high-voltage-activated calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1 associated with four additional polypeptide chains β, α2, δ and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of high-voltage-activated calcium channels.

  14. Structure-function of proteins interacting with the α1 pore-forming subunit of high-voltage-activated calcium channels

    Science.gov (United States)

    Neely, Alan; Hidalgo, Patricia

    2014-01-01

    Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826

  15. Crystal structure of heterodimeric hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 reveals that the small subunit is directly involved in the product chain length regulation.

    Science.gov (United States)

    Sasaki, Daisuke; Fujihashi, Masahiro; Okuyama, Naomi; Kobayashi, Yukiko; Noike, Motoyoshi; Koyama, Tanetoshi; Miki, Kunio

    2011-02-04

    Hexaprenyl diphosphate synthase from Micrococcus luteus B-P 26 (Ml-HexPPs) is a heterooligomeric type trans-prenyltransferase catalyzing consecutive head-to-tail condensations of three molecules of isopentenyl diphosphates (C(5)) on a farnesyl diphosphate (FPP; C(15)) to form an (all-E) hexaprenyl diphosphate (HexPP; C(30)). Ml-HexPPs is known to function as a heterodimer of two different subunits, small and large subunits called HexA and HexB, respectively. Compared with homooligomeric trans-prenyltransferases, the molecular mechanism of heterooligomeric trans-prenyltransferases is not yet clearly understood, particularly with respect to the role of the small subunits lacking the catalytic motifs conserved in most known trans-prenyltransferases. We have determined the crystal structure of Ml-HexPPs both in the substrate-free form and in complex with 7,11-dimethyl-2,6,10-dodecatrien-1-yl diphosphate ammonium salt (3-DesMe-FPP), an analog of FPP. The structure of HexB is composed of mostly antiparallel α-helices joined by connecting loops. Two aspartate-rich motifs (designated the first and second aspartate-rich motifs) and the other characteristic motifs in HexB are located around the diphosphate part of 3-DesMe-FPP. Despite the very low amino acid sequence identity and the distinct polypeptide chain lengths between HexA and HexB, the structure of HexA is quite similar to that of HexB. The aliphatic tail of 3-DesMe-FPP is accommodated in a large hydrophobic cleft starting from HexB and penetrating to the inside of HexA. These structural features suggest that HexB catalyzes the condensation reactions and that HexA is directly involved in the product chain length control in cooperation with HexB.

  16. Proteasome (Prosome Subunit Variations during the Differentiation of Myeloid U937 Cells

    Directory of Open Access Journals (Sweden)

    Laurent Henry

    1997-01-01

    Full Text Available 20S proteasomes (prosomes/multicatalytic proteinase are protein particles built of 28 subunits in variable composition. We studied the changes in proteasome subunit composition during the differentiation of U937 cells induced by phorbol‐myristate‐acetate or retinoic acid plus 1,25‐dihydroxy‐cholecalciferol by western blot, flow cytometry and immuno‐fluorescence. p25K (C3, p27K (IOTA and p30/33K (C2 subunits were detected in both the nucleus and cytoplasm of undifferentiated cells. Flow cytometry demonstrated a biphasic decrease in proteasome subunits detection during differentiation induced by RA+VD. PMA caused an early transient decrease in these subunits followed by a return to their control level, except for p30/33K, which remained low. Immuno‐fluorescence also showed differences in the cytolocalization of the subunits, with a particular decrease in antigen labeling in the nucleus of RA+VD‐induced cells, and a scattering in the cytoplasm and a reorganization in the nucleus of PMA‐induced cells. Small amounts of proteasomal proteins were seen on the outer membrane of non‐induced cells; these membrane proteins disappeared when treated with RA+VD, whereas some increased on PMA‐induced cells. The differential changes in the distribution and type of proteasomes in RA+VD and PMA‐induced cells indicate that, possibly, 20S proteasomes may play a role in relation to the mechanisms of differentiation and the inducer used.

  17. Function and horizontal transfer of the small terminase subunit of the tailed bacteriophage Sf6 DNA packaging nanomotor

    Science.gov (United States)

    Leavitt, Justin C.; Gilcrease, Eddie B.; Wilson, Kassandra; Casjens, Sherwood R.

    2013-01-01

    Bacteriophage Sf6 DNA packaging series initiate at many locations across a 2 kbp region. Our in vivo studies that show that Sf6 small terminase subunit (TerS) protein recognizes a specific packaging (pac) site near the center of this region, that this site lies within the portion of the Sf6 gene that encodes the DNA-binding domain of TerS protein, that this domain of the TerS protein is responsible for the imprecision in Sf6 packaging initiation, and that the DNA-binding domain of TerS must be covalently attached to the domain that interacts with the rest of the packaging motor. The TerS DNA-binding domain is self-contained in that it apparently does not interact closely with the rest of the motor and it binds to a recognition site that lies within the DNA that encodes the domain. This arrangement has allowed the horizontal exchange of terS genes among phages to be very successful. PMID:23562538

  18. Positive modulation of delta-subunit containing GABAA receptors in mouse neurons

    DEFF Research Database (Denmark)

    Vardya, Irina; Hoestgaard-Jensen, Kirsten; Nieto-Gonzalez, Jose Luis

    2012-01-01

    δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA(A) recep......δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA......(A) receptors in mouse neurons in vitro and in vivo. Whole-cell patch-clamp recordings were carried out in the dentate gyrus in mouse brain slices. In granule cells, AA29504 (1 μM) caused a 4.2-fold potentiation of a tonic current induced by THIP (1 μM), while interneurons showed a potentiation of 2.6-fold......-free environment using Ca²⁺ imaging in cultured neurons, AA29504 showed GABA(A) receptor agonism in the absence of agonist. Finally, AA29504 exerted dose-dependent stress-reducing and anxiolytic effects in mice in vivo. We propose that AA29504 potentiates δ-containing GABA(A) receptors to enhance tonic inhibition...

  19. Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus: Purification, Crystallization and Structure Determination

    International Nuclear Information System (INIS)

    Clemons, William M. Jr.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki

    2001-01-01

    We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 (angstrom) resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 (angstrom) resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

  20. Small-angle scattering studies show distinct conformations of calmodulin in its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase

    International Nuclear Information System (INIS)

    Trewhella, J.; Blumenthal, D.K.; Rokop, S.E.; Seeger, P.A.

    1990-01-01

    Small-angle X-ray and neutron scattering have been used to study the solution structures of calmodulin complexed with synthetic peptides corresponding to residues 342-366 and 301-326, designated PhK5 and PhK13, respectively, in the regulatory domain of the catalytic subunit of skeletal muscle phosphorylase kinase. The scattering data show that binding of PhK5 to calmodulin induces a dramatic contraction of calmodulin, similar to that previously observed when calmodulin is complexed with the calmodulin-binding domain peptide from rabbit skeletal muscle myosin light chain kinase. In contrast, calmodulin remains extended upon binding PhK13. In the presence of both peptides, calmodulin also remains extended. Apparently, the presence of PhK13 inhibits calmodulin from undergoing the PhK5-induced contraction. These data indicate that there is a fundamentally different type of calmodulin-target enzyme interaction in the case of the catalytic subunit of phosphorylase kinase compared with that for myosin light chain kinase

  1. The alpha2-delta protein: an auxiliary subunit of voltage-dependent calcium channels as a recognized drug target.

    Science.gov (United States)

    Thorpe, Andrew J; Offord, James

    2010-07-01

    Currently, there are two drugs on the market, gabapentin (Neurontin) and pregabalin (Lyrica), that are proposed to exert their therapeutic effect through binding to the alpha2-delta subunit of voltage-sensitive calcium channels. This activity was unexpected, as the alpha2-delta subunit had previously been considered not to be a pharmacological target. In this review, the role of the alpha2-delta subunits is discussed and the mechanism of action of the alpha2-delta ligands in vitro and in vivo is summarized. Finally, new insights into the mechanism of drugs that bind to this protein are discussed.

  2. 75 FR 27583 - Job Corps: Final Finding of No Significant Impact (FONSI) for Small Vertical Wind Turbine and...

    Science.gov (United States)

    2010-05-17

    ... CFR 11.11(d), gives final notice of the proposed construction of a small vertical axis wind turbine... (FONSI) for Small Vertical Wind Turbine and Solar Installation at the Paul Simon Job Corps Center Located... impact. This notice serves as the Final Finding of No Significant Impact (FONSI) for Small Vertical Wind...

  3. Sequence and Secondary Structure of the Mitochondrial Small-Subunit rRNA V4, V6, and V9 Domains Reveal Highly Species-Specific Variations within the Genus Agrocybe

    OpenAIRE

    Gonzalez, Patrice; Labarère, Jacques

    1998-01-01

    A comparative study of variable domains V4, V6, and V9 of the mitochondrial small-subunit (SSU) rRNA was carried out with the genus Agrocybe by PCR amplification of 42 wild isolates belonging to 10 species, Agrocybe aegerita, Agrocybe dura, Agrocybe chaxingu, Agrocybe erebia, Agrocybe firma, Agrocybe praecox, Agrocybe paludosa, Agrocybe pediades, Agrocybe alnetorum, and Agrocybe vervacti. Sequencing of the PCR products showed that the three domains in the isolates belonging to the same specie...

  4. Establishment of a continuous culture system for Entamoeba muris and analysis of the small subunit rRNA gene

    Directory of Open Access Journals (Sweden)

    Kobayashi S.

    2009-06-01

    Full Text Available We established a culture system for Entamoeba muris (MG-EM-01 strain isolated from a Mongolian gerbil using a modified Balamuth’s egg yolk infusion medium supplemented with 4% adult bovine serum and Bacteroides fragilis cocultured with Escherichia coli. Further, encystation was observed in the culture medium. The morphological characteristics of E. muris are similar to those of Entamoeba coli (E. coli; moreover, the malic isoenzyme electrophoretic band, which shows species-specific electrophoretic mobility, of E. muris had almost the same mobility as that observed with the malic isoenzyme electrophorectic band of E. coli (UZG-EC-01 strain isolated from a gorilla. We determined the small subunit rRNA (SSU-rRNA gene sequence of the MG-EM-01 strain, and this sequence was observed to show 82.7% homology with that of the UZG-EC-01 strain. Further, the resultant phylogenetic tree for molecular taxonomy based on the SSU-rRNA genes of the 21 strains of the intestinal parasitic amoeba species indicated that the MG-EM-01 strain was most closely related to E. coli.

  5. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene.

    Science.gov (United States)

    Ragan, M A; Bird, C J; Rice, E L; Gutell, R R; Murphy, C A; Singh, R K

    1994-01-01

    A phylogeny of marine Rhodophyta has been inferred by a number of methods from nucleotide sequences of nuclear genes encoding small subunit rRNA from 39 species in 15 orders. Sequence divergences are relatively large, especially among bangiophytes and even among congeners in this group. Subclass Bangiophycidae appears polyphyletic, encompassing at least three lineages, with Porphyridiales distributed between two of these. Subclass Florideophycidae is monophyletic, with Hildenbrandiales, Corallinales, Ahnfeltiales, and a close association of Nemaliales, Acrochaetiales, and Palmariales forming the four deepest branches. Cermiales may represent a convergence of vegetative and reproductive morphologies, as family Ceramiaceae is at best weakly related to the rest of the order, and one of its members appears to be allied to Gelidiales. Except for Gigartinales, for which more data are required, the other florideophyte orders appear distinct and taxonomically justified. A good correlation was observed with taxonomy based on pit-plug ultrastructure. Tests under maximum-likelihood and parsimony of alternative phylogenies based on structure and chemistry refuted suggestions that Acrochaetiales is the most primitive florideophyte order and that Gelidiales and Hildenbrandiales are sister groups. PMID:8041780

  6. The morphological and chemical characteristics of striatal neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the rat.

    Science.gov (United States)

    Waldvogel, H J; Kubota, Y; Trevallyan, S C; Kawaguchi, Y; Fritschy, J M; Mohler, H; Faull, R L

    1997-10-01

    The distribution, morphology and chemical characteristics of neurons immunoreactive for the alpha1-subunit of the GABA(A) receptor in the striatum of the basal ganglia in the rat brain were investigated at the light, confocal and electron microscope levels using single, double and triple immunohistochemical labelling techniques. The results showed that alpha1-subunit immunoreactive neurons were sparsely distributed throughout the rat striatum. Double and triple labelling results showed that all the alpha1-subunit-immunoreactive neurons were positive for glutamate decarboxylase and immunoreactive for the beta2,3 and gamma2 subunits of the GABA(A) receptor. Three types of alpha1-subunit-immunoreactive neurons were identified in the striatum on the basis of cellular morphology and chemical characteristics. The most numerous alpha1-subunit-immunoreactive neurons were medium-sized, aspiny neurons with a widely branching dendritic tree. They were parvalbumin-negative and were located mainly in the dorsolateral regions of the striatum. Electron microscopy showed that these neurons had an indented nuclear membrane, typical of striatal interneurons, and were surrounded by small numbers of axon terminals which established alpha1-subunit-immunoreactive synaptic contacts with the soma and dendrites. These cells were classified as type 1 alpha1-subunit-immunoreactive neurons and comprised 75% of the total population of alpha1-subunit-immunoreactive neurons in the striatum. The remaining alpha1-subunit-immunoreactive neurons comprised of a heterogeneous population of large-sized neurons localized in the ventral and medial regions of the striatum. The most numerous large-sized cells were parvalbumin-negative, had two to three relatively short branching dendrites and were designated type 2 alpha1-subunit-immunoreactive neurons. Electron microscopy showed that the type 2 neurons were characterized by a highly convoluted nuclear membrane and were sparsely covered with small axon

  7. 78 FR 20316 - Final Issuance of General NPDES Permits (GP) for Small Suction Dredges in Idaho

    Science.gov (United States)

    2013-04-04

    ... System (NPDES) General Permit (IDG-37-0000) to placer mining operations in Idaho for small suction... Small Suction Dredges in Idaho AGENCY: Environmental Protection Agency, Region 10. ACTION: Final notice... significant economic impact on a substantial number of small entities.'' EPA has concluded that NPDES general...

  8. rRNA maturation in yeast cells depleted of large ribosomal subunit proteins.

    Directory of Open Access Journals (Sweden)

    Gisela Pöll

    Full Text Available The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins. They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.

  9. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A.

    Science.gov (United States)

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S

    1999-03-05

    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  10. Heterodimerization with the β1 subunit directs the α2 subunit of nitric oxide-sensitive guanylyl cyclase to calcium-insensitive cell-cell contacts in HEK293 cells: Interaction with Lin7a.

    Science.gov (United States)

    Hochheiser, Julia; Haase, Tobias; Busker, Mareike; Sömmer, Anne; Kreienkamp, Hans-Jürgen; Behrends, Sönke

    2016-12-15

    Nitric oxide-sensitive guanylyl cyclase is a heterodimeric enzyme consisting of an α and a β subunit. Two different α subunits (α 1 and α 2 ) give rise to two heterodimeric enzymes α 1 /β 1 and α 2 /β 1 . Both coexist in a wide range of tissues including blood vessels and the lung, but expression of the α 2 /β 1 form is generally much lower and approaches levels similar to the α 1 /β 1 form in the brain only. In the present paper, we show that the α 2 /β 1 form interacts with Lin7a in mouse brain synaptosomes based on co-precipitation analysis. In HEK293 cells, we found that the overexpressed α 2 /β 1 form, but not the α 1 /β 1 form is directed to calcium-insensitive cell-cell contacts. The isolated PDZ binding motif of an amino-terminally truncated α 2 subunit was sufficient for cell-cell contact localization. For the full length α 2 subunit with the PDZ binding motif this was only the case in the heterodimer configuration with the β 1 subunit, but not as isolated α 2 subunit. We conclude that the PDZ binding motif of the α 2 subunit is only accessible in the heterodimer conformation of the mature nitric oxide-sensitive enzyme. Interaction with Lin7a, a small scaffold protein important for synaptic function and cell polarity, can direct this complex to nectin based cell-cell contacts via MPP3 in HEK293 cells. We conclude that heterodimerization is a prerequisite for further protein-protein interactions that direct the α 2 /β 1 form to strategic sites of the cell membrane with adjacent neighbouring cells. Drugs increasing the nitric oxide-sensitivity of this specific form may be particularly effective. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. 77 FR 15042 - Small Diameter Graphite Electrodes From the People's Republic of China: Amended Final Results of...

    Science.gov (United States)

    2012-03-14

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-929] Small Diameter Graphite... review of small diameter graphite electrodes (``SDGE'') from the People's Republic of China (``PRC... Small Diameter Graphite Electrodes from the People's Republic of China: Final Results of the First...

  12. Acetylcholine Receptor: Complex of Homologous Subunits

    Science.gov (United States)

    Raftery, Michael A.; Hunkapiller, Michael W.; Strader, Catherine D.; Hood, Leroy E.

    1980-06-01

    The acetylcholine receptor from the electric ray Torpedo californica is composed of five subunits; two are identical and the other three are structurally related to them. Microsequence analysis of the four polypeptides demonstrates amino acid homology among the subunits. Further sequence analysis of both membrane-bound and Triton-solubilized, chromatographically purified receptor gave the stoichiometry of the four subunits (40,000:50,000:60,000:65,000 daltons) as 2:1:1:1, indicating that this protein is a pentameric complex with a molecular weight of 255,000 daltons. Genealogical analysis suggests that divergence from a common ancestral gene occurred early in the evolution of the receptor. This shared ancestry argues that each of the four subunits plays a functional role in the receptor's physiological action.

  13. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, R.M.B. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior de Agronomia]|[Universidade Nova de Lisboa, Oeiras (Portugal). Instituto de Tecnologia Quimica e Biologica; Franco, E.; Teixeira, A.R.N. [Universidade Tecnica, Lisbon (Portugal). Inst. Superior de Agronomia

    1996-08-15

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a 65 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of {sup 35}S-labelled ribulose biphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose biphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose biphosphate carboxylase. For short periods of time (<1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose biphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photosynthetic tissues. (Author).

  14. Covalent dimerization of ribulose bisphosphate carboxylase subunits by UV radiation

    International Nuclear Information System (INIS)

    Ferreira, R.M.B.; Universidade Nova de Lisboa, Oeiras; Franco, E.; Teixeira, A.R.N.

    1996-01-01

    The effect of UV radiation (UV-A, UV-B and UV-C) on ribulose bisphosphate carboxylase from a variety of plant species was examined. The exposition of plant leaves or the pure enzyme to UV radiation produced a UV-dependent accumulation of a 65 kDa polypeptide (P65). Different approaches were utilized to elucidate the origin and structure of P65: electrophoretic and fluorographic analyses of 35 S-labelled ribulose biphosphate carboxylase exposed to UV radiation and immunological experiments using antibodies specific for P65, for the large and small subunits of ribulose biphosphate carboxylase and for high-molecular-mass aggregates of the enzyme. These studies revealed that P65 is a dimer, formed by the covalent, non-disulphide linkage of one small subunit with one large subunit of ribulose biphosphate carboxylase. For short periods of time (<1 h), the amount of P65 formed increased with the duration of the exposure to the UV radiation and with the energy of the radiation applied. Prolonged exposure to UV radiation (1-6 h) resulted in the formation of high-molecular-mass aggregates of ribulose biphosphate carboxylase. Formation of P65 was shown to depend on the native state of the protein, was stimulated by inhibitors of enzyme activity, and was inhibited by activators of enzyme activity. A UV-independent accumulation of P65 was also achieved by the in vitro incubation of plant crude extracts. However, the UV-dependent and the UV-independent formation of P65 seemed to occur by distinct molecular mechanisms. The UV-dependent accumulation of P65 was immunologically detected in all species examined, including Lemna minor, Arum italicum, Brassica oleracea, Triticum aestivum, Zea mays, Pisum sativum and Phaseolus vulgaris, suggesting that it may constitute a universal response to UV radiation, common to all photosynthetic tissues. (Author)

  15. Gene expression patterns of oxidative phosphorylation complex I subunits are organized in clusters.

    Directory of Open Access Journals (Sweden)

    Yael Garbian

    Full Text Available After the radiation of eukaryotes, the NUO operon, controlling the transcription of the NADH dehydrogenase complex of the oxidative phosphorylation system (OXPHOS complex I, was broken down and genes encoding this protein complex were dispersed across the nuclear genome. Seven genes, however, were retained in the genome of the mitochondrion, the ancient symbiote of eukaryotes. This division, in combination with the three-fold increase in subunit number from bacteria (N = approximately 14 to man (N = 45, renders the transcription regulation of OXPHOS complex I a challenge. Recently bioinformatics analysis of the promoter regions of all OXPHOS genes in mammals supported patterns of co-regulation, suggesting that natural selection favored a mechanism facilitating the transcriptional regulatory control of genes encoding subunits of these large protein complexes. Here, using real time PCR of mitochondrial (mtDNA- and nuclear DNA (nDNA-encoded transcripts in a panel of 13 different human tissues, we show that the expression pattern of OXPHOS complex I genes is regulated in several clusters. Firstly, all mtDNA-encoded complex I subunits (N = 7 share a similar expression pattern, distinct from all tested nDNA-encoded subunits (N = 10. Secondly, two sub-clusters of nDNA-encoded transcripts with significantly different expression patterns were observed. Thirdly, the expression patterns of two nDNA-encoded genes, NDUFA4 and NDUFA5, notably diverged from the rest of the nDNA-encoded subunits, suggesting a certain degree of tissue specificity. Finally, the expression pattern of the mtDNA-encoded ND4L gene diverged from the rest of the tested mtDNA-encoded transcripts that are regulated by the same promoter, consistent with post-transcriptional regulation. These findings suggest, for the first time, that the regulation of complex I subunits expression in humans is complex rather than reflecting global co-regulation.

  16. Subunit stoichiometry of the chloroplast photosystem I complex

    International Nuclear Information System (INIS)

    Bruce, B.D.; Malkin, R.

    1988-01-01

    A native photosystem I (PS I) complex and a PS I core complex depleted of antenna subunits has been isolated from the uniformly 14 C-labeled aquatic higher plant, Lemna. These complexes have been analyzed for their subunit stoichiometry by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis methods. The results for both preparations indicate that one copy of each high molecular mass subunit is present per PS I complex and that a single copy of most low molecular mass subunits is also present. These results suggest that iron-sulfur center X, an early PS I electron acceptor proposed to bind to the high molecular mass subunits, contains a single [4Fe-4S] cluster which is bound to a dimeric structure of high molecular mass subunits, each providing 2 cysteine residues to coordinate this cluster

  17. NADP+ binding to the regulatory subunit of methionine adenosyltransferase II increases intersubunit binding affinity in the hetero-trimer.

    Directory of Open Access Journals (Sweden)

    Beatriz González

    Full Text Available Mammalian methionine adenosyltransferase II (MAT II is the only hetero-oligomer in this family of enzymes that synthesize S-adenosylmethionine using methionine and ATP as substrates. Binding of regulatory β subunits and catalytic α2 dimers is known to increase the affinity for methionine, although scarce additional information about this interaction is available. This work reports the use of recombinant α2 and β subunits to produce oligomers showing kinetic parameters comparable to MAT II purified from several tissues. According to isothermal titration calorimetry data and densitometric scanning of the stained hetero-oligomer bands on denatured gels, the composition of these oligomers is that of a hetero-trimer with α2 dimers associated to single β subunits. Additionally, the regulatory subunit is able to bind NADP(+ with a 1:1 stoichiometry, the cofactor enhancing β to α2-dimer binding affinity. Mutants lacking residues involved in NADP(+ binding and N-terminal truncations of the β subunit were able to oligomerize with α2-dimers, although the kinetic properties appeared altered. These data together suggest a role for both parts of the sequence in the regulatory role exerted by the β subunit on catalysis. Moreover, preparation of a structural model for the hetero-oligomer, using the available crystal data, allowed prediction of the regions involved in β to α2-dimer interaction. Finally, the implications that the presence of different N-terminals in the β subunit could have on MAT II behavior are discussed in light of the recent identification of several splicing forms of this subunit in hepatoma cells.

  18. Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties.

    Science.gov (United States)

    Shewry, P R; Gilbert, S M; Savage, A W J; Tatham, A S; Wan, Y-F; Belton, P S; Wellner, N; D'Ovidio, R; Békés, F; Halford, N G

    2003-02-01

    The gene encoding high-molecular-weight (HMW) subunit 1Bx20 was isolated from durum wheat cv. Lira. It encodes a mature protein of 774 amino acid residues with an M(r) of 83,913. Comparison with the sequence of subunit 1Bx7 showed over 96% identity, the main difference being the substitution of two cysteine residues in the N-terminal domain of subunit 1Bx7 with tyrosine residues in 1Bx20. Comparison of the structures and stabilities of the two subunits purified from wheat using Fourier-transform infra-red and circular dichroism spectroscopy showed no significant differences. However, incorporation of subunit 1Bx7 into a base flour gave increased dough strength and stability measured by Mixograph analysis, while incorporation of subunit 1Bx20 resulted in small positive or negative effects on the parameters measured. It is concluded that the different effects of the two subunits could relate to the differences in their cysteine contents, thereby affecting the cross-linking and hence properties of the glutenin polymers.

  19. The cAMP-induced G protein subunits dissociation monitored in live Dictyostelium cells by BRET reveals two activation rates, a positive effect of caffeine and potential role of microtubules.

    Science.gov (United States)

    Tariqul Islam, A F M; Yue, Haicen; Scavello, Margarethakay; Haldeman, Pearce; Rappel, Wouter-Jan; Charest, Pascale G

    2018-08-01

    To study the dynamics and mechanisms controlling activation of the heterotrimeric G protein Gα2βγ in Dictyostelium in response to stimulation by the chemoattractant cyclic AMP (cAMP), we monitored the G protein subunit interaction in live cells using bioluminescence resonance energy transfer (BRET). We found that cAMP induces the cAR1-mediated dissociation of the G protein subunits to a similar extent in both undifferentiated and differentiated cells, suggesting that only a small number of cAR1 (as expressed in undifferentiated cells) is necessary to induce the full activation of Gα2βγ. In addition, we found that treating cells with caffeine increases the potency of cAMP-induced Gα2βγ activation; and that disrupting the microtubule network but not F-actin inhibits the cAMP-induced dissociation of Gα2βγ. Thus, microtubules are necessary for efficient cAR1-mediated activation of the heterotrimeric G protein. Finally, kinetics analyses of Gα2βγ subunit dissociation induced by different cAMP concentrations indicate that there are two distinct rates at which the heterotrimeric G protein subunits dissociate when cells are stimulated with cAMP concentrations above 500 nM versus only one rate at lower cAMP concentrations. Quantitative modeling suggests that the kinetics profile of Gα2βγ subunit dissociation results from the presence of both uncoupled and G protein pre-coupled cAR1 that have differential affinities for cAMP and, consequently, induce G protein subunit dissociation through different rates. We suggest that these different signaling kinetic profiles may play an important role in initial chemoattractant gradient sensing. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Soybean glycinin subunits: Characterization of physicochemical and adhesion properties.

    Science.gov (United States)

    Mo, Xiaoqun; Zhong, Zhikai; Wang, Donghai; Sun, Xiuzhi

    2006-10-04

    Soybean proteins have shown great potential for applications as renewable and environmentally friendly adhesives. The objective of this work was to study physicochemical and adhesion properties of soy glycinin subunits. Soybean glycinin was extracted from soybean flour and then fractionated into acidic and basic subunits with an estimated purity of 90 and 85%, respectively. Amino acid composition of glycinin subunits was determined. The high hydrophobic amino acid content is a major contributor to the solubility behavior and water resistance of the basic subunits. Acidic subunits and glycinin had similar solubility profiles, showing more than 80% solubility at pH 2.0-4.0 or 6.5-12.0, whereas basic subunits had considerably lower solubility with the minimum at pH 4.5-8.0. Thermal analysis using a differential scanning calorimeter suggested that basic subunits form new oligomeric structures with higher thermal stability than glycinin but no highly ordered structures present in isolated acidic subunits. The wet strength of basic subunits was 160% more than that of acidic subunits prepared at their respective isoelectric points (pI) and cured at 130 degrees C. Both pH and the curing temperature significantly affected adhesive performance. High-adhesion water resistance was usually observed for adhesives from protein prepared at their pI values and cured at elevated temperatures. Basic subunits are responsible for the water resistance of glycinin and are a good starting material for the development of water-resistant adhesives.

  1. Similarities in transcription factor IIIC subunits that bind to the posterior regions of internal promoters for RNA polymerase III

    Directory of Open Access Journals (Sweden)

    Matsutani Sachiko

    2004-08-01

    Full Text Available Abstract Background In eukaryotes, RNA polymerase III (RNAP III transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs. The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFIIIC recognizes a promoter. Although internal promoter sequences are conserved in eukaryotes, no evidence of homology between the B-block binding subunits of vertebrates and yeasts has been reported previously. Results Here, I reported the results of PSI-BLAST searches using the B-block binding subunits of human and Shizosacchromyces pombe as queries, showing that the same Arabidopsis proteins were hit with low E-values in both searches. Comparison of the convergent iterative alignments obtained by these PSI-BLAST searches revealed that the vertebrate, yeast, and Arabidopsis proteins have similarities in their N-terminal one-third regions. In these regions, there were three domains with conserved sequence similarities, one located in the N-terminal end region. The N-terminal end region of the B-block binding subunit of Saccharomyces cerevisiae is tentatively identified as a HMG box, which is the DNA binding motif. Although I compared the alignment of the N-terminal end regions of the B-block binding subunits, and their homologs, with that of the HMG boxes, it is not clear whether they are related. Conclusion Molecular phylogenetic analyses using the small subunit rRNA and ubiquitous proteins like actin and α-tubulin, show that fungi are more closely related to animals than either is to plants. Interestingly, the results obtained in this study show that, with respect to the B-block binding subunits of TFIIICs, animals appear to be evolutionarily closer to plants

  2. Similarities in transcription factor IIIC subunits that bind to the posterior regions of internal promoters for RNA polymerase III.

    Science.gov (United States)

    Matsutani, Sachiko

    2004-08-09

    In eukaryotes, RNA polymerase III (RNAP III) transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs). The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFIIIC recognizes a promoter. Although internal promoter sequences are conserved in eukaryotes, no evidence of homology between the B-block binding subunits of vertebrates and yeasts has been reported previously. Here, I reported the results of PSI-BLAST searches using the B-block binding subunits of human and Shizosacchromyces pombe as queries, showing that the same Arabidopsis proteins were hit with low E-values in both searches. Comparison of the convergent iterative alignments obtained by these PSI-BLAST searches revealed that the vertebrate, yeast, and Arabidopsis proteins have similarities in their N-terminal one-third regions. In these regions, there were three domains with conserved sequence similarities, one located in the N-terminal end region. The N-terminal end region of the B-block binding subunit of Saccharomyces cerevisiae is tentatively identified as a HMG box, which is the DNA binding motif. Although I compared the alignment of the N-terminal end regions of the B-block binding subunits, and their homologs, with that of the HMG boxes, it is not clear whether they are related. Molecular phylogenetic analyses using the small subunit rRNA and ubiquitous proteins like actin and alpha-tubulin, show that fungi are more closely related to animals than either is to plants. Interestingly, the results obtained in this study show that, with respect to the B-block binding subunits of TFIIICs, animals appear to be evolutionarily closer to plants than to fungi.

  3. Co-expression of peppermint geranyl diphosphate synthase small subunit enhances monoterpene production in transgenic tobacco plants.

    Science.gov (United States)

    Yin, Jun-Lin; Wong, Woon-Seng; Jang, In-Cheol; Chua, Nam-Hai

    2017-02-01

    Monoterpenes are important for plant survival and useful to humans. In addition to their function in plant defense, monoterpenes are also used as flavors, fragrances and medicines. Several metabolic engineering strategies have been explored to produce monoterpene in tobacco but only trace amounts of monoterpenes have been detected. We investigated the effects of Solanum lycopersicum 1-deoxy-d-xylulose-5-phosphate synthase (SlDXS), Arabidopsis thaliana geranyl diphosphate synthase 1 (AtGPS) and Mentha × piperita geranyl diphosphate synthase small subunit (MpGPS.SSU) on production of monoterpene and geranylgeranyl diphosphate (GGPP) diversities, and plant morphology by transient expression in Nicotiana benthamiana and overexpression in transgenic Nicotiana tabacum. We showed that MpGPS.SSU could enhance the production of various monoterpenes such as (-)-limonene, (-)-linalool, (-)-α-pinene/β-pinene or myrcene, in transgenic tobacco by elevating geranyl diphosphate synthase (GPS) activity. In addition, overexpression of MpGPS.SSU in tobacco caused early flowering phenotype and increased shoot branching by elevating contents of GA 3 and cytokinins due to upregulated transcript levels of several plastidic 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway genes, geranylgeranyl diphosphate synthases 3 (GGPPS3) and GGPPS4. Our method would allow the identification of new monoterpene synthase genes using transient expression in N. benthamiana and the improvement of monoterpene production in transgenic tobacco plants. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Transcriptional regulators of Na, K-ATPase subunits

    Directory of Open Access Journals (Sweden)

    Zhiqin eLi

    2015-10-01

    Full Text Available The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic alpha-subunit, the beta-subunit and the FXYD proteins, are controlled extensively during development and to accommodate physiological needs. The spatial and temporal expression of Na,K-ATPase is partially regulated at the transcriptional level. Numerous transcription factors, hormones, growth factors, lipids and extracellular stimuli modulate the transcription of the Na,K-ATPase subunits. Moreover, epigenetic mechanisms also contribute to the regulation of Na,K-ATPase expression. With the ever growing knowledge about diseases associated with the malfunction of Na,K-ATPase, this review aims at summarizing the best-characterized transcription regulators that modulate Na,K-ATPase subunit levels. As abnormal expression of Na,K-ATPase subunits have been observed in many carcinoma, we will also discuss transcription factors that are associated with epithelial-to-mesenchymal transition, a crucial step in the progression of many tumors to malignant disease.

  5. The first transmembrane domain (TM1) of β2-subunit binds to the transmembrane domain S1 of α-subunit in BK potassium channels

    Science.gov (United States)

    Morera, Francisco J.; Alioua, Abderrahmane; Kundu, Pallob; Salazar, Marcelo; Gonzalez, Carlos; Martinez, Agustin D.; Stefani, Enrico; Toro, Ligia; Latorre, Ramon

    2012-01-01

    The BK channel is one of the most broadly expressed ion channels in mammals. In many tissues, the BK channel pore-forming α-subunit is associated to an auxiliary β-subunit that modulates the voltage- and Ca2+-dependent activation of the channel. Structural components present in β-subunits that are important for the physical association with the α-subunit are yet unknown. Here, we show through co-immunoprecipitation that the intracellular C-terminus, the second transmembrane domain (TM2) and the extracellular loop of the β2-subunit are dispensable for association with the α-subunit pointing transmembrane domain 1 (TM1) as responsible for the interaction. Indeed, the TOXCAT assay for transmembrane protein–protein interactions demonstrated for the first time that TM1 of the β2-subunit physically binds to the transmembrane S1 domain of the α-subunit. PMID:22710124

  6. Molecular phylogenetic studies on an unnamed bovine Babesia sp. based on small subunit ribosomal RNA gene sequences.

    Science.gov (United States)

    Luo, Jianxun; Yin, Hong; Liu, Zhijie; Yang, Dongying; Guan, Guiquan; Liu, Aihong; Ma, Miling; Dang, Shengzhi; Lu, Bingyi; Sun, Caiqin; Bai, Qi; Lu, Wenshun; Chen, Puyan

    2005-10-10

    The 18S small subunit ribosomal RNA (18S rRNA) gene of an unnamed Babesia species (designated B. U sp.) was sequenced and analyzed in an attempt to distinguish it from other Babesia species in China. The target DNA segment was amplified by polymerase chain reaction (PCR). The PCR product was ligated to the pGEM-T Easy vector for sequencing. It was found that the length of the 18S rRNA gene of all B. U sp. Kashi 1 and B. U sp. Kashi 2 was 1699 bp and 1689 bp. Two phylogenetic trees were, respectively, inferred based on 18S rRNA sequence of the Chinese bovine Babesia isolates and all of Babesia species available in GenBank. The first tree showed that B. U sp. was situated in the branch between B. major Yili and B. bovis Shannxian, and the second tree revealed that B. U sp. was confined to the same group as B. caballi. The percent identity of B. U sp. with other Chinese Babesia species was between 74.2 and 91.8, while the percent identity between two B. U sp. isolates was 99.7. These results demonstrated that this B. U sp. is different from other Babesia species, but that two B. U sp. isolates obtained with nymphal and adultal Hyalomma anatolicum anatolicum tick belong to the same species.

  7. A bifunctional archaeal protein that is a component of 30S ribosomal subunits and interacts with C/D box small RNAs

    Directory of Open Access Journals (Sweden)

    Andrea Ciammaruconi

    2008-01-01

    Full Text Available We have identified a novel archaeal protein that apparently plays two distinct roles in ribosome metabolism. It is a polypeptide of about 18 kDa (termed Rbp18 that binds free cytosolic C/D box sRNAs in vivo and in vitro and behaves as a structural ribosomal protein, specifically a component of the 30S ribosomal subunit. As Rbp18 is selectively present in Crenarcheota and highly thermophilic Euryarchaeota, we propose that it serves to protect C/D box sRNAs from degradation and perhaps to stabilize thermophilic 30S subunits.

  8. 28 CFR 51.6 - Political subunits.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Political subunits. 51.6 Section 51.6 Judicial Administration DEPARTMENT OF JUSTICE (CONTINUED) PROCEDURES FOR THE ADMINISTRATION OF SECTION 5 OF THE VOTING RIGHTS ACT OF 1965, AS AMENDED General Provisions § 51.6 Political subunits. All political...

  9. Involvement of proteasomal subunits zeta and iota in RNA degradation.

    Science.gov (United States)

    Petit, F; Jarrousse, A S; Dahlmann, B; Sobek, A; Hendil, K B; Buri, J; Briand, Y; Schmid, H P

    1997-01-01

    We have identified two distinct subunits of 20 S proteasomes that are associated with RNase activity. Proteasome subunits zeta and iota, eluted from two-dimensional Western blots, hydrolysed tobacco mosaic virus RNA, whereas none of the other subunits degraded this substrate under the same conditions. Additionally, proteasomes were dissociated by 6 M urea, and subunit zeta, containing the highest RNase activity, was isolated by anion-exchange chromatography and gel filtration. Purified subunit zeta migrated as a single spot on two-dimensional PAGE with a molecular mass of approx. 28 kDa. Addition of anti-(subunit zeta) antibodies led to the co-precipitation of this proteasome subunit and nuclease activity. This is the first evidence that proteasomal alpha-type subunits are associated with an enzymic activity, and our results provide further evidence that proteasomes may be involved in cellular RNA metabolism. PMID:9337855

  10. Subunit Stoichiometry of Human Muscle Chloride Channels

    OpenAIRE

    Fahlke, Christoph; Knittle, Timothy; Gurnett, Christina A.; Campbell, Kevin P.; George, Alfred L.

    1997-01-01

    Voltage-gated Cl? channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl? channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their ...

  11. Transcriptional regulators of Na, K-ATPase subunits

    OpenAIRE

    Zhiqin eLi; Sigrid A Langhans

    2015-01-01

    The Na,K-ATPase classically serves as an ion pump creating an electrochemical gradient across the plasma membrane that is essential for transepithelial transport, nutrient uptake and membrane potential. In addition, Na,K-ATPase also functions as a receptor, a signal transducer and a cell adhesion molecule. With such diverse roles, it is understandable that the Na,K-ATPase subunits, the catalytic alpha-subunit, the beta-subunit and the FXYD proteins, are controlled extensively during developme...

  12. Structure of Rv1848 (UreA), the Mycobacterium tuberculosis urease γ subunit

    International Nuclear Information System (INIS)

    Habel, Jeff E.; Bursey, Evan H.; Rho, Beom-Seop; Kim, Chang-Yub; Segelke, Brent W.; Rupp, Bernhard; Park, Min S.; Terwilliger, Thomas C.; Hung, Li-Wei

    2010-01-01

    Crystal and solution structures of Rv1848 protein and their implications in the biological assembly of Mtb urease is presented. The crystal structure of the urease γ subunit (UreA) from Mycobacterium tuberculosis, Rv1848, has been determined at 1.8 Å resolution. The asymmetric unit contains three copies of Rv1848 arranged into a homotrimer that is similar to the UreA trimer in the structure of urease from Klebsiella aerogenes. Small-angle X-ray scattering experiments indicate that the Rv1848 protein also forms trimers in solution. The observed homotrimer and the organization of urease genes within the M. tuberculosis genome suggest that M. tuberculosis urease has the (αβγ) 3 composition observed for other bacterial ureases. The γ subunit may be of primary importance for the formation of the urease quaternary structure

  13. Structural model of the 50S subunit of E.Coli ribosomes from solution scattering

    Energy Technology Data Exchange (ETDEWEB)

    Svergun, D.I.; Koch, M.H.J. [Hamburg Outstation (Germany); Pedersen, J.S. [Riso National Laboratory, Roskilde (Denmark); Serdyuk, I.N. [Inst. of Protein Research, Moscow (Russian Federation)

    1994-12-31

    The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from the protein moiety. Basing on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40A. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA.

  14. Structural model of the 50S subunit of E.Coli ribosomes from solution scattering

    International Nuclear Information System (INIS)

    Svergun, D.I.; Koch, M.H.J.; Pedersen, J.S.; Serdyuk, I.N.

    1994-01-01

    The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from the protein moiety. Basing on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40A. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA

  15. E2F1 promote the aggressiveness of human colorectal cancer by activating the ribonucleotide reductase small subunit M2

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zejun [Sanmen People' s Hospital of Zhejiang, Sanmen, Zhejiang, 317100 (China); Gong, Chaoju [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058 (China); Liu, Hong [Zhejiang Normal University – Jinhua People' s Hospital Joint Center for Biomedical Research, Jinhua, Zhejiang, 321004 (China); Zhang, Xiaomin; Mei, Lingming [Sanmen People' s Hospital of Zhejiang, Sanmen, Zhejiang, 317100 (China); Song, Mintao [Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS), School of Basic Medicine, Peking Union Medical College (PUMC), Beijing, 100005 (China); Qiu, Lanlan; Luo, Shuchai; Zhu, Zhihua; Zhang, Ronghui; Gu, Hongqian [Sanmen People' s Hospital of Zhejiang, Sanmen, Zhejiang, 317100 (China); Chen, Xiang, E-mail: sychenxiang@126.com [Sanmen People' s Hospital of Zhejiang, Sanmen, Zhejiang, 317100 (China)

    2015-08-21

    As the ribonucleotide reductase small subunit, the high expression of ribonucleotide reductase small subunit M2 (RRM2) induces cancer and contributes to tumor growth and invasion. In several colorectal cancer (CRC) cell lines, we found that the expression levels of RRM2 were closely related to the transcription factor E2F1. Mechanistic studies were conducted to determine the molecular basis. Ectopic overexpression of E2F1 promoted RRM2 transactivation while knockdown of E2F1 reduced the levels of RRM2 mRNA and protein. To further investigate the roles of RRM2 which was activated by E2F1 in CRC, CCK-8 assay and EdU incorporation assay were performed. Overexpression of E2F1 promoted cell proliferation in CRC cells, which was blocked by RRM2 knockdown attenuation. In the migration and invasion tests, overexpression of E2F1 enhanced the migration and invasion of CRC cells which was abrogated by silencing RRM2. Besides, overexpression of RRM2 reversed the effects of E2F1 knockdown partially in CRC cells. Examination of clinical CRC specimens demonstrated that both RRM2 and E2F1 were elevated in most cancer tissues compared to the paired normal tissues. Further analysis showed that the protein expression levels of E2F1 and RRM2 were parallel with each other and positively correlated with lymph node metastasis (LNM), TNM stage and distant metastasis. Consistently, the patients with low E2F1 and RRM2 levels have a better prognosis than those with high levels. Therefore, we suggest that E2F1 can promote CRC proliferation, migration, invasion and metastasis by regulating RRM2 transactivation. Understanding the role of E2F1 in activating RRM2 transcription will help to explain the relationship between E2F1 and RRM2 in CRC and provide a novel predictive marker for diagnosis and prognosis of the disease. - Highlights: • E2F1 promotes RRM2 transactivation in CRC cells. • E2F1 promotes the proliferation of CRC cells by activating RRM2. • E2F1 promotes the migration and

  16. Release of newly synthesized nucleoplasmic ribosomal subunits or their precursor particles from isolated nuclei of regenerating rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Usami, K; Ogata, K [Niigata Univ. (Japan). School of Medicine

    1930-06-16

    The authors present the time course of the labeling of RNA and protein moieties of these particles in vivo as well as the pattern of one-dimensional acrylamide gel electrophoresis of their protein moieties labeled with (/sup 35/S)methionine in vivo, which shows that released 60 S particles are newly synthesized ribosomal large subunits or their precursor particles in the nucleoplasm on their way from the nucleolus to the cytoplasm. It appears likely that released 40 S particles contain newly synthesized ribosomal small subunits or their precursors in the nucleoplasm.

  17. The beta subunit of casein kinase II

    DEFF Research Database (Denmark)

    Boldyreff, B; Piontek, K; Schmidt-Spaniol, I

    1991-01-01

    cDNAs encoding the beta subunit of pig and mouse CKII were isolated. The porcine cDNA was expressed as a fusion protein in Escherichia coli and used for the production of anti-CKII-beta subunit specific antibodies....

  18. Characterization of fimbrial subunits from Bordetella species

    NARCIS (Netherlands)

    Mooi, F.R.; Heide, H.G.J. van der; Avest, A.R. ter; Welinder, K.G.; Livey, I.; Zeijst, B.A.M. van der; Gaastra, W.

    Using antisera raised against serotype 2 and 3 fimbrial subunits from Bordetella pertussis, serologically related polypeptides were detected in Bordetella bronchiseptica, Bordetella parapertussis and Bordetella avium strains. The two B. pertussis fimbrial subunits, and three of the serologically

  19. 75 FR 29365 - Job Corps: Final Finding of No Significant Impact (FONSI) for Small Wind Turbine Installation at...

    Science.gov (United States)

    2010-05-25

    ... (FONSI) for Small Wind Turbine Installation at the Pine Ridge Job Corps Center Located at 15710 Highway... Finding of No Significant Impact (FONSI) for Small Wind Turbine Installation at the Pine Ridge Job Corps....11(d), gives final notice of the proposed construction of a small wind turbine at the Pine Ridge Job...

  20. A novel mitochondrial protein of Neurospora crassa immunoprecipitates with known enzyme subunits but is not antigenic

    International Nuclear Information System (INIS)

    Nixon, E.

    1989-01-01

    14 C labeled 4'-phosphopantetheine (PAN) is detectable as 2 bands after SDS-PAGE of mitochondrial proteins. The bands comigrate with subunit 6 of cytochrome oxidase (COX) and a small ATPase subunit in tube gel slices of immunoprecipitates. However, other work demonstrated these bands to be due to modification of a novel protein, related to acyl carrier protein (ACP) of spinach and E. coli, that exists in two forms. To resolve this discrepancy, 1-dimensional (1D) slab and 2-dimensional (2D) SDS-PAGE was used for increased resolution over tube gels. Total mitochondrial protein gels from PAN labeled cells were western blotted, probed for COX, and autoradiographed. In 1D there is exact migration of PAN with COX6. In 2D PAN overlaps a protein distinct from and not antigenically related to COX subunits. These data suggest it is the ACP-like protein that in PAN-modified. Its possible association with COX during assembly will be discussed

  1. (Na+ + K+)-ATPase and plasma membrane polarity of intestinal epithelial cells: Presence of a brush border antigen in the distal large intestine that is immunologically related to beta subunit

    Energy Technology Data Exchange (ETDEWEB)

    Marxer, A.; Stieger, B.; Quaroni, A.; Kashgarian, M.; Hauri, H.P. (Univ. of Basel (Switzerland))

    1989-09-01

    The previously produced monoclonal antibody IEC 1/48 against cultured rat intestinal crypt cells was extensively characterized and found to be directed against the beta subunit of (Na+ + K+)-ATPase as assessed by immunological and enzymatic criteria. Under nondenaturing conditions the antibody precipitated the alpha-beta enzyme complex (98,000 and 48,000 Mr). This probe, together with the monoclonal antibody C 62.4 against the alpha subunit was used to localize (Na+ + K+)-ATPase in epithelial cells along the rat intestinal tract by immunofluorescence and immunoelectron microscopy. Both antibodies exclusively labeled the basolateral membrane of small intestine and proximal colon epithelial cells. However, in the distal colon, IEC 1/48, but not C 62.4, also labeled the brush border membrane. The cross-reacting beta-subunit-like antigen on the apical cell pole was tightly associated with isolated brush borders but was apparently devoid of (Na+ + K+)-ATPase activity. Subcellular fractionation of colonocytes in conjunction with limited proteolysis and surface radioiodination of intestinal segments suggested that the cross-reacting antigen in the brush border may be very similar to the beta subunit. The results support the notion that in the small intestine and proximal colon the enzyme subunits are exclusively targeted to the basolateral membrane while in the distal colon nonassembled beta subunit or a beta-subunit-like protein is also transported to the apical cell pole.

  2. Expression of the GABA(A) receptor alpha6 subunit in cultured cerebellar granule cells is developmentally regulated by activation of GABA(A) receptors

    DEFF Research Database (Denmark)

    Carlson, B X; Belhage, B; Hansen, Gert Helge

    1997-01-01

    Da (alpha6 subunit) radioactive peaks in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In contrast, THIP-treated granule cells at 8 DIV demonstrated a small but significant decrease from control cultures in the photoincorporation of [3H]Ro15-4513 in the 51-kDa peak; however...... that the major effect of THIP was to increase alpha6 subunit clustering on granule cell bodies as well as neurites, 15-fold and sixfold, respectively. Using in situ hybridization, a small THIP-induced increase in alpha6 mRNA was detected at 4 DIV; however, no effect was apparent at 8 DIV. These data suggest...

  3. The residence time of GABA(A)Rs at inhibitory synapses is determined by direct binding of the receptor α1 subunit to gephyrin

    DEFF Research Database (Denmark)

    Mukherjee, Jayanta; Kretschmannova, Karla; Gouzer, Geraldine

    2011-01-01

    The majority of fast synaptic inhibition in the brain is mediated by benzodiazepine-sensitive α1-subunit-containing GABA type A receptors (GABA(A)Rs); however, our knowledge of the mechanisms neurons use to regulate their synaptic accumulation is rudimentary. Using immunoprecipitation, we....... Mutating residues 360-375 decreases both the accumulation of α1-containing GABA(A)Rs at gephyrin-positive inhibitory synapses in hippocampal neurons and the amplitude of mIPSCs. We also demonstrate that the affinity of gephyrin for the α1 subunit is modulated by Thr375, a putative phosphorylation site....... Mutation of Thr375 to a phosphomimetic, negatively charged amino acid decreases both the affinity of the α1 subunit for gephyrin, and therefore receptor accumulation at synapses, and the amplitude of mIPSCs. Finally, single-particle tracking reveals that gephyrin reduces the diffusion of α1-subunit...

  4. Myristoylated α subunits of guanine nucleotide-binding regulatory proteins

    International Nuclear Information System (INIS)

    Buss, J.E.; Mumby, S.M.; Casey, P.J.; Gilman, A.G.; Sefton, B.M.

    1987-01-01

    Antisera directed against specific subunits of guanine nucleotide-binding regulatory proteins (G proteins) were used to immunoprecipitate these polypeptides from metabolically labeled cells. This technique detects, in extracts of a human astrocytoma cell line, the α subunits of G/sub s/ (stimulatory) (α 45 and α 52 ), a 41-kDa subunit of G/sub i/ (inhibitory) (α 41 ), a 40-kDa protein (α 40 ), and the 36-kDa β subunit. No protein that comigrated with the α subunit of G 0 (unknown function) (α 39 ) was detected. In cells grown in the presence of [ 3 H]myristic acid, α 41 and α 40 contained 3 H label, while the β subunit did not. Chemical analysis of lipids attached covalently to purified α 41 and α 39 from bovine brain also revealed myristic acid. Similar analysis of brain G protein β and γ subunits and of G/sub t/ (Transducin) subunits (α, β, and γ) failed to reveal fatty acids. The fatty acid associated with α 41 , α 40 , and α 39 was stable to treatment with base, suggesting that the lipid is linked to the polypeptide via an amide bond. These GTP binding proteins are thus identified as members of a select group of proteins that contains myristic acid covalently attached to the peptide backbone. Myristate may play an important role in stabilizing interactions of G proteins with phospholipid or with membrane-bound proteins

  5. The Subunit Principle in Scar Face Revision.

    Science.gov (United States)

    Elshahat, Ahmed; Lashin, Riham

    2017-06-01

    Facial scaring is considered one of the most difficult cosmetic problems for any plastic surgeon to solve. The condition is more difficult if the direction of the scar is not parallel to relaxed skin tension lines. Attempts to manage this difficult situation included revisions using geometric designs, Z plasties or W plasties to camouflage the straight line visible scaring. The use of long-lasting resorbable sutures was tried too. Recently, the use of botulinum toxin during revision improved the results. Fractional CO2 lasers, microfat grafts, and platelet-rich plasma were added to the armamentarium. The scar is least visible if placed in the junction between the facial subunits. The aim of this study is to investigate the use of the subunit principle to improve the results of scar revision. Four patients were included in this study. Tissue expansion of the intact part of the subunit allowed shifting the scar to the junction between the affected subunit and the adjacent one. Tissue expansion, delivery of the expanders, and advancement of the flaps were successful in all patients. The fact that this is a 2-stage procedure and sacrifices some of the intact skin from the affected facial subunit, makes this technique reserved to patients with ugly facial scars who are ambitious to improve their appearance.

  6. Efficient expression of functional (α6β22β3 AChRs in Xenopus oocytes from free subunits using slightly modified α6 subunits.

    Directory of Open Access Journals (Sweden)

    Carson Kai-Kwong Ley

    Full Text Available Human (α6β2(α4β2β3 nicotinic acetylcholine receptors (AChRs are essential for addiction to nicotine and a target for drug development for smoking cessation. Expressing this complex AChR is difficult, but has been achieved using subunit concatamers. In order to determine what limits expression of α6* AChRs and to efficiently express α6* AChRs using free subunits, we investigated expression of the simpler (α6β22β3 AChR. The concatameric form of this AChR assembles well, but is transported to the cell surface inefficiently. Various chimeras of α6 with the closely related α3 subunit increased expression efficiency with free subunits and produced pharmacologically equivalent functional AChRs. A chimera in which the large cytoplasmic domain of α6 was replaced with that of α3 increased assembly with β2 subunits and transport of AChRs to the oocyte surface. Another chimera replacing the unique methionine 211 of α6 with leucine found at this position in transmembrane domain 1 of α3 and other α subunits increased assembly of mature subunits containing β3 subunits within oocytes. Combining both α3 sequences in an α6 chimera increased expression of functional (α6β22β3 AChRs to 12-fold more than with concatamers. This is pragmatically useful, and provides insights on features of α6 subunit structure that limit its expression in transfected cells.

  7. Decreased surface expression of the δ subunit of the GABAA receptor contributes to reduced tonic inhibition in dentate granule cells in a mouse model of fragile X syndrome.

    Science.gov (United States)

    Zhang, Nianhui; Peng, Zechun; Tong, Xiaoping; Lindemeyer, A Kerstin; Cetina, Yliana; Huang, Christine S; Olsen, Richard W; Otis, Thomas S; Houser, Carolyn R

    2017-11-01

    While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABA A receptors (GABA A Rs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABA A R, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABA A Rs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with

  8. Genetic analysis of the cytoplasmic dynein subunit families.

    Science.gov (United States)

    Pfister, K Kevin; Shah, Paresh R; Hummerich, Holger; Russ, Andreas; Cotton, James; Annuar, Azlina Ahmad; King, Stephen M; Fisher, Elizabeth M C

    2006-01-01

    Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.

  9. Genetic analysis of the cytoplasmic dynein subunit families.

    Directory of Open Access Journals (Sweden)

    K Kevin Pfister

    2006-01-01

    Full Text Available Cytoplasmic dyneins, the principal microtubule minus-end-directed motor proteins of the cell, are involved in many essential cellular processes. The major form of this enzyme is a complex of at least six protein subunits, and in mammals all but one of the subunits are encoded by at least two genes. Here we review current knowledge concerning the subunits, their interactions, and their functional roles as derived from biochemical and genetic analyses. We also carried out extensive database searches to look for new genes and to clarify anomalies in the databases. Our analysis documents evolutionary relationships among the dynein subunits of mammals and other model organisms, and sheds new light on the role of this diverse group of proteins, highlighting the existence of two cytoplasmic dynein complexes with distinct cellular roles.

  10. Thermostable cross-protective subunit vaccine against Brucella species.

    Science.gov (United States)

    Cherwonogrodzky, John W; Barabé, Nicole D; Grigat, Michelle L; Lee, William E; Poirier, Robert T; Jager, Scott J; Berger, Bradley J

    2014-12-01

    A subunit vaccine candidate was produced from Brucella suis 145 (biovar 4; expressing both the A antigen of Brucella abortus and the M antigen of Brucella melitensis). The preparation consisted mostly of polysaccharide (PS; >90% [wt/wt]; both cell-associated PS and exo-PS were combined) and a small amount of protein (1 to 3%) with no apparent nucleic acids. Vaccinated mice were protected (these had a statistically significant reduction in bacterial colonization compared to that of unvaccinated controls) when challenged with representative strains of three Brucella species most pathogenic for humans, i.e., B. abortus, B. melitensis, and B. suis. As little as 1 ng of the vaccine, without added adjuvant, protected mice against B. suis 145 infection (5 × 10(5) CFU), and a single injection of 1 μg of this subunit vaccine protected mice from B. suis 145 challenge for at least 14 months. A single immunization induced a serum IgG response to Brucella antigens that remained elevated for up to 9 weeks. The use of heat (i.e., boiling-water bath, autoclaving) in the vaccine preparation showed that it was thermostable. This method also ensured safety and security. The vaccine produced was immunogenic and highly protective against multiple strains of Brucella and represents a promising candidate for further evaluation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. De novo quence analysis and intact mass measurements for characterization of phycocyanin subunit isoforms from the blue-green alga Aphanizomenon flos-aquae

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Roepstorff, Peter; Zolla, Lello

    2009-01-01

    isothiocyanate (SPITC) and MALDI-TOF/TOF analyses, facilitated the acquisition of sequence information for AFA phycocyanin subunits. In fact, SPITC-derivatized peptides underwent facile fragmentation, predominantly resulting in y-series ions in the MS/MS spectra and often exhibiting uninterrupted sequences of 20...... of phycocyanin subunits was also revealed; subsequently Intact Mass Measurements (IMMs) by both MALDI- and ESI-MS supported the detection of these protein isoforms. Finally, we discuss the evolutionary importance of phycocyanin isoforms in cyanobacteria, suggesting the possible use of the phycocyanin operon...

  12. The V-ATPase a2-subunit as a putative endosomal pH-sensor.

    Science.gov (United States)

    Marshansky, V

    2007-11-01

    V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.

  13. Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor α-subunits and platelet glycoprotein IIb

    International Nuclear Information System (INIS)

    Fitzgerald, L.A.; Poncz, M.; Steiner, B.; Rall, S.C. Jr.; Bennett, J.S.; Phillips, D.R.

    1987-01-01

    The fibronectin receptor (FnR), the vitronectin receptor (VnR), and the platelet membrane glycoprotein (GP) IIb-IIIa complex are members of a family of cell adhesion receptors, which consist of noncovalently associated α- and β-subunits. The present study was designed to compare the cDNA-derived protein sequences of the α-subunits of human FnR, VnR, and platelet GP IIb. cDNA clones for the α-subunit of the FnR (FnR/sub α/) were obtained from a human umbilical vein endothelial (HUVE) cell library by using an oligonucleotide probe designed from a peptide sequence of platelet GP IIb. cDNA clones for platelet GP IIb were isolated from a cDNA expression library of human erythroleukemia cells by using antibodies. cDNA clones of the VnR α-subunit (VnR/sub α/) were obtained from the HUVE cell library by using an oligonucleotide probe from the partial cDNA sequence for the VnR/sub α/. Translation of these sequences showed that the FNR/sub α/, the VnR/sub α/, and GP IIb are composed of disulfide-linked large (858-871 amino acids) and small (137-158 amino acids) chains that are posttranslationally processed from a single mRNA. A single hydrophobic segment located near the carboxyl terminus of each small chain appears to be a transmembrane domain. The large chains appear to be entirely extracellular, and each contains four repeated putative Ca 2+ -binding domains of about 30 amino acids that have sequence similarities to other Ca 2+ -binding proteins. The identity among the protein sequences of the three receptor α-subunits ranges from 36.1% to 44.5%, with the Ca 2+ -binding domains having the greatest homology. These proteins apparently evolved by a process of gene duplication

  14. Spatial arrangement and functional role of α subunits of proteasome activator PA28 in hetero-oligomeric form

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Masaaki, E-mail: sugiyama@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Osaka 590-0494 (Japan); Sahashi, Hiroki [Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan); Kurimoto, Eiji [Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan); Faculty of Pharmacy, Meijo University, Nagoya 468-8503 (Japan); Takata, Shin-ichi [J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195 (Japan); Yagi, Hirokazu; Kanai, Keita; Sakata, Eri [Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan); Minami, Yasufumi [Department of Biotechnology, Maebashi Institute of Technology, Gunma 371-0816 (Japan); Tanaka, Keiji [Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506 (Japan); Kato, Koichi, E-mail: kkatonmr@ims.ac.jp [Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603 (Japan); Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787 (Japan); Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787 (Japan)

    2013-03-01

    Highlights: ► Homologous α and β subunits are alternatively arranged in the PA28 heptameric ring. ► The flexible loops of the three α subunits surround the site of substrate entry. ► The loops serve as gatekeepers that selectively hinder passage of longer peptides. - Abstract: A major form of proteasome activator PA28 is a heteroheptamer composed of interferon-γ-inducible α and β subunits, which share approximately 50% amino acid identity and possess distinct insert loops. This activator forms a complex with the 20S proteasome and thereby stimulates proteasomal degradation of peptides in an ATP-independent manner, giving rise to smaller antigenic peptides presented by major histocompatibility complex class I molecules. In this study, we performed biophysical and biochemical characterization of the structure and function of the PA28 hetero-oligomer. Deuteration-assisted small-angle neutron scattering demonstrated three α and four β subunits are alternately arranged in the heptameric ring. In this arrangement, PA28 loops surround the central pore of the heptameric ring (site for peptide entry). Activating the 20S proteasome with a PA28 mutant that lacked the α subunit loops cleaved model substrates longer than a nonapeptide with better efficiency when compared to wild-type PA28. Based on these data, we hypothesize that the flexible PA28 loops act as gatekeepers, which function to select the length of peptide substrates to be transported between the proteolytic chamber and the extra-proteasomal medium.

  15. Roles of the β subunit hinge domain in ATP synthase F1 sector: Hydrophobic network formed by introduced βPhe174 inhibits subunit rotation

    International Nuclear Information System (INIS)

    Nakanishi-Matsui, Mayumi; Kashiwagi, Sachiko; Kojima, Masaki; Nonaka, Takamasa; Futai, Masamitsu

    2010-01-01

    The ATP synthase β subunit hinge domain (βPhe148 ∼ βGly186, P-loop/α-helixB/loop/β-sheet4, Escherichia coli residue numbering) dramatically changes in conformation upon nucleotide binding. We previously reported that F 1 with the βSer174 to Phe mutation in the domain lowered the γ subunit rotation speed, and thus decreased the ATPase activity [M. Nakanishi-Matsui, S. Kashiwagi, T. Ubukata, A. Iwamoto-Kihara, Y. Wada, M. Futai, Rotational catalysis of Escherichia coli ATP synthase F 1 sector. Stochastic fluctuation and a key domain of the β subunit, J. Biol. Chem. 282 (2007) 20698-20704.]. Homology modeling indicates that the amino acid replacement induces a hydrophobic network, in which the βMet159, βIle163, and βAla167 residues of the β subunit are involved together with the mutant βPhe174. The network is expected to stabilize the conformation of β DP (nucleotide-bound form of the β subunit), resulting in increased activation energy for transition to β E (empty β subunit). The modeling further predicts that replacement of βMet159 with Ala or Ile weakens the hydrophobic network. As expected, these two mutations experimentally suppressed the ATPase activities as well as subunit rotation of βS174F. Furthermore, the rotation rate decreased with the increase of the strength in the hydrophobic network. These results indicate that the smooth conformational change of the β subunit hinge domain is pertinent for the rotational catalysis.

  16. Studies on the subunits of human glycoprotein hormones in relation to reproduction

    International Nuclear Information System (INIS)

    Hagen, C.

    1977-01-01

    In this review summarising present knowledge of the biological and immunological activity of the subunits of human glycoprotein hormones, the specificity of the α-subunit and β-subunit radioimmunoassays are discussed. The crossreaction studies performed with the α-subunit radioimmunoassays are aummarised in one table while those with the β-subunit radioimmunoassays are presented in a second table. (JIW)

  17. Regulation of KV channel voltage-dependent activation by transmembrane β subunits

    Directory of Open Access Journals (Sweden)

    Xiaohui eSun

    2012-04-01

    Full Text Available Voltage-activated K+ (KV channels are important for shaping action potentials and maintaining resting membrane potential in excitable cells. KV channels contain a central pore-gate domain (PGD surrounded by four voltage-sensing domains (VSD. The VSDs will change conformation in response to alterations of the membrane potential thereby inducing the opening of the PGD. Many KV channels are heteromeric protein complexes containing auxiliary β subunits. These β subunits modulate channel expression and activity to increase functional diversity and render tissue specific phenotypes. This review focuses on the KV β subunits that contain transmembrane (TM segments including the KCNE family and the β subunits of large conductance, Ca2+- and voltage-activated K+ (BK channels. These TM β subunits affect the voltage-dependent activation of KV α subunits. Experimental and computational studies have described the structural location of these β subunits in the channel complexes and the biophysical effects on VSD activation, PGD opening and VSD-PGD coupling. These results reveal some common characteristics and mechanistic insights into KV channel modulation by TM β subunits.

  18. A Functional Switch of NuRD Chromatin Remodeling Complex Subunits Regulates Mouse Cortical Development

    Directory of Open Access Journals (Sweden)

    Justyna Nitarska

    2016-11-01

    Full Text Available Histone modifications and chromatin remodeling represent universal mechanisms by which cells adapt their transcriptional response to rapidly changing environmental conditions. Extensive chromatin remodeling takes place during neuronal development, allowing the transition of pluripotent cells into differentiated neurons. Here, we report that the NuRD complex, which couples ATP-dependent chromatin remodeling with histone deacetylase activity, regulates mouse brain development. Subunit exchange of CHDs, the core ATPase subunits of the NuRD complex, is required for distinct aspects of cortical development. Whereas CHD4 promotes the early proliferation of progenitors, CHD5 facilitates neuronal migration and CHD3 ensures proper layer specification. Inhibition of each CHD leads to defects of neuronal differentiation and migration, which cannot be rescued by expressing heterologous CHDs. Finally, we demonstrate that NuRD complexes containing specific CHDs are recruited to regulatory elements and modulate the expression of genes essential for brain development.

  19. Subunits of highly Fluorescent Protein R-Phycoerythrin as Probes for Cell Imaging and Single-Molecule Detection

    Energy Technology Data Exchange (ETDEWEB)

    Isailovic, Dragan [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    bodies, fluorescent holo-subunits were formed after incubation of E. coli cells with PEB. Spectroscopic characterization of holo-subunits confirmed that the attachment of PEB chromophore to apo-subunits yielded holo-subunits containing both PEB and urobilin (UB). Fluorescence and differential interference contrast (DIC) microscopy showed polar location of holo-subunit inclusion bodies in E. coli cells. In another example, R-PE apo-subunits were genetically fused to cytoplasmic and periplasmic versions of E. coli maltose binding protein (MBP). Fluorescent proteins formed after attachment of PEB to MBP-subunit fusions in vitro and in vivo contained PEB as the sole chromophore, were soluble, and displayed high orange fluorescence. Fluorescence microscopy showed that fusions are located either throughout cells or at cell poles. In addition, cells containing fluorescent holo-subunits or MBP-subunit fusions were up to ten times brighter than control cells as measured by flow cytometry. Results show that the fluorescent proteins formed after non-enzymatic attachment of PEB to R-PE subunit fusions could be used as reporters of gene expression and protein localization in cells as well as fluorescence labels in flow cytometry. Finally, we demonstrated a high-throughput method able to record emission fluorescence spectra of individual cells containing fluorescent proteins. Upon excitation with a 488 mn argon-ion laser many bacterial cells were imaged by a 20X microscope objective while they moved through a capillary tube. Fluorescence was dispersed by a transmission diffraction grating, and an intensified charge-coupled device (ICCD) camera simultaneously recorded the zero and the first orders of the fluorescence from each cell. Single-cell fluorescence spectra were reconstructed from the distance between zero-order and first-order maxima as well as the length and the pixel intensity distribution of the first-order images. By using this approach, the emission spectrum of E. coli

  20. Development of a Subunit Vaccine for Contagious Bovine ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Their work has set the stage for commercial development of a sub-unit vaccine. ... The sub-unit vaccine will be cost-effective, easy to produce, and safe. How it will make a ... IDRC invites applications for the IDRC Doctoral Research Awards.

  1. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    Directory of Open Access Journals (Sweden)

    Signe Tandrup Schmidt

    2016-03-01

    Full Text Available The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens for which no effective vaccines exist. The subunit vaccine technology exploits pathogen subunits as antigens, e.g., recombinant proteins or synthetic peptides, allowing for highly specific immune responses against the pathogens. However, such antigens are usually not sufficiently immunogenic to induce protective immunity, and they are often combined with adjuvants to ensure robust immune responses. Adjuvants are capable of enhancing and/or modulating immune responses by exposing antigens to antigen-presenting cells (APCs concomitantly with conferring immune activation signals. Few adjuvant systems have been licensed for use in human vaccines, and they mainly stimulate humoral immunity. Thus, there is an unmet demand for the development of safe and efficient adjuvant systems that can also stimulate cell-mediated immunity (CMI. Adjuvants constitute a heterogeneous group of compounds, which can broadly be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode. Immunostimulators represent highly diverse classes of molecules, e.g., lipids, nucleic acids, proteins and peptides, and they are ligands for pattern-recognition receptors (PRRs, which are differentially expressed on APC subsets. Different formulation strategies might thus be required for incorporation of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the

  2. Expression, purification, crystallization and preliminary X-ray analysis of ORF60, the small subunit (R2) of ribonucleotide reductase from Kaposi’s sarcoma-associated herpesvirus (KSHV)

    International Nuclear Information System (INIS)

    Gurmu, Daniel; Dahlroth, Sue-Li; Haas, Juergen; Nordlund, Pär; Erlandsen, Heidi

    2010-01-01

    Crystals of the R2 subunit from the oncovirus Kaposi’s sarcoma-associated γ-herpesvirus (KSHV) were obtained by the use of in situ proteolysis. The crystals diffracted to 2.0 Å resolution and belonged to space group P2 1 . Ribonucleotide reductase (RNR) is responsible for converting ribonucleotides to deoxyribonucleotides, which are the building blocks of DNA. The enzyme is present in all life forms as well as in some large DNA viruses such as herpesviruses. The α-herpesviruses and γ-herpesviruses encode two class Ia RNR subunits, R1 and R2, while the β-herpesvirus subfamily only encode an inactive R1 subunit. Here, the crystallization of the R2 subunit of RNR encoded by the ORF60 gene from the oncovirus Kaposi’s sarcoma-associated γ-herpesvirus (KSHV) is reported. These are the first crystals of a viral R2 subunit; the use of in situ proteolysis with chymotrypsin and the addition of hexamine cobalt(III) chloride that were necessary to obtain crystals are described. Optimization of the crystallization conditions yielded crystals that diffracted to 2.0 Å resolution. The crystals belonged to space group P2 1 , with unit-cell parameters a = 63.9, b = 71.2, c = 71.8 Å, α = 90, β = 106.7, γ = 90°. The data set collected was 95.3% complete, with an R merge of 9.6%. There are two molecules in the asymmetric unit, corresponding to a solvent content of 43.4%

  3. Liposome-Based Adjuvants for Subunit Vaccines: Formulation Strategies for Subunit Antigens and Immunostimulators

    DEFF Research Database (Denmark)

    Schmidt, Signe Tandrup; Foged, Camilla; Korsholm, Karen Smith

    2016-01-01

    be classified into delivery systems or immunostimulators. Liposomes are versatile delivery systems for antigens, and they can carefully be customized towards desired immune profiles by combining them with immunostimulators and optimizing their composition, physicochemical properties and antigen-loading mode......The development of subunit vaccines has become very attractive in recent years due to their superior safety profiles as compared to traditional vaccines based on live attenuated or whole inactivated pathogens, and there is an unmet medical need for improved vaccines and vaccines against pathogens...... of immunostimulators and antigens, respectively, into liposomes, and the choice of immunostimulator should ideally be based on knowledge regarding the specific PRR expression profile of the target APCs. Here, we review state-of-the-art formulation approaches employed for the inclusion of immunostimulators and subunit...

  4. Isolation and characterization of the small subunit of the uptake hydrogenase from the cyanobacterium Nostoc punctiforme.

    Science.gov (United States)

    Raleiras, Patrícia; Kellers, Petra; Lindblad, Peter; Styring, Stenbjörn; Magnuson, Ann

    2013-06-21

    In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS.

  5. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development.

    Science.gov (United States)

    Beier, Anna; Teichert, Ines; Krisp, Christoph; Wolters, Dirk A; Kück, Ulrich

    2016-06-21

    The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK) complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general. The striatin-interacting phosphatase and kinase (STRIPAK) complex is highly conserved from yeasts to humans and is an important regulator of numerous eukaryotic developmental processes, such as cellular signaling and cell development. Although functional insights into the STRIPAK complex are accumulating, the detailed molecular mechanisms of single subunits are only partially understood

  6. Isolation and characterization of cbbL and cbbS genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase large and small subunits in Nitrosomonas sp. strain ENI-11.

    Science.gov (United States)

    Hirota, Ryuichi; Kato, Junichi; Morita, Hiromu; Kuroda, Akio; Ikeda, Tsukasa; Takiguchi, Noboru; Ohtake, Hisao

    2002-03-01

    The cbbL and cbbS genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large and small subunits in the ammonia-oxidizing bacterium Nitrosomonas sp. strain ENI-11 were cloned and sequenced. The deduced gene products, CbbL and CbbS, had 93 and 87% identity with Thiobacillus intermedius CbbL and Nitrobacter winogradskyi CbbS, respectively. Expression of cbbL and cbbS in Escherichia coli led to the detection of RubisCO activity in the presence of 0.1 mM isopropyl-beta-D-thiogalactopyranoside (IPTG). To our knowledge, this is the first paper to report the genes involved in the carbon fixation reaction in chemolithotrophic ammonia-oxidizing bacteria.

  7. INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS

    Science.gov (United States)

    Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.

    2012-01-01

    SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form functional O2-binding tetramers consistent with gene switching. PMID:22129306

  8. Immunochemical aspects of crotoxim and its subunits

    International Nuclear Information System (INIS)

    Nakazone, A.K.

    1979-01-01

    Crotamine and crotoxin with the subunits - phospholipase A and crotapotin - were obtained by purification from Crotalus durissus terrificus venom. Interaction studies of the subunits using crotalic antiserum, indicated that: crotoxin is formed of crotapotin and phospholipase A with the molar ratio of 1 to 1; using crotapotin 125 I the presence of a soluble complex was shown with the same antiserum. Immunological precipitation reactions demonstrated that crotapotin is antigenic: crotapotin and phospholipase A presented similar antigenic determinants; crotoxin antiserum reacted with each one of the submits; when the subunits are mixed to form synthetic crotoxin some antigenic determinants are masked in the process of interaction. Crotamine, interacted with crotapotin 1:1, without hidden antigenic determinants crotapotin antigenic site seems to be formed by, at least, one lysine. Enzimatical activity of phospholipase A apreared to be dependent on some reaction conditions when its arginine residues are blocked. Tyrosines of phospholipase A are more susceptible to labelling with 131 I than crotapotin. Gama irradiation of aqueous solutions of the subunits produced modifications in the ultraviolet spectra. A decrease of the enzymatic activity occured as a function of radiation dosis. Immunological activities of crotapotin and phospholipase A were not altered [pt

  9. Structural characterization of recombinant crustacyanin subunits from the lobster Homarus americanus

    International Nuclear Information System (INIS)

    Ferrari, Michele; Folli, Claudia; Pincolini, Elisa; McClintock, Timothy S.; Rössle, Manfred; Berni, Rodolfo; Cianci, Michele

    2012-01-01

    The two recombinant apo subunits H1 and H2 from H. americanus have been structurally characterized. Reconstitution studies with astaxanthin reproduced the bathochromic shift of 85–95 nm typical of the natural crustacyanin subunits. Crustacean crustacyanin proteins are linked to the production and modification of carapace colour, with direct implications for fitness and survival. Here, the structural and functional properties of the two recombinant crustacyanin subunits H 1 and H 2 from the American lobster Homarus americanus are reported. The two subunits are structurally highly similar to the corresponding natural apo crustacyanin CRTC and CRTA subunits from the European lobster H. gammarus. Reconstitution studies of the recombinant crustacyanin proteins H 1 and H 2 with astaxanthin reproduced the bathochromic shift of 85–95 nm typical of the natural crustacyanin subunits from H. gammarus in complex with astaxanthin. Moreover, correlations between the presence of crustacyanin genes in crustacean species and the resulting carapace colours with the spectral properties of the subunits in complex with astaxanthin confirmed this genotype–phenotype linkage

  10. Probing the functional subunits of the tonoplast H+-ATPase

    International Nuclear Information System (INIS)

    Randall, S.K.; Lai, S.; Sze, H.

    1986-01-01

    The tonoplast ATPase of oat roots is composed of at least three polypeptides of 72, 60, and 16 kDa. The 16 kDA polypeptide covalently binds N,N'-dicyclohexylcarbodiimide and is postulated to be a component of the proton channel. Initial studies to identify other subunits indicate that both the 72 and 60 kDa subunits covalently bind 14 C]-7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and [ 14 C]N-ethylamleimide, inhibitors of the tonoplast ATPase. ATP prevents binding of these inhibitors suggesting that both the 72 and 60 kDa subunits are involved in substrate binding. Polyclonal antibody has been made to the 72 kDa subunit. Western blot analysis of tonoplast vesicles reveals single reactive polypeptide (72 kDa). The antibody shows no cross-reactivity towards either the mitochondrial F 1 -ATPase or the plasma membrane ATPase. This antibody specifically inhibits ATP hydrolysis and ATP-dependent H + pumping in native tonoplast vesicles. The authors conclude that the 72 kDa subunit is intimately associated with the catalytic (or ATP-binding) site

  11. Crystal structure of the P pilus rod subunit PapA.

    Directory of Open Access Journals (Sweden)

    Denis Verger

    2007-05-01

    Full Text Available P pili are important adhesive fibres involved in kidney infection by uropathogenic Escherichia coli strains. P pili are assembled by the conserved chaperone-usher pathway, which involves the PapD chaperone and the PapC usher. During pilus assembly, subunits are incorporated into the growing fiber via the donor-strand exchange (DSE mechanism, whereby the chaperone's G1 beta-strand that complements the incomplete immunoglobulin-fold of each subunit is displaced by the N-terminal extension (Nte of an incoming subunit. P pili comprise a helical rod, a tip fibrillum, and an adhesin at the distal end. PapA is the rod subunit and is assembled into a superhelical right-handed structure. Here, we have solved the structure of a ternary complex of PapD bound to PapA through donor-strand complementation, itself bound to another PapA subunit through DSE. This structure provides insight into the structural basis of the DSE reaction involving this important pilus subunit. Using gel filtration chromatography and electron microscopy on a number of PapA Nte mutants, we establish that PapA differs in its mode of assembly compared with other Pap subunits, involving a much larger Nte that encompasses not only the DSE region of the Nte but also the region N-terminal to it.

  12. Muscular subunits transplantation for facial reanimation

    Directory of Open Access Journals (Sweden)

    Hazan André Salo Buslik

    2006-01-01

    Full Text Available PURPOSE: To present an alternative technique for reconstruction of musculocutaneous damages in the face transferring innervated subsegments(subunits of the latissimus dorsi flap for replacement of various facial mimetic muscles. METHODS: One clinical case of trauma with skin and mimetic muscles damage is described as an example of the technique. The treatment was performed with microsurgical transfer of latissimus dorsi muscle subunits. Each subunit present shape and dimensions of the respective mimetic muscles replaced. The origin, insertions and force vectors for the mimicmuscle lost were considered. Each subsegment has its own arterial and venous supply with a motor nerve component for the muscular unit. RESULTS: Pre and one year postoperative photos registration of static and dynamic mimic aspects, as well as digital electromyography digital data of the patients were compared. The transplanted muscular units presented myoeletric activity, fulfilling both the functional and cosmetic aspect. CONCLUSION: This technique seems to be a promising way to deal with the complex musculocutaneous losses of the face as well as facial palsy.

  13. Pituitary glycoprotein hormone a-subunit secretion by cirrhotic patients

    Directory of Open Access Journals (Sweden)

    Oliveira M.C.

    1999-01-01

    Full Text Available Secretion of the a-subunit of pituitary glycoprotein hormones usually follows the secretion of intact gonadotropins and is increased in gonadal failure and decreased in isolated gonadotropin deficiency. The aim of the present study was to determine the levels of the a-subunit in the serum of patients with cirrhosis of the liver and to compare the results obtained for eugonadal cirrhotic patients with those obtained for cirrhotic patients with hypogonadotropic hypogonadism. Forty-seven of 63 patients with cirrhosis (74.6% presented hypogonadism (which was central in 45 cases and primary in 2, 7 were eugonadal, and 9 women were in normal menopause. The serum a-subunit was measured by the fluorimetric method using monoclonal antibodies. Cross-reactivity with LH, TSH, FSH and hCG was 6.5, 1.2, 4.3 and 1.1%, respectively, with an intra-assay coefficient of variation (CV of less than 5% and an interassay CV of 5%, and sensitivity limit of 4 ng/l. The serum a-subunit concentration ranged from 36 to 6253 ng/l, with a median of 273 ng/l. The median was 251 ng/l for patients with central hypogonadism and 198 ng/l for eugonadal patients. The correlation between the a-subunit and basal LH levels was significant both in the total sample (r = 0.48, P<0.01 and in the cirrhotic patients with central hypogonadism (r = 0.33, P = 0.02. Among men with central hypogonadism there was a negative correlation between a-subunit levels and total testosterone levels (r = 0.54, P<0.01 as well as free testosterone levels (r = -0.53, P<0.01. In conclusion, although the a-subunit levels are correlated with LH levels, at present they cannot be used as markers for hypogonadism in patients with cirrhosis of the liver.

  14. Small Wind Research Turbine: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D.; Meadors, M.

    2005-10-01

    The Small Wind Research Turbine (SWRT) project was initiated to provide reliable test data for model validation of furling wind turbines and to help understand small wind turbine loads. This report will familiarize the user with the scope of the SWRT test and support the use of these data. In addition to describing all the testing details and results, the report presents an analysis of the test data and compares the SWRT test data to simulation results from the FAST aeroelastic simulation model.

  15. Nanolipoprotein Particles (NLPs) as Versatile Vaccine Platforms for Co-delivery of Multiple Adjuvants with Subunit Antigens from Burkholderia spp. and F. tularensis - Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-06

    The goal of this proposal is to demonstrate that colocalization of protein subunit antigens and adjuvants on nanolipoprotein particles (NLPs) can increase the protective efficacy of subunit antigens from Burkholderia spp. and Francisella tularensis against an aerosol challenge. In the second quarter of the third year, LLNL finalized all immunological assessments of NLP vaccine formulations in the F344 model. Battelle has immunized rats with three unique NLP formulations by either intramuscular or intranasal administration. All inoculations have been completed, and protective efficacy against an aerosolized challenge will begin at the end of October, 2014.

  16. Localization in the Nucleolus and Coiled Bodies of Protein Subunits of the Ribonucleoprotein Ribonuclease P

    Science.gov (United States)

    Jarrous, Nayef; Wolenski, Joseph S.; Wesolowski, Donna; Lee, Christopher; Altman, Sidney

    1999-01-01

    The precise location of the tRNA processing ribonucleoprotein ribonuclease P (RNase P) and the mechanism of its intranuclear distribution have not been completely delineated. We show that three protein subunits of human RNase P (Rpp), Rpp14, Rpp29 and Rpp38, are found in the nucleolus and that each can localize a reporter protein to nucleoli of cells in tissue culture. In contrast to Rpp38, which is uniformly distributed in nucleoli, Rpp14 and Rpp29 are confined to the dense fibrillar component. Rpp29 and Rpp38 possess functional, yet distinct domains required for subnucleolar localization. The subunit Rpp14 lacks such a domain and appears to be dependent on a piggyback process to reach the nucleolus. Biochemical analysis suggests that catalytically active RNase P exists in the nucleolus. We also provide evidence that Rpp29 and Rpp38 reside in coiled bodies, organelles that are implicated in the biogenesis of several other small nuclear ribonucleoproteins required for processing of precursor mRNA. Because some protein subunits of RNase P are shared by the ribosomal RNA processing ribonucleoprotein RNase MRP, these two evolutionary related holoenzymes may share common intranuclear localization and assembly pathways to coordinate the processing of tRNA and rRNA precursors. PMID:10444065

  17. Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways.

    Directory of Open Access Journals (Sweden)

    Ziliang Wang

    Full Text Available Small ribosomal protein subunit S7 (RPS7 has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221, ERK1/2 (Thr202/Tyr204, JNK1/2 (Thr183/Tyr185, and P38 (Thr180/Tyr182 were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.

  18. Immunochemical analysis of Micrococcus lysodeikticus (luteus) F1-ATPase and its subunits.

    Science.gov (United States)

    Urban, C; Salton, M R

    1983-08-31

    The F1-ATPase from Micrococcus lysodeikticus has been purified to 95% protein homogeneity in this laboratory and as all other bacterial F1S, possesses five distinct subunits with molecular weights ranging from 60 000 to 10 000 (Huberman, M. and Salton, M.R.J. (1979) Biochim. Biophys. Acta 547, 230-240). In this communication, we demonstrate the immunochemical reactivities of antibodies to native and SDS-dissociated subunits with the native and dissociated F1-ATPase and show that: (1) the antibodies generated to the native or SDS-dissociated subunits react with the native molecule; (2) all of the subunits comprising the F1 are antigenically unique as determined by crossed immunoelectrophoresis and the Ouchterlony double-diffusion techniques; (3) antibodies to the SDS-denatured individual delta- and epsilon-subunits can be used to destabilize the interaction of these specific subunits with the rest of the native F1; and (4) all subunit antibodies as well as anti-native F1 were found to inhibit ATPase activity to varying degrees, the strongest inhibition being seen with antibodies to the total F1 and anti-alpha- and anti-beta-subunit antibodies. The interaction of specific subunit antibodies may provide a new and novel way to study further and characterize the catalytic portions of F1-ATPases and in general may offer an additional method for the examination of multimeric proteins.

  19. Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone

    International Nuclear Information System (INIS)

    Taylor, T.; Weintraub, B.D.

    1985-01-01

    The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing [ 14 C]alanine and [ 3 H] glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, [ 14 C]alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. [ 3 H]Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function

  20. Catalytic Subunit 1 of Protein Phosphatase 2A Is a Subunit of the STRIPAK Complex and Governs Fungal Sexual Development

    Directory of Open Access Journals (Sweden)

    Anna Beier

    2016-06-01

    Full Text Available The generation of complex three-dimensional structures is a key developmental step for most eukaryotic organisms. The details of the molecular machinery controlling this step remain to be determined. An excellent model system to study this general process is the generation of three-dimensional fruiting bodies in filamentous fungi like Sordaria macrospora. Fruiting body development is controlled by subunits of the highly conserved striatin-interacting phosphatase and kinase (STRIPAK complex, which has been described in organisms ranging from yeasts to humans. The highly conserved heterotrimeric protein phosphatase PP2A is a subunit of STRIPAK. Here, catalytic subunit 1 of PP2A was functionally characterized. The Δpp2Ac1 strain is sterile, unable to undergo hyphal fusion, and devoid of ascogonial septation. Further, PP2Ac1, together with STRIPAK subunit PRO22, governs vegetative and stress-related growth. We revealed in vitro catalytic activity of wild-type PP2Ac1, and our in vivo analysis showed that inactive PP2Ac1 blocks the complementation of the sterile deletion strain. Tandem affinity purification, followed by mass spectrometry and yeast two-hybrid analysis, verified that PP2Ac1 is a subunit of STRIPAK. Further, these data indicate links between the STRIPAK complex and other developmental signaling pathways, implying the presence of a large interconnected signaling network that controls eukaryotic developmental processes. The insights gained in our study can be transferred to higher eukaryotes and will be important for understanding eukaryotic cellular development in general.

  1. Electrophysiology and Beyond: Multiple roles of Na+ channel β subunits in development and disease

    Science.gov (United States)

    Patino, Gustavo A.; Isom, Lori L.

    2010-01-01

    Voltage-gated Na+ channel (VGSC) β subunits are not “auxiliary.” These multifunctional molecules not only modulate Na+ current (INa), but also function as cell adhesion molecules (CAMs) – playing roles in aggregation, migration, invasion, neurite outgrowth, and axonal fasciculation. β subunits are integral members of VGSC signaling complexes at nodes of Ranvier, axon initial segments, and cardiac intercalated disks, regulating action potential propagation through critical intermolecular and cell-cell communication events. At least in vitro, many β subunit cell adhesive functions occur both in the presence and absence of pore-forming VGSC α subunits, and in vivo β subunits are expressed in excitable as well as non-excitable cells, thus β subunits may play important functional roles on their own, in the absence of α subunits. VGSC β1 subunits are essential for life and appear to be especially important during brain development. Mutations in β subunit genes result in a variety of human neurological and cardiovascular diseases. Moreover, some cancer cells exhibit alterations in β subunit expression during metastasis. In short, these proteins, originally thought of as merely accessory to α subunits, are critical players in their own right in human health and disease. Here we discuss the role of VGSC β subunits in the nervous system. PMID:20600605

  2. Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.

    Science.gov (United States)

    Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C

    2006-09-08

    The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.

  3. Rebuilding the Chalberhoeni small hydro power station in Saanen, Switzerland; Chalberhoeni - Rapport Final

    Energy Technology Data Exchange (ETDEWEB)

    Cavin, G. [Stucky SA, Renens (Switzerland); Wagner, T. [Sigmaplan, Berne (Switzerland)

    2009-07-01

    These two final illustrated reports for the Swiss Federal Office of Energy (SFOE) deal with various aspects of the Chalberhoeni small hydro project in Saanen, Switzerland. The first report presents data on the catchment area involved, available head, residual water quantities, installed power and annual production figures. Investments and operating costs are looked at. The second report describes the project and discusses regional planning aspects, hydrological basics and environmental issues in connection with the renewal project, including details on invertebrates found in the stream and their relevance to fishing and nature protection issues.

  4. Role of post-translational modifications at the β-subunit ectodomain in complex association with a promiscuous plant P4-ATPase.

    Science.gov (United States)

    Costa, Sara R; Marek, Magdalena; Axelsen, Kristian B; Theorin, Lisa; Pomorski, Thomas G; López-Marqués, Rosa L

    2016-06-01

    P-type ATPases of subfamily IV (P4-ATPases) constitute a major group of phospholipid flippases that form heteromeric complexes with members of the Cdc50 (cell division control 50) protein family. Some P4-ATPases interact specifically with only one β-subunit isoform, whereas others are promiscuous and can interact with several isoforms. In the present study, we used a site-directed mutagenesis approach to assess the role of post-translational modifications at the plant ALIS5 β-subunit ectodomain in the functionality of the promiscuous plant P4-ATPase ALA2. We identified two N-glycosylated residues, Asn(181) and Asn(231) Whereas mutation of Asn(231) seems to have a small effect on P4-ATPase complex formation, mutation of evolutionarily conserved Asn(181) disrupts interaction between the two subunits. Of the four cysteine residues located in the ALIS5 ectodomain, mutation of Cys(86) and Cys(107) compromises complex association, but the mutant β-subunits still promote complex trafficking and activity to some extent. In contrast, disruption of a conserved disulfide bond between Cys(158) and Cys(172) has no effect on the P4-ATPase complex. Our results demonstrate that post-translational modifications in the β-subunit have different functional roles in different organisms, which may be related to the promiscuity of the P4-ATPase. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  5. Purification of the alpha and beta subunits of phosphorylase kinase for structural studies

    International Nuclear Information System (INIS)

    Sotiroudis, T.G.; Heilmeyer, L.M.G. Jr.; Crabb, J.W.

    1987-01-01

    Structural analysis of the alpha (Mr, 132,000) and beta (Mr, 113,000) subunits of phosphorylase kinase may provide clues to their yet unknown functions however purification remains problematic. Preparative RP-HPLC procedures yield inconveniently large, dilute solutions and concentration steps are required prior to subunit modification and fragmentation. Concentration of the β subunit usually results in significant losses due to insolubility. Using preparative SDS-polyacrylamide gel electrophoresis, they have purified the α, 7 , and β subunits from rabbit muscle phosphorylase kinase in a soluble and concentrated form suitable for structural studies. Phosphorylase kinase labelled with fluorescein isothiocyanate in the α and α' subunits and fully 14 C-S-carboxymethylated was fractionated on a 5% acrylamide Laemmli slab gel. The subunit bands were visualized by fluorescence and by SDS precipitation then excised and electroeluted in the presence of SDS using an ELUTRAP device. From 4.5 mg of enzyme applied to a 4.5 mm thick gel about 70% of the α subunit and about 90% of the β subunit were typically recovered in less than 1 ml with overnight elution

  6. Topographic antigenic determinants recognized by monoclonal antibodies on human choriogonadotropin beta-subunit

    International Nuclear Information System (INIS)

    Bidart, J.M.; Troalen, F.; Salesse, R.; Bousfield, G.R.; Bohuon, C.J.; Bellet, D.H.

    1987-01-01

    We describe a first attempt to study the antibody-combining sites recognized by monoclonal antibodies raised against the beta-subunit of human choriogonadotropin (hCG). Two groups of antibodies were first defined by their ability to recognize only the free beta-subunit or the free and combined subunit. Antibodies FBT-11 and FBT-11-L bind only to hCG beta-subunit but not to hCG, whereas antibodies FBT-10 and D1E8 bind to both the beta-subunit and the hormone. In both cases, the antigenic determinants were localized to the core of the protein (residues 1-112), indicating the weak immunogenicity of the specific carboxyl-terminal extension of hCG-beta. Nine synthetic peptides spanning different regions of hCG-beta and lutropin-beta were assessed for their capacity to inhibit antibody binding. A synthetic peptide inclusive of the NH2-terminal region (residues 1-7) of the hCG beta-subunit was found to inhibit binding to the radiolabeled subunit of a monoclonal antibody specific for free hCG-beta (FBT-11). Further delineation of the antigenic site recognized by this antibody provided evidence for the involvement of fragment 82-92. Moreover, monoclonal antibody FBT-11 inhibited the recombination of hCG-beta to hCG-alpha, indicating that its antigenic determinant might be located nearby or in the hCG-beta portion interacting with the alpha-subunit. Binding of monoclonal antibody FBT-10, corresponding to the second antigenic determinant, was weakly inhibited by fragment 82-105 and did not impair the recombination of the hCG beta-subunit to the hCG alpha-subunit. Its combining site appeared to be located in a region of the intact native choriogonadotropin present at the surface of the hormone-receptor complex

  7. Multiple group I introns in the small-subunit rDNA of Botryosphaeria dothidea: implication for intraspecific genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chao Xu

    Full Text Available Botryosphaeria dothidea is a widespread and economically important pathogen on various fruit trees, and it often causes die-back and canker on limbs and fruit rot. In characterizing intraspecies genetic variation within this fungus, group I introns, rich in rDNA of fungi, may provide a productive region for exploration. In this research, we analysed complete small subunit (SSU ribosomal DNA (rDNA sequences of 37 B. dothidea strains, and found four insertions, designated Bdo.S943, Bdo.S1199-A, Bdo.S1199-B and Bdo.S1506, at three positions. Sequence analysis and structure prediction revealed that both Bdo.S943 and Bdo.S1506 belonged to subgroup IC1 of group I introns, whereas Bdo.S1199-A and Bdo.S1199-B corresponded to group IE introns. Moreover, Bdo.S1199-A was found to host an open reading frame (ORF for encoding the homing endonuclease (HE, whereas Bdo.S1199-B, an evolutionary descendant of Bdo.S1199-A, included a degenerate HE. The above four introns were novel, and were the first group I introns observed and characterized in this species. Differential distribution of these introns revealed that all strains could be separated into four genotypes. Genotype III (no intron and genotype IV (Bdo.S1199-B were each found in only one strain, whereas genotype I (Bdo.S1199-A and genotype II (Bdo.S943 and Bdo.S1506 occurred in 95% of the strains. There is a correlation between B. dothidea genotypes and hosts or geographic locations. Thus, these newly discovered group I introns can help to advance understanding of genetic differentiation within B. dothidea.

  8. Reassessment of MxiH subunit orientation and fold within native Shigella T3SS needles using surface labelling and solid-state NMR.

    Science.gov (United States)

    Verasdonck, Joeri; Shen, Da-Kang; Treadgold, Alexander; Arthur, Christopher; Böckmann, Anja; Meier, Beat H; Blocker, Ariel J

    2015-12-01

    T3SSs are essential virulence determinants of many Gram-negative bacteria, used to inject bacterial effectors of virulence into eukaryotic host cells. Their major extracellular portion, a ∼50 nm hollow, needle-like structure, is essential to host cell sensing and the conduit for effector secretion. It is formed of a small, conserved subunit arranged as a helical polymer. The structure of the subunit has been studied by electron cryomicroscopy within native polymers and by solid-state NMR in recombinant polymers, yielding two incompatible atomic models. To resolve this controversy, we re-examined the native polymer used for electron cryomicroscopy via surface labelling and solid-state NMR. Our data show the orientation and overall fold of the subunit within this polymer is as established by solid-state NMR for recombinant polymers. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. In silico predictions of LH2 ring sizes from the crystal structure of a single subunit using molecular dynamics simulations.

    Science.gov (United States)

    Janosi, Lorant; Keer, Harindar; Cogdell, Richard J; Ritz, Thorsten; Kosztin, Ioan

    2011-07-01

    Most of the currently known light-harvesting complexes 2 (LH2) rings are formed by 8 or 9 subunits. As of now, questions like "what factors govern the LH2 ring size?" and "are there other ring sizes possible?" remain largely unanswered. Here, we investigate by means of molecular dynamics (MD) simulations and stochastic modeling the possibility of predicting the size of an LH2 ring from the sole knowledge of the high resolution crystal structure of a single subunit. Starting with single subunits of two LH2 rings with known size, that is, an 8-ring from Rs. moliscianum (MOLI) and a 9-ring from Rps. acidophila (ACI), and one with unknown size (referred to as X), we build atomic models of subunit dimers corresponding to assumed 8-, 9-, and 10-ring geometries. After inserting each of the dimers into a lipid-water environment, we determine the preferred angle between the corresponding subunits by three methods: (1) energy minimization, (2) free MD simulations, and (3) potential of mean force calculations. We find that the results from all three methods are consistent with each other, and when taken together, it allows one to predict with reasonable level of confidence the sizes of the corresponding ring structures. One finds that X and ACI very likely form a 9-ring, while MOLI is more likely to form an 8-ring than a 9-ring. Finally, we discuss both the merits and limitations of all three prediction methods. Copyright © 2011 Wiley-Liss, Inc.

  10. Distribution of AMPA-type glutamate receptor subunits in the chick visual system

    Directory of Open Access Journals (Sweden)

    Pires R.S.

    1997-01-01

    Full Text Available Several glutamate receptor (GluR subunits have been characterized during the past few years. In the present study, subunit-specific antisera were used to determine the distribution of the AMPA-type glutamate receptor subunits GluR1-4 in retinorecipient areas of the chick brain. Six white leghorn chicks (Gallus gallus, 7-15 days old, unknown sex were deeply anesthetized and perfused with 4% buffered paraformaldehyde and brain sections were stained using immunoperoxidase techniques. The AMPA-type glutamate receptor subunits GluR1, GluR2/3 and GluR4 were present in several retinorecipient areas, with varying degrees of colocalization. For example, perikarya in layers 2, 3, and 5 of the optic tectum contained GluR1, whereas GluR2/3 subunits appeared mainly in neurons of layer 13. The GluR4 subunit was only detected in a few cells of the tectal layer 13. GluR1 and GluR2/3 were observed in neurons of the nucleus geniculatus lateralis ventralis, whereas GluR4 was only present in its neuropil. Somata in the accessory optic nucleus appeared to contain GluR2/3 and GluR4, whereas GluR1 was the dominant subunit in the neuropil of this nucleus. These results suggest that different subpopulations of visual neurons might express different combinations of AMPA-type GluR subunits, which in turn might generate different synaptic responses to glutamate derived from retinal ganglion cell axons

  11. Effect of high and low molecular weight glutenin subunits, and subunits of gliadin on physicochemical parameters of different wheat genotypes

    Directory of Open Access Journals (Sweden)

    Mariana Souza Costa

    2013-02-01

    Full Text Available Identification of functional properties of wheat flour by specific tests allows genotypes with appropriate characteristics to be selected for specific industrial uses. The objective of wheat breeding programs is to improve the quality of germplasm bank in order to be able to develop wheat with suitable gluten strength and extensibility for bread making. The aim of this study was to evaluate 16 wheat genotypes by correlating both glutenin subunits of high and low molecular weight and gliadin subunits with the physicochemical characteristics of the grain. Protein content, sedimentation volume, sedimentation index, and falling number values were analyzed after the grains were milled. Hectoliter weight and mass of 1000 seeds were also determined. The glutenin and gliadin subunits were separated using polyacrylamide gel in the presence of sodium dodecyl sulfate. The data were evaluated using variance analysis, Pearson's correlation, principal component analysis, and cluster analysis. The IPR 85, IPR Catuara TM, T 091015, and T 091069 genotypes stood out from the others, which indicate their possibly superior grain quality with higher sedimentation volume, higher sedimentation index, and higher mass of 1000 seeds; these genotypes possessed the subunits 1 (Glu-A1, 5 + 10 (Glu-D1, c (Glu-A3, and b (Glu-B3, with exception of T 091069 genotype that possessed the g allele instead of b in the Glu-B3.

  12. Influvac, a trivalent inactivated subunit influenza vaccine.

    Science.gov (United States)

    Zuccotti, Gian Vincenzo; Fabiano, Valentina

    2011-01-01

    Influenza represents a major sanitary and socio-economic burden and vaccination is universally considered the most effective strategy for preventing the disease and its complications. Traditional influenza vaccines have been on the market since the late 1940s, with million of doses administered annually worldwide, and demonstrated a substantial efficacy and safety. The trivalent inactivated subunit vaccine has been available for more than 25 years and has been studied in healthy children, adults and the elderly and in people affected by underlying chronic medical conditions. We describe vaccine technology focusing on subunit vaccine production procedures and mode of action and provide updated information on efficacy and safety available data. A review of efficacy and safety data in healthy subjects and in high risk populations from major sponsor- and investigator-driven studies. The vaccine showed a good immunogenicity and a favorable safety profile in all target groups. In the panorama of actually available influenza vaccines, trivalent inactivated subunit vaccine represents a well-established tool for preventing flu and the associated complications.

  13. Small space object imaging : LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, Mark R.; Valley, Michael T.; Kearney, Sean Patrick

    2009-10-01

    We report the results of an LDRD effort to investigate new technologies for the identification of small-sized (mm to cm) debris in low-earth orbit. This small-yet-energetic debris presents a threat to the integrity of space-assets worldwide and represents significant security challenge to the international community. We present a nonexhaustive review of recent US and Russian efforts to meet the challenges of debris identification and removal and then provide a detailed description of joint US-Russian plans for sensitive, laser-based imaging of small debris at distances of hundreds of kilometers and relative velocities of several kilometers per second. Plans for the upcoming experimental testing of these imaging schemes are presented and a preliminary path toward system integration is identified.

  14. Helicobacter pylori VacA toxin/subunit p34: targeting of an anion channel to the inner mitochondrial membrane.

    Directory of Open Access Journals (Sweden)

    Grazyna Domańska

    2010-04-01

    Full Text Available The vacuolating toxin VacA, released by Helicobacter pylori, is an important virulence factor in the pathogenesis of gastritis and gastroduodenal ulcers. VacA contains two subunits: The p58 subunit mediates entry into target cells, and the p34 subunit mediates targeting to mitochondria and is essential for toxicity. In this study we found that targeting to mitochondria is dependent on a unique signal sequence of 32 uncharged amino acid residues at the p34 N-terminus. Mitochondrial import of p34 is mediated by the import receptor Tom20 and the import channel of the outer membrane TOM complex, leading to insertion of p34 into the mitochondrial inner membrane. p34 assembles in homo-hexamers of extraordinary high stability. CD spectra of the purified protein indicate a content of >40% beta-strands, similar to pore-forming beta-barrel proteins. p34 forms an anion channel with a conductivity of about 12 pS in 1.5 M KCl buffer. Oligomerization and channel formation are independent both of the 32 uncharged N-terminal residues and of the p58 subunit of the toxin. The conductivity is efficiently blocked by 5-nitro-2-(3-phenylpropylaminobenzoic acid (NPPB, a reagent known to inhibit VacA-mediated apoptosis. We conclude that p34 essentially acts as a small pore-forming toxin, targeted to the mitochondrial inner membrane by a special hydrophobic N-terminal signal.

  15. Initial and Final State Interaction Effects in Small-x Quark Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Bo-Wen; Yuan, Feng

    2010-08-30

    We study the initial and final state interaction effects in the transverse momentum dependent parton distributions in the small-x saturation region. In particular, we discuss the quark distributions in the semi-inclusive deep inelastic scattering, Drell-Yan lepton pair production and dijet-correlation processes in pA collisions. We calculate the quark distributions in the scalar-QED model and then extend to the color glass condensate formalism in QCD. The quark distributions are found universal between the DIS and Drell-Yan processes. On the other hand, the quark distribution from the qq'-->qq' channel contribution to the dijet-correlation process is not universal. However, we find that it can be related to the quark distribution in DIS process by a convolution with the normalized unintegrated gluon distribution in the CGC formalism in the large Nc limit.

  16. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18

    Science.gov (United States)

    Nandi, Sandip Kumar; Panda, Alok Kumar; Chakraborty, Ayon; Ray, Sougata Sinha; Biswas, Ashis

    2015-01-01

    Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31–43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25–43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min-1. Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18. PMID:26098662

  17. Role of Subunit Exchange and Electrostatic Interactions on the Chaperone Activity of Mycobacterium leprae HSP18.

    Science.gov (United States)

    Nandi, Sandip Kumar; Panda, Alok Kumar; Chakraborty, Ayon; Sinha Ray, Sougata; Biswas, Ashis

    2015-01-01

    Mycobacterium leprae HSP18, a major immunodominant antigen of M. leprae pathogen, is a small heat shock protein. Previously, we reported that HSP18 is a molecular chaperone that prevents aggregation of different chemically and thermally stressed client proteins and assists refolding of denatured enzyme at normal temperature. We also demonstrated that it can efficiently prevent the thermal killing of E. coli at higher temperature. However, molecular mechanism behind the chaperone function of HSP18 is still unclear. Therefore, we studied the structure and chaperone function of HSP18 at normal temperature (25°C) as well as at higher temperatures (31-43°C). Our study revealed that the chaperone function of HSP18 is enhanced significantly with increasing temperature. Far- and near-UV CD experiments suggested that its secondary and tertiary structure remain intact in this temperature range (25-43°C). Besides, temperature has no effect on the static oligomeric size of this protein. Subunit exchange study demonstrated that subunits of HSP18 exchange at 25°C with a rate constant of 0.018 min(-1). Both rate of subunit exchange and chaperone activity of HSP18 is found to increase with rise in temperature. However, the surface hydrophobicity of HSP18 decreases markedly upon heating and has no correlation with its chaperone function in this temperature range. Furthermore, we observed that HSP18 exhibits diminished chaperone function in the presence of NaCl at 25°C. At elevated temperatures, weakening of interactions between HSP18 and stressed client proteins in the presence of NaCl results in greater reduction of its chaperone function. The oligomeric size, rate of subunit exchange and structural stability of HSP18 were also found to decrease when electrostatic interactions were weakened. These results clearly indicated that subunit exchange and electrostatic interactions play a major role in the chaperone function of HSP18.

  18. Liberated PKA Catalytic Subunits Associate with the Membrane via Myristoylation to Preferentially Phosphorylate Membrane Substrates.

    Science.gov (United States)

    Tillo, Shane E; Xiong, Wei-Hong; Takahashi, Maho; Miao, Sheng; Andrade, Adriana L; Fortin, Dale A; Yang, Guang; Qin, Maozhen; Smoody, Barbara F; Stork, Philip J S; Zhong, Haining

    2017-04-18

    Protein kinase A (PKA) has diverse functions in neurons. At rest, the subcellular localization of PKA is controlled by A-kinase anchoring proteins (AKAPs). However, the dynamics of PKA upon activation remain poorly understood. Here, we report that elevation of cyclic AMP (cAMP) in neuronal dendrites causes a significant percentage of the PKA catalytic subunit (PKA-C) molecules to be released from the regulatory subunit (PKA-R). Liberated PKA-C becomes associated with the membrane via N-terminal myristoylation. This membrane association does not require the interaction between PKA-R and AKAPs. It slows the mobility of PKA-C and enriches kinase activity on the membrane. Membrane-residing PKA substrates are preferentially phosphorylated compared to cytosolic substrates. Finally, the myristoylation of PKA-C is critical for normal synaptic function and plasticity. We propose that activation-dependent association of PKA-C renders the membrane a unique PKA-signaling compartment. Constrained mobility of PKA-C may synergize with AKAP anchoring to determine specific PKA function in neurons. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Rate of hydrolysis in ATP synthase is fine-tuned by  -subunit motif controlling active site conformation

    KAUST Repository

    Beke-Somfai, T.; Lincoln, P.; Norden, B.

    2013-01-01

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.

  20. Rate of hydrolysis in ATP synthase is fine-tuned by  -subunit motif controlling active site conformation

    KAUST Repository

    Beke-Somfai, T.

    2013-01-23

    Computer-designed artificial enzymes will require precise understanding of how conformation of active sites may control barrier heights of key transition states, including dependence on structure and dynamics at larger molecular scale. F(o)F(1) ATP synthase is interesting as a model system: a delicate molecular machine synthesizing or hydrolyzing ATP using a rotary motor. Isolated F(1) performs hydrolysis with a rate very sensitive to ATP concentration. Experimental and theoretical results show that, at low ATP concentrations, ATP is slowly hydrolyzed in the so-called tight binding site, whereas at higher concentrations, the binding of additional ATP molecules induces rotation of the central γ-subunit, thereby forcing the site to transform through subtle conformational changes into a loose binding site in which hydrolysis occurs faster. How the 1-Å-scale rearrangements are controlled is not yet fully understood. By a combination of theoretical approaches, we address how large macromolecular rearrangements may manipulate the active site and how the reaction rate changes with active site conformation. Simulations reveal that, in response to γ-subunit position, the active site conformation is fine-tuned mainly by small α-subunit changes. Quantum mechanics-based results confirm that the sub-Ångström gradual changes between tight and loose binding site structures dramatically alter the hydrolysis rate.

  1. Phytochrome control of gene expression in radish seedlings. 111. Evidence for a rapid control of the ribulose 1. 5 biphosphate carboxylase small subunit gene expression by red light

    Energy Technology Data Exchange (ETDEWEB)

    Fourcroy, P

    1986-01-01

    The effect of red and far-red light on the level of the mRNA encoding the small subunit (SSU) of ribulose, 1.5 bisphosphate carboxylase (RuBisCO; EC 4.1.1.39) from radish cotyledons was investigated. Northern blot analysis of RNA with a cDNA probe showed that both long (12-36h) far-red irradiation and short (1-5 min) red irradiation brings about an increase in SSU mRNA concentraton which was prevented by a subsequent far-red light exposure. Far-red light was effective in reversing the red light effect provided that it was given soon after (<10 min) the red light pulse. The red light mediated increase in SSU mRNA level did not occur in presence of ..cap alpha..-amanitin. Our results suggest that phytochrome control of SSU gene expression is exerted at the transcriptional level. 34 refs.

  2. Crystallization and preliminary X-ray diffraction analyses of several forms of the CfaB major subunit of enterotoxigenic Escherichia coli CFA/I fimbriae

    International Nuclear Information System (INIS)

    Li, Yong-Fu; Poole, Steven; Rasulova, Fatima; McVeigh, Annette L.; Savarino, Stephen J.; Xia, Di

    2009-01-01

    Three fusion proteins were generated in order to resolve the atomic structure of the CFA/I fimbriae of enterotoxigenic E. coli. CfaEB is a fusion of the minor and major CFA/I subunits, while CfaBB and CfaBBB are tandem fusions of two and three repeats, respectively, of the major subunit. Each protein was crystallized and the crystal structures of each of these fusions were determined successively by the molecular-replacement method using the CfaE crystal structure as an initial phasing model. Enterotoxigenic Escherichia coli (ETEC), a major global cause of diarrhea, initiates the pathogenic process via fimbriae-mediated attachment to the small intestinal epithelium. A common prototypic ETEC fimbria, colonization factor antigen I (CFA/I), consists of a tip-localized minor adhesive subunit CfaE and the stalk-forming major subunit CfaB, both of which are necessary for fimbrial assembly. To elucidate the structure of CFA/I at atomic resolution, three recombinant proteins were generated consisting of fusions of the minor and major subunits (CfaEB) and of two (CfaBB) and three (CfaBBB) repeats of the major subunit. Crystals of CfaEB diffracted X-rays to 2.1 Å resolution and displayed the symmetry of space group P2 1 . CfaBB exhibited a crystal diffraction limit of 2.3 Å resolution and had the symmetry of space group P2 1 2 1 2. CfaBBB crystallized in the monoclinic space group C2 and diffracted X-rays to 2.3 Å resolution. These structures were determined using the molecular-replacement method

  3. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Directory of Open Access Journals (Sweden)

    Tzilhav Shem-Ad

    Full Text Available The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  4. Inter-subunit interactions across the upper voltage sensing-pore domain interface contribute to the concerted pore opening transition of Kv channels.

    Science.gov (United States)

    Shem-Ad, Tzilhav; Irit, Orr; Yifrach, Ofer

    2013-01-01

    The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.

  5. The 2.3 {angstrom} crystal structure of cholera toxin B subunit pentamer: Choleragenoid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong-Guang; Westbrook, M.L. [Argonne National Lab., IL (United States); Maulik, P.R.; Reed, R.A.; Shipley, G. [Boston Univ., MA (United States). School of Medicine; Westbrook, E.M. [Argonne National Lab., IL (United States)]|[Northwestern Univ., Evanston, IL (United States); Scott, D.L.; Otwinowski, Z. [Yale Univ., New Haven, CT (United States)

    1996-02-01

    Cholera toxin, a heterohexameric AB{sub 5} enterotoxin released by Vibrio cholera, induces a profuse secretory diarrhea in susceptible hosts. Choleragenoid, the B subunit pentamer of cholera toxin, directs the enzymatic A subunit to its target by binding to GM{sub 1} gangliosides exposed on the luminal surface of intestinal epithelial cells. We have solved the crystal structure of choleragenoid at 2.3 {Angstrom} resolution by combining single isomorphous replacement with non-crystallographic symmetry averaging. The structure of the B subunits, and their pentameric arrangement, closely resembles that reported for the intact holotoxin (choleragen), the heat-labile enterotoxin from E. coli, and for a choleragenoid-GM{sub 1} pentasaccharide complex. In the absence of the A subunit the central cavity of the B pentamer is a highly solvated channel. The binding of the A subunit or the receptor pentasaccharide to choleragenoid has only a modest effect on the local stereochemistry and does not perceptibly alter the subunit interface.

  6. Morphology and small subunit rDNA-based phylogeny of Ceratomyxa amazonensis n. sp. parasite of Symphysodon discus, an ornamental freshwater fish from Amazon.

    Science.gov (United States)

    Mathews, Patrick D; Naldoni, Juliana; Maia, Antonio A; Adriano, Edson A

    2016-10-01

    The specious genus Ceratomyxa Thélodan, 1892, infect mainly gallbladder of marine fishes, with only five species reported infecting species from freshwater environment. This study performed morphological and phylogenetic analyses involving a new Ceratomyxa species (Ceratomyxa amazonensis n. sp.) found in gallbladder of Symphysodon discus Heckel, 1840 (Perciformes: Cichlidae), an important ornamental fish endemic to Amazon basin. Mature spores were strongly arcuate shaped and measured 7.0 ± 0.3 (6.2-7.6) μm in length, 15.8 ± 0.4 (15.0-16.7) μm in thickness, and polar capsules 3.22 ± 0.34 (2.4-3.6) μm in length and 2.63 ± 0.17 (2.4-2.9) μm in width. This was the first small subunit ribosomal DNA (SS rDNA) sequencing performed to Ceratomyxa species parasite of freshwater fish, and the phylogenetic analysis showed C. amazonensis n. sp. clustering in the early diverging subclade of the ceratomyxids, together with species of parasites of amphidromous/estuaries fishes, suggesting some role of the transition of the fishes between marine/freshwater environments in the evolutionary history of these parasites.

  7. A quantitative risk assessment of exposure to adventitious agents in a cell culture-derived subunit influenza vaccine.

    Science.gov (United States)

    Gregersen, Jens-Peter

    2008-06-19

    A risk-assessment model has demonstrated the ability of a new cell culture-based vaccine manufacturing process to reduce the level of any adventitious agent to a million-fold below infectious levels. The cell culture-derived subunit influenza vaccine (OPTAFLU), Novartis Vaccines and Diagnostics) is produced using Madin-Darby canine kidney (MDCK) cells to propagate seasonal viral strains, as an alternative to embryonated chicken-eggs. As only a limited range of mammalian viruses can grow in MDCK cells, similar to embryonated eggs, MDCK cells can act as an effective filter for a wide range of adventitious agents that might be introduced during vaccine production. However, the introduction of an alternative cell substrate (for example, MDCK cells) into a vaccine manufacturing process requires thorough investigations to assess the potential for adventitious agent risk in the final product, in the unlikely event that contamination should occur. The risk assessment takes into account the entire manufacturing process, from initial influenza virus isolation, through to blending of the trivalent subunit vaccine and worst-case residual titres for the final vaccine formulation have been calculated for >20 viruses or virus families. Maximum residual titres for all viruses tested were in the range of 10(-6) to 10(-16) infectious units per vaccine dose. Thus, the new cell culture-based vaccine manufacturing process can reduce any adventitious agent to a level that is unable to cause infection.

  8. Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase.

    Directory of Open Access Journals (Sweden)

    Yi Liu

    Full Text Available Self-subunit swapping is one of the post-translational maturation of the cobalt-containing nitrile hydratase (Co-NHase family of enzymes. All of these NHases possess a gene organization of , which allows the activator protein to easily form a mediatory complex with the α-subunit of the NHase after translation. Here, we discovered that the incorporation of cobalt into another type of Co-NHase, with a gene organization of , was also dependent on self-subunit swapping. We successfully isolated a recombinant NHase activator protein (P14K of Pseudomonas putida NRRL-18668 by adding a Strep-tag N-terminal to the P14K gene. P14K was found to form a complex [α(StrepP14K(2] with the α-subunit of the NHase. The incorporation of cobalt into the NHase of P. putida was confirmed to be dependent on the α-subunit substitution between the cobalt-containing α(StrepP14K(2 and the cobalt-free NHase. Cobalt was inserted into cobalt-free α(StrepP14K(2 but not into cobalt-free NHase, suggesting that P14K functions not only as a self-subunit swapping chaperone but also as a metallochaperone. In addition, NHase from P. putida was also expressed by a mutant gene that was designed with a order. Our findings expand the general features of self-subunit swapping maturation.

  9. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yoko Matsumura

    2016-07-01

    Full Text Available Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1 and AS2 (AS1-AS2 is critical to repress abaxial (ventral genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1 synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development.

  10. A charged residue at the subunit interface of PCNA promotes trimer formation by destabilizing alternate subunit interactions

    International Nuclear Information System (INIS)

    Freudenthal, Bret D.; Gakhar, Lokesh; Ramaswamy, S.; Washington, M. Todd

    2009-01-01

    Eukaryotic proliferating cell nuclear antigen (PCNA), an essential accessory factor in DNA replication and repair, is a ring-shaped homotrimer. A novel nontrimeric structure of E113G-mutant PCNA protein is reported, which shows that this protein forms alternate subunit interactions. It is concluded that the charged side chain of Glu113 promotes normal trimer formation by destabilizing these alternate subunit interactions. Eukaryotic proliferating cell nuclear antigen (PCNA) is an essential replication accessory factor that interacts with a variety of proteins involved in DNA replication and repair. Each monomer of PCNA has an N-terminal domain A and a C-terminal domain B. In the structure of the wild-type PCNA protein, domain A of one monomer interacts with domain B of a neighboring monomer to form a ring-shaped trimer. Glu113 is a conserved residue at the subunit interface in domain A. Two distinct X-ray crystal structures have been determined of a mutant form of PCNA with a substitution at this position (E113G) that has previously been studied because of its effect on translesion synthesis. The first structure was the expected ring-shaped trimer. The second structure was an unanticipated nontrimeric form of the protein. In this nontrimeric form, domain A of one PCNA monomer interacts with domain A of a neighboring monomer, while domain B of this monomer interacts with domain B of a different neighboring monomer. The B–B interface is stabilized by an antiparallel β-sheet and appears to be structurally similar to the A–B interface observed in the trimeric form of PCNA. The A–A interface, in contrast, is primarily stabilized by hydrophobic interactions. Because the E113G substitution is located on this hydrophobic surface, the A–A interface should be less favorable in the case of the wild-type protein. This suggests that the side chain of Glu113 promotes trimer formation by destabilizing these possible alternate subunit interactions

  11. The calcium channel β2 (CACNB2 subunit repertoire in teleosts

    Directory of Open Access Journals (Sweden)

    Mueller Rachel

    2008-04-01

    Full Text Available Abstract Background Cardiomyocyte contraction is initiated by influx of extracellular calcium through voltage-gated calcium channels. These oligomeric channels utilize auxiliary β subunits to chaperone the pore-forming α subunit to the plasma membrane, and to modulate channel electrophysiology 1. Several β subunit family members are detected by RT-PCR in the embryonic heart. Null mutations in mouse β2, but not in the other three β family members, are embryonic lethal at E10.5 due to defects in cardiac contractility 2. However, a drawback of the mouse model is that embryonic heart rhythm is difficult to study in live embryos due to their intra-uterine development. Moreover, phenotypes may be obscured by secondary effects of hypoxia. As a first step towards developing a model for contributions of β subunits to the onset of embryonic heart rhythm, we characterized the structure and expression of β2 subunits in zebrafish and other teleosts. Results Cloning of two zebrafish β2 subunit genes (β2.1 and β2.2 indicated they are membrane-associated guanylate kinase (MAGUK-family genes. Zebrafish β2 genes show high conservation with mammals within the SH3 and guanylate kinase domains that comprise the "core" of MAGUK proteins, but β2.2 is much more divergent in sequence than β2.1. Alternative splicing occurs at the N-terminus and within the internal HOOK domain. In both β2 genes, alternative short ATG-containing first exons are separated by some of the largest introns in the genome, suggesting that individual transcript variants could be subject to independent cis-regulatory control. In the Tetraodon nigrovidis and Fugu rubripes genomes, we identified single β2 subunit gene loci. Comparative analysis of the teleost and human β2 loci indicates that the short 5' exon sequences are highly conserved. A subset of 5' exons appear to be unique to teleost genomes, while others are shared with mammals. Alternative splicing is temporally and

  12. Demonstration of a Small Modular BioPower System Using Poultry Litter; FINAL

    International Nuclear Information System (INIS)

    John P. Reardon; Art Lilley; Jim Wimberly; Kingsbury Browne; Kelly Beard; Jack Avens

    2002-01-01

    The purpose of this project was to assess poultry grower residue, or litter (manure plus absorbent biomass), as a fuel source for Community Power Corporation's small modular biopower system (SMB). A second objective was to assess the poultry industry to identify potential ''on-site'' applications of the SMB system using poultry litter residue as a fuel source, and to adapt CPC's existing SMB to generate electricty and heat from the poultry litter biomass fuel. Bench-scale testing and pilot testing were used to gain design information for the SMB retrofit. System design approach for the Phase II application of the SMB was the goal of Phase I testing. Cost estimates for an onsite poultry litter SMB were prepared. Finally, a market estimate was prepared for implementation of the on-farm SMB using poultry litter

  13. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae.

    Science.gov (United States)

    Lee, Laura J Y; Klute, Mary J; Herman, Emily K; Read, Betsy; Dacks, Joel B

    2015-11-01

    The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Mining Protein Evolution for Insights into Mechanisms of Voltage-Dependent Sodium Channel Auxiliary Subunits.

    Science.gov (United States)

    Molinarolo, Steven; Granata, Daniele; Carnevale, Vincenzo; Ahern, Christopher A

    2018-02-21

    Voltage-gated sodium channel (VGSC) beta (β) subunits have been called the "overachieving" auxiliary ion channel subunit. Indeed, these subunits regulate the trafficking of the sodium channel complex at the plasma membrane and simultaneously tune the voltage-dependent properties of the pore-forming alpha-subunit. It is now known that VGSC β-subunits are capable of similar modulation of multiple isoforms of related voltage-gated potassium channels, suggesting that their abilities extend into the broader voltage-gated channels. The gene family for these single transmembrane immunoglobulin beta-fold proteins extends well beyond the traditional VGSC β1-β4 subunit designation, with deep roots into the cell adhesion protein family and myelin-related proteins - where inherited mutations result in a myriad of electrical signaling disorders. Yet, very little is known about how VGSC β-subunits support protein trafficking pathways, the basis for their modulation of voltage-dependent gating, and, ultimately, their role in shaping neuronal excitability. An evolutionary approach can be useful in yielding new clues to such functions as it provides an unbiased assessment of protein residues, folds, and functions. An approach is described here which indicates the greater emergence of the modern β-subunits roughly 400 million years ago in the early neurons of Bilateria and bony fish, and the unexpected presence of distant homologues in bacteriophages. Recent structural breakthroughs containing α and β eukaryotic sodium channels containing subunits suggest a novel role for a highly conserved polar contact that occurs within the transmembrane segments. Overall, a mixture of approaches will ultimately advance our understanding of the mechanism for β-subunit interactions with voltage-sensor containing ion channels and membrane proteins.

  15. Effect of glutenin subunits on the baking quality of Brazilian wheat genotypes

    Directory of Open Access Journals (Sweden)

    Mariana Souza Costa

    Full Text Available ABSTRACT This study aimed to evaluate the effect of the high and low molecular weight glutenin subunits on the grain traits of sixteen Brazilian wheat genotypes. Grain hardness index, milling traits, physicochemical and rheological properties of the flour, and specific volume and firmness of the bread were evaluated. Physicochemical properties of the flour were not influenced by glutenin subunits. Genotypes with subunits at the Glu-B1 (17+18 or 7+8, Glu-D1 (5+10, and Glu-A3 (b were associated with strong flours and bread with high specific volume and low firmness. The subunits at the Glu-A1 and Glu-B3 had no effect on the rheological properties of the dough and bread quality, while the subunit 2+12 at Glu-D1 negatively affected the resistance to extension, and specific volume and firmness of the bread. Specific volume and firmness of the bread were influenced by the rheological properties of the dough, while the flour protein content was not important to define wheat quality. The identification of glutenin subunits at different loci along with the rheological tests of the flour are fundamental in estimating the potential use of different materials developed in wheat breeding.

  16. Three human alcohol dehydrogenase subunits: cDNA structure and molecular and evolutionary divergence

    International Nuclear Information System (INIS)

    Ikuta, T.; Szeto, S.; Yoshida, A.

    1986-01-01

    Class I human alcohol dehydrogenase (ADH; alcohol:NAD + oxidoreductase, EC 1.1.1.1) consists of several homo- and heterodimers of α, β, and γ subunits that are governed by the ADH1, ADH2, and ADH3 loci. The authors previously cloned a full length of cDNA for the β subunit, and the complete sequence of 374 amino acid residues was established. cDNAs for the α and γ subunits were cloned and characterized. A human liver cDNA library, constructed in phage λgt11, was screened by using a synthetic oligonucleotide probe that was matched to the γ but not to the β sequence. Clone pUCADHγ21 and clone pUCADHα15L differed from β cDNA with respect to restriction sites and hybridization with the nucleotide probe. Clone pUCADHγ21 contained an insertion of 1.5 kilobase pairs (kbp) and encodes 374 amino acid residues compatible with the reported amino acid sequence of the γ subunit. Clone pUCADHα15L contained an insertion of 2.4 kbp and included nucleotide sequences that encode 374 amino acid residues for another subunit, the γ subunit. In addition, this clone contained the sequences that encode the COOH-terminal part of the β subunit at its extended 5' region. The amino acid sequences and coding regions of the cDNAs of the three subunits are very similar. A high degree of resemblance is observed also in their 3' noncoding regions. However, distinctive differences exist in the vicinity of the Zn-binding cysteine residue at position 46. Based on the cDNA sequences and the deduced amino acid sequences of the three subunits, their structural and evolutionary relationships are discussed

  17. Therapeutic potential of Mediator complex subunits in metabolic diseases.

    Science.gov (United States)

    Ranjan, Amol; Ansari, Suraiya A

    2018-01-01

    The multisubunit Mediator is an evolutionary conserved transcriptional coregulatory complex in eukaryotes. It is needed for the transcriptional regulation of gene expression in general as well as in a gene specific manner. Mediator complex subunits interact with different transcription factors as well as components of RNA Pol II transcription initiation complex and in doing so act as a bridge between gene specific transcription factors and general Pol II transcription machinery. Specific interaction of various Mediator subunits with nuclear receptors (NRs) and other transcription factors involved in metabolism has been reported in different studies. Evidences indicate that ligand-activated NRs recruit Mediator complex for RNA Pol II-dependent gene transcription. These NRs have been explored as therapeutic targets in different metabolic diseases; however, they show side-effects as targets due to their overlapping involvement in different signaling pathways. Here we discuss the interaction of various Mediator subunits with transcription factors involved in metabolism and whether specific interaction of these transcription factors with Mediator subunits could be potentially utilized as therapeutic strategy in a variety of metabolic diseases. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  18. Distinct forms of the β subunit of GTP-binding regulatory proteins identified by molecular cloning

    International Nuclear Information System (INIS)

    Fong, H.K.W.; Amatruda, T.T. III; Birren, B.W.; Simon, M.I.

    1987-01-01

    Two distinct β subunits of guanine nucleotide-binding regulatory proteins have been identified by cDNA cloning and are referred to as β 1 and β 1 subunits. The bovine transducin β subunit (β 1 ) has been cloned previously. The author now isolated and analyzed cDNA clones that encode the β 2 subunit from bovine adrenal, bovine brain, and a human myeloid leukemia cell line, HL-60. The 340-residue M/sub r/ 37,329 Β 2 protein is 90% identical with β 1 in predicted amino acid sequence, and it is also organized as a series of repetitive homologous segments. The major mRNA that encodes the bovine β 2 subunit is 1.7 kilobases in length. It is expressed at lower levels than β 1 subunit mRNA in all tissues examined. The β 1 and β 2 messages are expressed in cloned human cell lines. Hybridization of cDNA probes to bovine DNA showed that β 1 and β 2 are encoded by separate genes. The amino acid sequences for the bovine and human β 2 subunit are identical, as are the amino acid sequences for the bovine and human β 1 subunit. This evolutionary conservation suggests that the two β subunits have different roles in the signal transduction process

  19. Analysis of Maxi-K alpha subunit splice variants in human myometrium

    Directory of Open Access Journals (Sweden)

    Morrison John J

    2004-09-01

    Full Text Available Abstract Background Large-conductance, calcium-activated potassium (Maxi-K channels are implicated in the modulation of human uterine contractions and myometrial Ca2+ homeostasis. However, the regulatory mechanism(s governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset. Methods Myometrial biopsies were obtained at hysterectomy (non-pregnant, NP, and at Caesarean section, at elective (pregnant not-in-labour, PNL and intrapartum (pregnant in-labour, PL procedures. RNA was extracted from all biopsies and quantitative real-time RT-PCR was used to investigate for possible differential expression of the Maxi-K alpha subunit, and that of its splice variants, between these functionally-distinct myometrial tissue sets. Results RT-PCR analysis identified the presence of a 132 bp and an 87 bp spliced exon of the Maxi-K alpha subunit in all three myometrial tissue sets. Quantitative real-time PCR indicated a decrease in the expression of the Maxi-K alpha subunit with labour onset. While there was no change in the proportion of Maxi-K alpha subunits expressing the 87 bp spliced exon, the proportion of alpha subunits expressing the 132 bp spliced exon was significantly increased with labour onset, compared to both non-pregnant and pregnant not-in-labour tissues. An increased proportion of 132 bp exon-containing alpha subunit variants with labour onset is of interest, as channels expressing this spliced exon have decreased calcium and voltage sensitivities. Conclusions Our findings suggest that decreased Maxi-K alpha subunit mRNA expression in human myometrium at

  20. The cytochrome oxidase subunit I and subunit III genes in Oenothera mitochondria are transcribed from identical promoter sequences

    Science.gov (United States)

    Hiesel, Rudolf; Schobel, Werner; Schuster, Wolfgang; Brennicke, Axel

    1987-01-01

    Two loci encoding subunit III of the cytochrome oxidase (COX) in Oenothera mitochondria have been identified from a cDNA library of mitochondrial transcripts. A 657-bp sequence block upstream from the open reading frame is also present in the two copies of the COX subunit I gene and is presumably involved in homologous sequence rearrangement. The proximal points of sequence rearrangements are located 3 bp upstream from the COX I and 1139 bp upstream from the COX III initiation codons. The 5'-termini of both COX I and COX III mRNAs have been mapped in this common sequence confining the promoter region for the Oenothera mitochondrial COX I and COX III genes to the homologous sequence block. ImagesFig. 5. PMID:15981332

  1. Dithiothreitol activation of the insulin receptor/kinase does not involve subunit dissociation of the native α2β2 insulin receptor subunit complex

    International Nuclear Information System (INIS)

    Sweet, L.J.; Wilden, P.A.; Pessin, J.E.

    1986-01-01

    The subunit composition of the dithiothreitol- (DTT) activated insulin receptor/kinase was examined by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and gel filtration chromatography under denaturing or nondenaturing conditions. Pretreatment of 32 P-labeled insulin receptors with 50 mM DTT followed by gel filtration chromatography in 0.1% SDS demonstrated the dissociation of the α 2 β 2 insulin receptor complex (M/sub r/ 400,000) into the monomeric 95,000 β subunit. In contrast, pretreatment of the insulin receptors with 1-50 mM DTT followed by gel filtration chromatography in 0.1% Triton X-100 resulted in no apparent alteration in mobility compared to the untreated insulin receptors. Resolution of this complex by nonreducing SDS-polyacrylamide gel electrophoresis and autoradiography demonstrated the existence of the α 2 β 2 heterotetrameric complex with essentially no αβ heterodimeric or free monomeric β subunit species present. This suggests that the insulin receptor can reoxidize into the M/sub r/ 400,000 complex after the removal of DTT by gel filtration chromatography. To prevent reoxidation, the insulin receptors were pretreated with 50 mM DTT. Under the conditions the insulin receptors migrated as the M/sub r/ 400,000 α 2 β 2 complex. These results demonstrate that treatment of the insulin receptors with high concentrations of DTT, followed by removal of DTT by gel filtration, results in reoxidation of the reduced α 2 β 2 insulin receptor complex. Further, these results document that although the DTT stimulation of the insulin receptor/kinase does involve reduction of the insulin receptor subunits, it does not result in dissociation of the native α 2 β 2 insulin receptor subunit complex

  2. Specific radioimmunoassay of HCG and its α and β subunits: methods and results

    International Nuclear Information System (INIS)

    Reuter, A.M.; Schoonbrood, J.; Franchimont, P.

    1976-01-01

    To create antisera that are specific for the radioimmunoassay of HCG and its subunits, the antisera are neutralized by incubation with LH or HCG. For each RIA system the inhibition curves of HCG and its subunits LH, FSH, TSH and STH are obtained. The 125 I labelled hormones HCG, α and β subunits and LH were chromatographed over a Sephadex G 100 column. Serum of menopausal and pregnant women were chromatographed in the same way and the fractions subjected to RIA. HCG and its subunits were determined by RIA in the sera of patients with different kinds of cancer

  3. [Cloning of cDNA for RNA polymerase subunit from the fission yeast Schizosaccharomyces pombe by heterospecific complementation in Saccharomyces cerevisiae].

    Science.gov (United States)

    Shpakovskiĭ, G V; Lebedenko, E N; Thuriaux, P

    1997-02-01

    The rpb10 cDNA of the fission yeast Schizosaccharomyces pombe, encoding one of the five small subunits common to all three nuclear DNA-dependent RNA polymerases, was isolated from an expression cDNA library by two independent approaches: PCR-based screening and direct suppression by means of heterospecific complementation of a temperature-sensitive mutant defective in the corresponding gene of Saccharomyces cerevisiae. The cloned Sz. pombe cDNA encodes a protein Rpb10 of 71 amino acids with an M of 8,275 Da, sharing 51 amino acids (71% identity) with the subunit ABC10 beta of RNA polymerases I-III from S. cerevisiae. All eukaryotic members of this protein family have the same general organization featuring two highly conserved motifs (RCFT/SCGK and RYCCRRM) around an atypical zinc finger and an additional invariant HVDLIEK motif toward the C-terminal end. The last motif is only characteristics for homologs from eukaryotes. In keeping with this remarkable structural conservation, the Sz. pombe cDNA also fully complemented a S. cerevisiae deletion mutant lacking subunit ABC10 beta (null allele rpb10-delta 1::HIS3).

  4. Molecular cloning of the α subunit of human and guinea pig leukocyte adhesion glycoprotein Mo1: Chromosomal localization and homology to the α subunits of integrins

    International Nuclear Information System (INIS)

    Arnaout, M.A.; Remold-O'Donnell, E.; Pierce, M.W.; Harris, P.; Tenen, D.G.

    1988-01-01

    The cell surface-glycoprotein Mo1 is a member of the family of leukocyte cell adhesion molecules (Leu-CAMs) that includes lymphocyte function-associated antigen 1 (LFA-1) and p150,95. Each Leu-CAM is a heterodimer with a distinct α subunit noncovalently associated with a common β subunit. The authors describe the isolation and analysis of two partial cDNA clones encoding the α subunit of the Leu-CAM Mo1 in humans and guinea pigs. A monoclonal antibody directed against an epitope in the carboxyl-terminal portion of the guinea pig α chain was used for immunoscreening a λgt11 expression library. The sequence of a 378-base-pair insert from one immunoreactive clone revealed a single continuous open reading frame encoding 126 amino acids including a 26-amino acid tryptic peptide isolated from the purified guinea pig α subunit. A cDNA clone of identical size was isolated from a human monocyte/lymphocyte cDNA library by using the guinea pig clone as a probe. The human clone also encoded a 126-amino acid peptide including the sequence of an additional tryptic peptide present in purified human Mo1α chain. Southern analysis of DNA from hamster-human hybrids localized the human Mo1α chain to chromosome 16, which has been shown to contain the gene for the α chain of lymphocyte function-associated antigen 1. These data suggest that the α subunits of Leu-CAMs evolved by gene duplication from a common ancestral gene and strengthen the hypothesis that the α subunits of these heterodimeric cell adhesion molecules on myeloid and lymphoid cells, platelets, and fibroblasts are evolutionary related

  5. Copolymer semiconductors comprising thiazolothiazole or benzobisthiazole, or benzobisoxazole electron acceptor subunits, and electron donor subunits, and their uses in transistors and solar cells

    Science.gov (United States)

    Jenekhe, Samson A; Subramaniyan, Selvam; Ahmed, Eilaf; Xin, Hao; Kim, Felix Sunjoo

    2014-10-28

    The inventions disclosed, described, and/or claimed herein relate to copolymers comprising copolymers comprising electron accepting A subunits that comprise thiazolothiazole, benzobisthiazole, or benzobisoxazoles rings, and electron donating subunits that comprise certain heterocyclic groups. The copolymers are useful for manufacturing organic electronic devices, including transistors and solar cells. The invention also relates to certain synthetic precursors of the copolymers. Methods for making the copolymers and the derivative electronic devices are also described.

  6. 78 FR 11745 - Small Business Size Regulations, Small Business Innovation Research (SBIR) Program and Small...

    Science.gov (United States)

    2013-02-20

    .... As published, the final regulations contain two points where the word ``small'' was inadvertently... and procedure, Government procurement, Government property, Loan programs-business, Small businesses...

  7. G-protein α-subunit expression, myristoylation, and membrane association in COS cells

    International Nuclear Information System (INIS)

    Mumby, S.M.; Gilman, A.G.; Heukeroth, R.O.; Gordon, J.I.

    1990-01-01

    Myristolyation of seven different α subunits of guanine nucleotide-binding regulatory proteins (G proteins) was examined by expressing these proteins in monkey kidney COS cells. Metabolic labeling studies of cells transfected with cytomegalovirus-based expression vectors indicated that [ 3 H]myristate was incorporated into α i1 , α i2 , α i3 , α 0 , and α 1 , and α z but not α s subunits. The role of myristoylation in the association of α subunits with membranes was analyzed by site-directed mutagenesis and by substitution of myristate with a less hydrophobic analog, 10-(propoxy)decanoate (11-oxamyristate). Myristoylation of α 0 was blocked when an alanine residue was substituted for its amino-terminal glycine, as was association of the protein with membranes. Substitution of the myristoyl group with 11-oxamyristate affected the cellular distribution of a subset of acylated α subunits. The results are consistent with a model wherein the hydrophobic interaction of myristate with the bilayer permits continued association of the protein with the plasma membrane when G-protein α subunits dissociated from βγ

  8. The heterotrimeric G protein Gβ1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets.

    Science.gov (United States)

    Pradhan, Subhashree; Khatlani, Tanvir; Nairn, Angus C; Vijayan, K Vinod

    2017-08-11

    Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gβ 1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ 1 revealed that Gβ 1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ 1 -GST protein, and PP1c co-immunoprecipitated with Gβ 1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ 1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser 1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ 1 ) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα -/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ 1 complexes with myristoylated Gβ 1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ 1 protein enlists PP1c to modulate GPCR signaling in platelets.

  9. Cholera Toxin B: One Subunit with Many Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Keegan J. Baldauf

    2015-03-01

    Full Text Available Cholera, a waterborne acute diarrheal disease caused by Vibrio cholerae, remains prevalent in underdeveloped countries and is a serious health threat to those living in unsanitary conditions. The major virulence factor is cholera toxin (CT, which consists of two subunits: the A subunit (CTA and the B subunit (CTB. CTB is a 55 kD homopentameric, non-toxic protein binding to the GM1 ganglioside on mammalian cells with high affinity. Currently, recombinantly produced CTB is used as a component of an internationally licensed oral cholera vaccine, as the protein induces potent humoral immunity that can neutralize CT in the gut. Additionally, recent studies have revealed that CTB administration leads to the induction of anti-inflammatory mechanisms in vivo. This review will cover the potential of CTB as an immunomodulatory and anti-inflammatory agent. We will also summarize various recombinant expression systems available for recombinant CTB bioproduction.

  10. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits

    Directory of Open Access Journals (Sweden)

    Yolima P. Torres

    2014-10-01

    Full Text Available Coded by a single gene (Slo1, KCM and activated by depolarizing potentials and by a rise in intracellular Ca2+ concentration, the large conductance voltage- and Ca+2-activated K+ channel (BK is unique among the superfamily of K+ channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K+ channels and a large C terminus composed of two regulators of K+ conductance domains (RCK domains, where the Ca2+-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3 & β4 and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca+2 sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.

  11. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits.

    Science.gov (United States)

    Torres, Yolima P; Granados, Sara T; Latorre, Ramón

    2014-01-01

    Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca(2+) concentration, the large conductance voltage- and Ca(2+)-activated K(+) channel (BK) is unique among the superfamily of K(+) channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K(+) channels) and a large C terminus composed of two regulators of K(+) conductance domains (RCK domains), where the Ca(2+)-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca(2+) sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.

  12. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits

    Science.gov (United States)

    Torres, Yolima P.; Granados, Sara T.; Latorre, Ramón

    2014-01-01

    Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca2+ concentration, the large conductance voltage- and Ca2+-activated K+ channel (BK) is unique among the superfamily of K+ channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K+ channels) and a large C terminus composed of two regulators of K+ conductance domains (RCK domains), where the Ca2+-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca2+ sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above. PMID:25346693

  13. Final Report - Certifying the Performance of Small Wind Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, Larry [Small Wind Certification Council, Clifton Park, NY (United States)

    2015-08-28

    The Small Wind Certification Council (SWCC) created a successful accredited certification program for small and medium wind turbines using the funding from this grant. SWCC certifies small turbines (200 square meters of swept area or less) to the American Wind Energy Association (AWEA) Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 – 2009). SWCC also certifies medium wind turbines to the International Electrical Commission (IEC) Power Performance Standard (IEC 61400-12-1) and Acoustic Performance Standard (IEC 61400-11).

  14. Thermostable Subunit Vaccines for Pulmonary Delivery: How Close Are We?

    DEFF Research Database (Denmark)

    Foged, Camilla

    2016-01-01

    , such as influenza, tuberculosis, and Ebola, for which no good universal vaccines exist. At least two pharmaceutical improvements are expected to help filling this gap: i) The development of thermostable vaccine dosage forms, and ii) the full exploitation of the adjuvant technology for subunit vaccines to potentiate...... strong immune responses. This review highlights the status and recent advances in formulation and pulmonary delivery of thermostable human subunit vaccines. Such vaccines are very appealing from compliance, distribution and immunological point of view: Being non-invasive, inhalable vaccines are self...... immunity. Here, I review state of the art and perspectives in formulation design and processing methods for powder-based subunit vaccines intended for pulmonary administration, and present dry powder inhaler technologies suitable for translating these vaccines into clinical trials....

  15. The subunit structure of the extracellular hemoglobin of Biomphalaria glabrata

    International Nuclear Information System (INIS)

    Arndt, Marcio H.L.; Naves, Cristiani F.; Xavier, Luciana P.; Santoro, Marcelo M.

    1997-01-01

    Full text. The hemoglobin of Biomphalaria glabrata was purified to homogeneity by a two step purification protocol using a gel filtration column (Superose 6 HR/Pharmacia ) followed by an anion exchange chromatography (MONO-Q Sepharose/Pharmacia). The dissociation products were analysed by a 5 - 15 % Polyacrylamide gel electrophoresis containing Sodium Dodecyl Sulfate (SDS-PAGE) giving a band of 270 K Daltons and a band of 180 K Daltons after reduction with β-mercaptoethanol. The same profile was obtained in a 3.5 % Agarose gel electrophoresis containing SDS (SDS-AGE) showing additional bands of higher molecular weight. These bands were proposed to be monomers, dimers and trimers and, after reduction in a Bidimensional SDS-AGE, the proposed monomers and dimers were decomposed in two and four bands that were interpreted as 1 - 4 chains. The hemoglobin was digested by four different proteases ( Thrombin, Trypsin, Chymotrypsin and Subtilisin ) showing several equivalent fragments with molecular weights multiples of its minimum molecular weight ( 17.7 K Daltons). The circular dichroism spectrum of the protein showed a characteristic high α-helix content. We proposed that this hemoglobin is a pentamer of approx. 360 K Daltons subunits each formed by two 180 K Daltons chains linked in pairs by disulfide bridges and each of these chains comprises ten Heme binding domains. These data were compared to other Planorbidae extracellular hemoglobins. Up to now, the quaternary structure of this hemoglobin (shape and disposition of the subunits) is unknown. It is intended to elucidate its structure by Small Angle X-Ray Scattering in Brazilian National Laboratory of Synchrotron Light (LNLS). (author)

  16. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex.

    Science.gov (United States)

    Tsai, Kuang-Lei; Tomomori-Sato, Chieri; Sato, Shigeo; Conaway, Ronald C; Conaway, Joan W; Asturias, Francisco J

    2014-06-05

    The multisubunit Mediator, comprising ∼30 distinct proteins, plays an essential role in gene expression regulation by acting as a bridge between DNA-binding transcription factors and the RNA polymerase II (RNAPII) transcription machinery. Efforts to uncover the Mediator mechanism have been hindered by a poor understanding of its structure, subunit organization, and conformational rearrangements. By overcoming biochemical and image analysis hurdles, we obtained accurate EM structures of yeast and human Mediators. Subunit localization experiments, docking of partial X-ray structures, and biochemical analyses resulted in comprehensive mapping of yeast Mediator subunits and a complete reinterpretation of our previous Mediator organization model. Large-scale Mediator rearrangements depend on changes at the interfaces between previously described Mediator modules, which appear to be facilitated by factors conducive to transcription initiation. Conservation across eukaryotes of Mediator structure, subunit organization, and RNA polymerase II interaction suggest conservation of fundamental aspects of the Mediator mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Distinct Subunit Domains Govern Synaptic Stability and Specificity of the Kainate Receptor

    Directory of Open Access Journals (Sweden)

    Christoph Straub

    2016-07-01

    Full Text Available Synaptic communication between neurons requires the precise localization of neurotransmitter receptors to the correct synapse type. Kainate-type glutamate receptors restrict synaptic localization that is determined by the afferent presynaptic connection. The mechanisms that govern this input-specific synaptic localization remain unclear. Here, we examine how subunit composition and specific subunit domains contribute to synaptic localization of kainate receptors. The cytoplasmic domain of the GluK2 low-affinity subunit stabilizes kainate receptors at synapses. In contrast, the extracellular domain of the GluK4/5 high-affinity subunit synergistically controls the synaptic specificity of kainate receptors through interaction with C1q-like proteins. Thus, the input-specific synaptic localization of the native kainate receptor complex involves two mechanisms that underlie specificity and stabilization of the receptor at synapses.

  18. Cloning and sequencing of the casein kinase 2 alpha subunit from Zea mays

    DEFF Research Database (Denmark)

    Dobrowolska, G; Boldyreff, B; Issinger, O G

    1991-01-01

    The nucleotide sequence of the cDNA coding for the alpha subunit of casein kinase 2 of Zea mays has been determined. The cDNA clone contains an open reading frame of 996 nucleotides encoding a polypeptide comprising 332 amino acids. The primary amino acid sequence exhibits 75% identity to the alpha...... subunit and 71% identity to the alpha' subunit of human casein kinase 2....

  19. Regulated appearance of NMDA receptor subunits and channel functions during in vitro neuronal differentiation.

    Science.gov (United States)

    Jelitai, Márta; Schlett, Katalin; Varju, Patrícia; Eisel, Ulrich; Madarász, Emília

    2002-04-01

    The schedule of NMDA receptor subunit expression and the appearance of functional NMDA-gated ion channels were investigated during the retinoic acid (RA) induced neuronal differentiation of NE-4C, a p53-deficient mouse neuroectodermal progenitor cell line. NR2A, NR2B, and NR2D subunit transcripts were present in both nondifferentiated and neuronally differentiated cultures, while NR2C subunits were expressed only transiently, during the early period of neural differentiation. Several splice variants of NR1 were detected in noninduced progenitors and in RA-induced cells, except the N1 exon containing transcripts that appeared after the fourth day of induction, when neuronal processes were already formed. NR1 and NR2A subunit proteins were detected both in nondifferentiated progenitor cells and in neurons, while the mature form of NR2B subunit protein appeared only at the time of neuronal process elongation. Despite the early presence of NR1 and NR2A subunits, NMDA-evoked responses could be detected in NE-4C neurons only after the sixth day of induction, coinciding in time with the expression of the mature NR2B subunit. The formation of functional NMDA receptors also coincided with the appearance of synapsin I and synaptophysin. The lag period between the production of the subunits and the onset of channel function suggests that subunits capable of channel formation cannot form functional NMDA receptors until a certain stage of neuronal commitment. Thus, the in vitro neurogenesis by NE-4C cells provides a suitable tool to investigate some inherent regulatory processes involved in the initial maturation of NMDA receptor complexes. Copyright 2002 Wiley Periodicals, Inc.

  20. Evolutionary Paths of the cAMP-Dependent Protein Kinase (PKA) Catalytic Subunits

    Science.gov (United States)

    Søberg, Kristoffer; Jahnsen, Tore; Rognes, Torbjørn; Skålhegg, Bjørn S.; Laerdahl, Jon K.

    2013-01-01

    3′,5′-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits Cα and Cβ, encoded by the two genes PRKACA and PRKACB, respectively, are among the best understood and characterized human kinases. Here we have studied the evolution of this gene family in chordates, arthropods, mollusks and other animals employing probabilistic methods and show that Cα and Cβ arose by duplication of an ancestral PKA catalytic subunit in a common ancestor of vertebrates. The two genes have subsequently been duplicated in teleost fishes. The evolution of the PRKACG retroposon in simians was also investigated. Although the degree of sequence conservation in the PKA Cα/Cβ kinase family is exceptionally high, a small set of signature residues defining Cα and Cβ subfamilies were identified. These conserved residues might be important for functions that are unique to the Cα or Cβ clades. This study also provides a good example of a seemingly simple phylogenetic problem which, due to a very high degree of sequence conservation and corresponding weak phylogenetic signals, combined with problematic nonphylogenetic signals, is nontrivial for state-of-the-art probabilistic phylogenetic methods. PMID:23593352

  1. The α' subunit of β-conglycinin and the A1-5 subunits of glycinin are not essential for many hypolipidemic actions of dietary soy proteins in rats.

    Science.gov (United States)

    Chen, Qixuan; Wood, Carla; Gagnon, Christine; Cober, Elroy R; Frégeau-Reid, Judith A; Gleddie, Stephen; Xiao, Chao Wu

    2014-08-01

    This study examined the effects of dietary soy protein (SP) lacking different storage protein subunits and isoflavones (ISF) on the abdominal fat, blood lipids, thyroid hormones, and enzymatic activities in rats. Weanling Sprague-Dawley rats (8 males and 8 females/group) were fed diets containing either 20 % casein without or with supplemental isoflavones or alcohol-washed SP isolate or SP concentrates (SPC) prepared from 6 different soy bean lines for 8 weeks. Feeding of diets containing SPC regardless of their subunit compositions significantly lowered relative liver weights, blood total, free, and LDL cholesterol in both genders (P Soy isoflavones were mainly responsible for the hypocholesterolemic effects and increased plasma free T3, whereas reduction in FFA, abdominal fat, liver weight and increased plasma total T3 were the effects of the soy proteins. Neither the α' subunit of β-conglycinin nor the A1-5 subunits of glycinin are essential for the hypolipidemic properties of soy proteins.

  2. Effect of glutenin subunits on the baking quality of Brazilian wheat genotypes

    OpenAIRE

    Costa, Mariana Souza; Scholz, Maria Brígida dos Santos; Miranda, Martha Zavariz; Franco, Célia Maria Landi

    2017-01-01

    ABSTRACT This study aimed to evaluate the effect of the high and low molecular weight glutenin subunits on the grain traits of sixteen Brazilian wheat genotypes. Grain hardness index, milling traits, physicochemical and rheological properties of the flour, and specific volume and firmness of the bread were evaluated. Physicochemical properties of the flour were not influenced by glutenin subunits. Genotypes with subunits at the Glu-B1 (17+18 or 7+8), Glu-D1 (5+10), and Glu-A3 (b) were associa...

  3. Molecular evolution inferred from small subunit rRNA sequences: what does it tell us about phylogenetic relationships and taxonomy of the parabasalids?

    Science.gov (United States)

    Viscogliosi, E.; Edgcomb, V. P.; Gerbod, D.; Noel, C.; Delgado-Viscogliosi, P.; Sogin, M. L. (Principal Investigator)

    1999-01-01

    The Parabasala are a primitive group of protists divided into two classes: the trichomonads and the hypermastigids. Until recently, phylogeny and taxonomy of parabasalids were mainly based on the comparative analysis of morphological characters primarily linked to the development of their cytoskeleton. Recent use of molecular markers, such as small subunit (SSU) rRNA has led to now insights into the systematics of the Parabasala and other groups of prolists. An updated phylogeny based on SSU rRNA is provided and compared to that inferred from ultrastructural data. The SSU rRNA phylogeny contradicts the dogma equating simple characters with pumitive characters. Hypermastigids, possessing a hyperdeveloped cytoskeleton, exhibit the most basal emergence in the parabasalid lineage. Other observations emerge from the SSU rRNA analysis, such as the secondary loss of some cytoskeleton structures in all representatives of the Monocercomonadidae, the existence of secondarily free living taxa (reversibility of parasitism) and the evidence against the co-evolution of the endobiotic parabasalids and their animal hosts. According to phylogenies based on SSU rRNA, all the trichomonad families are not monophyletic groups, putting into question the validity of current taxonomic assignments. The precise branching order of some taxa remains unclear, but this issue can possibly be addressed by the molecular analysis of additional parabasalids. The goal of such additional analyses would be to propose, in a near future, a revision of the taxonomy of this group of protists that takes into account both molecular and morphological data.

  4. Novel subunit structure observed for noncooperative hemoglobin from Urechis caupo.

    Science.gov (United States)

    Kolatkar, P R; Meador, W E; Stanfield, R L; Hackert, M L

    1988-03-05

    Tetrameric hemoglobin from the "fat innkeeper" worm Urechis caupo possesses a novel subunit arrangement having an "inside out" quaternary structure in that the G/H helices are located on the outer surface of the tetramer. A 5-A resolution crystal structure reveals that although the individual subunits are beta-like, having a distinct D helix and the general myoglobin fold, the subunit contacts are very different from those previously observed for hemoglobins. Furthermore, the hemoglobin from U. caupo is also quite different from the unusual hemoglobin tetramer from clam which also has its G/H helices on the outer surface but with the hemes in close proximity through E-F helical contacts (Royer, W. E., Jr., Love, W. E., and Fenderson, F. F. (1985) Nature 316, 277-280).

  5. Two subunits of human ORC are dispensable for DNA replication and proliferation.

    Science.gov (United States)

    Shibata, Etsuko; Kiran, Manjari; Shibata, Yoshiyuki; Singh, Samarendra; Kiran, Shashi; Dutta, Anindya

    2016-12-01

    The six-subunit Origin Recognition Complex (ORC) is believed to be an essential eukaryotic ATPase that binds to origins of replication as a ring-shaped heterohexamer to load MCM2-7 and initiate DNA replication. We have discovered that human cell lines in culture proliferate with intact chromosomal origins of replication after disruption of both alleles of ORC2 or of the ATPase subunit, ORC1 . The ORC1 or ORC2 -depleted cells replicate with decreased chromatin loading of MCM2-7 and become critically dependent on another ATPase, CDC6, for survival and DNA replication. Thus, either the ORC ring lacking a subunit, even its ATPase subunit, can load enough MCM2-7 in partnership with CDC6 to initiate DNA replication, or cells have an ORC-independent, CDC6-dependent mechanism to load MCM2-7 on origins of replication.

  6. A molecular breadboard: Removal and replacement of subunits in a hepatitis B virus capsid.

    Science.gov (United States)

    Lee, Lye Siang; Brunk, Nicholas; Haywood, Daniel G; Keifer, David; Pierson, Elizabeth; Kondylis, Panagiotis; Wang, Joseph Che-Yen; Jacobson, Stephen C; Jarrold, Martin F; Zlotnick, Adam

    2017-11-01

    Hepatitis B virus (HBV) core protein is a model system for studying assembly and disassembly of icosahedral structures. Controlling disassembly will allow re-engineering the 120 subunit HBV capsid, making it a molecular breadboard. We examined removal of subunits from partially crosslinked capsids to form stable incomplete particles. To characterize incomplete capsids, we used two single molecule techniques, resistive-pulse sensing and charge detection mass spectrometry. We expected to find a binomial distribution of capsid fragments. Instead, we found a preponderance of 3 MDa complexes (90 subunits) and no fragments smaller than 3 MDa. We also found 90-mers in the disassembly of uncrosslinked HBV capsids. 90-mers seem to be a common pause point in disassembly reactions. Partly explaining this result, graph theory simulations have showed a threshold for capsid stability between 80 and 90 subunits. To test a molecular breadboard concept, we showed that missing subunits could be refilled resulting in chimeric, 120 subunit particles. This result may be a means of assembling unique capsids with functional decorations. © 2017 The Protein Society.

  7. Compensatory expression of human -Acetylglucosaminyl-1-phosphotransferase subunits in mucolipidosis type III gamma

    OpenAIRE

    Pohl , Sandra; Tiede , Stephan; Castrichini , Monica; Cantz , Michael; Gieselmann , Volkmar; Braulke , Thomas

    2009-01-01

    Abstract The N-Acetylglucosaminyl-1-phosphotransferase plays a key role in the generation of mannose 6-phosphate (M6P) recognition markers essential for efficient transport of lysosomal hydrolases to lysosomes. The phosphotransferase is composed of six subunits (?2, ?2, ?2). The ?- and ?-subunits are catalytically active and encoded by a single gene, GNPTAB, whereas the ?-subunit encoded by GNPTG is proposed to recognize conformational structures common to lysosomal enzymes. Defects in GN...

  8. Characterization of the alpha and beta subunits of casein kinase 2 by far-UV CD spectroscopy

    DEFF Research Database (Denmark)

    Issinger, O G; Brockel, C; Boldyreff, B

    1992-01-01

    Although Chou-Fasman calculations of the secondary structure of recombinant casein kinase 2 subunits alpha and beta suggest they have a similar overall conformation, circular dichroism (CD) studies show that substantial differences in the conformation of the two subunits exist. In addition......, no changes in the far-UV CD spectrum of the alpha subunit are observed in the presence of casein or the synthetic decapeptide substrate RRRDDDSDDD. Furthermore, the alpha-helical structure of the alpha subunit (but not the beta subunit) can be increased in the presence of stoichiometric amounts of heparin...

  9. The biosynthesis and processing of high molecular weight precursors of soybean glycinin subunits.

    Science.gov (United States)

    Barton, K A; Thompson, J F; Madison, J T; Rosenthal, R; Jarvis, N P; Beachy, R N

    1982-06-10

    The predominant storage protein of soybean seed, glycinin, is composed of two heterogeneous classes of related subunits, the acidics (Mr approximately 38,000) and the basics (Mr approximately 22,000). Immunoreaction of polypeptides translated in vitro from isolated seed mRNA using antibodies prepared against either purified acidic or basic subunit groups precipitated precursor polypeptides of Mr = 60,000 to Mr = 63,000. High pressure liquid chromatography fingerprinting of trypsin-generated fragments from in vitro synthesized precursors showed fragments specific to both acidic and basic subunits. No mature acidic or basic subunits were detected in vitro translation reactions by either immunoprecipitation or high pressure liquid chromatography fingerprinting. Pulse-labeling of cotyledons growing in culture with [3H]glycine showed rapid accumulation of label in glycinin precursors of Mr = 59,000 to Mr = 62,000. Although in vivo synthesized precursors had slightly greater electrophoretic mobility than in vitro synthesized precursors, little label initially appeared in mature glycinin subunits. After several hours of continued cotyledon growth in absence of label, precursors were processed and label accumulated in both acidic and basic subunit groups. Recombinant plasmids were prepared by reverse transcription of soybean seed mRNA, and clones which encode glycinin precursors were identified by heteroduplex-hybridization of translatable messages. Northern blot analysis of seed mRNA shows the mRNA-encoding glycinin precursors to migrate at Mr = 0.71 X 10(6) on agarose gels, corresponding to approximately 2050 nucleotides. This is sufficiently large to encode a polypeptide consisting of both a glycinin acidic and basic subunit.

  10. Voltage-Gated Sodium Channel β1/β1B Subunits Regulate Cardiac Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Nnamdi Edokobi

    2018-04-01

    Full Text Available Cardiac myocyte contraction is initiated by a set of intricately orchestrated electrical impulses, collectively known as action potentials (APs. Voltage-gated sodium channels (NaVs are responsible for the upstroke and propagation of APs in excitable cells, including cardiomyocytes. NaVs consist of a single, pore-forming α subunit and two different β subunits. The β subunits are multifunctional cell adhesion molecules and channel modulators that have cell type and subcellular domain specific functional effects. Variants in SCN1B, the gene encoding the Nav-β1 and -β1B subunits, are linked to atrial and ventricular arrhythmias, e.g., Brugada syndrome, as well as to the early infantile epileptic encephalopathy Dravet syndrome, all of which put patients at risk for sudden death. Evidence over the past two decades has demonstrated that Nav-β1/β1B subunits play critical roles in cardiac myocyte physiology, in which they regulate tetrodotoxin-resistant and -sensitive sodium currents, potassium currents, and calcium handling, and that Nav-β1/β1B subunit dysfunction generates substrates for arrhythmias. This review will highlight the role of Nav-β1/β1B subunits in cardiac physiology and pathophysiology.

  11. Antibodies to the α-subunit of insulin receptor from eggs of immunized hens

    International Nuclear Information System (INIS)

    Song, C.; Yu, J.; Bai, D.H.; Hester, P.Y.; Kim, K.

    1985-01-01

    Simple methods for the generation, purification, and assay of antibodies to the α-subunit of insulin receptor from eggs of immunized hen have been described. Chicken antibodies against the α-subunit inhibit insulin binding to the receptor and stimulate glucose oxidation as well as autophosphorylation of the β-subunit. Thus the properties of chicken antibodies are very similar to those of antibodies found in human autoimmune diseases and different from rabbit antibodies obtained against the same antigen

  12. Differences in the phenotypic effects of mutations in homologous MrpA and MrpD subunits of the multi-subunit Mrp-type Na+/H+ antiporter.

    Science.gov (United States)

    Morino, Masato; Ogoda, Shinichiro; Krulwich, Terry Ann; Ito, Masahiro

    2017-01-01

    Mrp antiporters are the sole antiporters in the Cation/Proton Antiporter 3 family of transporter databases because of their unusual structural complexity, 6-7 hydrophobic proteins that function as a hetero-oligomeric complex. The two largest and homologous subunits, MrpA and MrpD, are essential for antiport activity and have direct roles in ion transport. They also show striking homology with proton-conducting, membrane-embedded Nuo subunits of respiratory chain complex I of bacteria, e.g., Escherichia coli. MrpA has the closest homology to the complex I NuoL subunit and MrpD has the closest homology to the complex I NuoM and N subunits. Here, introduction of mutations in MrpD, in residues that are also present in MrpA, led to defects in antiport function and/or complex formation. No significant phenotypes were detected in strains with mutations in corresponding residues of MrpA, but site-directed changes in the C-terminal region of MrpA had profound effects, showing that the MrpA C-terminal region has indispensable roles in antiport function. The results are consistent with a divergence in adaptations that support the roles of MrpA and MrpD in secondary antiport, as compared to later adaptations supporting homologs in primary proton pumping by the respiratory chain complex I.

  13. Activity-dependent control of NMDA receptor subunit composition at hippocampal mossy fibre synapses.

    Science.gov (United States)

    Carta, Mario; Srikumar, Bettadapura N; Gorlewicz, Adam; Rebola, Nelson; Mulle, Christophe

    2018-02-15

    CA3 pyramidal cells display input-specific differences in the subunit composition of synaptic NMDA receptors (NMDARs). Although at low density, GluN2B contributes significantly to NMDAR-mediated EPSCs at mossy fibre synapses. Long-term potentiation (LTP) of NMDARs triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. GluN2B subunits are essential for the expression of LTP of NMDARs at mossy fibre synapses. Single neurons express NMDA receptors (NMDARs) with distinct subunit composition and biophysical properties that can be segregated in an input-specific manner. The dynamic control of the heterogeneous distribution of synaptic NMDARs is crucial to control input-dependent synaptic integration and plasticity. In hippocampal CA3 pyramidal cells from mice of both sexes, we found that mossy fibre (MF) synapses display a markedly lower proportion of GluN2B-containing NMDARs than associative/commissural synapses. The mechanism involved in such heterogeneous distribution of GluN2B subunits is not known. Here we show that long-term potentiation (LTP) of NMDARs, which is selectively expressed at MF-CA3 pyramidal cell synapses, triggers a modification in the subunit composition of synaptic NMDARs by insertion of GluN2B. This activity-dependent recruitment of GluN2B at mature MF-CA3 pyramidal cell synapses contrasts with the removal of GluN2B subunits at other glutamatergic synapses during development and in response to activity. Furthermore, although expressed at low levels, GluN2B is necessary for the expression of LTP of NMDARs at MF-CA3 pyramidal cell synapses. Altogether, we reveal a previously unknown activity-dependent regulation and function of GluN2B subunits that may contribute to the heterogeneous plasticity induction rules in CA3 pyramidal cells. © 2017 Centre Nationnal de la Recherche Scientifique. The Journal of Physiology © 2017 The Physiological Society.

  14. A comparison of structural and evolutionary attributes of Escherichia coli and Thermus thermophilus small ribosomal subunits: signatures of thermal adaptation.

    Directory of Open Access Journals (Sweden)

    Saurav Mallik

    Full Text Available Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU. Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs in both species. E. coli SSCCs are numerous and larger compared to T. thermophilus SSCCs, which again indicates densely packed thermophilic 16S rRNA. Thermophilic ribosomal proteins (r-proteins have longer disordered regions than their mesophilic homologs and they experience larger disorder-to-order transitions during SSU-assembly. This is reflected in the predicted higher conformational changes of thermophilic r-proteins compared to their mesophilic homologs during SSU-assembly. This high conformational change of thermophilic r-proteins may help them to associate with the 16S ribosomal RNA with high complementary interfaces, larger interface areas, and denser molecular contacts, compared to those of mesophilic. Thus, thermophilic protein-rRNA interfaces are tightly associated with 16S rRNA than their mesophilic homologs. Densely packed 16S rRNA interior and tight protein-rRNA binding of T. thermophilus (compared to those of E. coli are likely the signatures of its thermal adaptation. We have found a linear correlation between the free energy of protein-RNA interface formation, interface size, and square of conformational changes, which is followed in both prokaryotic and eukaryotic SSU. Disorder is associated with high protein-RNA interface polarity. We have found an evolutionary tendency to maintain high polarity (thereby disorder at protein-rRNA interfaces, than that at rest of the protein structures. However, some proteins exhibit exceptions to this general trend.

  15. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits

    Energy Technology Data Exchange (ETDEWEB)

    Lind, Genevieve E.; Mou, Tung-Chung; Tamborini, Lucia; Pomper, Martin G.; De Micheli, Carlo; Conti, Paola; Pinto, Andrea; Hansen, Kasper B. (JHU); (Milan); (Montana)

    2017-07-31

    NMDA-type glutamate receptors are ligand-gated ion channels that contribute to excitatory neurotransmission in the central nervous system (CNS). Most NMDA receptors comprise two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (GluN2A–D). We describe highly potent (S)-5-[(R)-2-amino-2-carboxyethyl]-4,5-dihydro-1H-pyrazole-3-carboxylic acid (ACEPC) competitive GluN2 antagonists, of which ST3 has a binding affinity of 52 nM at GluN1/2A and 782 nM at GluN1/2B receptors. This 15-fold preference of ST3 for GluN1/2A over GluN1/2B is improved compared with NVP-AAM077, a widely used GluN2A-selective antagonist, which we show has 11-fold preference for GluN1/2A over GluN1/2B. Crystal structures of the GluN1/2A agonist binding domain (ABD) heterodimer with bound ACEPC antagonists reveal a binding mode in which the ligands occupy a cavity that extends toward the subunit interface between GluN1 and GluN2A ABDs. Mutational analyses show that the GluN2A preference of ST3 is primarily mediated by four nonconserved residues that are not directly contacting the ligand, but positioned within 12 Å of the glutamate binding site. Two of these residues influence the cavity occupied by ST3 in a manner that results in favorable binding to GluN2A, but occludes binding to GluN2B. Thus, we reveal opportunities for the design of subunit-selective competitive NMDA receptor antagonists by identifying a cavity for ligand binding in which variations exist between GluN2A and GluN2B subunits. This structural insight suggests that subunit selectivity of glutamate-site antagonists can be mediated by mechanisms in addition to direct contributions of contact residues to binding affinity.

  16. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K. (Michigan)

    2012-03-15

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  17. Dis3- and exosome subunit-responsive 3′ mRNA instability elements

    International Nuclear Information System (INIS)

    Kiss, Daniel L.; Hou, Dezhi; Gross, Robert H.; Andrulis, Erik D.

    2012-01-01

    Highlights: ► Successful use of a novel RNA-specific bioinformatic tool, RNA SCOPE. ► Identified novel 3′ UTR cis-acting element that destabilizes a reporter mRNA. ► Show exosome subunits are required for cis-acting element-mediated mRNA instability. ► Define precise sequence requirements of novel cis-acting element. ► Show that microarray-defined exosome subunit-regulated mRNAs have novel element. -- Abstract: Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3′–5′ exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3′ untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette—harboring four elements—destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of m

  18. Unique phylogenetic position of Diplomonadida based on the complete small subunit ribosomal RNA sequence of Giardia ardeae, G. muris, G. duodenalis and Hexamita sp.

    Science.gov (United States)

    van Keulen, H; Gutell, R R; Gates, M A; Campbell, S R; Erlandsen, S L; Jarroll, E L; Kulda, J; Meyer, E A

    1993-01-01

    Complete small-subunit rRNA (SSU-rRNA) coding region sequences were determined for two species of the intestinal parasite Giardia: G. ardeae and G. muris, both belonging to the order Diplomonadida, and a free-living member of this order, Hexamita sp. These sequences were compared to published SSU-rDNA sequences from a third member of the genus Giardia, G. duodenalis (often called G. intestinalis or G. lamblia) and various representative organisms from other taxa. Of the three Giardia sequences analyzed, the SSU-rRNA from G. muris is the smallest (1432 bases as compared to 1435 and 1453 for G. ardeae and G. duodenalis, respectively) and has the lowest G+C content (58.9%). The Hexamita SSU-rRNA is the largest in this group, containing 1550 bases. Because the sizes of the SSU-rRNA are prokaryotic rather than typically eukaryotic, the secondary structures of the SSU-rRNAs were constructed. These structures show a number of typically eukaryotic signature sequences. Sequence alignments based on constraints imposed by secondary structure were used for construction of a phylogenetic tree for these four taxa. The results show that of the four diplomonads represented, the Giardia species form a distinct group. The other diplomonad Hexamita and the microsporidium Vairimorpha necatrix appear to be distinct from Giardia.

  19. Rice gene SDL/RNRS1, encoding the small subunit of ribonucleotide reductase, is required for chlorophyll synthesis and plant growth development.

    Science.gov (United States)

    Qin, Ran; Zeng, Dongdong; Liang, Rong; Yang, Chengcong; Akhter, Delara; Alamin, Md; Jin, Xiaoli; Shi, Chunhai

    2017-09-05

    A new mutant named sdl (stripe and drooping leaf) was characterized from indica cultivar Zhenong 34 by ethylmethane sulfonate (EMS) mutagenesis. The mutant sdl exhibited development defects including stripe and drooping leaf, dwarfism and deformed floral organs. The gene SDL was found allelic to RNRS1 by map-based cloning, which was homologous to Arabidopsis TSO2 encoding the small subunit of ribonucleotide reductase. The gDNA sequencing results of sdl in mutant showed that there was a repetitive sequence insertion of 138-bp at the 475 th bp in the exon. The redundant sequence was conserved in SDL homologous proteins, which contained the active site (tyrosine), as well as two amino acids glutamate and histidine involved in the binding of iron. There were fewer chloroplasts and grana lamellas in sdl leaf compared with those of wild-type. Additionally, the stripe leaves of sdl seedlings were highly sensitive to temperature, since the chlorophyll content was increased with the temperature rising. The drooping leaf of sdl might be resulted from the disappearance of vascular bundles and mesophyll cells in both leaf midrib and lateral veins. Fittingly to the phenotypes of mutant sdl, the expression levels of genes associated with photosynthesis and chlorophyll synthesis were found to be down- or up-regulated at different temperatures in mutant sdl. Also, the transcriptional levels of genes related to plant height and floral organ formation showed obvious differences between wild-type and sdl. The "SDL/RNRS1" was, hence, required for the chlorophyll biosynthesis and also played pleiotropic roles in the regulation of plant development. Copyright © 2017. Published by Elsevier B.V.

  20. Genetic Analysis of the Mode of Interplay between an ATPase Subunit and Membrane Subunits of the Lipoprotein-Releasing ATP-Binding Cassette Transporter LolCDE†

    OpenAIRE

    Ito, Yasuko; Matsuzawa, Hitomi; Matsuyama, Shin-ichi; Narita, Shin-ichiro; Tokuda, Hajime

    2006-01-01

    The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the i...

  1. Bacterial cellulose biosynthesis: diversity of operons, subunits, products and functions

    Science.gov (United States)

    Römling, Ute; Galperin, Michael Y.

    2015-01-01

    Summary Recent studies of bacterial cellulose biosynthesis, including structural characterization of a functional cellulose synthase complex, provided the first mechanistic insight into this fascinating process. In most studied bacteria, just two subunits, BcsA and BcsB, are necessary and sufficient for the formation of the polysaccharide chain in vitro. Other subunits – which differ among various taxa – affect the enzymatic activity and product yield in vivo by modulating expression of biosynthesis apparatus, export of the nascent β-D-glucan polymer to the cell surface, and the organization of cellulose fibers into a higher-order structure. These auxiliary subunits play key roles in determining the quantity and structure of the resulting biofilm, which is particularly important for interactions of bacteria with higher organisms that lead to rhizosphere colonization and modulate virulence of cellulose-producing bacterial pathogens inside and outside of host cells. Here we review the organization of four principal types of cellulose synthase operons found in various bacterial genomes, identify additional bcs genes that encode likely components of the cellulose biosynthesis and secretion machinery, and propose a unified nomenclature for these genes and subunits. We also discuss the role of cellulose as a key component of biofilms formed by a variety of free-living and pathogenic bacteria and, for the latter, in the choice between acute infection and persistence in the host. PMID:26077867

  2. Molecular dynamics studies of the P pilus rod subunit PapA.

    Science.gov (United States)

    Vitagliano, Luigi; Ruggiero, Alessia; Pedone, Carlo; Berisio, Rita

    2009-03-01

    Adhesion of uropathogenic Escherichia coli to host tissues is mediated by pili, which extend from the outer cell membrane of the bacterium. Here we report molecular dynamics (MD) characterizations of the major constituent of P pili from the uropathogenic E. coli, PapA, in unliganded state and in complex with the G1 strand of the chaperone PapD. To mimic the PapA response to the gradual dissociation of the PapD G1 strand and to evaluate the role of PapA chaperone recognition sites, we also carried out MD simulations of complexes of PapA with fragments of PapD G1 strand, that leave either the P4 or both P3 and P4 sites unoccupied. Data on the unbound form of PapA indicate that, upon release of the chaperone, PapA evolves toward compact states that are likely not prone to subunit-subunit association. In line with recent experimental reports, this finding implies that chaperone release and subunit-subunit association must be concerted. Our data also indicated that the gradual unbinding of the chaperone from the PapA groove has increasingly strong structural consequences. Indeed, the release of the chaperone from the site P4, which is closest to the initiation site (P5), does not have dramatic effects on the domain structure, whereas its release from both the P4 and the adjacent P3 sites induces a quick structural transition toward a collapsed state, where the subunit groove is obstructed.

  3. Neonicotinoid binding, toxicity and expression of nicotinic acetylcholine receptor subunits in the aphid Acyrthosiphon pisum.

    Directory of Open Access Journals (Sweden)

    Emiliane Taillebois

    Full Text Available Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI, thiamethoxam (TMX and clothianidin (CLT. Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16 ± 0.04 nM and 41.7 ± 5.9 nM and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008 ± 0.002 nM and 1.135 ± 0.213 nM. Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml and TMX (LC50 = 0.034 µg/ml were more toxic than CLT (LC50 = 0.118 µg/ml. The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies.

  4. Characterization and application of a radioimmunoassay for reduced, carboxymethylated human luteinizing hormone α-subunit

    International Nuclear Information System (INIS)

    Keutmann, H.T.; Beitins, I.Z.; Johnson, L.; McArthur, J.W.

    1978-01-01

    We have established a double antibody RIA using a rabbit antiserum prepared against reduced, carboxymethylated (RCXM) human LH α-subunit, with RCXM-α as tracer and standard. This antiserum did not cross-react with any native gonadotropins or subunit, and reacted only weakly with RCXM-α. A tryptic digest of RCXM α-subunit was completely reactive, while chymotryptic digestion abolished all immunoreactivity. By testing with separate tryptic fragments, the recognition site could be localized to a segment close to the amino-terminus of the peptide chain. When applied to measurement of serum and urine, an immunoreactive species, parallel to RCXM α-subunit by serial dilution, was found in concentrations of 1-2 ng/ml in serum and 3-4 ng/ml in urine. Similar levels of the immunoreactive component were found in conditions of elevated gonadotropins (e.g. pregnancy) as well as gonadotropin deficiency (panhypopituitarism and Kallmann's syndrome). After stimulation with LHRH, no rise was noted at times up to 6 h despite the fact that both LH and LH-α were elevated. The data indicate that the sequence-specific antiserum may be detecting an immunoreactive form of α-subunit of LH whose kinetics of appearance and disappearance differs from those of the native subunit

  5. Human aldolase B subunit-specific radioimmunoassay

    International Nuclear Information System (INIS)

    Asaka, M.; Alpert, E.

    1983-01-01

    A radioimmunoassay was developed for the direct quantification of aldolase B in human serum and tissues. The method is a double-antibody radioimmunoassay technique using radioiodinated aldolase B homopolymer as ligand, chicken antibodies to aldolase B and rabbit antibodies to chicken IgG. This radioimmunoassay was shown to be specific for the aldolase B subunit, with no cross-reactivity with either human aldolase A subunit or homopolymeric human aldolase C (C 4 ). The lowest measurable amount by this method was 2 ng/ml. Aldolase B is predominantly found in normal liver tissue, with relatively-high aldolase B levels also observed in kidney. Aldolase B levels in the serum obtained from 11 normal subjects ranged from 23 to 38 ng/ml, with a mean of 28.5 +- 9.2 (S.D.) ng/ml. Almost all of patients with hepatitis had serum aldolase B levels greater than 30 ng/ml. In cancer patients, serum aldolase B was slightly elevated in patients with metastatic liver cancer and primary lever cell carcinoma, whereas no elevation of serum aldolase B was shown in patients without liver metastasis. (Auth.)

  6. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing

    International Nuclear Information System (INIS)

    Kvissel, Anne-Katrine; Orstavik, Sigurd; Eikvar, Sissel; Brede, Gaute; Jahnsen, Tore; Collas, Philippe; Akusjaervi, Goeran; Skalhegg, Bjorn Steen

    2007-01-01

    Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both Cα and Cβ are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism

  7. The complete structure of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leibundgut, Marc; Bieri, Philipp; Leitner, Alexander; Schmitz, Nikolaus; Aebersold, Ruedi; Ban, Nenad

    2014-11-13

    Mitochondrial ribosomes (mitoribosomes) are extensively modified ribosomes of bacterial descent specialized for the synthesis and insertion of membrane proteins that are critical for energy conversion and ATP production inside mitochondria. Mammalian mitoribosomes, which comprise 39S and 28S subunits, have diverged markedly from the bacterial ribosomes from which they are derived, rendering them unique compared to bacterial, eukaryotic cytosolic and fungal mitochondrial ribosomes. We have previously determined at 4.9 Å resolution the architecture of the porcine (Sus scrofa) 39S subunit, which is highly homologous to the human mitoribosomal large subunit. Here we present the complete atomic structure of the porcine 39S large mitoribosomal subunit determined in the context of a stalled translating mitoribosome at 3.4 Å resolution by cryo-electron microscopy and chemical crosslinking/mass spectrometry. The structure reveals the locations and the detailed folds of 50 mitoribosomal proteins, shows the highly conserved mitoribosomal peptidyl transferase active site in complex with its substrate transfer RNAs, and defines the path of the nascent chain in mammalian mitoribosomes along their idiosyncratic exit tunnel. Furthermore, we present evidence that a mitochondrial tRNA has become an integral component of the central protuberance of the 39S subunit where it architecturally substitutes for the absence of the 5S ribosomal RNA, a ubiquitous component of all cytoplasmic ribosomes.

  8. LINKING GABAA RECEPTOR SUBUNITS TO ALCOHOL-INDUCED CONDITIONED TASTE AVERSION AND RECOVERY FROM ACUTE ALCOHOL INTOXICATION

    Science.gov (United States)

    Blednov, Y.A.; Benavidez, J.M.; Black, M.; Chandra, D.; Homanics, G.E.; Rudolph, U.; Harris, R.A.

    2012-01-01

    GABA type A receptors (GABAA-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABAA-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011) and indicate this aversive property of ethanol is dependent on ethanol action on α2-containing GABAA-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor-incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABAA-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 and α3 (-/-) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. PMID:23147414

  9. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase.

    Science.gov (United States)

    He, Jiuya; Ford, Holly C; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-03-28

    The permeability transition in human mitochondria refers to the opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membrane. Opening can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane, and ATP synthesis, followed by cell death. Recent proposals suggest that the pore is associated with the ATP synthase complex and specifically with the ring of c-subunits that constitute the membrane domain of the enzyme's rotor. The c-subunit is produced from three nuclear genes, ATP5G1 , ATP5G2 , and ATP5G3 , encoding identical copies of the mature protein with different mitochondrial-targeting sequences that are removed during their import into the organelle. To investigate the involvement of the c-subunit in the PTP, we generated a clonal cell, HAP1-A12, from near-haploid human cells, in which ATP5G1 , ATP5G2 , and ATP5G3 were disrupted. The HAP1-A12 cells are incapable of producing the c-subunit, but they preserve the characteristic properties of the PTP. Therefore, the c-subunit does not provide the PTP. The mitochondria in HAP1-A12 cells assemble a vestigial ATP synthase, with intact F 1 -catalytic and peripheral stalk domains and the supernumerary subunits e, f, and g, but lacking membrane subunits ATP6 and ATP8. The same vestigial complex plus associated c-subunits was characterized from human 143B ρ 0 cells, which cannot make the subunits ATP6 and ATP8, but retain the PTP. Therefore, none of the membrane subunits of the ATP synthase that are involved directly in transmembrane proton translocation is involved in forming the PTP.

  10. Immunodominant role of CCHA subunit of Concholepas hemocyanin is associated with unique biochemical properties.

    Science.gov (United States)

    Becker, María Inés; Fuentes, Alejandra; Del Campo, Miguel; Manubens, Augusto; Nova, Esteban; Oliva, Harold; Faunes, Fernando; Valenzuela, María Antonieta; Campos-Vallette, Marcelo; Aliaga, Alvaro; Ferreira, Jorge; De Ioannes, Alfredo E; De Ioannes, Pablo; Moltedo, Bruno

    2009-03-01

    Hemocyanin, the oxygen transporter metallo-glycoprotein from mollusks, shows strong relationship between its notable structural features and intrinsic immunomodulatory effects. Here we investigated the individual contribution of CCHA and CCHB subunits from Concholepas hemocyanin (CCH) to in vivo humoral immune response and their pre-clinical evaluation as immunotherapeutic agent in a mice bladder cancer model, in relation to their biochemical properties. To this end, subunits were purified and well characterized. Homogeneous subunits were obtained by anionic exchange chromatography, and its purity assessed by electrophoretic and immunochemical methods. While each CCH subunit contains eight functional units showing partial cross reaction, the vibrational spectral analysis showed several spectral differences, suggesting structural differences between them. In addition, we demonstrated differences in the carbohydrate content: CCHA had a 3.6% w/w sugar with both N- and O-linked moieties. In turn, CCHB had a 2.5% w/w sugar with N-linked, while O-linked moieties were nearly absent. Considering these differences, it was not possible to predict a priori whether the immunogenic and immunotherapeutic properties of subunits might be similar. Surprisingly, both subunits by itself induced a humoral response, and showed an antitumor effect in the bladder carcinoma cell line MBT-2. However, when immunologic parameters were analyzed, CCHA showed better efficiency than CCHB. No allergic reactions or any toxic effects were observed in mice treated with CCHA, sustaining its potential therapeutic use. Our study supports that CCHA subunit accounts for the most important features involved in the immunogenicity of CCH, such as better hydrophilicity and higher content of carbohydrates.

  11. Differential antibiotic sensitivity determined by the large ribosomal subunit in thermophilic archaea.

    OpenAIRE

    Ruggero, D; Londei, P

    1996-01-01

    Hybrid ribosomes obtained by mixing the ribosomal subunits of the extremely thermophilic archaea Sulfolobus solfataricus and Desulfurococcus mobilis were tested for their sensitivity to selected antibiotics. It is shown that structural differences in the large ribosomal subunits determine qualitatively and quantitatively the patterns of response to alpha-sarcin and paromomycin in these species.

  12. Tuning of the Na,K-ATPase by the beta subunit

    Science.gov (United States)

    Hilbers, Florian; Kopec, Wojciech; Isaksen, Toke Jost; Holm, Thomas Hellesøe; Lykke-Hartmann, Karin; Nissen, Poul; Khandelia, Himanshu; Poulsen, Hanne

    2016-02-01

    The vital gradients of Na+ and K+ across the plasma membrane of animal cells are maintained by the Na,K-ATPase, an αβ enzyme complex, whose α subunit carries out the ion transport and ATP hydrolysis. The specific roles of the β subunit isoforms are less clear, though β2 is essential for motor physiology in mammals. Here, we show that compared to β1 and β3, β2 stabilizes the Na+-occluded E1P state relative to the outward-open E2P state, and that the effect is mediated by its transmembrane domain. Molecular dynamics simulations further demonstrate that the tilt angle of the β transmembrane helix correlates with its functional effect, suggesting that the relative orientation of β modulates ion binding at the α subunit. β2 is primarily expressed in granule neurons and glomeruli in the cerebellum, and we propose that its unique functional characteristics are important to respond appropriately to the cerebellar Na+ and K+ gradients.

  13. Condensin HEAT subunits required for DNA repair, kinetochore/centromere function and ploidy maintenance in fission yeast.

    Directory of Open Access Journals (Sweden)

    Xingya Xu

    Full Text Available Condensin, a central player in eukaryotic chromosomal dynamics, contains five evolutionarily-conserved subunits. Two SMC (structural maintenance of chromosomes subunits contain ATPase, hinge, and coiled-coil domains. One non-SMC subunit is similar to bacterial kleisin, and two other non-SMC subunits contain HEAT (similar to armadillo repeats. Here we report isolation and characterization of 21 fission yeast (Schizosaccharomyces pombe mutants for three non-SMC subunits, created using error-prone mutagenesis that resulted in single-amino acid substitutions. Beside condensation, segregation, and DNA repair defects, similar to those observed in previously isolated SMC and cnd2 mutants, novel phenotypes were observed for mutants of HEAT-repeats containing Cnd1 and Cnd3 subunits. cnd3-L269P is hypersensitive to the microtubule poison, thiabendazole, revealing defects in kinetochore/centromere and spindle assembly checkpoints. Three cnd1 and three cnd3 mutants increased cell size and doubled DNA content, thereby eliminating the haploid state. Five of these mutations reside in helix B of HEAT repeats. Two non-SMC condensin subunits, Cnd1 and Cnd3, are thus implicated in ploidy maintenance.

  14. Similarities in transcription factor IIIC subunits that bind to the posterior regions of internal promoters for RNA polymerase III

    OpenAIRE

    Matsutani Sachiko

    2004-01-01

    Abstract Background In eukaryotes, RNA polymerase III (RNAP III) transcribes the genes for small RNAs like tRNAs, 5S rRNA, and several viral RNAs, and short interspersed repetitive elements (SINEs). The genes for these RNAs and SINEs have internal promoters that consist of two regions. These two regions are called the A and B blocks. The multisubunit transcription factor TFIIIC is required for transcription initiation of RNAP III; in transcription of tRNAs, the B-block binding subunit of TFII...

  15. Normal growth spurt and final height despite low levels of all forms of circulating insulin-like growth factor-I in a patient with acid-labile subunit deficiency

    DEFF Research Database (Denmark)

    Domené, Horacio M; Martínez, Alicia S; Frystyk, Jan

    2007-01-01

    BACKGROUND: In a recently described patient with acid-labile subunit (ALS) deficiency, the inability to form ternary complexes resulted in a marked reduction in circulating total insulin-like growth factor (IGF)-I, whereas skeletal growth was only marginally affected. To further study the role of...

  16. Expression Profile of the Integrin Receptor Subunits in the Guinea Pig Sclera.

    Science.gov (United States)

    Wang, Kevin K; Metlapally, Ravikanth; Wildsoet, Christine F

    2017-06-01

    The ocular dimensional changes in myopia reflect increased scleral remodeling, and in high myopia, loss of scleral integrity leads to biomechanical weakening and continued scleral creep. As integrins, a type of cell surface receptors, have been linked to scleral remodeling, they represent potential targets for myopia therapies. As a first step, this study aimed to characterize the integrin subunits at the messenger RNA level in the sclera of the guinea pig, a more recently added but increasingly used animal model for myopia research. Primers for α and β integrin subunits were designed using NCBI/UCSC Genome Browser and Primer3 software tools. Total RNA was extracted from normal scleral tissue and isolated cultured scleral fibroblasts, as well as liver and lung, as reference tissues, all from guinea pig. cDNA was produced by reverse transcription, PCR was used to amplify products of predetermined sizes, and products were sequenced using standard methods. Guinea pig scleral tissue expressed all known integrin alpha subunits except αD and αE. The latter integrin subunits were also not expressed by cultured guinea pig scleral fibroblasts; however, their expression was confirmed in guinea pig liver. In addition, isolated cultured fibroblasts did not express integrin subunits αL, αM, and αX. This difference between results for cultured cells and intact sclera presumably reflects the presence in the latter of additional cell types. Both guinea pig scleral tissue and isolated scleral fibroblasts expressed all known integrin beta subunits. All results were verified through sequencing. The possible contributions of integrins to scleral remodeling make them plausible targets for myopia prevention. Data from this study will help guide future ex vivo and in vitro studies directed at understanding the relationship between scleral integrins and ocular growth regulation in the guinea pig model for myopia.

  17. Final report of 2002 small business innovation research

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Sim, Cheul Muu; Lim, Chang Hwan

    2003-07-01

    The purpose of the small business innovation research is to help and support small business for the development of the advanced technologies. In Korea Atomic Energy Research Institute, sixteen companies are joined in this consortium for thirteen projects in year 2002. As a result of the investigation, application of the Gamma-ray for food products, real-time imaging system, micro laser, laser rangefinder, compact VOC analyzer, functional food, nano-sized metal powder, micorwave humidity sensor, supersonic impactor, etc have been developed. Several patents as well as research papers are produced and variety of prototype systems are developed

  18. Fast and Slow Inhibition in the Visual Thalamus Is Influenced by Allocating GABAA Receptors with Different γ Subunits

    Directory of Open Access Journals (Sweden)

    Zhiwen Ye

    2017-04-01

    Full Text Available Cell-type specific differences in the kinetics of inhibitory postsynaptic conductance changes (IPSCs are believed to impact upon network dynamics throughout the brain. Much attention has focused on how GABAA receptor (GABAAR α and β subunit diversity will influence IPSC kinetics, but less is known about the influence of the γ subunit. We have examined whether GABAAR γ subunit heterogeneity influences IPSC properties in the thalamus. The γ2 subunit gene was deleted from GABAARs selectively in the dorsal lateral geniculate nucleus (dLGN. The removal of the γ2 subunit from the dLGN reduced the overall spontaneous IPSC (sIPSC frequency across all relay cells and produced an absence of IPSCs in a subset of relay neurons. The remaining slower IPSCs were both insensitive to diazepam and zinc indicating the absence of the γ2 subunit. Because these slower IPSCs were potentiated by methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM, we propose these IPSCs involve γ1 subunit-containing GABAAR activation. Therefore, γ subunit heterogeneity appears to influence the kinetics of GABAAR-mediated synaptic transmission in the visual thalamus in a cell-selective manner. We suggest that activation of γ1 subunit-containing GABAARs give rise to slower IPSCs in general, while faster IPSCs tend to be mediated by γ2 subunit-containing GABAARs.

  19. Unassigned MURF1 of kinetoplastids codes for NADH dehydrogenase subunit 2

    Directory of Open Access Journals (Sweden)

    Burger Gertraud

    2008-10-01

    Full Text Available Abstract Background In a previous study, we conducted a large-scale similarity-free function prediction of mitochondrion-encoded hypothetical proteins, by which the hypothetical gene murf1 (maxicircle unidentified reading frame 1 was assigned as nad2, encoding subunit 2 of NADH dehydrogenase (Complex I of the respiratory chain. This hypothetical gene occurs in the mitochondrial genome of kinetoplastids, a group of unicellular eukaryotes including the causative agents of African sleeping sickness and leishmaniasis. In the present study, we test this assignment by using bioinformatics methods that are highly sensitive in identifying remote homologs and confront the prediction with available biological knowledge. Results Comparison of MURF1 profile Hidden Markov Model (HMM against function-known profile HMMs in Pfam, Panther and TIGR shows that MURF1 is a Complex I protein, but without specifying the exact subunit. Therefore, we constructed profile HMMs for each individual subunit, using all available sequences clustered at various identity thresholds. HMM-HMM comparison of these individual NADH subunits against MURF1 clearly identifies this hypothetical protein as NAD2. Further, we collected the relevant experimental information about kinetoplastids, which provides additional evidence in support of this prediction. Conclusion Our in silico analyses provide convincing evidence for MURF1 being a highly divergent member of NAD2.

  20. Structural analysis of the α subunit of Na(+)/K(+) ATPase genes in invertebrates.

    Science.gov (United States)

    Thabet, Rahma; Rouault, J-D; Ayadi, Habib; Leignel, Vincent

    2016-01-01

    The Na(+)/K(+) ATPase is a ubiquitous pump coordinating the transport of Na(+) and K(+) across the membrane of cells and its role is fundamental to cellular functions. It is heteromer in eukaryotes including two or three subunits (α, β and γ which is specific to the vertebrates). The catalytic functions of the enzyme have been attributed to the α subunit. Several complete α protein sequences are available, but only few gene structures were characterized. We identified the genomic sequences coding the α-subunit of the Na(+)/K(+) ATPase, from the whole-genome shotgun contigs (WGS), NCBI Genomes (chromosome), Genomic Survey Sequences (GSS) and High Throughput Genomic Sequences (HTGS) databases across distinct phyla. One copy of the α subunit gene was found in Annelida, Arthropoda, Cnidaria, Echinodermata, Hemichordata, Mollusca, Placozoa, Porifera, Platyhelminthes, Urochordata, but the nematodes seem to possess 2 to 4 copies. The number of introns varied from 0 (Platyhelminthes) to 26 (Porifera); and their localization and length are also highly variable. Molecular phylogenies (Maximum Likelihood and Maximum Parsimony methods) showed some clusters constituted by (Chordata/(Echinodermata/Hemichordata)) or (Plathelminthes/(Annelida/Mollusca)) and a basal position for Porifera. These structural analyses increase our knowledge about the evolutionary events of the α subunit genes in the invertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Distribution of the a2, a3, and a5 nicotinic acetylcholine receptor subunits in the chick brain

    Directory of Open Access Journals (Sweden)

    Torrão A.S.

    1997-01-01

    Full Text Available Nicotinic acetylcholine receptors (nAChRs are ionotropic receptors comprised of a and ß subunits. These receptors are widely distributed in the central nervous system, and previous studies have revealed specific patterns of localization for some nAChR subunits in the vertebrate brain. In the present study we used immunohistochemical methods and monoclonal antibodies to localize the a2, a3, and a5 nAChR subunits in the chick mesencephalon and diencephalon. We observed a differential distribution of these three subunits in the chick brain, and showed that the somata and neuropil of many central structures contain the a5 nAChR subunit. The a2 and a3 subunits, on the other hand, exhibited a more restricted distribution than a5 and other subunits previously studied, namely a7, a8 and ß2. The patterns of distribution of the different nAChR subunits suggest that neurons in many brain structures may contain several subtypes of nAChRs and that in a few regions one particular subtype may determine the cholinergic nicotinic responses

  2. Basic residues in the 74-83 and 191-198 segments of protein kinase CK2 catalytic subunit are implicated in negative but not in positive regulation by the beta-subunit

    DEFF Research Database (Denmark)

    Sarno, S; Vaglio, P; Marin, O

    1997-01-01

    by the beta-subunit many fold more than that of alpha wild type, while extrastimulation by beta mutant D55L56E57A, observable with alpha wild type, is abolished with these mutants. These data support the conclusion that down regulation by the acidic residues clustered in the N-terminal moiety of beta...... is mediated by basic residues in the 74-83 and in the 191-198 sequences of the alpha-subunit. These are also implicated in substrate recognition consistent with the concept that the N-terminal acidic region of the beta subunit operates as a pseudosubstrate. In contrast, another CK2alpha mutant, V66A, is more...

  3. Neutron Scattering and the 30 S Ribosomal Subunit of E. Coli

    Science.gov (United States)

    Moore, P. B.; Engelman, D. M.; Langer, J. A.; Ramakrishnan, V. R.; Schindler, D. G.; Schoenborn, B. P.; Sillers, I. Y.; Yabuki, S.

    1982-06-01

    This paper reviews the progress made in the study of the internal organization of the 30 S ribosomal subunit of E. coli by neutron scattering since 1975. A map of that particle showing the position of 14 of the subunit's 21 proteins is presented, and the methods currently used for collecting and analyzing such data are discussed. Also discussed is the possibility of extending the interpretation of neutron mapping data beyond the limits practical today.

  4. Testing experimental subunit furunculosis vaccines for rainbow trout

    DEFF Research Database (Denmark)

    Marana, Moonika H.; Chettri, Jiwan Kumar; Skov, Jakob

    2016-01-01

    Aeromonas salmonicida subsp. salmonicida (AS) is the etiological agent of typical furunculosis in salmonid fish. The disease causes bacterial septicemia and is a major fish health problem in salmonid aquaculture worldwide, inducing high morbidity and mortality. In this study we vaccinated rainbow...... trout with subunit vaccines containing protein antigens that were selected based on an in silico antigen discovery approach. Thus, the proteome of AS strain A449 was analyzed by an antigen discovery platform and its proteins consequently ranked by their predicted ability to evoke protective immune...... response against AS. Fourteen proteins were prepared in 3 different experimental subunit vaccine combinations and used to vaccinate rainbow trout by intraperitoneal (i.p.) injection. We tested the proteins for their ability to elicit antibody production and protection. Thus, fish were exposed to virulent...

  5. The small GTPase Arl8b regulates assembly of the mammalian HOPS complex on lysosomes.

    Science.gov (United States)

    Khatter, Divya; Raina, Vivek B; Dwivedi, Devashish; Sindhwani, Aastha; Bahl, Surbhi; Sharma, Mahak

    2015-05-01

    The homotypic fusion and protein sorting (HOPS) complex is a multi-subunit complex conserved from yeast to mammals that regulates late endosome and lysosome fusion. However, little is known about how the HOPS complex is recruited to lysosomes in mammalian cells. Here, we report that the small GTPase Arl8b, but not Rab7 (also known as RAB7A), is essential for membrane localization of the human (h)Vps41 subunit of the HOPS complex. Assembly of the core HOPS subunits to Arl8b- and hVps41-positive lysosomes is guided by their subunit-subunit interactions. RNA interference (RNAi)-mediated depletion of hVps41 resulted in the impaired degradation of EGFR that was rescued upon expression of wild-type but not an Arl8b-binding-defective mutant of hVps41, suggesting that Arl8b-dependent lysosomal localization of hVps41 is required for its endocytic function. Furthermore, we have also identified that the Arl8b effector SKIP (also known as PLEKHM2) interacts with and recruits HOPS subunits to Arl8b and kinesin-positive peripheral lysosomes. Accordingly, RNAi-mediated depletion of SKIP impaired lysosomal trafficking and degradation of EGFR. These findings reveal that Arl8b regulates the association of the human HOPS complex with lysosomal membranes, which is crucial for the function of this tethering complex in endocytic degradation. © 2015. Published by The Company of Biologists Ltd.

  6. Construct design, production, and characterization of Plasmodium falciparum 48/45 R0.6C subunit protein produced in Lactococcus lactis as candidate vaccine.

    Science.gov (United States)

    Singh, Susheel K; Roeffen, Will; Mistarz, Ulrik H; Chourasia, Bishwanath Kumar; Yang, Fen; Rand, Kasper D; Sauerwein, Robert W; Theisen, Michael

    2017-05-31

    The sexual stages of Plasmodium falciparum are responsible for the spread of the parasite in malaria endemic areas. The cysteine-rich Pfs48/45 protein, exposed on the surface of sexual stages, is one of the most advanced antigens for inclusion into a vaccine that will block transmission. However, clinical Pfs48/45 sub-unit vaccine development has been hampered by the inability to produce high yields of recombinant protein as the native structure is required for the induction of functional transmission-blocking (TB) antibodies. We have investigated a downstream purification process of a sub-unit (R0.6C) fragment representing the C-terminal 6-Cys domain of Pfs48/45 (6C) genetically fused to the R0 region (R0) of asexual stage Glutamate Rich Protein expressed in Lactococcus lactis. A series of R0.6C fusion proteins containing features, which aim to increase expression levels or to facilitate protein purification, were evaluated at small scale. None of these modifications affected the overall yield of recombinant protein. Consequently, R0.6C with a C-terminal his tag was used for upstream and downstream process development. A simple work-flow was developed consisting of batch fermentation followed by two purification steps. As such, the recombinant protein was purified to homogeneity. The composition of the final product was verified by HPLC, mass spectrometry, SDS-PAGE and Western blotting with conformation dependent antibodies against Pfs48/45. The recombinant protein induced high levels of functional TB antibodies in rats. The established production and purification process of the R0.6C fusion protein provide a strong basis for further clinical development of this candidate transmission blocking malaria vaccine.

  7. Impact of subunit linkages in an engineered homodimeric binding protein to α-synuclein.

    Science.gov (United States)

    Gauhar, Aziz; Shaykhalishahi, Hamed; Gremer, Lothar; Mirecka, Ewa A; Hoyer, Wolfgang

    2014-12-01

    Aggregation of the protein α-synuclein (α-syn) has been implicated in Parkinson's disease and other neurodegenerative disorders, collectively referred to as synucleinopathies. The β-wrapin AS69 is a small engineered binding protein to α-syn that stabilizes a β-hairpin conformation of monomeric α-syn and inhibits α-syn aggregation at substoichiometric concentrations. AS69 is a homodimer whose subunits are linked via a disulfide bridge between their single cysteine residues, Cys-28. Here we show that expression of a functional dimer as a single polypeptide chain is achievable by head-to-tail linkage of AS69 subunits. Choice of a suitable linker is essential for construction of head-to-tail dimers that exhibit undiminished α-syn affinity compared with the solely disulfide-linked dimer. We characterize AS69-GS3, a head-to-tail dimer with a glycine-serine-rich linker, under oxidized and reduced conditions in order to evaluate the impact of the Cys28-disulfide bond on structure, stability and α-syn binding. Formation of the disulfide bond causes compaction of AS69-GS3, increases its thermostability, and is a prerequisite for high-affinity binding to α-syn. Comparison of AS69-GS3 and AS69 demonstrates that head-to-tail linkage promotes α-syn binding by affording accelerated disulfide bond formation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. SDS-PAGE Electrophoretic Property of Human Chorionic Gonadotropin (hCG) and its β-subunit

    OpenAIRE

    Gam, Lay-Harn; Latiff, Aishah

    2005-01-01

    The microheterogeneity property of hCG with regards to its sialic acid contents resulted in variable mobility of the glycoprotein in SDS-PAGE. The intact hCG molecule is composed of two dissimilar subunits, namely α- and β-subunits. The identification of hCG bands in SDS-PAGE was accomplished by the immunoblotting experiment, whereby the antibody directed toward the specific region of β-subunit of hCG was used. The data shows that the different mobility of intact hCG was attributed to the dif...

  9. β1 subunit stabilises sodium channel Nav1.7 against mechanical stress.

    Science.gov (United States)

    Körner, Jannis; Meents, Jannis; Machtens, Jan-Philipp; Lampert, Angelika

    2018-06-01

    The voltage-gated sodium channel Nav1.7 is a key player in neuronal excitability and pain signalling. In addition to voltage sensing, the channel is also modulated by mechanical stress. Using whole-cell patch-clamp experiments, we discovered that the sodium channel subunit β1 is able to prevent the impact of mechanical stress on Nav1.7. An intramolecular disulfide bond of β1 was identified to be essential for stabilisation of inactivation, but not activation, against mechanical stress using molecular dynamics simulations, homology modelling and site-directed mutagenesis. Our results highlight the role of segment 6 of domain IV in fast inactivation. We present a candidate mechanism for sodium channel stabilisation against mechanical stress, ensuring reliable channel functionality in living systems. Voltage-gated sodium channels are key players in neuronal excitability and pain signalling. Precise gating of these channels is crucial as even small functional alterations can lead to pathological phenotypes such as pain or heart failure. Mechanical stress has been shown to affect sodium channel activation and inactivation. This suggests that stabilising components are necessary to ensure precise channel gating in living organisms. Here, we show that mechanical shear stress affects voltage dependence of activation and fast inactivation of the Nav1.7 channel. Co-expression of the β1 subunit, however, protects both gating modes of Nav1.7 against mechanical shear stress. Using molecular dynamics simulation, homology modelling and site-directed mutagenesis, we identify an intramolecular disulfide bond of β1 (Cys21-Cys43) which is partially involved in this process: the β1-C43A mutant prevents mechanical modulation of voltage dependence of activation, but not of fast inactivation. Our data emphasise the unique role of segment 6 of domain IV for sodium channel fast inactivation and confirm previous reports that the intracellular process of fast inactivation can be

  10. Purification, crystallization and preliminary X-ray diffraction analysis of the non-ATPase subunit Nas6 in complex with the ATPase subunit Rpt3 of the 26S proteasome from Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Nakamura, Yoshihiro; Umehara, Takashi; Tanaka, Akiko; Horikoshi, Masami; Padmanabhan, Balasundaram; Yokoyama, Shigeyuki

    2007-01-01

    The complex of the non-ATPase subunit Nas6 with the C-terminal domain of the ATPase subunit Rpt3 of the 26S proteasome from S. cerevisiae was co-expressed in E. coli and purified to homogeneity. The crystals obtained from the protein complex diffracted to a resolution of 2.2 Å. The non-ATPase subunit Nas6, which is the human orthologue of gankyrin, was co-expressed with the C-terminal domain of the ATPase subunit Rpt3 of the yeast 26S proteasome in Escherichia coli, purified to near-homogeneity and crystallized using the hanging-drop vapour-diffusion method. The protein crystallized in space group P2 1 , with unit-cell parameters a = 60.38, b = 100.22, c = 72.20 Å, β = 94.70° and with three Nas6–Rpt3C molecules per asymmetric unit. The crystal diffracted to beyond 2.2 Å resolution using synchrotron radiation

  11. Linking GABA(A) receptor subunits to alcohol-induced conditioned taste aversion and recovery from acute alcohol intoxication.

    Science.gov (United States)

    Blednov, Y A; Benavidez, J M; Black, M; Chandra, D; Homanics, G E; Rudolph, U; Harris, R A

    2013-04-01

    GABA type A receptors (GABA(A)-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABA(A)-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011). All together, they indicate that aversive property of ethanol is dependent on ethanol action on α2-containing GABA(A)-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABA(A)-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 (-/-) and α3 (-/Y) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Neutron scattering and the 30 S ribosomal subunit of E. coli

    International Nuclear Information System (INIS)

    Moore, P.B.; Engelman, D.M.; Langer, J.A.; Ramakrishnan, V.R.; Schindler, D.G.; Schoenborn, B.P.; Sillers, I.Y.; Yabuki, S.

    1982-01-01

    This paper reviews the progress made in the study of the internal organization of the 30 S ribosomal subunit of E. coli by neutron scattering since 1975. A map of that particle showing the position of 14 of the subunit's 21 proteins is presented, and the methods currently used for collecting and analyzing such data are discussed. Also discussed is the possibility of extending the interpretation of neutron mapping data beyond the limits practical today. 30 references, 5 figures

  13. Isolation and characterization of a monoclonal anti-protein kinase CK2 beta-subunit antibody of the IgG class for the direct detection of CK2 beta-subunit in tissue cultures of various mammalian species and human tumors

    DEFF Research Database (Denmark)

    Nastainczyk, W; Schmidt-Spaniol, I; Boldyreff, B

    1995-01-01

    A murine monoclonal anti-protein kinase CK2 beta antibody was isolated and characterized. The antibody detects 1 pmol of purified recombinant CK2 beta-subunit after analysis on SDS-PAGE. Alternatively undenatured CK2 beta-subunit was detected by an ELISA assay either as recombinant CK2 beta......-subunit or in the CK2 holoenzyme (alpha 2 beta 2). Here, concentrations of the first antibody of 1 ng/ml still allowed the detection of the subunit. Immunoblotting of crude cellular extracts from various tissue cultures (man, mouse, and hamster), from human tumors, and the nonneoplastic tissue allowed the detection...... of the CK2 beta-subunit. The detected epitope of this antibody was, as determined by the epitope analysis technique, 123GLSDI127....

  14. The crystal structure of the complex of Zea mays alpha subunit with a fragment of human beta subunit provides the clue to the architecture of protein kinase CK2 holoenzyme

    DEFF Research Database (Denmark)

    Battistutta, R; Sarno, S; De Moliner, E

    2000-01-01

    The crystal structure of a complex between the catalytic alpha subunit of Zea mays CK2 and a 23-mer peptide corresponding the C-terminal sequence 181-203 of the human CK2 regulatory beta subunit has been determined at 3.16-A resolution. The complex, composed of two alpha chains and two peptides, ...

  15. Translation activity of chimeric ribosomes composed of Escherichia coli and Bacillus subtilis or Geobacillus stearothermophilus subunits

    Directory of Open Access Journals (Sweden)

    Sayaka Tsuji

    2017-07-01

    Full Text Available Ribosome composition, consisting of rRNA and ribosomal proteins, is highly conserved among a broad range of organisms. However, biochemical studies focusing on ribosomal subunit exchangeability between organisms remain limited. In this study, we show that chimeric ribosomes, composed of Escherichia coli and Bacillus subtilis or E. coli and Geobacillus stearothermophilus subunits, are active for β-galactosidase translation in a highly purified E. coli translation system. Activities of the chimeric ribosomes showed only a modest decrease when using E. coli 30 S subunits, indicating functional conservation of the 50 S subunit between these bacterial species.

  16. Role of the beta subunit of casein kinase-2 on the stability and specificity of the recombinant reconstituted holoenzyme

    DEFF Research Database (Denmark)

    Meggio, F; Boldyreff, B; Marin, O

    1992-01-01

    Recombinant human alpha subunit from casein kinase-2 (CK-2) was subjected, either alone or in combination with recombinant human beta subunit, to high temperature, tryptic digestion and urea treatment. In all three cases, it was shown that the presence of the beta subunit could drastically reduce...... the autophosphorylation site. It is suggested that the acidic domain of the beta subunit, encompassing residues 55-71, plays a role in the interactions between the beta and alpha subunits....

  17. ASIC subunit ratio and differential surface trafficking in the brain.

    Science.gov (United States)

    Wu, Junjun; Xu, Yuanyuan; Jiang, Yu-Qing; Xu, Jiangping; Hu, Youjia; Zha, Xiang-ming

    2016-01-08

    Acid-sensing ion channels (ASICs) are key mediators of acidosis-induced responses in neurons. However, little is known about the relative abundance of different ASIC subunits in the brain. Such data are fundamental for interpreting the relative contribution of ASIC1a homomers and 1a/2 heteromers to acid signaling, and essential for designing therapeutic interventions to target these channels. We used a simple biochemical approach and semi-quantitatively determined the molar ratio of ASIC1a and 2 subunits in mouse brain. Further, we investigated differential surface trafficking of ASIC1a, ASIC2a, and ASIC2b. ASIC1a subunits outnumber the sum of ASIC2a and ASIC2b. There is a region-specific variation in ASIC2a and 2b expression, with cerebellum and striatum expressing predominantly 2b and 2a, respectively. Further, we performed surface biotinylation and found that surface ASIC1a and ASIC2a ratio correlates with their total expression. In contrast, ASIC2b exhibits little surface presence in the brain. This result is consistent with increased co-localization of ASIC2b with an ER marker in 3T3 cells. Our data are the first semi-quantitative determination of relative subunit ratio of various ASICs in the brain. The differential surface trafficking of ASICs suggests that the main functional ASICs in the brain are ASIC1a homomers and 1a/2a heteromers. This finding provides important insights into the relative contribution of various ASIC complexes to acid signaling in neurons.

  18. Potential of Cationic Liposomes as Adjuvants/Delivery Systems for Tuberculosis Subunit Vaccines.

    Science.gov (United States)

    Khademi, Farzad; Taheri, Ramezan Ali; Momtazi-Borojeni, Amir Abbas; Farnoosh, Gholamreza; Johnston, Thomas P; Sahebkar, Amirhossein

    2018-04-27

    The weakness of the BCG vaccine and its highly variable protective efficacy in controlling tuberculosis (TB) in different age groups as well as in different geographic areas has led to intense efforts towards the development and design of novel vaccines. Currently, there are several strategies to develop novel TB vaccines. Each strategy has its advantages and disadvantages. However, the most important of these strategies is the development of subunit vaccines. In recent years, the use of cationic liposome-based vaccines has been considered due to their capacity to elicit strong humoral and cellular immune responses against TB infections. In this review, we aim to evaluate the potential for cationic liposomes to be used as adjuvants/delivery systems for eliciting immune responses against TB subunit vaccines. The present review shows that cationic liposomes have extensive applications either as adjuvants or delivery systems, to promote immune responses against Mycobacterium tuberculosis (Mtb) subunit vaccines. To overcome several limitations of these particles, they were used in combination with other immunostimulatory factors such as TDB, MPL, TDM, and Poly I:C. Cationic liposomes can provide long-term storage of subunit TB vaccines at the injection site, confer strong electrostatic interactions with APCs, potentiate both humoral and cellular (CD4 and CD8) immune responses, and induce a strong memory response by the immune system. Therefore, cationic liposomes can increase the potential of different TB subunit vaccines by serving as adjuvants/delivery systems. These properties suggest the use of cationic liposomes to produce an efficient vaccine against TB infections.

  19. Identification of novel transcriptional regulators of PKA subunits in Saccharomyces cerevisiae by quantitative promoter-reporter screening.

    Science.gov (United States)

    Pautasso, Constanza; Reca, Sol; Chatfield-Reed, Kate; Chua, Gordon; Galello, Fiorella; Portela, Paula; Zaremberg, Vanina; Rossi, Silvia

    2016-08-01

    The cAMP-dependent protein kinase (PKA) signaling is a broad pathway that plays important roles in the transduction of environmental signals triggering precise physiological responses. However, how PKA achieves the cAMP-signal transduction specificity is still in study. The regulation of expression of subunits of PKA should contribute to the signal specificity. Saccharomyces cerevisiae PKA holoenzyme contains two catalytic subunits encoded by TPK1, TPK2 and TPK3 genes, and two regulatory subunits encoded by BCY1 gene. We studied the activity of these gene promoters using a fluorescent reporter synthetic genetic array screen, with the goal of systematically identifying novel regulators of expression of PKA subunits. Gene ontology analysis of the identified modulators showed enrichment not only in the category of transcriptional regulators, but also in less expected categories such as lipid and phosphate metabolism. Inositol, choline and phosphate were identified as novel upstream signals that regulate transcription of PKA subunit genes. The results support the role of transcription regulation of PKA subunits in cAMP specificity signaling. Interestingly, known targets of PKA phosphorylation are associated with the identified pathways opening the possibility of a reciprocal regulation. PKA would be coordinating different metabolic pathways and these processes would in turn regulate expression of the kinase subunits. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas.

    Science.gov (United States)

    Gu, Keyu; Chiam, Huihui; Tian, Dongsheng; Yin, Zhongchao

    2011-04-01

    Acetyl-CoA carboxylase (ACCase) catalyzes the biotin-dependent carboxylation of acetyl-CoA to produce malonyl-CoA, which is the essential first step in the biosynthesis of long-chain fatty acids. ACCase exists as a multi-subunit enzyme in most prokaryotes and the chloroplasts of most plants and algae, while it is present as a multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The heteromeric ACCase of higher plants consists of four subunits: an α-subunit of carboxyltransferase (α-CT, encoded by accA gene), a biotin carboxyl carrier protein (BCCP, encoded by accB gene), a biotin carboxylase (BC, encoded by accC gene) and a β-subunit of carboxyltransferase (β-CT, encoded by accD gene). In this study, we cloned and characterized the genes accA, accB1, accC and accD that encode the subunits of heteromeric ACCase in Jatropha (Jatropha curcas), a potential biofuel plant. The full-length cDNAs of the four subunit genes were isolated from a Jatropha cDNA library and by using 5' RACE, whereas the genomic clones were obtained from a Jatropha BAC library. They encode a 771 amino acid (aa) α-CT, a 286-aa BCCP1, a 537-aa BC and a 494-aa β-CT, respectively. The single-copy accA, accB1 and accC genes are nuclear genes, while the accD gene is located in chloroplast genome. Jatropha α-CT, BCCP1, BC and β-CT show high identity to their homologues in other higher plants at amino acid level and contain all conserved domains for ACCase activity. The accA, accB1, accC and accD genes are temporally and spatially expressed in the leaves and endosperm of Jatropha plants, which are regulated by plant development and environmental factors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Protein kinase A regulatory subunit distribution in medulloblastoma

    International Nuclear Information System (INIS)

    Mucignat-Caretta, Carla; Denaro, Luca; Redaelli, Marco; D'Avella, Domenico; Caretta, Antonio

    2010-01-01

    Previous studies showed a differential distribution of the four regulatory subunits of cAMP-dependent protein kinases inside the brain, that changed in rodent gliomas: therefore, the distribution of these proteins inside the brain can give information on the functional state of the cells. Our goal was to examine human brain tumors to provide evidence for a differential distribution of protein kinase A in different tumors. The distribution of detergent insoluble regulatory (R1 and R2) and catalytic subunits of cAMP dependent kinases was examined in pediatric brain tumors by immunohistochemistry and fluorescent cAMP analogues binding. R2 is organized in large single dots in medulloblastomas, while it has a different appearance in other tumors. Fluorescent cAMP labelling was observed only in medulloblastoma. A different distribution of cAMP dependent protein kinases has been observed in medulloblastoma

  2. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7.

    Science.gov (United States)

    Qiu, Zilong; Jiang, Rongrong

    2017-01-01

    Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae , which finally led to improvement in yeast ethanol tolerance and production.

  3. Incorporation of 14CO2 and 15NH4 into amino acids of the two subunits of fraction 1 protein in spinach leaves

    International Nuclear Information System (INIS)

    Sano, Chiaki; Ito, Osamu; Yoneyama, Tadakatsu; Kumazawa, Kikuo

    1978-01-01

    14 Co 2 and 15 NH 4 were applied to spinach leaf discs, and the incorporation of 14 C and 15 N into the constituent amino acids of subunits in Fraction 1 protein was traced. The solution containing NaH 14 CO 3 and ( 15 NH 4 ) 2 SO 4 was vacuum-infiltrated into leaf discs, which were then incubated under light condition for 8 hr. The leaf discs were immediately frozen with liquid nitrogen after the incubation. The Fraction 1 protein was isolated and purified according to Kawashima's method, and separated into two subunits by his method. These subunits were hydrolyzed, and the hydrolyzates were analyzed by amino acid analyzer. The determination of 14 C activity and 15 N content in each amino acid was performed as previously described. Glycine and aspartic acid showed the highest 14 C specific activity among free amino acids. The distribution pattern of 14 C in bound amino acids almost reflected the distribution in free amino acids, though the 14 C specific activity in the former was lower than that in the latter. There was some difference in the 14 C specific activity of large and small subunits. The 15 N content of glutamine was the highest among free amino acids. This result coincides with the previous conclusion that when ammonium was applied to the free cells separated from spinach leaves, it was initially incorporated into glutamine in the sequence of its assimilation. Glutamic acid and serine showed the highest 15 N content among bound amino acids. (Kobatake, H.)

  4. Reactivation of the chloroplast CF1-ATPase beta subunit by trace amounts of the CF1 alpha subunit suggests a chaperonin-like activity for CF1 alpha.

    Science.gov (United States)

    Avni, A; Avital, S; Gromet-Elhanan, Z

    1991-04-25

    Incubation of tobacco and lettuce thylakoids with 2 M LiCl in the presence of MgATP removes the beta subunit from their CF1-ATPase (CF1 beta) together with varying amounts of the CF1 alpha subunit (CF1 alpha). These 2 M LiCl extracts, as with the one obtained from spinach thylakoids (Avital, S., and Gromet-Elhanan, Z. (1991) J. Biol. Chem. 266, 7067-7072), could form active hybrid ATPases when reconstituted into inactive beta-less Rhodospirillum rubrum chromatophores. Pure CF1 beta fractions that have been isolated from these extracts could not form such active hybrids by themselves, but could do so when supplemented with trace amounts (less than 5%) of CF1 alpha. A mitochondrial F1-ATPase alpha subunit was recently reported to be a heat-shock protein, having two amino acid sequences that show a highly conserved identity with sequences found in molecular chaperones (Luis, A. M., Alconada, A., and Cuezva, J. M. (1990) J. Biol. Chem. 265, 7713-7716). These sequences are also conserved in CF1 alpha isolated from various plants, but not in F1 beta subunits. The above described reactivation of CF1 beta by trace amounts of CF1 alpha could thus be due to a chaperonin-like function of CF1 alpha, which involves the correct, active folding of isolated pure CF1 beta.

  5. [Three regions of Rpb10 mini-subunit of nuclear RNA polymerases are strictly conserved in all eukaryotes].

    Science.gov (United States)

    Shpakovskiĭ, G V; Lebedenko, E N

    1996-12-01

    The rpb10+ cDNA from the fission yeast Schizosaccharomyces pombe was cloned using two independent approaches (PCR and genetic suppression). The cloned cDNA encoded the Rpb10 subunit common for all three RNA polymerases. Comparison of the deduced amino acid sequence of the Sz. pombe Rbp10 subunit (71 amino acid residues) with those of the homologous subunits of RNA polymerases I, II, and III from Saccharomyces cerevisiae and Home sapiens revealed that heptapeptides RCFT/SCGK (residues 6-12), RYCCRRM (residues 43-49), and HVDLIEK (residues 53-59) were evolutionarily the most conserved structural motifs of these subunits. It is shown that the Rbp10 subunit from Sz. pombe can substitute its homolog (ABC10 beta) in the baker's yeast S. cerevisiae.

  6. Characterisation by nuclear magnetic resonance of the β catalytic subunit of the chloroplastic coupling factor

    International Nuclear Information System (INIS)

    Andre, Francois

    1986-09-01

    This academic work addressed the use of nuclear magnetic resonance (NMR) for the structural and dynamic study of the catalytic sub-unit of the extrinsic section of a membrane complex, the chloroplastic H+-ATPase. This work included the development of a protocol of preparation and quantitative purification of β subunits isolated from the CF1 for the elaboration of a concentrated sample for NMR, and then the study of the β subunit by using proton NMR

  7. GABAA receptor subunit gene expression in human prefrontal cortex: comparison of schizophrenics and controls

    Science.gov (United States)

    Akbarian, S.; Huntsman, M. M.; Kim, J. J.; Tafazzoli, A.; Potkin, S. G.; Bunney, W. E. Jr; Jones, E. G.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The prefrontal cortex of schizophrenics is hypoactive and displays changes related to inhibitory, GABAergic neurons, and GABAergic synapses. These changes include decreased levels of glutamic acid decarboxylase (GAD), the enzyme for GABA synthesis, upregulation of muscimol binding, and downregulation of benzodiazepine binding to GABAA receptors. Studies in the visual cortex of nonhuman primates have demonstrated that gene expression for GAD and for several GABAA receptor subunit polypeptides is under control of neuronal activity, raising the possibility that similar mechanisms in the hypoactive prefrontal cortex of schizophrenics may explain the abnormalities in GAD and in GABAA receptor regulation. In the present study, which is the first of its type on human cerebral cortex, levels of mRNAs for six GABAA receptor subunits (alpha 1, alpha 2, alpha 5, beta 1, beta 2, gamma 2) and their laminar expression patterns were analyzed in the prefrontal cortex of schizophrenics and matched controls, using in situ hybridization histochemistry and densitometry. Three types of laminar expression pattern were observed: mRNAs for the alpha 1, beta 2, and gamma 2 subunits, which are the predominant receptor subunits expressed in the mature cortex, were expressed at comparatively high levels by cells of all six cortical layers, but most intensely by cells in lower layer III and layer IV. mRNAs for the alpha 2, alpha 5, and beta 1 subunits were expressed at lower levels; alpha 2 and beta 1 were expressed predominantly by cells in layers II, III, and IV; alpha 5 was expressed predominantly in layers IV, V, and VI. There were no significant changes in overall mRNA levels for any of the receptor subunits in the prefrontal cortex of schizophrenics, and the laminar expression pattern of all six receptor subunit mRNAs did not differ between schizophrenics and controls. Because gene expression for GABAA receptor subunits is not consistently altered in the prefrontal cortex of

  8. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii

    KAUST Repository

    Salunke, Rahul

    2018-05-14

    The mitochondrial F-type ATP synthase, a multi-subunit nanomotor, is critical for maintaining cellular ATP levels. In Toxoplasma gondii and other apicomplexan parasites, many subunit components, necessary for proper assembly and functioning of this enzyme, appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomer (~600 kDa) and dimer (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits, a, b and d, can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex will facilitate the development of novel anti-parasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.

  9. Highly diverged novel subunit composition of apicomplexan F-type ATP synthase identified from Toxoplasma gondii

    KAUST Repository

    Salunke, Rahul; Mourier, Tobias; Banerjee, Manidipa; Pain, Arnab; Shanmugam, Dhanasekaran

    2018-01-01

    The mitochondrial F-type ATP synthase, a multi-subunit nanomotor, is critical for maintaining cellular ATP levels. In Toxoplasma gondii and other apicomplexan parasites, many subunit components, necessary for proper assembly and functioning of this enzyme, appear to be missing. Here, we report the identification of 20 novel subunits of T. gondii F-type ATP synthase from mass spectrometry analysis of partially purified monomer (~600 kDa) and dimer (>1 MDa) forms of the enzyme. Despite extreme sequence diversification, key FO subunits, a, b and d, can be identified from conserved structural features. Orthologs for these proteins are restricted to apicomplexan, chromerid and dinoflagellate species. Interestingly, their absence in ciliates indicates a major diversion, with respect to subunit composition of this enzyme, within the alveolate clade. Discovery of these highly diversified novel components of the apicomplexan F-type ATP synthase complex will facilitate the development of novel anti-parasitic agents. Structural and functional characterization of this unusual enzyme complex will advance our fundamental understanding of energy metabolism in apicomplexan species.

  10. The N-terminus of RPA large subunit and its spatial position are important for the 5′->3′ resection of DNA double-strand breaks

    Science.gov (United States)

    Tammaro, Margaret; Liao, Shuren; McCane, Jill; Yan, Hong

    2015-01-01

    The first step of homology-dependent repair of DNA double-strand breaks (DSBs) is the resection of the 5′ strand to generate 3′ ss-DNA. Of the two major nucleases responsible for resection, EXO1 has intrinsic 5′->3′ directionality, but DNA2 does not. DNA2 acts with RecQ helicases such as the Werner syndrome protein (WRN) and the heterotrimeric eukaryotic ss-DNA binding protein RPA. We have found that the N-terminus of the RPA large subunit (RPA1N) interacts with both WRN and DNA2 and is essential for stimulating WRN's 3′->5′ helicase activity and DNA2's 5′->3′ ss-DNA exonuclease activity. A mutant RPA complex that lacks RPA1N is unable to support resection in Xenopus egg extracts and human cells. Furthermore, relocating RPA1N to the middle subunit but not to the small subunit causes severe defects in stimulating DNA2 and WRN and in supporting resection. Together, these findings suggest that RPA1N and its spatial position are critical for restricting the directionality of the WRN-DNA2 resection pathway. PMID:26227969

  11. The N-terminus of RPA large subunit and its spatial position are important for the 5'->3' resection of DNA double-strand breaks.

    Science.gov (United States)

    Tammaro, Margaret; Liao, Shuren; McCane, Jill; Yan, Hong

    2015-10-15

    The first step of homology-dependent repair of DNA double-strand breaks (DSBs) is the resection of the 5' strand to generate 3' ss-DNA. Of the two major nucleases responsible for resection, EXO1 has intrinsic 5'->3' directionality, but DNA2 does not. DNA2 acts with RecQ helicases such as the Werner syndrome protein (WRN) and the heterotrimeric eukaryotic ss-DNA binding protein RPA. We have found that the N-terminus of the RPA large subunit (RPA1N) interacts with both WRN and DNA2 and is essential for stimulating WRN's 3'->5' helicase activity and DNA2's 5'->3' ss-DNA exonuclease activity. A mutant RPA complex that lacks RPA1N is unable to support resection in Xenopus egg extracts and human cells. Furthermore, relocating RPA1N to the middle subunit but not to the small subunit causes severe defects in stimulating DNA2 and WRN and in supporting resection. Together, these findings suggest that RPA1N and its spatial position are critical for restricting the directionality of the WRN-DNA2 resection pathway. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Molecular investigations of BK(Ca) channels and the modulatory beta-subunits in porcine basilar and middle cerebral arteries

    DEFF Research Database (Denmark)

    Johansson, Helle Wulf; Hay-Schmidt, Anders; Poulsen, Asser Nyander

    2009-01-01

    arteries using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR. Western blotting was used to detect immunoreactivity for the porcine BK(Ca) channel alpha-subunit and beta-subunit proteins. The BK(Ca) channel alpha-subunit RNA and protein distribution patterns were......Large conductance calcium-activated potassium (BK(Ca)) channels are fundamental in the regulation of cerebral vascular basal tone. We investigated the expression of the mRNA transcripts for the BK(Ca) channel and its modulatory beta-subunits (beta1-beta4) in porcine basilar and middle cerebral...... visualized using in situ hybridization and immunofluorescence studies, respectively. The study verified that the BK(Ca) channel alpha-subunit is located to smooth muscle cells of porcine basilar and middle cerebral arteries. The mRNA transcript for beta1-, beta2- and beta4-subunit were shown by RT...

  13. Small Town Energy Program (STEP) Final Report revised

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Charles (Chuck) T.

    2014-01-02

    University Park, Maryland (“UP”) is a small town of 2,540 residents, 919 homes, 2 churches, 1 school, 1 town hall, and 1 breakthrough community energy efficiency initiative: the Small Town Energy Program (“STEP”). STEP was developed with a mission to “create a model community energy transformation program that serves as a roadmap for other small towns across the U.S.” STEP first launched in January 2011 in UP and expanded in July 2012 to the neighboring communities of Hyattsville, Riverdale Park, and College Heights Estates, MD. STEP, which concluded in July 2013, was generously supported by a grant from the U.S. Department of Energy (DOE). The STEP model was designed for replication in other resource-constrained small towns similar to University Park - a sector largely neglected to date in federal and state energy efficiency programs. STEP provided a full suite of activities for replication, including: energy audits and retrofits for residential buildings, financial incentives, a community-based social marketing backbone and local community delivery partners. STEP also included the highly innovative use of an “Energy Coach” who worked one-on-one with clients throughout the program. Please see www.smalltownenergy.org for more information. In less than three years, STEP achieved the following results in University Park: • 30% of community households participated voluntarily in STEP; • 25% of homes received a Home Performance with ENERGY STAR assessment; • 16% of households made energy efficiency improvements to their home; • 64% of households proceeded with an upgrade after their assessment; • 9 Full Time Equivalent jobs were created or retained, and 39 contractors worked on STEP over the course of the project. Estimated Energy Savings - Program Totals kWh Electricity 204,407 Therms Natural Gas 24,800 Gallons of Oil 2,581 Total Estimated MMBTU Saved (Source Energy) 5,474 Total Estimated Annual Energy Cost Savings $61,343 STEP clients who

  14. Nicotinic acetylcholine receptor: subunit structure, functional binding sites, and ion transport properties

    International Nuclear Information System (INIS)

    Raftery, M.A.; Dunn, S.M.J.; Conti-Tronconi, B.M.; Middlemas, D.S.; Crawford, R.D.

    1983-01-01

    The structure of the nicotinic acetylcholine receptor has been highly conserved during animal evolution, and in all the species and tissues studied so far, including mammals, it is a pseudosymmetric, pentameric complex of related subunits with very similar physical properties. All subunits of these nicotinic receptors were derived from a common ancestral gene, probably by way of gene duplications occurring very early in animal evolution. 45 refs., 8 figs., 2 tabs

  15. Expression and Trafficking of the γ Subunit of Na,K-ATPase in Hypertonically Challenged IMCD3 Cells

    International Nuclear Information System (INIS)

    Pihakaski-Maunsbach, Kaarina; Nonaka, Shoichi; Maunsbach, Arvid B.

    2008-01-01

    The γ subunit (FXYD2) of Na,K-ATPase is an important regulator of the sodium pump. In this investigation we have analysed the trafficking of γ to the plasma membrane in cultures of inner medullary collecting duct cells (IMCD3) following acute hypertonic challenge and brefeldin A (BFA) treatment. Following hypertonic challenging for 24 hr immunofluorescence labeling revealed initial co-localization of the γ subunit and 58K Golgi protein in the cytoplasm, but no co-localization of α1 and Golgi protein. Exposure of the challenged cells to BFA prevented the subsequent incorporation of γ into the basolateral plasma membrane. The γ subunit instead remained in cytoplasmic vesicles while cell proliferation and cell viability decreased simultaneously. Following removal of BFA from the hypertonic medium the IMCD3 cells recovered with distinct expression of γ in the basolateral membrane. The α1 subunit was only marginally influenced by BFA. The results demonstrate that the γ subunit trafficks to the plasma membrane via the Golgi apparatus, despite the absence of a signal sequence. The results also suggest that the γ and α subunits do not traffic together to the plasma membrane, and that the γ and α subunit have different turnover rates during these experimental conditions

  16. Subunit vaccine candidates against Aeromonas salmonicida in rainbow trout Oncorhynchus mykiss

    DEFF Research Database (Denmark)

    Marana, Moonika Haahr; Jørgensen, Louise von Gersdorff; Skov, Jakob

    2017-01-01

    rainbow trout (Oncorhynchus mykiss, Walbaum) aquaculture furunculosis outbreaks still occur. In this study we tested the efficacy of experimental subunit vaccines against A. salmonicida infection in rainbow trout. We utilized in silico screening of the proteome of A. salmonicida subsp. salmonicida strain...... A449 and identified potential protective protein antigens that were tested by in vivo challenge trial. A total of 14 proteins were recombinantly expressed in Escherichia coli and prepared in 3 different subunit vaccine combinations to immunize 3 groups of rainbow trout by intraperitoneal (i...

  17. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture.

    Science.gov (United States)

    Aspinall, Tanya V; Gordon, James M B; Bennett, Hayley J; Karahalios, Panagiotis; Bukowski, John-Paul; Walker, Scott C; Engelke, David R; Avis, Johanna M

    2007-01-01

    Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.

  18. Genetic ablation of the GluK4 kainate receptor subunit causes anxiolytic and antidepressant-like behavior in mice.

    Science.gov (United States)

    Catches, Justin S; Xu, Jian; Contractor, Anis

    2012-03-17

    There is a clear link between dysregulation of glutamatergic signaling and mood disorders. Genetic variants in the glutamate receptor gene GRIK4, which encodes the kainate receptor subunit GluK4, alter the susceptibility for depression, bipolar disorder and schizophrenia. Here we demonstrate that Grik4(-/-) mice have reduced anxiety and an antidepressant-like phenotype. In the elevated zero-maze, a test for anxiety and risk taking behavior, Grik4(-/-) mice spent significantly more time exploring the open areas of the maze. In anxiogenic tests of marble-burying and novelty-induced suppression of feeding, anxiety-like behavior was consistently reduced in knockout animals. In the forced swim test, a test of learned helplessness that is used to determine depression-like behavior, knockout mice demonstrated significantly less immobility suggesting that Grik4 ablation has an antidepressant-like effect. Finally, in the sucrose preference test, a test for anhedonia in rodents, Grik4(-/-) mice demonstrated increased sucrose preference. Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs are known to modulate synaptic plasticity. We tested whether Grik4 ablation had effects on mossy fiber (MF) plasticity and found there to be a significant impairment in LTP likely through a loss of KAR modulation of excitability of the presynaptic MF axons. These studies demonstrate a clear anxiolytic and antidepressant phenotype associated with ablation of Grik4 and a parallel disruption in hippocampal plasticity, providing support for the importance of this receptor subunit in mood disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Sub-unit Specific Regulation of Type-A GABAergic Receptors during Post-Natal Development of the Auditory Cortex

    Directory of Open Access Journals (Sweden)

    Liisa A. Tremere

    2011-01-01

    Full Text Available The GABA-A receptor has been strongly implicated in the organization and function of cortical sensory circuits in the adult mammal. In the present work, changes in the expression patterns of select GABA-A subunits were examined as a function of development. The RNA expression profiles for three subunit types were studied, α1, β2/3 and δ at four developmental time points, (p0, p15, p30 and p90. The o1, β2/3 subunits were present at birth and following a modest increase early in life; mRNA expression for these subunits were found at stable levels throughout life. The expression pattern for the δ subunit showed the most dramatic changes in the number of positive cells as a function of age. In early life, p0 through p15 expression of mRNA for the δ subunit was quite low but increased in later life, p30 and p90. Together these data suggest that much of the potential for inhibitory connectivity is laid down in the pre and early post-natal periods.

  20. Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone.

    Science.gov (United States)

    Ismaya, Wangsa T; Rozeboom, Henriëtte J; Weijn, Amrah; Mes, Jurriaan J; Fusetti, Fabrizia; Wichers, Harry J; Dijkstra, Bauke W

    2011-06-21

    Tyrosinase catalyzes the conversion of phenolic compounds into their quinone derivatives, which are precursors for the formation of melanin, a ubiquitous pigment in living organisms. Because of its importance for browning reactions in the food industry, the tyrosinase from the mushroom Agaricus bisporus has been investigated in depth. In previous studies the tyrosinase enzyme complex was shown to be a H(2)L(2) tetramer, but no clues were obtained of the identities of the subunits, their mode of association, and the 3D structure of the complex. Here we unravel this tetramer at the molecular level. Its 2.3 Å resolution crystal structure is the first structure of the full fungal tyrosinase complex. The complex comprises two H subunits of ∼392 residues and two L subunits of ∼150 residues. The H subunit originates from the ppo3 gene and has a fold similar to other tyrosinases, but it is ∼100 residues larger. The L subunit appeared to be the product of orf239342 and has a lectin-like fold. The H subunit contains a binuclear copper-binding site in the deoxy-state, in which three histidine residues coordinate each copper ion. The side chains of these histidines have their orientation fixed by hydrogen bonds or, in the case of His85, by a thioether bridge with the side chain of Cys83. The specific tyrosinase inhibitor tropolone forms a pre-Michaelis complex with the enzyme. It binds near the binuclear copper site without directly coordinating the copper ions. The function of the ORF239342 subunits is not known. Carbohydrate binding sites identified in other lectins are not conserved in ORF239342, and the subunits are over 25 Å away from the active site, making a role in activity unlikely. The structures explain how calcium ions stabilize the tetrameric state of the enzyme.

  1. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits.

    Science.gov (United States)

    Wang, Yaqiong; Ma, Hong

    2015-09-01

    Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  2. Enhancing chemosensitivity to gemcitabine via RNA interference targeting the catalytic subunits of protein kinase CK2 in human pancreatic cancer cells

    International Nuclear Information System (INIS)

    Kreutzer, Jan N; Ruzzene, Maria; Guerra, Barbara

    2010-01-01

    Pancreatic cancer is a complex genetic disorder that is characterized by rapid progression, invasiveness, resistance to treatment and high molecular heterogeneity. Various agents have been used in clinical trials showing only modest improvements with respect to gemcitabine-based chemotherapy, which continues to be the standard first-line treatment for this disease. However, owing to the overwhelming molecular alterations that have been reported in pancreatic cancer, there is increasing focus on targeting molecular pathways and networks, rather than individual genes or gene-products with a combination of novel chemotherapeutic agents. Cells were transfected with small interfering RNAs (siRNAs) targeting the individual CK2 subunits. The CK2 protein expression levels were determined and the effect of its down-regulation on chemosensitization of pancreatic cancer cells was investigated. The present study examined the impact on cell death following depletion of the individual protein kinase CK2 catalytic subunits alone or in combination with gemcitabine and the molecular mechanisms by which this effect is achieved. Depletion of the CK2α or -α' subunits in combination with gemcitabine resulted in marked apoptotic and necrotic cell death in PANC-1 cells. We show that the mechanism of cell death is associated with deregulation of distinct survival signaling pathways. Cellular depletion of CK2α leads to phosphorylation and activation of MKK4/JNK while down-regulation of CK2α' exerts major effects on the PI3K/AKT pathway. Results reported here show that the two catalytic subunits of CK2 contribute differently to enhance gemcitabine-induced cell death, the reduced level of CK2α' being the most effective and that simultaneous reduction in the expression of CK2 and other survival factors might be an effective therapeutic strategy for enhancing the sensitivity of human pancreatic cancer towards chemotherapeutic agents

  3. Rapid PCR-mediated synthesis of competitor molecules for accurate quantification of beta(2) GABA(A) receptor subunit mRNA.

    Science.gov (United States)

    Vela, J; Vitorica, J; Ruano, D

    2001-12-01

    We describe a fast and easy method for the synthesis of competitor molecules based on non-specific conditions of PCR. RT-competitive PCR is a sensitive technique that allows quantification of very low quantities of mRNA molecules in small tissue samples. This technique is based on the competition established between the native and standard templates for nucleotides, primers or other factors during PCR. Thus, the most critical parameter is the use of good internal standards to generate a standard curve from which the amount of native sequences can be properly estimated. At the present time different types of internal standards and methods for their synthesis have been described. Normally, most of these methods are time-consuming and require the use of different sets of primers, different rounds of PCR or specific modifications, such as site-directed mutagenesis, that need subsequent analysis of the PCR products. Using our method, we obtained in a single round of PCR and with the same primer pair, competitor molecules that were successfully used in RT-competitive PCR experiments. The principal advantage of this method is high versatility and economy. Theoretically it is possible to synthesize a specific competitor molecule for each primer pair used. Finally, using this method we have been able to quantify the increase in the expression of the beta(2) GABA(A) receptor subunit mRNA that occurs during rat hippocampus development.

  4. Neonicotinoid Binding, Toxicity and Expression of Nicotinic Acetylcholine Receptor Subunits in the Aphid Acyrthosiphon pisum

    Science.gov (United States)

    Taillebois, Emiliane; Beloula, Abdelhamid; Quinchard, Sophie; Jaubert-Possamai, Stéphanie; Daguin, Antoine; Servent, Denis; Tagu, Denis

    2014-01-01

    Neonicotinoid insecticides act on nicotinic acetylcholine receptor and are particularly effective against sucking pests. They are widely used in crops protection to fight against aphids, which cause severe damage. In the present study we evaluated the susceptibility of the pea aphid Acyrthosiphon pisum to the commonly used neonicotinoid insecticides imidacloprid (IMI), thiamethoxam (TMX) and clothianidin (CLT). Binding studies on aphid membrane preparations revealed the existence of high and low-affinity binding sites for [3H]-IMI (Kd of 0.16±0.04 nM and 41.7±5.9 nM) and for the nicotinic antagonist [125I]-α-bungarotoxin (Kd of 0.008±0.002 nM and 1.135±0.213 nM). Competitive binding experiments demonstrated that TMX displayed a higher affinity than IMI for [125I]-α-bungarotoxin binding sites while CLT affinity was similar for both [125I]-α-bungarotoxin and [3H]-IMI binding sites. Interestingly, toxicological studies revealed that at 48 h, IMI (LC50 = 0.038 µg/ml) and TMX (LC50 = 0.034 µg/ml) were more toxic than CLT (LC50 = 0.118 µg/ml). The effect of TMX could be associated to its metabolite CLT as demonstrated by HPLC/MS analysis. In addition, we found that aphid larvae treated either with IMI, TMX or CLT showed a strong variation of nAChR subunit expression. Using semi-quantitative PCR experiments, we detected for all insecticides an increase of Apisumα10 and Apisumβ1 expressions levels, whereas Apisumβ2 expression decreased. Moreover, some other receptor subunits seemed to be differently regulated according to the insecticide used. Finally, we also demonstrated that nAChR subunit expression differed during pea aphid development. Altogether these results highlight species specificity that should be taken into account in pest management strategies. PMID:24801634

  5. Characterization of enzymatic properties of human ribonucleotide reductase holoenzyme reconstituted in vitro from hRRM1, hRRM2, and p53R2 subunits.

    Science.gov (United States)

    Qiu, Weihua; Zhou, Bingsen; Darwish, Dana; Shao, Jimin; Yen, Yun

    2006-02-10

    Ribonucleotide reductase (RR) is a highly regulated enzyme in the deoxyribonucleotide synthesis pathway. RR is responsible for the de novo conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates, which are essential for DNA synthesis and repair. Besides two subunits, hRRM1 and hRRM2, p53R2 is a newly identified member of RR family that is induced by ultraviolet light in a p53-dependent manner. To understand the molecular interaction of RR subunits, we employed a eukaryotic expression system to express and purify all three subunits. After in vitro reconstitution, the results of [(3)H]CDP reduction assay showed that both eukaryotic recombinant hRRM2 and p53R2 proteins could interact with hRRM1 to form functional RR holoenzyme. The reconstituted RR activity was time-dependent and the reaction rate reached the plateau phase after 40min incubation. No matter the concentration, RR holoenzyme reconstituted from p53R2 and hRRM1 could only achieve about 40-75% kinetic activity of that from hRRM2 and hRRM1. The synthetic C-terminal heptapeptide competition assays confirmed that hRRM2 and p53R2 share the same binding site on hRRM1, but the binding site on hRRM1 demonstrated higher affinity for hRRM2 than for p53R2. In allosteric regulation assay, the effect of activation or inhibition of hRRM1 with ATP or dATP suggested that these effectors could regulate RR activity independent of different RR small subunits. Taken together, the eukaryotic expression system RR holoenzyme will provide a very useful tool to understand the molecular mechanisms of RR activity and the interactions of its subunits.

  6. Steady-state levels of G-protein beta-subunit expression are regulated by treatment of cells with bacterial toxins

    International Nuclear Information System (INIS)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1987-01-01

    Cultures of 3T3-L1 cells were incubated with either 10 ng/ml cholera toxin or 10 ng/ml pertussis toxin from 4 days prior to the initiation of differentiation and throughout the subsequent incubation. Toxin concentrations were sufficient to completely prevent the labelling of alpha-subunits with [ 32 P]NAD + and pertussis toxin and to prevent by more than 90% the labelling with [ 32 P]NAD + and cholera toxin in membranes prepared from these cells. Neither toxin prevented the differentiation to the adipocyte phenotype. Neither toxin prevented the increases in the relative amounts of G-proteins which occur upon differentiation. Both toxins dramatically decreased the amount of beta-subunits. As measured by quantitative immunoblotting with antisera specific for both the 35 kDa and 36 kDa beta-subunits, levels of beta-subunit were decreased by more than 50% of steady-state level of control cells. Thus, bacterial toxins which modifies G-protein alpha-subunits are capable of modulating the levels of beta-subunits in vivo. The basis for the regulation of G-protein subunit expression by bacterial toxins is under study

  7. Partial agonists and subunit selectivity at NMDA receptors

    DEFF Research Database (Denmark)

    Risgaard, Rune; Hansen, Kasper Bø; Clausen, Rasmus Prætorius

    2010-01-01

    Subunit-selective ligands for glutamate receptors remains an area of interest as glutamate is the major excitatory neurotransmitter in the brain and involved in a number of diseased states in the central nervous system (CNS). Few subtype-selective ligands are known, especially among the N...

  8. G-protein signaling leverages subunit-dependent membrane affinity to differentially control βγ translocation to intracellular membranes.

    Science.gov (United States)

    O'Neill, Patrick R; Karunarathne, W K Ajith; Kalyanaraman, Vani; Silvius, John R; Gautam, N

    2012-12-18

    Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates βγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein βγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the βγ-subunits for membranes. The differential kinetics of the βγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control βγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.

  9. Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the beta subunit.

    Science.gov (United States)

    Campbell, Zachary T; Weichsel, Andrzej; Montfort, William R; Baldwin, Thomas O

    2009-07-07

    Bacterial luciferase from Vibrio harveyi is a heterodimer composed of a catalytic alpha subunit and a homologous but noncatalytic beta subunit. Despite decades of enzymological investigation, structural evidence defining the active center has been elusive. We report here the crystal structure of V. harveyi luciferase bound to flavin mononucleotide (FMN) at 2.3 A. The isoalloxazine ring is coordinated by an unusual cis-Ala-Ala peptide bond. The reactive sulfhydryl group of Cys106 projects toward position C-4a, the site of flavin oxygenation. This structure also provides the first data specifying the conformations of a mobile loop that is crystallographically disordered in both prior crystal structures [(1995) Biochemistry 34, 6581-6586; (1996) J. Biol. Chem. 271, 21956 21968]. This loop appears to be a boundary between solvent and the active center. Within this portion of the protein, a single contact was observed between Phe272 of the alpha subunit, not seen in the previous structures, and Tyr151 of the beta subunit. Substitutions at position 151 on the beta subunit caused reductions in activity and total quantum yield. Several of these mutants were found to have decreased affinity for reduced flavin mononucleotide (FMNH(2)). These findings partially address the long-standing question of how the beta subunit stabilizes the active conformation of the alpha subunit, thereby participating in the catalytic mechanism.

  10. Identification of a conserved archaeal RNA polymerase subunit contacted by the basal transcription factor TFB.

    Science.gov (United States)

    Magill, C P; Jackson, S P; Bell, S D

    2001-12-14

    Archaea possess two general transcription factors that are required to recruit RNA polymerase (RNAP) to promoters in vitro. These are TBP, the TATA-box-binding protein and TFB, the archaeal homologue of TFIIB. Thus, the archaeal and eucaryal transcription machineries are fundamentally related. In both RNAP II and archaeal transcription systems, direct contacts between TFB/TFIIB and the RNAP have been demonstrated to mediate recruitment of the polymerase to the promoter. However the subunit(s) directly contacted by these factors has not been identified. Using systematic yeast two-hybrid and biochemical analyses we have identified an interaction between the N-terminal domain of TFB and an evolutionarily conserved subunit of the RNA polymerase, RpoK. Intriguingly, homologues of RpoK are found in all three nuclear RNA polymerases (Rpb6) and also in the bacterial RNA polymerase (omega-subunit).

  11. Increased GABA(A receptor ε-subunit expression on ventral respiratory column neurons protects breathing during pregnancy.

    Directory of Open Access Journals (Sweden)

    Keith B Hengen

    Full Text Available GABAergic signaling is essential for proper respiratory function. Potentiation of this signaling with allosteric modulators such as anesthetics, barbiturates, and neurosteroids can lead to respiratory arrest. Paradoxically, pregnant animals continue to breathe normally despite nearly 100-fold increases in circulating neurosteroids. ε subunit-containing GABA(ARs are insensitive to positive allosteric modulation, thus we hypothesized that pregnant rats increase ε subunit-containing GABA(AR expression on brainstem neurons of the ventral respiratory column (VRC. In vivo, pregnancy rendered respiratory motor output insensitive to otherwise lethal doses of pentobarbital, a barbiturate previously used to categorize the ε subunit. Using electrode array recordings in vitro, we demonstrated that putative respiratory neurons of the preBötzinger Complex (preBötC were also rendered insensitive to the effects of pentobarbital during pregnancy, but unit activity in the VRC was rapidly inhibited by the GABA(AR agonist, muscimol. VRC unit activity from virgin and post-partum females was potently inhibited by both pentobarbital and muscimol. Brainstem ε subunit mRNA and protein levels were increased in pregnant rats, and GABA(AR ε subunit expression co-localized with a marker of rhythm generating neurons (neurokinin 1 receptors in the preBötC. These data support the hypothesis that pregnancy renders respiratory motor output and respiratory neuron activity insensitive to barbiturates, most likely via increased ε subunit-containing GABA(AR expression on respiratory rhythm-generating neurons. Increased ε subunit expression may be critical to preserve respiratory function (and life despite increased neurosteroid levels during pregnancy.

  12. The final story on the ALA3/ALIS1 complex

    DEFF Research Database (Denmark)

    Lopez Marques, Rosa Laura

    The final story on the ALA3/ALIS1 complex. Lisbeth R. Poulsena, Rosa L. López-Marquésa, Alexander Schultza, Stephen C. McDowellb, Juha Okkeric, Dirk Lichtc, Thomas Pomorskic,  Jeffrey F. Harperb, and Michael G. Palmgrena,1 aCentre for Membrane Pumps in Cells and Disease - PUMPKIN, Danish National......).              Through a database search we have previously identified five Cdc50p/Lem3p homologues in Arabidopsis (ALIS1-5 for ALA Interacting Subunit)..We investigated the capacity of ALA3, alone and in combination with expressed ALIS proteins, to functionally complement a battery of yeast mutants carrying deletions...... in endogenous P4-ATPases. Our results indicated that ALIS1 functions as a true ß-subunit for the Arabidopsis putative flippase ALA3, being required for ATP-dependent phospholipid transport and for genetic complementation of the yeast P4-ATPase gene Drs2, which is involved in vesicle budding from the late Golgi...

  13. Sequential loading of cohesin subunits during the first meiotic prophase of grasshoppers.

    Directory of Open Access Journals (Sweden)

    Ana M Valdeolmillos

    2007-02-01

    Full Text Available The cohesin complexes play a key role in chromosome segregation during both mitosis and meiosis. They establish sister chromatid cohesion between duplicating DNA molecules during S-phase, but they also have an important role during postreplicative double-strand break repair in mitosis, as well as during recombination between homologous chromosomes in meiosis. An additional function in meiosis is related to the sister kinetochore cohesion, so they can be pulled by microtubules to the same pole at anaphase I. Data about the dynamics of cohesin subunits during meiosis are scarce; therefore, it is of great interest to characterize how the formation of the cohesin complexes is achieved in order to understand the roles of the different subunits within them. We have investigated the spatio-temporal distribution of three different cohesin subunits in prophase I grasshopper spermatocytes. We found that structural maintenance of chromosome protein 3 (SMC3 appears as early as preleptotene, and its localization resembles the location of the unsynapsed axial elements, whereas radiation-sensitive mutant 21 (RAD21 (sister chromatid cohesion protein 1, SCC1 and stromal antigen protein 1 (SA1 (sister chromatid cohesion protein 3, SCC3 are not visualized until zygotene, since they are located in the synapsed regions of the bivalents. During pachytene, the distribution of the three cohesin subunits is very similar and all appear along the trajectories of the lateral elements of the autosomal synaptonemal complexes. However, whereas SMC3 also appears over the single and unsynapsed X chromosome, RAD21 and SA1 do not. We conclude that the loading of SMC3 and the non-SMC subunits, RAD21 and SA1, occurs in different steps throughout prophase I grasshopper meiosis. These results strongly suggest the participation of SMC3 in the initial cohesin axis formation as early as preleptotene, thus contributing to sister chromatid cohesion, with a later association of both RAD21

  14. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    Energy Technology Data Exchange (ETDEWEB)

    Machaalani, R., E-mail: rita.machaalani@sydney.edu.au [Department of Medicine, The University of Sydney, NSW 2006 (Australia); Bosch Institute, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Ghazavi, E. [Bosch Institute, The University of Sydney, NSW 2006 (Australia); School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006 (Australia); Hinton, T. [School of Medical Sciences (Pharmacology), The University of Sydney, NSW 2006 (Australia); Waters, K.A. [Department of Medicine, The University of Sydney, NSW 2006 (Australia); The Children' s Hospital at Westmead, NSW 2145 (Australia); Hennessy, A. [School of Medicine, University of Western Sydney, NSW 2751 (Australia); Heart Research Institute, 7 Eliza St Newtown, NSW 2042 (Australia)

    2014-05-01

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and compared mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta.

  15. Cigarette smoking during pregnancy regulates the expression of specific nicotinic acetylcholine receptor (nAChR) subunits in the human placenta

    International Nuclear Information System (INIS)

    Machaalani, R.; Ghazavi, E.; Hinton, T.; Waters, K.A.; Hennessy, A.

    2014-01-01

    Smoking during pregnancy is associated with low birth weight, premature delivery, and neonatal morbidity and mortality. Nicotine, a major pathogenic compound of cigarette smoke, binds to the nicotinic acetylcholine receptors (nAChRs). A total of 16 nAChR subunits have been identified in mammals (9 α, 4 β, and 1 δ, γ and ε subunits). The effect of cigarette smoking on the expression of these subunits in the placenta has not yet been determined, thus constituting the aim of this study. Using RT-qPCR and western blotting, this study investigated all 16 mammalian nAChR subunits in the normal healthy human placenta, and compared mRNA and protein expressions in the placentas from smokers (n = 8) to controls (n = 8). Our data show that all 16 subunit mRNAs are expressed in the normal, non-diseased human placenta and that the expression of α2, α3, α4, α9, β2 and β4 subunits is greater than the other subunits. For mRNA, cigarette smoke exposure was associated with increased expression of the α9 subunit, and decreased expression of the δ subunit. At the protein level, expression of both α9 and δ was increased. Thus, cigarette smoking in pregnancy is sufficient to regulate nAChR subunits in the placenta, specifically α9 and δ subunits, and could contribute to the adverse effects of vasoconstriction and decreased re-epithelialisation (α9), and increased calcification and apoptosis (δ), seen in the placentas of smoking women. - Highlights: • All 16 mammalian nAChR subunits are expressed in the human placenta. • Cigarette smoking increases α9 mRNA and protein in the placenta. • Cigarette smoking decreases δ mRNA but increases δ protein in the placenta

  16. The light subunit of system bo,+ is fully functional in the absence of the heavy subunit

    OpenAIRE

    Reig, Núria; Chillarón, Josep; Bartoccioni, Paola; Fernández, Esperanza; Bendahan, Annie; Zorzano, Antonio; Kanner, Baruch; Palacín, Manuel; Bertran, Joan

    2002-01-01

    The heteromeric amino acid transporters are composed of a type II glycoprotein and a non-glycosylated polytopic membrane protein. System bo,+ exchanges dibasic for neutral amino acids. It is composed of rBAT and bo,+AT, the latter being the polytopic membrane subunit. Mutations in either of them cause malfunction of the system, leading to cystinuria. bo,+AT-reconstituted systems from HeLa or MDCK cells catalysed transport of arginine that was totally dependent on the presence of one of the bo...

  17. Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Wulf, Helle; Hay-Schmidt, Anders

    2009-01-01

    We investigated the expression of splice variants and beta-subunits of the BK channel (big conductance Ca(2+)-activated K(+) channel, Slo1, MaxiK, K(Ca)1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An alpha-subunit splice variant X1(+24) was found expresse...

  18. Regulated appearance of NMDA receptor subunits and channel functions during in vitro neuronal differentiation

    NARCIS (Netherlands)

    Jelitai, Márta; Schlett, Katalin; Varju, Patrícia; Eisel, Ulrich; Madarász, Emília

    The schedule of NMDA receptor subunit expression and the appearance of functional NMDA-gated ion channels were investigated during the retinoic acid (RA) induced neuronal differentiation of NE-4C, a p53-deficient mouse neuroectodermal progenitor cell line. NR2A. NR2B, and NR2D subunit transcripts

  19. Bioenergetic Consequences of FLAG Tag Addition to the C-Terminus of Subunit 8 of Yeast Saccharomyces cerevisiae Mitochondrial ATP Synthase

    Directory of Open Access Journals (Sweden)

    I MADE ARTIKA

    2010-09-01

    Full Text Available The yeast mitochondrial F1F0-ATP synthase is a multisubunit complex that contains at least 17 different subunits. Subunit 8 of yeast mitochondrial ATP synthase is a hydrophobic protein of 48 amino acids encoded by the mitochondrial ATP8 gene. Subunit 8 has three distinct domains; an N-terminal domain, a central hydrophobic domain and a C-terminal domain. FLAG tag addition to subunit 8 protein potentially facilitate elucidation of its topology, structure, and function. It has been shown that following incorporation of FLAG tag to its C-terminus, subunit 8 still assemble into functional ATP synthase complex. In order to analyze bioenergetic consequences of the FLAG tag addition, a yeast strain expressing FLAG tagged-subunit 8 was subjected to cellular respiration assays. Results obtained showed that addition of FLAG tag to the C-terminus of subunit 8 does not impair its proper functioning. The FLAG tag system, therefore, can be employed to study subunit 8′s detailed structure, topology, and function.

  20. Progress in the development of subunit vaccines for gastrointestinal nematodes of ruminants.

    Science.gov (United States)

    Matthews, J B; Geldhof, P; Tzelos, T; Claerebout, E

    2016-12-01

    The global increase in anthelmintic resistant nematodes of ruminants, together with consumer concerns about chemicals in food, necessitates the development of alternative methods of control for these pathogens. Subunit recombinant vaccines are ideally placed to fill this gap. Indeed, they are probably the only valid option for the long-term control of ruminant parasitic nematodes given the increasing ubiquity of multidrug resistance in a range of worm species across the world. The development of a subunit multicellular parasite vaccine to the point of practical application would be a groundbreaking step in the control of these important endemic infections of livestock. This review summarizes the current status of subunit vaccine development for a number of important gastrointestinal nematodes of cattle and sheep, with a focus on the limitations and problems encountered thus far, and suggestions as to how these hurdles might be overcome. © 2016 John Wiley & Sons Ltd.

  1. Conservation of the TRAPPII-specific subunits of a Ypt/Rab exchanger complex

    Directory of Open Access Journals (Sweden)

    Yoo Eunice

    2007-02-01

    Full Text Available Abstract Background Ypt/Rab GTPases and their GEF activators regulate intra-cellular trafficking in all eukaryotic cells. In S. cerivisiae, the modular TRAPP complex acts as a GEF for the Golgi gatekeepers: Ypt1 and the functional pair Ypt31/32. While TRAPPI, which acts in early Golgi, is conserved from fungi to animals, not much is known about TRAPPII, which acts in late Golgi and consists of TRAPPI plus three additional subunits. Results Here, we show a phylogenetic analysis of the three TRAPPII-specific subunits. One copy of each of the two essential subunits, Trs120 and Trs130, is present in almost every fully sequenced eukaryotic genome. Moreover, the primary, as well as the predicted secondary, structure of the Trs120- and Trs130-related sequences are conserved from fungi to animals. The mammalian orthologs of Trs120 and Trs130, NIBP and TMEM1, respectively, are candidates for human disorders. Currently, NIBP is implicated in signaling, and TMEM1 is suggested to have trans-membrane domains (TMDs and to function as a membrane channel. However, we show here that the yeast Trs130 does not function as a trans-membrane protein, and the human TMEM1 does not contain putative TMDs. The non-essential subunit, Trs65, is conserved only among many fungi and some unicellular eukaryotes. Multiple alignment analysis of each TRAPPII-specific subunit revealed conserved domains that include highly conserved amino acids. Conclusion We suggest that the function of both NIBP and TMEM1 in the regulation of intra-cellular trafficking is conserved from yeast to man. The conserved domains and amino acids discovered here can be used for functional analysis that should help to resolve the differences in the assigned functions of these proteins in fungi and animals.

  2. Radiation inactivation of multimeric enzymes: application to subunit interactions of adenylate cyclase

    International Nuclear Information System (INIS)

    Verkman, A.S.; Skorecki, K.L.; Ausiello, D.A.

    1986-01-01

    Radiation inactivation has been applied extensively to determine the molecular weight of soluble enzyme and receptor systems from the slope of a linear ln (activity) vs. dose curve. Complex nonlinear inactivation curves are predicted for multimeric enzyme systems, composed of distinct subunits in equilibrium with multimeric complexes. For the system A1 + A2----A1A2, with an active A1A2 complex (associative model), the ln (activity) vs. dose curve is linear for high dissociation constant, K. If a monomer, A1, has all the enzyme activity (dissociative model), the ln (activity) vs. dose curve has an activation hump at low radiation dose if the inactive subunit, A2, has a higher molecular weight than A1 and has upward concavity when A2 is smaller than A1. In general, a radiation inactivation model for a multistep mechanism for enzyme activation fulfills the characteristics of an associative or dissociative model if the reaction step forming active enzyme is an associative or dissociative reaction. Target theory gives the molecular weight of the active enzyme subunit or complex from the limiting slope of the ln (activity) vs. dose curve at high radiation dose. If energy transfer occurs among subunits in the multimer, the ln (activity) vs. dose curve is linear for a single active component and is concave upward for two or more active components. The use of radiation inactivation as a method to determine enzyme size and multimeric subunit assembly is discussed with specific application to the hormone-sensitive adenylate cyclase system. It is shown that the complex inactivation curves presented in the accompanying paper can be used select the best mechanism out of a series of seven proposed mechanisms for the activation of adenylate cyclase by hormone

  3. Functional divergence of chloroplast Cpn60α subunits during Arabidopsis embryo development.

    Directory of Open Access Journals (Sweden)

    Xiaolong Ke

    2017-09-01

    Full Text Available Chaperonins are a class of molecular chaperones that assist in the folding and assembly of a wide range of substrates. In plants, chloroplast chaperonins are composed of two different types of subunits, Cpn60α and Cpn60β, and duplication of Cpn60α and Cpn60β genes occurs in a high proportion of plants. However, the importance of multiple Cpn60α and Cpn60β genes in plants is poorly understood. In this study, we found that loss-of-function of CPNA2 (AtCpn60α2, a gene encoding the minor Cpn60α subunit in Arabidopsis thaliana, resulted in arrested embryo development at the globular stage, whereas the other AtCpn60α gene encoding the dominant Cpn60α subunit, CPNA1 (AtCpn60α1, mainly affected embryonic cotyledon development at the torpedo stage and thereafter. Further studies demonstrated that CPNA2 can form a functional chaperonin with CPNB2 (AtCpn60β2 and CPNB3 (AtCpn60β3, while the functional partners of CPNA1 are CPNB1 (AtCpn60β1 and CPNB2. We also revealed that the functional chaperonin containing CPNA2 could assist the folding of a specific substrate, KASI (β-ketoacyl-[acyl carrier protein] synthase I, and that the KASI protein level was remarkably reduced due to loss-of-function of CPNA2. Furthermore, the reduction in the KASI protein level was shown to be the possible cause for the arrest of cpna2 embryos. Our findings indicate that the two Cpn60α subunits in Arabidopsis play different roles during embryo development through forming distinct chaperonins with specific AtCpn60β to assist the folding of particular substrates, thus providing novel insights into functional divergence of Cpn60α subunits in plants.

  4. Extricating Manual and Non-Manual Features for Subunit Level Medical Sign Modelling in Automatic Sign Language Classification and Recognition.

    Science.gov (United States)

    R, Elakkiya; K, Selvamani

    2017-09-22

    Subunit segmenting and modelling in medical sign language is one of the important studies in linguistic-oriented and vision-based Sign Language Recognition (SLR). Many efforts were made in the precedent to focus the functional subunits from the view of linguistic syllables but the problem is implementing such subunit extraction using syllables is not feasible in real-world computer vision techniques. And also, the present recognition systems are designed in such a way that it can detect the signer dependent actions under restricted and laboratory conditions. This research paper aims at solving these two important issues (1) Subunit extraction and (2) Signer independent action on visual sign language recognition. Subunit extraction involved in the sequential and parallel breakdown of sign gestures without any prior knowledge on syllables and number of subunits. A novel Bayesian Parallel Hidden Markov Model (BPaHMM) is introduced for subunit extraction to combine the features of manual and non-manual parameters to yield better results in classification and recognition of signs. Signer independent action aims in using a single web camera for different signer behaviour patterns and for cross-signer validation. Experimental results have proved that the proposed signer independent subunit level modelling for sign language classification and recognition has shown improvement and variations when compared with other existing works.

  5. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo

    Directory of Open Access Journals (Sweden)

    Michael B Tropak

    2016-01-01

    Full Text Available Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA. Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP, and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM, CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels.

  6. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo

    Science.gov (United States)

    Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don

    2016-01-01

    Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels. PMID:26966698

  7. Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site.

    Science.gov (United States)

    Fuchs, Gabriele; Petrov, Alexey N; Marceau, Caleb D; Popov, Lauren M; Chen, Jin; O'Leary, Seán E; Wang, Richard; Carette, Jan E; Sarnow, Peter; Puglisi, Joseph D

    2015-01-13

    Translation initiation can occur by multiple pathways. To delineate these pathways by single-molecule methods, fluorescently labeled ribosomal subunits are required. Here, we labeled human 40S ribosomal subunits with a fluorescent SNAP-tag at ribosomal protein eS25 (RPS25). The resulting ribosomal subunits could be specifically labeled in living cells and in vitro. Using single-molecule Förster resonance energy transfer (FRET) between RPS25 and domain II of the hepatitis C virus (HCV) internal ribosome entry site (IRES), we measured the rates of 40S subunit arrival to the HCV IRES. Our data support a single-step model of HCV IRES recruitment to 40S subunits, irreversible on the initiation time scale. We furthermore demonstrated that after binding, the 40S:HCV IRES complex is conformationally dynamic, undergoing slow large-scale rearrangements. Addition of translation extracts suppresses these fluctuations, funneling the complex into a single conformation on the 80S assembly pathway. These findings show that 40S:HCV IRES complex formation is accompanied by dynamic conformational rearrangements that may be modulated by initiation factors.

  8. Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Directory of Open Access Journals (Sweden)

    Cooper John A

    2000-07-01

    Full Text Available Abstract Background Capping protein (CP, a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. Results We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. Conclusions The CPβ gene (Cappb1 mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene.

  9. Tuning of the Na,K-ATPase by the beta subunit

    DEFF Research Database (Denmark)

    Hilbers, Florian; Kopec, Wojciech; Isaksen, Toke Jost

    2016-01-01

    The vital gradients of Na(+) and K(+) across the plasma membrane of animal cells are maintained by the Na,K-ATPase, an αβ enzyme complex, whose α subunit carries out the ion transport and ATP hydrolysis. The specific roles of the β subunit isoforms are less clear, though β2 is essential for motor...... to the cerebellar Na(+) and K(+) gradients....... physiology in mammals. Here, we show that compared to β1 and β3, β2 stabilizes the Na(+)-occluded E1P state relative to the outward-open E2P state, and that the effect is mediated by its transmembrane domain. Molecular dynamics simulations further demonstrate that the tilt angle of the β transmembrane helix...

  10. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.

    Science.gov (United States)

    Wu, Xiaorong; Tuzun, Erdem; Saini, Shamsher S; Wang, Jun; Li, Jing; Aguilera-Aguirre, Leopoldo; Huda, Ruksana; Christadoss, Premkumar

    2015-12-01

    Extraocular muscles (EOM) are preferentially involved in myasthenia gravis (MG) and acetylcholine receptor (AChR) antibody positive MG patients may occasionally present with isolated ocular symptoms. Although experimental autoimmune myasthenia gravis (EAMG) induced by whole AChR immunization closely mimics clinical and immunopathological aspects of MG, EOM are usually not affected. We have previously developed an EAMG model, which imitates EOM symptoms of MG by immunization of human leukocyte antigen (HLA) transgenic mice with α or γ-subunits of human AChR (H-AChR). To investigate the significance of the ϵ-subunit in ocular MG, we immunized HLA-DR3 and HLA-DQ8 transgenic mice with recombinant H-AChR ϵ-subunit expressed in Escherichia coli. HLA-DR3 transgenic mice showed significantly higher clinical ocular and generalized MG severity scores and lower grip strength values than HLA-DQ8 mice. H-AChR ϵ-subunit-immunized HLA-DR3 transgenic mice had higher serum anti-AChR antibody (IgG, IgG1, IgG2b, IgG2c and IgM) levels, neuromuscular junction IgG and complement deposit percentages than ϵ-subunit-immunized HLA-DQ8 transgenic mice. Control mice immunized with E. coli extract or complete Freund adjuvant (CFA) did not show clinical and immunopathological features of ocular and generalized EAMG. Lymph node cells of ϵ-subunit-immunized HLA-DR3 mice showed significantly higher proliferative responses than those of ϵ-subunit-immunized HLA-DQ8 mice, crude E. coli extract-immunized and CFA-immunized transgenic mice. Our results indicate that the human AChR ϵ-subunit is capable of inducing myasthenic muscle weakness. Diversity of the autoimmune responses displayed by mice expressing different HLA class II molecules suggests that the interplay between HLA class II alleles and AChR subunits might have a profound impact on the clinical course of MG. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  11. AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA.

    Science.gov (United States)

    Götz, Frank; Roske, Yvette; Schulz, Maike Svenja; Autenrieth, Karolin; Bertinetti, Daniela; Faelber, Katja; Zühlke, Kerstin; Kreuchwig, Annika; Kennedy, Eileen J; Krause, Gerd; Daumke, Oliver; Herberg, Friedrich W; Heinemann, Udo; Klussmann, Enno

    2016-07-01

    A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18β bound to the D/D domain of the regulatory RIIα subunits of PKA. We identified three hydrophilic anchor points in AKAP18β outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  12. Torque generation through the random movement of an asymmetric rotor: A potential rotational mechanism of the γ subunit of F1-ATPase

    Science.gov (United States)

    Chou, Y. C.; Hsiao, Yi-Feng; Hwang, Gwo-Jen; To, Kiwing

    2016-02-01

    The rotation of the γ subunit of F1-ATPase is stochastic, processive, unidirectional, reversible through an external torque, and stepwise with a slow rotation. We propose a mechanism that can explain these properties of the rotary molecular motor, and that can determine the direction of rotation. The asymmetric structures of the γ subunit, both at the tip of the shaft (C and N termini) and at the part (ɛ subunit) protruding from the α3β3 subunits, are critical. The torque required for stochastic rotation is generated from the impulsive reactive force due to the random collisions between the γ subunit and the quasihexagonal α3β3 subunits. The rotation is the result of the random motion of the confined asymmetric γ subunit. The steps originate from the chemical reactions of the γ subunit and physical interaction between the γ subunit and the flexible protrusions of the α3β3 subunits. An external torque as well as a configurational modification in the γ subunit (the central rotor) can reverse the rotational direction. We demonstrate the applicability of the mechanism to a macroscopic simulation system, which has the essential ingredients of the F1-ATPase structure, by reproducing the dynamic properties of the rotation.

  13. The small GTPase Arl8b regulates assembly of the mammalian HOPS complex on lysosomes

    Science.gov (United States)

    Khatter, Divya; Raina, Vivek B.; Dwivedi, Devashish; Sindhwani, Aastha; Bahl, Surbhi; Sharma, Mahak

    2015-01-01

    The homotypic fusion and protein sorting (HOPS) complex is a multi-subunit complex conserved from yeast to mammals that regulates late endosome and lysosome fusion. However, little is known about how the HOPS complex is recruited to lysosomes in mammalian cells. Here, we report that the small GTPase Arl8b, but not Rab7 (also known as RAB7A), is essential for membrane localization of the human (h)Vps41 subunit of the HOPS complex. Assembly of the core HOPS subunits to Arl8b- and hVps41-positive lysosomes is guided by their subunit–subunit interactions. RNA interference (RNAi)-mediated depletion of hVps41 resulted in the impaired degradation of EGFR that was rescued upon expression of wild-type but not an Arl8b-binding-defective mutant of hVps41, suggesting that Arl8b-dependent lysosomal localization of hVps41 is required for its endocytic function. Furthermore, we have also identified that the Arl8b effector SKIP (also known as PLEKHM2) interacts with and recruits HOPS subunits to Arl8b and kinesin-positive peripheral lysosomes. Accordingly, RNAi-mediated depletion of SKIP impaired lysosomal trafficking and degradation of EGFR. These findings reveal that Arl8b regulates the association of the human HOPS complex with lysosomal membranes, which is crucial for the function of this tethering complex in endocytic degradation. PMID:25908847

  14. Permeability transition in human mitochondria persists in the absence of peripheral stalk subunits of ATP synthase.

    Science.gov (United States)

    He, Jiuya; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-08-22

    The opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membranes of mitochondria can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane and ATP synthesis, and cell death. Pore opening can be inhibited by cyclosporin A mediated via cyclophilin D. It has been proposed that the pore is associated with the dimeric ATP synthase and the oligomycin sensitivity conferral protein (OSCP), a component of the enzyme's peripheral stalk, provides the site at which cyclophilin D interacts. Subunit b contributes a central α-helical structure to the peripheral stalk, extending from near the top of the enzyme's catalytic domain and crossing the membrane domain of the enzyme via two α-helices. We investigated the possible involvement of the subunit b and the OSCP in the PTP by generating clonal cells, HAP1-Δb and HAP1-ΔOSCP, lacking the membrane domain of subunit b or the OSCP, respectively, in which the corresponding genes, ATP5F1 and ATP5O , had been disrupted. Both cell lines preserve the characteristic properties of the PTP; therefore, the membrane domain of subunit b does not contribute to the PTP, and the OSCP does not provide the site of interaction with cyclophilin D. The membrane subunits ATP6, ATP8, and subunit c have been eliminated previously from possible participation in the PTP; thus, the only subunits of ATP synthase that could participate in pore formation are e, f, g, diabetes-associated protein in insulin-sensitive tissues (DAPIT), and the 6.8-kDa proteolipid.

  15. Differential expression of AMPA-type glutamate receptor subunits during development of the chick optic tectum

    Directory of Open Access Journals (Sweden)

    Batista S.S.

    2002-01-01

    Full Text Available Glutamate receptors have been often associated with developmental processes. We used immunohistochemical techniques to evaluate the expression of the AMPA-type glutamate receptor (GluR subunits in the chick optic tectum (TeO. Chick embryos from the 5th through the 20th embryonic day (E5-E20 and one-day-old (P1 chicks were used. The three types of immunoreactivity evaluated (GluR1, GluR2/3, and GluR4 had different temporal and spatial expression patterns in the several layers of the TeO. The GluR1 subunit first appeared as moderate staining on E7 and then increased on E9. The mature GluR1 pattern included intense staining only in layer 5 of the TeO. The GluR2/3 subunits presented low expression on E5, which became intense on E7. The staining for GluR2/3 changed to very intense on E14 in tectal layer 13. Staining of layer 13 neurons is the most prominent feature of GluR immunoreactivity in the adult TeO. The GluR4 subunit generally presented the lowest expression starting on E7, which was similar to the adult pattern. Some instances of transient expression of GluR subunits were observed in specific cell populations from E9 through E20. These results demonstrate a differential expression of the GluR subunits in the embryonic TeO, adding information about their possible functions in the developmental processes of the visual system.

  16. Lung disease phenotypes caused by overexpression of combinations of α-, β-, and γ-subunits of the epithelial sodium channel in mouse airways.

    Science.gov (United States)

    Livraghi-Butrico, Alessandra; Wilkinson, Kristen J; Volmer, Allison S; Gilmore, Rodney C; Rogers, Troy D; Caldwell, Ray A; Burns, Kimberlie A; Esther, Charles R; Mall, Marcus A; Boucher, Richard C; O'Neal, Wanda K; Grubb, Barbara R

    2018-02-01

    The epithelial Na + channel (ENaC) regulates airway surface hydration. In mouse airways, ENaC is composed of three subunits, α, β, and γ, which are differentially expressed (α > β > γ). Airway-targeted overexpression of the β subunit results in Na + hyperabsorption, causing airway surface dehydration, hyperconcentrated mucus with delayed clearance, lung inflammation, and perinatal mortality. Notably, mice overexpressing the α- or γ-subunit do not exhibit airway Na + hyperabsorption or lung pathology. To test whether overexpression of multiple ENaC subunits produced Na + transport and disease severity exceeding that of βENaC-Tg mice, we generated double (αβ, αγ, βγ) and triple (αβγ) transgenic mice and characterized their lung phenotypes. Double αγENaC-Tg mice were indistinguishable from WT littermates. In contrast, double βγENaC-Tg mice exhibited airway Na + absorption greater than that of βENaC-Tg mice, which was paralleled by worse survival, decreased mucociliary clearance, and more severe lung pathology. Double αβENaC-Tg mice exhibited Na + transport rates comparable to those of βENaC-Tg littermates. However, αβENaC-Tg mice had poorer survival and developed severe parenchymal consolidation. In situ hybridization (RNAscope) analysis revealed both alveolar and airway αENaC-Tg overexpression. Triple αβγENaC-Tg mice were born in Mendelian proportions but died within the first day of life, and the small sample size prevented analyses of cause(s) of death. Cumulatively, these results indicate that overexpression of βENaC is rate limiting for generation of pathological airway surface dehydration. Notably, airway co-overexpression of β- and γENaC had additive effects on Na + transport and disease severity, suggesting dose dependency of these two variables.

  17. Sequence analysis of dolphin ferritin H and L subunits and possible iron-dependent translational control of dolphin ferritin gene

    Directory of Open Access Journals (Sweden)

    Sasaki Yukako

    2008-10-01

    Full Text Available Abstract Background Iron-storage protein, ferritin plays a central role in iron metabolism. Ferritin has dual function to store iron and segregate iron for protection of iron-catalyzed reactive oxygen species. Tissue ferritin is composed of two kinds of subunits (H: heavy chain or heart-type subunit; L: light chain or liver-type subunit. Ferritin gene expression is controlled at translational level in iron-dependent manner or at transcriptional level in iron-independent manner. However, sequencing analysis of marine mammalian ferritin subunits has not yet been performed fully. The purpose of this study is to reveal cDNA-derived amino acid sequences of cetacean ferritin H and L subunits, and demonstrate the possibility of expression of these subunits, especially H subunit, by iron. Methods Sequence analyses of cetacean ferritin H and L subunits were performed by direct sequencing of polymerase chain reaction (PCR fragments from cDNAs generated via reverse transcription-PCR of leukocyte total RNA prepared from blood samples of six different dolphin species (Pseudorca crassidens, Lagenorhynchus obliquidens, Grampus griseus, Globicephala macrorhynchus, Tursiops truncatus, and Delphinapterus leucas. The putative iron-responsive element sequence in the 5'-untranslated region of the six different dolphin species was revealed by direct sequencing of PCR fragments obtained using leukocyte genomic DNA. Results Dolphin H and L subunits consist of 182 and 174 amino acids, respectively, and amino acid sequence identities of ferritin subunits among these dolphins are highly conserved (H: 99–100%, (99→98 ; L: 98–100%. The conserved 28 bp IRE sequence was located -144 bp upstream from the initiation codon in the six different dolphin species. Conclusion These results indicate that six different dolphin species have conserved ferritin sequences, and suggest that these genes are iron-dependently expressed.

  18. Molecular cloning and analysis of zebrafish voltage-gated sodium channel beta subunit genes: implications for the evolution of electrical signaling in vertebrates

    Directory of Open Access Journals (Sweden)

    Zhong Tao P

    2007-07-01

    Full Text Available Abstract Background Action potential generation in excitable cells such as myocytes and neurons critically depends on voltage-gated sodium channels. In mammals, sodium channels exist as macromolecular complexes that include a pore-forming alpha subunit and 1 or more modulatory beta subunits. Although alpha subunit genes have been cloned from diverse metazoans including flies, jellyfish, and humans, beta subunits have not previously been identified in any non-mammalian species. To gain further insight into the evolution of electrical signaling in vertebrates, we investigated beta subunit genes in the teleost Danio rerio (zebrafish. Results We identified and cloned single zebrafish gene homologs for beta1-beta3 (zbeta1-zbeta3 and duplicate genes for beta4 (zbeta4.1, zbeta4.2. Sodium channel beta subunit loci are similarly organized in fish and mammalian genomes. Unlike their mammalian counterparts, zbeta1 and zbeta2 subunit genes display extensive alternative splicing. Zebrafish beta subunit genes and their splice variants are differentially-expressed in excitable tissues, indicating tissue-specific regulation of zbeta1-4 expression and splicing. Co-expression of the genes encoding zbeta1 and the zebrafish sodium channel alpha subunit Nav1.5 in Chinese Hamster Ovary cells increased sodium current and altered channel gating, demonstrating functional interactions between zebrafish alpha and beta subunits. Analysis of the synteny and phylogeny of mammalian, teleost, amphibian, and avian beta subunit and related genes indicated that all extant vertebrate beta subunits are orthologous, that beta2/beta4 and beta1/beta3 share common ancestry, and that beta subunits are closely related to other proteins sharing the V-type immunoglobulin domain structure. Vertebrate sodium channel beta subunit genes were not identified in the genomes of invertebrate chordates and are unrelated to known subunits of the para sodium channel in Drosophila. Conclusion The

  19. Effect of adjuvants on responses to skin immunization by microneedles coated with influenza subunit vaccine.

    Directory of Open Access Journals (Sweden)

    William C Weldon

    Full Text Available Recent studies have demonstrated the effectiveness of vaccine delivery to the skin by vaccine-coated microneedles; however there is little information on the effects of adjuvants using this approach for vaccination. Here we investigate the use of TLR ligands as adjuvants with skin-based delivery of influenza subunit vaccine. BALB/c mice received 1 µg of monovalent H1N1 subunit vaccine alone or with 1 µg of imiquimod or poly(I:C individually or in combination via coated microneedle patches inserted into the skin. Poly(I:C adjuvanted subunit influenza vaccine induced similar antigen-specific immune responses compared to vaccine alone when delivered to the skin by microneedles. However, imiquimod-adjuvanted vaccine elicited higher levels of serum IgG2a antibodies and increased hemagglutination inhibition titers compared to vaccine alone, suggesting enhanced induction of functional antibodies. In addition, imiquimod-adjuvanted vaccine induced a robust IFN-γ cellular response. These responses correlated with improved protection compared to influenza subunit vaccine alone, as well as reduced viral replication and production of pro-inflammatory cytokines in the lungs. The finding that microneedle delivery of imiquimod with influenza subunit vaccine induces improved immune responses compared to vaccine alone supports the use of TLR7 ligands as adjuvants for skin-based influenza vaccines.

  20. Analysis of the role of COP9 Signalosome (CSN subunits in K562; the first link between CSN and autophagy

    Directory of Open Access Journals (Sweden)

    Bunce Christopher M

    2009-04-01

    Full Text Available Abstract Background The COP9/signalosome (CSN is a highly conserved eight subunit complex that, by deneddylating cullins in cullin-based E3 ubiquitin ligases, regulates protein degradation. Although studied in model human cell lines such as HeLa, very little is known about the role of the CSN in haemopoietic cells. Results Greater than 95% knockdown of the non-catalytic subunit CSN2 and the deneddylating subunit CSN5 of the CSN was achieved in the human myeloid progenitor cell line K562. CSN2 knockdown led to a reduction of both CSN5 protein and mRNA whilst CSN5 knockdown had little effect on CSN2. Both knockdowns inhibited CSN deneddylase function as demonstrated by accumulation of neddylated Cul1. Furthermore, both knockdowns resulted in the sequential loss of Skp2, Cdc4 and β-TrCP F-box proteins. These proteins were rescued by the proteasome inhibitor MG132, indicating the autocatalytic degradation of F-box proteins upon loss of CSN2 or CSN5. Interestingly, altered F-box protein gene expression was also observed in CSN2 and CSN5 knockdowns, suggesting a potential role of the CSN in regulating F-box protein transcription. Loss of either CSN subunit dramatically reduced cell growth but resulted in distinct patterns of cell death. CSN5 knockdown caused mitotic defects, G2/M arrest and apoptotic cell death. CSN2 knockdown resulted in non-apoptotic cell death associated with accumulation of both the autophagy marker LC3-II and autophagic vacuoles. Treatment of vector control K562 cells with the autophagy inhibitors 3-methyladenine and bafilomycin A1 recapitulated the growth kinetics, vacuolar morphology and LC3-II accumulation of CSN2 knockdown cells indicating that the cellular phenotype of CSN2 cells arises from autophagy inhibition. Finally, loss of CSN2 was associated with the formation of a CSN5 containing subcomplex. Conclusion We conclude that CSN2 is required for CSN integrity and the stability of individual CSN subunits, and postulate

  1. Isolation of amino acid activating subunit-pantetheine protein complexes: Their role in chain elongation in tyrocidine synthesis

    Science.gov (United States)

    Lee, Sung G.; Lipmann, Fritz

    1977-01-01

    Dissociation of the multienzymes of tyrocidine synthesis by prolonged incubation of crude extracts of Bacillus brevis (Dubos strain, ATCC 8185) has yielded, on Sephadex G-100 chromatography, two fractions of amino acid activating subunits, a larger one of 70,000 daltons and a smaller one of 90,000 daltons; the latter was a complex consisting of the 70,000 dalton subunit and the pantetheine-carrying protein of about 20,000 daltons. When it dissociated, the intermediate enzyme, which activates three amino acids, contained two-thirds of the subunits in the 70,000 dalton and one-third in the 90,000 dalton fraction; the heavy enzyme, which activates six amino acids, contained five-sixths of the subunits in the former fraction and one-sixth in the latter. Both fractions showed ATP-PPi exchange with all amino acids that are activated by the respective polyenzymes. With proline as an example, the 70,000 dalton subunit exhibited a single low-affinity binding site, which should correspond to the peripheral thiol acceptor site, whereas the 90,000 dalton subunit showed both a low-affinity binding site and an additional high-affinity site for proline; the high-affinity site is attributed to the pantetheine present on the pantetheine-carrying protein, and suggests that amino acids are translocated from the peripheral SH to the pantetheine-carrying moiety during chain elongation. This was confirmed by the observation that the 90,000 dalton complex, when incubated with the light enzyme in the presence of phenylalanine and proline, produced DPhe-Pro dipeptide that cyclized into DPhe-Pro diketopiperazine, but the 70,000 dalton activating subunit, when similarly incubated, did not. After subunit dissociation, however, no further elongation occurred after the transfer from phenylalanine to proline. Images PMID:196286

  2. Exercise induced upregulation of glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase modifier subunit gene expression in Thoroughbred horses

    Directory of Open Access Journals (Sweden)

    Jeong-Woong Park

    2017-05-01

    Full Text Available Objective This study was performed to reveal the molecular structure and expression patterns of horse glutamate-cysteine ligase catalytic subunit (GCLC and glutamate-cysteine ligase modifier subunit (GCLM genes whose products form glutamate cysteine ligase, which were identified as differentially expressed genes in the previous study. Methods We performed bioinformatics analyses, and gene expression assay with quantitative polymerase chain reaction (qPCR for horse GCLC and GCLM genes in muscle and blood leukocytes of Thoroughbred horses Results Expression of GCLC showed the same pattern in both blood and muscle tissues after exercise. Expression of GCLC increased in the muscle and blood of Thoroughbreds, suggesting a tissue-specific regulatory mechanism for the expression of GCLC. In addition, expression of the GCLM gene increased after exercise in both the blood and muscle of Thoroughbreds. Conclusion We established the expression patterns of GCLC and GCLM in the skeletal muscle and blood of Thoroughbred horses in response to exercise. Further study is now warranted to uncover the functional importance of these genes in exercise and recovery in racehorses.

  3. Hemocyanin of the molluscan Concholepas concholepas exhibits an unusual heterodecameric array of subunits.

    Science.gov (United States)

    De Ioannes, Pablo; Moltedo, Bruno; Oliva, Harold; Pacheco, Rodrigo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés

    2004-06-18

    We describe here the structure of the hemocyanin from the Chilean gastropod Concholepas concholepas (CCH), emphasizing some attributes that make it interesting among molluscan hemocyanins. CCH exhibits a predominant didecameric structure as revealed by electron microscopy and a size of 8 MDa by gel filtration, and, in contrast with other mollusc hemocyanins, its stabilization does not require additional Ca(2+) and/or Mg(2+) in the medium. Polyacrylamide gel electrophoresis studies, analyses by a MonoQ FPLC column, and Western blots with specific monoclonal antibodies showed that CCH is made by two subunits noncovalently linked, named CCH-A and CCH-B, with molecular masses of 405 and 350 kDa, respectively. Interestingly, one of the subunits undergoes changes within the macromolecule; we demonstrated that CCH-A has an autocleavage site that under reducing conditions is cleaved to yield two polypeptides, CCH-A1 (300 kDa) and CCH-A2 (108 kDa), whereas CCH-B remains unchanged. The CCH-A nick occurs at 4 degrees C, increases at 37 degrees C, and is not inhibited by the addition of protease inhibitors and/or divalent cations. Since the CCH structure is a heterodimer, we investigated whether subunits would be either intermingled, forming heterodecamers, or assembled as two homogeneous decamers. Light scattering and electron microscope studies of the in vitro reassociation of purified CCH subunits demonstrated that the sole addition of Mg(2+) is needed for its reassembly into the native decameric molecule; no homodecamer reorganization was found with either CCH-A or CCH-B subunits alone. Our evidence showed that C. concholepas hemocyanin is an unusual example of heterodecameric organization.

  4. Requirement of Nicotinic Acetylcholine Receptor Subunit β2 in the Maintenance of Spiral Ganglion Neurons during Aging

    Science.gov (United States)

    Bao, Jianxin; Lei, Debin; Du, Yafei; Ohlemiller, Kevin K.; Beaudet, Arthur L.; Role, Lorna W.

    2008-01-01

    Age-related hearing loss (presbycusis) is a major health concern for the elderly. Loss of spiral ganglion neurons (SGNs), the primary sensory relay of the auditory system, is associated consistently with presbycusis. The causative molecular events responsible for age-related loss of SGNs are unknown. Recent reports directly link age-related neuronal loss in cerebral cortex with the loss of high-affinity nicotine acetylcholine receptors (nAChRs). In cochlea, cholinergic synapses are made by olivocochlear efferent fibers on the outer hair cells that express α9 nAChR subunits and on the peripheral projections of SGNs that express α2, α4 –7, and β2–3 nAChR subunits. A significantly decreased expression of the β2 nAChR subunit in SGNs was found specifically in mice susceptible to presbycusis. Furthermore, mice lacking the β2 nAChR subunit (β2−/−), but not mice lacking the α5 nAChR subunit (α5−/−), have dramatic hearing loss and significant reduction in the number of SGNs. Our findings clearly established a requirement for β2 nAChR subunit in the maintenance of SGNs during aging. PMID:15788760

  5. The dnaN gene codes for the beta subunit of DNA polymerase III holoenzyme of escherichia coli.

    Science.gov (United States)

    Burgers, P M; Kornberg, A; Sakakibara, Y

    1981-09-01

    An Escherichia coli mutant, dnaN59, stops DNA synthesis promptly upon a shift to a high temperature; the wild-type dnaN gene carried in a transducing phage encodes a polypeptide of about 41,000 daltons [Sakakibara, Y. & Mizukami, T. (1980) Mol. Gen. Genet. 178, 541-553; Yuasa, S. & Sakakibara, Y. (1980) Mol. Gen. Genet. 180, 267-273]. We now find that the product of dnaN gene is the beta subunit of DNA polymerase III holoenzyme, the principal DNA synthetic multipolypeptide complex in E. coli. The conclusion is based on the following observations: (i) Extracts from dnaN59 cells were defective in phage phi X174 and G4 DNA synthesis after the mutant cells had been exposed to the increased temperature. (ii) The enzymatic defect was overcome by addition of purified beta subunit but not by other subunits of DNA polymerase III holoenzyme or by other replication proteins required for phi X174 DNA synthesis. (iii) Partially purified beta subunit from the dnaN mutant, unlike that from the wild type, was inactive in reconstituting the holoenzyme when mixed with the other purified subunits. (iv) Increased dosage of the dnaN gene provided by a plasmid carrying the gene raised cellular levels of the beta subunit 5- to 6-fold.

  6. Purification and functional reconstitution of a seven-subunit mrp-type na+/h+ antiporter.

    Science.gov (United States)

    Morino, Masato; Suzuki, Toshiharu; Ito, Masahiro; Krulwich, Terry Ann

    2014-01-01

    Mrp antiporters and their homologues in the cation/proton antiporter 3 family of the Membrane Transporter Database are widely distributed in bacteria. They have major roles in supporting cation and cytoplasmic pH homeostasis in many environmental, extremophilic, and pathogenic bacteria. These antiporters require six or seven hydrophobic proteins that form hetero-oligomeric complexes, while most other cation/proton antiporters require only one membrane protein for their activity. The resemblance of three Mrp subunits to membrane-embedded subunits of the NADH:quinone oxidoreductase of respiratory chains and to subunits of several hydrogenases has raised interest in the evolutionary path and commonalities of their proton-translocating domains. In order to move toward a greater mechanistic understanding of these unusual antiporters and to rigorously demonstrate that they function as secondary antiporters, powered by an imposed proton motive force, we established a method for purification and functional reconstitution of the seven-subunit Mrp antiporter from alkaliphilic Bacillus pseudofirmus OF4. Na(+)/H(+) antiporter activity was demonstrated by a fluorescence-based assay with proteoliposomes in which the Mrp complex was coreconstituted with a bacterial FoF1-ATPase. Proton pumping by the ATPase upon addition of ATP generated a proton motive force across the membranes that powered antiporter activity upon subsequent addition of Na(+).

  7. Design, construction and testing of a DC bioeffects test enclosure for small animals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, M J; Preache, M M

    1980-11-01

    This final report describes both the engineering development of a DC bioeffects test enclosure for small laboratory animals, and the biological protocol for the use of such enclosures in the testing of animals to determine possible biological effects of the environment associated with HVDC transmission lines. The test enclosure which has been designed is a modular unit, which will house up to eight rat-sized animals in individual compartments. Multiple test enclosures can be used to test larger numbers of animals. A prototype test enclosure has been fabricated and tested to characterize its electrical performance characteristics. The test enclosure provides a simulation of the dominant environment associated with HVDC transmission lines; namely, a static electric field and an ion current density. A biological experimental design has been developed for assessing the effects of the dominant components of the HVDC transmission line environment.

  8. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli.

    Science.gov (United States)

    Smith, Brian A; Gupta, Neha; Denny, Kevin; Culver, Gloria M

    2018-06-08

    Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Cloning and Expression of Luteinizing Hormone Subunits in Chinese Hamster Ovary Cell Line

    Directory of Open Access Journals (Sweden)

    Zeinab Soleimanifar

    2016-10-01

    Full Text Available Background: Luteinizing hormone (LH was secreted by the stimulating cells of the testes and ovaries in the anterior pituitary gland. The application of this hormone is in the treatment of men and women with infertility and amenorrhea respectively.Materials and Methods: In the present study the alpha and beta subunits of human LH gene were cloned into the pEGFP-N1 expression vector and produced the recombinant LH hormone in Chinese hamster ovary (CHO eukaryotic system.Results: Alpha and beta subunits of LH hormone were cloned between NheI and BamHI cut sites of pEGFP_N1 expression plasmid and confirmed by PCR.  Hormone expression was evaluated in CHO cell line by Western blotting using the specific antibody.Conclusion: Alpha and beta subunits of LH hormone were expressed in CHO cell line perfectly.

  10. Cholinergic cells in the nucleus basalis of mice express the N-methyl-D-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels

    NARCIS (Netherlands)

    De Souza Silva, M. A.; Dolga, Amalia; Pieri, I.; Marchetti, L.; Eisel, U. L. M.; Huston, J. P.; Dere, E.

    2006-01-01

    It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-D-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the

  11. The PP4R1 sub-unit of protein phosphatase PP4 is essential for inhibition of NF-κB by merkel polyomavirus small tumour antigen.

    Science.gov (United States)

    Abdul-Sada, Hussein; Müller, Marietta; Mehta, Rajni; Toth, Rachel; Arthur, J Simon C; Whitehouse, Adrian; Macdonald, Andrew

    2017-04-11

    Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with a high metastatic potential. The majority of MCC cases are caused by the Merkel cell polyomavirus (MCPyV), through expression of the virus-encoded tumour antigens. Whilst mechanisms attributing tumour antigen expression to transformation are being uncovered, little is known of the mechanisms by which MCPyV persists in the host. We previously identified the MCPyV small T antigen (tAg) as a novel inhibitor of nuclear factor kappa B (NF-kB) signalling and a modulator of the host anti-viral response. Here we demonstrate that regulation of NF-kB activation involves a previously undocumented interaction between tAg and regulatory sub-unit 1 of protein phosphatase 4 (PP4R1). Formation of a complex with PP4R1 and PP4c is required to bridge MCPyV tAg to the NEMO adaptor protein, allowing deactivation of the NF-kB pathway. Mutations in MCPyV tAg that fail to interact with components of this complex, or siRNA depletion of PP4R1, prevents tAg-mediated inhibition of NF-kB and pro-inflammatory cytokine production. Comparison of tAg binding partners from other human polyomavirus demonstrates that interactions with NEMO and PP4R1 are unique to MCPyV. Collectively, these data identify PP4R1 as a novel target for virus subversion of the host anti-viral response.

  12. An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin

    Energy Technology Data Exchange (ETDEWEB)

    Karpowich, Nathan K.; Song, Jinmei; Wang, Da-Neng

    2016-06-13

    ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein–substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters.

  13. Interaction of the regulatory subunit of the cAMP-dependent protein kinase with PATZ1 (ZNF278)

    International Nuclear Information System (INIS)

    Yang, Weng-Lang; Ravatn, Roald; Kudoh, Kazuya; Alabanza, Leah; Chin, Khew-Voon

    2010-01-01

    The effects of cAMP in cell are predominantly mediated by the cAMP-dependent protein kinase (PKA), which is composed of two genetically distinct subunits, catalytic (C) and regulatory (R), forming a tetrameric holoenzyme R 2 C 2 . The only known function for the R subunit is that of inhibiting the activity of the C subunit kinase. It has been shown that overexpression of RIα, but not the C subunit kinase, is associated with neoplastic transformation. In addition, it has also been demonstrated that mutation in the RIα, but not the C subunit is associated with increased resistance to the DNA-damaging anticancer drug cisplatin, thus suggesting that the RIα subunit of PKA may have functions independent of the kinase. We show here that the RIα subunit interacts with a BTB/POZ domain zinc-finger transcription factor, PATZ1 (ZNF278), and co-expression with RIα results in its sequestration in the cytoplasm. The cytoplasmic/nuclear translocation is inducible by cAMP. C-terminus deletion abolishes PATZ1 interaction with RIα and results in its localization in the nucleus. PATZ1 transactivates the cMyc promoter and the presence of cAMP and co-expression with RIα modulates its transactivation. Moreover, PATZ1 is aberrantly expressed in cancer. Taken together, our results showed a potentially novel mechanism of cAMP signaling mediated through the interaction of RIα with PATZ1 that is independent of the kinase activity of PKA, and the aberrant expression of PATZ1 in cancer point to its role in cell growth regulation.

  14. High Affinity IgE-Fc Receptor alpha and gamma Subunit Interactions

    International Nuclear Information System (INIS)

    Rashid, A.; Housden, J. E. M.; Sabban, S.; Helm, B.

    2014-01-01

    Objective: To explore the relationships between the subunits (alpha, beta and gamma) of the high affinity IgE receptor (Fc and RI) and its ability to mediate transmembrane signaling. Study Design: Experimental study. Place and Duration of Study: Department of Molecular Biology and Biotechnology, University of Sheffield, UK, from 2008 to 2009. Methodology: The approach employed was to create a chimera (human alpha-gamma-gamma) using the extracellular (EC) domain of the human high affinity IgE receptor. The alpha subunit (huFc and RIalpha) of IgE receptor was spliced onto the rodent gamma TM and cytoplasmic domain (CD). This was transfected into the Rat Basophilic Leukemia cell line in order to assess the possibility of selectively activating cells transfected with this single pass construct for antigen induced mediator release. Results: The RBLs cell lines transfected with the huFc and RIalpha/gamma/gamma cDNA constructs were assessed for the cell surface expression of the huFc and RIalpha subunit and the response to the antigenic stimulus by looking for degranulation and intracellular Ca2+ mobilisation. The results obtained showed the absence of huFc and RIalpha subunit expression on the surface of transfected cells as seen by flowcytometric studies, beta-hexosaminidase assays and intracellular calcium mobilisation studies. Conclusion: In the present study the grounds for non-expression of huFc and RIalpha/gamma/gamma cDNA remains elusive but may be due to the fact that the human-rodent chimeric receptors are assembled differently than the endogenous rodent receptors as seen in study in which COS 7 cells were transfected with human/rat chimeric complexes. (author)

  15. Functional analysis of the glycogen binding subunit CG9238/Gbs-70E of protein phosphatase 1 in Drosophila melanogaster.

    Science.gov (United States)

    Kerekes, Éva; Kókai, Endre; Páldy, Ferenc Sándor; Dombrádi, Viktor

    2014-06-01

    The product of the CG9238 gene that we termed glycogen binding subunit 70E (Gbs-70E) was characterized by biochemical and molecular genetics methods. The interaction between Gbs-70E and all catalytic subunits of protein phosphatase 1 (Pp1-87B, Pp1-9C, Pp1-96A and Pp1-13C) of Drosophila melanogaster was confirmed by pairwise yeast two-hybrid tests, co-immunoprecipitation and pull down experiments. The binding of Gbs-70E to glycogen was demonstrated by sedimentation analysis. With RT-PCR we found that the mRNAs coding for the longer Gbs-70E PB/PC protein were expressed in all developmental stages of the fruit flies while the mRNA for the shorter Gbs-70E PA was restricted to the eggs and the ovaries of the adult females. The development specific expression of the shorter splice variant was not conserved in different Drosophila species. The expression level of the gene was manipulated by P-element insertions and gene deletion to analyze the functions of the gene product. A small or moderate reduction in the gene expression resulted in no significant changes, however, a deletion mutant expressing very low level of the transcript lived shorter and exhibited reduced glycogen content in the imagos. In addition, the gene deletion decreased the fertility of the fruit flies. Our results prove that Gbs-70E functions as the glycogen binding subunit of protein phosphatase 1 that regulates glycogen content and plays a role in the development of eggs in D. melanogaster. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Identification and cloning of a gamma 3 subunit splice variant of the human GABA(A) receptor.

    Science.gov (United States)

    Poulsen, C F; Christjansen, K N; Hastrup, S; Hartvig, L

    2000-05-31

    cDNA sequences encoding two forms of the GABA(A) gamma 3 receptor subunit were cloned from human hippocampus. The nucleotide sequences differ by the absence (gamma 3S) or presence (gamma 3L) of 18 bp located in the presumed intracellular loop between transmembrane region (TM) III and IV. The extra 18 bp in the gamma 3L subunit generates a consensus site for phosphorylation by protein kinase C (PKC). Analysis of human genomic DNA encoding the gamma 3 subunit reveals that the 18 bp insert is contiguous with the upstream proximal exon.

  17. Molecular characterization and phylogenetic relationships among microsporidian isolates infecting silkworm, Bombyx mori using small subunit rRNA (SSU-rRNA) gene sequence analysis.

    Science.gov (United States)

    Nath, B Surendra; Gupta, S K; Bajpai, A K

    2012-12-01

    The life cycle, spore morphology, pathogenicity, tissue specificity, mode of transmission and small subunit rRNA (SSU-rRNA) gene sequence analysis of the five new microsporidian isolates viz., NIWB-11bp, NIWB-12n, NIWB-13md, NIWB-14b and NIWB-15mb identified from the silkworm, Bombyx mori have been studied along with type species, NIK-1s_mys. The life cycle of the microsporidians identified exhibited the sequential developmental cycles that are similar to the general developmental cycle of the genus, Nosema. The spores showed considerable variations in their shape, length and width. The pathogenicity observed was dose-dependent and differed from each of the microsporidian isolates; the NIWB-15mb was found to be more virulent than other isolates. All of the microsporidians were found to infect most of the tissues examined and showed gonadal infection and transovarial transmission in the infected silkworms. SSU-rRNA sequence based phylogenetic tree placed NIWB-14b, NIWB-12n and NIWB-11bp in a separate branch along with other Nosema species and Nosema bombycis; while NIWB-15mb and NIWB-13md together formed another cluster along with other Nosema species. NIK-1s_mys revealed a signature sequence similar to standard type species, N. bombycis, indicating that NIK-1s_mys is similar to N. bombycis. Based on phylogenetic relationships, branch length information based on genetic distance and nucleotide differences, we conclude that the microsporidian isolates identified are distinctly different from the other known species and belonging to the genus, Nosema. This SSU-rRNA gene sequence analysis method is found to be more useful approach in detecting different and closely related microsporidians of this economically important domestic insect.

  18. The acid-labile subunit of the ternary insulin-like growth factor complex in cirrhosis: relation to liver dysfunction

    DEFF Research Database (Denmark)

    Møller, S; Juul, A; Becker, U

    2000-01-01

    BACKGROUND/AIMS: In the circulation, insulin-like growth factor-I (IGF-I) is bound in a trimeric complex of 150 kDa with IGF binding protein-3 (IGFBP-3) and the acid-labile subunit (ALS). Whereas circulating IGF-I and IGFBP-3 are reported to be low in patients with chronic liver failure, the leve...... with significant relations to liver dysfunction and other components of the IGF complex. A small hepatic extraction was found in controls, which suggests extrahepatic production of ALS. Future studies should focus on organ-specific removal of ALS.......BACKGROUND/AIMS: In the circulation, insulin-like growth factor-I (IGF-I) is bound in a trimeric complex of 150 kDa with IGF binding protein-3 (IGFBP-3) and the acid-labile subunit (ALS). Whereas circulating IGF-I and IGFBP-3 are reported to be low in patients with chronic liver failure, the level...... of ALS has not been described in relation to hepatic dysfunction. The aim of the present study was therefore to measure circulating and hepatic venous concentrations of ALS in relation to hepatic function and the IGF axis. METHODS: Twenty-five patients with cirrhosis (Child class A/B/C:5/10/10) and 30...

  19. The epithelial sodium channel γ-subunit is processed proteolytically in human kidney

    DEFF Research Database (Denmark)

    Langkilde, Rikke Zachar; Skjødt, Karsten; Marcussen, Niels

    2015-01-01

    The epithelial sodium channel (ENaC) of the kidney is necessary for extracellular volume homeostasis and normal arterial BP. Activity of ENaC is enhanced by proteolytic cleavage of the gamma-subunit and putative release of a 43-amino acid inhibitory tract from the gamma-subunit ectodomain. We......ENaC was detected consistently only in tissue from patients with proteinuria and observed in collecting ducts. In conclusion, human kidney gammaENaC is subject to proteolytic cleavage, yielding fragments compatible with furin cleavage, and proteinuria is associated with cleavage at the putative prostasin...

  20. Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering

    Directory of Open Access Journals (Sweden)

    Antoun Ayman

    2004-01-01

    Full Text Available Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix.

  1. Isolation and characterization of recombinant human casein kinase II subunits alpha and beta from bacteria

    DEFF Research Database (Denmark)

    Grankowski, N; Boldyreff, B; Issinger, O G

    1991-01-01

    cDNA encoding the casein kinase II (CKII) subunits alpha and beta of human origin were expressed in Escherichia coli using expression vector pT7-7. Significant expression was obtained with E. coli BL21(DE3). The CKII subunits accounted for approximately 30% of the bacterial protein; however, most...

  2. Detection of constitutive heterodimerization of the integrin Mac-1 subunits by fluorescence resonance energy transfer in living cells

    International Nuclear Information System (INIS)

    Fu Guo; Yang Huayan; Wang Chen; Zhang Feng; You Zhendong; Wang Guiying; He Cheng; Chen Yizhang; Xu Zhihan

    2006-01-01

    Macrophage differentiation antigen associated with complement three receptor function (Mac-1) belongs to β 2 subfamily of integrins that mediate important cell-cell and cell-extracellular matrix interactions. Biochemical studies have indicated that Mac-1 is a constitutive heterodimer in vitro. Here, we detected the heterodimerization of Mac-1 subunits in living cells by means of two fluorescence resonance energy transfer (FRET) techniques (fluorescence microscopy and fluorescence spectroscopy) and our results demonstrated that there is constitutive heterodimerization of the Mac-1 subunits and this constitutive heterodimerization of the Mac-1 subunits is cell-type independent. Through FRET imaging, we found that heterodimers of Mac-1 mainly localized in plasma membrane, perinuclear, and Golgi area in living cells. Furthermore, through analysis of the estimated physical distances between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) fused to Mac-1 subunits, we suggested that the conformation of Mac-1 subunits is not affected by the fusion of CFP or YFP and inferred that Mac-1 subunits take different conformation when expressed in Chinese hamster ovary (CHO) and human embryonic kidney (HEK) 293T cells, respectively

  3. Evaluation of subunit vaccines against feline immunodeficiency virus infection

    NARCIS (Netherlands)

    Horzinek, M.C.; Verschoor, E.J.; Willemse, M.J.; Stam, J.G.; Vliet, A.L.W. van; Pouwels, H.; Chalmers, S.K.; Sondermeijer, P.J.; Hesselink, W.; Ronde, A. de

    1996-01-01

    Subunit vaccines prepared against feline immunodeficiency virus (FIV) infection were evaluated in two trials. First, cats were immunized with bacterial expression products of an envelope fragment that contained the V3 neutralization domain of the FIV surface protein fused to either galactokinase

  4. Structural interaction of novel dendrimer and subunits with water

    African Journals Online (AJOL)

    Preferred Customer

    interaction study with solvents are essential [4-6] and several subunits are used for .... slowed down the viscous flow with higher excess limiting viscosities of the 2,4,6- ..... Practical Organic Chemistry, 5th ed.; Wiley: New York; 1989; p 300. 14.

  5. Small Island States Green Energy Initiative. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, Nasir [Climate Inst., Washington, DC (United States)

    1999-10-15

    This report covers the activities carried out during a one year period from 7/15/99 to 7/15/00 as part of the Small Islands Green Energy Initiative. The three activities were: 1) Energy Ministerial conference in the Caribbean; 2) Training session on renewable energy for utility engineers; and 3) Case studies compilation on renewable energy in the Caribbean.

  6. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Aihua Hu

    Full Text Available Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4 activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM, as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.

  7. Global Proteome Analysis Identifies Active Immunoproteasome Subunits in Human Platelets*

    Science.gov (United States)

    Klockenbusch, Cordula; Walsh, Geraldine M.; Brown, Lyda M.; Hoffman, Michael D.; Ignatchenko, Vladimir; Kislinger, Thomas; Kast, Juergen

    2014-01-01

    The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets. PMID:25146974

  8. Radioimmunoassay of TSH subunits in thyroid diseases and endocrine opthalmopahty

    International Nuclear Information System (INIS)

    Eder, W.

    1982-01-01

    Highly sensitive radioimmunoassays of hTSH sub-units were developed. The hormone preparations were labelled with 125-iodine according to a modified chloramine -T method, and purified by chromatography using biogel P6 and P60. Rabbit antisera were used as antibodies. Separation of the antibody-bound and of the free antigens was carried out via the double antibody method. The antiserum required for this purpose was obtained from a goat. The sensitivity of the assay was influenced by changing the protein content of the buffer, the incubation volume, the tracer amounts, the incubation time and the incubation temperature. For hTSH-α, the lowest detectable limit was found to be 50 pg/ml, for hTSH-#betta# 20 pg/ml. Thus, the sub-units could be determined for 98% of the patients under review. The #betta#-TSH radioimmunoassay is largely specific, TSH cross-reacts to a degree of 5%. The computerized evoluation was carried out by means of Spline approximation using the Siemens 4004 computer. Precision and accurateness are in compliance with generally accpted criteria. The serum levels of α and #betta# sub-units showed no discordancy with regard to TSH. In all groups of patients examined, the levels of the hormone-specific #betta#-chain were found to be exclusively dependent upon the actual thyroid activity. (orig.) [de

  9. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Issinger, O G

    1997-01-01

    In a search for protein kinase CK2 beta subunit binding proteins using the two-hybrid system, more than 1000 positive clones were isolated. Beside clones for the alpha' and beta subunit of CK2, there were clones coding for a so far unknown protein, whose partial cDNA sequence was already deposited...

  10. Subunit Organisation of In Vitro Reconstituted HOPS and CORVET Multisubunit Membrane Tethering Complexes

    Science.gov (United States)

    Guo, Zhong; Johnston, Wayne; Kovtun, Oleksiy; Mureev, Sergey; Bröcker, Cornelia; Ungermann, Christian; Alexandrov, Kirill

    2013-01-01

    Biochemical and structural analysis of macromolecular protein assemblies remains challenging due to technical difficulties in recombinant expression, engineering and reconstitution of multisubunit complexes. Here we use a recently developed cell-free protein expression system based on the protozoan Leishmania tarentolae to produce in vitro all six subunits of the 600 kDa HOPS and CORVET membrane tethering complexes. We demonstrate that both subcomplexes and the entire HOPS complex can be reconstituted in vitro resulting in a comprehensive subunit interaction map. To our knowledge this is the largest eukaryotic protein complex in vitro reconstituted to date. Using the truncation and interaction analysis, we demonstrate that the complex is assembled through short hydrophobic sequences located in the C-terminus of the individual Vps subunits. Based on this data we propose a model of the HOPS and CORVET complex assembly that reconciles the available biochemical and structural data. PMID:24312556

  11. 75 FR 15756 - Small Business Innovation Research Program Policy Directive

    Science.gov (United States)

    2010-03-30

    ... SMALL BUSINESS ADMINISTRATION RIN 3244-AF61 Small Business Innovation Research Program Policy Directive AGENCY: U.S. Small Business Administration. ACTION: Notice of Final Amendments to Policy Directive. SUMMARY: This document announces a final amendment to the Small Business Innovation Research (SBIR...

  12. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking.

    Science.gov (United States)

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B; Holding, Andrew N; Montgomery, Martin G; Fearnley, Ian M; Walker, John E

    2015-05-22

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Organization of Subunits in the Membrane Domain of the Bovine F-ATPase Revealed by Covalent Cross-linking*

    Science.gov (United States)

    Lee, Jennifer; Ding, ShuJing; Walpole, Thomas B.; Holding, Andrew N.; Montgomery, Martin G.; Fearnley, Ian M.; Walker, John E.

    2015-01-01

    The F-ATPase in bovine mitochondria is a membrane-bound complex of about 30 subunits of 18 different kinds. Currently, ∼85% of its structure is known. The enzyme has a membrane extrinsic catalytic domain, and a membrane intrinsic domain where the turning of the enzyme's rotor is generated from the transmembrane proton-motive force. The domains are linked by central and peripheral stalks. The central stalk and a hydrophobic ring of c-subunits in the membrane domain constitute the enzyme's rotor. The external surface of the catalytic domain and membrane subunit a are linked by the peripheral stalk, holding them static relative to the rotor. The membrane domain contains six additional subunits named ATP8, e, f, g, DAPIT (diabetes-associated protein in insulin-sensitive tissues), and 6.8PL (6.8-kDa proteolipid), each with a single predicted transmembrane α-helix, but their orientation and topography are unknown. Mutations in ATP8 uncouple the enzyme and interfere with its assembly, but its roles and the roles of the other five subunits are largely unknown. We have reacted accessible amino groups in the enzyme with bifunctional cross-linking agents and identified the linked residues. Cross-links involving the supernumerary subunits, where the structures are not known, show that the C terminus of ATP8 extends ∼70 Å from the membrane into the peripheral stalk and that the N termini of the other supernumerary subunits are on the same side of the membrane, probably in the mitochondrial matrix. These experiments contribute significantly toward building up a complete structural picture of the F-ATPase. PMID:25851905

  14. Interaction of the regulatory subunit of the cAMP-dependent protein kinase with PATZ1 (ZNF278)

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weng-Lang [Long Island Jewish Medical Center, North Shore University Hospital, Manhasset, NY 11030 (United States); Ravatn, Roald [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States); Kudoh, Kazuya [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States); Department of Obstetrics and Gynecology, National Defense Medical College, Tokorozawa, Saitama (Japan); Alabanza, Leah [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States); Chin, Khew-Voon, E-mail: khew-voon.chin@utoledo.edu [Department of Medicine, University of Toledo, College of Medicine, Toledo, OH 43614 (United States)

    2010-01-15

    The effects of cAMP in cell are predominantly mediated by the cAMP-dependent protein kinase (PKA), which is composed of two genetically distinct subunits, catalytic (C) and regulatory (R), forming a tetrameric holoenzyme R{sub 2}C{sub 2}. The only known function for the R subunit is that of inhibiting the activity of the C subunit kinase. It has been shown that overexpression of RI{alpha}, but not the C subunit kinase, is associated with neoplastic transformation. In addition, it has also been demonstrated that mutation in the RI{alpha}, but not the C subunit is associated with increased resistance to the DNA-damaging anticancer drug cisplatin, thus suggesting that the RI{alpha} subunit of PKA may have functions independent of the kinase. We show here that the RI{alpha} subunit interacts with a BTB/POZ domain zinc-finger transcription factor, PATZ1 (ZNF278), and co-expression with RI{alpha} results in its sequestration in the cytoplasm. The cytoplasmic/nuclear translocation is inducible by cAMP. C-terminus deletion abolishes PATZ1 interaction with RI{alpha} and results in its localization in the nucleus. PATZ1 transactivates the cMyc promoter and the presence of cAMP and co-expression with RI{alpha} modulates its transactivation. Moreover, PATZ1 is aberrantly expressed in cancer. Taken together, our results showed a potentially novel mechanism of cAMP signaling mediated through the interaction of RI{alpha} with PATZ1 that is independent of the kinase activity of PKA, and the aberrant expression of PATZ1 in cancer point to its role in cell growth regulation.

  15. Alternative Splicing of AMPA subunits in Prefrontal Cortical Fields of Cynomolgus Monkeys following Chronic Ethanol Self-Administration

    Directory of Open Access Journals (Sweden)

    Glen eAcosta

    2012-01-01

    Full Text Available Functional impairment of the orbital and medial prefrontal cortex underlies deficits in executive control that characterize addictive disorders, including alcohol addiction. Previous studies indicate that alcohol alters glutamate neurotransmission and one substrate of these effects may be through the reconfiguration of the subunits constituting ionotropic glutamate receptor (iGluR complexes. Glutamatergic transmission is integral to cortico-cortical and cortico-subcortical communication and alcohol-induced changes in the abundance of the receptor subunits and/or their splice variants may result in critical functional impairments of prefrontal cortex in alcohol dependence. To this end, the effects of chronic ethanol self-administration on glutamate receptor ionotropic AMPA (GRIA subunit variant and kainate (GRIK subunit mRNA expression were studied in the orbitofrontal cortex (OFC, dorsolateral prefrontal cortex (DLPFC and anterior cingulate cortex (ACC of male cynomolgus monkeys. In DLPFC, total AMPA splice variant expression and total kainate receptor subunit expression were significantly decreased in alcohol drinking monkeys. Expression levels of GRIA3 flip and flop and GRIA4 flop mRNAs in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. In OFC, AMPA subunit splice variant expression was reduced in the alcohol treated group. GRIA2 flop mRNA levels in this region were positively correlated with daily ethanol intake and blood ethanol concentrations averaged over the six months prior to necropsy. Results from these studies provide further evidence of transcriptional regulation of iGluR subunits in the primate brain following chronic alcohol self-administration. Additional studies examining the cellular localization of such effects in the framework of primate prefrontal cortical circuitry are warranted.

  16. Cholera toxin B subunit-binding and ganglioside GM1 immuno-expression are not necessarily correlated in human salivary glands

    DEFF Research Database (Denmark)

    Kirkeby, Svend

    2014-01-01

    human submandibular, parotid and palatinal glands using cholera toxin sub-unit B and two polyclonal antibodies against ganglioside GM1 as biomarkers. RESULTS: Immunofluorescence microscopy showed that the toxin and antibodies were co-localized in some acini but not in others. The cholera toxin mainly...... reacted with the cell membranes of the mucous acini in the submandibular gland, while incubation with the antibody against GM1 gave rise to a staining of the cytoplasm. The cytoplasm in some secretory acinar cells in the parotid gland was stained by the cholera toxin, whereas only small spots...... on the plasma membranes reacted with anti-GM1. The plasma membranes in the parotid excretory ducts appeared to react to anti-GM1, but not to cholera toxin. CONCLUSIONS: Cholera toxin induces the expression of ion channels and carriers in the small intestine and increases the production of secretory mucins...

  17. Glycoprotein hormone α subunit secretion by pituitary adenomas: influence of external irradiation

    International Nuclear Information System (INIS)

    Macfarlane, I.A.; Beardwell, C.G.; Shalet, S.M.; Darbyshire, P.J.; Hayward, E.; Sutton, M.L.

    1980-01-01

    In ninety-nine patients with pituitary adenomas, forty-six with acromegaly, the serum level of the glycoprotein hormone α subunit was elevated in eighteen cases. Thirteen of these were acromegalic and one had an FSH-producing tumour. Alpha levels varied little during the day, from one day to the next and over a 6 month period. In twenty-five patients with a variety of other hypothalamic-pituitary disorders examined, one patient with a craniopharyngioma had a mildly elevated α level. External pituitary irradiation was followed by an acute and often transient fall in α level in several of these patients. Of the fifty-four patients with pituitary adenomas who had received external irradiation before testing, only five had elevated α subunit levels compared with thirteen patients of the forty-five who had not been irradiated. This difference in incidence of elevated α level was statistically significant (P<0.025). It is concluded that external irradiation may reduce α subunit level chronically in many patients with pituitary adenoma. (author)

  18. Determinants of RNA polymerase alpha subunit for interaction with beta, beta', and sigma subunits: hydroxyl-radical protein footprinting.

    OpenAIRE

    Heyduk, T; Heyduk, E; Severinov, K; Tang, H; Ebright, R H

    1996-01-01

    Escherichia coli RNA polymerase (RNAP) alpha subunit serves as the initiator for RNAP assembly, which proceeds according to the pathway 2 alpha-->alpha 2-->alpha 2 beta-->alpha 2 beta beta'-->alpha 2 beta beta' sigma. In this work, we have used hydroxyl-radical protein footprinting to define determinants of alpha for interaction with beta, beta', and sigma. Our results indicate that amino acids 30-75 of alpha are protected from hydroxyl-radical-mediated proteolysis upon interaction with beta ...

  19. Monoclonal antibodies to molluskan hemocyanin from Concholepas concholepas demonstrate common and specific epitopes among subunits.

    Science.gov (United States)

    Oliva, Harold; Moltedo, Bruno; De Ioannes, Pablo; Faunes, Fernando; De Ioannes, Alfredo E; Becker, María Inés

    2002-10-01

    We studied the reactivity of mouse monoclonal antibodies (MAbs) against the hemocyanin from the Chilean marine gastropod Concholepas concholepas (CCH). This protein has been successfully used as a carrier to produce antibodies to haptens and peptides. All MAbs (13) belonging to IgG subclass exhibit dissociation constants (K(d)) from 1 x 10(-7) M to 1 x 10(-9) M. MAbs were characterized by enzyme-linked immunosorbant assay (ELISA) using CCH treated with different procedures, including dissociation into CCH-A and CCH-B subunits, Western blot, enzymatic digestion, chemical deglycosylation, and thermal denaturation. MAbs were classified into three categories, according to subunit specificity by ELISA. The epitope distribution shows that CCH subunits display common epitopes (group I, 5 MAbs, 1H5, 2A8, 3A5, 3B3, and 3E3), as well as specific epitopes for CCH-A subunits (group II, 3 MAbs, 1B8, 4D8, and 8E5) and for CCH-B subunits (group III, 5 MAbs, 1A4, 1E4, 2H10, 3B7, and 7B4). The results can be summarized as follows: (1). six antibodies react with thermal denatured CCH, suggesting that they recognize linear epitopes, whereas seven recognize conformational epitopes; (2). oxidation of carbohydrate moieties does not affect the binding of the MAbs; (3). enzymatic digestion of CCH decreases the reactivity of all antibodies irrespective of the protease used (elastase or trypsin); (4). bringing together the above data, in addition to epitopic complementarity analysis, we identified 12 different epitopes on the CCH molecule recognized by these MAbs. The anti-CCH MAbs presented here can be useful tools to understand the subunit organization of the CCH and its complex structure, which can explain its immunogenic and immunostimulating properties in mammals.

  20. Decreased agonist sensitivity of human GABA(A) receptors by an amino acid variant, isoleucine to valine, in the alpha1 subunit.

    Science.gov (United States)

    Westh-Hansen, S E; Rasmussen, P B; Hastrup, S; Nabekura, J; Noguchi, K; Akaike, N; Witt, M R; Nielsen, M

    1997-06-25

    Recombinant human GABA(A) receptors were investigated in vitro by coexpression of cDNAs coding for alpha1, beta2, and gamma2 subunits in the baculovirus/Sf-9 insect cell system. We report that a single amino acid exchange (isoleucine 121 to valine 121) in the N-terminal, extracellular part of the alpha1 subunit induces a marked decrease in agonist GABA(A) receptor ligand sensitivity. The potency of muscimol and GABA to inhibit the binding of the GABA(A) receptor antagonist [3H]SR 95531 (2-(3-carboxypropyl)-3-amino-6-(4-methoxyphenyl)pyridazinium bromide) was higher in receptor complexes of alpha1(ile 121) beta2gamma2 than in those of alpha1(val 121) beta2gamma2 (IC50 values were 32-fold and 26-fold lower for muscimol and GABA, respectively). The apparent affinity of the GABA(A) receptor antagonist bicuculline methiodide to inhibit the binding of [3H]SR 95531 did not differ between the two receptor complex variants. Electrophysiological measurements of GABA induced whole-cell Cl- currents showed a ten-fold decrease in the GABA(A) receptor sensitivity of alpha1 (val 121) beta2gamma2 as compared to alpha1(ile 121) beta2gamma2 receptor complexes. Thus, a relatively small change in the primary structure of the alpha1 subunit leads to a decrease selective for GABA(A) receptor sensitivity to agonist ligands, since no changes were observed in a GABA(A) receptor antagonist affinity and benzodiazepine receptor binding.

  1. 76 FR 43571 - Small Business HUBZone Program; Government Contracting Programs

    Science.gov (United States)

    2011-07-21

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 126 RIN 3245-AG45 Small Business HUBZone Program; Government Contracting Programs AGENCY: U.S. Small Business Administration. ACTION: Interim final rule with request for comments. SUMMARY: This interim final rule amends the U.S. Small Business Administration's...

  2. Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC.

    Science.gov (United States)

    Butow, B J; Gale, K R; Ikea, J; Juhász, A; Bedö, Z; Tamás, L; Gianibelli, M C

    2004-11-01

    Increased expression of the high molecular weight glutenin subunit (HMW-GS) Bx7 is associated with improved dough strength of wheat (Triticum aestivum L.) flour. Several cultivars and landraces of widely different genetic backgrounds from around the world have now been found to contain this so-called 'over-expressing' allelic form of the Bx7 subunit encoded by Glu-B1al. Using three methods of identification, SDS-PAGE, RP-HPLC and PCR marker analysis, as well as pedigree information, we have traced the distribution and source of this allele from a Uruguayan landrace, Americano 44D, in the mid-nineteenth century. Results are supported by knowledge of the movement of wheat lines with migrants. All cultivars possessing the Glu-B1al allele can be identified by the following attributes: (1) the elution of the By sub-unit peak before the Dx sub-unit peak by RP-HPLC, (2) high expression levels of Bx7 (>39% Mol% Bx), (3) a 43 bp insertion in the matrix-attachment region (MAR) upstream of the gene promoter relative to Bx7 and an 18 bp nucleotide duplication in the coding region of the gene. Evidence is presented indicating that these 18 and 43 bp sequence insertions are not causal for the high expression levels of Bx7 as they were also found to be present in a small number of hexaploid species, including Chinese Spring, and species expressing Glu-B1ak and Glu-B1a alleles. In addition, these sequence inserts were found in different isolates of the tetraploid wheat, T. turgidum, indicating that these insertion/deletion events occurred prior to hexaploidization.

  3. Expression of alpha and beta subunit isoforms of Na,K-ATPase in the mouse inner ear and changes with mutations at the Wv or Sld loci.

    Science.gov (United States)

    Schulte, B A; Steel, K P

    1994-07-01

    Mice homozygous for mutations at the viable dominant spotting (Wv) and Steel-dickie (Sld) loci exhibit a similar phenotype which includes deafness. The auditory dysfunction derives from failure of the stria vascularis to develop normally and to generate a high positive endocochlear potential (EP). Because strial function is driven by Na,K-ATPase its expression was investigated in inner ears of Wv/Wv and Sld/Sld mice and their wild-type littermates by immunostaining with antisera against four of the enzyme's subunit isoforms. Wild-type mice from two different genetic backgrounds showed an identical distribution of subunit isoforms among inner ear transport cells. Several epithelial cell types coexpressed the alpha 1 and beta 1 subunits. Vestibular dark cells showed no reactivity for beta 1 but expressed abundant beta 2, whereas, strial marginal cells stained strongly for both beta isoforms. The only qualitative difference between mutant and wild-type mice was the absence of beta 1 subunit in marginal cells of the mutant's stria. However, it is unlikely that this difference accounts for failure of mutants to generate a high EP because the beta 1 subunit is not present in the stria vascularis of either rats or gerbils with normal EP values. Strong immunostaining for Na,K-ATPase in lateral wall fibrocytes of normal mice along with diminished immunoreactivity in the mutants supports the concept that these strategically located transport fibrocytes actively resorb K+ leaked across Reissner's membrane into scala vestibuli or effluxed from hair cells and nerves into scala tympani. It is further speculated that the resorbed K+ normally is siphoned down its concentration gradient into the intrastrial space through gap junctions between fibrocytes and strial basal and intermediate cells where it is recycled back to endolymph via marginal cells. Thus, failure of mutants to generate a positive EP could be explained by the absence of intermediate cells which may form the final

  4. The NH2-terminal php domain of the alpha subunit of the Escherichia coli replicase binds the epsilon proofreading subunit.

    Science.gov (United States)

    Wieczorek, Anna; McHenry, Charles S

    2006-05-05

    The alpha subunit of the replicase of all bacteria contains a php domain, initially identified by its similarity to histidinol phosphatase but of otherwise unknown function (Aravind, L., and Koonin, E. V. (1998) Nucleic Acids Res. 26, 3746-3752). Deletion of 60 residues from the NH2 terminus of the alpha php domain destroys epsilon binding. The minimal 255-residue php domain, estimated by sequence alignment with homolog YcdX, is insufficient for epsilon binding. However, a 320-residue segment including sequences that immediately precede the polymerase domain binds epsilon with the same affinity as the 1160-residue full-length alpha subunit. A subset of mutations of a conserved acidic residue (Asp43 in Escherichia coli alpha) present in the php domain of all bacterial replicases resulted in defects in epsilon binding. Using sequence alignments, we show that the prototypical gram+ Pol C, which contains the polymerase and proofreading activities within the same polypeptide chain, has an epsilon-like sequence inserted in a surface loop near the center of the homologous YcdX protein. These findings suggest that the php domain serves as a platform to enable coordination of proofreading and polymerase activities during chromosomal replication.

  5. Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16.

    Science.gov (United States)

    Cathomas, Flurin; Sigrist, Hannes; Schmid, Luca; Seifritz, Erich; Gassmann, Martin; Bettler, Bernhard; Pryce, Christopher R

    2017-01-15

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABA B receptors are G-protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABA B receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12 -/- ) exhibit increased auditory fear learning and that Kctd12 +/- mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABA B receptor-mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16 -/- and Kctd16 +/- mice. Compared with wild-type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16 -/- and Kctd16 +/- mice. When fear memory was tested on the following day, Kctd16 -/- mice exhibited less extinction of auditory fear memory relative to WT and Kctd16 +/- mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16 +/- mice. Relative to WT, both Kctd16 +/- and Kctd16 -/- mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABA B receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper-reactivity to aversive stimuli in neuropsychiatric disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells

    OpenAIRE

    Vanderperre, Benoît; Cermakova, Kristina; Escoffier Breancon, Jessica; Kaba, Mayis; Bender, Tom; Nef, Serge; Martinou, Jean-Claude

    2016-01-01

    Selective transport of pyruvate across the inner mitochondrial membrane by the mitochondrial pyruvate carrier (MPC) is a fundamental step that couples cytosolic and mitochondrial metabolism. The recent molecular identification of the MPC complex has revealed two interacting subunits, MPC1 and MPC2. Although in yeast, an additional subunit, MPC3, can functionally replace MPC2, no alternative MPC subunits have been described in higher eukaryotes. Here, we report for the first time the existence...

  7. Differential Roles of the Glycogen-Binding Domains of β Subunits in Regulation of the Snf1 Kinase Complex▿

    Science.gov (United States)

    Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R.; Elbing, Karin; Schmidt, Martin C.

    2010-01-01

    Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic α subunit and regulatory β and γ subunits. In this study, the role of the β subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (α), Snf4 (γ), and one of three alternative β subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three β subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the β subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation. PMID:19897735

  8. Differential roles of the glycogen-binding domains of beta subunits in regulation of the Snf1 kinase complex.

    Science.gov (United States)

    Mangat, Simmanjeet; Chandrashekarappa, Dakshayini; McCartney, Rhonda R; Elbing, Karin; Schmidt, Martin C

    2010-01-01

    Members of the AMP-activated protein kinase family, including the Snf1 kinase of Saccharomyces cerevisiae, are activated under conditions of nutrient stress. AMP-activated protein kinases are heterotrimeric complexes composed of a catalytic alpha subunit and regulatory beta and gamma subunits. In this study, the role of the beta subunits in the regulation of Snf1 activity was examined. Yeasts express three isoforms of the AMP-activated protein kinase consisting of Snf1 (alpha), Snf4 (gamma), and one of three alternative beta subunits, either Sip1, Sip2, or Gal83. The Gal83 isoform of the Snf1 complex is the most abundant and was analyzed in the greatest detail. All three beta subunits contain a conserved domain referred to as the glycogen-binding domain. The deletion of this domain from Gal83 results in a deregulation of the Snf1 kinase, as judged by a constitutive activity independent of glucose availability. In contrast, the deletion of this homologous domain from the Sip1 and Sip2 subunits had little effect on Snf1 kinase regulation. Therefore, the different Snf1 kinase isoforms are regulated through distinct mechanisms, which may contribute to their specialized roles in different stress response pathways. In addition, the beta subunits are subjected to phosphorylation. The responsible kinases were identified as being Snf1 and casein kinase II. The significance of the phosphorylation is unclear since the deletion of the region containing the phosphorylation sites in Gal83 had little effect on the regulation of Snf1 in response to glucose limitation.

  9. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador.

    Science.gov (United States)

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C Miguel; Vallejo, Gustavo A; Grijalva, Mario J

    2015-12-01

    Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(-)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru.

  10. Prevalence, Genetic Characterization, and 18S Small Subunit Ribosomal RNA Diversity of Trypanosoma rangeli in Triatomine and Mammal Hosts in Endemic Areas for Chagas Disease in Ecuador

    Science.gov (United States)

    Ocaña-Mayorga, Sofia; Aguirre-Villacis, Fernanda; Pinto, C. Miguel; Vallejo, Gustavo A.

    2015-01-01

    Abstract Trypanosoma rangeli is a nonpathogenic parasite for humans; however, its medical importance relies in its similarity and overlapping distribution with Trypanosoma cruzi, causal agent of Chagas disease in the Americas. The genetic diversity of T. rangeli and its association with host species (triatomines and mammals) has been identified along Central and the South America; however, it has not included data of isolates from Ecuador. This study reports infection with T. rangeli in 18 genera of mammal hosts and five species of triatomines in three environments (domestic, peridomestic, and sylvatic). Higher infection rates were found in the sylvatic environment, in close association with Rhodnius ecuadoriensis. The results of this study extend the range of hosts infected with this parasite and the geographic range of the T. rangeli genotype KP1(−)/lineage C in South America. It was not possible to detect variation on T. rangeli from the central coastal region and southern Ecuador with the analysis of the small subunit ribosomal RNA (SSU-rRNA) gene, even though these areas are ecologically different and a phenotypic subdivision of R. ecuadoriensis has been found. R. ecuadoriensis is considered one of the most important vectors for Chagas disease transmission in Ecuador due to its wide distribution and adaptability to diverse environments. An extensive knowledge of the trypanosomes circulating in this species of triatomine, and associated mammal hosts, is important for delineating transmission dynamics and preventive measures in the endemic areas of Ecuador and Northern Peru. PMID:26645579

  11. Over-production, renaturation and reconstitution of delta and epsilon subunits from chloroplast and cyanobacterial F1

    NARCIS (Netherlands)

    Steinemann, D.; Lill, H; Junge, Wolfgang; Engelbrecht, Siegfried

    1994-01-01

    We studied the functioning of chimeric F0F1-ATPases by replacing subunits delta and epsilon of spinach CF1 with their counterparts from Synechocystis sp. PCC 6803. The sequence identities between these subunits are 26 and 41%, respectively. For a systematic approach to such studies and later

  12. Subunit–subunit interactions are weakened in mutant forms of acetohydroxy acid synthase insensitive to valine inhibition

    Czech Academy of Sciences Publication Activity Database

    Kyselková, Martina; Janata, Jiří; Ságová-Marečková, M.; Kopecký, J.

    2010-01-01

    Roč. 192, č. 3 (2010), s. 195-200 ISSN 0302-8933 R&D Projects: GA MŠk 2B08064 Institutional research plan: CEZ:AV0Z50200510 Keywords : Streptomyces cinnamonensis * Acetohydroxy acid synthase * Subunit-subunit interaction Subject RIV: EE - Microbiology, Virology Impact factor: 1.754, year: 2010

  13. α-4 subunit of nicotinic acetylcholine receptor polymorphisms exhibit ...

    African Journals Online (AJOL)

    Background: Smoking behavior is influenced by both genetic and environmental factors. Nicotine is the major addictive substance in cigarettes. Nicotinic acetylcholine receptors (nAChRs) are thought to play an important role in nicotine addiction of smokers. One of the genes, α-4 subunit of nicotinic acetylcholine receptor ...

  14. 4.0-A resolution cryo-EM structure of the mammalian chaperonin TRiC/CCT reveals its unique subunit arrangement.

    Science.gov (United States)

    Cong, Yao; Baker, Matthew L; Jakana, Joanita; Woolford, David; Miller, Erik J; Reissmann, Stefanie; Kumar, Ramya N; Redding-Johanson, Alyssa M; Batth, Tanveer S; Mukhopadhyay, Aindrila; Ludtke, Steven J; Frydman, Judith; Chiu, Wah

    2010-03-16

    The essential double-ring eukaryotic chaperonin TRiC/CCT (TCP1-ring complex or chaperonin containing TCP1) assists the folding of approximately 5-10% of the cellular proteome. Many TRiC substrates cannot be folded by other chaperonins from prokaryotes or archaea. These unique folding properties are likely linked to TRiC's unique heterooligomeric subunit organization, whereby each ring consists of eight different paralogous subunits in an arrangement that remains uncertain. Using single particle cryo-EM without imposing symmetry, we determined the mammalian TRiC structure at 4.7-A resolution. This revealed the existence of a 2-fold axis between its two rings resulting in two homotypic subunit interactions across the rings. A subsequent 2-fold symmetrized map yielded a 4.0-A resolution structure that evinces the densities of a large fraction of side chains, loops, and insertions. These features permitted unambiguous identification of all eight individual subunits, despite their sequence similarity. Independent biochemical near-neighbor analysis supports our cryo-EM derived TRiC subunit arrangement. We obtained a Calpha backbone model for each subunit from an initial homology model refined against the cryo-EM density. A subsequently optimized atomic model for a subunit showed approximately 95% of the main chain dihedral angles in the allowable regions of the Ramachandran plot. The determination of the TRiC subunit arrangement opens the way to understand its unique function and mechanism. In particular, an unevenly distributed positively charged wall lining the closed folding chamber of TRiC differs strikingly from that of prokaryotic and archaeal chaperonins. These interior surface chemical properties likely play an important role in TRiC's cellular substrate specificity.

  15. Immunization against Small Ruminant Lentiviruses

    Directory of Open Access Journals (Sweden)

    Beatriz Amorena

    2013-08-01

    Full Text Available Multisystemic disease caused by Small Ruminant Lentiviruses (SRLV in sheep and goats leads to production losses, to the detriment of animal health and welfare. This, together with the lack of treatments, has triggered interest in exploring different strategies of immunization to control the widely spread SRLV infection and, also, to provide a useful model for HIV vaccines. These strategies involve inactivated whole virus, subunit vaccines, DNA encoding viral proteins in the presence or absence of plasmids encoding immunological adjuvants and naturally or artificially attenuated viruses. In this review, we revisit, comprehensively, the immunization strategies against SRLV and analyze this double edged tool individually, as it may contribute to either controlling or enhancing virus replication and/or disease.

  16. Association of ω with the C-terminal region of β' subunit is essential for assembly of RNA polymerase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Mao, Chunyou; Zhu, Yan; Lu, Pei; Feng, Lipeng; Chen, Shiyun; Hu, Yangbo

    2018-04-09

    The ω subunit is the smallest subunit of bacterial RNA polymerase (RNAP). Although homologs of ω are essential in both eukaryotes and archaea, this subunit has been known to be dispensable for RNAP in Escherichia coli ( Eco ) and in other bacteria. In this study, we characterized an indispensable role of the ω subunit in Mycobacterium tuberculosis ( Mtb ). Unlike the well-studied Eco RNAP, the Mtb RNAP core enzyme cannot be functionally assembled in the absence of the ω subunit. Importantly, substitution of Mtb ω with ω subunits from Eco or Thermus thermophiles ( Tth ) cannot restore the assembly of Mtb RNAP. Furthermore, by replacing different regions in Mtb ω with the corresponding regions from Eco ω, we found a non-conserved loop region in Mtb ω essential for its function in RNAP assembly. From RNAP structures, we noticed that the location of the C-terminal region of the β' subunit (β'CTD) in Mtb RNAP but not in Eco or Tth RNAP is close to the ω loop region. Deletion of this β'CTD in Mtb RNAP destabilized the binding of Mtb ω on RNAP and compromised Mtb core assembly, suggesting that these two regions may function together to play a role in ω-dependent RNAP assembly in Mtb Sequence alignment of the ω loop and the β'CTD regions suggests that the essential role of ω is probably restricted to mycobacteria. Together, our study characterized an essential role of Mtb ω and highlighted the importance of the ω loop region in Mtb RNAP assembly. Importance DNA-dependent RNA polymerase (RNAP), which is consisted of a multi-subunit core enzyme (α 2 ββ'ω) and a dissociable σ subunit, is the only enzyme in charge of transcription in bacteria. As the smallest subunit, the roles of ω remain the least well-studied. In Escherichia coli ( Eco ) and some other bacteria, the ω subunit is known to be non-essential for RNAP. In this study, we revealed an essential role of the ω subunit for RNAP assembly in the human pathogen Mycobacterium tuberculosis , and

  17. Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly.

    Science.gov (United States)

    Hasek, Mary L; Maurer, Joshua B; Hendrix, Roger W; Duda, Robert L

    2017-08-04

    Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Molecular cloning of the human casein kinase II α subunit

    International Nuclear Information System (INIS)

    Meisner, H.; Heller-Harrison, R.; Buxton, J.; Czech, M.P.

    1989-01-01

    A human cDNA encoding the α subunit of casein kinase II and a partial cDNA encoding the rat homologue were isolated by using a Drosophila casein kinase II cDNA probe. The 2.2-kb human cDNA contains a 1.2-kb open reading frame, 150 nucleotides of 5' leader, and 850 nucleotides of 3' noncoding region. Except for the first 7 deduced amino acids that are missing in the rat cDNA, the 328 amino acids beginning with the amino terminus are identical between human and rat. The Drosophila enzyme sequence is 90% identical with the human casein kinase II sequence, and there is only a single amino acid difference between the published partial bovine sequence and the human sequence. In addition, the C-terminus of the human cDNA has an extra 53 amino acids not present in Drosophila. Northern analysis of rat and human RNA showed predominant bands of 5.5, 3.1, and 1.8 kb. In rat tissues, brain and spleen had the highest levels of casein kinase II α subunit specific RNA, while skeletal muscle showed the lowest. Southern analysis of human cultured cell and tissue genomic DNA using the full-length cDNA probe revealed two bands with restriction enzymes that have no recognition sites within the cDNA and three to six bands with enzymes having single internal sites. These results are consistent with the possibility that two genes encode the α subunits

  19. Immunoproteasome subunit ß5i/LMP7-deficiency in atherosclerosis.

    Science.gov (United States)

    Hewing, Bernd; Ludwig, Antje; Dan, Cristian; Pötzsch, Max; Hannemann, Carmen; Petry, Andreas; Lauer, Dilyara; Görlach, Agnes; Kaschina, Elena; Müller, Dominik N; Baumann, Gert; Stangl, Verena; Stangl, Karl; Wilck, Nicola

    2017-10-17

    Management of protein homeostasis by the ubiquitin-proteasome system is critical for atherosclerosis development. Recent studies showed controversial results on the role of immunoproteasome (IP) subunit β5i/LMP7 in maintenance of protein homeostasis under cytokine induced oxidative stress. The present study aimed to investigate the effect of β5i/LMP7-deficiency on the initiation and progression of atherosclerosis as a chronic inflammatory, immune cell driven disease. LDLR -/- LMP7 -/- and LDLR -/- mice were fed a Western-type diet for either 6 or 24 weeks to induce early and advanced stage atherosclerosis, respectively. Lesion burden was similar between genotypes in both stages. Macrophage content and abundance of polyubiquitin conjugates in aortic root plaques were unaltered by β5i/LMP7-deficiency. In vitro experiments using bone marrow-derived macrophages (BMDM) showed that β5i/LMP7-deficiency did not influence macrophage polarization or accumulation of polyubiquitinated proteins and cell survival upon hydrogen peroxide and interferon-γ treatment. Analyses of proteasome core particle composition by Western blot revealed incorporation of standard proteasome subunits in β5i/LMP7-deficient BMDM and spleen. Chymotrypsin-, trypsin- and caspase-like activities assessed by using short fluorogenic peptides in BMDM whole cell lysates were similar in both genotypes. Taken together, deficiency of IP subunit β5i/LMP7 does not disturb protein homeostasis and does not aggravate atherogenesis in LDLR -/- mice.

  20. Global proteome analysis identifies active immunoproteasome subunits in human platelets.

    Science.gov (United States)

    Klockenbusch, Cordula; Walsh, Geraldine M; Brown, Lyda M; Hoffman, Michael D; Ignatchenko, Vladimir; Kislinger, Thomas; Kast, Juergen

    2014-12-01

    The discovery of new functions for platelets, particularly in inflammation and immunity, has expanded the role of these anucleate cell fragments beyond their primary hemostatic function. Here, four in-depth human platelet proteomic data sets were generated to explore potential new functions for platelets based on their protein content and this led to the identification of 2559 high confidence proteins. During a more detailed analysis, consistently high expression of the proteasome was discovered, and the composition and function of this complex, whose role in platelets has not been thoroughly investigated, was examined. Data set mining resulted in identification of nearly all members of the 26S proteasome in one or more data sets, except the β5 subunit. However, β5i, a component of the immunoproteasome, was identified. Biochemical analyses confirmed the presence of all catalytically active subunits of the standard 20S proteasome and immunoproteasome in human platelets, including β5, which was predominantly found in its precursor form. It was demonstrated that these components were assembled into the proteasome complex and that standard proteasome as well as immunoproteasome subunits were constitutively active in platelets. These findings suggest potential new roles for platelets in the immune system. For example, the immunoproteasome may be involved in major histocompatibility complex I (MHC I) peptide generation, as the MHC I machinery was also identified in our data sets. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Cloning and expression of the human N-methyl-D-aspartate receptor subunit NR3A

    DEFF Research Database (Denmark)

    Eriksson, Maria; Nilsson, Anna; Froelich-Fabre, Susanne

    2002-01-01

    Native N-methyl-D-aspartate (NMDA) receptors are heteromeric assemblies of four or five subunits. The NMDA receptor subunits, NR1, NR2A, NR2B, NR2C, and NR2D have been cloned in several species, including man. The NR3A subunit, which in rodents is predominantly expressed during early development......, seems to function by reducing the NMDA receptor response. The human homologue to the rat NR3A, however, had not been cloned. In order to study the functions of the human NR3A (hNR3A), we have cloned and sequenced the hNR3A. It was found to share 88% of the DNA sequence with the rat gene, corresponding...

  2. Isolation and characterization of a monoclonal anti CK-2 alpha subunit antibody of the IgG1 subclass

    DEFF Research Database (Denmark)

    Schmidt-Spaniol, I; Boldyreff, B; Issinger, O G

    1992-01-01

    A monoclonal antibody was produced against the recombinant human alpha subunit of CK-2. The antibody was of the IgG1 subclass and it was isolated from serum-free cell culture media and purified by affinity chromatography on Protein G Sepharose. The antibody can be used to detect specifically the CK......-2 alpha subunit in immunoblots from tissue extracts. An ELISA detection test was also established which also allows the identification of the CK-2 alpha subunit....

  3. Isolation and Sequence Analysis of HMW Glutenin Subunit 1Dy10.1 Ecoding Gene from Xinjiang Wheat (Triticum petropavlovskyi Udacz.et Migusch)

    Institute of Scientific and Technical Information of China (English)

    JIANG Qian-tao; WEI Yu-ming; WANG Ji-rui; YAN Ze-hong; ZHENG You-liang

    2006-01-01

    A novel HMW glutenin subunit gene 1Dy10.1 was isolated and characterized from Xinjiang wheat (Triticum petropavlovskyi. Udacz. et Migusch) accession Daomai 2. The complete open reading frame (ORF) of 1Dy10.1 was 1965 bp, encoding 655 amino acids. The numbers and distribution of cysteines in 1Dy10.1 were similar to those of 1Dy10 and other y-type subunits. In the N-terminal of 1Dy10.1, an amino acid was changed from L (leucine) to P (proline) at position 55. The repetitive domain of 1Dy10.1 differed from those of known HMW subunits by substitutions, insertions or/and deletions involving single or more amino acid residues. In the repetitive domain of subunit 1Dy10.1, the deletion of tripeptide GQQ in the consensus unit PGQGQQ resulted in the appearance of the motif PGQ that have not been observed in other known y-type HMW subunits. In comparison with the subunit 1Dy12, a deletion of dipeptide GQ, which occurred in subunit 1Dy10, was also observed in subunit 1Dy10.1. The cloned 1Dyl0.1 gene had been successfully expressed in Escherichia coli, and the expressed protein had the identical mobility with the endogenous subunit 1Dyl0.1 from seed.

  4. The carB gene encoding the large subunit of carbamoylphosphate synthetase from Lactococcus lactis is transcribed monocistronically

    DEFF Research Database (Denmark)

    Martinussen, Jan; Hammer, Karin

    1998-01-01

    The biosynthesis of carbamoylphosphate is catalysed by the heterodimeric enzyme carbamoylphosphate synthetase (CPSase). The genes encoding the two subunits in procaryotes are normally transcribed as an operon, whereas in Lactococcus lactis, the gene encoding the large subunit (carB) is shown...

  5. Gamma-aminobutyric acid (GABA) stimulates pancreatic cancer growth through overexpressing GABAA receptor pi subunit.

    Science.gov (United States)

    Takehara, Akio; Hosokawa, Masayo; Eguchi, Hidetoshi; Ohigashi, Hiroaki; Ishikawa, Osamu; Nakamura, Yusuke; Nakagawa, Hidewaki

    2007-10-15

    Gamma-aminobutyric acid (GABA) functions primarily as an inhibitory neurotransmitter in the mature central nervous system, and GABA/GABA receptors are also present in nonneural tissues, including cancer, but their precise function in nonneuronal or cancerous cells has thus far been poorly defined. Through the genome-wide cDNA microarray analysis of pancreatic ductal adenocarcinoma (PDAC) cells as well as subsequent reverse transcription-PCR and Northern blot analyses, we identified the overexpression of GABA receptor pi subunit (GABRP) in PDAC cells. We also found the expression of this peripheral type GABAA receptor subunit in few adult human organs. Knockdown of endogenous GABRP expression in PDAC cells by small interfering RNA attenuated PDAC cell growth, suggesting its essential role in PDAC cell viability. Notably, the addition of GABA into the cell culture medium promoted the proliferation of GABRP-expressing PDAC cells, but not GABRP-negative cells, and GABAA receptor antagonists inhibited this growth-promoting effect by GABA. The HEK293 cells constitutively expressing exogenous GABRP revealed the growth-promoting effect of GABA treatment. Furthermore, GABA treatment in GABRP-positive cells increased intracellular Ca2+ levels and activated the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/Erk) cascade. Clinical PDAC tissues contained a higher level of GABA than normal pancreas tissues due to the up-regulation of glutamate decarboxylase 1 expression, suggesting their autocrine/paracrine growth-promoting effect in PDACs. These findings imply that GABA and GABRP could play important roles in PDAC development and progression, and that this pathway can be a promising molecular target for the development of new therapeutic strategies for PDAC.

  6. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Directory of Open Access Journals (Sweden)

    Read Pukkila-Worley

    2014-05-01

    Full Text Available Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  7. The evolutionarily conserved mediator subunit MDT-15/MED15 links protective innate immune responses and xenobiotic detoxification.

    Science.gov (United States)

    Pukkila-Worley, Read; Feinbaum, Rhonda L; McEwan, Deborah L; Conery, Annie L; Ausubel, Frederick M

    2014-05-01

    Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses.

  8. Evaluation of peptide designing strategy against subunit reassociation in mucin 1: A steered molecular dynamics approach.

    Directory of Open Access Journals (Sweden)

    J Lesitha Jeeva Kumari

    Full Text Available Subunit reassociation in mucin 1, a breast cancer tumor marker, is reported as one of the critical factors for its cytoplasmic activation. Inhibition of its heterodimeric association would therefore result in loss of its function and alter disease progression. The present study aimed at evaluating peptide inhibitor designing strategies that may serve as antagonist against this receptor-ligand alliance. Several peptides and their derivatives were designed based on native residues, subunit interface, hydrogen bonding and secondary structure. Docking studies with the peptides were carried on the receptor subunit and their binding affinities were evaluated using steered molecular dynamics simulation and umbrella sampling. Our results showed that among all the different classes of peptides evaluated, the receptor based peptide showed the highest binding affinity. This result was concurrent with the experimental observation that the receptor-ligand alliance in mucin 1 is highly specific. Our results also show that peptide ligand against this subunit association is only stabilized through native residue inter-protein interaction irrespective of the peptide structure, peptide length and number of hydrogen bonds. Consistency in binding affinity, pull force and free energy barrier was observed with only the receptor derived peptides which resulted in favorable interprotein interactions at the interface. Several observations were made and discussed which will eventually lead to designing efficient peptide inhibitors against mucin 1 heterodimeric subunit reassociation.

  9. Expression of five acetylcholine receptor subunit genes in Brugia malayi adult worms

    Directory of Open Access Journals (Sweden)

    Ben-Wen Li

    2015-12-01

    Full Text Available Acetylcholine receptors (AChRs are required for body movement in parasitic nematodes and are targets of “classical” anthelmintic drugs such as levamisole and pyrantel and of newer drugs such as tribendimidine and derquantel. While neurotransmission explains the effects of these drugs on nematode movement, their effects on parasite reproduction are unexplained. The levamisole AChR type (L-AChRs in Caenorhabditis elegans is comprised of five subunits: Cel-UNC-29, Cel-UNC-38, Cel-UNC-63, Cel-LEV-1 and Cel-LEV-8. The genome of the filarial parasite Brugia malayi contains nine AChRs subunits including orthologues of Cel-unc-29, Cel-unc-38, and Cel-unc-63. We performed in situ hybridization with RNA probes to localize the expression of five AChR genes (Bm1_35890-Bma-unc-29, Bm1_20330-Bma-unc-38, Bm1_38195-Bma-unc-63, Bm1_48815-Bma-acr-26 and Bm1_40515-Bma-acr-12 in B. malayi adult worms. Four of these genes had similar expression patterns with signals in body muscle, developing embryos, spermatogonia, uterine wall adjacent to stretched microfilariae, wall of Vas deferens, and lateral cord. Three L-AChR subunit genes (Bma-unc-29, Bma-unc-38 and Bma-unc-63 were expressed in body muscle, which is a known target of levamisole. Bma-acr-12 was co-expressed with these levamisole subunit genes in muscle, and this suggests that its protein product may form receptors with other alpha subunits. Bma-acr-26 was expressed in male muscle but not in female muscle. Strong expression signals of these genes in early embryos and gametes in uterus and testis suggest that AChRs may have a role in nervous system development of embryogenesis and spermatogenesis. This would be consistent with embryotoxic effects of drugs that target these receptors in filarial worms. Our data show that the expression of these receptor genes is tightly regulated with regard to localization in adult worms and developmental stage in embryos and gametes. These results may help to explain the

  10. Binary Toxin Subunits of Lysinibacillus sphaericus Are Monomeric and Form Heterodimers after In Vitro Activation.

    Directory of Open Access Journals (Sweden)

    Wahyu Surya

    Full Text Available The binary toxin from Lysinibacillus sphaericus has been successfully used for controlling mosquito-transmitted diseases. An activation step shortens both subunits BinA and BinB before their interaction with membranes and internalization in midgut cells, but the precise role of this activation step is unknown. Herein, we show conclusively using three orthogonal biophysical techniques that protoxin subunits form only monomers in aqueous solution. However, in vitro activated toxins readily form heterodimers. This oligomeric state did not change after incubation of these heterodimers with detergent. These results are consistent with the evidence that maximal toxicity in mosquito larvae is achieved when the two subunits, BinA and BinB, are in a 1:1 molar ratio, and directly link proteolytic activation to heterodimerization. Formation of a heterodimer must thus be necessary for subsequent steps, e.g., interaction with membranes, or with a suitable receptor in susceptible mosquito species. Lastly, despite existing similarities between BinB C-terminal domain with domains 3 and 4 of pore-forming aerolysin, no aerolysin-like SDS-resistant heptameric oligomers were observed when the activated Bin subunits were incubated in the presence of detergents or lipidic membranes.

  11. The AMP-activated protein kinase beta 1 subunit modulates erythrocyte integrity.

    Science.gov (United States)

    Cambridge, Emma L; McIntyre, Zoe; Clare, Simon; Arends, Mark J; Goulding, David; Isherwood, Christopher; Caetano, Susana S; Reviriego, Carmen Ballesteros; Swiatkowska, Agnieszka; Kane, Leanne; Harcourt, Katherine; Adams, David J; White, Jacqueline K; Speak, Anneliese O

    2017-01-01

    Failure to maintain a normal in vivo erythrocyte half-life results in the development of hemolytic anemia. Half-life is affected by numerous factors, including energy balance, electrolyte gradients, reactive oxygen species, and membrane plasticity. The heterotrimeric AMP-activated protein kinase (AMPK) is an evolutionarily conserved serine/threonine kinase that acts as a critical regulator of cellular energy balance. Previous roles for the alpha 1 and gamma 1 subunits in the control of erythrocyte survival have been reported. In the work described here, we studied the role of the beta 1 subunit in erythrocytes and observed microcytic anemia with compensatory extramedullary hematopoiesis together with splenomegaly and increased osmotic resistance. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  12. Three-dimensional crystals of ribosomes and their subunits from eu- and archaebacteria.

    Science.gov (United States)

    Glotz, C; Müssig, J; Gewitz, H S; Makowski, I; Arad, T; Yonath, A; Wittmann, H G

    1987-11-01

    Ordered three-dimensional crystals of 70S ribosomes as well as of 30S and 50S ribosomal subunits from various bacteria (E. coli, Bacillus stearothermophilus, Thermus thermophilus and Halobacterium marismortui) have been grown by vapour diffusion in hanging drops using mono- and polyalcohols. A new compact crystal form of 50S subunits has been obtained, and it is suitable for crystallographic studies at medium resolution. In addition, from one crystal form large crystals could be grown in X-ray capillaries. In all cases the crystals were obtained from functionally active ribosomal particles, and the particles from dissolved crystals retained their integrity and biological activity.

  13. Na+/K+-ATPase α-subunit in swimming crab Portunus trituberculatus: molecular cloning, characterization, and expression under low salinity stress

    Science.gov (United States)

    Han, Xiaolin; Liu, Ping; Gao, Baoquan; Wang, Haofeng; Duan, Yafei; Xu, Wenfei; Chen, Ping

    2015-07-01

    Na+/K+-ATPases are membrane-associated enzymes responsible for the active transport of Na+ and K+ ions across cell membranes, generating chemical and electrical gradients. These enzymes' α-subunit provides catalytic function, binding and hydrolyzing ATP, and itself becoming phosphorylated during the transport cycle. In this study, Na+/K+-ATPase α-subunit cDNA was cloned from gill tissue of the swimming crab Portunus trituberculatus by reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end methods. Analysis of the nucleotide sequence revealed that the cDNA had a full-length of 3 833 base pairs (bp), with an open reading frame of 3 120 bp, 5' untranslated region (UTR) of 317 bp, and 3' UTR of 396 bp. The sequence encoded a 1 039 amino acid protein with a predicted molecular weight of 115.57 kDa and with estimated pI of 5.21. It was predicted here to possess all expected features of Na+/K+-ATPase members, including eight transmembrane domains, putative ATP-binding site, and phosphorylation site. Comparison of amino acid sequences showed that the P. trituberculatus α-subunit possessed an overall identity of 75%-99% to that of other organisms. Phylogenetic analysis revealed that this α-subunit was in the same category as those of crustaceans. Quantitative real-time RT-PCR analysis indicated that this α-subunit's transcript were most highly expressed in gill and lowest in muscle. RT-PCR analysis also revealed that α-subunit expression in crab gill decreased after 2 and 6 h, but increased after 12, 24, 48, and 72 h. In addition, α-subunit expression in hepatopancreas of crab decreased after 2-72 h. These facts indicated that the crab's Na+/K+-ATPase α-subunit was potentially involved in the observed acute response to low salinity stress.

  14. Crystal Structure of the Oxazolidinone Antibiotic Linezolid Bound to the 50S Ribosomal Subunit

    Energy Technology Data Exchange (ETDEWEB)

    Ippolito,J.; Kanyo, Z.; Wang, D.; Franceschi, F.; Moore, P.; Steitz, T.; Duffy, E.

    2008-01-01

    The oxazolidinone antibacterials target the 50S subunit of prokaryotic ribosomes. To gain insight into their mechanism of action, the crystal structure of the canonical oxazolidinone, linezolid, has been determined bound to the Haloarcula marismortui 50S subunit. Linezolid binds the 50S A-site, near the catalytic center, which suggests that inhibition involves competition with incoming A-site substrates. These results provide a structural basis for the discovery of improved oxazolidinones active against emerging drug-resistant clinical strains.

  15. Increased Expression of Laminin Subunit Alpha 1 Chain by dCas9-VP160

    OpenAIRE

    Perrin, Arnaud; Rousseau, Jo?l; Tremblay, Jacques P.

    2016-01-01

    Laminin-111 protein complex links the extracellular matrix to integrin α7β1 in sarcolemma, thus replacing in dystrophic muscles links normally insured by the dystrophin complex. Laminin-111 injection in mdx mouse stabilized sarcolemma, restored serum creatine kinase to wild-type levels, and protected muscles from exercised-induced damages. These results suggested that increased laminin-111 is a potential therapy for DMD. Laminin subunit beta 1 and laminin subunit gamma 1 are expressed in adul...

  16. Progesterone modulation of alpha5 nAChR subunits influences anxiety-related behavior during estrus cycle.

    Science.gov (United States)

    Gangitano, D; Salas, R; Teng, Y; Perez, E; De Biasi, M

    2009-06-01

    Smokers often report an anxiolytic effect of cigarettes. In addition, stress-related disorders such as anxiety, post-traumatic stress syndrome and depression are often associated with chronic nicotine use. To study the role of the alpha5 nicotinic acetylcholine receptor subunit in anxiety-related responses, control and alpha5 subunit null mice (alpha5(-/-)) were subjected to the open field activity (OFA), light-dark box (LDB) and elevated plus maze (EPM) tests. In the OFA and LDB, alpha5(-/-) behaved like wild-type controls. In the EPM, female alpha5(-/-) mice displayed an anxiolytic-like phenotype, while male alpha5(-/-) mice were undistinguishable from littermate controls. We studied the hypothalamus-pituitary-adrenal axis by measuring plasma corticosterone and hypothalamic corticotropin-releasing factor. Consistent with an anxiolytic-like phenotype, female alpha5(-/-) mice displayed lower basal corticosterone levels. To test whether gonadal steroids regulate the expression of alpha5, we treated cultured NTera 2 cells with progesterone and found that alpha5 protein levels were upregulated. In addition, brain levels of alpha5 mRNA increased upon progesterone injection into ovariectomized wild-type females. Finally, we tested anxiety levels in the EPM during the estrous cycle. The estrus phase (when progesterone levels are low) is anxiolytic-like in wild-type mice, but no cycle-dependent fluctuations in anxiety levels were found in alpha5(-/-) females. Thus, alpha5-containing neuronal nicotinic acetylcholine receptors may be mediators of anxiogenic responses, and progesterone-dependent modulation of alpha5 expression may contribute to fluctuations in anxiety levels during the ovarian cycle.

  17. A formalism for scattering of complex composite structures. I. Applications to branched structures of asymmetric sub-units

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Pedersen, Jan Skov

    2012-01-01

    to structural connectivity is completely decoupled from internal structure of the sub-units. This allows sub-units to be replaced by more complex structures. We illustrate the physical interpretation of the formalism diagrammatically. By applying a self-consistency requirement, we derive the pair distributions...

  18. The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1

    Energy Technology Data Exchange (ETDEWEB)

    Mattiroli, Francesca; Gu, Yajie; Balsbaugh, Jeremy L.; Ahn, Natalie G.; Luger, Karolin

    2017-04-18

    Nucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4)2 deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging. Using hydrogen-deuterium exchange coupled to mass spectrometry, combined with in vitro and in vivo mutagenesis studies, we identified the regions involved in the direct interaction between the yeast CAF-1 subunits, and mapped the CAF-1 domains responsible for H3-H4 binding. The large subunit, Cac1 organizes the assembly of CAF-1. Strikingly, H3-H4 binding is mediated by a composite interface, shaped by Cac1-bound Cac2 and the Cac1 acidic region. Cac2 is indispensable for productive histone binding, while deletion of Cac3 has only moderate effects on H3-H4 binding and nucleosome assembly. These results define direct structural roles for yeast CAF-1 subunits and uncover a previously unknown critical function of the middle subunit in CAF-1.

  19. Neuron-specific regulation of class I PI3K catalytic subunits and their dysfunction in brain disorders

    Directory of Open Access Journals (Sweden)

    Christina eGross

    2014-02-01

    Full Text Available The PI3K complex plays important roles in virtually all cells of the body. The enzymatic activity of PI3K to phosphorylate phosphoinositides in the membrane is mediated by a group of catalytic and regulatory subunits. Among those, the class I catalytic subunits, p110α, p110β, p110γ and p110δ, have recently drawn attention in the neuroscience field due to their specific dysregulation in diverse brain disorders. While in non-neuronal cells these catalytic subunits may have partially redundant functions, there is increasing evidence that in neurons their roles are more specialized, and confined to distinct receptor-dependent pathways. This review will summarize the emerging role of class I PI3K catalytic subunits in neurotransmitter-regulated neuronal signaling, and their dysfunction in a variety of neurological diseases, including fragile X syndrome, schizophrenia and epilepsy. We will discuss recent literature describing the use of PI3K subunit-selective inhibitors to rescue brain disease-associated phenotypes in in vitro and animal models. These studies give rise to the exciting prospect that these drugs, originally designed for cancer treatment, may be repurposed as therapeutic drugs for brain disorders in the future.

  20. Domain interactions of the peripheral preprotein translocase subunit SecA

    NARCIS (Netherlands)

    Blaauwen, T.den; Fekkes, P.; de Wit, J.G.; Kuiper, W.; Driessen, A.J.M.

    1996-01-01

    The homodimeric SecA protein is the peripheral subunit of the preprotein translocase in bacteria. It binds the preprotein and promotes its translocation across the bacterial cytoplasmic membrane by nucleotide modulated coinsertion and deinsertion into the membrane, SecA has two essential nucleotide

  1. The thermal structural transition of alpha-crystallin modulates subunit interactions and increases protein solubility.

    Directory of Open Access Journals (Sweden)

    Giuseppe Maulucci

    Full Text Available BACKGROUND: Alpha crystallin is an oligomer composed of two types of subunits, alpha-A and alpha-B crystallin, and is the major constituent of human lens. The temperature induced condensation of alpha-crystallin, the main cause for eye lens opacification (cataract, is a two step-process, a nucleation followed by an aggregation phase, and a protective effect towards the aggregation is exhibited over the alpha crystallin phase transition temperature (Tc = 318.16 K. METHODS/RESULTS: To investigate if a modulation of the subunit interactions over Tc could trigger the protective mechanism towards the aggregation, we followed, by using simultaneously static and dynamic light scattering, the temperature induced condensation of alpha-crystallin. By developing a mathematical model able to uncouple the nucleation and aggregation processes, we find a previously unobserved transition in the nucleation rate constant. Its temperature dependence allows to determine fundamental structural parameters, the chemical potential (Δμ and the interfacial tension (γ of the aggregating phase, that characterize subunit interactions. CONCLUSIONS/GENERAL SIGNIFICANCE: The decrease of both Δμ and γ at Tc, and a relative increase in solubility, reveal a significative decrease in the strenght of alpha-crystallin subunits interactions, which protects from supramolecolar condensation in hypertermic conditions. On the whole, we suggest a general approach able to understand the structural and kinetic mechanisms involved in aggregation-related diseases and in drugs development and testing.

  2. PRKACA: the catalytic subunit of protein kinase A and adrenocortical tumors

    Directory of Open Access Journals (Sweden)

    Annabel Sophie Berthon

    2015-05-01

    Full Text Available Cyclic-AMP (cAMP-dependent protein kinase (PKA is the main effector of cAMP signaling in all tissues. Inactivating mutations of the PRKAR1A gene, coding for the type 1A regulatory subunit of PKA, are responsible for Carney complex and primary pigmented nodular adrenocortical disease (PPNAD. PRKAR1A inactivation and PKA dysregulation have been implicated in various types of adrenocortical pathologies associated with ACTH-independent Cushing syndrome (AICS from PPNAD to adrenocortical adenomas and cancer, and other forms of bilateral adrenocortical hyperplasias (BAH. More recently, mutations of PRKACA, the gene coding for the catalytic subunit C alpha (Cα, were also identified in the pathogenesis of adrenocortical tumors. PRKACA copy number gain was found in the germline of several patients with cortisol-producing BAH, whereas the somatic Leu206Arg (c.617A>C recurrent PRKACA mutation was found in as many as half of all adrenocortical adenomas associated with AICS. In vitro analysis demonstrated that this mutation led to constitutive Cα activity, unregulated by its main partners, the PKA regulatory subunits. In this review, we summarize the current understanding of the involvement of PRKACA in adrenocortical tumorigenesis, and our understanding of PKA’s role in adrenocortical lesions. We also discuss potential therapeutic advances that can be made through targeting of PRKACA and the PKA pathway.

  3. Backbone resonance assignments for G protein α(i3) subunit in the GDP-bound state.

    Science.gov (United States)

    Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2014-10-01

    Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gα(i3) in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gα(i3)·GDP would be useful for the analyses of the dynamics of Gα(i3) and its interactions with various target molecules.

  4. Concomitant loss of SMARCA2 and SMARCA4 expression in small cell carcinoma of the ovary, hypercalcemic type.

    Science.gov (United States)

    Jelinic, Petar; Schlappe, Brooke A; Conlon, Niamh; Tseng, Jill; Olvera, Narciso; Dao, Fanny; Mueller, Jennifer J; Hussein, Yaser; Soslow, Robert A; Levine, Douglas A

    2016-01-01

    Small cell carcinoma of the ovary, hypercalcemic type is an aggressive tumor generally affecting young women with limited treatment options. Mutations in SMARCA4, a catalytic subunit of the SWI/SNF chromatin remodeling complex, have recently been identified in nearly all small cell carcinoma of the ovary, hypercalcemic type cases and represent a signature molecular feature for this disease. Additional biological dependencies associated with small cell carcinoma of the ovary, hypercalcemic type have not been identified. SMARCA2, another catalytic subunit of the SWI/SNF complex mutually exclusive with SMARCA4, is thought to be post-translationally silenced in various cancer types. We analyzed 10 archival small cell carcinoma of the ovary, hypercalcemic type cases for SMARCA2 protein expression by immunohistochemistry and found that SMARCA2 expression was lost in all but one case. None of the 50 other tumors that primarily or secondarily involved the ovary demonstrated concomitant loss of SMARCA2 and SMARCA4. Deep sequencing revealed that this loss of SMARCA2 expression is not the result of mutational inactivation. In addition, we established a small cell carcinoma of the ovary, hypercalcemic type patient-derived xenograft and confirmed the loss of SMARCA2 in this in vitro model. This patient-derived xenograft model, established from a recurrent tumor, also had unexpected mutational features for this disease, including functional mutations in TP53 and POLE. Taken together, our data suggest that concomitant loss of SMARCA2 and SMARCA4 is another hallmark of small cell carcinoma of the ovary, hypercalcemic type-a finding that offers new opportunities for therapeutic interventions.

  5. The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels

    Directory of Open Access Journals (Sweden)

    Lansdell Stuart J

    2012-06-01

    Full Text Available Abstract Background Nicotinic acetylcholine receptors (nAChRs play an important role as excitatory neurotransmitters in vertebrate and invertebrate species. In insects, nAChRs are the site of action of commercially important insecticides and, as a consequence, there is considerable interest in examining their functional properties. However, problems have been encountered in the successful functional expression of insect nAChRs, although a number of strategies have been developed in an attempt to overcome such difficulties. Ten nAChR subunits have been identified in the model insect Drosophila melanogaster (Dα1-Dα7 and Dβ1-Dβ3 and a similar number have been identified in other insect species. The focus of the present study is the Dα5, Dα6 and Dα7 subunits, which are distinguished by their sequence similarity to one another and also by their close similarity to the vertebrate α7 nAChR subunit. Results A full-length cDNA clone encoding the Drosophila nAChR Dα5 subunit has been isolated and the properties of Dα5-, Dα6- and Dα7-containing nAChRs examined in a variety of cell expression systems. We have demonstrated the functional expression, as homomeric nAChRs, of the Dα5 and Dα7 subunits in Xenopus oocytes by their co-expression with the molecular chaperone RIC-3. Also, using a similar approach, we have demonstrated the functional expression of a heteromeric ‘triplet’ nAChR (Dα5 + Dα6 + Dα7 with substantially higher apparent affinity for acetylcholine than is seen with other subunit combinations. In addition, specific cell-surface binding of [125I]-α-bungarotoxin was detected in both Drosophila and mammalian cell lines when Dα5 was co-expressed with Dα6 and RIC-3. In contrast, co-expression of additional subunits (including Dα7 with Dα5 and Dα6 prevented specific binding of [125I]-α-bungarotoxin in cell lines, suggesting that co-assembly with other nAChR subunits can block maturation of correctly folded nAChRs in

  6. Subcellular compartmentation, interdependency and dynamics of the cyclic AMP-dependent PKA subunits during pathogenic differentiation in rice blast.

    Science.gov (United States)

    Selvaraj, Poonguzhali; Tham, Hong Fai; Ramanujam, Ravikrishna; Naqvi, Naweed I

    2017-08-01

    The cAMP-dependent PKA signalling plays a central role in growth, asexual development and pathogenesis in fungal pathogens. Here, we functionally characterised RPKA, the regulatory subunit of cAMP/PKA and studied the dynamics and organisation of the PKA subunits in the rice blast pathogen Magnaporthe oryzae. The RPKA subunit was essential for proper vegetative growth, asexual sporulation and surface hydrophobicity in M. oryzae. A spontaneous suppressor mutation, SMR19, that restored growth and conidiation in the RPKA deletion mutant was isolated and characterised. SMR19 enhanced conidiation and appressorium formation but failed to suppress the pathogenesis defects in rpkAΔ. The PKA activity was undetectable in the mycelial extracts of SMR19, which showed a single mutation (val242leu) in the highly conserved active site of the catalytic subunit (CPKA) of cAMP/PKA. The two subunits of cAMP/PKA showed different subcellular localisation patterns with RpkA being predominantly nucleocytoplasmic in conidia, while CpkA was largely cytosolic and/or vesicular. The CpkA anchored RpkA in cytoplasmic vesicles, and localisation of PKA in the cytoplasm was governed by CpkA in a cAMP-dependant or independent manner. We show that there exists a tight regulation of PKA subunits at the level of transcription, and the cAMP signalling is differentially compartmentalised in a stage-specific manner in rice blast. © 2017 John Wiley & Sons Ltd.

  7. Molecular phylogeny of Trametes and related genera based on ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... In this study, we elucidated relationships among Trametes through comparison of the nuclear internal transcribed spacer (ITS) and the nearly complete mitochondrial small subunit ribosomal DNA (mt SSU rDNA) sequences. Finally, phylogenetic trees were built. Phylogenetic analysis of the ITS and mt SSU ...

  8. Alpha subunit of glycoprotein hormones in the sera of acromegalic patients and its mRNA in the tumors.

    Science.gov (United States)

    Machiavelli, G A; Artese, R; Benencia, H; Bruno, O; Guerra, L; Basso, A; Burdman, J A

    1999-04-01

    Within a population of 16 pituitary adenomas we found high levels of glycoprotein alpha subunits in the sera of patients with somatotrophic tumors. This finding was correlated with the presence of mRNA alpha subunit in these tumors indicating the adenomas themselves as the origin of the circulating alpha-subunit. Synthesis of these two hormones, which are chemically very different, by the same tumor cells indicates a high degree of differentiation of these cells. We are unable at this time to conclusively correlate differentiation of these tumors aggressively.

  9. Interactions between beta subunits of the KCNMB family and Slo3: beta4 selectively modulates Slo3 expression and function.

    Directory of Open Access Journals (Sweden)

    Cheng-Tao Yang

    2009-07-01

    Full Text Available The pH and voltage-regulated Slo3 K(+ channel, a homologue of the Ca(2+- and voltage-regulated Slo1 K(+ channel, is thought to be primarily expressed in sperm, but the properties of Slo3 studied in heterologous systems differ somewhat from the native sperm KSper pH-regulated current. There is the possibility that critical partners that regulate Slo3 function remain unidentified. The extensive amino acid identity between Slo3 and Slo1 suggests that auxiliary beta subunits regulating Slo1 channels might coassemble with and modulate Slo3 channels. Four distinct beta subunits composing the KCNMB family are known to regulate the function and expression of Slo1 Channels.To examine the ability of the KCNMB family of auxiliary beta subunits to regulate Slo3 function, we co-expressed Slo3 and each beta subunit in heterologous expression systems and investigated the functional consequences by electrophysiological and biochemical analyses. The beta4 subunit produced an 8-10 fold enhancement of Slo3 current expression in Xenopus oocytes and a similar enhancement of Slo3 surface expression as monitored by YFP-tagged Slo3 or biotin labeled Slo3. Neither beta1, beta2, nor beta3 mimicked the ability of beta4 to increase surface expression, although biochemical tests suggested that all four beta subunits are competent to coassemble with Slo3. Fluorescence microscopy from beta4 KO mice, in which an eGFP tag replaced the deleted exon, revealed that beta4 gene promoter is active in spermatocytes. Furthermore, quantitative RT-PCR demonstrated that beta4 and Slo3 exhibit comparable mRNA abundance in both testes and sperm.These results argue that, for native mouse Slo3 channels, the beta4 subunit must be considered as a potential interaction partner and, furthermore, that KCNMB subunits may have functions unrelated to regulation of the Slo1 alpha subunit.

  10. Conservation of complete trimethylation of lysine-43 in the rotor ring of c-subunits of metazoan adenosine triphosphate (ATP) synthases.

    Science.gov (United States)

    Walpole, Thomas B; Palmer, David N; Jiang, Huibing; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2015-04-01

    The rotors of ATP synthases turn about 100 times every second. One essential component of the rotor is a ring of hydrophobic c-subunits in the membrane domain of the enzyme. The rotation of these c-rings is driven by a transmembrane proton-motive force, and they turn against a surface provided by another membrane protein, known as subunit a. Together, the rotating c-ring and the static subunit a provide a pathway for protons through the membrane in which the c-ring and subunit a are embedded. Vertebrate and invertebrate c-subunits are well conserved. In the structure of the bovine F1-ATPase-c-ring subcomplex, the 75 amino acid c-subunit is folded into two transmembrane α-helices linked by a short loop. Each bovine rotor-ring consists of eight c-subunits with the N- and C-terminal α-helices forming concentric inner and outer rings, with the loop regions exposed to the phospholipid head-group region on the matrix side of the inner membrane. Lysine-43 is in the loop region and its ε-amino group is completely trimethylated. The role of this modification is unknown. If the trimethylated lysine-43 plays some important role in the functioning, assembly or degradation of the c-ring, it would be expected to persist throughout vertebrates and possibly invertebrates also. Therefore, we have carried out a proteomic analysis of c-subunits across representative species from different classes of vertebrates and from invertebrate phyla. In the twenty-nine metazoan species that have been examined, the complete methylation of lysine-43 is conserved, and it is likely to be conserved throughout the more than two million extant metazoan species. In unicellular eukaryotes and prokaryotes, when the lysine is conserved it is unmethylated, and the stoichiometries of c-subunits vary from 9-15. One possible role for the trimethylated residue is to provide a site for the specific binding of cardiolipin, an essential component of ATP synthases in mitochondria. © 2015 by The American

  11. γ-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit*

    Science.gov (United States)

    Hannan, Saad; Wilkins, Megan E.; Dehghani-Tafti, Ebrahim; Thomas, Philip; Baddeley, Stuart M.; Smart, Trevor G.

    2011-01-01

    γ-Aminobutyric acid type B (GABAB) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABAB receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABAB receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABAB receptor. PMID:21724853

  12. Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets.

    Science.gov (United States)

    Bengtsson, Johan; Eriksson, K Martin; Hartmann, Martin; Wang, Zheng; Shenoy, Belle Damodara; Grelet, Gwen-Aëlle; Abarenkov, Kessy; Petri, Anna; Rosenblad, Magnus Alm; Nilsson, R Henrik

    2011-10-01

    The ribosomal small subunit (SSU) rRNA gene has emerged as an important genetic marker for taxonomic identification in environmental sequencing datasets. In addition to being present in the nucleus of eukaryotes and the core genome of prokaryotes, the gene is also found in the mitochondria of eukaryotes and in the chloroplasts of photosynthetic eukaryotes. These three sets of genes are conceptually paralogous and should in most situations not be aligned and analyzed jointly. To identify the origin of SSU sequences in complex sequence datasets has hitherto been a time-consuming and largely manual undertaking. However, the present study introduces Metaxa ( http://microbiology.se/software/metaxa/ ), an automated software tool to extract full-length and partial SSU sequences from larger sequence datasets and assign them to an archaeal, bacterial, nuclear eukaryote, mitochondrial, or chloroplast origin. Using data from reference databases and from full-length organelle and organism genomes, we show that Metaxa detects and scores SSU sequences for origin with very low proportions of false positives and negatives. We believe that this tool will be useful in microbial and evolutionary ecology as well as in metagenomics.

  13. Glycosylation of alpha(2)delta(1) subunit: a sweet talk with Ca(v)1.2 channels

    Czech Academy of Sciences Publication Activity Database

    Lazniewska, Joanna; Weiss, Norbert

    2016-01-01

    Roč. 35, č. 3 (2016), s. 239-242 ISSN 0231-5882 R&D Projects: GA ČR GA15-13556S; GA MŠk 7AMB15FR015 Institutional support: RVO:61388963 Keywords : calcium channel * Ca(v)1.2 channel * ancillary subunit * alpha(2)delta(1) subunit * glycosylation * trafficking Subject RIV: CE - Biochemistry Impact factor: 1.170, year: 2016

  14. Two transgenic mouse models for β-subunit components of succinate-CoA ligase yielding pleiotropic metabolic alterations

    DEFF Research Database (Denmark)

    Kacso, Gergely; Ravasz, Dora; Doczi, Judit

    2016-01-01

    Succinate-CoA ligase (SUCL) is a heterodimer enzyme composed of Suclg1 α-subunit and a substrate-specific Sucla2 or Suclg2 β-subunit yielding ATP or GTP, respectively. In humans, the deficiency of this enzyme leads to encephalomyopathy with or without methylmalonyl aciduria, in addition to result...

  15. Resistance to cycloxaprid in Laodelphax striatellus is associated with altered expression of nicotinic acetylcholine receptor subunits.

    Science.gov (United States)

    Zhang, Yueliang; Han, Yangchun; Yang, Qiong; Wang, Lihua; He, Peng; Liu, Zewen; Li, Zhong; Guo, Huifang; Fang, Jichao

    2018-04-01

    Cycloxaprid is a new oxabridged cis-configuration neonicotinoid insecticide, the resistance development potential and underlying resistance mechanism of which were investigated in the small brown planthopper, Laodelphax striatellus (Fallén), an important agricultural pest of rice. A cycloxaprid-resistant strain (YN-CPD) only achieved 10-fold higher resistance, in contrast to 106-fold higher resistance to buprofezin and 332-fold higher resistance to chlorpyrifos achieved after exposure to similar selection pressure, and the cycloxaprid selected line showed no cross-resistance to the buprofezin and chlorpyrifos-selected resistance strains. Moreover, we identified 10 nicotinic acetylcholine receptor (nAChR) subunits from the transcriptome of L. striatellus, and six segments had open reading frames (ORFs). While we did not find mutations in the nAChR genes of L. striatellus, subunits Lsα1 and Lsβ1 exhibited, respectively, 9.60-fold and 3.36-fold higher expression in the resistant strain, while Lsα8 exhibited 0.44-fold lower expression. Suppression of Lsα1 through ingestion of dsLsα1 led to an increase in susceptibility to cycloxaprid. The findings indicate that resistance to cycloxaprid develops slowly compared with resistance to other chemicals and without cross-resistance to chlorpyrifos or buprofezin; over-expressed Lsα1 is associated with low cycloxaprid resistance levels, but the importance of over-expressed Lsβ1 and reduced expression of Lsα8 could not be excluded. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Structure of the Escherichia coli RNA polymerase α subunit C-terminal domain

    International Nuclear Information System (INIS)

    Lara-González, Samuel; Birktoft, Jens J.; Lawson, Catherine L.

    2010-01-01

    The crystal structure of the dimethyllysine derivative of the E. coli RNA polymerase α subunit C-terminal domain is reported at 2.0 Å resolution. The α subunit C-terminal domain (αCTD) of RNA polymerase (RNAP) is a key element in transcription activation in Escherichia coli, possessing determinants responsible for the interaction of RNAP with DNA and with transcription factors. Here, the crystal structure of E. coli αCTD (α subunit residues 245–329) determined to 2.0 Å resolution is reported. Crystals were obtained after reductive methylation of the recombinantly expressed domain. The crystals belonged to space group P2 1 and possessed both pseudo-translational symmetry and pseudo-merohedral twinning. The refined coordinate model (R factor = 0.193, R free = 0.236) has improved geometry compared with prior lower resolution determinations of the αCTD structure [Jeon et al. (1995 ▶), Science, 270, 1495–1497; Benoff et al. (2002 ▶), Science, 297, 1562–1566]. An extensive dimerization interface formed primarily by N- and C-terminal residues is also observed. The new coordinates will facilitate the improved modeling of αCTD-containing multi-component complexes visualized at lower resolution using X-ray crystallography and electron-microscopy reconstruction

  17. Architecture of the large subunit of the mammalian mitochondrial ribosome.

    Science.gov (United States)

    Greber, Basil J; Boehringer, Daniel; Leitner, Alexander; Bieri, Philipp; Voigts-Hoffmann, Felix; Erzberger, Jan P; Leibundgut, Marc; Aebersold, Ruedi; Ban, Nenad

    2014-01-23

    Mitochondrial ribosomes synthesize a number of highly hydrophobic proteins encoded on the genome of mitochondria, the organelles in eukaryotic cells that are responsible for energy conversion by oxidative phosphorylation. The ribosomes in mammalian mitochondria have undergone massive structural changes throughout their evolution, including ribosomal RNA shortening and acquisition of mitochondria-specific ribosomal proteins. Here we present the three-dimensional structure of the 39S large subunit of the porcine mitochondrial ribosome determined by cryo-electron microscopy at 4.9 Å resolution. The structure, combined with data from chemical crosslinking and mass spectrometry experiments, reveals the unique features of the 39S subunit at near-atomic resolution and provides detailed insight into the architecture of the polypeptide exit site. This region of the mitochondrial ribosome has been considerably remodelled compared to its bacterial counterpart, providing a specialized platform for the synthesis and membrane insertion of the highly hydrophobic protein components of the respiratory chain.

  18. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    Energy Technology Data Exchange (ETDEWEB)

    Koyuncu, Fatma Baycan, E-mail: fatmabaycan@hotmail.co [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey); Koyuncu, Sermet [Can Vocational School, Canakkale Onsekiz Mart University, 17400 Canakkale (Turkey); Ozdemir, Eyup, E-mail: eozdemir@comu.edu.t [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey)

    2010-07-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E{sub g} was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  19. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    International Nuclear Information System (INIS)

    Koyuncu, Fatma Baycan; Koyuncu, Sermet; Ozdemir, Eyup

    2010-01-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E g was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  20. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs

    NARCIS (Netherlands)

    Groves, M R; Hanlon, N; Turowski, P; Hemmings, B A; Barford, D

    1999-01-01

    The PR65/A subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit, generating functionally diverse heterotrimers. Mutations of the beta isoform of PR65 are associated with lung and colon tumors. The

  1. Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro.

    Science.gov (United States)

    Gallenberger, Martin; Meinel, Dominik M; Kroeber, Markus; Wegner, Michael; Milkereit, Philipp; Bösl, Michael R; Tamm, Ernst R

    2011-02-01

    Mutations in WD repeat domain 36 gene (WDR36) play a causative role in some forms of primary open-angle glaucoma, a leading cause of blindness worldwide. WDR36 is characterized by the presence of multiple WD40 repeats and shows homology to Utp21, an essential protein component of the yeast small subunit (SSU) processome required for maturation of 18S rRNA. To clarify the functional role of WDR36 in the mammalian organism, we generated and investigated mutant mice with a targeted deletion of Wdr36. In parallel experiments, we used RNA interference to deplete WDR36 mRNA in mouse embryos and cultured human trabecular meshwork (HTM-N) cells. Deletion of Wdr36 in the mouse caused preimplantation embryonic lethality, and essentially similar effects were observed when WDR36 mRNA was depleted in mouse embryos by RNA interference. Depletion of WDR36 mRNA in HTM-N cells caused apoptotic cell death and upregulation of mRNA for BAX, TP53 and CDKN1A. By immunocytochemistry, staining for WDR36 was observed in the nucleolus of cells, which co-localized with that of nucleolar proteins such as nucleophosmin and PWP2. In addition, recombinant and epitope-tagged WDR36 localized to the nucleolus of HTM-N cells. By northern blot analysis, a substantial decrease in 21S rRNA, the precursor of 18S rRNA, was observed following knockdown of WDR36. In addition, metabolic-labeling experiments consistently showed a delay of 18S rRNA maturation in WDR36-depleted cells. Our results provide evidence that WDR36 is an essential protein in mammalian cells which is involved in the nucleolar processing of SSU 18S rRNA.

  2. The δ subunit of RNA polymerase guides promoter selectivity and virulence in Staphylococcus aureus.

    Science.gov (United States)

    Weiss, Andy; Ibarra, J Antonio; Paoletti, Jessica; Carroll, Ronan K; Shaw, Lindsey N

    2014-04-01

    In Gram-positive bacteria, and particularly the Firmicutes, the DNA-dependent RNA polymerase (RNAP) complex contains an additional subunit, termed the δ factor, or RpoE. This enigmatic protein has been studied for more than 30 years for various organisms, but its function is still not well understood. In this study, we investigated its role in the major human pathogen Staphylococcus aureus. We showed conservation of important structural regions of RpoE in S. aureus and other species and demonstrated binding to core RNAP that is mediated by the β and/or β' subunits. To identify the impact of the δ subunit on transcription, we performed transcriptome sequencing (RNA-seq) analysis and observed 191 differentially expressed genes in the rpoE mutant. Ontological analysis revealed, quite strikingly, that many of the downregulated genes were known virulence factors, while several mobile genetic elements (SaPI5 and prophage SA3usa) were strongly upregulated. Phenotypically, the rpoE mutant had decreased accumulation and/or activity of a number of key virulence factors, including alpha toxin, secreted proteases, and Panton-Valentine leukocidin (PVL). We further observed significantly decreased survival of the mutant in whole human blood, increased phagocytosis by human leukocytes, and impaired virulence in a murine model of infection. Collectively, our results demonstrate that the δ subunit of RNAP is a critical component of the S. aureus transcription machinery and plays an important role during infection.

  3. Characterization and application of a radioimmunoassay for reduced, carboxymethylated human luteinizing hormone. cap alpha. -subunit. [/sup 125/I tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Keutmann, H.T.; Beitins, I.Z.; Johnson, L.; McArthur, J.W.

    1978-12-01

    We have established a double antibody RIA using a rabbit antiserum prepared against reduced, carboxymethylated (RCXM) human LH ..cap alpha..-subunit, with RCXM-..cap alpha.. as tracer and standard. This antiserum did not cross-react with any native gonadotropins or subunit, and reacted only weakly with RCXM-..cap alpha... A tryptic digest of RCXM ..cap alpha..-subunit was completely reactive, while chymotryptic digestion abolished all immunoreactivity. By testing with separate tryptic fragments, the recognition site could be localized to a segment close to the amino-terminus of the peptide chain. When applied to measurement of serum and urine, an immunoreactive species, parallel to RCXM ..cap alpha..-subunit by serial dilution, was found in concentrations of 1-2 ng/ml in serum and 3-4 ng/ml in urine. Similar levels of the immunoreactive component were found in conditions of elevated gonadotropins (e.g. pregnancy) as well as gonadotropin deficiency (panhypopituitarism and Kallmann's syndrome). After stimulation with LHRH, no rise was noted at times up to 6 h despite the fact that both LH and LH-..cap alpha.. were elevated. The data indicate that the sequence-specific antiserum may be detecting an immunoreactive form of ..cap alpha..-subunit of LH whose kinetics of appearance and disappearance differs from those of the native subunit.

  4. 77 FR 72702 - Small Business Size Standards: Information

    Science.gov (United States)

    2012-12-06

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AG26 Small Business Size Standards: Information AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: The United States Small Business Administration (SBA) is increasing the receipts based small business size standards for 15...

  5. Arabidopsis thaliana GYRB3 does not encode a DNA gyrase subunit.

    Directory of Open Access Journals (Sweden)

    Katherine M Evans-Roberts

    2010-03-01

    Full Text Available DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the model plant, Arabidopsis thaliana, is predicted to encode four gyrase subunits: AtGyrA, AtGyrB1, AtGyrB2 and AtGyrB3.We found, contrary to previous data, that AtGyrB3 is not essential to the survival of A. thaliana. Bioinformatic analysis suggests AtGyrB3 is considerably shorter than other gyrase B subunits, lacking part of the ATPase domain and other key motifs found in all type II topoisomerases; but it does contain a putative DNA-binding domain. Partially purified AtGyrB3 cannot bind E. coli GyrA or support supercoiling. AtGyrB3 cannot complement an E. coli gyrB temperature-sensitive strain, whereas AtGyrB2 can. Yeast two-hybrid analysis suggests that AtGyrB3 cannot bind to AtGyrA or form a dimer.These data strongly suggest that AtGyrB3 is not a gyrase subunit but has another unknown function. One possibility is that it is a nuclear protein with a role in meiosis in pollen.

  6. Subunit vaccine candidates against Aeromonas salmonicida in rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Marana, Moonika Haahr; Jørgensen, Louise von Gersdorff; Skov, Jakob; Chettri, Jiwan Kumar; Holm Mattsson, Andreas; Dalsgaard, Inger; Kania, Per Walter; Buchmann, Kurt

    2017-01-01

    Aeromonas salmonicida subsp. salmonicida is the etiological agent of furunculosis and a major fish health problem in salmonid aquaculture worldwide. Injection vaccination with commercial mineral oil-adjuvanted bacterin vaccines has been partly successful in preventing the disease but in Danish rainbow trout (Oncorhynchus mykiss, Walbaum) aquaculture furunculosis outbreaks still occur. In this study we tested the efficacy of experimental subunit vaccines against A. salmonicida infection in rainbow trout. We utilized in silico screening of the proteome of A. salmonicida subsp. salmonicida strain A449 and identified potential protective protein antigens that were tested by in vivo challenge trial. A total of 14 proteins were recombinantly expressed in Escherichia coli and prepared in 3 different subunit vaccine combinations to immunize 3 groups of rainbow trout by intraperitoneal (i.p.) injection. The fish were exposed to virulent A. salmonicida 7 weeks after immunization. To assess the efficacy of the subunit vaccines we evaluated the immune response in fish after immunization and challenge infection by measuring the antibody levels and monitoring the survival of fish in different groups. The survival of fish at 3 weeks after challenge infection showed that all 3 groups of fish immunized with 3 different protein combinations exhibited significantly lower mortalities (17-30%) compared to the control groups (48% and 56%). The ELISA results revealed significantly elevated antibody levels in fish against several protein antigens, which in some cases were positively correlated to the survival.

  7. Origins of collectivity in small systems

    Science.gov (United States)

    Schenke, Björn

    2017-11-01

    We review recent developments in the theoretical description and understanding of multi-particle correlation measurements in collisions of small projectiles (p/d/3He) with heavy nuclei (Au, Pb) as well as proton+proton collisions. We focus on whether the physical processes responsible for the observed long range rapidity correlations and their azimuthal structure are the same in small systems as in heavy ion collisions. In the latter they are interpreted as generated by the initial spatial geometry being transformed into momentum correlations by strong final state interactions. However, explicit calculations show that also initial state momentum correlations are present and could contribute to observables in small systems. If strong final state interactions are present in small systems, recent developments show that results are sensitive to the shape of the proton and its fluctuations.

  8. Allosteric regulation and communication between subunits in uracil phosphoribosyltransferase from Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    Arent, Susan; Harris, Pernille; Jensen, Kaj Frank

    2005-01-01

    organisms. To understand the allosteric regulation, crystal structures were determined for S. solfataricus UPRTase in complex with UMP and with UMP and the allosteric inhibitor CTP. Also, a structure with UMP bound in half of the active sites was determined. All three complexes form tetramers but reveal...... to rearrangements in the quaternary structure imply that this residue plays a major role in regulation of the enzyme and in communication between subunits. The ribose ring of UMP adopts alternative conformations in the cis and trans subunits of the UPRTase-UMP tetramer with associated differences...

  9. The testis-specific Cα2 subunit of PKA is kinetically indistinguishable from the common Cα1 subunit of PKA

    Directory of Open Access Journals (Sweden)

    Herberg Friedrich W

    2011-08-01

    Full Text Available Abstract Background The two variants of the α-form of the catalytic (C subunit of protein kinase A (PKA, designated Cα1 and Cα2, are encoded by the PRKACA gene. Whereas Cα1 is ubiquitous, Cα2 expression is restricted to the sperm cell. Cα1 and Cα2 are encoded with different N-terminal domains. In Cα1 but not Cα2 the N-terminal end introduces three sites for posttranslational modifications which include myristylation at Gly1, Asp-specific deamidation at Asn2 and autophosphorylation at Ser10. Previous reports have implicated specific biological features correlating with these modifications on Cα1. Since Cα2 is not modified in the same way as Cα1 we tested if they have distinct biochemical activities that may be reflected in different biological properties. Results We show that Cα2 interacts with the two major forms of the regulatory subunit (R of PKA, RI and RII, to form cAMP-sensitive PKAI and PKAII holoenzymes both in vitro and in vivo as is also the case with Cα1. Moreover, using Surface Plasmon Resonance (SPR, we show that the interaction patterns of the physiological inhibitors RI, RII and PKI were comparable for Cα2 and Cα1. This is also the case for their potency to inhibit catalytic activities of Cα2 and Cα1. Conclusion We conclude that the regulatory complexes formed with either Cα1 or Cα2, respectively, are indistinguishable.

  10. Expression of NMDA receptor subunits in human blood lymphocytes: A peripheral biomarker in online computer game addiction.

    Science.gov (United States)

    Sadat-Shirazi, Mitra-Sadat; Vousooghi, Nasim; Alizadeh, Bentolhoda; Makki, Seyed Mohammad; Zarei, Seyed Zeinolabedin; Nazari, Shahrzad; Zarrindast, Mohammad Reza

    2018-05-23

    Background and aims Repeated performance of some behaviors such as playing computer games could result in addiction. The NMDA receptor is critically involved in the development of behavioral and drug addictions. It has been claimed that the expression level of neurotransmitter receptors in the brain may be reflected in peripheral blood lymphocytes (PBLs). Methods Here, using a real-time PCR method, we have investigated the mRNA expression of GluN2A, GluN2D, GluN3A, and GluN3B subunits of the NMDA receptor in PBLs of male online computer game addicts (n = 25) in comparison with normal subjects (n = 26). Results Expression levels of GluN2A, GluN2D, and GluN3B subunits were not statistically different between game addicts and the control group. However, the mRNA expression of the GluN3A subunit was downregulated in PBLs of game addicts. Discussion and conclusions Transcriptional levels of GluN2A and GluN2D subunits in online computer game addicts are similar to our previously reported data of opioid addiction and are not different from the control group. However, unlike our earlier finding of drug addiction, the mRNA expression levels of GluN3A and GluN3B subunits in PBLs of game addicts are reduced and unchanged, respectively, compared with control subjects. It seems that the downregulated state of the GluN3A subunit of NMDA receptor in online computer game addicts is a finding that deserves more studies in the future to see whether it can serve as a peripheral biomarker in addiction studies, where the researcher wants to rule out the confusing effects of abused drugs.

  11. Identification of a GTP-binding protein α subunit that lacks an apparent ADP-ribosylation site for pertussis toxin

    International Nuclear Information System (INIS)

    Fong, H.K.W.; Yoshimoto, K.K.; Eversole-Cire, P.; Simon, M.I.

    1988-01-01

    Recent molecular cloning of cDNA for the α subunit of bovine transducin (a guanine nucleotide-binding regulatory protein, or G protein) has revealed the presence of two retinal-specific transducins, called T/sub r/ and T/sub c/, which are expressed in rod or cone photoreceptor cells. In a further study of G-protein diversity and signal transduction in the retina, the authors have identified a G-protein α subunit, which they refer to as G/sub z/α, by isolating a human retinal cDNA clone that cross-hybridizes at reduced stringency with bovine T/sub r/ α-subunit cDNA. The deduced amino acid sequence of G/sub z/α is 41-67% identical with those of other known G-protein α subunits. However, the 355-residue G/sub z/α lacks a consensus site for ADP-ribosylation by pertussis toxin, and its amino acid sequence varies within a number of regions that are strongly conserved among all of the other G-protein α subunits. They suggest that G/sub z/α, which appears to be highly expressed in neural tissues, represents a member of a subfamily of G proteins that mediate signal transduction in pertussis toxin-insensitive systems

  12. Role of the Small GTPase Rho3 in Golgi/Endosome trafficking through functional interaction with adaptin in Fission Yeast.

    Directory of Open Access Journals (Sweden)

    Ayako Kita

    Full Text Available BACKGROUND: We had previously identified the mutant allele of apm1(+ that encodes a homolog of the mammalian µ1A subunit of the clathrin-associated adaptor protein-1 (AP-1 complex, and we demonstrated the role of Apm1 in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we isolated rho3(+, which encodes a Rho-family small GTPase, an important regulator of exocystosis, as a multicopy-suppressor of the temperature-sensitive growth of the apm1-1 mutant cells. Overexpression of Rho3 suppressed the Cl(- sensitivity and immunosuppressant sensitivity of the apm1-1 mutant cells. Overexpression of Rho3 also suppressed the fragmentation of vacuoles, and the accumulation of v-SNARE Syb1 in Golgi/endosomes and partially suppressed the defective secretion associated with apm1-deletion cells. Notably, electron microscopic observation of the rho3-deletion cells revealed the accumulation of abnormal Golgi-like structures, vacuole fragmentation, and accumulation of secretory vesicles; these phenotypes were very similar to those of the apm1-deletion cells. Furthermore, the rho3-deletion cells and apm1-deletion cells showed very similar phenotypic characteristics, including the sensitivity to the immunosuppressant FK506, the cell wall-damaging agent micafungin, Cl(-, and valproic acid. Green fluorescent protein (GFP-Rho3 was localized at Golgi/endosomes as well as the plasma membrane and division site. Finally, Rho3 was shown to form a complex with Apm1 as well as with other subunits of the clathrin-associated AP-1 complex in a GTP- and effector domain-dependent manner. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings reveal a novel role of Rho3 in the regulation of Golgi/endosome trafficking and suggest that clathrin-associated adaptor protein-1 and Rho3 co-ordinate in intracellular transport in fission yeast. To the best of our knowledge, this study provides the first evidence

  13. Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site.

    Science.gov (United States)

    Adams, Julian; Chen, Zhi-Ping; Van Denderen, Bryce J W; Morton, Craig J; Parker, Michael W; Witters, Lee A; Stapleton, David; Kemp, Bruce E

    2004-01-01

    AMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP. The AMP binding site of the gamma(1) CBS1/CBS2 pair, modeled on the structures of the CBS sequences present in the inosine monophosphate dehydrogenase crystal structure, contains three arginine residues 70, 152, and 171 and His151. The yeast gamma homolog, snf4 contains a His151Gly substitution, and when this is introduced into gamma(1), AMP allosteric control is substantially lost and explains why the yeast snf1p/snf4p complex is insensitive to AMP. Arg70 in gamma(1) corresponds to the site of mutation in human gamma(2) and pig gamma(3) genes previously identified to cause an unusual cardiac phenotype and glycogen storage disease, respectively. Mutation of any of AMP binding site Arg residues to Gln substantially abolishes AMP allosteric control in expressed AMPK holoenzyme. The Arg/Gln mutations also suppress the previously described inhibitory properties of ATP and render the enzyme constitutively active. We propose that ATP acts as an intrasteric inhibitor by bridging the alpha and gamma subunits and that AMP functions to derepress AMPK activity.

  14. Generation of recombinant antibodies to rat GABAA receptor subunits by affinity selection on synthetic peptides.

    Directory of Open Access Journals (Sweden)

    Sujatha P Koduvayur

    Full Text Available The abundance and physiological importance of GABAA receptors in the central nervous system make this neurotransmitter receptor an attractive target for localizing diagnostic and therapeutic biomolecules. GABAA receptors are expressed within the retina and mediate synaptic signaling at multiple stages of the visual process. To generate monoclonal affinity reagents that can specifically recognize GABAA receptor subunits, we screened two bacteriophage M13 libraries, which displayed human scFvs, by affinity selection with synthetic peptides predicted to correspond to extracellular regions of the rat α1 and β2 GABAA subunits. We isolated three anti-β2 and one anti-α1 subunit specific scFvs. Fluorescence polarization measurements revealed all four scFvs to have low micromolar affinities with their cognate peptide targets. The scFvs were capable of detecting fully folded GABAA receptors heterologously expressed by Xenopus laevis oocytes, while preserving ligand-gated channel activity. Moreover, A10, the anti-α1 subunit-specific scFv, was capable of detecting native GABAA receptors in the mouse retina, as observed by immunofluorescence staining. In order to improve their apparent affinity via avidity, we dimerized the A10 scFv by fusing it to the Fc portion of the IgG. The resulting scFv-Fc construct had a Kd of ∼26 nM, which corresponds to an approximately 135-fold improvement in binding, and a lower detection limit in dot blots, compared to the monomeric scFv. These results strongly support the use of peptides as targets for generating affinity reagents to membrane proteins and encourage investigation of molecular conjugates that use scFvs as anchoring components to localize reagents of interest at GABAA receptors of retina and other neural tissues, for studies of receptor activation and subunit structure.

  15. Urine exosomes from healthy and hypertensive pregnancies display elevated level of - α-subunit and cleaved - α- and γ-subunits of the epithelial sodium channel--ENaC

    DEFF Research Database (Denmark)

    Nielsen, Maria Ravn; Frederiksen-Møller, Britta; Langkilde, Rikke Zachar

    2017-01-01

    Preeclampsia is characterized by hypertension, proteinuria, suppression of plasma renin-angiotensin-aldosterone, and impaired urine sodium excretion. Aberrantly filtered plasmin in urine may activate proteolytically the γ-subunit of the epithelial sodium channel (ENaC) and promote Na+ reabsorption...... aldosterone was higher in pregnancy compared to non-pregnancy, and the urine Na/K ratio was lower in preeclampsia compared to healthy pregnancy. Exosome markers ALIX and AQP-2 were stably associated with exosomes across groups. Exosomal α-ENaC-subunit migrated at 75 kDa and dominantly at 50 k......Da and was significantly elevated in pregnancy. In human kidney cortex tissue and two of four pelvis catheter urine, ~90-100 kDa full-length γ-ENaC was detected while no full-length γ-ENaC but 75, 60, and 37 kDa variants dominated in voided urine exosomes. There was no difference in γ-ENaC protein abundances between...

  16. Rrp12 and the Exportin Crm1 participate in late assembly events in the nucleolus during 40S ribosomal subunit biogenesis.

    Science.gov (United States)

    Moriggi, Giulia; Nieto, Blanca; Dosil, Mercedes

    2014-12-01

    During the biogenesis of small ribosomal subunits in eukaryotes, the pre-40S particles formed in the nucleolus are rapidly transported to the cytoplasm. The mechanisms underlying the nuclear export of these particles and its coordination with other biogenesis steps are mostly unknown. Here we show that yeast Rrp12 is required for the exit of pre-40S particles to the cytoplasm and for proper maturation dynamics of upstream 90S pre-ribosomes. Due to this, in vivo elimination of Rrp12 leads to an accumulation of nucleoplasmic 90S to pre-40S transitional particles, abnormal 35S pre-rRNA processing, delayed elimination of processing byproducts, and no export of intermediate pre-40S complexes. The exportin Crm1 is also required for the same pre-ribosome maturation events that involve Rrp12. Thus, in addition to their implication in nuclear export, Rrp12 and Crm1 participate in earlier biosynthetic steps that take place in the nucleolus. Our results indicate that, in the 40S subunit synthesis pathway, the completion of early pre-40S particle assembly, the initiation of byproduct degradation and the priming for nuclear export occur in an integrated manner in late 90S pre-ribosomes.

  17. Interdependence of Pes1, Bop1, and WDR12 controls nucleolar localization and assembly of the PeBoW complex required for maturation of the 60S ribosomal subunit.

    Science.gov (United States)

    Rohrmoser, Michaela; Hölzel, Michael; Grimm, Thomas; Malamoussi, Anastassia; Harasim, Thomas; Orban, Mathias; Pfisterer, Iris; Gruber-Eber, Anita; Kremmer, Elisabeth; Eick, Dirk

    2007-05-01

    The PeBoW complex is essential for cell proliferation and maturation of the large ribosomal subunit in mammalian cells. Here we examined the role of PeBoW-specific proteins Pes1, Bop1, and WDR12 in complex assembly and stability, nucleolar transport, and pre-ribosome association. Recombinant expression of the three subunits is sufficient for complex formation. The stability of all three subunits strongly increases upon incorporation into the complex. Only overexpression of Bop1 inhibits cell proliferation and rRNA processing, and its negative effects could be rescued by coexpression of WDR12, but not Pes1. Elevated levels of Bop1 induce Bop1/WDR12 and Bop1/Pes1 subcomplexes. Knockdown of Bop1 abolishes the copurification of Pes1 with WDR12, demonstrating Bop1 as the integral component of the complex. Overexpressed Bop1 substitutes for endogenous Bop1 in PeBoW complex assembly, leading to the instability of endogenous Bop1. Finally, indirect immunofluorescence, cell fractionation, and sucrose gradient centrifugation experiments indicate that transport of Bop1 from the cytoplasm to the nucleolus is Pes1 dependent, while Pes1 can migrate to the nucleolus and bind to preribosomal particles independently of Bop1. We conclude that the assembly and integrity of the PeBoW complex are highly sensitive to changes in Bop1 protein levels.

  18. 78 FR 77334 - Small Business Size Standards: Construction

    Science.gov (United States)

    2013-12-23

    ... enrollment in the System of Award Management's (SAM) Dynamic Small Business Search database, and more firms... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AG37 Small Business Size Standards: Construction AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: The United States Small...

  19. Isolation and characterization of human cDNA clones encoding the α and the α' subunits of casein kinase II

    International Nuclear Information System (INIS)

    Lozeman, F.J.; Litchfield, D.W.; Piening, C.; Takio, Koji; Walsh, K.A.; Krebs, E.G.

    1990-01-01

    Casein kinase II is a widely distributed protein serine/threonine kinase. The holoenzyme appears to be a tetramer, containing two α or α' subunits (or one of each) and two β subunits. Complementary DNA clones encoding the subunits of casein kinase II were isolated from a human T-cell λgt 10 library using cDNA clones isolated from Drosophila melanogasten. One of the human cDNA clones (hT4.1) was 2.2 kb long, including a coding region of 1176 bp preceded by 156 bp (5' untranslated region) and followed by 871 bp (3' untranslated region). The hT4.1 close was nearly identical in size and sequence with a cDNA clone from HepG2 human hepatoma cultured cells. Another of the human T-cell cDNA clones (hT9.1) was 1.8 kb long, containing a coding region of 1053 bp preceded by 171 by (5' untranslated region) and followed by 550 bp (3' untranslated region). Amino acid sequences deduced from these two cDNA clones were about 85% identical. Most of the difference between the two encoded polypeptides was in the carboxy-terminal region, but heterogeneity was distributed throughout the molecules. Partial amino acid sequence was determined in a mixture of α and α' subunits from bovine lung casein kinase II. The bovine sequences aligned with the 2 human cDNA-encoded polypeptides with only 2 discrepancies out of 535 amino acid positions. This confirmed that the two human T-cell cDNA clones encoded the α and α' subunits of casein kinase II. These studies show that there are two distinct catalytic subunits for casein II (α and α') and that the sequence of these subunits is largely conserved between the bovine and the human

  20. Spectroscopic Evidence for a H Bond Network at Y356 Located at the Subunit Interface of Active E. coli Ribonucleotide Reductase.

    Science.gov (United States)

    Nick, Thomas U; Ravichandran, Kanchana R; Stubbe, JoAnne; Kasanmascheff, Müge; Bennati, Marina

    2017-07-18

    The reaction catalyzed by E. coli ribonucleotide reductase (RNR) composed of α and β subunits that form an active α2β2 complex is a paradigm for proton-coupled electron transfer (PCET) processes in biological transformations. β2 contains the diferric tyrosyl radical (Y 122 ·) cofactor that initiates radical transfer (RT) over 35 Å via a specific pathway of amino acids (Y 122 · ⇆ [W 48 ] ⇆ Y 356 in β2 to Y 731 ⇆ Y 730 ⇆ C 439 in α2). Experimental evidence exists for colinear and orthogonal PCET in α2 and β2, respectively. No mechanistic model yet exists for the PCET across the subunit (α/β) interface. Here, we report unique EPR spectroscopic features of Y 356 ·-β, the pathway intermediate generated by the reaction of 2,3,5-F 3 Y 122 ·-β2/CDP/ATP with wt-α2, Y 731 F-α2, or Y 730 F-α2. High field EPR (94 and 263 GHz) reveals a dramatically perturbed g tensor. [ 1 H] and [ 2 H]-ENDOR reveal two exchangeable H bonds to Y 356 ·: a moderate one almost in-plane with the π-system and a weak one. DFT calculation on small models of Y· indicates that two in-plane, moderate H bonds (r O-H ∼1.8-1.9 Å) are required to reproduce the g x value of Y 356 · (wt-α2). The results are consistent with a model, in which a cluster of two, almost symmetrically oriented, water molecules provide the two moderate H bonds to Y 356 · that likely form a hydrogen bond network of water molecules involved in either the reversible PCET across the subunit interface or in H + release to the solvent during Y 356 oxidation.

  1. Crystallization of the glycogen-binding domain of the AMP-activated protein kinase β subunit and preliminary X-ray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Polekhina, Galina, E-mail: gpolekhina@svi.edu.au; Feil, Susanne C.; Gupta, Abhilasha [St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); O’Donnell, Paul [Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville 3010 (Australia); Stapleton, David; Parker, Michael W. [St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065 (Australia)

    2005-01-01

    The glycogen-binding domain of the AMP-activated kinase β subunit has been crystallized in the presence of β-cyclodextrin. The structure has been determined by single isomorphous replacement and threefold averaging using in-house X-ray data collected from selenomethionine-substituted protein. AMP-activated protein kinase (AMPK) is an intracellular energy sensor that regulates metabolism in response to energy demand and supply by adjusting the ATP-generating and ATP-consuming pathways. AMPK potentially plays a critical role in diabetes and obesity as it is known to be activated by metforin and rosiglitazone, drugs used for the treatment of type II diabetes. AMPK is a heterotrimer composed of a catalytic α subunit and two regulatory subunits, β and γ. Mutations in the γ subunit are known to cause glycogen accumulation, leading to cardiac arrhythmias. Recently, a functional glycogen-binding domain (GBD) has been identified in the β subunit. Here, the crystallization of GBD in the presence of β-cyclodextrin is reported together with preliminary X-ray data analysis allowing the determination of the structure by single isomorphous replacement and threefold averaging using in-house X-ray data collected from a selenomethionine-substituted protein.

  2. Crystallization of the glycogen-binding domain of the AMP-activated protein kinase β subunit and preliminary X-ray analysis

    International Nuclear Information System (INIS)

    Polekhina, Galina; Feil, Susanne C.; Gupta, Abhilasha; O’Donnell, Paul; Stapleton, David; Parker, Michael W.

    2004-01-01

    The glycogen-binding domain of the AMP-activated kinase β subunit has been crystallized in the presence of β-cyclodextrin. The structure has been determined by single isomorphous replacement and threefold averaging using in-house X-ray data collected from selenomethionine-substituted protein. AMP-activated protein kinase (AMPK) is an intracellular energy sensor that regulates metabolism in response to energy demand and supply by adjusting the ATP-generating and ATP-consuming pathways. AMPK potentially plays a critical role in diabetes and obesity as it is known to be activated by metforin and rosiglitazone, drugs used for the treatment of type II diabetes. AMPK is a heterotrimer composed of a catalytic α subunit and two regulatory subunits, β and γ. Mutations in the γ subunit are known to cause glycogen accumulation, leading to cardiac arrhythmias. Recently, a functional glycogen-binding domain (GBD) has been identified in the β subunit. Here, the crystallization of GBD in the presence of β-cyclodextrin is reported together with preliminary X-ray data analysis allowing the determination of the structure by single isomorphous replacement and threefold averaging using in-house X-ray data collected from a selenomethionine-substituted protein

  3. Comparative genomic analysis of multi-subunit tethering complexes demonstrates an ancient pan-eukaryotic complement and sculpting in Apicomplexa.

    Directory of Open Access Journals (Sweden)

    Christen M Klinger

    Full Text Available Apicomplexa are obligate intracellular parasites that cause tremendous disease burden world-wide. They utilize a set of specialized secretory organelles in their invasive process that require delivery of components for their biogenesis and function, yet the precise mechanisms underpinning such processes remain unclear. One set of potentially important components is the multi-subunit tethering complexes (MTCs, factors increasingly implicated in all aspects of vesicle-target interactions. Prompted by the results of previous studies indicating a loss of membrane trafficking factors in Apicomplexa, we undertook a bioinformatic analysis of MTC conservation. Building on knowledge of the ancient presence of most MTC proteins, we demonstrate the near complete retention of MTCs in the newly available genomes for Guillardiatheta and Bigelowiellanatans. The latter is a key taxonomic sampling point as a basal sister taxa to the group including Apicomplexa. We also demonstrate an ancient origin of the CORVET complex subunits Vps8 and Vps3, as well as the TRAPPII subunit Tca17. Having established that the lineage leading to Apicomplexa did at one point possess the complete eukaryotic complement of MTC components, we undertook a deeper taxonomic investigation in twelve apicomplexan genomes. We observed excellent conservation of the VpsC core of the HOPS and CORVET complexes, as well as the core TRAPP subunits, but sparse conservation of TRAPPII, COG, Dsl1, and HOPS/CORVET-specific subunits. However, those subunits that we did identify appear to be expressed with similar patterns to the fully conserved MTC proteins, suggesting that they may function as minimal complexes or with analogous partners. Strikingly, we failed to identify any subunits of the exocyst complex in all twelve apicomplexan genomes, as well as the dinoflagellate Perkinsus marinus. Overall, we demonstrate reduction of MTCs in Apicomplexa and their ancestors, consistent with modification during

  4. The roles of the RIIβ linker and N-terminal cyclic nucleotide-binding domain in determining the unique structures of the type IIβ protein kinase A: a small angle x-ray and neutron scattering study.

    Science.gov (United States)

    Blumenthal, Donald K; Copps, Jeffrey; Smith-Nguyen, Eric V; Zhang, Ping; Heller, William T; Taylor, Susan S

    2014-10-10

    Protein kinase A (PKA) is ubiquitously expressed and is responsible for regulating many important cellular functions in response to changes in intracellular cAMP concentrations. The PKA holoenzyme is a tetramer (R2:C2), with a regulatory subunit homodimer (R2) that binds and inhibits two catalytic (C) subunits; binding of cAMP to the regulatory subunit homodimer causes activation of the catalytic subunits. Four different R subunit isoforms exist in mammalian cells, and these confer different structural features, subcellular localization, and biochemical properties upon the PKA holoenzymes they form. The holoenzyme containing RIIβ is structurally unique in that the type IIβ holoenzyme is much more compact than the free RIIβ homodimer. We have used small angle x-ray scattering and small angle neutron scattering to study the solution structure and subunit organization of a holoenzyme containing an RIIβ C-terminal deletion mutant (RIIβ(1-280)), which is missing the C-terminal cAMP-binding domain to better understand the structural organization of the type IIβ holoenzyme and the RIIβ domains that contribute to stabilizing the holoenzyme conformation. Our results demonstrate that compaction of the type IIβ holoenzyme does not require the C-terminal cAMP-binding domain but rather involves large structural rearrangements within the linker and N-terminal cyclic nucleotide-binding domain of the RIIβ homodimer. The structural rearrangements are significantly greater than seen previously with RIIα and are likely to be important in mediating short range and long range interdomain and intersubunit interactions that uniquely regulate the activity of the type IIβ isoform of PKA. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Distinct α subunit variations of the hypothalamic GABAA receptor triplets (αβγ are linked to hibernating state in hamsters

    Directory of Open Access Journals (Sweden)

    Alò Raffaella

    2010-09-01

    Full Text Available Abstract Background The structural arrangement of the γ-aminobutyric acid type A receptor (GABAAR is known to be crucial for the maintenance of cerebral-dependent homeostatic mechanisms during the promotion of highly adaptive neurophysiological events of the permissive hibernating rodent, i.e the Syrian golden hamster. In this study, in vitro quantitative autoradiography and in situ hybridization were assessed in major hypothalamic nuclei. Reverse Transcription Reaction-Polymerase chain reaction (RT-PCR tests were performed for specific GABAAR receptor subunit gene primers synthases of non-hibernating (NHIB and hibernating (HIB hamsters. Attempts were made to identify the type of αβγ subunit combinations operating during the switching ON/OFF of neuronal activities in some hypothalamic nuclei of hibernators. Results Both autoradiography and molecular analysis supplied distinct expression patterns of all α subunits considered as shown by a strong (p 1 ratio (over total α subunits considered in the present study in the medial preoptic area (MPOA and arcuate nucleus (Arc of NHIBs with respect to HIBs. At the same time α2 subunit levels proved to be typical of periventricular nucleus (Pe and Arc of HIB, while strong α4 expression levels were detected during awakening state in the key circadian hypothalamic station, i.e. the suprachiasmatic nucleus (Sch; 60%. Regarding the other two subunits (β and γ, elevated β3 and γ3 mRNAs levels mostly characterized MPOA of HIBs, while prevalently elevated expression concentrations of the same subunits were also typical of Sch, even though this time during the awakening state. In the case of Arc, notably elevated levels were obtained for β3 and γ2 during hibernating conditions. Conclusion We conclude that different αβγ subunits are operating as major elements either at the onset of torpor or during induction of the arousal state in the Syrian golden hamster. The identification of a brain regional

  6. Small Hydropower - The comeback of small hydropower stations

    International Nuclear Information System (INIS)

    Niederhaeusern, A.

    2008-01-01

    This issue of the 'Erneuerbare Energien' (renewable energies) magazine published by the Swiss Solar Energy Society takes a look at small hydropower projects in Switzerland. In a number of interviews and articles, various topics concerning small hydropower are dealt with. First of all, an interview with Bruno Guggisberg, previously responsible for small hydro at the Swiss Federal Office of Energy, examines the potential of small hydro and the various political, technical and economic influences on such projects. Further articles provide an overview of the various types of small hydro schemes, including power generation using height differences in drinking-water and wastewater installations. As far as the components of small hydro schemes are concerned, various types of turbines and further system components that are needed are examined. A further article takes a look at the small hydro market and the market players involved. Ecological aspects and research activities are discussed in further articles. In a second interview with Martin Boelli, presently responsible for small hydropower at the Swiss Federal Office of Energy, the unused potential for the use of hydropower in Switzerland is discussed. Examples of small-scale hydro schemes are examined and the support offered by the Small Hydropower Program is discussed. Finally the question is asked, if the small hydro market in Switzerland is overheated as a result of promotion schemes such as cost-covering remuneration for electricity from renewable energy sources.

  7. An ATP synthase harboring an atypical γ-subunit is involved in ATP synthesis in tomato fruit chromoplasts.

    Science.gov (United States)

    Pateraki, Irini; Renato, Marta; Azcón-Bieto, Joaquín; Boronat, Albert

    2013-04-01

    Chromoplasts are non-photosynthetic plastids specialized in the synthesis and accumulation of carotenoids. During fruit ripening, chloroplasts differentiate into photosynthetically inactive chromoplasts in a process characterized by the degradation of the thylakoid membranes, and by the active synthesis and accumulation of carotenoids. This transition renders chromoplasts unable to photochemically synthesize ATP, and therefore these organelles need to obtain the ATP required for anabolic processes through alternative sources. It is widely accepted that the ATP used for biosynthetic processes in non-photosynthetic plastids is imported from the cytosol or is obtained through glycolysis. In this work, however, we show that isolated tomato (Solanum lycopersicum) fruit chromoplasts are able to synthesize ATP de novo through a respiratory pathway using NADPH as an electron donor. We also report the involvement of a plastidial ATP synthase harboring an atypical γ-subunit induced during ripening, which lacks the regulatory dithiol domain present in plant and algae chloroplast γ-subunits. Silencing of this atypical γ-subunit during fruit ripening impairs the capacity of isolated chromoplast to synthesize ATP de novo. We propose that the replacement of the γ-subunit present in tomato leaf and green fruit chloroplasts by the atypical γ-subunit lacking the dithiol domain during fruit ripening reflects evolutionary changes, which allow the operation of chromoplast ATP synthase under the particular physiological conditions found in this organelle. © 2013 The Authors The Plant Journal © 2013 Blackwell Publishing Ltd.

  8. Characterization and charge distribution of the asparagine-linked oligosaccharides on secreted mouse thyrotropin and free alpha-subunits

    International Nuclear Information System (INIS)

    Gesundheit, N.; Gyves, P.W.; DeCherney, G.S.; Stannard, B.S.; Winston, R.L.; Weintraub, B.D.

    1989-01-01

    Mouse hemipituitaries in vitro secrete TSH, composed of an alpha-beta heterodimer, as well as excess (free) alpha-subunits. By dual metabolic labeling with [35S]sulfate and [3H]mannose, we have characterized oligosaccharides from secreted TSH alpha, TSH beta, and free alpha-subunits released from the apoprotein by enzymatic deglycosylation. Oligosaccharides from each subunit displayed a distinct anion exchange HPLC profile due to a specific pattern of sialylation and sulfation. Six species were obtained from TSH alpha (with two glycosylation sites), including neutral oligosaccharides as well as those with one or two negative charges. For TSH beta (with one glycosylation site) at least eight oligosaccharide species were noted, representing nearly every permutation of sialylation and sulfation; approximately 30% contained three or more negative charges. Analysis of [3H]mannose-labeled oligosaccharides on Concanavalin-A-agarose showed 85% binding for those from TSH alpha, 70% for free alpha, and 50% for those from TSH beta. These data demonstrate that oligosaccharides from secreted TSH beta were more sialylated and sulfated, consistent with a more complex branching pattern, than those from TSH alpha. Oligosaccharides from free alpha-subunit were more sialylated than those from TSH alpha, and the net negative charge was intermediate between those of TSH alpha and TSH beta. Although great microheterogeneity is present even at the single glycosylation site on the beta-subunit of secreted TSH, a pattern of sialylation and sulfation could be discerned

  9. Amino acid substitutions in subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Sequence analysis of a series of revertants of an oli1 mit- mutant carrying an amino acid substitution in the hydrophilic loop of subunit 9.

    Science.gov (United States)

    Willson, T A; Nagley, P

    1987-09-01

    This work concerns a biochemical genetic study of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Subunit 9, encoded by the mitochondrial oli1 gene, contains a hydrophilic loop connecting two transmembrane stems. In one particular oli1 mit- mutant 2422, the substitution of a positively charged amino acid in this loop (Arg39----Met) renders the ATPase complex non-functional. A series of 20 revertants, selected for their ability to grow on nonfermentable substrates, has been isolated from mutant 2422. The results of DNA sequence analysis of the oli1 gene in each revertant have led to the recognition of three groups of revertants. Class I revertants have undergone a same-site reversion event: the mutant Met39 is replaced either by arginine (as in wild-type) or lysine. Class II revertants maintain the mutant Met39 residue, but have undergone a second-site reversion event (Asn35----Lys). Two revertants showing an oligomycin-resistant phenotype carry this same second-site reversion in the loop region together with a further amino acid substitution in either of the two membrane-spanning segments of subunit 9 (either Gly23----Ser or Leu53----Phe). Class III revertants contain subunit 9 with the original mutant 2422 sequence, and additionally carry a recessive nuclear suppressor, demonstrated to represent a single gene. The results on the revertants in classes I and II indicate that there is a strict requirement for a positively charged residue in the hydrophilic loop close to the boundary of the lipid bilayer. The precise location of this positive charge is less stringent; in functional ATPase complexes it can be found at either residue 39 or 35. This charged residue is possibly required to interact with some other component of the mitochondrial ATPase complex. These findings, together with hydropathy plots of subunit 9 polypeptides from normal, mutant and revertant strains, led to the conclusion that the hydrophilic loop in normal subunit 9

  10. Final focus system for TLC

    International Nuclear Information System (INIS)

    Oide, K.

    1988-11-01

    A limit of the chromaticity correction for the final focus system of a TeV Linear Collider (TLC) is investigated. As the result, it becomes possible to increase the aperture of the final doublet with a small increase of the horizontal β function. The new optics design uses a final doublet of 0.5 mm half-aperture and 1.4 T pole-tip field. The length of the system is reduced from 400 m to 200 m by several optics changes. Tolerances for various machine errors with this optics are also studied. 5 refs., 7 figs., 2 tabs

  11. Adult naked mole-rat brain retains the NMDA receptor subunit GluN2D associated with hypoxia tolerance in neonatal mammals.

    Science.gov (United States)

    Peterson, Bethany L; Park, Thomas J; Larson, John

    2012-01-11

    Adult naked mole-rats show a number of systemic adaptations to a crowded underground habitat that is low in oxygen and high in carbon dioxide. Remarkably, brain slice tissue from adult naked mole-rats also is extremely tolerant to oxygen deprivation as indicated by maintenance of synaptic transmission under hypoxic conditions as well as by a delayed neuronal depolarization during anoxia. These characteristics resemble hypoxia tolerance in brain slices from neonates in a variety of mammal species. An important component of neonatal tolerance to hypoxia involves the subunit composition of NMDA receptors. Neonates have a high proportion of NMDA receptors with GluN2D subunits which are protective because they retard calcium entry into neurons during hypoxic episodes. Therefore, we hypothesized that adult naked mole-rats retain a protective, neonatal-like, NMDA receptor subunit profile. We used immunoblotting to assess age-related changes in NMDA receptor subunits in naked mole-rats and mice. The results show that adult naked mole-rat brain retains a much greater proportion of the hypoxia-protective GluN2D subunit compared to adult mice. However, age-related changes in other subunits (GluN2A and GluN2B) from the neonatal period to adulthood were comparable in mice and naked mole-rats. Hence, adult naked mole-rat brain only retains the neonatal NMDA receptor subunit that is associated with hypoxia tolerance. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Morocco - Small-Scale Fisheries

    Data.gov (United States)

    Millennium Challenge Corporation — The final performance evaluation roadmap for the Small-Scale Fisheries Project (PPA-MCC) is developed using a grid constructed around indicators relating to Project...

  13. Off-pathway assembly of fimbria subunits is prevented by chaperone CfaA of CFA/I fimbriae from enterotoxigenic E. coli.

    Science.gov (United States)

    Bao, Rui; Liu, Yang; Savarino, Stephen J; Xia, Di

    2016-12-01

    The assembly of the class 5 colonization factor antigen I (CFA/I) fimbriae of enterotoxigenic E. coli was proposed to proceed via the alternate chaperone-usher pathway. Here, we show that in the absence of the chaperone CfaA, CfaB, the major pilin subunit of CFA/I fimbriae, is able to spontaneously refold and polymerize into cyclic trimers. CfaA kinetically traps CfaB to form a metastable complex that can be stabilized by mutations. Crystal structure of the stabilized complex reveals distinctive interactions provided by CfaA to trap CfaB in an assembly competent state through donor-strand complementation (DSC) and cleft-mediated anchorage. Mutagenesis indicated that DSC controls the stability of the chaperone-subunit complex and the cleft-mediated anchorage of the subunit C-terminus additionally assist in subunit refolding. Surprisingly, over-stabilization of the chaperone-subunit complex led to delayed fimbria assembly, whereas destabilizing the complex resulted in no fimbriation. Thus, CfaA acts predominantly as a kinetic trap by stabilizing subunit to avoid its off-pathway self-polymerization that results in energetically favorable trimers and could serve as a driving force for CFA/I pilus assembly, representing an energetic landscape unique to class 5 fimbria assembly. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Molecular Microbiology published by John Wiley & Sons Ltd.

  14. Human cDNA clones for an α subunit of G/sub i/ signal-transduction protein

    International Nuclear Information System (INIS)

    Bray, P.; Carter, A.; Guo, V.; Puckett, C.; Kamholz, J.; Spiegel, A.; Nirenberg, M.

    1987-01-01

    Two cDNA clones were obtained from a λgt11 cDNA human brain library that correspond to α/sub i/ subunits of G signal-transduction proteins (where α/sub i/ subunits refer to the α subunits of G proteins that inhibit adenylate cyclase). The nucleotide sequence of human brain α/sub i/ is highly homologous to that of bovine brain α/sub i/ and the predicted amino acid sequences are identical. However, human and bovine brain α/sub i/ cDNAs differ significantly from α/sub i/ cDNAs from human monocytes, rat glioma, and mouse macrophages in amino acid (88% homology) and nucleotide (71-75% homology) sequences. In addition, the nucleotide sequences of the 3' untranslated regions of human and bovine brain α/sub i/ cDNAs differ markedly from the sequences of human monocyte, rat glioma, and mouse macrophage α/sub i/ cDNAs. These results suggest there are at least two classes of α/sub i/ mRNA

  15. Effect of HMM Glutenin Subunits on Wheat Quality Attributes

    Directory of Open Access Journals (Sweden)

    Daniela Horvat

    2009-01-01

    Full Text Available Glutenin is a group of polymeric gluten proteins. Glutenin molecules consist of glutenin subunits linked together with disulphide bonds and having higher (HMM-GS and lower (LMM-GS molecular mass. The main objective of this study is the evaluation of the influence of HMM-GS on flour processing properties. Seven bread wheat genotypes with contrasting quality attributes and different HMM-GS composition were analyzed during three years. The composition and quantity of HMM-GS were determined by SDS-PAGE and RP-HPLC, respectively. The quality diversity among genotypes was estimated by the analysis of wheat grain, and flour and bread quality parameters. The presence of HMM glutenin subunits 1 and 2* at Glu-A1 and the subunits 5+10 at Glu-D1 loci, as well as a higher proportion of total HMM-GS, had a positive effect on wheat quality. Cluster analysis of the three groups of data (genotype and HMM-GS, flour and bread quality, and dough rheology yielded the same hierarchical structure for the first top three levels, and similarity of the corresponding dendrograms was proved by the principal eigenvalues of the corresponding Euclidian distance matrices. The obtained similarity in classification based on essentially different types of measurements reflects strong natural association between genetic data, product quality and physical properties. Principal component analysis (PCA was applied to effectively reduce large data set into lower dimensions of latent variables amenable for the analysis. PCA analysis of the total set of data (15 variables revealed a very strong interrelationship between the variables. The first three PCA components accounted for 96 % of the total variance, which was significant to the level of 0.05 and was considered as the level of experimental error. These data imply that the quality of wheat cultivars can be contributed to HMM-GS data and should be taken into account in breeding programs assisted by computer models with the aim to

  16. Age-dependent modifications of AMPA receptor subunit expression levels and related cognitive effects in 3xTg-AD mice

    Directory of Open Access Journals (Sweden)

    Pamela eCantanelli

    2014-08-01

    Full Text Available GluA1, GluA2, GluA3, and GluA4 are the constitutive subunits of AMPA receptors (AMPARs, the major mediators of fast excitatory transmission in the mammalian central nervous system. Most AMPARs are Ca2+-impermeable because of the presence of the GluA2 subunit. GluA2 mRNA undergoes an editing process that results in a Q to R substitution, a key factor in the regulation of AMPAR Ca2+-permeability. AMPARs lacking GluA2 or containing the unedited subunit are permeable to Ca2+ and Zn2+. The phenomenon physiologically modulates synaptic plasticity while, in pathologic conditions, leads to increased vulnerability to excitotoxic neuronal death. Given the importance of these subunits, we have therefore evaluated possible associations between changes in expression levels of AMPAR subunits and development of cognitive deficits in 3xTg-AD mice, a widely investigated transgenic mouse model of Alzheimer’s disease. With qRT-PCR, we assayed hippocampal mRNA expression levels of GluA1-4 subunits occurring in young [3 months of age (m.o.a.] and old (12 m.o.a Tg-AD mice and made comparisons with levels found in age-matched wild type (WT mice. Efficiency of GluA2 RNA editing was also analyzed. All animals were cognitively tested for short- and long-term spatial memory with the Morris Water Maze (MWM navigation task. 3xTg-AD mice showed age-dependent decreases of mRNA levels for all the AMPAR subunits, with the exception of GluA2. Editing remained fully efficient with aging in 3xTg-AD and WT mice. A one-to-one correlation analysis between MWM performances and GluA1-4 mRNA expression profiles showed negative correlations between GluA2 levels and MWM performances in young 3xTg-AD mice. On the contrary, positive correlations between GluA2 mRNA and MWM performances were found in young WT mice. Our data suggest that increases of AMPARs that contain GluA1, GluA3, and GluA4 subunits may help in maintaining cognition in pre-symptomatic 3xTg-AD mice.

  17. [Molecular cloning of activin betaA subunit mature peptide from peafowl and its application in taxonomy and phylogeny].

    Science.gov (United States)

    Zou, Fang-Dong; Tong, Xin-Xin; Yue, Bi-Song

    2005-03-01

    The sequences of activin gene betaA subunit mature peptide have been amplified from white peafowl, blue peafowl (pavo cristatus) and green peafowl (pavo muticus) genomic DNA by polymerase chain reaction (PCR) with a pair of degenerate primers. The target fragments were cloned into the vector pMD18-T and sequenced. The length of activin gene betaA subunit mature peptide is 345bp, which encoded a peptide of 115 amino acid residues. Sequence analysis of activin gene betaA subunit mature peptide demonstrated that the identity of nucleotide is 98.0% between blue peaflowl and green peafowl, and the identity of that is 98.8% between blue peaflowl and white peafow. Sequences comparison in NCBI revealed that the sequences of activin gene betaA subunit mature peptides of different species are highly conserved during evolution process. In addition, the restriction enzyme map of activins is high similar between white peafowl and blue peafowl. Phylogenetic tree was constructed with Mega 2 and Clustalxldx software. The result showed that white peafowl has a closer relationship to blue peafowl than to green peafowl. Considered the nucleotide differences of peafowls' activin gene betaA subunit mature peptides, a highly conserved region, we supported that white peafowl was derived from blue peafowl, and it is more possible the hybrid but just the product of color mutation, or maybe as a subspecies of Pavo genus.

  18. Basal Glutathionylation of Na,K-ATPase α-Subunit Depends on Redox Status of Cells during the Enzyme Biosynthesis

    Directory of Open Access Journals (Sweden)

    Vladimir A. Mitkevich

    2016-01-01

    Full Text Available Many viruses induce oxidative stress and cause S-glutathionylation of Cys residues of the host and viral proteins. Changes in cell functioning during viral infection may be associated with glutathionylation of a number of key proteins including Na,K-ATPase which creates a gradient of sodium and potassium ions. It was found that Na,K-ATPase α-subunit has a basal glutathionylation which is not abrogated by reducing agent. We have shown that acute hypoxia leads to increase of total glutathionylation level of Na,K-ATPase α-subunit; however, basal glutathionylation of α-subunit increases under prolonged hypoxia only. The role of basal glutathionylation in Na,K-ATPase function remains unclear. Understanding significance of basal glutathionylation is complicated by the fact that there are no X-ray structures of Na,K-ATPase with the identified glutathione molecules. We have analyzed all X-ray structures of the Na,K-ATPase α-subunit from pig kidney and found that there are a number of isolated cavities with unresolved electron density close to the relevant cysteine residues. Analysis of the structures showed that this unresolved density in the structure can be occupied by glutathione associated with cysteine residues. Here, we discuss the role of basal glutathionylation of Na,K-ATPase α-subunit and provide evidence supporting the view that this modification is cotranslational.

  19. Basal Glutathionylation of Na,K-ATPase α-Subunit Depends on Redox Status of Cells during the Enzyme Biosynthesis.

    Science.gov (United States)

    Mitkevich, Vladimir A; Petrushanko, Irina Yu; Poluektov, Yuri M; Burnysheva, Ksenia M; Lakunina, Valentina A; Anashkina, Anastasia A; Makarov, Alexander A

    2016-01-01

    Many viruses induce oxidative stress and cause S-glutathionylation of Cys residues of the host and viral proteins. Changes in cell functioning during viral infection may be associated with glutathionylation of a number of key proteins including Na,K-ATPase which creates a gradient of sodium and potassium ions. It was found that Na,K-ATPase α-subunit has a basal glutathionylation which is not abrogated by reducing agent. We have shown that acute hypoxia leads to increase of total glutathionylation level of Na,K-ATPase α-subunit; however, basal glutathionylation of α-subunit increases under prolonged hypoxia only. The role of basal glutathionylation in Na,K-ATPase function remains unclear. Understanding significance of basal glutathionylation is complicated by the fact that there are no X-ray structures of Na,K-ATPase with the identified glutathione molecules. We have analyzed all X-ray structures of the Na,K-ATPase α-subunit from pig kidney and found that there are a number of isolated cavities with unresolved electron density close to the relevant cysteine residues. Analysis of the structures showed that this unresolved density in the structure can be occupied by glutathione associated with cysteine residues. Here, we discuss the role of basal glutathionylation of Na,K-ATPase α-subunit and provide evidence supporting the view that this modification is cotranslational.

  20. GAMETOPHYTE DEFECTIVE 1, a putative subunit of RNases P/MRP, is essential for female gametogenesis and male competence in Arabidopsis.

    Science.gov (United States)

    Wang, Si-Qi; Shi, Dong-Qiao; Long, Yan-Ping; Liu, Jie; Yang, Wei-Cai

    2012-01-01

    RNA biogenesis, including biosynthesis and maturation of rRNA, tRNA and mRNA, is a fundamental process that is critical for cell growth, division and differentiation. Previous studies showed that mutations in components involved in RNA biogenesis resulted in abnormalities in gametophyte and leaf development in Arabidopsis. In eukaryotes, RNases P/MRP (RNase mitochondrial RNA processing) are important ribonucleases that are responsible for processing of tRNA, and transcription of small non-coding RNAs. Here we report that Gametophyte Defective 1 (GAF1), a gene encoding a predicted protein subunit of RNases P/MRP, AtRPP30, plays a role in female gametophyte development and male competence. Embryo sacs were arrested at stages ranging from FG1 to FG7 in gaf1 mutant, suggesting that the progression of the gametophytic division during female gametogenesis was impaired in gaf1 mutant. In contrast, pollen development was not affected in gaf1. However, the fitness of the mutant pollen tube was weaker than that of the wild-type, leading to reduced transmission through the male gametes. GAF1 is featured as a typical RPP30 domain protein and interacts physically with AtPOP5, a homologue of RNases P/MRP subunit POP5 of yeast. Together, our data suggest that components of the RNases P/MRP family, such as RPP30, play important roles in gametophyte development and function in plants.

  1. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wen-Zhu [Anesthesia and Operation Center, Hainan Branch of Chinese PLA General Hospital, Hainan 572013 (China); Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China); Miao, Yu-Liang [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Guo, Wen-Zhi [Department of Anesthesiology, Beijing Military General Hospital of Chinese People’s Liberation Army, Beijing 100700 (China); Wu, Wei, E-mail: wwzwgk@163.com [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); Li, Bao-Wei [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); An, Li-Na [Department of Anesthesiology, Armed Police General Hospital, Beijing 100039 (China); Fang, Wei-Wu [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Mi, Wei-Dong, E-mail: elite2005gg@163.com [Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China)

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  2. Mechanistic Exploration of Cancer Stem Cell Marker Voltage-Dependent Calcium Channel α2δ1 Subunit-mediated Chemotherapy Resistance in Small-Cell Lung Cancer.

    Science.gov (United States)

    Yu, Jiangyong; Wang, Shuhang; Zhao, Wei; Duan, Jianchun; Wang, Zhijie; Chen, Hanxiao; Tian, Yanhua; Wang, Di; Zhao, Jun; An, Tongtong; Bai, Hua; Wu, Meina; Wang, Jie

    2018-05-01

    Purpose: Chemoresistance in small-cell lung cancer (SCLC) is reportedly attributed to the existence of resistant cancer stem cells (CSC). Studies involving CSC-specific markers and related mechanisms in SCLC remain limited. This study explored the role of the voltage-dependent calcium channel α2δ1 subunit as a CSC marker in chemoresistance of SCLC, and explored the potential mechanisms of α2δ1-mediated chemoresistance and strategies of overcoming the resistance. Experimental Design: α2δ1-positive cells were identified and isolated from SCLC cell lines and patient-derived xenograft (PDX) models, and CSC-like properties were subsequently verified. Transcriptome sequencing and Western blotting were carried out to identify pathways involved in α2δ1-mediated chemoresistance in SCLC. In addition, possible interventions to overcome α2δ1-mediated chemoresistance were examined. Results: Different proportions of α2δ1 + cells were identified in SCLC cell lines and PDX models. α2δ1 + cells exhibited CSC-like properties (self-renewal, tumorigenic, differentiation potential, and high expression of genes related to CSCs and drug resistance). Chemotherapy induced the enrichment of α2δ1 + cells instead of CD133 + cells in PDXs, and an increased proportion of α2δ1 + cells corresponded to increased chemoresistance. Activation and overexpression of ERK in the α2δ1-positive H1048 cell line was identified at the protein level. mAb 1B50-1 was observed to improve the efficacy of chemotherapy and delay relapse as maintenance therapy in PDX models. Conclusions: SCLC cells expressing α2δ1 demonstrated CSC-like properties, and may contribute to chemoresistance. ERK may play a key role in α2δ1-mediated chemoresistance. mAb 1B50-1 may serve as a potential anti-SCLC drug. Clin Cancer Res; 24(9); 2148-58. ©2018 AACR . ©2018 American Association for Cancer Research.

  3. The role of cytochrome c oxidase subunit Va in non-small cell lung carcinoma cells: association with migration, invasion and prediction of distant metastasis

    International Nuclear Information System (INIS)

    Chen, Wen-Liang; Kuo, Kuang-Tai; Chou, Teh-Ying; Chen, Chien-Lung; Wang, Chih-Hao; Wei, Yau-Huei; Wang, Liang-Shun

    2012-01-01

    Lung cancer is one of the most lethal malignancies worldwide, but useful biomarkers of lung cancer are still insufficient. The aim of this study is to identify some membrane-bound protein(s) associated with migration and invasion in human non-small cell lung cancer (NSCLC) cells. We classified four NSCLC cell lines into high and low migration/invasion groups by Transwell and Matrigel assays. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), we identified 10 membrane-associated proteins being significantly overexpressed in the high migration/invasion group. The expression of the target protein in the four NSCLC cell lines was then confirmed by reverse transcription polymerase chain reaction (RT-PCR), western blot and immunostaining. RNA interference technique was applied to observe the influence of the target protein on migration and invasion. Gelatin zymography was also performed to evaluate the activities of matrix metalloproteinase (MMP)-2 and MMP-9. Expression condition of the target protein on surgical specimens was further examined by immunohistochemical staining and the clinicopathologic data were analyzed. We identified a mitochondria-bound protein cytochrome c oxidase subunit Va (COX Va) because of its abundant presence found exclusively in tumorous areas. We also demonstrated that migration and invasion of NSCLC cells decreased substantially after knocking down COX Va by siRNA. Meanwhile, we found a positive correlation between COX Va expression, Bcl-2 expression and activities of MMP-2 and MMP-9 in NSCLC cells. Immunohistochemical staining of surgically resected lung adenocarcinomas in 250 consecutive patients revealed that strong COX Va expression was found in 54.8% (137/250) of patients and correlated positively with the status of lymph node metastasis (P = 0.032). Furthermore, strong COX Va expression was associated with the presence of distant metastasis (P = 0

  4. Stimulation of casein kinase II by epidermal growth factor: Relationship between the physiological activity of the kinase and the phosphorylation state of its beta subunit

    International Nuclear Information System (INIS)

    Ackerman, P.; Osheroff, N.; Glover, C.V.C.

    1990-01-01

    To determine relationships between the hormonal activation of casein kinase II and its phosphorylation state, epidermal growth factor (EGF)-treated and EGF-naive human A-431 carcinoma cells were cultured in the presence of [ 32 P]orthophosphate. Immunoprecipitation experiments indicated that casein kinase II in the cytosol of EGF-treated cells contained approximately 3-fold more incorporated [ 32 P]phosphate than did its counterpart in untreated cells. Levels of kinase phosphorylation paralleled levels of kinase activity over a wide range of EGF concentrations as well as over a time course of hormone action. Approximately 97% of the incorporated [ 32 P]phosphate was found in the β subunit of casein kinase II. Both activated and hormone-naive kinase contained radioactive phosphoserine and phosphothreonine but no phosphotyronsine. On the basis of proteolytic mapping experiments, EGF treatment of A-431 cells led to an increase in the average [ 32 P]phosphate content (i.e., hyperphosphorylation) of casein kinase II β subunit peptides which were modified prior to hormone treatment. Finally, the effect of alkaline phosphatase on the reaction kinetics of activated casein kinase II indicated that hormonal stimulation of the kinase resulted from the increase in its phosphorylation state

  5. Cytochrome oxidase subunit II gene in mitochondria of Oenothera has no intron

    Science.gov (United States)

    Hiesel, Rudolf; Brennicke, Axel

    1983-01-01

    The cytochrome oxidase subunit II gene has been localized in the mitochondrial genome of Oenothera berteriana and the nucleotide sequence has been determined. The coding sequence contains 777 bp and, unlike the corresponding gene in Zea mays, is not interrupted by an intron. No TGA codon is found within the open reading frame. The codon CGG, as in the maize gene, is used in place of tryptophan codons of corresponding genes in other organisms. At position 742 in the Oenothera sequence the TGG of maize is changed into a CGG codon, where Trp is conserved as the amino acid in other organisms. Homologous sequences occur more than once in the mitochondrial genome as several mitochondrial DNA species hybridize with DNA probes of the cytochrome oxidase subunit II gene. ImagesFig. 5. PMID:16453484

  6. The Role of Chaperone-subunit Usher Domain Interactions in the Mechanism of Bacterial Pilus Biogenesis Revealed by ESI-MS*

    Science.gov (United States)

    Morrissey, Bethny; Leney, Aneika C.; Toste Rêgo, Ana; Phan, Gilles; Allen, William J.; Verger, Denis; Waksman, Gabriel; Ashcroft, Alison E.; Radford, Sheena E.

    2012-01-01

    The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerization and orchestrates a correct and functional order of subunit assembly remain unclear. Here, the ability of the soluble N-terminal (UsherN), C-terminal (UsherC2), and Plug (UsherP) domains of the usher to bind different chaperone-subunit (PapDPapX) complexes is investigated using noncovalent electrospray ionization mass spectrometry. The results reveal that each usher domain is able to bind all six PapDPapX complexes, consistent with an active role of all three usher domains in pilus biogenesis. Using collision induced dissociation, combined with competition binding experiments and dissection of the adhesin subunit, PapG, into separate pilin and adhesin domains, the results reveal why PapG has a uniquely high affinity for the usher, which is consistent with this subunit always being displayed at the pilus tip. In addition, we show how the different soluble usher domains cooperate to coordinate and control efficient pilus assembly at the usher platform. As well as providing new information about the protein-protein interactions that determine pilus biogenesis, the results highlight the power of noncovalent MS to interrogate biological mechanisms, especially in complex mixtures of species. PMID:22371487

  7. The role of chaperone-subunit usher domain interactions in the mechanism of bacterial pilus biogenesis revealed by ESI-MS.

    Science.gov (United States)

    Morrissey, Bethny; Leney, Aneika C; Toste Rêgo, Ana; Phan, Gilles; Allen, William J; Verger, Denis; Waksman, Gabriel; Ashcroft, Alison E; Radford, Sheena E

    2012-07-01

    The PapC usher is a β-barrel outer membrane protein essential for assembly and secretion of P pili that are required for adhesion of pathogenic E. coli, which cause the development of pyelonephritis. Multiple protein subunits form the P pilus, the highly specific assembly of which is coordinated by the usher. Despite a wealth of structural knowledge, how the usher catalyzes subunit polymerization and orchestrates a correct and functional order of subunit assembly remain unclear. Here, the ability of the soluble N-terminal (UsherN), C-terminal (UsherC2), and Plug (UsherP) domains of the usher to bind different chaperone-subunit (PapDPapX) complexes is investigated using noncovalent electrospray ionization mass spectrometry. The results reveal that each usher domain is able to bind all six PapDPapX complexes, consistent with an active role of all three usher domains in pilus biogenesis. Using collision induced dissociation, combined with competition binding experiments and dissection of the adhesin subunit, PapG, into separate pilin and adhesin domains, the results reveal why PapG has a uniquely high affinity for the usher, which is consistent with this subunit always being displayed at the pilus tip. In addition, we show how the different soluble usher domains cooperate to coordinate and control efficient pilus assembly at the usher platform. As well as providing new information about the protein-protein interactions that determine pilus biogenesis, the results highlight the power of noncovalent MS to interrogate biological mechanisms, especially in complex mixtures of species.

  8. Demonstration of a Small Modular Biopower System Using Poultry Litter-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John Reardon; Art Lilley

    2004-06-15

    On-farm conversion of poultry litter into energy is a unique market connected opportunity for commercialization of small modular bioenergy systems. The United States Department of Energy recognized the need in the poultry industry for alternative litter management as an opportunity for bioenergy. The DOE created a relevant topic in the December 2000 release of the small business innovative research (SBIR) grant solicitation. Community Power Corporation responded to this solicitation by proposing the development of a small modular gasification and gas cleanup system to produce separate value streams of clean producer gas and mineral rich solids. This phase II report describes our progress in the development of an on-farm litter to energy system.

  9. Binding of ATP by pertussis toxin and isolated toxin subunits

    International Nuclear Information System (INIS)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-01-01

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of [ 3 H]ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of [ 3 H]ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of [ 3 H]ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site

  10. Binding of ATP by pertussis toxin and isolated toxin subunits

    Energy Technology Data Exchange (ETDEWEB)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. (Center for Biologics Evaluation and Research, Bethesda, MD (USA))

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  11. The acid-labile subunit of human ternary insulin-like growth factor binding protein complex in serum

    DEFF Research Database (Denmark)

    Juul, A; Møller, S; Mosfeldt-Laursen, E

    1998-01-01

    Circulating insulin-like growth factor-I (IGF-I) is predominantly bound in the trimeric complex comprised of IGF binding protein-3 (IGFBP-3) and acid-labile subunit (ALS). Circulating concentrations of IGF-I, IGFBP-3 and ALS are believed to reflect the GH secretory status, but the clinical use...... of ALS determination is not known. We therefore, determined the: 1) hepatosplanchnic release of ALS by liver vein catheterization (n=30); 2) 24-h diurnal variation of ALS (n=8); 3) normal age-related ranges of circulating ALS (n=1158); 4) diagnostic value of ALS in 108 patients with childhood-onset GH...... in adults; and 4) ALS levels were below -2 SD in 57 of 79 GHD patients (sensitivity 72%) and above 2 SD in 22 of 29 patients with normal GH response (specificity 76%), which was similar, compared with the diagnostic utility of IGF-I and IGFBP-3. Finally, our findings indicate that hepatic ALS production...

  12. Immunocytochemical and stereological analysis of GABA(B) receptor subunit expression in the rat vestibular nucleus following unilateral vestibular deafferentation.

    Science.gov (United States)

    Zhang, Rong; Ashton, John; Horii, Arata; Darlington, Cynthia L; Smith, Paul F

    2005-03-10

    The process of behavioral recovery that occurs following damage to one vestibular labyrinth, vestibular compensation, has been attributed in part to a down-regulation of GABA(B) receptors in the vestibular nucleus complex (VNC) ipsilateral to the lesion, which could potentially reduce commissural inhibition from the contralateral VNC. In this study, we tested the possibility that this occurs through a decrease in the expression of either the GABA(B1) or GABA(B2) subunits of the GABA(B) receptor. We used Western blotting to quantify the expression of these subunits in the VNC at 10 h and 50 h following unilateral vestibular deafferentation (UVD) or sham surgery in rats. We then used immunocytochemistry and stereological counting methods to estimate the number of neurons expressing these subunits in the MVN at 10 h and 2 weeks following UVD or sham surgery. Compared to sham controls, we found no significant changes in either the expression of the two GABA(B) receptor subunits in the VNC or in the number of MVN neurons expressing these GABA(B) receptor subunits post-UVD. These results suggest that GABA(B) receptor expression does not change substantially in the VNC during the process of vestibular compensation.

  13. Models for the a subunits of the Thermus thermophilus V/A-ATPase and Saccharomyces cerevisiae V-ATPase enzymes by cryo-EM and evolutionary covariance

    Science.gov (United States)

    Schep, Daniel G.; Rubinstein, John L.

    2016-01-01

    Rotary ATPases couple ATP synthesis or hydrolysis to proton translocation across a membrane. However, understanding proton translocation has been hampered by a lack of structural information for the membrane-embedded a subunit. The V/A-ATPase from the eubacterium Thermus thermophilus is similar in structure to the eukaryotic V-ATPase but has a simpler subunit composition and functions in vivo to synthesize ATP rather than pump protons. We determined the T. thermophilus V/A-ATPase structure by cryo-EM at 6.4 Å resolution. Evolutionary covariance analysis allowed tracing of the a subunit sequence within the map, providing a complete model of the rotary ATPase. Comparing the membrane-embedded regions of the T. thermophilus V/A-ATPase and eukaryotic V-ATPase from Saccharomyces cerevisiae allowed identification of the α-helices that belong to the a subunit and revealed the existence of previously unknown subunits in the eukaryotic enzyme. Subsequent evolutionary covariance analysis enabled construction of a model of the a subunit in the S. cerevisae V-ATPase that explains numerous biochemical studies of that enzyme. Comparing the two a subunit structures determined here with a structure of the distantly related a subunit from the bovine F-type ATP synthase revealed a conserved pattern of residues, suggesting a common mechanism for proton transport in all rotary ATPases. PMID:26951669

  14. A novel mutation in the succinate dehydrogenase subunit D gene in siblings with the hereditary paraganglioma–pheochromocytoma syndrome

    Directory of Open Access Journals (Sweden)

    Chaithra Prasad

    2014-10-01

    Full Text Available Germline mutations in the succinate dehydrogenase complex subunit D gene are now known to be associated with hereditary paraganglioma–pheochromocytoma syndromes. Since the initial succinate dehydrogenase complex subunit D gene mutation was identified about a decade ago, more than 131 unique variants have been reported. We report the case of two siblings presenting with multiple paragangliomas and pheochromocytomas; they were both found to carry a mutation in the succinate dehydrogenase complex subunit D gene involving a substitution of thymine to guanine at nucleotide 236 in exon 3. This particular mutation of the succinate dehydrogenase complex subunit D gene has only been reported in one previous patient in Japan; this is, therefore, the first report of this pathogenic mutation in siblings and the first report of this mutation in North America. With continued screening of more individuals, we will be able to create a robust mutation database that can help us understand disease patterns associated with particular variants and may be a starting point in the development of new therapies for familial paraganglioma syndromes.

  15. Stereocontrolled Synthesis of the C(1)-C(11) Subunit of the Iejimalides

    DEFF Research Database (Denmark)

    Mendlik, Matthew T.; Cottard, Muriel; Rein, Tobias

    1997-01-01

    An enantioselective synthesis of the C(1)-C(11) subunit of the iejimalides has been accomplished through a combination of an asymmetric Homer-Wadsworth-Emmons condensation and a chiral pool approach. (C) 1997 Elsevier Science Ltd....

  16. Age-related changes in functional postsynaptic nicotinic acetylcholine receptor subunits in neurons of the laterodorsal tegmental nucleus, a nucleus important in drug addiction.

    Science.gov (United States)

    Christensen, Mark H; Kohlmeier, Kristi A

    2016-03-01

    The earlier an individual initiates cigarette smoking, the higher the likelihood of development of dependency to nicotine, the addictive ingredient in cigarettes. One possible mechanism underlying this higher addiction liability is an ontogenetically differential cellular response induced by nicotine in neurons mediating the reinforcing or euphoric effects of this drug, which could arise from age-related differences in the composition of nicotinic acetylcholine receptor (nAChR) subunits. In the current study, we examined whether the subunit composition of nAChRs differed between neurons within the laterodorsal tegmentum (LDT), a nucleus importantly involved in drug addiction associated behaviours, across two periods of ontogeny in which nicotine-mediated excitatory responses were shown to depend on age. To this end, whole-cell patch-clamp recordings in mouse brain slices from identified LDT neurons, in combination with nAChR subunit-specific receptor antagonists, were conducted. Comparison of the contribution of different nAChR subunits to acetylcholine (ACh)-induced inward currents indicated that the contributions of the β2 and/or β4 and α7 nAChR subunits alter across age. Taken together, we conclude that across a limited ontogenetic period, there is plasticity in the subunit composition of nAChRs in LDT neurons. In addition, our data indicate, for the first time, functional presence of α6 nAChR subunits in LDT neurons within the age ranges studied. Changes in subunit composition of nAChRs across ontogeny could contribute to the age-related differential excitability induced by nicotine. Differences in the subunit composition of nAChRs within the LDT would be expected to contribute to ontogenetic-dependent outflow from the LDT to target regions, which include reward-related circuitry. © 2014 Society for the Study of Addiction.

  17. The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence.

    Science.gov (United States)

    Uzunova, Sonya Dimitrova; Zarkov, Alexander Stefanov; Ivanova, Anna Marianova; Stoynov, Stoyno Stefanov; Nedelcheva-Veleva, Marina Nedelcheva

    2014-01-01

    The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle.

  18. Human acid-labile subunit deficiency: clinical, endocrine and metabolic consequences

    NARCIS (Netherlands)

    Domené, Horacio M.; Hwa, Vivian; Argente, Jesús; Wit, Jan M.; Wit, Jaan M.; Camacho-Hübner, Cecilia; Jasper, Héctor G.; Pozo, Jesús; van Duyvenvoorde, Hermine A.; Yakar, Shoshana; Fofanova-Gambetti, Olga V.; Rosenfeld, Ron G.; Scaglia, Paula A.; Bengolea, Sonia V.; Lteif, Aida; Kirmani, Salman; Mahmud, Farid H.; Frystyk, Jan; Hermus, Ad; Twickler, T. B.; Kempers, Marlies J. E.; Barrios, Vicente; Martos-Moreno, Gabriel A.; David, Alessia; Rose, Stephen

    2009-01-01

    The majority of insulin-like growth factor (IGF)-I and IGF-II circulate in the serum as a complex with the insulin-like growth factor binding protein (IGFBP)-3 or IGFBP-5, and an acid-labile subunit (ALS). The function of ALS is to prolong the half-life of the IGF-I-IGFBP-3/IGFBP-5 binary complexes.

  19. Modulation of NMDA Receptor Properties and Synaptic Transmission by the NR3A Subunit in Mouse Hippocampal and Cerebrocortical Neurons

    Science.gov (United States)

    Tong, Gary; Takahashi, Hiroto; Tu, Shichun; Shin, Yeonsook; Talantova, Maria; Zago, Wagner; Xia, Peng; Nie, Zhiguo; Goetz, Thomas; Zhang, Dongxian; Lipton, Stuart A.; Nakanishi, Nobuki

    2015-01-01

    Expression of the NR3A subunit with NR1/NR2 in Xenopus oocytes or mammalian cell lines leads to a reduction in N-methyl-D-aspartate (NMDA)-induced currents and decreased Mg2+ sensitivity and Ca2+ permeability compared with NR1/NR2 receptors. Consistent with these findings, neurons from NR3A knockout (KO) mice exhibit enhanced NMDA-induced currents. Recombinant NR3A can also form excitatory glycine receptors with NR1 in the absence of NR2. However, the effects of NR3A on channel properties in neurons and synaptic transmission have not been fully elucidated. To study physiological roles of NR3A subunits, we generated NR3A transgenic (Tg) mice. Cultured NR3A Tg neurons exhibited two populations of NMDA receptor (NMDAR) channels, reduced Mg2+ sensitivity, and decreased Ca2+ permeability in response to NMDA/glycine, but glycine alone did not elicit excitatory currents. In addition, NMDAR-mediated excitatory postsynaptic currents (EPSCs) in NR3A Tg hippocampal slices showed reduced Mg2+ sensitivity, consistent with the notion that NR3A subunits incorporated into synaptic NMDARs. To study the function of endogenous NR3A subunits, we compared NMDAR-mediated EPSCs in NR3A KO and WT control mice. In NR3A KO mice, the ratio of the amplitudes of the NMDAR-mediated component to α-amino-3-hydroxy-5-methyl-4-isox-azolepropionic acid receptor-mediated component of the EPSC was significantly larger than that seen in WT littermates. This result suggests that NR3A subunits contributed to the NMDAR-mediated component of the EPSC in WT mice. Taken together, these results show that NR3A subunits contribute to NMDAR responses from both synaptic and extra-synaptic receptors, likely composed of NR1, NR2, and NR3 subunits. PMID:18003876

  20. Breaking tolerance in transgenic mice expressing the human TSH receptor A-subunit: thyroiditis, epitope spreading and adjuvant as a 'double edged sword'.

    Science.gov (United States)

    McLachlan, Sandra M; Aliesky, Holly A; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil

    2012-01-01

    Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a "double-edged sword". On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the

  1. Double scattering and final-state interaction in Xd ---> YNN

    CERN Document Server

    Alberi, G; Thomé, Z D

    1974-01-01

    A unified approach to double scattering, as well as the final-state interaction of the two nucleons at small and large momentum transfers are given. The closure sum rule for the final-state interaction at small momentum transfers is shown explicitly in a simple model for the deuteron wave function and nucleon interaction. An application for the process K/sup +/d to K/sup 0/pp is given, trying to explain discrepancies present in recent experiments. (35 refs).

  2. Human Pol ζ purified with accessory subunits is active in translesion DNA synthesis and complements Pol η in cisplatin bypass.

    Science.gov (United States)

    Lee, Young-Sam; Gregory, Mark T; Yang, Wei

    2014-02-25

    DNA polymerase ζ (Pol ζ) is a eukaryotic B-family DNA polymerase that specializes in translesion synthesis and is essential for normal embryogenesis. At a minimum, Pol ζ consists of a catalytic subunit Rev3 and an accessory subunit Rev7. Mammalian Rev3 contains >3,000 residues and is twice as large as the yeast homolog. To date, no vertebrate Pol ζ has been purified for biochemical characterization. Here we report purification of a series of human Rev3 deletion constructs expressed in HEK293 cells and identification of a minimally catalytically active human Pol ζ variant. With a tagged form of an active Pol ζ variant, we isolated two additional accessory subunits of human Pol ζ, PolD2 and PolD3. The purified four-subunit Pol ζ4 (Rev3-Rev7-PolD2-PolD3) is much more efficient and more processive at bypassing a 1,2-intrastrand d(GpG)-cisplatin cross-link than the two-subunit Pol ζ2 (Rev3-Rev7). We show that complete bypass of cisplatin lesions requires Pol η to insert dCTP opposite the 3' guanine and Pol ζ4 to extend the primers.

  3. Fusion of the subunits α and β of succinyl-CoA synthetase as a phylogenetic marker for Pezizomycotina fungi

    Directory of Open Access Journals (Sweden)

    Amanda M. Koire

    2011-01-01

    Full Text Available Gene fusions, yielding the formation of multidomain proteins, are evolutionary events that can be utilized as phylogenetic markers. Here we describe a fusion gene comprising the α and β subunits of succinyl-coA synthetase, an enzyme of the TCA cycle, in Pezizomycotina fungi. This fusion is present in all Pezizomycotina with complete genome sequences and absent from all other organisms. Phylogenetic analysis of the α and β subunits of succinyl-CoA synthetase suggests that both subunits were duplicated and retained in Pezizomycotina while one copy was lost from other fungi. One of the duplicated copies was then fused in Pezizomycotina. Our results suggest that the fusion of the α and β subunits of succinyl-CoA synthetase can be used as a molecular marker for membership in the Pezizomycotina subphylum. If a species has the fusion it can be reliably classified as Pezizomycotina, while the absence of the fusion is suggestive that the species is not a member of this subphylum.

  4. Suppression of 19S proteasome subunits marks emergence of an altered cell state in diverse cancers.

    Science.gov (United States)

    Tsvetkov, Peter; Sokol, Ethan; Jin, Dexter; Brune, Zarina; Thiru, Prathapan; Ghandi, Mahmoud; Garraway, Levi A; Gupta, Piyush B; Santagata, Sandro; Whitesell, Luke; Lindquist, Susan

    2017-01-10

    The use of proteasome inhibitors to target cancer's dependence on altered protein homeostasis has been greatly limited by intrinsic and acquired resistance. Analyzing data from thousands of cancer lines and tumors, we find that those with suppressed expression of one or more 19S proteasome subunits show intrinsic proteasome inhibitor resistance. Moreover, such proteasome subunit suppression is associated with poor outcome in myeloma patients, where proteasome inhibitors are a mainstay of treatment. Beyond conferring resistance to proteasome inhibitors, proteasome subunit suppression also serves as a sentinel of a more global remodeling of the transcriptome. This remodeling produces a distinct gene signature and new vulnerabilities to the proapoptotic drug, ABT-263. This frequent, naturally arising imbalance in 19S regulatory complex composition is achieved through a variety of mechanisms, including DNA methylation, and marks the emergence of a heritably altered and therapeutically relevant state in diverse cancers.

  5. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells

    International Nuclear Information System (INIS)

    Shigeno, Yuta; Uchiumi, Toshio; Nomura, Takaomi

    2016-01-01

    Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly, cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.

  6. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Shigeno, Yuta [Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567 (Japan); Uchiumi, Toshio [Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Nomura, Takaomi, E-mail: nomurat@shinshu-u.ac.jp [Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567 (Japan)

    2016-04-22

    Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly, cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.

  7. Intra- and inter-subunit disulfide bond formation is nonessential in adeno-associated viral capsids.

    Directory of Open Access Journals (Sweden)

    Nagesh Pulicherla

    Full Text Available The capsid proteins of adeno-associated viruses (AAV have five conserved cysteine residues. Structural analysis of AAV serotype 2 reveals that Cys289 and Cys361 are located adjacent to each other within each monomer, while Cys230 and Cys394 are located on opposite edges of each subunit and juxtaposed at the pentamer interface. The Cys482 residue is located at the base of a surface loop within the trimer region. Although plausible based on molecular dynamics simulations, intra- or inter-subunit disulfides have not been observed in structural studies. In the current study, we generated a panel of Cys-to-Ser mutants to interrogate the potential for disulfide bond formation in AAV capsids. The C289S, C361S and C482S mutants were similar to wild type AAV with regard to titer and transduction efficiency. However, AAV capsid protein subunits with C230S or C394S mutations were prone to proteasomal degradation within the host cells. Proteasomal inhibition partially blocked degradation of mutant capsid proteins, but failed to rescue infectious virions. While these results suggest that the Cys230/394 pair is critical, a C394V mutant was found viable, but not the corresponding C230V mutant. Although the exact nature of the structural contribution(s of Cys230 and Cys394 residues to AAV capsid formation remains to be determined, these results support the notion that disulfide bond formation within the Cys289/361 or Cys230/394 pair appears to be nonessential. These studies represent an important step towards understanding the role of inter-subunit interactions that drive AAV capsid assembly.

  8. Small scale purification of human pituitary lutropin (hLH) for use in radioligand assays

    International Nuclear Information System (INIS)

    Schwarz, I.; Morgante, L.; Bartolini, P.

    1988-08-01

    Human lutropin (hLH) is a relatively unstable protein, which even in lyophilised form tends to dissociate into subunits during long storage periods. Considering the limited disposibilty of human pituitaries, a small-scale extraction method is proposed for radioassays. Starting from 10 and 20 hypophyses after Sephadex G 100 purification, 10 μg/gland with approximate 10% purity was obtained. After the last purification, hLH recovery was of 1.5 μg/gland. (author) [pt

  9. Overexpression of PP2A-C5 that encodes the catalytic subunit 5 of protein phosphatase 2A in Arabidopsis confers better root and shoot development under salt conditions

    Science.gov (United States)

    Protein phosphatase 2A (PP2A) is an enzyme consisting of three subunits: a scaffolding A subunit, a regulatory B subunit and a catalytic C subunit. PP2As were shown to play diverse roles in eukaryotes. In this study, the function of the Arabidopsis PP2A-C5 gene that encodes the catalytic subunit 5 o...

  10. Structure of the CFA/III major pilin subunit CofA from human enterotoxigenic Escherichia coli determined at 0.90 Å resolution by sulfur-SAD phasing.

    Science.gov (United States)

    Fukakusa, Shunsuke; Kawahara, Kazuki; Nakamura, Shota; Iwashita, Takaki; Baba, Seiki; Nishimura, Mitsuhiro; Kobayashi, Yuji; Honda, Takeshi; Iida, Tetsuya; Taniguchi, Tooru; Ohkubo, Tadayasu

    2012-10-01

    CofA, a major pilin subunit of colonization factor antigen III (CFA/III), forms pili that mediate small-intestinal colonization by enterotoxigenic Escherichia coli (ETEC). In this study, the crystal structure of an N-terminally truncated version of CofA was determined by single-wavelength anomalous diffraction (SAD) phasing using five sulfurs in the protein. Given the counterbalance between anomalous signal strength and the undesired X-ray absorption of the solvent, diffraction data were collected at 1.5 Å resolution using synchrotron radiation. These data were sufficient to elucidate the sulfur substructure at 1.38 Å resolution. The low solvent content (29%) of the crystal necessitated that density modification be performed with an additional 0.9 Å resolution data set to reduce the phase error caused by the small sulfur anomalous signal. The CofA structure showed the αβ-fold typical of type IVb pilins and showed high structural homology to that of TcpA for toxin-coregulated pili of Vibrio cholerae, including spatial distribution of key residues critical for pilin self-assembly. A pilus-filament model of CofA was built by computational docking and molecular-dynamics simulation using the previously reported filament model of TcpA as a structural template. This model revealed that the CofA filament surface was highly negatively charged and that a 23-residue-long loop between the α1 and α2 helices filled the gap between the pilin subunits. These characteristics could provide a unique binding epitope for the CFA/III pili of ETEC compared with other type IVb pili.

  11. The essential role of AMPA receptor GluR2 subunit RNA editing in the normal and diseased brain

    Directory of Open Access Journals (Sweden)

    Amanda Lorraine Wright

    2012-04-01

    Full Text Available AMPA receptors are comprised of different combinations of GluR1-GluR4 (also known as GluA1-GluA4 and GluR-A to GluR-D subunits. The GluR2 subunit is subject to Q/R site RNA editing by the ADAR2 enzyme, which converts a codon for glutamine (Q, present in the GluR2 gene, to a codon for arginine (R found in the mRNA. AMPA receptors are calcium (Ca2+-permeable if they contain the unedited GluR2(Q subunit or if they lack the GluR2 subunit. While most AMPA receptors in the brain contain the edited GluR2(R subunit and are therefore Ca2+-impermeable, recent evidence suggests that Ca2+-permeable GluR2-lacking AMPA receptors are important in synaptic plasticity and learning. However, the presence of Ca2+-permeable AMPA receptors containing unedited GluR2 leads to excitotoxic cell loss. Recent studies have indicated that RNA editing of GluR2 is deregulated in diseases, such as amyotrophic lateral sclerosis (ALS, as well in acute neurodegenerative conditions, such as ischemia. More recently, studies have investigated the regulation of RNA editing and possible causes for its deregulation during disease. In this review, we will explore the role of GluR2 RNA editing in the healthy and diseased brain and outline new insights into the mechanisms that control this process.

  12. Organization and alternative splicing of the Caenorhabditis elegans cAMP-dependent protein kinase catalytic-subunit gene (kin-1).

    Science.gov (United States)

    Tabish, M; Clegg, R A; Rees, H H; Fisher, M J

    1999-04-01

    The cAMP-dependent protein kinase (protein kinase A, PK-A) is multifunctional in nature, with key roles in the control of diverse aspects of eukaryotic cellular activity. In the case of the free-living nematode, Caenorhabditis elegans, a gene encoding the PK-A catalytic subunit has been identified and two isoforms of this subunit, arising from a C-terminal alternative-splicing event, have been characterized [Gross, Bagchi, Lu and Rubin (1990) J. Biol. Chem. 265, 6896-6907]. Here we report the occurrence of N-terminal alternative-splicing events that, in addition to generating a multiplicity of non-myristoylatable isoforms, also generate the myristoylated variant(s) of the catalytic subunit that we have recently characterized [Aspbury, Fisher, Rees and Clegg (1997) Biochem. Biophys. Res. Commun. 238, 523-527]. The gene spans more than 36 kb and is divided into a total of 13 exons. Each of the mature transcripts contains only 7 exons. In addition to the already characterized exon 1, the 5'-untranslated region and first intron actually contain 5 other exons, any one of which may be alternatively spliced on to exon 2 at the 5' end of the pre-mRNA. This N-terminal alternative splicing occurs in combination with either of the already characterized C-terminal alternative exons. Thus, C. elegans expresses at least 12 different isoforms of the catalytic subunit of PK-A. The significance of this unprecedented structural diversity in the family of PK-A catalytic subunits is discussed.

  13. Electron microscopy of the complexes of ribulose-1,5-bisphosphate carboxylase (Rubisco) and Rubisco subunit-binding protein from pea leaves

    NARCIS (Netherlands)

    Tsuprun, V.L.; Boekema, E.J.; Samsonidze, T.G.; Pushkin, A.V.

    1991-01-01

    The structure of ribulose-1,5-bisphosphate carboxylase (Rubisco) subunit-binding protein and its interaction with pea leaf chloroplast Rubisco were studied by electron microscopy and image analysis. Electron-microscopic evidence for the association of Rubisco subunit-binding protein, consisting of

  14. A comparative analysis of the heterotrimeric G-protein Gα, Gβ and Gγ subunits in the wheat pathogen Stagonospora nodorum

    Directory of Open Access Journals (Sweden)

    Gummer Joel P A

    2012-07-01

    Full Text Available Abstract Background It has been well established that the Gα subunit of the heterotrimeric G-protein in the wheat pathogen Stagonospora nodorum is required for a variety of phenotypes including pathogenicity, melanisation and asexual differentiation. The roles though of the Gγ and Gβ subunits though were unclear. The objective of this study was to identify and understand the role of these subunits and assess their requirement for pathogenicity and development. Results G-protein Gγ and Gβ subunits, named Gga1 and Gba1 respectively, were identified in the Stagonospora nodorum genome by comparative analysis with known fungal orthologues. A reverse genetics technique was used to study the role of these and revealed that the mutant strains displayed altered in vitro growth including a differential response to a variety of exogenous carbon sources. Pathogenicity assays showed that Stagonospora nodorum strains lacking Gba1 were essentially non-pathogenic whilst Gga1-impaired strains displayed significantly slower growth in planta. Subsequent sporulation assays showed that like the previously described Gα subunit mutants, both Gba1 and Gga1 were required for asexual sporulation with neither mutant strain being able to differentiate either pycnidia nor pycnidiospores under normal growth conditions. Continued incubation at 4°C was found to complement the mutation in each of the G-protein subunits with nearly wild-type levels of pycnidia recovered. Conclusion This study provides further evidence on the significance of cAMP-dependent signal transduction for many aspects of fungal development and pathogenicity. The observation that cold temperatures can complement the G-protein sporulation defect now provides an ideal tool by which asexual differentiation can now be dissected.

  15. NF-κB p50 subunit knockout impairs late LTP and alters long term memory in the mouse hippocampus

    Directory of Open Access Journals (Sweden)

    Oikawa Kensuke

    2012-07-01

    Full Text Available Abstract Background Nuclear factor kappa B (NF-κB is a transcription factor typically expressed with two specific subunits (p50, p65. Investigators have reported that NF-κB is activated during the induction of in vitro long term potentiation (LTP, a paradigm of synaptic plasticity and correlate of memory, suggesting that NF-κB may be necessary for some aspects of memory encoding. Furthermore, NF-κB has been implicated as a potential requirement in behavioral tests of memory. Unfortunately, very little work has been done to explore the effects of deleting specific NF-κB subunits on memory. Studies have shown that NF-κB p50 subunit deletion (p50−/− leads to memory deficits, however some recent studies suggest the contrary where p50−/− mice show enhanced memory in the Morris water maze (MWM. To more critically explore the role of the NF-κB p50 subunit in synaptic plasticity and memory, we assessed long term spatial memory in vivo using the MWM, and synaptic plasticity in vitro utilizing high frequency stimuli capable of eliciting LTP in slices from the hippocampus of NF-κB p50−/− versus their controls (p50+/+. Results We found that the lack of the NF-κB p50 subunit led to significant decreases in late LTP and in selective but significant alterations in MWM tests (i.e., some improvements during acquisition, but deficits during retention. Conclusions These results support the hypothesis that the NF-κ p50 subunit is required in long term spatial memory in the hippocampus.

  16. Eukaryotic RNA polymerase subunit RPB8 is a new relative of the OB family.

    Science.gov (United States)

    Krapp, S; Kelly, G; Reischl, J; Weinzierl, R O; Matthews, S

    1998-02-01

    RNA polymerase II subunit RPB8 is an essential subunit that is highly conserved throughout eukaryotic evolution and is present in all three types of nuclear RNA polymerases. We report the first high resolution structural insight into eukaryotic RNA polymerase architecture with the solution structure of RPB8 from Saccharomyces cerevisiae. It consists of an eight stranded, antiparallel beta-barrel, four short helical regions and a large, unstructured omega-loop. The strands are connected in classic Greek-key fashion. The overall topology is unusual and contains a striking C2 rotational symmetry. Furthermore, it is most likely a novel associate of the oligonucleotide/oligosaccharide (OB) binding protein class.

  17. Small - Display Cartography

    DEFF Research Database (Denmark)

    Nissen, Flemming; Hvas, Anders; Münster-Swendsen, Jørgen

    Service Communication and finally, Part IV: Concluding remarks and topics for further research on small-display cartography. Part II includes a separate Appendix D consisting of a cartographic design specification. Part III includes a separate Appendix C consisting of a schema specification, a separate...

  18. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA.

    Science.gov (United States)

    Hoshi, Toshinori; Tian, Yutao; Xu, Rong; Heinemann, Stefan H; Hou, Shangwei

    2013-03-19

    Large-conductance Ca(2+)- and voltage-activated K(+) (BK) channels are well known for their functional versatility, which is bestowed in part by their rich modulatory repertoire. We recently showed that long-chain omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) found in oily fish lower blood pressure by activating vascular BK channels made of Slo1+β1 subunits. Here we examined the action of DHA on BK channels with different auxiliary subunit compositions. Neuronal Slo1+β4 channels were just as well activated by DHA as vascular Slo1+β1 channels. In contrast, the stimulatory effect of DHA was much smaller in Slo1+β2, Slo1+LRRC26 (γ1), and Slo1 channels without auxiliary subunits. Mutagenesis of β1, β2, and β4 showed that the large effect of DHA in Slo1+β1 and Slo1+β4 is conferred by the presence of two residues, one in the N terminus and the other in the first transmembrane segment of the β1 and β4 subunits. Transfer of this amino acid pair from β1 or β4 to β2 introduces a large response to DHA in Slo1+β2. The presence of a pair of oppositely charged residues at the aforementioned positions in β subunits is associated with a large response to DHA. The Slo1 auxiliary subunits are expressed in a highly tissue-dependent fashion. Thus, the subunit composition-dependent stimulation by DHA demonstrates that BK channels are effectors of omega-3 fatty acids with marked tissue specificity.

  19. Orientation of the calcium channel beta relative to the alpha(12.2 subunit is critical for its regulation of channel activity.

    Directory of Open Access Journals (Sweden)

    Iuliia Vitko

    Full Text Available BACKGROUND: The Ca(vbeta subunits of high voltage-activated Ca(2+ channels control the trafficking and biophysical properties of the alpha(1 subunit. The Ca(vbeta-alpha(1 interaction site has been mapped by crystallographic studies. Nevertheless, how this interaction leads to channel regulation has not been determined. One hypothesis is that betas regulate channel gating by modulating movements of IS6. A key requirement for this direct-coupling model is that the linker connecting IS6 to the alpha-interaction domain (AID be a rigid structure. METHODOLOGY/PRINCIPAL FINDINGS: The present study tests this hypothesis by altering the flexibility and orientation of this region in alpha(12.2, then testing for Ca(vbeta regulation using whole cell patch clamp electrophysiology. Flexibility was induced by replacement of the middle six amino acids of the IS6-AID linker with glycine (PG6. This mutation abolished beta2a and beta3 subunits ability to shift the voltage dependence of activation and inactivation, and the ability of beta2a to produce non-inactivating currents. Orientation of Ca(vbeta with respect to alpha(12.2 was altered by deletion of 1, 2, or 3 amino acids from the IS6-AID linker (Bdel1, Bdel2, Bdel3, respectively. Again, the ability of Ca(vbeta subunits to regulate these biophysical properties were totally abolished in the Bdel1 and Bdel3 mutants. Functional regulation by Ca(vbeta subunits was rescued in the Bdel2 mutant, indicating that this part of the linker forms beta-sheet. The orientation of beta with respect to alpha was confirmed by the bimolecular fluorescence complementation assay. CONCLUSIONS/SIGNIFICANCE: These results show that the orientation of the Ca(vbeta subunit relative to the alpha(12.2 subunit is critical, and suggests additional points of contact between these subunits are required for Ca(vbeta to regulate channel activity.

  20. SAHA (Vorinostat Corrects Inhibitory Synaptic Deficits Caused by Missense Epilepsy Mutations to the GABAA Receptor γ2 Subunit

    Directory of Open Access Journals (Sweden)

    Nela Durisic

    2018-03-01

    Full Text Available The GABAA receptor (GABAAR α1 subunit A295D epilepsy mutation reduces the surface expression of α1A295Dβ2γ2 GABAARs via ER-associated protein degradation. Suberanilohydroxamic acid (SAHA, also known as Vorinostat was recently shown to correct the misfolding of α1A295D subunits and thereby enhance the functional surface expression of α1A295Dβ2γ2 GABAARs. Here we investigated whether SAHA can also restore the surface expression of γ2 GABAAR subunits that incorporate epilepsy mutations (N40S, R43Q, P44S, R138G known to reduce surface expression via ER-associated protein degradation. As a control, we also investigated the γ2K289M epilepsy mutation that impairs gating without reducing surface expression. Effects of mutations were evaluated on inhibitory postsynaptic currents (IPSCs mediated by the major synaptic α1β2γ2 GABAAR isoform. Recordings were performed in neuron-HEK293 cell artificial synapses to minimise contamination by GABAARs of undefined subunit composition. Transfection with α1β2γ2N40S, α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G subunits produced IPSCs with decay times slower than those of unmutated α1β2γ2 GABAARs due to the low expression of mutant γ2 subunits and the correspondingly high expression of slow-decaying α1β2 GABAARs. SAHA pre-treatment significantly accelerated the decay time constants of IPSCs consistent with the upregulation of mutant γ2 subunit expression. This increase in surface expression was confirmed by immunohistochemistry. SAHA had no effect on either the IPSC kinetics or surface expression levels of α1β2γ2K289M GABAARs, confirming its specificity for ER-retained mutant γ2 subunits. We also found that α1β2γ2K289M GABAARs and SAHA-treated α1β2γ2R43Q, α1β2γ2P44S and α1β2γ2R138G GABAARs all mediated IPSCs that decayed at significantly faster rates than wild type receptors as temperature was increased from 22 to 40°C. This may help explain why these mutations cause febrile

  1. RAD21L, a novel cohesin subunit implicated in linking homologous chromosomes in mammalian meiosis.

    Science.gov (United States)

    Lee, Jibak; Hirano, Tatsuya

    2011-01-24

    Cohesins are multi-subunit protein complexes that regulate sister chromatid cohesion during mitosis and meiosis. Here we identified a novel kleisin subunit of cohesins, RAD21L, which is conserved among vertebrates. In mice, RAD21L is expressed exclusively in early meiosis: it apparently replaces RAD21 in premeiotic S phase, becomes detectable on the axial elements in leptotene, and stays on the axial/lateral elements until mid pachytene. RAD21L then disappears, and is replaced with RAD21. This behavior of RAD21L is unique and distinct from that of REC8, another meiosis-specific kleisin subunit. Remarkably, the disappearance of RAD21L at mid pachytene correlates with the completion of DNA double-strand break repair and the formation of crossovers as judged by colabeling with molecular markers, γ-H2AX, MSH4, and MLH1. RAD21L associates with SMC3, STAG3, and either SMC1α or SMC1β. Our results suggest that cohesin complexes containing RAD21L may be involved in synapsis initiation and crossover recombination between homologous chromosomes.

  2. HCV IRES domain IIb affects the configuration of coding RNA in the 40S subunit's decoding groove.

    Science.gov (United States)

    Filbin, Megan E; Kieft, Jeffrey S

    2011-07-01

    Hepatitis C virus (HCV) uses a structured internal ribosome entry site (IRES) RNA to recruit the translation machinery to the viral RNA and begin protein synthesis without the ribosomal scanning process required for canonical translation initiation. Different IRES structural domains are used in this process, which begins with direct binding of the 40S ribosomal subunit to the IRES RNA and involves specific manipulation of the translational machinery. We have found that upon initial 40S subunit binding, the stem-loop domain of the IRES that contains the start codon unwinds and adopts a stable configuration within the subunit's decoding groove. This configuration depends on the sequence and structure of a different stem-loop domain (domain IIb) located far from the start codon in sequence, but spatially proximal in the IRES•40S complex. Mutation of domain IIb results in misconfiguration of the HCV RNA in the decoding groove that includes changes in the placement of the AUG start codon, and a substantial decrease in the ability of the IRES to initiate translation. Our results show that two distal regions of the IRES are structurally communicating at the initial step of 40S subunit binding and suggest that this is an important step in driving protein synthesis.

  3. Project Monitor: Part II. Conservation in small business: an exploratory study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, P Y

    1979-08-01

    Project Monitor examined the energy conservation attitude and behavior of small samples of small business owners/operators in Allegheny County, Pennsylvania, focusing on manufacturing concerns and retailers. Section I reports the findings on the energy conserving behavior of 92 smaller manufacturers and Section II identifies the factors which affect decision making concerning energy consuming activities by the owners/operators of 94 small retail establishments. In each, the impact of Project Pacesetter and of the coal strike and the general energy situation is considered. (MCW)

  4. Crystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Katsuhiko; De Angelis, Jacqueline; Roeder, Robert G.; Burley, Stephen K. (Rockefeller)

    2012-12-13

    The x-ray structure of a C-terminal fragment of the RAP74 subunit of human transcription factor (TF) IIF has been determined at 1.02-{angstrom} resolution. The {alpha}/{beta} structure is strikingly similar to the globular domain of linker histone H5 and the DNA-binding domain of hepatocyte nuclear factor 3{gamma} (HNF-3{gamma}), making it a winged-helix protein. The surface electrostatic properties of this compact domain differ significantly from those of bona fide winged-helix transcription factors (HNF-3{gamma} and RFX1) and from the winged-helix domains found within the RAP30 subunit of TFIIF and the {beta} subunit of TFIIE. RAP74 has been shown to interact with the TFIIF-associated C-terminal domain phosphatase FCP1, and a putative phosphatase binding site has been identified within the RAP74 winged-helix domain.

  5. Suppressor mutations identify amino acids in PAA-1/PR65 that facilitate regulatory RSA-1/B″ subunit targeting of PP2A to centrosomes in C. elegans.

    Science.gov (United States)

    Lange, Karen I; Heinrichs, Jeffrey; Cheung, Karen; Srayko, Martin

    2013-01-15

    Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A) enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B', B″) but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B″ family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly) is a regulatory B″ subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B″ subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts), and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B″. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo.

  6. Suppressor mutations identify amino acids in PAA-1/PR65 that facilitate regulatory RSA-1/B″ subunit targeting of PP2A to centrosomes in C. elegans

    Directory of Open Access Journals (Sweden)

    Karen I. Lange

    2012-11-01

    Protein phosphorylation and dephosphorylation is a key mechanism for the spatial and temporal regulation of many essential developmental processes and is especially prominent during mitosis. The multi-subunit protein phosphatase 2A (PP2A enzyme plays an important, yet poorly characterized role in dephosphorylating proteins during mitosis. PP2As are heterotrimeric complexes comprising a catalytic, structural, and regulatory subunit. Regulatory subunits are mutually exclusive and determine subcellular localization and substrate specificity of PP2A. At least 3 different classes of regulatory subunits exist (termed B, B′, B″ but there is no obvious similarity in primary sequence between these classes. Therefore, it is not known how these diverse regulatory subunits interact with the same holoenzyme to facilitate specific PP2A functions in vivo. The B″ family of regulatory subunits is the least understood because these proteins lack conserved structural domains. RSA-1 (regulator of spindle assembly is a regulatory B″ subunit required for mitotic spindle assembly in Caenorhabditis elegans. In order to address how B″ subunits interact with the PP2A core enzyme, we focused on a conditional allele, rsa-1(or598ts, and determined that this mutation specifically disrupts the protein interaction between RSA-1 and the PP2A structural subunit, PAA-1. Through genetic screening, we identified a putative interface on the PAA-1 structural subunit that interacts with a defined region of RSA-1/B″. In the context of previously published results, these data propose a mechanism of how different PP2A B-regulatory subunit families can bind the same holoenzyme in a mutually exclusive manner, to perform specific tasks in vivo.

  7. Primary structure of and immunoglobulin E response to the repeat subunit of gp15/400 from human lymphatic filarial parasites

    NARCIS (Netherlands)

    Paxton, W. A.; Yazdanbakhsh, M.; Kurniawan, A.; Partono, F.; Maizels, R. M.; Selkirk, M. E.

    1993-01-01

    We have isolated and sequenced clones encoding the repeated subunit of the surface-associated glycoprotein gp15/400 from the two nematode species predominantly responsible for lymphatic filariasis in humans: Brugia malayi and Wuchereria bancrofti. The amino acid sequence of the 15-kDa subunit,

  8. The DFT-DVM theoretical study of the differences of quadrupole splitting and the iron electronic structure for the rough heme models for {alpha}- and {beta}-subunits in deoxyhemoglobin and for deoxymyoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Yuryeva, E. I. [Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences (Russian Federation); Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural State Technical University-UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation)

    2008-01-15

    Quantum chemical calculations of the iron electron structure and {sup 57}Fe quadrupole splitting were made by density functional theory and X{alpha} discrete variation method for the rough heme models for {alpha}- and {beta}-subunits in deoxyhemoglobin and for deoxymyoglobin accounting stereochemical differences of the active sites in native proteins. The calculations revealed differences of quadrupole splitting temperature dependences for three models indicating sensitivity of quadrupole splitting and Fe(II) electronic structure to small variations of iron stereochemistry.

  9. NMDA Receptor Subunits Change after Synaptic Plasticity Induction and Learning and Memory Acquisition

    Directory of Open Access Journals (Sweden)

    María Verónica Baez

    2018-01-01

    Full Text Available NMDA ionotropic glutamate receptors (NMDARs are crucial in activity-dependent synaptic changes and in learning and memory. NMDARs are composed of two GluN1 essential subunits and two regulatory subunits which define their pharmacological and physiological profile. In CNS structures involved in cognitive functions as the hippocampus and prefrontal cortex, GluN2A and GluN2B are major regulatory subunits; their expression is dynamic and tightly regulated, but little is known about specific changes after plasticity induction or memory acquisition. Data strongly suggest that following appropriate stimulation, there is a rapid increase in surface GluN2A-NMDAR at the postsynapses, attributed to lateral receptor mobilization from adjacent locations. Whenever synaptic plasticity is induced or memory is consolidated, more GluN2A-NMDARs are assembled likely using GluN2A from a local translation and GluN1 from local ER. Later on, NMDARs are mobilized from other pools, and there are de novo syntheses at the neuron soma. Changes in GluN1 or NMDAR levels induced by synaptic plasticity and by spatial memory formation seem to occur in different waves of NMDAR transport/expression/degradation, with a net increase at the postsynaptic side and a rise in expression at both the spine and neuronal soma. This review aims to put together that information and the proposed hypotheses.

  10. The Role of RUB (related to ubiquitin) Family of Proteins in the Hormone Response. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Callis, Judy [Univ. of California, Davis, CA (United States). Dept. of Molecular and Cellular Biology

    2013-03-22

    The Rub pathway is a conserved protein modification pathway. RUB (called Rubp1 in budding yeast, Nedd8 in animals and RUB in plants) is a ubiquitin-like 76-amino acid protein. It covalently attaches to protein using an enzymatic machinery analogous to the enzymes that attach ubiquitin to its substrate proteins. However, the nature of the complement of Rub-modified proteins in organisms was not clear. From bioinformatics analyses, one can identify a Rub activating enzymes and Rub conjugating enzymes. However, in many cases, their biochemical properties were not described. In DOE-funded work, we made major advances in our understanding of the Rub pathway in yeast and plants, work that is applicable to other organisms as well. There is a multi-subunit enzyme called SCF in all eukaryotes. The SCF consists of several subunits that serve as a scaffold (the cullin, SKP and RBX subunits) and one subunit that interacts with the substrate. This cullin protein (called Cdc53p in yeast and CULLIN 1 in plants and animals) was a known Rub target. In this work, we identified additional Rub targets in yeast as the other cullin-like proteins Cul3p and Rtt101p. Additionally we described the conservation of the Rub pathway because plant RUB1 can conjugated to yeast Cdc53p- in yeast. In the model plant Arabidopsis thaliana, we characterized the Rub activating enzymes and showed that they are not biochemically equivalent. We also showed that the Rub pathway is essential in plants and characterized plants with reduced levels of rub proteins. These plants are affected in multiple developmental processes. We discovered that they over-produce ethylene as dark-grown seedlings. We characterized a mutant allele of CULLIN1 in Arabidopsis with impaired interaction with RBX and showed that it is unstable in vivo. We used our knowledge of monitoring protein degradation to map the degradation determinants in a plant transcription factor. Finally, we took a mass spectrometric approach to identify

  11. Progesterone modulation of α5 nAChR subunits influences anxiety-related behavior during estrus cycle

    OpenAIRE

    Gangitano, David; Salas, Ramiro; Teng, Yanfen; Perez, Erika; De Biasi, Mariella

    2009-01-01

    Smokers often report an anxiolytic effect of cigarettes. In addition, stress-related disorders such as anxiety, post-traumatic stress syndrome, and depression are often associated with chronic nicotine use. To study the role of the α5 nicotinic acetylcholine receptor subunit in anxiety-related responses, control and α5 subunit null mice (α5 −/−) were subjected to the open field, light-dark box and elevated plus maze tests. In the open field and light-dark box, α5 −/− behaved like wild type co...

  12. Breaking Tolerance in Transgenic Mice Expressing the Human TSH Receptor A-Subunit: Thyroiditis, Epitope Spreading and Adjuvant as a ‘Double Edged Sword’

    Science.gov (United States)

    McLachlan, Sandra M.; Aliesky, Holly A.; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil

    2012-01-01

    Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a “double-edged sword”. On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the

  13. Comparison of mouse, guinea pig and rabbit models for evaluation of plague subunit vaccine F1+rV270.

    Science.gov (United States)

    Qi, Zhizhen; Zhou, Lei; Zhang, Qingwen; Ren, Lingling; Dai, Ruixia; Wu, Benchuan; Wang, Tang; Zhu, Ziwen; Yang, Yonghai; Cui, Baizhong; Wang, Zuyun; Wang, Hu; Qiu, Yefeng; Guo, Zhaobiao; Yang, Ruifu; Wang, Xiaoyi

    2010-02-10

    In this study, a new subunit vaccine that comprised native F1 and recombinant rV270 was evaluated for protective efficacy using mouse, guinea pig and rabbit models in comparison with the live attenuated vaccine EV76. Complete protection against challenging with 10(6) colony-forming units (CFU) of virulent Yersinia pestis strain 141 was observed for mice immunized with the subunit vaccines and EV76 vaccine. In contrast, the subunit vaccine recipes VII (F1-20 microg+rV270-10 microg) and IX (F1-40 microg+rV270-20 microg) and EV76 vaccine provided 86%, 79% and 93% protection against the same level of challenge in guinea pigs and 100%, 83% and 100% protection in rabbits, respectively. The immunized mice with the vaccines had significantly higher IgG titres than the guinea pigs and rabbits, and the immunized guinea pigs developed significantly higher IgG titres than the rabbits, but the anti-F1 response in guinea pigs was more variable than in the mice and rabbits, indicating that guinea pig is not an ideal model for evaluating protective efficacy of plague subunit vaccine, instead the rabbits could be used as an alternative model. All the immunized animals with EV76 developed a negligible IgG titre to rV270 antigen. Furthermore, analysis of IgG subclasses in the immunized animals showed a strong response for IgG1, whereas those receiving EV76 immunization demonstrated predominant production of IgG1 and IgG2a isotypes. The subunit vaccine and EV76 vaccine are able to provide protection for animals against Y. pestis challenge, but the subunit vaccines have obvious advantages over EV76 in terms of safety of use. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. 77 FR 46855 - Small Business Technology Transfer Program Policy Directive

    Science.gov (United States)

    2012-08-06

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Chapter I RIN 3245-AF45 Small Business Technology Transfer Program Policy Directive AGENCY: Small Business Administration. ACTION: Final policy directive with request for comments. SUMMARY: The U.S. Small Business Administration (SBA) is amending its Small Business...

  15. Molecular Insights into the Potential Insecticidal Interaction of β-Dihydroagarofuran Derivatives with the H Subunit of V-ATPase

    Directory of Open Access Journals (Sweden)

    Jielu Wei

    2017-10-01

    Full Text Available Celangulin V (CV, one of dihydroagarofuran sesquiterpene polyesters isolated from Chinese bittersweet (Celastrus angulatus Maxim, is famous natural botanical insecticide. Decades of research suggests that is displays excellent insecticidal activity against some insects, such as Mythimna separata Walker. Recently, it has been validated that the H subunit of V-ATPase is one of the target proteins of the insecticidal dihydroagarofuran sesquiterpene polyesters. As a continuation of the development of new pesticides from these natural products, a series of β-dihydroagarofuran derivatives have been designed and synthesized. The compound JW-3, an insecticidal derivative of CV with a p-fluorobenzyl group, exhibits higher insecticidal activity than CV. In this study, the potential inhibitory effect aused by the interaction of JW-3 with the H subunit of V-ATPase c was verified by confirmatory experiments at the molecular level. Both spectroscopic techniques and isothermal titration calorimetry measurements showed the binding of JW-3 to the subunit H of V-ATPase was specific and spontaneous. In addition, the possible mechanism of action of the compound was discussed. Docking results indicated compound JW-3 could bind well in ‘the interdomain cleft’ of the V-ATPase subunit H by the hydrogen bonding and make conformation of the ligand–protein complex become more stable. All results are the further validations of the hypothesis, that the target protein of insecticidal dihydroagarofuran sesquiterpene polyesters and their β-dihydroagarofuran derivatives is the subunit H of V-ATPase. The results also provide new ideas for developing pesticides acting on V-ATPase of insects.

  16. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication.

    Science.gov (United States)

    Langston, Lance D; Zhang, Dan; Yurieva, Olga; Georgescu, Roxana E; Finkelstein, Jeff; Yao, Nina Y; Indiani, Chiara; O'Donnell, Mike E

    2014-10-28

    DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG-Pol ε complex and showed that it is a functional polymerase-helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes.

  17. Multiple thyrotropin β-subunit and thyrotropin receptor-related genes arose during vertebrate evolution.

    Directory of Open Access Journals (Sweden)

    Gersende Maugars

    Full Text Available Thyroid-stimulating hormone (TSH is composed of a specific β subunit and an α subunit that is shared with the two pituitary gonadotropins. The three β subunits derive from a common ancestral gene through two genome duplications (1R and 2R that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshβ subunit-related gene that was generated through 2R. This gene, named Tshβ2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr gene in these species suggests that both TSHs act through the same receptor. A novel Tshβ sister gene, named Tshβ3, was generated through the third genomic duplication (3R that occurred early in the teleost lineage. Tshβ3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshβs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshβ and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshβ3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated.

  18. Maybe Small Is Too Small a Term: Introduction to Advancing Small Sample Prevention Science.

    Science.gov (United States)

    Fok, Carlotta Ching Ting; Henry, David; Allen, James

    2015-10-01

    Prevention research addressing health disparities often involves work with small population groups experiencing such disparities. The goals of this special section are to (1) address the question of what constitutes a small sample; (2) identify some of the key research design and analytic issues that arise in prevention research with small samples; (3) develop applied, problem-oriented, and methodologically innovative solutions to these design and analytic issues; and (4) evaluate the potential role of these innovative solutions in describing phenomena, testing theory, and evaluating interventions in prevention research. Through these efforts, we hope to promote broader application of these methodological innovations. We also seek whenever possible, to explore their implications in more general problems that appear in research with small samples but concern all areas of prevention research. This special section includes two sections. The first section aims to provide input for researchers at the design phase, while the second focuses on analysis. Each article describes an innovative solution to one or more challenges posed by the analysis of small samples, with special emphasis on testing for intervention effects in prevention research. A concluding article summarizes some of their broader implications, along with conclusions regarding future directions in research with small samples in prevention science. Finally, a commentary provides the perspective of the federal agencies that sponsored the conference that gave rise to this special section.

  19. Cytoplasmic Dynein Regulation by Subunit Heterogeneity and Its Role in Apical Transport

    Science.gov (United States)

    Tai, Andrew W.; Chuang, Jen-Zen; Sung, Ching-Hwa

    2001-01-01

    Despite the existence of multiple subunit isoforms for the microtubule motor cytoplasmic dynein, it has not yet been directly shown that dynein complexes with different compositions exhibit different properties. The 14-kD dynein light chain Tctex-1, but not its homologue RP3, binds directly to rhodopsin's cytoplasmic COOH-terminal tail, which encodes an apical targeting determinant in polarized epithelial Madin-Darby canine kidney (MDCK) cells. We demonstrate that Tctex-1 and RP3 compete for binding to dynein intermediate chain and that overexpressed RP3 displaces endogenous Tctex-1 from dynein complexes in MDCK cells. Furthermore, replacement of Tctex-1 by RP3 selectively disrupts the translocation of rhodopsin to the MDCK apical surface. These results directly show that cytoplasmic dynein function can be regulated by its subunit composition and that cytoplasmic dynein is essential for at least one mode of apical transport in polarized epithelia. PMID:11425878

  20. GABAA receptor subunit expression changes in the human Alzheimer's disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus.

    Science.gov (United States)

    Kwakowsky, Andrea; Calvo-Flores Guzmán, Beatriz; Pandya, Madhavi; Turner, Clinton; Waldvogel, Henry J; Faull, Richard L

    2018-02-27

    Gamma-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABA type A receptors (GABA A Rs) are severely affected in Alzheimer's disease (AD). However, the distribution and subunit composition of GABA A Rs in the AD brain are not well understood. This is the first comprehensive study to show brain region- and cell layer-specific alterations in the expression of the GABA A R subunits α1-3, α5, β1-3 and γ2 in the human AD hippocampus, entorhinal cortex and superior temporal gyrus (STG). In late-stage AD tissue samples using immunohistochemistry we found significant alteration of all investigated GABA A Rs subunits except for α3 and β1 that were well preserved. The most prominent changes include an increase in GABA A R α1 expression associated with AD in all layers of the CA3 region, in the stratum (str.) granulare and hilus of the dentate gyrus (DG). We found a significant increase in GABA A R α2 expression in the str. oriens of the CA1-3, str. radiatum of the CA2,3 and decrease in the str. pyramidale of the CA1 region in AD cases. In AD there was a significant increase in GABA A R α5 subunit expression in str. pyramidale, str. oriens of the CA1 region and decrease in the STG. We also found a significant decrease in the GABA A R β3 subunit immunoreactivity in the str. oriens of the CA2, str. granulare and str. moleculare of the DG. In conclusion, these findings indicate that the expression of the GABA A R subunits shows brain region- and layer-specific alterations in AD, and these changes could significantly influence and alter GABA A R function in the disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.