WorldWideScience

Sample records for small spacecraft systems

  1. Development of solid-gas equilibrium propulsion system for small spacecraft

    Science.gov (United States)

    Chujo, Toshihiro; Mori, Osamu; Kubo, Yuki

    2017-11-01

    A phase equilibrium propulsion system is a kind of cold-gas jet in which the phase equilibrium state of the fuel is maintained in a tank and its vapor is ejected when a valve is opened. One such example is a gas-liquid equilibrium propulsion system that uses liquefied gas as fuel. This system was mounted on the IKAROS solar sail and has been demonstrated in orbit. The system has a higher storage efficiency and a lighter configuration than a high-pressure cold-gas jet because the vapor pressure is lower, and is suitable for small spacecraft. However, the system requires a gas-liquid separation device in order to avoid leakage of the liquid, which makes the system complex. As another example of a phase equilibrium propulsion system, we introduce a solid-gas equilibrium propulsion system, which uses a sublimable substance as fuel and ejects its vapor. This system has an even lower vapor pressure and does not require such a separation device, instead requiring only a filter to keep the solid inside the tank. Moreover, the system is much simpler and lighter, making it more suitable for small spacecraft, especially CubeSat-class spacecraft, and the low thrust of the system allows spacecraft motion to be controlled precisely. In addition, the thrust level can be controlled by controlling the temperature of the fuel, which changes the vapor pressure. The present paper introduces the concept of the proposed system, and describes ejection experiments and its evaluation. The basic function of the proposed system is demonstrated in order to verify its usefulness.

  2. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  3. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    Science.gov (United States)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  4. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  5. Pi-Sat: A Low Cost Small Satellite and Distributed Spacecraft Mission System Test Platform

    Science.gov (United States)

    Cudmore, Alan

    2015-01-01

    Current technology and budget trends indicate a shift in satellite architectures from large, expensive single satellite missions, to small, low cost distributed spacecraft missions. At the center of this shift is the SmallSatCubesat architecture. The primary goal of the Pi-Sat project is to create a low cost, and easy to use Distributed Spacecraft Mission (DSM) test bed to facilitate the research and development of next-generation DSM technologies and concepts. This test bed also serves as a realistic software development platform for Small Satellite and Cubesat architectures. The Pi-Sat is based on the popular $35 Raspberry Pi single board computer featuring a 700Mhz ARM processor, 512MB of RAM, a flash memory card, and a wealth of IO options. The Raspberry Pi runs the Linux operating system and can easily run Code 582s Core Flight System flight software architecture. The low cost and high availability of the Raspberry Pi make it an ideal platform for a Distributed Spacecraft Mission and Cubesat software development. The Pi-Sat models currently include a Pi-Sat 1U Cube, a Pi-Sat Wireless Node, and a Pi-Sat Cubesat processor card.The Pi-Sat project takes advantage of many popular trends in the Maker community including low cost electronics, 3d printing, and rapid prototyping in order to provide a realistic platform for flight software testing, training, and technology development. The Pi-Sat has also provided fantastic hands on training opportunities for NASA summer interns and Pathways students.

  6. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    Science.gov (United States)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of

  7. Thrusting maneuver control of a small spacecraft via only gimbaled-thruster scheme

    Science.gov (United States)

    Kabganian, Mansour; Kouhi, Hamed; Shahravi, Morteza; Fani Saberi, Farhad

    2018-05-01

    The thrust vector control (TVC) scheme is a powerful method in spacecraft attitude control. Since the control of a small spacecraft is being studied here, a solid rocket motor (SRM) should be used instead of a liquid propellant motor. Among the TVC methods, gimbaled-TVC as an efficient method is employed in this paper. The spacecraft structure is composed of a body and a gimbaled-SRM where common attitude control systems such as reaction control system (RCS) and spin-stabilization are not presented. A nonlinear two-body model is considered for the characterization of the gimbaled-thruster spacecraft where, the only control input is provided by a gimbal actuator. The attitude of the spacecraft is affected by a large exogenous disturbance torque which is generated by a thrust vector misalignment from the center of mass (C.M). A linear control law is designed to stabilize the spacecraft attitude while rejecting the mentioned disturbance torque. A semi-analytical formulation of the region of attraction (RoA) is developed to ensure the local stability and fast convergence of the nonlinear closed-loop system. Simulation results of the 3D maneuvers are included to show the applicability of this method for use in a small spacecraft.

  8. Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft

    Science.gov (United States)

    Paulsen, G.

    2015-12-01

    The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.

  9. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  10. A small spacecraft for multipoint measurement of ionospheric plasma

    Science.gov (United States)

    Roberts, T. M.; Lynch, K. A.; Clayton, R. E.; Weiss, J.; Hampton, D. L.

    2017-07-01

    Measurement of ionospheric plasma is often performed by a single in situ device or remotely using cameras and radar. This article describes a small, low-resource, deployed spacecraft used as part of a local, multipoint measurement network. A B-field aligned sounding rocket ejects four of these spin-stabilized spacecraft in a cross pattern. In this application, each spacecraft carries two retarding potential analyzers which are used to determine plasma density, flow, and ion temperature. An inertial measurement unit and a light-emitting diode array are used to determine the position and orientation of the devices after deployment. The design of this spacecraft is first described, and then results from a recent test flight are discussed. This flight demonstrated the successful operation of the deployment mechanism and telemetry systems, provided some preliminary plasma measurements in a simple mid-latitude environment, and revealed several design issues.

  11. Development and Analysis of a Resource-Aware Power Management System as Applied to Small Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Shriver, Patrick [Univ. of Colorado, Boulder, CO (United States)

    2005-01-01

    In this thesis, an overall framework and solution method for managing the limited power resources of a small spacecraft is presented. Analogous to mobile computing technology, a primary limiting factor is the available power resources. In spite of the millions of dollars budgeted for research and development over decades, improvements in battery efficiency remains low. This situation is exacerbated by advances in payload technology that lead to increasingly power-hungry and data-intensive instruments. The challenge for the small spacecraft is to maximize capabilities and performance while meeting difficult design requirements and small project budgets.

  12. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    Science.gov (United States)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  13. Spacecraft radiator systems

    Science.gov (United States)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  14. A Study of Learning Curve Impact on Three Identical Small Spacecraft

    Science.gov (United States)

    Chen, Guangming; McLennan, Douglas D.

    2003-01-01

    With an eye to the future strategic needs of NASA, the New Millennium Program is funding the Space Technology 5 (ST-5) project to address the future needs in the area of small satellites in constellation missions. The ST-5 project, being developed at Goddard Space Flight Center, involves the development and simultaneous launch of three small, 20-kilogram-class spacecraft. ST-5 is only a test drive and future NASA science missions may call for fleets of spacecraft containing tens of smart and capable satellites in an intelligent constellation. The objective of ST-5 project is to develop three such pioneering small spacecraft for flight validation of several critical new technologies. The ST-5 project team at Goddard Space Flight Center has completed the spacecraft design, is now building and testing the three flight units. The launch readiness date (LRD) is in December 2005. A critical part of ST-5 mission is to prove that it is possible to build these small but capable spacecraft with recurring cost low enough to make future NASA s multi- spacecraft constellation missions viable from a cost standpoint.

  15. Small Rocket/Spacecraft Technology (SMART) Platform

    Science.gov (United States)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  16. Electrical design for origami solar panels and a small spacecraft test mission

    Science.gov (United States)

    Drewelow, James; Straub, Jeremy

    2017-05-01

    Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.

  17. Small Spacecraft Technology Initiative Education Program

    Science.gov (United States)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  18. Small space reactor power systems for unmanned solar system exploration missions

    International Nuclear Information System (INIS)

    Bloomfield, H.S.

    1987-12-01

    A preliminary feasibility study of the application of small nuclear reactor space power systems to the Mariner Mark II Cassini spacecraft/mission was conducted. The purpose of the study was to identify and assess the technology and performance issues associated with the reactor power system/spacecraft/mission integration. The Cassini mission was selected because study of the Saturn system was identified as a high priority outer planet exploration objective. Reactor power systems applied to this mission were evaluated for two different uses. First, a very small 1 kWe reactor power system was used as an RTG replacement for the nominal spacecraft mission science payload power requirements while still retaining the spacecraft's usual bipropellant chemical propulsion system. The second use of reactor power involved the additional replacement of the chemical propulsion system with a small reactor power system and an electric propulsion system. The study also provides an examination of potential applications for the additional power available for scientific data collection. The reactor power system characteristics utilized in the study were based on a parametric mass model that was developed specifically for these low power applications. The model was generated following a neutronic safety and operational feasibility assessment of six small reactor concepts solicited from U.S. industry. This assessment provided the validation of reactor safety for all mission phases and generatad the reactor mass and dimensional data needed for the system mass model

  19. The Core Flight System (cFS) Community: Providing Low Cost Solutions for Small Spacecraft

    Science.gov (United States)

    McComas, David; Wilmot, Jonathan; Cudmore, Alan

    2016-01-01

    In February 2015 the NASA Goddard Space Flight Center (GSFC) completed the open source release of the entire Core Flight Software (cFS) suite. After the open source release a multi-NASA center Configuration Control Board (CCB) was established that has managed multiple cFS product releases. The cFS was developed and is being maintained in compliance with the NASA Class B software development process requirements and the open source release includes all Class B artifacts. The cFS is currently running on three operational science spacecraft and is being used on multiple spacecraft and instrument development efforts. While the cFS itself is a viable flight software (FSW) solution, we have discovered that the cFS community is a continuous source of innovation and growth that provides products and tools that serve the entire FSW lifecycle and future mission needs. This paper summarizes the current state of the cFS community, the key FSW technologies being pursued, the development/verification tools and opportunities for the small satellite community to become engaged. The cFS is a proven high quality and cost-effective solution for small satellites with constrained budgets.

  20. Sensitivity Analysis of ProSEDS (Propulsive Small Expendable Deployer System) Data Communication System

    Science.gov (United States)

    Park, Nohpill; Reagan, Shawn; Franks, Greg; Jones, William G.

    1999-01-01

    This paper discusses analytical approaches to evaluating performance of Spacecraft On-Board Computing systems, thereby ultimately achieving a reliable spacecraft data communications systems. The sensitivity analysis approach of memory system on the ProSEDS (Propulsive Small Expendable Deployer System) as a part of its data communication system will be investigated. Also, general issues and possible approaches to reliable Spacecraft On-Board Interconnection Network and Processor Array will be shown. The performance issues of a spacecraft on-board computing systems such as sensitivity, throughput, delay and reliability will be introduced and discussed.

  1. LQG/LTR optimal attitude control of small flexible spacecraft using free-free boundary conditions

    Science.gov (United States)

    Fulton, Joseph M.

    Due to the volume and power limitations of a small satellite, careful consideration must be taken while designing an attitude control system for 3-axis stabilization. Placing redundancy in the system proves difficult and utilizing power hungry, high accuracy, active actuators is not a viable option. Thus, it is customary to find dependable, passive actuators used in conjunction with small scale active control components. This document describes the application of Elastic Memory Composite materials in the construction of a flexible spacecraft appendage, such as a gravity gradient boom. Assumed modes methods are used with Finite Element Modeling information to obtain the equations of motion for the system while assuming free-free boundary conditions. A discussion is provided to illustrate how cantilever mode shapes are not always the best assumption when modeling small flexible spacecraft. A key point of interest is first resonant modes may be needed in the system design plant in spite of these modes being greater than one order of magnitude in frequency when compared to the crossover frequency of the controller. LQG/LTR optimal control techniques are implemented to compute attitude control gains while controller robustness considerations determine appropriate reduced order controllers and which flexible modes to include in the design model. Key satellite designer concerns in the areas of computer processor sizing, material uncertainty impacts on the system model, and system performance variations resulting from appendage length modifications are addressed.

  2. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  3. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  4. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  5. Modeling the angular motion dynamics of spacecraft with a magnetic attitude control system based on experimental studies and dynamic similarity

    Science.gov (United States)

    Kulkov, V. M.; Medvedskii, A. L.; Terentyev, V. V.; Firsyuk, S. O.; Shemyakov, A. O.

    2017-12-01

    The problem of spacecraft attitude control using electromagnetic systems interacting with the Earth's magnetic field is considered. A set of dimensionless parameters has been formed to investigate the spacecraft orientation regimes based on dynamically similar models. The results of experimental studies of small spacecraft with a magnetic attitude control system can be extrapolated to the in-orbit spacecraft motion control regimes by using the methods of the dimensional and similarity theory.

  6. Mean of Microaccelerations Estimate in the Small Spacecraft Internal Environment with the Use of Fuzzy Sets

    Science.gov (United States)

    Sedelnikov, A. V.

    2018-05-01

    Assessment of parameters of rotary motion of the small spacecraft around its center of mass and of microaccelerations using measurements of current from silicon photocells is carried out. At the same time there is a problem of interpretation of ambiguous telemetric data. Current from two opposite sides of the small spacecraft is significant. The mean of removal of such uncertainty is considered. It is based on an fuzzy set. As membership function it is offered to use a normality condition of the direction cosines. The example of uncertainty removal for a prototype of the Aist small spacecraft is given. The offered approach can significantly increase the accuracy of microaccelerations estimate when using measurements of current from silicon photocells.

  7. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  8. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  9. Discovering the cosmos with small spacecraft the American explorer program

    CERN Document Server

    Harvey, Brian

    2018-01-01

    Explorer was the original American space program and Explorer 1 its first satellite, launched in 1958. Sixty years later, it is the longest continuously running space program in the world, demonstrating to the world how we can explore the cosmos with small spacecraft. Almost a hundred Explorers have already been launched.  Explorers have made some of the fundamental discoveries of the Space Age.Explorer 1 discovered Earth’s radiation belts. Later Explorers surveyed the Sun, the X-ray and ultraviolet universes, black holes, magnetars and gamma ray bursts. An Explorer found the remnant of the Big Bang. One Explorer chased and was the first to intercept a comet. The program went through a period of few launches during the crisis of funding for space science in the 1980s. However, with the era of ‘faster, cheaper, better,’ the program was reinvented, and new exiting missions began to take shape, like Swift and the asteroid hunter WISE.  Discovering the Cosmos with Small Spacecraft gives an account of ...

  10. Investigation of fast initialization of spacecraft bubble memory systems

    Science.gov (United States)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1984-01-01

    Bubble domain technology offers significant improvement in reliability and functionality for spacecraft onboard memory applications. In considering potential memory systems organizations, minimization of power in high capacity bubble memory systems necessitates the activation of only the desired portions of the memory. In power strobing arbitrary memory segments, a capability of fast turn on is required. Bubble device architectures, which provide redundant loop coding in the bubble devices, limit the initialization speed. Alternate initialization techniques are investigated to overcome this design limitation. An initialization technique using a small amount of external storage is demonstrated.

  11. Technology for organization of the onboard system for processing and storage of ERS data for ultrasmall spacecraft

    Science.gov (United States)

    Strotov, Valery V.; Taganov, Alexander I.; Konkin, Yuriy V.; Kolesenkov, Aleksandr N.

    2017-10-01

    Task of processing and analysis of obtained Earth remote sensing data on ultra-small spacecraft board is actual taking into consideration significant expenditures of energy for data transfer and low productivity of computers. Thereby, there is an issue of effective and reliable storage of the general information flow obtained from onboard systems of information collection, including Earth remote sensing data, into a specialized data base. The paper has considered peculiarities of database management system operation with the multilevel memory structure. For storage of data in data base the format has been developed that describes a data base physical structure which contains required parameters for information loading. Such structure allows reducing a memory size occupied by data base because it is not necessary to store values of keys separately. The paper has shown architecture of the relational database management system oriented into embedment into the onboard ultra-small spacecraft software. Data base for storage of different information, including Earth remote sensing data, can be developed by means of such database management system for its following processing. Suggested database management system architecture has low requirements to power of the computer systems and memory resources on the ultra-small spacecraft board. Data integrity is ensured under input and change of the structured information.

  12. Protecting Spacecraft Fragments from Exposure to Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable debris. In case of possible collision with the observed debris an avoidance manoeuvre is provided. The situation with unobservable debris is worse, its dimensions ranging from 100 mm to several microns. This debris is formed as a result of explosions of dead space objects and at collisions of destroyed spacecraft fragments against each other. This debris moves along arbitrary trajectories at different speeds.At collision of a spacecraft with fragments of small-size space debris, various consequences are possible: the device can immediately fail, suffer damages, which will have effect later and damages, which break no bones to the aircraft. Anyway, the spacecraft collision with small-size debris particles is undesirable. The protective shields are used to protect the aircraft from damage. Development of shield construction is complicated because the high cost of launch makes it impossible to conduct field tests of shields in space. All the work is carried out in the laboratory, with particles having co-impact speeds up to 10 km/s (possible speeds are up to 20 km/s and spherically shaped particles of 0.8 ... 3 mm in diameter.Various materials are used to manufacture shields. These are aluminum sheet, sandwich panels, metal mesh, metal foam, and woven materials (ballistic fabric. The paper considers single-layer (from sheet metal sandwich materials and multilayer shield designs. As experimental studies show, a single-layer shield protects colliding at speeds

  13. Managing Small Spacecraft Projects: Less is Not Easier

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn

    2012-01-01

    Managing small, low cost missions (class C or D) is not necessarily easier than managing a full flagship mission. Yet, small missions are typically considered easier to manage and used as a training ground for developing the next generation of project managers. While limited resources can be a problem for small missions, in reality most of the issues inherent in managing small projects are not the direct result of limited resources. Instead, problems encountered by managers of small spacecraft missions often derive from 1) the perception that managing small projects is easier if something is easier it needs less rigor and formality in execution, 2) the perception that limited resources necessitate or validate omitting standard management practices, 3) less stringent or unclear guidelines or policies for small projects, and 4) stakeholder expectations that are not consistent with the size and nature of the project. For example, the size of a project is sometimes used to justify not building a full, detailed integrated master schedule. However, while a small schedule slip may not be a problem for a large mission, it can indicate a serious problem for a small mission with a short development phase, highlighting the importance of the schedule for early identification of potential issues. Likewise, stakeholders may accept a higher risk posture early in the definition of a low-cost mission, but as launch approaches this acceptance may change. This presentation discusses these common misconceptions about managing small, low cost missions, the problems that can result, and possible solutions.

  14. Research on intelligent power distribution system for spacecraft

    Science.gov (United States)

    Xia, Xiaodong; Wu, Jianju

    2017-10-01

    The power distribution system (PDS) mainly realizes the power distribution and management of the electrical load of the whole spacecraft, which is directly related to the success or failure of the mission, and hence is an important part of the spacecraft. In order to improve the reliability and intelligent degree of the PDS, and considering the function and composition of spacecraft power distribution system, this paper systematically expounds the design principle and method of the intelligent power distribution system based on SSPC, and provides the analysis and verification of the test data additionally.

  15. Artificial intelligence costs, benefits, risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  16. Enabling Advanced Automation in Spacecraft Operations with the Spacecraft Emergency Response System

    Science.gov (United States)

    Breed, Julie; Fox, Jeffrey A.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    True autonomy is the Holy Grail of spacecraft mission operations. The goal of launching a satellite and letting it manage itself throughout its useful life is a worthy one. With true autonomy, the cost of mission operations would be reduced to a negligible amount. Under full autonomy, any problems (no matter the severity or type) that may arise with the spacecraft would be handled without any human intervention via some combination of smart sensors, on-board intelligence, and/or smart automated ground system. Until the day that complete autonomy is practical and affordable to deploy, incremental steps of deploying ever-increasing levels of automation (computerization of once manual tasks) on the ground and on the spacecraft are gradually decreasing the cost of mission operations. For example, NASA's Goddard Space Flight Center (NASA-GSFC) has been flying spacecraft with low cost operations for several years. NASA-GSFC's SMEX (Small Explorer) and MIDEX (Middle Explorer) missions have effectively deployed significant amounts of automation to enable the missions to fly predominately in 'light-out' mode. Under light-out operations the ground system is run without human intervention. Various tools perform many of the tasks previously performed by the human operators. One of the major issues in reducing human staff in favor of automation is the perceived increased in risk of losing data, or even losing a spacecraft, because of anomalous conditions that may occur when there is no one in the control center. When things go wrong, missions deploying advanced automation need to be sure that anomalous conditions are detected and that key personal are notified in a timely manner so that on-call team members can react to those conditions. To ensure the health and safety of its lights-out missions, NASA-GSFC's Advanced Automation and Autonomy branch (Code 588) developed the Spacecraft Emergency Response System (SERS). The SERS is a Web-based collaborative environment that enables

  17. Time maintenance system for the BMDO MSX spacecraft

    Science.gov (United States)

    Hermes, Martin J.

    1994-01-01

    The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.

  18. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  19. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  20. Radioisotope AMTEC power system designs for spacecraft applications

    International Nuclear Information System (INIS)

    Ivanenok, J.F. III; Sievers, R.K.; Hunt, T.K.; Johnson, G.A.

    1993-01-01

    The Alkali Metal Thermal to Electric Converter (AMTEC) system is an exceptional candidate for high performance spacecraft power systems including small systems powered by General Purpose Heat Sources (GPHS). The AMTEC converter is best described as a thermally regenerative electrochemical concentration cell. AMTEC is a static energy conversion device and can operate at efficiencies between 15% and 30%. The single tube, remote condensed, wick return minicell design has been incorporated into a radioisotope powered system model. Reported cell efficiencies used for these system design studies ranged from 15% to 25%. This efficiency is significantly higher than other static conversion systems operating at the same temperatures. Savings in mass and cost, relative to other more conventional static conversion systems, have also been shown. The minicell used for this system study has many advanced features not combined in previous designs, including wick return, remote condensing, and hot zone feedthroughs. All of these features significantly enhance the performance of the AMTEC cell. Additionally, the cell end provides enough area for adequate heat transfer from the GPHS module, eliminating the need for a ''hot shoe'', and reducing the complexity and weight of the system. This paper describes and compares small (two module) and larger (16 module) AMTEC radioisotope powered systems and describes the computer model developed to predict their performance

  1. Conceptual definition of Automated Power Systems Management. [for planetary spacecraft

    Science.gov (United States)

    Imamura, M. S.; Skelly, L.; Weiner, H.

    1977-01-01

    Automated Power Systems Management (APSM) is defined as the capability of a spacecraft power system to automatically perform monitoring, computational, command, and control functions without ground intervention. Power systems for future planetary spacecraft must have this capability because they must perform up to 10 years, and accommodate real-time changes in mission execution autonomously. Specific APSM functions include fault detection, isolation, and correction; system performance and load profile prediction; power system optimization; system checkout; and data storage and transmission control. This paper describes the basic method of implementing these specific functions. The APSM hardware includes a central power system computer and a processor dedicated to each major power system subassembly along with digital interface circuitry. The major payoffs anticipated are in enhancement of spacecraft reliability and life and reduction of overall spacecraft program cost.

  2. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  3. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    Science.gov (United States)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  4. Development of Micro-Resolution PIV and Analysis of Microthrusters for Small-Scale Aircraft and Spacecraft

    National Research Council Canada - National Science Library

    Meinhart, Carl

    2000-01-01

    This research program consisted of two primary research objectives that were aimed at advancing the current understanding of microfluidic processes related to the development of small-scale aircraft and spacecraft. (1...

  5. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    Science.gov (United States)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  6. Multi-kilowatt modularized spacecraft power processing system development

    International Nuclear Information System (INIS)

    Andrews, R.E.; Hayden, J.H.; Hedges, R.T.; Rehmann, D.W.

    1975-07-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations

  7. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    Science.gov (United States)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  8. SHARP: A multi-mission AI system for spacecraft telemetry monitoring and diagnosis

    Science.gov (United States)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real-time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  9. How Spacecraft Fly Spaceflight Without Formulae

    CERN Document Server

    Swinerd, Graham

    2009-01-01

    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...

  10. Definition of the topological structure of the automatic control system of spacecrafts

    International Nuclear Information System (INIS)

    KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Zelenkov, P V; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Karaseva, M V; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Tsareva, E A; Tsarev, R Y

    2015-01-01

    The paper considers the problem of selection the topological structure of the automated control system of spacecrafts. The integer linear model of mathematical programming designed to define the optimal topological structure for spacecraft control is proposed. To solve the determination problem of topological structure of the control system of spacecrafts developed the procedure of the directed search of some structure variants according to the scheme 'Branch and bound'. The example of the automated control system of spacecraft development included the combination of ground control stations, managing the spacecraft of three classes with a geosynchronous orbit with constant orbital periods is presented

  11. Equations of Motion of Free-Floating Spacecraft-Manipulator Systems: An Engineer's Tutorial

    Directory of Open Access Journals (Sweden)

    Markus Wilde

    2018-04-01

    Full Text Available The paper provides a step-by-step tutorial on the Generalized Jacobian Matrix (GJM approach for modeling and simulation of spacecraft-manipulator systems. The General Jacobian Matrix approach describes the motion of the end-effector of an underactuated manipulator system solely by the manipulator joint rotations, with the attitude and position of the base-spacecraft resulting from the manipulator motion. The coupling of the manipulator motion with the base-spacecraft are thus expressed in a generalized inertia matrix and a GJM. The focus of the paper lies on the complete analytic derivation of the generalized equations of motion of a free-floating spacecraft-manipulator system. This includes symbolic analytic expressions for all inertia property matrices of the system, including their time derivatives and joint-angle derivatives, as well as an expression for the generalized Jacobian of a generic point on any link of the spacecraft-manipulator system. The kinematics structure of the spacecraft-manipulator system is described both in terms of direction-cosine matrices and unit quaternions. An additional important contribution of this paper is to propose a new and more detailed definition for the modes of maneuvering of a spacecraft-manipulator. In particular, the two commonly used categories free-flying and free-floating are expanded by the introduction of five categories, namely floating, rotation-floating, rotation-flying, translation-flying, and flying. A fully-symbolic and a partially-symbolic option for the implementation of a numerical simulation model based on the proposed analytic approach are introduced and exemplary simulation results for a planar four-link spacecraft-manipulator system and a spatial six-link spacecraft manipulator system are presented.

  12. Advanced Deployable Structural Systems for Small Satellites

    Science.gov (United States)

    Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.

    2016-01-01

    One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.

  13. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    Science.gov (United States)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  14. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    Science.gov (United States)

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony

    2016-01-01

    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  15. SHARP: A multi-mission artificial intelligence system for spacecraft telemetry monitoring and diagnosis

    Science.gov (United States)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  16. Spacecraft Charge Monitor

    Science.gov (United States)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  17. Assessment of the Use of Nanofluids in Spacecraft Active Thermal Control Systems

    Science.gov (United States)

    Ungar, Eugene K.; Erickson, Lisa R.

    2011-01-01

    The addition of metallic nanoparticles to a base heat transfer fluid can dramatically increase its thermal conductivity. These nanofluids have been shown to have advantages in some heat transport systems. Their enhanced properties can allow lower system volumetric flow rates and can reduce the required pumping power. Nanofluids have been suggested for use as working fluids for spacecraft Active Thermal Control Systems (ATCSs). However, there are no studies showing the end-to-end effect of nanofluids on the design and performance of spacecraft ATCSs. In the present work, a parametric study is performed to assess the use of nanofluids in a spacecraft ATCSs. The design parameters of the current Orion capsule and the tabulated thermophysical properties of nanofluids are used to assess the possible benefits of nanofluids and how their incorporation affects the overall design of a spacecraft ATCS. The study shows that the unique system and component-level design parameters of spacecraft ATCSs render them best suited for pure working fluids. The addition of nanoparticles to typical spacecraft thermal control working fluids actually results in an increase in the system mass and required pumping power.

  18. Artificial Intelligence and Spacecraft Power Systems

    Science.gov (United States)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  19. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  20. Protecting Spacecraft Fragments from Exposure to Small Debris

    OpenAIRE

    V. V. Zelentsov

    2015-01-01

    Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable ...

  1. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  2. Materials and structures technology insertion into spacecraft systems: Successes and challenges

    Science.gov (United States)

    Rawal, Suraj

    2018-05-01

    Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.

  3. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    Science.gov (United States)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  4. Wheel speed management control system for spacecraft

    Science.gov (United States)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  5. Lifetime of a spacecraft around a synchronous system of asteroids using a dipole model

    Science.gov (United States)

    dos Santos, Leonardo Barbosa Torres; de Almeida Prado, Antonio F. Bertachini; Sanchez, Diogo Merguizo

    2017-11-01

    Space missions allow us to expand our knowledge about the origin of the solar system. It is believed that asteroids and comets preserve the physical characteristics from the time that the solar system was created. For this reason, there was an increase of missions to asteroids in the past few years. To send spacecraft to asteroids or comets is challenging, since these objects have their own characteristics in several aspects, such as size, shape, physical properties, etc., which are often only discovered after the approach and even after the landing of the spacecraft. These missions must be developed with sufficient flexibility to adjust to these parameters, which are better determined only when the spacecraft reaches the system. Therefore, conducting a dynamic investigation of a spacecraft around a multiple asteroid system offers an extremely rich environment. Extracting accurate information through analytical approaches is quite challenging and requires a significant number of restrictive assumptions. For this reason, a numerical approach to the dynamics of a spacecraft in the vicinity of a binary asteroid system is offered in this paper. In the present work, the equations of the Restricted Synchronous Four-Body Problem (RSFBP) are used to model a binary asteroid system. The main objective of this work is to construct grids of initial conditions, which relates semi-major axis and eccentricity, in order to quantify the lifetime of a spacecraft when released close to the less massive body of the binary system (modeled as a rotating mass dipole). We performed an analysis of the lifetime of the spacecraft considering several mass ratios of a binary system of asteroids and investigating the behavior of a spacecraft in the vicinity of this system. We analyze direct and retrograde orbits. This study investigated orbits that survive for at least 500 orbital periods of the system (which is approximately one year), then not colliding or escaping from the system during this

  6. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    Science.gov (United States)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  7. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  8. Automating a spacecraft electrical power system using expert systems

    Science.gov (United States)

    Lollar, L. F.

    1991-01-01

    Since Skylab, Marshall Space Flight Center (MSFC) has recognized the need for large electrical power systems (EPS's) in upcoming Spacecraft. The operation of the spacecraft depends on the EPS. Therefore, it must be efficient, safe, and reliable. In 1978, as a consequence of having to supply a large number of EPS personnel to monitor and control Skylab, the Electrical power Branch of MSFC began the autonomously managed power system (AMPS) project. This project resulted in the assembly of a 25-kW high-voltage dc test facility and provided the means of getting man out of the loop as much as possible. AMPS includes several embedded controllers which allow a significant level of autonomous operation. More recently, the Electrical Division at MSFC has developed the space station module power management and distribution (SSM/PMAD) breadboard to investigate managing and distributing power in the Space Station Freedom habitation and laboratory modules. Again, the requirement for a high level of autonomy for the efficient operation over the lifetime of the station and for the benefits of enhanced safety has been demonstrated. This paper describes the two breadboards and the hierarchical approach to automation which was developed through these projects.

  9. The Global Precipitation Measurement (GPM) Spacecraft Power System Design and Orbital Performance

    Science.gov (United States)

    Dakermanji, George; Burns, Michael; Lee, Leonine; Lyons, John; Kim, David; Spitzer, Thomas; Kercheval, Bradford

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The spacecraft is in a circular 400 Km altitude, 65 degrees inclination nadir pointing orbit with a three year basic mission life. The solar array consists of two sun tracking wings with cable wraps. The panels are populated with triple junction cells of nominal 29.5% efficiency. One axis is canted by 52 degrees to provide power to the spacecraft at high beta angles. The power system is a Direct Energy Transfer (DET) system designed to support 1950 Watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s x 84p batteries operated in parallel as a single battery. The paper describes the power system design details, its performance to date and the lithium ion battery model that was developed for use in the energy balance analysis and is being used to predict the on-orbit health of the battery.

  10. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  11. Galileo spacecraft power management and distribution system

    International Nuclear Information System (INIS)

    Detwiler, R.C.; Smith, R.L.

    1990-01-01

    It has been twelve years since two Voyager spacecraft began the direct route to the outer planets. In October 1989 a single Galileo spacecraft started the return to Jupiter. Conceived as a simple Voyager look-alike, the Galileo power management and distribution (PMAD) system has undergone many iterations in configuration. Major changes to the PMAD resulted from dual spun slip ring limitations, variations in launch vehicle thrust capabilities, and launch delays. Lack of an adequate launch vehicle for an interplanetary mission of Galileo's size has resulted in an extremely long flight duration. A Venus-Earth-Earth Gravity Assist (VEEGA) tour, vital to attain the required energy, results in a 6 year trip to Jupiter and its moons. This paper provides a description of the Galileo PMAD and documents the design drivers that established the final as-built hardware

  12. Disinfection of Spacecraft Potable Water Systems by Passivation with Ionic Silver

    Science.gov (United States)

    Birmele, Michele N.; McCoy, LaShelle e.; Roberts, Michael S.

    2011-01-01

    Microbial growth is common on wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and physical disinfection methods. Advanced control technologies are needed to limit microorganisms and increase the reliability of life support systems required for long-duration human missions. Silver ions and compounds are widely used as antimicrobial agents for medical applications and continue to be used as a residual biocide in some spacecraft water systems. The National Aeronautics and Space Administration (NASA) has identified silver fluoride for use in the potable water system on the next generation spacecraft. Due to ionic interactions between silver fluoride in solution and wetted metallic surfaces, ionic silver is rapidly depleted from solution and loses its antimicrobial efficacy over time. This report describes research to prolong the antimicrobial efficacy of ionic silver by maintaining its solubility. Three types of metal coupons (lnconel 718, Stainless Steel 316, and Titanium 6AI-4V) used in spacecraft potable water systems were exposed to either a continuous flow of water amended with 0.4 mg/L ionic silver fluoride or to a static, pre-treatment passivation in 50 mg/L ionic silver fluoride with or without a surface oxidation pre-treatment. Coupons were then challenged in a high-shear, CDC bioreactor (BioSurface Technologies) by exposure to six bacteria previously isolated from spacecraft potable water systems. Continuous exposure to 0.4 mg/L ionic silver over the course of 24 hours during the flow phase resulted in a >7-log reduction. The residual effect of a 24-hour passivation treatment in 50 mg/L of ionic silver resulted in a >3-log reduction, whereas a two-week treatment resulted in a >4-log reduction. Results indicate that 0.4 mg/L ionic silver is an effective biocide against many bacteria and that a prepassivation of metal surfaces with silver can provide additional microbial control.

  13. Space power systems--''Spacecraft 2000''

    International Nuclear Information System (INIS)

    Faymon, K.A.

    1985-01-01

    The National Space programs of the 21st century will require abundant and relatively low cost power and energy produced by high reliability-low mass systems. Advancement of current power system related technologies will enable the U.S. to realize increased scientific payload for government missions or increased revenue producing payload for commercial space endeavors. Autonomous, unattended operation will be a highly desirable characteristic of these advanced power systems. Those space power-energy related technologies, which will comprise the space craft of the late 1990's and the early 2000's, will evolve from today's state-of-the-art systems and those long term technology development programs presently in place. However, to foster accelerated development of the more critical technologies which have the potential for high-payoffs, additional programs will be proposed and put in place between now and the end of the century. Such a program is ''Spacecraft 2000'', which is described in this paper

  14. The Small Mars System

    Science.gov (United States)

    Fantino, E.; Grassi, M.; Pasolini, P.; Causa, F.; Molfese, C.; Aurigemma, R.; Cimminiello, N.; de la Torre, D.; Dell'Aversana, P.; Esposito, F.; Gramiccia, L.; Paudice, F.; Punzo, F.; Roma, I.; Savino, R.; Zuppardi, G.

    2017-08-01

    The Small Mars System is a proposed mission to Mars. Funded by the European Space Agency, the project has successfully completed Phase 0. The contractor is ALI S.c.a.r.l., and the study team includes the University of Naples ;Federico II;, the Astronomical Observatory of Capodimonte and the Space Studies Institute of Catalonia. The objectives of the mission are both technological and scientific, and will be achieved by delivering a small Mars lander carrying a dust particle analyser and an aerial drone. The former shall perform in situ measurements of the size distribution and abundance of dust particles suspended in the Martian atmosphere, whereas the latter shall demonstrate low-altitude flight in the rarefied planetary environment. The mission-enabling technology is an innovative umbrella-like heat shield, known as IRENE, developed and patented by ALI. The mission is also a technological demonstration of the shield in the upper atmosphere of Mars. The core characteristics of SMS are the low cost (120 M€) and the small size (320 kg of wet mass at launch, 110 kg at landing), features which stand out with respect to previous Mars landers. To comply with them is extremely challenging at all levels, and sets strict requirements on the choice of the materials, the sizing of payloads and subsystems, their arrangement inside the spacecraft and the launcher's selection. In this contribution, the mission and system concept and design are illustrated and discussed. Special emphasis is given to the innovative features and to the challenges faced in the development of the work.

  15. Low-Cost, Class D Testing of Spacecraft Photovoltaic Systems Can Reduce Risk

    Science.gov (United States)

    Forgione, Joshua B.; Kojima, Gilbert K.; Hanel, Robert; Mallinson, Mark V.

    2014-01-01

    The end-to-end verification of a spacecraft photovoltaic power generation system requires light! Specifically, the standard practice for doing so is the Large Area Pulsed Solar Simulation (LAPSS). A LAPSS test can characterize a photovoltaic system's efficiency via its response to rapidly applied impulses of simulated sunlight. However, a Class D program on a constrained budget and schedule may not have the resources to ship an entire satellite for a LAPSS test alone. Such was the case with the Lunar Atmospheric and Dust Environment Explorer (LADEE) program, which was also averse to the risk of hardware damage during shipment. When the Electrical Power System (EPS) team was denied a spacecraft-level LAPSS test, the lack of an end-to-end power generation test elevated to a project-level technical risk. The team pulled together very limited resources to not only eliminate the risk, but build a process to monitor the health of the system through mission operations. We discuss a process for performing a low-cost, end-to-end test of the LADEE photovoltaic system. The approach combines system-level functional test, panel-level performance results, and periodic inspection (and repair) up until launch. Following launch, mission operations tools are utilized to assess system performance based on a scant amount of data. The process starts in manufacturing at the subcontractor. The panel manufacturer provides functional test and LAPSS data on each individual panel. We apply an initial assumption that the per-panel performance is sufficient to meet the power generation requirements. The manufacturer's data is also carried as the performance allocation for each panel during EPS system modeling and initial mission operations. During integration and test, a high-power, professional theater lamp system provides simulated sunlight to each panel on the spacecraft, thereby permitting a true end-to-end system test. A passing test results in a step response to nearly full-rated current

  16. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Science.gov (United States)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  17. Propulsion Trade Studies for Spacecraft Swarm Mission Design

    Science.gov (United States)

    Dono, Andres; Plice, Laura; Mueting, Joel; Conn, Tracie; Ho, Michael

    2018-01-01

    Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems.

  18. Air Purification in Closed Environments: An Overview of Spacecraft Systems

    Science.gov (United States)

    Perry, Jay L.; LeVan, Douglas; Crumbley, Robert (Technical Monitor)

    2002-01-01

    The primary goal for a collective protection system and a spacecraft environmental control and life support system (ECLSS) are strikingly similar. Essentially both function to provide the occupants of a building or vehicle with a safe, habitable environment. The collective protection system shields military and civilian personnel from short-term exposure to external threats presented by toxic agents and industrial chemicals while an ECLSS sustains astronauts for extended periods within the hostile environment of space. Both have air quality control similarities with various aircraft and 'tight' buildings. This paper reviews basic similarities between air purification system requirements for collective protection and an ECLSS that define surprisingly common technological challenges and solutions. Systems developed for air revitalization on board spacecraft are discussed along with some history on their early development as well as a view of future needs. Emphasis is placed upon two systems implemented by the National Aeronautics and Space Administration (NASA) onboard the International Space Station (ISS): the trace contaminant control system (TCCS) and the molecular sieve-based carbon dioxide removal assembly (CDRA). Over its history, the NASA has developed and implemented many life support systems for astronauts. As the duration, complexity, and crew size of manned missions increased from minutes or hours for a single astronaut during Project Mercury to days and ultimately months for crews of 3 or more during the Apollo, Skylab, Shuttle, and ISS programs, these systems have become more sophisticated. Systems aboard spacecraft such as the ISS have been designed to provide long-term environmental control and life support. Challenges facing the NASA's efforts include minimizing mass, volume, and power for such systems, while maximizing their safety, reliability, and performance. This paper will highlight similarities and differences among air purification systems

  19. Small business innovation research. Abstracts of completed 1987 phase 1 projects

    Science.gov (United States)

    1989-01-01

    Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  20. Five Fabulous Flybys of the Small Inner Moons of Saturn by the Cassini Spacecraft

    Science.gov (United States)

    Buratti, B. J.; Momary, T.; Clark, R. N.; Brown, R. H.; Filacchione, G.; Mosher, J. A.; Baines, K. H.; Nicholson, P. D.

    2017-12-01

    The Saturn system possesses a number of small unique moons, including the coorbitals Janus and Epimetheus; the ring moons Pan and Daphnis; and Prometheus, Pandora, and Atlas, which orbit near the edge of the main ring system. During the last phases of the Cassini mission, when the spacecraft executed close passes to the F-ring of Saturn, five "best-ever" flybys of these moons occurred. Pan, Daphnis, Atlas, Pandora, and Epimetheus were approached at distances ranging from 6000-40,000 km. The Visual Infrared Mapping Spectrometer (VIMS) captured data from the spectral range spanning 0.35-5.1 microns, as well as capturing solar phase angles not observed before. When combined with spectra from different regions of the moons obtained throughout the mission, the VIMS observations reveal substantial changes in the depth of water-ice absorption bands and color over the moons' surfaces. These measurements show the accretion of main-ring material onto the moons, with leading sides exhibiting stronger water-ice signatures in general. Atlas and Pandora have red visible spectra similar to the A-ring and unlike other icy moons, which are blue, further revealing accretion of main ring material onto the small inner moons. In general the visible spectra of the moons gets bluer with distance from Saturn until the surface of the moons is dominated by contamination from the E-ring, which is composed of fresh ice. There is a weak correlation between color and albedo, with lower-albedo moons being redder, suggesting the existence of a dark reddish contaminant from the main ring system. The solar phase curves of the moons are similar to those of larger icy moons (unfortunately no opposition surge data was gathered). 2017 California Institute of Technology. Government sponsorship acknowledged.

  1. Hummingbird - A Very Low Cost, High Delta V Spacecraft for Solar System Exploration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on Microcosm's development of a high delta-V small Earth observation spacecraft called NanoEye, with a planned recurring cost of $2 million, Microcosm will...

  2. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  3. Low power arcjet system spacecraft impacts

    Science.gov (United States)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  4. Simulation of Tomographic Reconstruction of Magnetosphere Plasma Distribution By Multi-spacecraft Systems.

    Science.gov (United States)

    Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Zelenyi, L.; Veselov, M.; Galperin, Y.; Buchner, J.

    A satellite radiotomography method for electron density distributions was recently proposed for closely-space multi-spacecraft group of high-altitude satellites to study the physics of reconnection process. The original idea of the ROY project is to use a constellation of spacecrafts (one main and several sub-satellites) in order to carry out closely-spaced multipoint measurements and 2D tomographic reconstruction of elec- tron density in the space between the main satellite and the subsatellites. The distances between the satellites were chosen to vary from dozens to few hundreds of kilometers. The easiest data interpretation is achieved when the subsatellites are placed along the plasma streamline. Then, whenever a plasma density irregularity moves between the main satellite and the subsatellites it will be scanned in different directions and we can get 2D distribution of plasma using these projections. However in general sub- satellites are not placed exactly along the plasma streamline. The method of plasma velocity determination relative to multi-spacecraft systems is considered. Possibilities of 3D tomographic imaging using multi-spacecraft systems are analyzed. The model- ing has shown that efficient scheme for 3D tomographic imaging would be to place spacecrafts in different planes so that the angle between the planes would make not more then ten degrees. Work is supported by INTAS PROJECT 2000-465.

  5. Diagnosing Faults in Electrical Power Systems of Spacecraft and Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Electrical power systems play a critical role in spacecraft and aircraft, and they exhibit a rich variety of failure modes. This paper discusses electrical power...

  6. High precision relative position sensing system for formation flying spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test an optical sensing system that provides high precision relative position sensing for formation flying spacecraft.  A high precision...

  7. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  8. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    Science.gov (United States)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  9. A computer graphics system for visualizing spacecraft in orbit

    Science.gov (United States)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  10. SHARP - Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. G.

    1990-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  11. SHARP: Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius

    1991-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  12. Adaptation and Re-Use of Spacecraft Power System Models for the Constellation Program

    Science.gov (United States)

    Hojnicki, Jeffrey S.; Kerslake, Thomas W.; Ayres, Mark; Han, Augustina H.; Adamson, Adrian M.

    2008-01-01

    NASA's Constellation Program is embarking on a new era of space exploration, returning to the Moon and beyond. The Constellation architecture will consist of a number of new spacecraft elements, including the Orion crew exploration vehicle, the Altair lunar lander, and the Ares family of launch vehicles. Each of these new spacecraft elements will need an electric power system, and those power systems will need to be designed to fulfill unique mission objectives and to survive the unique environments encountered on a lunar exploration mission. As with any new spacecraft power system development, preliminary design work will rely heavily on analysis to select the proper power technologies, size the power system components, and predict the system performance throughout the required mission profile. Constellation projects have the advantage of leveraging power system modeling developments from other recent programs such as the International Space Station (ISS) and the Mars Exploration Program. These programs have developed mature power system modeling tools, which can be quickly modified to meet the unique needs of Constellation, and thus provide a rapid capability for detailed power system modeling that otherwise would not exist.

  13. Deployable Propulsion, Power and Communications Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, L.; Carr, J.; Boyd, D.

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication.

  14. Electron Emitter for small-size Electrodynamic Space Tether using MEMS Technology

    DEFF Research Database (Denmark)

    Fleron, René A. W.; Blanke, Mogens

    2004-01-01

    Adjustment of the orbit of a spacecraft using the forces created by an electro-dynamic space-tether has been shown as a theoretic possibility in recent literature. Practical implementation is being pursued for larger scale missions where a hot filament device controls electron emission...... and the current flowing in the electrodynamic space tether. Applications to small spacecraft, or space debris in the 1–10 kg range, possess difficulties with electron emission technology, as low power emitting devices are needed. This paper addresses the system concepts of a small spacecraft electrodynamic tether...... system with focus on electron emitter design and manufacture using micro-electro-mechanical- system (MEMS) technology. The paper addresses the system concepts of a small size electrodynamic tether mission and shows a novel electron emitter for the 1-2 mA range where altitude can be effectively affected...

  15. 30-kW SEP Spacecraft as Secondary Payloads for Low-Cost Deep Space Science Missions

    Science.gov (United States)

    Brophy, John R.; Larson, Tim

    2013-01-01

    The Solar Array System contracts awarded by NASA's Space Technology Mission Directorate are developing solar arrays in the 30 kW to 50 kW power range (beginning of life at 1 AU) that have significantly higher specific powers (W/kg) and much smaller stowed volumes than conventional rigid-panel arrays. The successful development of these solar array technologies has the potential to enable new types of solar electric propulsion (SEP) vehicles and missions. This paper describes a 30-kW electric propulsion vehicle built into an EELV Secondary Payload Adapter (ESPA) ring. The system uses an ESPA ring as the primary structure and packages two 15-kW Megaflex solar array wings, two 14-kW Hall thrusters, a hydrazine Reaction Control Subsystem (RCS), 220 kg of xenon, 26 kg of hydrazine, and an avionics module that contains all of the rest of the spacecraft bus functions and the instrument suite. Direct-drive is used to maximize the propulsion subsystem efficiency and minimize the resulting waste heat and required radiator area. This is critical for packaging a high-power spacecraft into a very small volume. The fully-margined system dry mass would be approximately 1120 kg. This is not a small dry mass for a Discovery-class spacecraft, for example, the Dawn spacecraft dry mass was only about 750 kg. But the Dawn electric propulsion subsystem could process a maximum input power of 2.5 kW, and this spacecraft would process 28 kW, an increase of more than a factor of ten. With direct-drive the specific impulse would be limited to about 2,000 s assuming a nominal solar array output voltage of 300 V. The resulting spacecraft would have a beginning of life acceleration that is more than an order of magnitude greater than the Dawn spacecraft. Since the spacecraft would be built into an ESPA ring it could be launched as a secondary payload to a geosynchronous transfer orbit significantly reducing the launch costs for a planetary spacecraft. The SEP system would perform the escape

  16. System concepts and design examples for optical communication with planetary spacecraft

    Science.gov (United States)

    Lesh, James R.

    Systems concepts for optical communication with future deep-space (planetary) spacecraft are described. These include not only the optical transceiver package aboard the distant spacecraft, but the earth-vicinity optical-communications receiving station as well. Both ground-based, and earth-orbiting receivers are considered. Design examples for a number of proposed or potential deep-space missions are then presented. These include an orbital mission to Saturn, a Lander and Rover mission to Mars, and an astronomical mission to a distance of 1000 astronomical units.

  17. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  18. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics

  19. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions

  20. Electronic Systems for Spacecraft Vehicles: Required EDA Tools

    Science.gov (United States)

    Bachnak, Rafic

    1999-01-01

    The continuous increase in complexity of electronic systems is making the design and manufacturing of such systems more challenging than ever before. As a result, designers are finding it impossible to design efficient systems without the use of sophisticated Electronic Design Automation (EDA) tools. These tools offer integrated simulation of the electrical, mechanical, and manufacturing functions and lead to a correct by design methodology. This report identifies the EDA tools that would be needed to design, analyze, simulate, and evaluate electronic systems for spacecraft vehicles. In addition, the report presents recommendations to enhance the current JSC electronic design capabilities. This includes cost information and a discussion as to the impact, both positive and negative, of implementing the recommendations.

  1. Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions

    Science.gov (United States)

    Simons, Rainee N.

    2015-01-01

    NASA's plan to launch several spacecrafts into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.

  2. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    -based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame......Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...... to the complexity, cost and risk associ-ated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground...

  3. Cost-Effective Icy Bodies Exploration using Small Satellite Missions

    Science.gov (United States)

    Jonsson, Jonas; Mauro, David; Stupl, Jan; Nayak, Michael; Aziz, Jonathan; Cohen, Aaron; Colaprete, Anthony; Dono-Perez, Andres; Frost, Chad; Klamm, Benjamin; hide

    2015-01-01

    It has long been known that Saturn's moon Enceladus is expelling water-rich plumes into space, providing passing spacecraft with a window into what is hidden underneath its frozen crust. Recent discoveries indicate that similar events could also occur on other bodies in the solar system, such as Jupiter's moon Europa and the dwarf planet Ceres in the asteroid belt. These plumes provide a possible giant leap forward in the search for organics and assessing habitability beyond Earth, stepping stones toward the long-term goal of finding extraterrestrial life. The United States Congress recently requested mission designs to Europa, to fit within a cost cap of $1B, much less than previous mission designs' estimates. Here, innovative cost-effective small spacecraft designs for the deep-space exploration of these icy worlds, using new and emerging enabling technologies, and how to explore the outer solar system on a budget below the cost horizon of a flagship mission, are investigated. Science requirements, instruments selection, rendezvous trajectories, and spacecraft designs are some topics detailed. The mission concepts revolve around a comparably small-sized and low-cost Plume Chaser spacecraft, instrumented to characterize the vapor constituents encountered on its trajectory. In the event that a plume is not encountered, an ejecta plume can be artificially created by a companion spacecraft, the Plume Maker, on the target body at a location timed with the passage of the Plume Chaser spacecraft. Especially in the case of Ceres, such a mission could be a great complimentary mission to Dawn, as well as a possible future Europa Clipper mission. The comparably small volume of the spacecraft enables a launch to GTO as a secondary payload, providing multiple launch opportunities per year. Plume Maker's design is nearly identical to the Plume Chaser, and fits within the constraints for a secondary payload launch. The cost-effectiveness of small spacecraft missions enables the

  4. Advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) Small Spacecraft System

    Science.gov (United States)

    Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.

    2015-01-01

    This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.

  5. Design issues of the piezo motor for the spacecraft reflector control system

    Directory of Open Access Journals (Sweden)

    Azin Anton

    2018-01-01

    Full Text Available Creation of large-size reflectors for spacecrafts is a topical issue for the space industry. The accuracy of the reflecting surface form and the structure weight are the main criteria for the reflector design. The accuracy of the reflecting surface form during a long-term operation is provided by adjustment when using piezoelectric motors in the reflector design. These motors have small weight-size parameters and can reach great torque values. The piezo motor is a distributed mechanical-acoustic oscillation system. Mechanical-acoustic oscillations are generated in the piezo motor by a PZT-stack and transmitted to an oscillator element, and then from the oscillator element to a load action element. At high frequencies, when dimensions of the oscillator are proportionate to the wavelength, the energy is transmitted by means of acoustic waves. In this case, mechanical waves practically are not involved in the energy transmission process. This thesis shows a method for selecting the material of a mechanical-acoustic oscillation system according to the efficiency of the acoustic energy transmission via a piezoelectric layered structure.

  6. Modes of uncontrolled rotational motion of the Progress M-29M spacecraft

    Science.gov (United States)

    Belyaev, M. Yu.; Matveeva, T. V.; Monakhov, M. I.; Rulev, D. N.; Sazonov, V. V.

    2018-01-01

    We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3-7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft's angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft's motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth-Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1-0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.

  7. A historical overview of the electrical power systems in the US manned and some US unmanned spacecraft

    Science.gov (United States)

    Maisel, J. E.

    1984-01-01

    A historical overview of electrical power systems used in the U.S. manned spacecraft and some of the U.S. unmanned spacecraft is presented in this investigation. A time frame of approximately 25 years, the period for 1959 to 1984, is covered in this report. Results indicate that the nominal bus voltage was 28 volts dc in most spacecraft and all other voltage levels were derived from this voltage through such techniques as voltage inversion or rectification, or a combination. Most spacecraft used solar arrays for the main source of power except for those spacecraft that had a relatively short flight duration, or deep spaceprobes that were designed for very long flight duration. Fuel cells were used on Gemini, Apollo, and Space Shuttle (short duration flights) while radioisotope thermoelectric generators were employed on the Pioneer, Jupiter/Saturn, Viking Lander, and Voyager spacecraft (long duration flights). The main dc bus voltage was unregulated on the manned spacecraft with voltage regulation provided at the user loads. A combination of regulated, semiregulated, and unregulated buses were used on the unmanned spacecraft depending on the type of load. For example, scientific instruments were usually connected to regulated buses while fans, relays, etc. were energized from an unregulated bus. Different forms of voltage regulation, such as shunt, buck/boot, and pulse-width modulated regulators, were used. This report includes a comprehensive bibliography on spacecraft electrical power systems for the space programs investigated.

  8. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.

  9. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  10. High-spatial-resolution electron density measurement by Langmuir probe for multi-point observations using tiny spacecraft

    Science.gov (United States)

    Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.

    2017-11-01

    A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.

  11. Analysis on coverage ability of BeiDou navigation satellite system for manned spacecraft

    Science.gov (United States)

    Zhao, Sihao; Yao, Zheng; Zhuang, Xuebin; Lu, Mingquan

    2014-12-01

    To investigate the service ability of the BeiDou Navigation Satellite System (BDS) for manned spacecraft, both the current regional and the future-planned global constellations of BDS are introduced and simulated. The orbital parameters of the International Space Station and China's Tiangong-1 spacelab are used to create the simulation scenario and evaluate the performance of the BDS constellations. The number of visible satellites and the position dilution (PDOP) of precision at the spacecraft-based receiver are evaluated. Simulation and analysis show quantitative results on the coverage ability and time percentages of both the current BDS regional and future global constellations for manned-space orbits which can be a guideline to the applications and mission design of BDS receivers on manned spacecraft.

  12. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    Science.gov (United States)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  13. Compact Chemical Monitor for Silver Ions in Spacecraft Water Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has identified silver ions as the best candidate biocide for use in the potable water system on next-generation spacecraft. Though significant work has been...

  14. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    Science.gov (United States)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  15. Spacecraft Testing Programs: Adding Value to the Systems Engineering Process

    Science.gov (United States)

    Britton, Keith J.; Schaible, Dawn M.

    2011-01-01

    Testing has long been recognized as a critical component of spacecraft development activities - yet many major systems failures may have been prevented with more rigorous testing programs. The question is why is more testing not being conducted? Given unlimited resources, more testing would likely be included in a spacecraft development program. Striking the right balance between too much testing and not enough has been a long-term challenge for many industries. The objective of this paper is to discuss some of the barriers, enablers, and best practices for developing and sustaining a strong test program and testing team. This paper will also explore the testing decision factors used by managers; the varying attitudes toward testing; methods to develop strong test engineers; and the influence of behavior, culture and processes on testing programs. KEY WORDS: Risk, Integration and Test, Validation, Verification, Test Program Development

  16. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  17. Detection of gravitational radiation by the Doppler tracking of spacecraft

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1979-01-01

    It has been suggested that the residual Doppler shift in the precision electromagnetic tracking of spacecraft be used to search for gravitational radiation that may be incident on the Earth-spacecraft system. The influence of a gravitational wave on the Doppler shift is calculated, and it is found that the residual shift is dominated by two terms: one is due to the passage of electromagnetic waves through the gravitational radiation field, and the other depends on the change in the relative velocity of the Earth and the spacecraft caused by the external wave. A detailed analysis is given of the influence of gravitational radiation on a binary system with an orbital size small compared to the wavelength of the incident radiation. It is shown that, as a consequence of the interaction with the external wave, the system makes a transition from one Keplerian orbit into another which, in general, has a different energy and angular momentum. It is therefore proposed to search for such effects in the solar system. Observations of the orbit of an artificial Earth satellite, the lunar orbit, and especially the planetary orbits offer exciting possibilities for the detection of gravitational waves of various wavelengths. From the results of the lunar laser ranging experiment and the range measurement to Mars, certain interesting limits may be established on the frequency of incidence of gravitational waves of a given flux on the Earth-Moon and the Earth-Mars systems. This is followed by a brief and preliminary analysis of the possibility of detecting gravitational radiation by measuring a residual secular Doppler shift in the satellite-to-satellite Doppler tracking of two counterorbiting drag-free spacecraft around the Earth as in the Van Patten-Everitt experiment

  18. Influence of a new generation of operations support systems on current spacecraft operations philosophy: The users feedback

    Science.gov (United States)

    Darroy, Jean Michel

    1993-01-01

    Current trends in the spacecraft mission operations area (spacecraft & mission complexity, project duration, required flexibility are requiring a breakthrough for what concerns philosophy, organization, and support tools. A major evolution is related to space operations 'informationalization', i.e adding to existing operations support & data processing systems a new generation of tools based on advanced information technologies (object-oriented programming, artificial intelligence, data bases, hypertext) that automate, at least partially, operations tasks that used be performed manually (mission & project planning/scheduling, operations procedures elaboration & execution, data analysis & failure diagnosis). All the major facets of this 'informationalization' are addressed at MATRA MARCONI SPACE, operational applications were fielded and generic products are becoming available. These various applications have generated a significant feedback from the users (at ESA, CNES, ARIANESPACE, MATRA MARCONI SPACE), which is now allowing us to precisely measure how the deployment of this new generation of tools, that we called OPSWARE, can 'reengineer' current spacecraft mission operations philosophy, how it can make space operations faster, better, and cheaper. This paper can be considered as an update of the keynote address 'Knowledge-Based Systems for Spacecraft Control' presented during the first 'Ground Data Systems for Spacecraft Control' conference in Darmstadt, June 1990, with a special emphasis on these last two years users feedback.

  19. Reactor/Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  20. Modeling and Analysis of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Brooker, J. E.; Dietrich, D. L.; Gokoglu, S. A.; Urban, D. L.; Ruff, G. A.

    2015-01-01

    An accidental fire inside a spacecraft is an unlikely, but very real emergency situation that can easily have dire consequences. While much has been learned over the past 25+ years of dedicated research on flame behavior in microgravity, a quantitative understanding of the initiation, spread, detection and extinguishment of a realistic fire aboard a spacecraft is lacking. Virtually all combustion experiments in microgravity have been small-scale, by necessity (hardware limitations in ground-based facilities and safety concerns in space-based facilities). Large-scale, realistic fire experiments are unlikely for the foreseeable future (unlike in terrestrial situations). Therefore, NASA will have to rely on scale modeling, extrapolation of small-scale experiments and detailed numerical modeling to provide the data necessary for vehicle and safety system design. This paper presents the results of parallel efforts to better model the initiation, spread, detection and extinguishment of fires aboard spacecraft. The first is a detailed numerical model using the freely available Fire Dynamics Simulator (FDS). FDS is a CFD code that numerically solves a large eddy simulation form of the Navier-Stokes equations. FDS provides a detailed treatment of the smoke and energy transport from a fire. The simulations provide a wealth of information, but are computationally intensive and not suitable for parametric studies where the detailed treatment of the mass and energy transport are unnecessary. The second path extends a model previously documented at ICES meetings that attempted to predict maximum survivable fires aboard space-craft. This one-dimensional model implies the heat and mass transfer as well as toxic species production from a fire. These simplifications result in a code that is faster and more suitable for parametric studies (having already been used to help in the hatch design of the Multi-Purpose Crew Vehicle, MPCV).

  1. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  2. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  3. Small Spacecraft Integrated Power System with Active Thermal Control

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop an integrated power generation and energy storage system with an active thermal management system. Carbon fiber solar panels will contain...

  4. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  5. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  6. Space Transportation System Cargo projects: inertial stage/spacecraft integration plan. Volume 1: Management plan

    Science.gov (United States)

    1981-01-01

    The Kennedy Space Center (KSC) Management System for the Inertial Upper Stage (IUS) - spacecraft processing from KSC arrival through launch is described. The roles and responsibilities of the agencies and test team organizations involved in IUS-S/C processing at KSC for non-Department of Defense missions are described. Working relationships are defined with respect to documentation preparation, coordination and approval, schedule development and maintenance, test conduct and control, configuration management, quality control and safety. The policy regarding the use of spacecraft contractor test procedures, IUS contractor detailed operating procedures and KSC operations and maintenance instructions is defined. Review and approval requirements for each documentation system are described.

  7. Analysis of the Apollo spacecraft operational data management system. Executive summary

    Science.gov (United States)

    1971-01-01

    A study was made of Apollo, Skylab, and several other data management systems to determine those techniques which could be applied to the management of operational data for future manned spacecraft programs. The results of the study are presented and include: (1) an analysis of present data management systems, (2) a list of requirements for future operational data management systems, (3) an evaluation of automated data management techniques, and (4) a plan for data management applicable to future space programs.

  8. Low cost spacecraft computers: Oxymoron or future trend?

    Science.gov (United States)

    Manning, Robert M.

    1993-01-01

    Over the last few decades, application of current terrestrial computer technology in embedded spacecraft control systems has been expensive and wrought with many technical challenges. These challenges have centered on overcoming the extreme environmental constraints (protons, neutrons, gamma radiation, cosmic rays, temperature, vibration, etc.) that often preclude direct use of commercial off-the-shelf computer technology. Reliability, fault tolerance and power have also greatly constrained the selection of spacecraft control system computers. More recently, new constraints are being felt, cost and mass in particular, that have again narrowed the degrees of freedom spacecraft designers once enjoyed. This paper discusses these challenges, how they were previously overcome, how future trends in commercial computer technology will simplify (or hinder) selection of computer technology for spacecraft control applications, and what spacecraft electronic system designers can do now to circumvent them.

  9. An Integrated Vision-Based System for Spacecraft Attitude and Topology Determination for Formation Flight Missions

    Science.gov (United States)

    Rogers, Aaron; Anderson, Kalle; Mracek, Anna; Zenick, Ray

    2004-01-01

    With the space industry's increasing focus upon multi-spacecraft formation flight missions, the ability to precisely determine system topology and the orientation of member spacecraft relative to both inertial space and each other is becoming a critical design requirement. Topology determination in satellite systems has traditionally made use of GPS or ground uplink position data for low Earth orbits, or, alternatively, inter-satellite ranging between all formation pairs. While these techniques work, they are not ideal for extension to interplanetary missions or to large fleets of decentralized, mixed-function spacecraft. The Vision-Based Attitude and Formation Determination System (VBAFDS) represents a novel solution to both the navigation and topology determination problems with an integrated approach that combines a miniature star tracker with a suite of robust processing algorithms. By combining a single range measurement with vision data to resolve complete system topology, the VBAFDS design represents a simple, resource-efficient solution that is not constrained to certain Earth orbits or formation geometries. In this paper, analysis and design of the VBAFDS integrated guidance, navigation and control (GN&C) technology will be discussed, including hardware requirements, algorithm development, and simulation results in the context of potential mission applications.

  10. Laboratory Spacecraft Data Processing and Instrument Autonomy: AOSAT as Testbed

    Science.gov (United States)

    Lightholder, Jack; Asphaug, Erik; Thangavelautham, Jekan

    2015-11-01

    Recent advances in small spacecraft allow for their use as orbiting microgravity laboratories (e.g. Asphaug and Thangavelautham LPSC 2014) that will produce substantial amounts of data. Power, bandwidth and processing constraints impose limitations on the number of operations which can be performed on this data as well as the data volume the spacecraft can downlink. We show that instrument autonomy and machine learning techniques can intelligently conduct data reduction and downlink queueing to meet data storage and downlink limitations. As small spacecraft laboratory capabilities increase, we must find techniques to increase instrument autonomy and spacecraft scientific decision making. The Asteroid Origins Satellite (AOSAT) CubeSat centrifuge will act as a testbed for further proving these techniques. Lightweight algorithms, such as connected components analysis, centroid tracking, K-means clustering, edge detection, convex hull analysis and intelligent cropping routines can be coupled with the tradition packet compression routines to reduce data transfer per image as well as provide a first order filtering of what data is most relevant to downlink. This intelligent queueing provides timelier downlink of scientifically relevant data while reducing the amount of irrelevant downlinked data. Resulting algorithms allow for scientists to throttle the amount of data downlinked based on initial experimental results. The data downlink pipeline, prioritized for scientific relevance based on incorporated scientific objectives, can continue from the spacecraft until the data is no longer fruitful. Coupled with data compression and cropping strategies at the data packet level, bandwidth reductions exceeding 40% can be achieved while still downlinking data deemed to be most relevant in a double blind study between scientist and algorithm. Applications of this technology allow for the incorporation of instrumentation which produces significant data volumes on small spacecraft

  11. Galileo spacecraft solid-state imaging system view of Antarctica

    Science.gov (United States)

    1990-01-01

    Galileo spacecraft solid-state imaging system view of Antarctica was taken during its first encounter with the Earth. This color picture of Antarctica is part of a mosaic of pictures covering the entire polar continent showing the Ross Ice Shelf and its border with the sea and mountains poking through the ice near the McMurdo Station. From top to bottom, the frame looks across about half of Antarctica. View provided by the Jet Propulsion Laboratory (JPL) with alternate number P-37297.

  12. Isolation, pointing, and suppression (IPS) system for high-performance spacecraft

    Science.gov (United States)

    Hindle, Tim; Davis, Torey; Fischer, Jim

    2007-04-01

    Passive mechanical isolation is often times the first step taken to remedy vibration issues on-board a spacecraft. In many cases, this is done with a hexapod of axial members or struts to obtain the desired passive isolation in all six degrees-of-freedom (DOF). In some instances, where the disturbance sources are excessive or the payload is particularly sensitive to vibration, additional steps are taken to improve the performance beyond that of passive isolation. Additional performance or functionality can be obtained with the addition of active control, using a hexapod of hybrid (passive/active) elements at the interface between the payload and the bus. This paper describes Honeywell's Isolation, Pointing, and Suppression (IPS) system. It is a hybrid isolation system designed to isolate a sensitive spacecraft payload with very low passive resonant break frequencies while affording agile independent payload pointing, on-board payload disturbance rejection, and active isolation augmentation. This system is an extension of the work done on Honeywell's previous Vibration Isolation, Steering, and Suppression (VISS) flight experiment. Besides being designed for a different size payload than VISS, the IPS strut includes a dual-stage voice coil design for improved dynamic range as well as improved low-noise drive electronics. In addition, the IPS struts include integral load cells, gap sensors, and payloadside accelerometers for control and telemetry purposes. The associated system-level control architecture to accomplish these tasks is also new for this program as compared to VISS. A summary of the IPS system, including analysis and hardware design, build, and single axis bipod testing will be reviewed.

  13. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  14. Integrating standard operating procedures with spacecraft automation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft automation has the potential to assist crew members and spacecraft operators in managing spacecraft systems during extended space missions. Automation can...

  15. Spacecraft System Integration and Test: SSTI Lewis critical design audit

    Science.gov (United States)

    Brooks, R. P.; Cha, K. K.

    1995-01-01

    The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.

  16. Deployable Propulsion, Power and Communication Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John A.; Boyd, Darren

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication. Like their name implies, solar sails 'sail' by reflecting sunlight from a large, lightweight reflective material that resembles the sails of 17th and 18th century ships and modern sloops. Instead of wind, the sail and the ship derive their thrust by reflecting solar photons. Solar sail technology has been discussed in the literature for quite some time, but it is only since 2010 that sails have been proven to work in space. Thin-film photovoltaics are revolutionizing the terrestrial power generation market and have been found to be suitable for medium-term use in the space environment. When mounted on the thin-film substrate, these photovoltaics can be packaged into very small volumes and used to generate significant power for small spacecraft. Finally, embedded antennas are being developed that can be adhered to thin-film substrates to provide lightweight, omnidirectional UHF and X-band coverage, increasing bandwidth or effective communication ranges for small spacecraft. Taken together, they may enable a host of new deep space destinations to be reached by a generation of spacecraft smaller and more capable than ever before.

  17. Internet Technology on Spacecraft

    Science.gov (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  18. Attitude dynamics and control of a spacecraft using shifting mass distribution

    Science.gov (United States)

    Ahn, Young Tae

    Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability

  19. Power requirements for commercial communications spacecraft

    Science.gov (United States)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  20. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  1. Navigation Operations with Prototype Components of an Automated Real-Time Spacecraft Navigation System

    Science.gov (United States)

    Cangahuala, L.; Drain, T. R.

    1999-01-01

    At present, ground navigation support for interplanetary spacecraft requires human intervention for data pre-processing, filtering, and post-processing activities; these actions must be repeated each time a new batch of data is collected by the ground data system.

  2. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  3. On-orbit supervisor for controlling spacecraft

    Science.gov (United States)

    Vandervoort, Richard J.

    1992-07-01

    Spacecraft systems of the 1990's and beyond will be substantially more complex than their predecessors. They will have demanding performance requirements and will be expected to operate more autonomously. This underscores the need for innovative approaches to Fault Detection, Isolation and Recovery (FDIR). A hierarchical expert system is presented that provides on-orbit supervision using intelligent FDIR techniques. Each expert system in the hierarchy supervises the operation of a local set of spacecraft functions. Spacecraft operational goals flow top down while responses flow bottom up. The expert system supervisors have a fairly high degree of autonomy. Bureaucratic responsibilities are minimized to conserve bandwidth and maximize response time. Data for FDIR can be acquired local to an expert and from other experts. By using a blackboard architecture for each supervisor, the system provides a great degree of flexibility in implementing the problem solvers for each problem domain. In addition, it provides for a clear separation between facts and knowledge, leading to an efficient system capable of real time response.

  4. Hydrocarbon-Seeded Ignition System for Small Spacecraft Thrusters Using Ionic Liquid Propellants

    Science.gov (United States)

    Whitmore, Stephen A.; Merkley, Daniel P.; Eilers, Shannon D.; Taylor, Terry L.

    2013-01-01

    "Green" propellants based on Ionic-liquids (ILs) like Ammonium DiNitramide and Hydroxyl Ammonium Nitrate have recently been developed as reduced-hazard replacements for hydrazine. Compared to hydrazine, ILs offer up to a 50% improvement in available density-specific impulse. These materials present minimal vapor hazard at room temperature, and this property makes IL's potentially advantageous for "ride-share" launch opportunities where hazards introduced by hydrazine servicing are cost-prohibitive. Even though ILs present a reduced hazard compared to hydrazine, in crystalline form they are potentially explosive and are mixed in aqueous solutions to buffer against explosion. Unfortunately, the high water content makes IL-propellants difficult to ignite and currently a reliable "coldstart" capability does not exist. For reliable ignition, IL-propellants catalyst beds must be pre-heated to greater than 350 C before firing. The required preheat power source is substantial and presents a significant disadvantage for SmallSats where power budgets are extremely limited. Design and development of a "micro-hybrid" igniter designed to act as a "drop-in" replacement for existing IL catalyst beds is presented. The design requires significantly lower input energy and offers a smaller overall form factor. Unlike single-use "squib" pyrotechnic igniters, the system allows the gas generation cycle to be terminated and reinitiated on demand.

  5. Improved techniques for predicting spacecraft power

    International Nuclear Information System (INIS)

    Chmielewski, A.B.

    1987-01-01

    Radioisotope Thermoelectric Generators (RTGs) are going to supply power for the NASA Galileo and Ulysses spacecraft now scheduled to be launched in 1989 and 1990. The duration of the Galileo mission is expected to be over 8 years. This brings the total RTG lifetime to 13 years. In 13 years, the RTG power drops more than 20 percent leaving a very small power margin over what is consumed by the spacecraft. Thus it is very important to accurately predict the RTG performance and be able to assess the magnitude of errors involved. The paper lists all the error sources involved in the RTG power predictions and describes a statistical method for calculating the tolerance

  6. Small Body Exploration Technologies as Precursors for Interstellar Robotics

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert; /SLAC; Sykes, Mark V.; /PSI, Tucson

    2012-02-15

    The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.

  7. Automated constraint checking of spacecraft command sequences

    Science.gov (United States)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang

    1995-01-01

    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  8. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  9. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  10. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  11. The Evolution of Software and Its Impact on Complex System Design in Robotic Spacecraft Embedded Systems

    Science.gov (United States)

    Butler, Roy

    2013-01-01

    The growth in computer hardware performance, coupled with reduced energy requirements, has led to a rapid expansion of the resources available to software systems, driving them towards greater logical abstraction, flexibility, and complexity. This shift in focus from compacting functionality into a limited field towards developing layered, multi-state architectures in a grand field has both driven and been driven by the history of embedded processor design in the robotic spacecraft industry.The combinatorial growth of interprocess conditions is accompanied by benefits (concurrent development, situational autonomy, and evolution of goals) and drawbacks (late integration, non-deterministic interactions, and multifaceted anomalies) in achieving mission success, as illustrated by the case of the Mars Reconnaissance Orbiter. Approaches to optimizing the benefits while mitigating the drawbacks have taken the form of the formalization of requirements, modular design practices, extensive system simulation, and spacecraft data trend analysis. The growth of hardware capability and software complexity can be expected to continue, with future directions including stackable commodity subsystems, computer-generated algorithms, runtime reconfigurable processors, and greater autonomy.

  12. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    Science.gov (United States)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  13. Development of an advanced spacecraft tandem mass spectrometer

    Science.gov (United States)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  14. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    Science.gov (United States)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  15. Multi-Spacecraft Study of Kinetic scale Turbulence Using MMS Observations in the Solar Wind

    Science.gov (United States)

    Chasapis, A.; Matthaeus, W. H.; Parashar, T.; Fuselier, S. A.; Maruca, B.; Burch, J.; Moore, T. E.; Phan, T.; Pollock, C. J.; Gershman, D. J.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.

    2017-12-01

    We present a study investigating kinetic scale turbulence in the solar wind. Most previous studies relied on single spacecraft measurements, employing the Taylor hypothesis in order to probe different scales. The small separation of MMS spacecraft, well below the ion inertial scale, allow us for the first time to directly probe turbulent fluctuations at the kinetic range. Using multi-spacecraft measurements, we are able to measure the spatial characteristics of turbulent fluctuations and compare with the traditional Taylor-based single spacecraft approach. Meanwhile, combining observations from Cluster and MMS data we were able to cover a wide range of scales from the inertial range where the turbulent cascade takes place, down to the kinetic range where the energy is eventually dissipated. These observations present an important step in understanding the nature of solar wind turbulence and the processes through which turbulent energy is dissipated into particle heating and acceleration. We compute statistical quantities such as the second order structure function and the scale-dependent kurtosis, along with their dependence on the parameters such as the mean magnetic field direction. Overall, we observe an overall agreement between the single spacecraft and the multi-spacecraft approach. However, a small but significant deviation is observed at the smaller scales near the electron inertial scale. The high values of the scale dependent kurtosis at very small scales, observed via two-point measurements, open up a compelling avenue of investigation for theory and numerical modelling.

  16. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    Science.gov (United States)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  17. High-Performance Fire Detector for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The danger from fire aboard spacecraft is immediate with only moments for detection and suppression. Spacecraft are unique high-value systems where the cost of...

  18. Study of reactor Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    1979-01-01

    The feasibility of using Brayton power systems for nuclear electric spacecraft was investigated. The primary performance parameters of systems mass and radiator area were determined for systems from 100 to 1000 kW sub e. Mathematical models of all system components were used to determine masses and volumes. Two completely independent systems provide propulsion power so that no single-point failure can jeopardize a mission. The waste heat radiators utilize armored heat pipes to limit meteorite puncture. The armor thickness was statistically determined to achieve the required probability of survival. A 400 kW sub e reference system received primary attention as required by the contract. The components of this system were defined and a conceptual layout was developed with encouraging results. An arrangement with redundant Brayton power systems having a 1500 K (2240 F) turbine inlet temperature was shown to be compatible with the dimensions of the space shuttle orbiter payload bay.

  19. Multi-spacecraft observations of small-scale fluctuations in density and fields in plasmaspheric plumes

    Directory of Open Access Journals (Sweden)

    H. Matsui

    2012-03-01

    Full Text Available In this event study, small-scale fluctuations in plasmaspheric plumes with time scales of ~10 s to minutes in the spacecraft frame are examined. In one event, plasmaspheric plumes are observed by Cluster, while IMAGE measured density enhancement at a similar location. Fluctuations in density exist in plumes as detected by Cluster and are accompanied by fluctuations in magnetic fields and electric fields. Magnetic fluctuations are transverse and along the direction of the plumes. The E/B ratio is smaller than the Alfvén velocity. Another similar event is briefly presented. We then consider physical properties of the fluctuations. Alfvén mode modulated by the feedback instability is one possibility, although non-local generation is likely. It is hard to show that the fluctuations represent a fast mode. Interchange motion is possible due to the consistency between measurements and expectations. The energy source could be a pressure or density gradient in plasmaspheric plumes. When more events are accumulated so that statistical analysis becomes feasible, this type of study will be useful to understand the time evolution of plumes.

  20. Case Studies in Crewed Spacecraft Environmental Control and Life Support System Process Compatibility and Cabin Environmental Impact

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Contamination of a crewed spacecraft's cabin environment leading to environmental control and life support system (ECLSS) functional capability and operational margin degradation or loss can have an adverse effect on NASA's space exploration mission figures of merit-safety, mission success, effectiveness, and affordability. The role of evaluating the ECLSS's compatibility and cabin environmental impact as a key component of pass trace contaminant control is presented and the technical approach is described in the context of implementing NASA's safety and mission success objectives. Assessment examples are presented for a variety of chemicals used in vehicle systems and experiment hardware for the International Space Station program. The ECLSS compatibility and cabin environmental impact assessment approach, which can be applied to any crewed spacecraft development and operational effort, can provide guidance to crewed spacecraft system and payload developers relative to design criteria assigned ECLSS compatibility and cabin environmental impact ratings can be used by payload and system developers as criteria for ensuring adequate physical and operational containment. In additional to serving as an aid for guiding containment design, the assessments can guide flight rule and procedure development toward protecting the ECLSS as well as approaches for contamination event remediation.

  1. Modeling the fundamental characteristics and processes of the spacecraft functioning

    Science.gov (United States)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  2. Design of RTPV generators integrated with new millennium spacecraft for outer solar system

    International Nuclear Information System (INIS)

    Schock, A.; Or, C.; Kumar, V.

    1996-01-01

    The National Aeronautics and Space Administration's recently inaugurated New Millennium program, with its emphasis on miniaturized spacecraft, has generated interest in a low-power (10- to 30-watt), low-mass, high-efficiency RTPV (Radioisotope Thermophotovoltaic) power system. This led to a Department of Energy (DOE)-sponsored design study of such a system. A 75-watt design employed two 250-watt General Purpose Heat Source (GPHS) modules that DOE had previously developed and safety-qualified for various space missions. These modules were too large for the small RTPVs described in this paper. To minimize the need for new development and safety verification studies, derivative designs for 125-watt and 62.5-watt heat source modules containing identical fuel pellets, clads, impact shell, and thermal insulation were generated along with a novel heat source support scheme to reduce the heat losses through the structural supports, and a new and much simpler radiator structure, employing no honeycombs or heat pipes. Previous RTPV study had been based on the use of GaSb PV cells and spectrally selective IR filters. Because of the very encouraging results of system design studies, in the fall of 1994 an experimental program was initiated to develop improved filters and cells, to demonstrate how much improvement can actually be achieved. First priority was given to filter improvements, because our system studies indicated that improved filters would have a much greater effect on system performance than cell improvements. By September 1995 about 94% of the filter performance improvement projected in 1993 had been achieved. (Abstract Truncated)

  3. In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft

    Science.gov (United States)

    Slafer, L. I.

    1979-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.

  4. An IP-Based Software System for Real-time, Closed Loop, Multi-Spacecraft Mission Simulations

    Science.gov (United States)

    Cary, Everett; Davis, George; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis

    2003-01-01

    This viewgraph presentation provides information on the architecture of a computerized testbest for simulating Distributed Space Systems (DSS) for controlling spacecraft flying in formation. The presentation also discusses and diagrams the Distributed Synthesis Environment (DSE) for simulating and planning DSS missions.

  5. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system

    Science.gov (United States)

    Dai, Honghua; Jing, Xingjian; Wang, Yu; Yue, Xiaokui; Yuan, Jianping

    2018-05-01

    Inspired by the smooth motions of a running kangaroo, a bio-inspired quadrilateral shape (BIQS) structure is proposed to suppress the vibrations of a free-floating spacecraft subject to periodic or impulsive forces, which may be encountered during on-orbit servicing missions. In particular, the BIQS structure is installed between the satellite platform and the capture mechanism. The dynamical model of the BIQS isolation system, i.e. a BIQS structure connecting the platform and the capture mechanism at each side, is established by Lagrange's equations to simulate the post-capture dynamical responses. The BIQS system suffering an impulsive force is dealt with by means of a modified version of Lagrange's equations. Furthermore, the classical harmonic balance method is used to solve the nonlinear dynamical system subject to periodic forces, while for the case under impulsive forces the numerical integration method is adopted. Due to the weightless environment in space, the present BIQS system is essentially an under-constrained dynamical system with one of its natural frequencies being identical to zero. The effects of system parameters, such as the number of layers in BIQS, stiffness, assembly angle, rod length, damping coefficient, masses of satellite platform and capture mechanism, on the isolation performance of the present system are thoroughly investigated. In addition, comparisons between the isolation performances of the presently proposed BIQS isolator and the conventional spring-mass-damper (SMD) isolator are conducted to demonstrate the advantages of the present isolator. Numerical simulations show that the BIQS system has a much better performance than the SMD system under either periodic or impulsive forces. Overall, the present BIQS isolator offers a highly efficient passive way for vibration suppressions of free-floating spacecraft.

  6. Anchoring Technology for In Situ Exploration of Small Bodie

    Science.gov (United States)

    Steltzner, A.; Nasif, A.

    2000-01-01

    Comets, asteroids and other small bodies found in the solar system do not possess enough gravity to ensure spacecraft contact forces sufficient to allow many types of in situ science, such as core or surface sampling.

  7. Problems of Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available During the exploration of outer space (as of 1/1 2011 6853 was launched spacecraft (SC are successful 6264, representing 95% of the total number of starts. The most intensively exploited space Russia (USSR (3701 starts, 94% successful, USA (2774 starts, 90% successful, China (234 starts, 96% successful and India (89 starts, 90% successful. A small part of running the spacecraft returned to Earth (manned spacecraft and transport, and the rest remained in orbit. Some of them are descended from orbit and burned up in the atmosphere, the rest remained in the OCP and turned into space debris (SD.The composition of the Cabinet is diverse: finish the job spacecraft; boosters and the last stage of launch vehicles left in orbit after SC injection; technological waste arising during the opening drop-down structures and fragments of the destroyed spacecraft. The resulting explosion orbital SD forms ellipsoidal region which orbits blasted object. Then, as a result of precession, is the distribution of objects in orbit explosion exploding spacecraft.The whole Cabinet is divided into two factions: the observed (larger than 100 mm and not observed (less than 100 mm. Observed debris katalogalizirovan and 0.2% of the total number of SD, there was no SD is the bulk - 99.8%.SC meeting working with a fragment observed SD predictable and due to changes in altitude spacecraft avoids a possible meeting. Contact spacecraft with large fragment lead to disaster (which took place at a meeting of the Russian communications satellite "Cosmos-2251" and the American machine "Iridium". Meeting with small SD is not predictable, especially if it was formed by an explosion or collision fragments together. Orbit that KM is not predictable, and the speed can be up to 10 km / s. Meeting with small particle SD no less dangerous for the spacecraft. The impact speed of spacecraft with space debris particles can reach up to 10 ... 15 km / s at such speeds the breakdown probability thin

  8. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  9. A Spacecraft Housekeeping System-on-Chip in a Radiation Hardened Structured ASIC

    Science.gov (United States)

    Suarez, George; DuMonthier, Jeffrey J.; Sheikh, Salman S.; Powell, Wesley A.; King, Robyn L.

    2012-01-01

    Housekeeping systems are essential to health monitoring of spacecraft and instruments. Typically, sensors are distributed across various sub-systems and data is collected using components such as analog-to-digital converters, analog multiplexers and amplifiers. In most cases programmable devices are used to implement the data acquisition control and storage, and the interface to higher level systems. Such discrete implementations require additional size, weight, power and interconnect complexity versus an integrated circuit solution, as well as the qualification of multiple parts. Although commercial devices are readily available, they are not suitable for space applications due the radiation tolerance and qualification requirements. The Housekeeping System-o n-A-Chip (HKSOC) is a low power, radiation hardened integrated solution suitable for spacecraft and instrument control and data collection. A prototype has been designed and includes a wide variety of functions including a 16-channel analog front-end for driving and reading sensors, analog-to-digital and digital-to-analog converters, on-chip temperature sensor, power supply current sense circuits, general purpose comparators and amplifiers, a 32-bit processor, digital I/O, pulse-width modulation (PWM) generators, timers and I2C master and slave serial interfaces. In addition, the device can operate in a bypass mode where the processor is disabled and external logic is used to control the analog and mixed signal functions. The device is suitable for stand-alone or distributed systems where multiple chips can be deployed across different sub-systems as intelligent nodes with computing and processing capabilities.

  10. Environmentally-induced discharge transient coupling to spacecraft

    Science.gov (United States)

    Viswanathan, R.; Barbay, G.; Stevens, N. J.

    1985-01-01

    The Hughes SCREENS (Space Craft Response to Environments of Space) technique was applied to generic spin and 3-axis stabilized spacecraft models. It involved the NASCAP modeling for surface charging and lumped element modeling for transients coupling into a spacecraft. A differential voltage between antenna and spun shelf of approx. 400 V and current of 12 A resulted from discharge at antenna for the spinner and approx. 3 kv and 0.3 A from a discharge at solar panels for the 3-axis stabilized Spacecraft. A typical interface circuit response was analyzed to show that the transients would couple into the Spacecraft System through ground points, which are most vulnerable. A compilation and review was performed on 15 years of available data from electron and ion current collection phenomena. Empirical models were developed to match data and compared with flight data of Pix-1 and Pix-2 mission. It was found that large space power systems would float negative and discharge if operated at or above 300 V. Several recommendations are given to improve the models and to apply them to large space systems.

  11. Characterization of dust aggregates in the vicinity of the Rosetta spacecraft

    Science.gov (United States)

    Güttler, C.; Hasselmann, P. H.; Li, Y.; Fulle, M.; Tubiana, C.; Kovacs, G.; Agarwal, J.; Sierks, H.; Fornasier, S.; Hofmann, M.; Gutiérrez Marqués, P.; Ott, T.; Drolshagen, E.; Bertini, I.; Osiris Team

    2017-09-01

    In a Rosetta/OSIRIS imaging activity in June 2015, we have observed the dynamic motion of particles close to the spacecraft. Due to the focal setting of the OSIRIS Wide Angle Camera (WAC), these particles were blurred, which can be used to measure their distances to the spacecraft. We detected 108 dust aggregates over a 130 minutes long sequence, and find that their sizes are around a millimetre and their distances cluster between 2 m and 40 m from the spacecraft. Their number densities are about a factor 10 higher than expected for the overall coma and highly fluctuating. Their velocities are small compared to the spacecraft orbital motion and directed away from the spacecraft, towards the comet. From this we conclude that they have interacted with the spacecraft and assess three possible scenarios. We prefer a scenario where centimeter-sized aggregates collide with the spacecraft and we would observe the fragments. Ablation of a dust layer on the spacecraft's z panel when rotated towards the sun is a reasonable alternative. We could also measure an acceleration for a subset of 18 aggregates, which is directed away from the sun and can be explain by a rocket effect, which requires a minimum ice fraction in the order of 0.1%

  12. The Case for Small Spacecraft: An Integrated Perspective on Electric Propulsion

    Science.gov (United States)

    1995-01-01

    microsatellite classes (termed small saellites for the remaining por-tion of this paper). A -large body -of information has been generated over the past...there is a growing market for small satellite propulsion. This year several flight es:eriments and commercial systems will deploy with electtric ...determined from equation 7. Cd is the drag coefficient, which is generally on the order of one[ 2], and we will assume to be 2.2. Although it neglects lateral

  13. Proposed gravity-gradient dynamics experiments in lunar orbit using the RAE-B spacecraft

    Science.gov (United States)

    Blanchard, D. L.; Walden, H.

    1973-01-01

    A series of seven gravity-gradient dynamics experiments is proposed utilizing the Radio Astronomy Explorer (RAE-B) spacecraft in lunar orbit. It is believed that none of the experiments will impair the spacecraft structure or adversely affect the continuation of the scientific mission of the satellite. The first experiment is designed to investigate the spacecraft dynamical behavior in the absence of libration damper action and inertia. It requires stable gravity-gradient capture of the spacecraft in lunar orbit with small amplitude attitude librations as a prerequisite. Four subsequent experiments involve partial retraction, ultimately followed by full redeployment, of one or two of the 230-meter booms forming the lunar-directed Vee-antenna. These boom length change operations will induce moderate amplitude angular librations of the spacecraft.

  14. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de La Rioja, Area de Fisica Aplicada, 26006 Logrono (Spain)], E-mail: manuel.inarrea@unirioja.es

    2009-05-30

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  15. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    International Nuclear Information System (INIS)

    Inarrea, Manuel

    2009-01-01

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  16. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  17. A Hybrid Systems Strategy to Support Autonomous Spacecraft Trajectory Design and Optimization in Multiple Dynamical Regimes

    Data.gov (United States)

    National Aeronautics and Space Administration — With ever increasing numbers of near-Earth satellites and deep space missions, autonomous spacecraft guidance, navigation, and control (GNC) systems are increasingly...

  18. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  19. Artist concept of Galileo spacecraft

    Science.gov (United States)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  20. Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis

    Science.gov (United States)

    Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.

    2012-01-01

    Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.

  1. Spacecraft attitude and velocity control system

    Science.gov (United States)

    Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)

    1992-01-01

    A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.

  2. Spacecraft Data Simulator for the test of level zero processing systems

    Science.gov (United States)

    Shi, Jeff; Gordon, Julie; Mirchandani, Chandru; Nguyen, Diem

    1994-01-01

    The Microelectronic Systems Branch (MSB) at Goddard Space Flight Center (GSFC) has developed a Spacecraft Data Simulator (SDS) to support the development, test, and verification of prototype and production Level Zero Processing (LZP) systems. Based on a disk array system, the SDS is capable of generating large test data sets up to 5 Gigabytes and outputting serial test data at rates up to 80 Mbps. The SDS supports data formats including NASA Communication (Nascom) blocks, Consultative Committee for Space Data System (CCSDS) Version 1 & 2 frames and packets, and all the Advanced Orbiting Systems (AOS) services. The capability to simulate both sequential and non-sequential time-ordered downlink data streams with errors and gaps is crucial to test LZP systems. This paper describes the system architecture, hardware and software designs, and test data designs. Examples of test data designs are included to illustrate the application of the SDS.

  3. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Science.gov (United States)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  4. Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems

    Science.gov (United States)

    Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray

    2012-01-01

    Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and identification of microbial contamination in microgravity environments. Research for evaluating technologies for capability enhancement on-orbit is currently focused on the use of adenosine triphosphate (ATP) analysis for detection purposes and polymerase chain reaction (peR) for microbial identification. Additional research is being conducted on how to control for microbial contamination on a continual basis. Existing microbial control methods in spacecraft utilize iodine or ionic silver biocides, physical disinfection, and point-of-use sterilization filters. Although these methods are effective, they require re-dosing due to loss of efficacy, have low human toxicity thresholds, produce poor taste, and consume valuable mass and crew time. Thus, alternative methods for microbial control are needed. This project also explores ultraviolet light-emitting diodes (UV-LEDs), surface passivation methods for maintaining residual biocide levels, and several antimicrobial materials aimed at improving current microbial control techniques, as well as addressing other materials presently under analysis and future directions to be pursued.

  5. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  6. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  7. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  8. Spin State Estimation of Tumbling Small Bodies

    Science.gov (United States)

    Olson, Corwin; Russell, Ryan P.; Bhaskaran, Shyam

    2016-06-01

    It is expected that a non-trivial percentage of small bodies that future missions may visit are in non-principal axis rotation (i.e. "tumbling"). The primary contribution of this paper is the application of the Extended Kalman Filter (EKF) Simultaneous Localization and Mapping (SLAM) method to estimate the small body spin state, mass, and moments of inertia; the spacecraft position and velocity; and the surface landmark locations. The method uses optical landmark measurements, and an example scenario based on the Rosetta mission is used. The SLAM method proves effective, with order of magnitude decreases in the spacecraft and small body spin state errors after less than a quarter of the comet characterization phase. The SLAM method converges nicely for initial small body angular velocity errors several times larger than the true rates (effectively having no a priori knowledge of the angular velocity). Surface landmark generation and identification are not treated in this work, but significant errors in the initial body-fixed landmark positions are effectively estimated. The algorithm remains effective for a range of different truth spin states, masses, and center of mass offsets that correspond to expected tumbling small bodies throughout the solar system.

  9. Spacecraft early design validation using formal methods

    International Nuclear Information System (INIS)

    Bozzano, Marco; Cimatti, Alessandro; Katoen, Joost-Pieter; Katsaros, Panagiotis; Mokos, Konstantinos; Nguyen, Viet Yen; Noll, Thomas; Postma, Bart; Roveri, Marco

    2014-01-01

    The size and complexity of software in spacecraft is increasing exponentially, and this trend complicates its validation within the context of the overall spacecraft system. Current validation methods are labor-intensive as they rely on manual analysis, review and inspection. For future space missions, we developed – with challenging requirements from the European space industry – a novel modeling language and toolset for a (semi-)automated validation approach. Our modeling language is a dialect of AADL and enables engineers to express the system, the software, and their reliability aspects. The COMPASS toolset utilizes state-of-the-art model checking techniques, both qualitative and probabilistic, for the analysis of requirements related to functional correctness, safety, dependability and performance. Several pilot projects have been performed by industry, with two of them having focused on the system-level of a satellite platform in development. Our efforts resulted in a significant advancement of validating spacecraft designs from several perspectives, using a single integrated system model. The associated technology readiness level increased from level 1 (basic concepts and ideas) to early level 4 (laboratory-tested)

  10. Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles

    Science.gov (United States)

    Ruff, Gary A.; Urban, David

    2013-01-01

    Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the

  11. Dynamic Isotope Power System (DIPS) Applications Study. Volume II. Nuclear Integrated Multimission Spacecraft (NIMS) design definition. Final report

    International Nuclear Information System (INIS)

    1979-11-01

    The design requirements for the Nuclear Integrated Multimission Spacecraft. (NIMS) are discussed in detail. The requirements are a function of mission specifications, payload, control system requirements, electric system specifications, and cost limitations

  12. Iodine Plasma (Electric Propulsion) Interaction with Spacecraft Materials

    Science.gov (United States)

    2016-12-28

    Teflon (AGT5, Ag-FEP) Thermal control surface (radiator) Spacecraft Exposure Soda-lime glass (74% SiO2 , 13% Na2O, 8% CaO, 4% MgO, 1% other oxide... Glass Solar panel cover Spacecraft Exposure Buna-N (acrylonitrile butadiene rubber) Seals Iodine Feed System Carbon fiber composite (epoxy resin...Fe Propellant isolator Spacecraft Exposure Lanthanum Hexaboride, LaB6 Cathode emitter Inside Cathode Yes MACOR (46% SiO2 , 17% MgO, 16% Al2O3, 10

  13. Spacecraft Environmental Interactions Technology, 1983

    Science.gov (United States)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  14. Low Cost Rapid Response Spacecraft, (LCRRS): A Research Project in Low Cost Spacecraft Design and Fabrication in a Rapid Prototyping Environment

    Science.gov (United States)

    Spremo, Stevan; Bregman, Jesse; Dallara, Christopher D.; Ghassemieh, Shakib M.; Hanratty, James; Jackson, Evan; Kitts, Christopher; Klupar, Pete; Lindsay, Michael; Ignacio, Mas; hide

    2009-01-01

    The Low Cost Rapid Response Spacecraft (LCRRS) is an ongoing research development project at NASA Ames Research Center (ARC), Moffett Field, California. The prototype spacecraft, called Cost Optimized Test for Spacecraft Avionics and Technologies (COTSAT) is the first of what could potentially be a series of rapidly produced low-cost satellites. COTSAT has a target launch date of March 2009 on a SpaceX Falcon 9 launch vehicle. The LCRRS research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing satellite. The design concept was baselined to support a 0.5 meter Ritchey-Chretien telescope payload. This telescope and camera system is expected to achieve 1.5 meter/pixel resolution. The COTSAT team is investigating the possibility of building a fully functional spacecraft for $500,000 parts and $2,000,000 labor. Cost is dramatically reduced by using a sealed container, housing the bus and payload subsystems. Some electrical and RF designs were improved/upgraded from GeneSat-1 heritage systems. The project began in January 2007 and has yielded two functional test platforms. It is expected that a flight-qualified unit will be finished in December 2008. Flight quality controls are in place on the parts and materials used in this development with the aim of using them to finish a proto-flight satellite. For LEO missions the team is targeting a mission class requiring a minimum of six months lifetime or more. The system architecture incorporates several design features required by high reliability missions. This allows for a true skunk works environment to rapidly progress toward a flight design. Engineering and fabrication is primarily done in-house at NASA Ames with flight certifications on materials. The team currently employs seven Full Time Equivalent employees. The success of COTSATs small team in this effort can be attributed to highly cross trained

  15. Small business innovation research. Abstracts of 1988 phase 1 awards

    Science.gov (United States)

    1990-01-01

    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered.

  16. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior

    Science.gov (United States)

    Havelund, Klaus; Joshi, Rajeev

    2014-01-01

    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  17. Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft

    Science.gov (United States)

    Marsh, Harleigh Christian

    The results contained in this dissertation contribute to a deeper level of understanding to the energy required to slew a spacecraft using reaction wheels. This work addresses the fundamental manner in which spacecrafts are slewed (eigenaxis maneuvering), and demonstrates that this conventional maneuver can be dramatically improved upon in regards to reduction of energy, dissipative losses, as well as peak power. Energy is a fundamental resource that effects every asset, system, and subsystem upon a spacecraft, from the attitude control system which orients the spacecraft, to the communication subsystem to link with ground stations, to the payloads which collect scientific data. For a reaction wheel spacecraft, the attitude control system is a particularly heavy load on the power and energy resources on a spacecraft. The central focus of this dissertation is reducing the burden which the attitude control system places upon the spacecraft in regards to electrical energy, which is shown in this dissertation to be a challenging problem to computationally solve and analyze. Reducing power and energy demands can have a multitude of benefits, spanning from the initial design phase, to in-flight operations, to potentially extending the mission life of the spacecraft. This goal is approached from a practical standpoint apropos to an industry-flight setting. Metrics to measure electrical energy and power are developed which are in-line with the cost associated to operating reaction wheel based attitude control systems. These metrics are incorporated into multiple families of practical high-dimensional constrained nonlinear optimal control problems to reduce the electrical energy, as well as the instantaneous power burdens imposed by the attitude control system upon the spacecraft. Minimizing electrical energy is shown to be a problem in L1 optimal control which is nonsmooth in regards to state variables as well as the control. To overcome the challenge of nonsmoothness, a

  18. Design of a mission network system using SpaceWire for scientific payloads onboard the Arase spacecraft

    Science.gov (United States)

    Takashima, Takeshi; Ogawa, Emiko; Asamura, Kazushi; Hikishima, Mitsuru

    2018-05-01

    Arase is a small scientific satellite program conducted by the Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency, which is dedicated to the detailed study of the radiation belts around Earth through in situ observations. In particular, the goal is to directly observe the interaction between plasma waves and particles, which cause the generation of high-energy electrons. To observe the waves and particles in detail, we must record large volumes of burst data with high transmission rates through onboard mission network systems. For this purpose, we developed a high-speed and highly reliable mission network based on SpaceWire, as well as a new and large memory data recorder equipped with a data search function based on observation time (the time index, TI, is the satellite time starting from when the spacecraft is powered on.) with respect to the orbital data generated in large quantities. By adopting a new transaction concept of a ring topology network with SpaceWire, we could secure a redundant mission network system without using large routers and having to suppress the increase in cable weight. We confirmed that their orbit performs as designed.[Figure not available: see fulltext.

  19. A Quantized State Approach to On-line Simulation for Spacecraft Autonomy

    DEFF Research Database (Denmark)

    Alminde, Lars; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2006-01-01

    Future space applications will require an increased level of operational autonomy. This calls for declarative methods for spacecraft state estimation and control, so that the spacecraft engineer can focus on modeling the spacecraft rather than implementing all details of the on-line system. Celeb...

  20. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    Science.gov (United States)

    Schorr, Andrew A.; Smith, David Alan; Holcomb, Shawn; Hitt, David

    2017-01-01

    While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, SLS is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress is on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element

  1. Nuclear-powered Hysat spacecraft: comparative design study

    International Nuclear Information System (INIS)

    Raab, B.

    1975-08-01

    The study shows that the all-nuclear spacecraft can have a substantial weight advantage over a hybrid (nuclear/solar) or all-solar spacecraft, owing to a further reduction in power requirement, and to the elimination of such equipment as the sensor gimbal and rotating joint assemblies. Because the need for a sun-oriented section is eliminated, the all-nuclear spacecraft can be designed as a monolithic structure, with the sensor and other payload firmly secured in a fixed position on the structure. This enhances attitude stability while minimizing structural weight and eliminating the need for flexible fluid lines. Sensor motion can be produced, varied, and controlled within the limits specified by the study contractors by moving the entire spacecraft in the prescribed pattern. A simple attitude control system using available hardware suffices to meet all requirements

  2. Water electrolysis system - H2 and O2 generation. [for spacecraft atmosphere revitalization

    Science.gov (United States)

    Schubert, F. H.; Lee, M. K.; Davenport, R. J.; Quattrone, P. D.

    1978-01-01

    An oxygen generation system design based on the static feed water electrolysis concept is described. The system is designed to generate 4.20 kg/d of oxygen to satisfy the metabolic needs of a three-person crew, to compensate for spacecraft leakage, and to provide the oxygen required by the electrochemical depolarized CO2 concentrator. The system has a fixed hardware weight of 75 kg, occupies a volume of 0.11 cu m, and requires only 1.1 kw of electrical power. The static feed electrolysis concept is discussed, and experimental data on the high-performance electrode are presented.

  3. Precise Relative Positioning of Formation Flying Spacecraft using GPS

    NARCIS (Netherlands)

    Kroes, R.

    2006-01-01

    Spacecraft formation flying is considered as a key technology for advanced space missions. Compared to large individual spacecraft, the distribution of sensor systems amongst multiple platforms offers improved flexibility, shorter times to mission, and the prospect of being more cost effective.

  4. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  5. Guidance, navigation, and control subsystem for the EOS-AM spacecraft

    Science.gov (United States)

    Linder, David M.; Tolek, Joseph T.; Lombardo, John

    1992-01-01

    This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.

  6. FORTE spacecraft vibration mitigation. Final report

    International Nuclear Information System (INIS)

    Maly, J.R.

    1996-02-01

    This report documents work that was performed by CSA Engineering, Inc., for Los Alamos National Laboratory (LANL), to reduce vibrations of the FORTE spacecraft by retrofitting damped structural components into the spacecraft structure. The technical objective of the work was reduction of response at the location of payload components when the structure is subjected to the dynamic loading associated with launch and proto-qualification testing. FORTE is a small satellite that will be placed in orbit in 1996. The structure weighs approximately 425 lb, and is roughly 80 inches high and 40 inches in diameter. It was developed and built by LANL in conjunction with Sandia National Laboratories Albuquerque for the United States Department of Energy. The FORTE primary structure was fabricated primarily with graphite epoxy, using aluminum honeycomb core material for equipment decks and solar panel substrates. Equipment decks were bonded and bolted through aluminum mounting blocks to adjoining structure

  7. An expert system for diagnosing environmentally induced spacecraft anomalies

    Science.gov (United States)

    Rolincik, Mark; Lauriente, Michael; Koons, Harry C.; Gorney, David

    1992-01-01

    A new rule-based, machine independent analytical tool was designed for diagnosing spacecraft anomalies using an expert system. Expert systems provide an effective method for saving knowledge, allow computers to sift through large amounts of data pinpointing significant parts, and most importantly, use heuristics in addition to algorithms, which allow approximate reasoning and inference and the ability to attack problems not rigidly defined. The knowledge base consists of over two-hundred (200) rules and provides links to historical and environmental databases. The environmental causes considered are bulk charging, single event upsets (SEU), surface charging, and total radiation dose. The system's driver translates forward chaining rules into a backward chaining sequence, prompting the user for information pertinent to the causes considered. The use of heuristics frees the user from searching through large amounts of irrelevant information and allows the user to input partial information (varying degrees of confidence in an answer) or 'unknown' to any question. The modularity of the expert system allows for easy updates and modifications. It not only provides scientists with needed risk analysis and confidence not found in algorithmic programs, but is also an effective learning tool, and the window implementation makes it very easy to use. The system currently runs on a Micro VAX II at Goddard Space Flight Center (GSFC). The inference engine used is NASA's C Language Integrated Production System (CLIPS).

  8. Integration of a Fire Detector into a Spacecraft

    Science.gov (United States)

    Linford, R. M. F.

    1972-01-01

    A detector sensitive to only the ultraviolet radiation emitted by flames has been selected as the basic element of the NASA Skylab fire detection system. It is sensitive to approximately 10(exp -12)W of radiation and will detect small flames at distances in excess of 3m. The performance of the detector was verified by experiments in an aircraft flying zero-gravity parabolas to simulate the characteristics of a fire which the detector must sense. Extensive investigation and exacting design was necessary to exclude all possible sources of false alarms. Optical measurements were made on all the spacecraft windows to determine the amount of solar radiation transmitted. The lighting systems and the onboard experiments also were appraised for ultraviolet emissions. Proton-accelerator tests were performed to determine the interaction of the Earth's trapped radiation belts with the detectors and the design of the instrument was modified to negate these effects.

  9. Using neuromorphic optical sensors for spacecraft absolute and relative navigation

    Science.gov (United States)

    Shake, Christopher M.

    We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.

  10. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management

    Science.gov (United States)

    Wu, G. Gordon

    1995-01-01

    Due to the complexity of future space missions and the large amount of data involved, greater autonomy in data processing is demanded for mission operations, training, and vehicle health management. In this paper, we develop a fuzzy logic intelligent diagnostic system to perform data reduction, data analysis, and fault diagnosis for spacecraft vehicle health management applications. The diagnostic system contains a data filter and an inference engine. The data filter is designed to intelligently select only the necessary data for analysis, while the inference engine is designed for failure detection, warning, and decision on corrective actions using fuzzy logic synthesis. Due to its adaptive nature and on-line learning ability, the diagnostic system is capable of dealing with environmental noise, uncertainties, conflict information, and sensor faults.

  11. Deployable Propulsion and Power Systems for Solar System Exploration

    Science.gov (United States)

    Johnson, Les; Carr, John

    2017-01-01

    NASA is developing thin-film based, deployable propulsion, power and communication systems for small spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. The Near Earth Asteroid (NEA) Scout reconnaissance mission will demonstrate solar sail propulsion on a 6U CubeSat interplanetary spacecraft and lay the groundwork for their future use in deep space science and exploration missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail made of a lightweight, highly reflective material. This continuous photon pressure provides propellantless thrust, allowing for very high delta V maneuvers on long-duration, deep space exploration. Since reflected light produces thrust, solar sails require no onboard propellant. The Lightweight Integrated Solar Array and Transceiver (LISA-T) is a launch stowed, orbit deployed array on which thin-film photovoltaic and antenna elements are embedded. Inherently, small satellites are limited in surface area, volume, and mass allocation; driving competition between power, communications, and GN&C (guidance navigation and control) subsystems. This restricts payload capability and limits the value of these low-cost satellites. LISA-T is addressing this issue, deploying large-area arrays from a reduced volume and mass envelope - greatly enhancing power generation and communications capabilities of small spacecraft. The NEA Scout mission, funded by NASA's Advanced Exploration Systems Program and managed by NASA MSFC, will use the solar sail as its primary propulsion system, allowing it to survey and image one or more NEA's of interest for possible future human exploration. NEA Scout uses a 6U cubesat (to be provided by NASA's Jet Propulsion Laboratory), an 86 sq m solar sail and will weigh less than 12 kilograms. NEA Scout will be launched on the first flight of the Space Launch System in 2018. Similar in concept

  12. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  13. Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers

    Science.gov (United States)

    Levchenko, Igor; Bazaka, Kateryna; Ding, Yongjie; Raitses, Yevgeny; Mazouffre, Stéphane; Henning, Torsten; Klar, Peter J.; Shinohara, Shunjiro; Schein, Jochen; Garrigues, Laurent; Kim, Minkwan; Lev, Dan; Taccogna, Francesco; Boswell, Rod W.; Charles, Christine; Koizumi, Hiroyuki; Shen, Yan; Scharlemann, Carsten; Keidar, Michael; Xu, Shuyan

    2018-03-01

    Rapid evolution of miniaturized, automatic, robotized, function-centered devices has redefined space technology, bringing closer the realization of most ambitious interplanetary missions and intense near-Earth space exploration. Small unmanned satellites and probes are now being launched in hundreds at a time, resurrecting a dream of satellite constellations, i.e., wide, all-covering networks of small satellites capable of forming universal multifunctional, intelligent platforms for global communication, navigation, ubiquitous data mining, Earth observation, and many other functions, which was once doomed by the extraordinary cost of such systems. The ingression of novel nanostructured materials provided a solid base that enabled the advancement of these affordable systems in aspects of power, instrumentation, and communication. However, absence of efficient and reliable thrust systems with the capacity to support precise maneuvering of small satellites and CubeSats over long periods of deployment remains a real stumbling block both for the deployment of large satellite systems and for further exploration of deep space using a new generation of spacecraft. The last few years have seen tremendous global efforts to develop various miniaturized space thrusters, with great success stories. Yet, there are critical challenges that still face the space technology. These have been outlined at an inaugural International Workshop on Micropropulsion and Cubesats, MPCS-2017, a joint effort between Plasma Sources and Application Centre/Space Propulsion Centre (Singapore) and the Micropropulsion and Nanotechnology Lab, the G. Washington University (USA) devoted to miniaturized space propulsion systems, and hosted by CNR-Nanotec—P.Las.M.I. lab in Bari, Italy. This focused review aims to highlight the most promising developments reported at MPCS-2017 by leading world-reputed experts in miniaturized space propulsion systems. Recent advances in several major types of small

  14. Overview of SDCM - The Spacecraft Design and Cost Model

    Science.gov (United States)

    Ferebee, Melvin J.; Farmer, Jeffery T.; Andersen, Gregory C.; Flamm, Jeffery D.; Badi, Deborah M.

    1988-01-01

    The Spacecraft Design and Cost Model (SDCM) is a computer-aided design and analysis tool for synthesizing spacecraft configurations, integrating their subsystems, and generating information concerning on-orbit servicing and costs. SDCM uses a bottom-up method in which the cost and performance parameters for subsystem components are first calculated; the model then sums the contributions from individual components in order to obtain an estimate of sizes and costs for each candidate configuration within a selected spacecraft system. An optimum spacraft configuration can then be selected.

  15. Small test SDHW systems

    DEFF Research Database (Denmark)

    Vejen, Niels Kristian

    1999-01-01

    Three small test SDHW systems was tested in a laboratory test facility.The three SDHW systems where all based on the low flow principe and a mantle tank but the design of the systems where different.......Three small test SDHW systems was tested in a laboratory test facility.The three SDHW systems where all based on the low flow principe and a mantle tank but the design of the systems where different....

  16. MIDN: A spacecraft Micro-dosimeter mission

    International Nuclear Information System (INIS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.

    2006-01-01

    MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)

  17. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    Science.gov (United States)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  18. Sunlight reflection off the spacecraft with a solar sail on the surface of mars

    Science.gov (United States)

    Starinova, O. L.; Rozhkov, M. A.; Gorbunova, I. V.

    2018-05-01

    Modern technologies make it possible to fulfill many projects in the field of space exploration. One such project is the colonization of Mars and providing favorable conditions for living on it. Authors propose principles of functioning of the spacecraft with a solar sail, intended to create a thermal and light spot in a predetermined area of the Martian surface. This additional illumination can maintain and support certain climatic conditions on a small area where a Mars base could be located. This paper investigate the possibility of the spacecraft continuously reflect the sunlight off the solar sail on the small area of the Mars surface. The mathematical motion model in such condition of the solar sail's orientation is considered and used for motion simulation session. Moreover, the analysis of this motion is performed. Thus, were obtained parameters of the synchronic non-Keplerian orbit and spacecraft construction. In addition, were given recommendations for further applying satellites to reflect the sunlight on a planet's surface.

  19. Robust, Radiation Tolerant Command and Data Handling and Power System Electronics for SmallSats

    Science.gov (United States)

    Nguyen, Hanson Cao; Fraction, James

    2018-01-01

    In today's budgetary environment, there is significant interest within the National Aeronautics and Space Administration (NASA) to enable small robotic science missions that can be executed faster and cheaper than previous larger missions. To help achieve this, focus has shifted from using exclusively radiation-tolerant or radiation-hardened parts to using more commercial-off-the-shelf (COTS) components for NASA small satellite missions that can last at least one year in orbit. However, there are some portions of a spacecraft's avionics, such as the Command and Data Handling (C&DH) subsystem and the Power System Electronics (PSE) that need to have a higher level of reliability that goes beyond what is attainable with currently available COTS parts. While there are a number of COTS components that can withstand a total ionizing dose (TID) of tens or hundreds of kilorads, there is still a great deal of concern about tolerance to and mitigation of single-event effects (SEE).

  20. Singular formalism and admissible control of spacecraft with rotating flexible solar array

    Directory of Open Access Journals (Sweden)

    Lu Dongning

    2014-02-01

    Full Text Available This paper is concerned with the attitude control of a three-axis-stabilized spacecraft which consists of a central rigid body and a flexible sun-tracking solar array driven by a solar array drive assembly. Based on the linearization of the dynamics of the spacecraft and the modal identities about the flexible and rigid coupling matrices, the spacecraft attitude dynamics is reduced to a formally singular system with periodically varying parameters, which is quite different from a spacecraft with fixed appendages. In the framework of the singular control theory, the regularity and impulse-freeness of the singular system is analyzed and then admissible attitude controllers are designed by Lyapunov’s method. To improve the robustness against system uncertainties, an H∞ optimal control is designed by optimizing the H∞ norm of the system transfer function matrix. Comparative numerical experiments are performed to verify the theoretical results.

  1. Development of the solar array deployment and drive system for the XTE spacecraft

    Science.gov (United States)

    Farley, Rodger; Ngo, Son

    1995-01-01

    The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.

  2. Experiments study on attitude coupling control method for flexible spacecraft

    Science.gov (United States)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  3. An Empirical Comparison between Two Recursive Filters for Attitude and Rate Estimation of Spinning Spacecraft

    Science.gov (United States)

    Harman, Richard R.

    2006-01-01

    The advantages of inducing a constant spin rate on a spacecraft are well known. A variety of science missions have used this technique as a relatively low cost method for conducting science. Starting in the late 1970s, NASA focused on building spacecraft using 3-axis control as opposed to the single-axis control mentioned above. Considerable effort was expended toward sensor and control system development, as well as the development of ground systems to independently process the data. As a result, spinning spacecraft development and their resulting ground system development stagnated. In the 1990s, shrinking budgets made spinning spacecraft an attractive option for science. The attitude requirements for recent spinning spacecraft are more stringent and the ground systems must be enhanced in order to provide the necessary attitude estimation accuracy. Since spinning spacecraft (SC) typically have no gyroscopes for measuring attitude rate, any new estimator would need to rely on the spacecraft dynamics equations. One estimation technique that utilized the SC dynamics and has been used successfully in 3-axis gyro-less spacecraft ground systems is the pseudo-linear Kalman filter algorithm. Consequently, a pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion and rate for a spinning SC. Recently, a filter using Markley variables was developed specifically for spinning spacecraft. The pseudo-linear Kalman filter has the advantage of being easier to implement but estimates the quaternion which, due to the relatively high spinning rate, changes rapidly for a spinning spacecraft. The Markley variable filter is more complicated to implement but, being based on the SC angular momentum, estimates parameters which vary slowly. This paper presents a comparison of the performance of these two filters. Monte-Carlo simulation runs will be presented which demonstrate the advantages and disadvantages of both filters.

  4. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    Science.gov (United States)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  5. A Research on the Electrical Test Fault Diagnostic and Data Mining of a Manned Spacecraft

    Directory of Open Access Journals (Sweden)

    Yang Feng

    2017-01-01

    Full Text Available The paper introduces the modeling method and modeling tool for the fault diagnosis of manned spacecraft, the multi-signal flow graph model of a manned space equipment was established using this method; the framework of the fault detection and diagnosis system of manned spacecraft is proposed, the function of ground system and function of the spacecraft are clearly defined. The structure of the functional module is given separately; finally, the tool builds the fault detection and diagnosis system, the application of fault diagnosis method for manned spacecraft is used for reference.

  6. Determination of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Dietrich, Daniel L.; Ruff, Gary A.; Urban, David

    2013-01-01

    This paper expands on previous work that examined how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or accumulation of other combustion products (e.g. carbon monoxide). The previous work introduced a simplified model that treated the fire primarily as a source of heat and combustion products and sink for oxygen prescribed (input to the model) based on terrestrial standards. The model further treated the spacecraft as a closed system with no capability to vent to the vacuum of space. The model in the present work extends this analysis to more realistically treat the pressure relief system(s) of the spacecraft, include more combustion products (e.g. HF) in the analysis and attempt to predict the fire spread and limiting fire size (based on knowledge of terrestrial fires and the known characteristics of microgravity fires) rather than prescribe them in the analysis. Including the characteristics of vehicle pressure relief systems has a dramatic mitigating effect by eliminating vehicle overpressure for all but very large fires and reducing average gas-phase temperatures.

  7. Concurrent System Engineering and Risk Reduction for Dual-Band (RF/optical) Spacecraft Communications

    Science.gov (United States)

    Fielhauer, Karl, B.; Boone, Bradley, G.; Raible, Daniel, E.

    2012-01-01

    This paper describes a system engineering approach to examining the potential for combining elements of a deep-space RF and optical communications payload, for the purpose of reducing the size, weight and power burden on the spacecraft and the mission. Figures of merit and analytical methodologies are discussed to conduct trade studies, and several potential technology integration strategies are presented. Finally, the NASA Integrated Radio and Optical Communications (iROC) project is described, which directly addresses the combined RF and optical approach.

  8. SMART-1: the first spacecraft of the future

    Science.gov (United States)

    2003-09-01

    This is the first of a series of missions designed to test key technologies for future spacecraft —SMART stands for 'Small Missions for Advanced Research and Technology'. In the case of SMART-1, the two main new technologies to be tested are a new 'solar-electric propulsion' system and miniaturised spacecraft and instrumentation. Together, these technologies make up a spacecraft with revolutionary qualities: smaller, lighter, capable of carrying more scientific instruments, greater fuel efficiency. All of which also considerably reduces the cost of the mission. So, the idea behind SMART-1 is to pioneer a futuristic philosophy, the motto of which could be: 'more science for less money'. Even though it is the first of a kind, SMART-1 has been developed in less than four years, and at about a fifth of the cost of a major science mission for ESA: only 110 million euros. That includes the launch, the operations and a dozen scientific experiments. This was achieved partly by using new management methods — such as working with smaller teams both within ESA and in the industry — and partly because of some of the new features inherent in SMART-1, such as the miniaturisation and novel design. Giuseppe Racca, SMART-1 Project Manager, explains: "What has been our trick? First, a short development period in itself means less money. But also, with its small size — which was a requirement of the mission because we are testing miniaturised hardware — the spacecraft is able to 'share' a commercial Ariane flight with two other passengers. Besides, since we were not constrained by any existing design or heritage, we could be more innovative and elegant in our architecture. For example, the new SMART-1 electrical architecture has enabled us to simplify the system tests considerably." SMART-1 could almost be a toy spacecraft — it weighs only 367 kilograms and fits into a cube just one metre across (the solar panel wings extend about 14 metres) — although one able to

  9. On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    There has recently been a push for adopting integrated modular avionics (IMA) principles in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEthernet can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Exploration Systems (AES) program.

  10. Video-Game-Like Engine for Depicting Spacecraft Trajectories

    Science.gov (United States)

    Upchurch, Paul R.

    2009-01-01

    GoView is a video-game-like software engine, written in the C and C++ computing languages, that enables real-time, three-dimensional (3D)-appearing visual representation of spacecraft and trajectories (1) from any perspective; (2) at any spatial scale from spacecraft to Solar-system dimensions; (3) in user-selectable time scales; (4) in the past, present, and/or future; (5) with varying speeds; and (6) forward or backward in time. GoView constructs an interactive 3D world by use of spacecraft-mission data from pre-existing engineering software tools. GoView can also be used to produce distributable application programs for depicting NASA orbital missions on personal computers running the Windows XP, Mac OsX, and Linux operating systems. GoView enables seamless rendering of Cartesian coordinate spaces with programmable graphics hardware, whereas prior programs for depicting spacecraft trajectories variously require non-Cartesian coordinates and/or are not compatible with programmable hardware. GoView incorporates an algorithm for nonlinear interpolation between arbitrary reference frames, whereas the prior programs are restricted to special classes of inertial and non-inertial reference frames. Finally, whereas the prior programs present complex user interfaces requiring hours of training, the GoView interface provides guidance, enabling use without any training.

  11. Resilience Engineering in Critical Long Term Aerospace Software Systems: A New Approach to Spacecraft Software Safety

    Science.gov (United States)

    Dulo, D. A.

    Safety critical software systems permeate spacecraft, and in a long term venture like a starship would be pervasive in every system of the spacecraft. Yet software failure today continues to plague both the systems and the organizations that develop them resulting in the loss of life, time, money, and valuable system platforms. A starship cannot afford this type of software failure in long journeys away from home. A single software failure could have catastrophic results for the spaceship and the crew onboard. This paper will offer a new approach to developing safe reliable software systems through focusing not on the traditional safety/reliability engineering paradigms but rather by focusing on a new paradigm: Resilience and Failure Obviation Engineering. The foremost objective of this approach is the obviation of failure, coupled with the ability of a software system to prevent or adapt to complex changing conditions in real time as a safety valve should failure occur to ensure safe system continuity. Through this approach, safety is ensured through foresight to anticipate failure and to adapt to risk in real time before failure occurs. In a starship, this type of software engineering is vital. Through software developed in a resilient manner, a starship would have reduced or eliminated software failure, and would have the ability to rapidly adapt should a software system become unstable or unsafe. As a result, long term software safety, reliability, and resilience would be present for a successful long term starship mission.

  12. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  13. Development status of solid polymer electrolyte water electrolysis for manned spacecraft life support systems

    Science.gov (United States)

    Nuttall, L. J.; Titterington, W. A.

    1974-01-01

    Details of the design and system verification test results are presented for a six-man-rated oxygen generation system. The system configuration incorporates components and instrumentation for computer-controlled operation with automatic start-up/shutdown sequencing, fault detection and isolation, and with self-contained sensors and controls for automatic safe emergency shutdown. All fluid and electrical components, sensors, and electronic controls are designed to be easily maintainable under zero-gravity conditions. On-board component spares are utilized in the system concept to sustain long-term operation (six months minimum) in a manned spacecraft application. The system is centered on a 27-cell solid polymer electrolyte water electrolysis module which, combined with the associated system components and controls, forms a total system envelope 40 in. high, 40 in. wide, and 30 in. deep.

  14. Small systems – hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bożek, Piotr, E-mail: piotr.bozek@fis.agh.edu.pl

    2016-12-15

    The scenario assuming a collective expansion stage in collisions of small systems, p-A, d-Au, and {sup 3}He-Au is discussed. A review of the observables predicted in relativistic hydrodynamic models in comparison with experimental data is presented, with arguments indicating the presence of collective expansion. The limits of applicability of the hydrodynamic model are addressed. We briefly indicate possible applications of the collective flow in small systems to study the space-time dynamics at very small scales in relativistic collisions.

  15. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  16. Astronaut L. Gordon Cooper is assisted into his spacecraft for tests

    Science.gov (United States)

    1963-01-01

    NASA and McDonnell Aircraft Corp. spacecraft technicians assist Astronaut L. Gordon Cooper into his spacecraft prior to undergoing tests in the altitude chamber. These tests are used to determine the operating characteristcs of the overall environmental control system.

  17. Small-satellite technology and applications; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Horais, Brian J.

    Remote sensing applications and systems, small satellites for sensing missions, and supporting technologies are the broad topics discussed. Particular papers are presented on small satellites for water cycle experiments, low-cost spacecraft buses for remote sensing applications, Webersat (a low-cost imaging satellite), DARPA initiatives in small-satellite technologies, a solid-state magnetic azimuth sensor for small satellites, and thermal analysis of a small expendable tether satellite package. (For individual items see A93-24152 to A93-24175)

  18. Progress in the development of the reverse osmosis process for spacecraft wash water recovery.

    Science.gov (United States)

    Pecoraro, J. N.; Podall, H. E.; Spurlock, J. M.

    1972-01-01

    Research work on ambient- and pasteurization-temperature reverse osmosis processes for wash water recovery in a spacecraft environment is reviewed, and the advantages and drawbacks of each are noted. A key requirement in each case is to provide a membrane of appropriate stability and semipermeability. Reverse osmosis systems intended for such use must also take into account the specific limitations and requirements imposed by the small volume of water to be processed and the high water recovery desired. The incorporation of advanced high-temperature membranes into specially designed modules is discussed.

  19. Spacecraft contamination programs within the Air Force Systems Command Laboratories

    Science.gov (United States)

    Murad, Edmond

    1990-01-01

    Spacecraft contamination programs exist in five independent AFSC organizations: Geophysics Laboratory (GL), Arnold Engineering and Development Center (AEDC), Rome Air Development Center (RADC/OSCE), Wright Research and Development Center (MLBT), Armament Laboratory (ATL/SAI), and Space Systems Division (SSD/OL-AW). In addition, a sizable program exists at Aerospace Corp. These programs are complementary, each effort addressing a specific area of expertise: GL's effort is aimed at addressing the effects of on-orbit contamination; AEDC's effort is aimed at ground simulation and measurement of optical contamination; RADC's effort addresses the accumulation, measurement, and removal of contamination on large optics; MLBT's effort is aimed at understanding the effect of contamination on materials; ATL's effort is aimed at understanding the effect of plume contamination on systems; SSD's effort is confined to the integration of some contamination experiments sponsored by SSD/CLT; and Aerospace Corp.'s effort is aimed at supporting the needs of the using System Program Offices (SPO) in specific areas, such as contamination during ground handling, ascent phase, laboratory measurements aimed at understanding on-orbit contamination, and mass loss and mass gain in on-orbit operations. These programs are described in some detail, with emphasis on GL's program.

  20. Phillips Laboratory small satellite initiatives

    Science.gov (United States)

    Lutey, Mark K.; Imler, Thomas A.; Davis, Robert J.

    1993-09-01

    The Phillips Laboratory Space Experiments Directorate in conjunction with the Air Force Space Test Program (AF STP), Defense Advanced Research and Projects Agency (DARPA) and Strategic Defense Initiative Organization (SDIO), are managing five small satellite program initiatives: Lightweight Exo-Atmospheric Projectile (LEAP) sponsored by SDIO, Miniature Sensor Technology Integration (MSTI) sponsored by SDIO, Technology for Autonomous Operational Survivability (TAOS) sponsored by Phillips Laboratory, TechSat sponsored by SDIO, and the Advanced Technology Standard Satellite Bus (ATSSB) sponsored by DARPA. Each of these spacecraft fulfills a unique set of program requirements. These program requirements range from a short-lived `one-of-a-kind' mission to the robust multi- mission role. Because of these diverging requirements, each program is driven to use a different design philosophy. But regardless of their design, there is the underlying fact that small satellites do not always equate to small missions. These spacecraft with their use of or ability to insert new technologies provide more capabilities and services for their respective payloads which allows the expansion of their mission role. These varying program efforts culminate in an ATSSB spacecraft bus approach that will support moderate size payloads, up to 500 pounds, in a large set of orbits while satisfying the `cheaper, faster, better' method of doing business. This technical paper provides an overview of each of the five spacecraft, focusing on the objectives, payoffs, technologies demonstrated, and program status.

  1. On spacecraft maneuvers control subject to propellant engine modes.

    Science.gov (United States)

    Mazinan, A H

    2015-09-01

    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  3. Standardized spacecraft: a methodology for decision making. AMS report No. 1199

    International Nuclear Information System (INIS)

    Greenberg, J.S.; Nichols, R.A.

    1974-01-01

    As the space program matures, more and more attention is being focused on ways to reduce the costs of performing space missions. Standardization has been suggested as a way of providing cost reductions. The question of standardization at the system level, in particular, the question of the desirability of spacecraft standardization for geocentric space missions is addressed. The spacecraft is considered to be a bus upon which mission oriented equipment, the payload, is mounted. Three basic questions are considered: (1) is spacecraft standardization economically desirable; (2) if spacecraft standardization is economically desirable, what standardized spacecraft configuration or mix of configurations and technologies should be developed; and (3) if standardized spacecraft are to be developed, what power levels should they be designed for. A methodology which has been developed and which is necessary to follow if the above questions are to be answered and informed decisions made relative to spacecraft standardization is described. To illustrate the decision making problems and the need for the developed methodology and the data requirements, typical standardized spacecraft have been considered. Both standardized solar and nuclear-powered spacecraft and mission specialized spacecraft have been conceptualized and performance and cost estimates have been made. These estimates are not considered to be of sufficient accuracy to allow decisions regarding spacecraft mix and power levels to be made at this time. The estimates are deemed of sufficient accuracy so as to demonstrate the desirability of spacecraft standardization and the methodology (as well as the need for the methodology) which is necessary to decide upon the best mix of standardized spacecraft and their design power levels. (U.S.)

  4. Dynamics and control of robotic spacecrafts for the transportation of flexible elements

    International Nuclear Information System (INIS)

    Wen, Hao; Chen, Ti; Yu, Bensong; Jin, Dongping

    2016-01-01

    The technology of robotic spacecrafts has been identified as one of the most appealing solutions to the on-orbit construction of large space structures in future space missions. As a prerequisite of a successful on-orbit construction, it is needed to use small autonomous spacecrafts for the transportation of flexible elements. To this end, the paper presents an energy-based scheme to control a couple of robotic spacecrafts carrying a flexible slender structure to its desired position. The flexible structure is modelled as a long beam based on the formulation of absolute nodal coordinates to account for the geometrical nonlinearity due to large displacement. Meanwhile, the robotic spacecrafts are actuated on their rigid-body degrees of freedom and modelled as two rigid bodies attached to the flexible beam. The energy-based controller is designed using the technique of energy shaping and damping injection such that translational and rotational maneuvers can be achieved with the suppression of the flexible vibrations of the beam. Finally, numerical case studies are performed to demonstrate the proposed schemes. (paper)

  5. Ad hoc laser networks component technology for modular spacecraft

    Science.gov (United States)

    Huang, Xiujun; Shi, Dele; Shen, Jingshi

    2017-10-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  6. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  7. Spacecraft exploration of asteroids

    International Nuclear Information System (INIS)

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.

    1989-01-01

    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  8. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  9. Attitude tracking control of flexible spacecraft with large amplitude slosh

    Science.gov (United States)

    Deng, Mingle; Yue, Baozeng

    2017-12-01

    This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.

  10. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    Science.gov (United States)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  11. Implementing model-based system engineering for the whole lifecycle of a spacecraft

    Science.gov (United States)

    Fischer, P. M.; Lüdtke, D.; Lange, C.; Roshani, F.-C.; Dannemann, F.; Gerndt, A.

    2017-09-01

    Design information of a spacecraft is collected over all phases in the lifecycle of a project. A lot of this information is exchanged between different engineering tasks and business processes. In some lifecycle phases, model-based system engineering (MBSE) has introduced system models and databases that help to organize such information and to keep it consistent for everyone. Nevertheless, none of the existing databases approached the whole lifecycle yet. Virtual Satellite is the MBSE database developed at DLR. It has been used for quite some time in Phase A studies and is currently extended for implementing it in the whole lifecycle of spacecraft projects. Since it is unforeseeable which future use cases such a database needs to support in all these different projects, the underlying data model has to provide tailoring and extension mechanisms to its conceptual data model (CDM). This paper explains the mechanisms as they are implemented in Virtual Satellite, which enables extending the CDM along the project without corrupting already stored information. As an upcoming major use case, Virtual Satellite will be implemented as MBSE tool in the S2TEP project. This project provides a new satellite bus for internal research and several different payload missions in the future. This paper explains how Virtual Satellite will be used to manage configuration control problems associated with such a multi-mission platform. It discusses how the S2TEP project starts using the software for collecting the first design information from concurrent engineering studies, then making use of the extension mechanisms of the CDM to introduce further information artefacts such as functional electrical architecture, thus linking more and more processes into an integrated MBSE approach.

  12. Darwinian Spacecraft: Soft Computing Strategies Breeding Better, Faster Cheaper

    Science.gov (United States)

    Noever, David A.; Baskaran, Subbiah

    1999-01-01

    Computers can create infinite lists of combinations to try to solve a particular problem, a process called "soft-computing." This process uses statistical comparables, neural networks, genetic algorithms, fuzzy variables in uncertain environments, and flexible machine learning to create a system which will allow spacecraft to increase robustness, and metric evaluation. These concepts will allow for the development of a spacecraft which will allow missions to be performed at lower costs.

  13. Ascent performance feasibility for next-generation spacecraft

    Science.gov (United States)

    Mancuso, Salvatore Massimo

    This thesis deals with the optimization of the ascent trajectories for single-stage suborbital (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem has been solved using the sequential gradient-restoration algorithm. For the TSTO case, some modifications to the original version of the algorithm have been necessary in order to deal with discontinuities due to staging and the fact that the functional being minimized depends on interface conditions. The optimization problem is studied for different values of the initial thrust-to-weight ratio in the range 1.3 to 1.6, engine specific impulse in the range 400 to 500 sec, and spacecraft structural factor in the range 0.08 to 0.12. For the TSTO configuration, two subproblems are studied: uniform structural factor between stages and nonuniform structural factor between stages. Due to the regular behavior of the results obtained, engineering approximations have been developed which connect the maximum payload weight to the engine specific impulse and spacecraft structural factor; in turn, this leads to useful design considerations. Also, performance sensitivity to the scale of the aerodynamic drag is studied, and it is shown that its effect on payload weight is relatively small, even for drag changes approaching ± 50%. The main conclusions are that: the design of a SSSO configuration appears to be feasible; the design of a SSTO configuration might be comfortably feasible, marginally feasible, or unfeasible, depending on the parameter values assumed; the design of a TSTO configuration is not only feasible, but its payload appears to be considerably larger than that of a SSTO configuration. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, it appears that aerodynamic improvements do not yield significant improvements in payload weight.

  14. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  15. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  16. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  17. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    Science.gov (United States)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    vehicles are very large, they are primarily made up of a habitat payload on one end, the engine on the opposite end and a connecting spine containing radiator acreage needed to reject the heat of this powerful, but inefficient engine. These studies concluded that the engine and spacecraft are within today's technology, could be built, tested, launched on several SLS launchers, integrated, checked out, maintained at an in-space LEO base, and operated for decades just as Caribbean cruise ships operate today. The nuclear issues were found to be far less daunting that [than for] current nuclear engines. The FFRE produces very small amounts of radioactive efflux compared to their impulse, easily contained in an evacuated "bore-hole" test site. The engine poses no launch risk since it is simply a structure containing no fissionable material. The nuclear fuel is carried to orbit in containers highly crash-proofed for launch accidents from which it, in a liquid medium, is injected into the FFRE. The radioactive exhaust, with a velocity above 300 kilometers per second rapidly leaves the solar system.

  18. Mathematical Modeling of the Thermal State of an Isothermal Element with Account of the Radiant Heat Transfer Between Parts of a Spacecraft

    Science.gov (United States)

    Alifanov, O. M.; Paleshkin, A. V.; Terent‧ev, V. V.; Firsyuk, S. O.

    2016-01-01

    A methodological approach to determination of the thermal state at a point on the surface of an isothermal element of a small spacecraft has been developed. A mathematical model of heat transfer between surfaces of intricate geometric configuration has been described. In this model, account was taken of the external field of radiant fluxes and of the differentiated mutual influence of the surfaces. An algorithm for calculation of the distribution of the density of the radiation absorbed by surface elements of the object under study has been proposed. The temperature field on the lateral surface of the spacecraft exposed to sunlight and on its shady side has been calculated. By determining the thermal state of magnetic controls of the orientation system as an example, the authors have assessed the contribution of the radiation coming from the solar-cell panels and from the spacecraft surface.

  19. Multiple spacecraft configuration designs for coordinated flight missions

    Science.gov (United States)

    Fumenti, Federico; Theil, Stephan

    2018-06-01

    Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the principle of distributed systems. According to the mission objectives and to ensure a safe relative motion, constraints on the relative distances need to be satisfied. Initially, differential perturbations are limited by proper orbit design. Then, the induced differential drifts can be properly handled through corrective maneuvers. In this work, several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs, focus is placed upon the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required Δ V budget and the constraints violations.

  20. Systems Engineering Using Heritage Spacecraft Technology: Lessons Learned from Discovery and New Frontiers Deep Space Missions

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2011-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced or heritage systems and the system environment identifies unanticipated issues that result in cost overruns or schedule impacts. The Discovery & New Frontiers (D&NF) Program Office recently studied cost overruns and schedule delays resulting from advanced technology or heritage assumptions for 6 D&NF missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that the cost and schedule growth did not result from technical hurdles requiring significant technology development. Instead, systems engineering processes did not identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement the heritage or advanced technology. This presentation summarizes the study s findings and offers suggestions for improving the project s ability to identify and manage the risks inherent in the technology and heritage design solution.

  1. Robust control for spacecraft rendezvous system with actuator unsymmetrical saturation: a gain scheduling approach

    Science.gov (United States)

    Wang, Qian; Xue, Anke

    2018-06-01

    This paper has proposed a robust control for the spacecraft rendezvous system by considering the parameter uncertainties and actuator unsymmetrical saturation based on the discrete gain scheduling approach. By changing of variables, we transform the actuator unsymmetrical saturation control problem into a symmetrical one. The main advantage of the proposed method is improving the dynamic performance of the closed-loop system with a region of attraction as large as possible. By the Lyapunov approach and the scheduling technology, the existence conditions for the admissible controller are formulated in the form of linear matrix inequalities. The numerical simulation illustrates the effectiveness of the proposed method.

  2. The use of twin-screen-based WIMPS in spacecraft control

    Science.gov (United States)

    Klim, R. D.

    1990-10-01

    The ergonomic problems of designing a sophisticated Windows Icons Mouse Pop-up (WIMP) based twin screen workstation are outlined. These same problems will be encountered by future spacecraft controllers. The design of a modern, advanced workstation for use on a distributed multicontrol center in a multisatellite control system is outlined. The system uses access control mechanisms to ensure that only authorized personnel can undertake certain operations on the workstation. Rules governing the use of windowing features, screen attributes, icons, keyboard and mouse in spacecraft control are discussed.

  3. Biofilm formation and control in a simulated spacecraft water system - Interim results

    Science.gov (United States)

    Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Gibbons, Randall E.; Brown, Harlan D.; Sauer, Richard L.

    1989-01-01

    The ability of iodine to control microbial contamination and biofilm formation in spacecraft water distribution systems is studied using two stainless steel water subsystems. One subsystem has an iodine level of 2.5 mg/L maintained by an iodinated ion-exchange resin. The other subsystem has no iodine added. Stainless steel coupons are removed from each system to monitor biofilm formation. Results from the first six months of operation indicate that 2.5 mg/L of iodine has limited the number of viable bacteria that can be recovered from the iodinated subsystem. Epifluorescence microscopy of the coupons taken from this subsystem, however, indicates some evidence of microbial colonization after 15 weeks of operation. Numerous bacteria have been continually removed from both the water samples and the coupons taken from the noniodinated subsystem after only 3 weeks of operation.

  4. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    Science.gov (United States)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  5. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...

  6. Small satellite technologies and applications II; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Science.gov (United States)

    Horais, Brian J.

    The present conference on small satellite (SS) systems and their supporting technologies discusses the Medsat SS for malaria early warning and control, results of the Uosat earth-imaging system, commercial applications for MSSs, an SS family for LEO communications, videosignal signature-synthesis for fast narrow-bandwidth transmission, and NiH battery applications in SSs. Also discussed are the 'PegaStar' spacecraft concept for remote sensing, dual-cone scanning earth sensor processing algorithms, SS radiation-budget instrumentation, SDI's relevance to SSs, spacecraft fabrication and test integration, and cryocooler producibility. (For individual items see A93-28077 to A93-28100)

  7. SyZyGy: A straight interferometric spacecraft system for gravity wave observations

    International Nuclear Information System (INIS)

    Estabrook, F.B.; Armstrong, J.W.; Tinto, Massimo; Folkner, William

    2003-01-01

    We consider a spaceborne gravitational wave (GW) detector formed by three spacecraft in a linear array, coherently exchanging laser beams and using the data combinations of time-delay interferometry (TDI). We previously showed how the measured time series of Doppler shifts in the six one-way laser links between spacecraft pairs in a general unequal-arm triangular configuration can be combined, using TDI, to exactly cancel the otherwise overwhelming phase noise of the lasers while retaining sensitivity to GWs. Here we apply TDI, unfolding the general triangular configuration, to the special case of a linear array of three spacecraft. We show that such an array ('SyZyGy') has, compared with an equilateral triangle GW detector of the same scale, a degraded (but non-zero) sensitivity at low frequencies [f -4 -10 -1 Hz). SyZyGy with ∼1 light-second scale could, for the same instrumental assumptions as LISA, make observations in this intermediate frequency GW band with 5σ sensitivity to sinusoidal waves ≅2.5x10 -23 in a year's integration

  8. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  9. Tracking and Navigation of Future NASA Spacecraft with the Square Kilometer Array

    Science.gov (United States)

    Resch, G. M.; Jones, D. L.; Connally, M. J.; Weinreb, S.; Preston, R. A.

    2001-12-01

    The international radio astronomy community is currently working on the design of an array of small radio antennas with a total collecting area of one square kilometer - more than a hundred times that of the largest existing (100-m) steerable antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are a two-orders-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased ground-based tracking capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created.

  10. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  11. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2001-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  12. Spacecraft on-orbit deployment anomalies - What can be done?

    Science.gov (United States)

    Freeman, Michael T.

    1993-04-01

    Modern communications satellites rely heavily upon deployable appendage (i.e. solar arrays, communications antennas, etc.) to perform vital functions that enable the spacecraft to effectively conduct mission objectives. Communications and telemetry antennas provide the radiofrequency link between the spacecraft and the earth ground station, permitting data to be transmitted and received from the satellite. Solar arrays serve as the principle source of electrical energy to the satellite, and recharge internal batteries during operation. However, since satellites cannot carry backup systems, if a solar array fails to deploy, the mission is lost. This article examines the subject of on-orbit anomalies related to the deployment of spacecraft appendage, and possible causes of such failures. Topics discussed shall include mechanical launch loading, on-orbit thermal and solar concerns, reliability of spacecraft pyrotechnics, and practical limitations of ground-based deployment testing. Of particular significance, the article will feature an in-depth look at the lessons learned from the successful recovery of the Telesat Canada Anik-E2 satellite in 1991.

  13. Four-spacecraft determination of magnetopause orientation, motion and thickness: comparison with results from single-spacecraft methods

    Directory of Open Access Journals (Sweden)

    S. E. Haaland

    2004-04-01

    Full Text Available In this paper, we use Cluster data from one magnetopause event on 5 July 2001 to compare predictions from various methods for determination of the velocity, orientation, and thickness of the magnetopause current layer. We employ established as well as new multi-spacecraft techniques, in which time differences between the crossings by the four spacecraft, along with the duration of each crossing, are used to calculate magnetopause speed, normal vector, and width. The timing is based on data from either the Cluster Magnetic Field Experiment (FGM or the Electric Field Experiment (EFW instruments. The multi-spacecraft results are compared with those derived from various single-spacecraft techniques, including minimum-variance analysis of the magnetic field and deHoffmann-Teller, as well as Minimum-Faraday-Residue analysis of plasma velocities and magnetic fields measured during the crossings. In order to improve the overall consistency between multi- and single-spacecraft results, we have also explored the use of hybrid techniques, in which timing information from the four spacecraft is combined with certain limited results from single-spacecraft methods, the remaining results being left for consistency checks. The results show good agreement between magnetopause orientations derived from appropriately chosen single-spacecraft techniques and those obtained from multi-spacecraft timing. The agreement between magnetopause speeds derived from single- and multi-spacecraft methods is quantitatively somewhat less good but it is evident that the speed can change substantially from one crossing to the next within an event. The magnetopause thickness varied substantially from one crossing to the next, within an event. It ranged from 5 to 10 ion gyroradii. The density profile was sharper than the magnetic profile: most of the density change occured in the earthward half of the magnetopause.

    Key words. Magnetospheric physics (magnetopause, cusp and

  14. Spacecraft computer technology at Southwest Research Institute

    Science.gov (United States)

    Shirley, D. J.

    1993-01-01

    Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.

  15. Dust Interactions on Small Solar System Bodies and Technology Considerations for Exploration

    Science.gov (United States)

    Kobrick, Ryan,; Hoffman, Jeffrey; Pavone, Marco; Street, Kenneth; Rickman, Douglas

    2014-01-01

    Small-bodies such as asteroids and Mars' moons Phobos and Deimos have relatively unknown regolith environments. It is hypothesized that dust preserved in the regolith on the surfaces will have similar mechanical properties to lunar dust because of similar formation processes from micrometeorite bombardment, low relative gravity for slow settling times, and virtually no weathering because there is no atmosphere. This combination of processes infers that small-body dust particles will be highly angular and retain abrasive properties. The focus of this paper uses the mission architecture and engineering design for an asteroid hopper known as Hedgehog, a spherical spacecraft with several symmetric spikes used to aid with tumbling mobility in a low gravity environment. Dust abrasion considerations are highlighted throughout the paper relating to the lead authors' previous work, but act as an example of one of many important dust or regolith physical properties that need to be considered for future exploration. Measurable regolith properties are summarized in order to identify technologies that may be useful for exploration in terms of scientific return and spacecraft design. Previous instruments are summarized in this paper that could be used on the Hedgehog. Opportunities for hardware payloads are highlighted that include low mass solutions or dualpurpose instruments that can measure regolith or dust properties. Finally, dust mitigation suggestions are made for vehicles of this mobility profile.

  16. Standardization and Economics of Nuclear Spacecraft, Final Report, Phase I, Sense Study

    Energy Technology Data Exchange (ETDEWEB)

    1973-03-01

    Feasibility and cost benefits of nuclear-powered standardized spacecraft are investigated. The study indicates that two shuttle-launched nuclear-powered spacecraft should be able to serve the majority of unmanned NASA missions anticipated for the 1980's. The standard spacecraft include structure, thermal control, power, attitude control, some propulsion capability and tracking, telemetry, and command subsystems. One spacecraft design, powered by the radioisotope thermoelectric generator, can serve missions requiring up to 450 watts. The other spacecraft design, powered by similar nuclear heat sources in a Brayton-cycle generator, can serve missions requiring up to 21000 watts. Design concepts and trade-offs are discussed. The conceptual designs selected are presented and successfully tested against a variety of missions. The thermal design is such that both spacecraft are capable of operating in any earth orbit and any orientation without modification. Three-axis stabilization is included. Several spacecraft can be stacked in the shuttle payload compartment for multi-mission launches. A reactor-powered thermoelectric generator system, operating at an electric power level of 5000 watts, is briefly studied for applicability to two test missions of divers requirements. A cost analysis indicates that use of the two standardized spacecraft offers sizable savings in comparison with specially designed solar-powered spacecraft. There is a duplicate copy.

  17. Charging in the environment of large spacecraft

    International Nuclear Information System (INIS)

    Lai, S.T.

    1993-01-01

    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  18. Results from active spacecraft potential control on the Geotail spacecraft

    International Nuclear Information System (INIS)

    Schmidt, R.; Arends, H.; Pedersen, A.

    1995-01-01

    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  19. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

    International Nuclear Information System (INIS)

    Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

    2016-01-01

    Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the

  20. A Small Spacecraft Swarm Deployment and Stationkeeping Strategy for Sun-Earth L1 Halo Orbits

    Science.gov (United States)

    Renea Conn, Tracie; Bookbinder, Jay

    2018-01-01

    Spacecraft orbits about the Sun-Earth librarian point L1 have been of interest since the 1950s. An L1 halo orbit was first achieved with the International Sun-Earth Explorer-3 (ISEE-3) mission, and similar orbits around Sun-Earth L1 were achieved in the Solar and Heliospheric Observatory (SOHO), Advanced Composition Explorer (ACE), Genesis, and Deep Space Climate Observatory (DSCOVR) missions. With recent advancements in CubeSat technology, we envision that it will soon be feasible to deploy CubeSats at L1. As opposed to these prior missions where one large satellite orbited alone, a swarm of CubeSats at L1 would enable novel science data return, providing a topology for intersatellite measurements of heliophysics phenomena both spatially and temporally, at varying spatial scales.The purpose of this iPoster is to present a flight dynamics strategy for a swarm of numerous CubeSats orbiting Sun-Earth L1. The presented method is a coupled, two-part solution. First, we present a deployment strategy for the CubeSats that is optimized to produce prescribed, time-varying intersatellite baselines for the purposes of collecting magnetometer data as well as radiometric measurements from cross-links. Second, we employ a loose control strategy that was successfully applied to SOHO and ACE for minimized stationkeeping propellant expenditure. We emphasize that the presented solution is practical within the current state-of-the-art and heritage CubeSat technology, citing capabilities of CubeSat designs that will launch on the upcoming Exploration Mission 1 (EM-1) to lunar orbits and beyond. Within this iPoster, we present animations of the simulated deployment strategy and resulting spacecraft trajectories. Mission design parameters such as total Δv required for long-term station keeping and minimum/maximum/mean spacecraft separation distances are also presented.

  1. Development of software to improve AC power quality on large spacecraft

    Science.gov (United States)

    Kraft, L. Alan

    1991-01-01

    To insure the reliability of a 20 kHz, alternating current (AC) power system on spacecraft, it is essential to analyze its behavior under many adverse operating conditions. Some of these conditions include overloads, short circuits, switching surges, and harmonic distortions. Harmonic distortions can become a serious problem. It can cause malfunctions in equipment that the power system is supplying, and, during distortions such as voltage resonance, it can cause equipment and insulation failures due to the extreme peak voltages. To address the harmonic distortion issue, work was begun under the 1990 NASA-ASEE Summer Faculty Fellowship Program. Software, originally developed by EPRI, called HARMFLO, a power flow program capable of analyzing harmonic conditions on three phase, balanced, 60 Hz AC power systems, was modified to analyze single phase, 20 kHz, AC power systems. Since almost all of the equipment used on spacecraft power systems is electrically different from equipment used on terrestrial power systems, it was also necessary to develop mathematical models for the equipment to be used on the spacecraft. The modelling was also started under the same fellowship work period. Details of the modifications and models completed during the 1990 NASA-ASEE Summer Faculty Fellowship Program can be found in a project report. As a continuation of the work to develop a complete package necessary for the full analysis of spacecraft AC power system behavior, deployment work has continued through NASA Grant NAG3-1254. This report details the work covered by the above mentioned grant.

  2. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  3. Thermal elastic shock and its effect on TOPEX spacecraft attitude control

    Science.gov (United States)

    Zimbelman, Darrell F.

    1991-01-01

    Thermal elastic shock (TES) is a twice per orbit impulsive disturbance torque experienced by low-Earth orbiting spacecraft. The fundamental equations used to model the TES disturbance torque for typical spacecraft appendages (e.g., solar arrays and antenna booms) are derived in detail. In particular, the attitude-pointing performance of the TOPEX spacecraft, when subjected to the TES disturbance, is analyzed using a three-axis nonlinear time-domain simulation. Results indicate that the TOPEX spacecraft could exceed its roll-axis attitude-control requirement during penumbral transitions, and remain in violation for approximately 150 sec each orbit until the umbra collapses. A localized active-control system is proposed as a solution to minimize and/or eliminate the degrading effects of the TES disturbance.

  4. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  5. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    Science.gov (United States)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  6. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  7. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    Directory of Open Access Journals (Sweden)

    Dong-Xu Li

    2017-01-01

    Full Text Available Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections between substructures. Especially in this paper, a vibration antiresonance design method is proposed to realize the vibration reduction. The complex zero-point equations of the vibration system are firstly established, and then the vibration antiresonance design for the system is achieved. For solving the difficulties due to viscoelastic characteristics of the connecting parts, we present the determining formulas to obtain the structural parameters, so that the complex zero-point equations can be satisfied. Numerical simulation and ground experiment demonstrate the correctness and effectiveness of the proposed method. This method can solve the structural vibration control problem under the function constraints of load bearing and energy supplying and will expand the performance of spacecraft functional modules.

  8. Trajectories of inner and outer heliospheric spacecraft: Predicted through 1999

    Science.gov (United States)

    Parthasarathy, R.; King, Joseph H.

    1991-01-01

    Information is presented in tabular and graphical form on the trajectories of the international fleet of spacecraft that will be probing the far reaches of the heliosphere during the 1990s. In particular, the following spacecraft are addressed: Pioneer 10 and 11, Pioneer Venus Orbiter (PVO), Voyager 1 and 2, Galileo, Ulysses, Suisei, Sakigake, Giotto, International Cometary Explorer (ICE), and Interplanetary Monitoring Platform 8 (IMP 8). Yearly resolution listing of position information in inertial space are given for Pioneer and Voyager spacecraft from the times of their launches in the 1970s. One series of plots shows the radial distances, latitudes, and longitudes of the Pioneers and Voyagers. The solar ecliptic inertial coordinate system is used. In this system, the Z axis is normal to the ecliptic plane and the X axis is towards the first point of Aries (from Sun to Earth on the vernal equinox).

  9. Concept Assessment of a Fission Fragment Rocket Engine (FFRE) Propelled Spacecraft

    Science.gov (United States)

    Werka, Robert; Clark, Rod; Sheldon, Rob; Percy, Tom

    2012-01-01

    The March, 2012 issue of Aerospace America stated that ?the near-to-medium prospects for applying advanced propulsion to create a new era of space exploration are not very good. In the current world, we operate to the Moon by climbing aboard a Carnival Cruise Lines vessel (Saturn 5), sail from the harbor (liftoff) shedding whole decks of the ship (staging) along the way and, having reached the return leg of the journey, sink the ship (burnout) and return home in a lifeboat (Apollo capsule). Clearly this is an illogical way to travel, but forced on Explorers by today's propulsion technology. However, the article neglected to consider the one propulsion technology, using today's physical principles that offer continuous, substantial thrust at a theoretical specific impulse of 1,000,000 sec. This engine unequivocally can create a new era of space exploration that changes the way spacecraft operate. Today's space Explorers could travel in Cruise Liner fashion using the technology not considered by Aerospace America, the novel Dusty Plasma Fission Fragment Rocket Engine (FFRE). This NIAC study addresses the FFRE as well as its impact on Exploration Spacecraft design and operation. It uses common physics of the relativistic speed of fission fragments to produce thrust. It radiatively cools the fissioning dusty core and magnetically controls the fragments direction to practically implement previously patented, but unworkable designs. The spacecraft hosting this engine is no more complex nor more massive than the International Space Station (ISS) and would employ the successful ISS technology for assembly and check-out. The elements can be lifted in "chunks" by a Heavy Lift Launcher. This Exploration Spacecraft would require the resupply of small amounts of nuclear fuel for each journey and would be an in-space asset for decades just as any Cruise Liner on Earth. This study has synthesized versions of the FFRE, integrated one concept onto a host spacecraft designed for

  10. Autonomous spacecraft landing through human pre-attentive vision

    International Nuclear Information System (INIS)

    Schiavone, Giuseppina; Izzo, Dario; Simões, Luís F; De Croon, Guido C H E

    2012-01-01

    In this work, we exploit a computational model of human pre-attentive vision to guide the descent of a spacecraft on extraterrestrial bodies. Providing the spacecraft with high degrees of autonomy is a challenge for future space missions. Up to present, major effort in this research field has been concentrated in hazard avoidance algorithms and landmark detection, often by reference to a priori maps, ranked by scientists according to specific scientific criteria. Here, we present a bio-inspired approach based on the human ability to quickly select intrinsically salient targets in the visual scene; this ability is fundamental for fast decision-making processes in unpredictable and unknown circumstances. The proposed system integrates a simple model of the spacecraft and optimality principles which guarantee minimum fuel consumption during the landing procedure; detected salient sites are used for retargeting the spacecraft trajectory, under safety and reachability conditions. We compare the decisions taken by the proposed algorithm with that of a number of human subjects tested under the same conditions. Our results show how the developed algorithm is indistinguishable from the human subjects with respect to areas, occurrence and timing of the retargeting. (paper)

  11. Probabilistic Risk Assessment for Decision Making During Spacecraft Operations

    Science.gov (United States)

    Meshkat, Leila

    2009-01-01

    Decisions made during the operational phase of a space mission often have significant and immediate consequences. Without the explicit consideration of the risks involved and their representation in a solid model, it is very likely that these risks are not considered systematically in trade studies. Wrong decisions during the operational phase of a space mission can lead to immediate system failure whereas correct decisions can help recover the system even from faulty conditions. A problem of special interest is the determination of the system fault protection strategies upon the occurrence of faults within the system. Decisions regarding the fault protection strategy also heavily rely on a correct understanding of the state of the system and an integrated risk model that represents the various possible scenarios and their respective likelihoods. Probabilistic Risk Assessment (PRA) modeling is applicable to the full lifecycle of a space mission project, from concept development to preliminary design, detailed design, development and operations. The benefits and utilities of the model, however, depend on the phase of the mission for which it is used. This is because of the difference in the key strategic decisions that support each mission phase. The focus of this paper is on describing the particular methods used for PRA modeling during the operational phase of a spacecraft by gleaning insight from recently conducted case studies on two operational Mars orbiters. During operations, the key decisions relate to the commands sent to the spacecraft for any kind of diagnostics, anomaly resolution, trajectory changes, or planning. Often, faults and failures occur in the parts of the spacecraft but are contained or mitigated before they can cause serious damage. The failure behavior of the system during operations provides valuable data for updating and adjusting the related PRA models that are built primarily based on historical failure data. The PRA models, in turn

  12. Toward autonomous spacecraft

    Science.gov (United States)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  13. Artificial Neural Network Based Mission Planning Mechanism for Spacecraft

    Science.gov (United States)

    Li, Zhaoyu; Xu, Rui; Cui, Pingyuan; Zhu, Shengying

    2018-04-01

    The ability to plan and react fast in dynamic space environments is central to intelligent behavior of spacecraft. For space and robotic applications, many planners have been used. But it is difficult to encode the domain knowledge and directly use existing techniques such as heuristic to improve the performance of the application systems. Therefore, regarding planning as an advanced control problem, this paper first proposes an autonomous mission planning and action selection mechanism through a multiple layer perceptron neural network approach to select actions in planning process and improve efficiency. To prove the availability and effectiveness, we use autonomous mission planning problems of the spacecraft, which is a sophisticated system with complex subsystems and constraints as an example. Simulation results have shown that artificial neural networks (ANNs) are usable for planning problems. Compared with the existing planning method in EUROPA, the mechanism using ANNs is more efficient and can guarantee stable performance. Therefore, the mechanism proposed in this paper is more suitable for planning problems of spacecraft that require real time and stability.

  14. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  15. Spacecraft Fire Safety Research at NASA Glenn Research Center

    Science.gov (United States)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  16. Improved Traceability of a Small Satellite Mission Concept to Requirements Using Model Based System Engineering

    Science.gov (United States)

    Reil, Robin L.

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the "traditional" document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This paper presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magic's MagicDraw modeling tool. The model incorporates mission concept and requirement information from the mission's original DBSE design efforts. Active dependency relationships are modeled to demonstrate the completeness and consistency of the requirements to the mission concept. Anecdotal information and process-duration metrics are presented for both the MBSE and original DBSE design efforts of SporeSat.

  17. Spacecraft control center automation using the generic inferential executor (GENIE)

    Science.gov (United States)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  18. On-orbit assembly of a team of flexible spacecraft using potential field based method

    Science.gov (United States)

    Chen, Ti; Wen, Hao; Hu, Haiyan; Jin, Dongping

    2017-04-01

    In this paper, a novel control strategy is developed based on artificial potential field for the on-orbit autonomous assembly of four flexible spacecraft without inter-member collision. Each flexible spacecraft is simplified as a hub-beam model with truncated beam modes in the floating frame of reference and the communication graph among the four spacecraft is assumed to be a ring topology. The four spacecraft are driven to a pre-assembly configuration first and then to the assembly configuration. In order to design the artificial potential field for the first step, each spacecraft is outlined by an ellipse and a virtual leader of circle is introduced. The potential field mainly depends on the attitude error between the flexible spacecraft and its neighbor, the radial Euclidian distance between the ellipse and the circle and the classical Euclidian distance between the centers of the ellipse and the circle. It can be demonstrated that there are no local minima for the potential function and the global minimum is zero. If the function is equal to zero, the solution is not a certain state, but a set. All the states in the set are corresponding to the desired configurations. The Lyapunov analysis guarantees that the four spacecraft asymptotically converge to the target configuration. Moreover, the other potential field is also included to avoid the inter-member collision. In the control design of the second step, only small modification is made for the controller in the first step. Finally, the successful application of the proposed control law to the assembly mission is verified by two case studies.

  19. Investigation of tenuous plasma environment using Active Spacecraft Potential Control (ASPOC) on Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard

    2015-04-01

    The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.

  20. Internal Acoustics of the ISS and Other Spacecraft

    Science.gov (United States)

    Allen, Christopher S.

    2017-01-01

    It is important to control the acoustic environment inside spacecraft and space habitats to protect for astronaut communications, alarm audibility, and habitability, and to reduce astronauts' risk for sleep disturbance, and hear-ing loss. But this is not an easy task, given the various design trade-offs, and it has been difficult, historically, to achieve. Over time it has been found that successful control of spacecraft acoustic levels is achieved by levying firm requirements at the system-level, using a systems engineering approach for design and development, and then validating these requirements with acoustic testing. In the systems engineering method, the system-level requirements must be flowed down to sub-systems and component noise sources, using acoustic analysis and acoustic modelling to develop allocated requirements for the sub-systems and components. Noise controls must also be developed, tested, and implemented so the sub-systems and components can achieve their allocated limits. It is also important to have management support for acoustics efforts to maintain their priority against the various trade-offs, including mass, volume, power, cost, and schedule. In this extended abstract and companion presentation, the requirements, approach, and results for controlling acoustic levels in most US spacecraft since Apollo will be briefly discussed. The approach for controlling acoustic levels in the future US space vehicle, Orion Multipurpose Crew Vehicle (MPCV), will also be briefly discussed. These discussions will be limited to the control of continuous noise inside the space vehicles. Other types of noise, such as launch, landing, and abort noise, intermittent noise, Extra-Vehicular Activity (EVA) noise, emergency operations/off-nominal noise, noise exposure, and impulse noise are important, but will not be discussed because of time limitations.

  1. On the concept of survivability, with application to spacecraft and space-based networks

    International Nuclear Information System (INIS)

    Castet, Jean-Francois; Saleh, Joseph H.

    2012-01-01

    Survivability is an important attribute and requirement for military systems. Recently, survivability has become increasingly important for public infrastructure systems as well. In this work, we bring considerations of survivability to bear on space systems. We develop a conceptual framework and quantitative analyses based on stochastic Petri nets (SPN) to characterize and compare the survivability of different space architectures. The architectures here considered are a monolith spacecraft and a space-based network. To build the stochastic Petri net models for the degradations and failures of these two architectures, we conducted statistical analyses of historical multi-state failure data of spacecraft subsystems, and we assembled these subsystems, and their SPN models, in ways to create our monolith and networked systems. Preliminary results indicate, and quantify the extent to which, a space-based network is more survivable than the monolith spacecraft with respect to on-orbit anomalies and failures. For space systems, during the design and acquisition process, different architectures are benchmarked against several metrics; we argue that if survivability is not accounted for, then the evaluation process is likely to be biased in favor of the traditional dominant design, namely the monolith spacecraft. If however in a given context, survivability is a critical requirement for a customer, the survivability framework here proposed, and the stochastic modeling capability developed, can demonstrate the extent to which a networked space architecture may better satisfy this requirement than a monolith spacecraft. These results should be of interest to operators whose space assets require high levels of survivability, especially in the light of emerging threats.

  2. Distributed Control Architectures for Precision Spacecraft Formations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — LaunchPoint Technologies, Inc. (LaunchPoint) proposes to develop synthesis methods and design architectures for distributed control systems in precision spacecraft...

  3. Use of two-phase flow heat transfer method in spacecraft thermal system

    Science.gov (United States)

    Hye, A.

    1985-01-01

    In space applications, weight, volume and power are critical parameters. Presently liquid freon is used in the radiator planels of the Space Shuttle to dissipate heat. This requires a large amount of freon, large power for pumps, large volume and weight. Use of two-phase flow method to transfer heat can reduce them significantly. A modified commercial vapor compression refrigerator/freezer was sucessfully flown in STS-4 to study the effect of zero-gravity on the system. The duty cycle was about 5 percent higher in flight as compared to that on earth due to low flow velocity in condenser. The vapor Reynolds number at exit was about 4000 as compared to about 12,000. Efforts are underway to design a refrigerator/freezer using an oil-free compressor for Spacelab Mission 4 scheduled to fly in January 1986. A thermal system can be designed for spacecraft using the two-phase flow to transfer heat economically.

  4. Cluster PEACE observations of electrons of spacecraft origin

    Directory of Open Access Journals (Sweden)

    S. Szita

    2001-09-01

    Full Text Available The two PEACE (Plasma Electron And Current Experiment sensors on board each Cluster spacecraft sample the electron velocity distribution across the full 4 solid angle and the energy range 0.7 eV to 26 keV with a time resolution of 4 s. We present high energy and angular resolution 3D observations of electrons of spacecraft origin in the various environments encountered by the Cluster constellation, including a lunar eclipse interval where the spacecraft potential was reduced but remained positive, and periods of ASPOC (Active Spacecraft POtential Control operation which reduced the spacecraft potential. We demonstrate how the spacecraft potential may be found from a gradient change in the PEACE low energy spectrum, and show how the observed spacecraft electrons are confined by the spacecraft potential. We identify an intense component of the spacecraft electrons with energies equivalent to the spacecraft potential, the arrival direction of which is seen to change when ASPOC is switched on. Another spacecraft electron component, observed in the sunward direction, is reduced in the eclipse but unaffected by ASPOC, and we believe this component is produced in the analyser by solar UV. We find that PEACE anodes with a look direction along the spacecraft surfaces are more susceptible to spacecraft electron contamination than those which look perpendicular to the surface, which justifies the decision to mount PEACE with its field-of-view radially outward rather than tangentially.Key words. Magnetosheric physics (general or miscellaneous Space plasma physics (spacecraft sheaths, wakes, charging

  5. The Manned Spacecraft Center and medical technology

    Science.gov (United States)

    Johnston, R. S.; Pool, S. L.

    1974-01-01

    A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.

  6. Schema for Spacecraft-Command Dictionary

    Science.gov (United States)

    Laubach, Sharon; Garcia, Celina; Maxwell, Scott; Wright, Jesse

    2008-01-01

    An Extensible Markup Language (XML) schema was developed as a means of defining and describing a structure for capturing spacecraft command- definition and tracking information in a single location in a form readable by both engineers and software used to generate software for flight and ground systems. A structure defined within this schema is then used as the basis for creating an XML file that contains command definitions.

  7. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    Science.gov (United States)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  8. Shaded Spacecraft Radiators to Be Used on the Daytime Surface of the Mercury Planet, the Moon, and Asteroids of the Solar System Inner Part

    Directory of Open Access Journals (Sweden)

    V. A. Igrickii

    2016-01-01

    Full Text Available During the daytime a surface of the Moon, Mercury planet, and asteroids of the Solar system inner part, significantly heats up, and infrared radiation of the local soil becomes essential. At the same time direct solar radiation and reflected from the surface solar radiation reach the maximum too. These radiation fluxes can significantly decrease the efficiency of spacecraft radiators in the daytime. This effect is especially strong on the Mercury surface where direct solar radiation is 10 times stronger than solar radiation near the Earth. As a result, on the daytime surface of the Mercury the conventional low-temperature radiators become completely disabled.The article describes the development of the special shaded spacecraft radiators to be used in daytime on the Mercury and other atmosphereless bodies of the Solar system inner part. To solve this task are used mirror shades. The shape of these shades is developed to improve operation conditions of the spacecraft radiator through the appropriate scheme of radiation reflection. The task is discussed in 2D and 3D cases. A new design of shaded spacecraft radiators is proposed, and reasonable proportions of radiators are determined. The performance capability of proposed radiators for environments of the Mercury and the Moon is estimated using the zonal method in view of partial mirror reflection. The calculations showed that the developed shaded spacecraft radiators are capable to work on the Mercury surface as the low-temperature radiators even during the daytime. New radiators provide minimum accepted operating temperature of 241К (-32°С, meanwhile radiators of common design have minimum operating temperature of 479К (206°С. Using such radiators on the Moon enables us to increase effectiveness of spacecraft radiators and to decrease their minimum operating temperature from 270К (-3°С to 137К (-136°С.

  9. Small systems at the LHC

    Science.gov (United States)

    Preghenella, Roberto

    2018-02-01

    In these proceedings, I report on a selection of recent LHC results in small systems from ALICE [1], ATLAS [2] and CMS [3] experiments. Due to the fact that the investigation of QCD in small systems at high multiplicity is becoming an increasingly large subject, interesting the heavy-ion community and more in general the high-energy physics community, not all the related topics can be discussed in this paper. The focus will be given to some of the measurements addressing the physics of collective phenomena in small systems and to the recent results on strangeness enhancement in proton-proton collisions. The reader must be informed that a large number of interesting results did not find space in the discussion reported here.

  10. Relating MBSE to Spacecraft Development: A NASA Pathfinder

    Science.gov (United States)

    Othon, Bill

    2016-01-01

    The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.

  11. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  12. Laser Remediation of Threats Posed by Small Orbital Debris

    Science.gov (United States)

    Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.

    2012-01-01

    The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.

  13. Relativistic effects of spacecraft with circumnavigating observer

    Science.gov (United States)

    Shanklin, Nathaniel; West, Joseph

    A variation of the recently introduced Trolley Paradox, itself is a variation of the Ehrenfest Paradox is presented. In the Trolley Paradox, a ``stationary'' set of observers tracking a wheel rolling with a constant velocity find that the wheel travels further than its rest length circumference during one revolution of the wheel, despite the fact that the Lorentz contracted circumference is less than its rest value. In the variation presented, a rectangular spacecraft with onboard observers moves with constant velocity and is circumnavigated by several small ``sloops'' forming teams of inertial observers. This whole precession moves relative to a set of ``stationary'' Earth observers. Two cases are presented, one in which the sloops are evenly spaced according to the spacecraft observers, and one in which the sloops are evenly spaced according to the Earth observes. These two cases, combined with the rectangular geometry and an emphasis on what is seen by, and what is measured by, each set of observers is very helpful in sorting out the apparent contradictions. To aid in the visualizations stationary representations in excel along with animation in Visual Python and Unity are presented. The analysis presented is suitable for undergraduate physics majors.

  14. A methodology for spacecraft technology insertion analysis balancing benefit, cost, and risk

    Science.gov (United States)

    Bearden, David Allen

    Emerging technologies are changing the way space missions are developed and implemented. Technology development programs are proceeding with the goal of enhancing spacecraft performance and reducing mass and cost. However, it is often the case that technology insertion assessment activities, in the interest of maximizing performance and/or mass reduction, do not consider synergistic system-level effects. Furthermore, even though technical risks are often identified as a large cost and schedule driver, many design processes ignore effects of cost and schedule uncertainty. This research is based on the hypothesis that technology selection is a problem of balancing interrelated (and potentially competing) objectives. Current spacecraft technology selection approaches are summarized, and a Methodology for Evaluating and Ranking Insertion of Technology (MERIT) that expands on these practices to attack otherwise unsolved problems is demonstrated. MERIT combines the modern techniques of technology maturity measures, parametric models, genetic algorithms, and risk assessment (cost and schedule) in a unique manner to resolve very difficult issues including: user-generated uncertainty, relationships between cost/schedule and complexity, and technology "portfolio" management. While the methodology is sufficiently generic that it may in theory be applied to a number of technology insertion problems, this research focuses on application to the specific case of small (<500 kg) satellite design. Small satellite missions are of particular interest because they are often developed under rigid programmatic (cost and schedule) constraints and are motivated to introduce advanced technologies into the design. MERIT is demonstrated for programs procured under varying conditions and constraints such as stringent performance goals, not-to-exceed costs, or hard schedule requirements. MERIT'S contributions to the engineering community are its: unique coupling of the aspects of performance

  15. Comparison study of exhaust plume impingement effects of small mono- and bipropellant thrusters using parallelized DSMC method.

    Directory of Open Access Journals (Sweden)

    Kyun Ho Lee

    Full Text Available A space propulsion system is important for the normal mission operations of a spacecraft by adjusting its attitude and maneuver. Generally, a mono- and a bipropellant thruster have been mainly used for low thrust liquid rocket engines. But as the plume gas expelled from these small thrusters diffuses freely in a vacuum space along all directions, unwanted effects due to the plume collision onto the spacecraft surfaces can dramatically cause a deterioration of the function and performance of a spacecraft. Thus, aim of the present study is to investigate and compare the major differences of the plume gas impingement effects quantitatively between the small mono- and bipropellant thrusters using the computational fluid dynamics (CFD. For an efficiency of the numerical calculations, the whole calculation domain is divided into two different flow regimes depending on the flow characteristics, and then Navier-Stokes equations and parallelized Direct Simulation Monte Carlo (DSMC method are adopted for each flow regime. From the present analysis, thermal and mass influences of the plume gas impingements on the spacecraft were analyzed for the mono- and the bipropellant thrusters. As a result, it is concluded that a careful understanding on the plume impingement effects depending on the chemical characteristics of different propellants are necessary for the efficient design of the spacecraft.

  16. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    Science.gov (United States)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  17. Spacecraft TT&C and information transmission theory and technologies

    CERN Document Server

    Liu, Jiaxing

    2015-01-01

    Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems. Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.

  18. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    Science.gov (United States)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in UV-A LEDs and semi

  19. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  20. Imaging Flash Lidar for Safe Landing on Solar System Bodies and Spacecraft Rendezvous and Docking

    Science.gov (United States)

    Amzajerdian, Farzin; Roback, Vincent E.; Bulyshev, Alexander E.; Brewster, Paul F.; Carrion, William A; Pierrottet, Diego F.; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Noe, Anna M.

    2015-01-01

    NASA has been pursuing flash lidar technology for autonomous, safe landing on solar system bodies and for automated rendezvous and docking. During the final stages of the landing from about 1 kilometer to 500 meters above the ground, the flash lidar can generate 3-Dimensional images of the terrain to identify hazardous features such as craters, rocks, and steep slopes. The onboard flight computer can then use the 3-D map of terrain to guide the vehicle to a safe location. As an automated rendezvous and docking sensor, the flash lidar can provide relative range, velocity, and bearing from an approaching spacecraft to another spacecraft or a space station. NASA Langley Research Center has developed and demonstrated a flash lidar sensor system capable of generating 16,000 pixels range images with 7 centimeters precision, at 20 Hertz frame rate, from a maximum slant range of 1800 m from the target area. This paper describes the lidar instrument and presents the results of recent flight tests onboard a rocket-propelled free-flyer vehicle (Morpheus) built by NASA Johnson Space Center. The flights were conducted at a simulated lunar terrain site, consisting of realistic hazard features and designated landing areas, built at NASA Kennedy Space Center specifically for this demonstration test. This paper also provides an overview of the plan for continued advancement of the flash lidar technology aimed at enhancing its performance to meet both landing and automated rendezvous and docking applications.

  1. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  2. Contemporary state of spacecraft/environment interaction research

    CERN Document Server

    Novikov, L S

    1999-01-01

    Various space environment effects on spacecraft materials and equipment, and the reverse effects of spacecrafts and rockets on space environment are considered. The necessity of permanent updating and perfection of our knowledge on spacecraft/environment interaction processes is noted. Requirements imposed on models of space environment in theoretical and experimental researches of various aspects of the spacecraft/environment interaction problem are formulated. In this field, main problems which need to be solved today and in the nearest future are specified. The conclusion is made that the joint analysis of both aspects of spacecraft/environment interaction problem promotes the most effective solution of the problem.

  3. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  4. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  5. Spectra and spacecraft

    Science.gov (United States)

    Moroz, V. I.

    2001-02-01

    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  6. Micro-Inspector Spacecraft for Space Exploration Missions

    Science.gov (United States)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro-inspector design unique in its ability to serve crewed as well as robotic spacecraft, well beyond Earth-orbit and into arenas such

  7. Manifold dynamics in the Earth-Moon system via isomorphic mapping with application to spacecraft end-of-life strategies

    Science.gov (United States)

    Pontani, Mauro; Giancotti, Marco; Teofilatto, Paolo

    2014-12-01

    Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth-Moon system and in alternative multibody environments. With regard to lunar missions, exterior and interior transfers, based on the transit through the regions where the collinear libration points L1 and L2 are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is focused on the definition and use of a special isomorphic mapping for low-energy mission analysis. A convenient set of cylindrical coordinates is employed to describe the spacecraft dynamics (i.e. position and velocity), in the context of the circular restricted three-body problem, used to model the spacecraft motion in the Earth-Moon system. This isomorphic mapping of trajectories allows the identification and intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Heteroclinic connections, i.e. the trajectories that belong to both the stable and the unstable manifolds of two distinct periodic orbits, can be easily detected by means of this representation. This paper illustrates the use of isomorphic mapping for finding (a) periodic orbits, (b) heteroclinic connections between trajectories emanating from two Lyapunov orbits, the first at L1, and the second at L2, and (c) heteroclinic connections between trajectories emanating from the Lyapunov orbit at L1 and from a particular unstable lunar orbit. Heteroclinic trajectories are asymptotic trajectories that travels at zero-propellant cost. In practical situations, a modest delta-v budget is required to perform transfers along the manifolds. This circumstance implies the possibility of performing complex missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible

  8. Mars, the Moon, and the Ends of the Earth: Autonomy for Small Reactor Power Systems

    International Nuclear Information System (INIS)

    Wood, Richard Thomas

    2008-01-01

    In recent years, the National Aeronautics and Space Administration (NASA) has been considering deep space missions that utilize a small-reactor power system (SRPS) to provide energy for propulsion and spacecraft power. Additionally, application of SRPS modules as a planetary power source is being investigated to enable a continuous human presence for nonpolar lunar sites and on Mars. A SRPS can supply high-sustained power for space and surface applications that is both reliable and mass efficient. The use of small nuclear reactors for deep space or planetary missions presents some unique challenges regarding the operations and control of the power system. Current-generation terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a SRPS employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. While surface power systems for planetary outposts face less extreme delays and periods of isolation and may benefit from limited maintenance capabilities, considerations such as human safety, resource limitations and usage priorities, and economics favor minimizing direct, continuous human interaction with the SRPS for online, dedicated power system management. Thus, a SRPS control system for space or planetary missions must provide capabilities for operational autonomy. For terrestrial reactors, large-scale power plants remain the preferred near-term option for nuclear power generation. However, the desire to reduce reliance on carbon-emitting power sources in developing countries may lead to increased consideration of SRPS modules for local power generation in remote regions that are characterized by emerging, less established infrastructures

  9. Origins of collectivity in small systems

    Science.gov (United States)

    Schenke, Björn

    2017-11-01

    We review recent developments in the theoretical description and understanding of multi-particle correlation measurements in collisions of small projectiles (p/d/3He) with heavy nuclei (Au, Pb) as well as proton+proton collisions. We focus on whether the physical processes responsible for the observed long range rapidity correlations and their azimuthal structure are the same in small systems as in heavy ion collisions. In the latter they are interpreted as generated by the initial spatial geometry being transformed into momentum correlations by strong final state interactions. However, explicit calculations show that also initial state momentum correlations are present and could contribute to observables in small systems. If strong final state interactions are present in small systems, recent developments show that results are sensitive to the shape of the proton and its fluctuations.

  10. Passive Set-Point Thermal Control Skin for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current manned and unmanned spacecraft require sophisticated thermal control technologies to keep systems at temperatures within their proper operating ranges....

  11. A study of Schwarz converters for nuclear powered spacecraft

    Science.gov (United States)

    Stuart, Thomas A.; Schwarze, Gene E.

    1987-01-01

    High power space systems which use low dc voltage, high current sources such as thermoelectric generators, will most likely require high voltage conversion for transmission purposes. This study considers the use of the Schwarz resonant converter for use as the basic building block to accomplish this low-to-high voltage conversion for either a dc or an ac spacecraft bus. The Schwarz converter has the important assets of both inherent fault tolerance and resonant operation; parallel operation in modular form is possible. A regulated dc spacecraft bus requires only a single stage converter while a constant frequency ac bus requires a cascaded Schwarz converter configuration. If the power system requires constant output power from the dc generator, then a second converter is required to route unneeded power to a ballast load.

  12. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    Science.gov (United States)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  13. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer

    Directory of Open Access Journals (Sweden)

    Xiaokun Liu

    2016-04-01

    Full Text Available A gyrowheel (GW is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.

  14. Six Degrees-of-Freedom Ascent Control for Small-Body Touch and Go

    Science.gov (United States)

    Blackmore, Lars James C.

    2011-01-01

    A document discusses a method of controlling touch and go (TAG) of a spacecraft to correct attitude, while ensuring a safe ascent. TAG is a concept whereby a spacecraft is in contact with the surface of a small body, such as a comet or asteroid, for a few seconds or less before ascending to a safe location away from the small body. The report describes a controller that corrects attitude and ensures that the spacecraft ascends to a safe state as quickly as possible. The approach allocates a certain amount of control authority to attitude control, and uses the rest to accelerate the spacecraft as quickly as possible in the ascent direction. The relative allocation to attitude and position is a parameter whose optimal value is determined using a ground software tool. This new approach makes use of the full control authority of the spacecraft to correct the errors imparted by the contact, and ascend as quickly as possible. This is in contrast to prior approaches, which do not optimize the ascent acceleration.

  15. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  16. Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle

    Science.gov (United States)

    Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen

    2017-04-01

    Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.

  17. Putting Integrated Systems Health Management Capabilities to Work: Development of an Advanced Caution and Warning System for Next-Generation Crewed Spacecraft Missions

    Science.gov (United States)

    Mccann, Robert S.; Spirkovska, Lilly; Smith, Irene

    2013-01-01

    Integrated System Health Management (ISHM) technologies have advanced to the point where they can provide significant automated assistance with real-time fault detection, diagnosis, guided troubleshooting, and failure consequence assessment. To exploit these capabilities in actual operational environments, however, ISHM information must be integrated into operational concepts and associated information displays in ways that enable human operators to process and understand the ISHM system information rapidly and effectively. In this paper, we explore these design issues in the context of an advanced caution and warning system (ACAWS) for next-generation crewed spacecraft missions. User interface concepts for depicting failure diagnoses, failure effects, redundancy loss, "what-if" failure analysis scenarios, and resolution of ambiguity groups are discussed and illustrated.

  18. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    Science.gov (United States)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  19. Small Wind Energy Systems

    DEFF Research Database (Denmark)

    Simões, Marcelo Godoy; Farret, Felix Alberto; Blaabjerg, Frede

    2017-01-01

    considered when selecting a generator for a wind power plant, including capacity of the AC system, types of loads, availability of spare parts, voltage regulation, technical personal and cost. If several loads are likely inductive, such asphase-controlled converters, motors and fluorescent lights......This chapter intends to serve as a brief guide when someone is considering the use of wind energy for small power applications. It is discussed that small wind energy systems act as the major energy source for residential or commercial applications, or how to make it part of a microgrid...... as a distributed generator. In this way, sources and loads are connected in such a way to behave as a renewable dispatch center. With this regard, non-critical loads might be curtailed or shed during times of energy shortfall or periods of high costs of energy production. If such a wind energy system is connected...

  20. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  1. Close-Range Photogrammetry & Next Generation Spacecraft

    Science.gov (United States)

    Pappa, Richard S.

    2002-01-01

    NASA is focusing renewed attention on the topic of large, ultra-lightweight space structures, also known as 'gossamer' spacecraft. Nearly all of the details of the giant spacecraft are still to be worked out. But it's already clear that one of the most challenging aspects will be developing techniques to align and control these systems after they are deployed in space. A critical part of this process is creating new ground test methods to measure gossamer structures under stationary, deploying and vibrating conditions for validation of corresponding analytical predictions. In addressing this problem, I considered, first of all, the possibility of simply using conventional displacement or vibration sensor that could provide spatial measurements. Next, I turned my attention to photogrammetry, a method of determining the spatial coordinates of objects using photographs. The success of this research and development has convinced me that photogrammetry is the most suitable method to solve the gossamer measurement problem.

  2. Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment

    International Nuclear Information System (INIS)

    Wu, Wan-fan; Liu, Na; Cheng, Wen-long; Liu, Yi

    2013-01-01

    Highlights: ► A shape-stabilized PCM is used to protect the spacecraft attacked by high energy. ► Taking a satellite as example, it proves the solution given in the work is feasible. ► Low thermal conductivity makes the material above its thermal stability limit. ► It provides guidance on how to choose the shape-stabilized PCM for similar problems. - Abstract: In space, the emergencies such as short-term high heat flux is prone to cause spacecraft thermal control system faults, resulting in temperature anomalies of electronic equipment of the spacecraft and even failures in them. In order to protect the spacecraft attacked by the high energy, a new guard method is proposed. A shape-stabilized phase change material (PCM), which has high thermal conductivity and does not require being tightly packaged, is proposed to be used on the spacecraft. To prove the feasibility of using the material on spacecraft attacked by high energy, the thermal responses for spacecraft with shape-stabilized PCM are investigated in situations of normal and short-term high heat flux, in contrast to that with conventional thermal control system. The results indicate that the shape-stabilized PCM can effectively absorb the heat to prevent the thermal control system faults when the spacecraft’s outer heat flux changes dramatically and has no negative effect on spacecraft in normal heat flux. Additionally the effect of thermal conductivity of PCM on its application effectiveness is discussed

  3. An Application of the "Virtual Spacecraft" Concept in Evaluation of the Mars Pathfinder Lander Low Gain Antenna

    Science.gov (United States)

    Pogorzelski, R. J.; Beckon, R. J.

    1997-01-01

    The virtual spacecraft concept is embodied in a set of subsystems, either in the form of hardware or computational models, which together represent all, or a portion of, a spacecraft. For example, the telecommunications transponder may be a hardware prototype while the propulsion system may exist only as a simulation. As the various subsystems are realized in hardware, the spacecraft becomes progressively less virtual. This concept is enabled by JPL's Mission System Testbed which is a set of networked workstations running a message passing operating system called "TRAMEL" which stands for Task Remote Asynchronous Message Exchange Layer. Each simulation on the workstations, which may in fact be hardware controlled by the workstation, "publishes" its operating parameters on TRAMEL and other simulations requiring those parameters as input may "subscribe" to them. In this manner, the whole simulation operates as a single virtual system. This paper describes a simulation designed to evaluate a communications link between the earth and the Mars Pathfinder Lander module as it descends under a parachute through the Martian atmosphere toward the planet's surface. This link includes a transmitter and a low gain antenna on the spacecraft and a receiving antenna and receiver on the earth as well as a simulation of the dynamics of the spacecraft. The transmitter, the ground station antenna, the receiver and the dynamics are all simulated computationally while the spacecraft antenna is implemented in hardware on a very simple spacecraft mockup. The dynamics simulation is a record of one output of the ensemble of outputs of a Monte Carlo simulation of the descent. Additionally, the antenna/spacecraft mock-up system was simulated using APATCH, a shooting and bouncing ray code developed by Demaco, Inc. The antenna simulation, the antenna hardware, and the link simulation are all physically located in different facilities at JPL separated by several hundred meters and are linked via

  4. A case study in nonlinear dynamics and control of articulated spacecraft: The Space Station Freedom with a mobile remote manipulator system

    Science.gov (United States)

    Bennett, William H.; Kwatny, Harry G.; Lavigna, Chris; Blankenship, Gilmer

    1994-01-01

    The following topics are discussed: (1) modeling of articulated spacecraft as multi-flex-body systems; (2) nonlinear attitude control by adaptive partial feedback linearizing (PFL) control; (3) attitude dynamics and control for SSF/MRMS; and (4) performance analysis results for attitude control of SSF/MRMS.

  5. Passive Devices for Advanced Fluid Management aboard Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Acute challenges are faced by the designers of fluid systems for spacecraft because of the persistently unfamiliar and unforgiving low-g environment. For example,...

  6. Comprehensive Fault Tolerance and Science-Optimal Attitude Planning for Spacecraft Applications

    Science.gov (United States)

    Nasir, Ali

    Spacecraft operate in a harsh environment, are costly to launch, and experience unavoidable communication delay and bandwidth constraints. These factors motivate the need for effective onboard mission and fault management. This dissertation presents an integrated framework to optimize science goal achievement while identifying and managing encountered faults. Goal-related tasks are defined by pointing the spacecraft instrumentation toward distant targets of scientific interest. The relative value of science data collection is traded with risk of failures to determine an optimal policy for mission execution. Our major innovation in fault detection and reconfiguration is to incorporate fault information obtained from two types of spacecraft models: one based on the dynamics of the spacecraft and the second based on the internal composition of the spacecraft. For fault reconfiguration, we consider possible changes in both dynamics-based control law configuration and the composition-based switching configuration. We formulate our problem as a stochastic sequential decision problem or Markov Decision Process (MDP). To avoid the computational complexity involved in a fully-integrated MDP, we decompose our problem into multiple MDPs. These MDPs include planning MDPs for different fault scenarios, a fault detection MDP based on a logic-based model of spacecraft component and system functionality, an MDP for resolving conflicts between fault information from the logic-based model and the dynamics-based spacecraft models" and the reconfiguration MDP that generates a policy optimized over the relative importance of the mission objectives versus spacecraft safety. Approximate Dynamic Programming (ADP) methods for the decomposition of the planning and fault detection MDPs are applied. To show the performance of the MDP-based frameworks and ADP methods, a suite of spacecraft attitude planning case studies are described. These case studies are used to analyze the content and

  7. Nonlinear guided wave circular array system for microcrack monitoring in spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Reliable monitoring of the microcrack formation in the complex composite structure components in NASA spacecraft and launch vehicles is critical for vehicle...

  8. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (UNIX VERSION)

    Science.gov (United States)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a

  9. A spacecraft computer repairable via command.

    Science.gov (United States)

    Fimmel, R. O.; Baker, T. E.

    1971-01-01

    The MULTIPAC is a central data system developed for deep-space probes with the distinctive feature that it may be repaired during flight via command and telemetry links by reprogramming around the failed unit. The computer organization uses pools of identical modules which the program organizes into one or more computers called processors. The interaction of these modules is dynamically controlled by the program rather than hardware. In the event of a failure, new programs are entered which reorganize the central data system with a somewhat reduced total processing capability aboard the spacecraft. Emphasis is placed on the evolution of the system architecture and the final overall system design rather than the specific logic design.

  10. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  11. Foot Pedals for Spacecraft Manual Control

    Science.gov (United States)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  12. Automated Performance Characterization of DSN System Frequency Stability Using Spacecraft Tracking Data

    Science.gov (United States)

    Pham, Timothy T.; Machuzak, Richard J.; Bedrossian, Alina; Kelly, Richard M.; Liao, Jason C.

    2012-01-01

    This software provides an automated capability to measure and qualify the frequency stability performance of the Deep Space Network (DSN) ground system, using daily spacecraft tracking data. The results help to verify if the DSN performance is meeting its specification, therefore ensuring commitments to flight missions; in particular, the radio science investigations. The rich set of data also helps the DSN Operations and Maintenance team to identify the trends and patterns, allowing them to identify the antennas of lower performance and implement corrective action in a timely manner. Unlike the traditional approach where the performance can only be obtained from special calibration sessions that are both time-consuming and require manual setup, the new method taps into the daily spacecraft tracking data. This new approach significantly increases the amount of data available for analysis, roughly by two orders of magnitude, making it possible to conduct trend analysis with good confidence. The software is built with automation in mind for end-to-end processing. From the inputs gathering to computation analysis and later data visualization of the results, all steps are done automatically, making the data production at near zero cost. This allows the limited engineering resource to focus on high-level assessment and to follow up with the exceptions/deviations. To make it possible to process the continual stream of daily incoming data without much effort, and to understand the results quickly, the processing needs to be automated and the data summarized at a high level. Special attention needs to be given to data gathering, input validation, handling anomalous conditions, computation, and presenting the results in a visual form that makes it easy to spot items of exception/deviation so that further analysis can be directed and corrective actions followed.

  13. A Self-Regulating Freezable Heat Exchanger for Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the vehicle, avionics and atmosphere (if crewed) within a defined temperature range. Since water is non-toxic and good...

  14. A Self-Regulating Freezable Heat Exchanger for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the cabin (both air and its structure if manned) and electronic equipment within a narrow temperature range even though...

  15. Temperature Condition and Spherical Shell Shape Variation of Space Gauge-Alignment Spacecraft

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available A high precision spherical shell is one of the geometrical shape embodiments of a gaugealignment spacecraft to determine and control a radar channel energy potential of the ground-based complex for the traffic control of space objects. Passive relays of signals and some types of smallsized instrumentation standard reflectors used for radar gauge and alignment have the same shape. Orbits of the considered spacecraft can be either circular with a height of about 1000 km, including those close to the polar, or elliptical with an apogee of up to 2200 km.In case there is no thermal control system in spacecrafts of these types the solar radiation is a major factor to define the thermal state of a spherical shell in the illuminated orbit area. With the shell in fixed position with respect to direction towards the Sun an arising uneven temperature distribution over its surface leads to variation of the spherically ideal shell shape, which may affect the functional characteristics of the spacecraft. The shell rotation about an axis perpendicular to the direction towards the Sun may reduce an unevenness degree of the temperature distribution.The uneven temperature distribution over the spherical shell surface in conditions of the lowEarth space and this unevenness impact on the shell shape variation against its spherical shape can be quantively estimated by the appropriate methods of mathematical modeling using modification of a previously developed mathematical model to describe steady temperature state of such shell on the low-Earth orbit. The paper considers the shell made from a polymeric composite material. Its original spherical shape is defined by rather low internal pressure. It is assumed that equipment in the shell, if any, is quite small-sized. This allows us to ignore its impact on the radiative transfer in the shell cavity. Along with defining the steady temperature distribution over the shell surface at its fixed orientation with respect to

  16. On the spacecraft attitude stabilization in the orbital frame

    Directory of Open Access Journals (Sweden)

    Antipov Kirill A.

    2012-01-01

    Full Text Available The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to stabilize the spacecraft attitude position in the orbital frame are obtained. The stability of the spacecraft stabilized orientation is proved both analytically and by PC computations.

  17. 42: An Open-Source Simulation Tool for Study and Design of Spacecraft Attitude Control Systems

    Science.gov (United States)

    Stoneking, Eric

    2018-01-01

    Simulation is an important tool in the analysis and design of spacecraft attitude control systems. The speaker will discuss the simulation tool, called simply 42, that he has developed over the years to support his own work as an engineer in the Attitude Control Systems Engineering Branch at NASA Goddard Space Flight Center. 42 was intended from the outset to be high-fidelity and powerful, but also fast and easy to use. 42 is publicly available as open source since 2014. The speaker will describe some of 42's models and features, and discuss its applicability to studies ranging from early concept studies through the design cycle, integration, and operations. He will outline 42's architecture and share some thoughts on simulation development as a long-term project.

  18. An Evaluation of Ultra-High Pressure Regulator for Robotic Lunar Landing Spacecraft

    Science.gov (United States)

    Burnside, Christopher; Trinh, Huu; Pedersen, Kevin

    2011-01-01

    The Robotic Lunar Lander Development (RLLD) Project Office at NASA Marshall Space Flight Center (MSFC) has studied several lunar surface science mission concepts. These missions focus on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface. Initial trade studies of launch vehicle options for these mission concepts indicate that the spacecraft design will be significantly mass-constrained. To minimize mass and facilitate efficient packaging, the notional propulsion system for these landers has a baseline of an ultra-high pressure (10,000 psig) helium pressurization system that has been used on Defense missiles. The qualified regulator is capable of short duration use; however, the hardware has not been previously tested at NASA spacecraft requirements with longer duration. Hence, technical risks exist in using this missile-based propulsion component for spacecraft applications. A 10,000-psig helium pressure regulator test activity is being carried out as part of risk reduction testing for MSFC RLLD project. The goal of the test activity is to assess the feasibility of commercial off-the-shelf ultra-high pressure regulator by testing with a representative flight mission profile. Slam-start, gas blowdown, water expulsion, lock-up, and leak tests are also performed on the regulator to assess performance under various operating conditions. The preliminary test results indicated that the regulator can regulate helium to a stable outlet pressure of 740 psig within the +/- 5% tolerance band and maintain a lock-up pressure less than +5% for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for internal seat leakage at lock-up and less than10-5 SCCS for external leakage through the regulator ambient reference cavity. The successful tests have shown the potential for 10,000 psig helium systems in NASA spacecraft and have reduced risk

  19. Standardizing the information architecture for spacecraft operations

    Science.gov (United States)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  20. 47 CFR 76.934 - Small systems and small cable companies.

    Science.gov (United States)

    2010-10-01

    ... files with its franchising authority or the Commission the documentation necessary to qualify for the... equity interest in the system or exercises de jure control over the system. (b) A franchising authority... regulations. (c) Initial regulation of small systems: (1) If certified by the Commission, a local franchising...

  1. Protection of surface assets on Mars from wind blown jettisoned spacecraft components

    Science.gov (United States)

    Paton, Mark

    2017-07-01

    Jettisoned Entry, Descent and Landing System (EDLS) hardware from landing spacecraft have been observed by orbiting spacecraft, strewn over the Martian surface. Future Mars missions that land spacecraft close to prelanded assets will have to use a landing architecture that somehow minimises the possibility of impacts from these jettisoned EDLS components. Computer modelling is used here to investigate the influence of wind speed and direction on the distribution of EDLS components on the surface. Typical wind speeds encountered in the Martian Planetary Boundary Layer (PBL) were found to be of sufficient strength to blow items having a low ballistic coefficient, i.e. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) or parachutes, onto prelanded assets even when the lander itself touches down several kilometres away. Employing meteorological measurements and careful characterisation of the Martian PBL, e.g. appropriate wind speed probability density functions, may then benefit future spacecraft landings, increase safety and possibly help reduce the delta v budget for Mars landers that rely on aerodynamic decelerators.

  2. Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh

    Science.gov (United States)

    Deng, Mingle; Yue, Baozeng

    2017-04-01

    This paper is focused on the nonlinearly modelling and attitude dynamics of spacecraft coupled with large amplitude liquid sloshing dynamics and flexible appendage vibration. The large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process. A modification is introduced in the capillary force computation in order to more precisely estimate the settling location of liquid in microgravity or zero-g environment. The flexible appendage is modelled as a three dimensional Bernoulli-Euler beam and the assumed modal method is employed to derive the nonlinear mechanical model for the overall coupled system of liquid filled spacecraft with appendage. The attitude maneuver is implemented by the momentum transfer technique, and a feedback controller is designed. The simulation results show that the liquid sloshing can always result in nutation behavior, but the effect of flexible deformation of appendage depends on the amplitude and direction of attitude maneuver performed by spacecraft. Moreover, it is found that the liquid sloshing and the vibration of flexible appendage are coupled with each other, and the coupling becomes more significant with more rapid motion of spacecraft. This study reveals that the appendage's flexibility has influence on the liquid's location and settling time in microgravity. The presented nonlinear system model can provide an important reference for the overall design of the modern spacecraft composed of rigid platform, liquid filled tank and flexible appendage.

  3. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  4. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  5. Attitude stability analyses for small artificial satellites

    International Nuclear Information System (INIS)

    Silva, W R; Zanardi, M C; Formiga, J K S; Cabette, R E S; Stuchi, T J

    2013-01-01

    The objective of this paper is to analyze the stability of the rotational motion of a symmetrical spacecraft, in a circular orbit. The equilibrium points and regions of stability are established when components of the gravity gradient torque acting on the spacecraft are included in the equations of rotational motion, which are described by the Andoyer's variables. The nonlinear stability of the equilibrium points of the rotational motion is analysed here by the Kovalev-Savchenko theorem. With the application of the Kovalev-Savchenko theorem, it is possible to verify if they remain stable under the influence of the terms of higher order of the normal Hamiltonian. In this paper, numerical simulations are made for a small hypothetical artificial satellite. Several stable equilibrium points were determined and regions around these points have been established by variations in the orbital inclination and in the spacecraft principal moment of inertia. The present analysis can directly contribute in the maintenance of the spacecraft's attitude

  6. Interactive Spacecraft Trajectory Design Strategies Featuring Poincare Map Topology

    Science.gov (United States)

    Schlei, Wayne R.

    Space exploration efforts are shifting towards inexpensive and more agile vehicles. Versatility regarding spacecraft trajectories refers to the agility to correct deviations from an intended path or even the ability to adapt the future path to a new destination--all with limited spaceflight resources (i.e., small DeltaV budgets). Trajectory design methods for such nimble vehicles incorporate equally versatile procedures that allow for rapid and interactive decision making while attempting to reduce Delta V budgets, leading to a versatile trajectory design platform. A versatile design paradigm requires the exploitation of Poincare map topology , or the interconnected web of dynamical structures, existing within the chaotic dynamics of multi-body gravitational models to outline low-Delta V transfer options residing nearby to a current path. This investigation details an autonomous procedure to extract the periodic orbits (topology nodes) and correlated asymptotic flow structures (or the invariant manifolds representing topology links). The autonomous process summarized in this investigation (termed PMATE) overcomes discontinuities on the Poincare section that arise in the applied multi-body model (the planar circular restricted three-body problem) and detects a wide variety of novel periodic orbits. New interactive capabilities deliver a visual analytics foundation for versatile spaceflight design, especially for initial guess generation and manipulation. Such interactive strategies include the selection of states and arcs from Poincare section visualizations and the capabilities to draw and drag trajectories to remove dependency on initial state input. Furthermore, immersive selection is expanded to cull invariant manifold structures, yielding low-DeltaV or even DeltaV-free transfers between periodic orbits. The application of interactive design strategies featuring a dense extraction of Poincare map topology is demonstrated for agile spaceflight with a simple

  7. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    Science.gov (United States)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  8. Omni-directional Particle Detector (ODPD) on Tiangong-2 Spacecraft

    Science.gov (United States)

    Guohong, S.; Zhang, S.; Yang, X.; Wang, C.

    2017-12-01

    Tiangong-2 spacecraft is the second space laboratory independently developed by china after Tiangong-1, which was launched on 15 September 2016. It is also the first real space laboratory in china, which will be used to further validate the space rendezvous and docking technology and to carry out a series of space tests. The spacecraft's orbit is 350km height and 42° inclination. The omni-directional particle detector (ODPD) on Tiangong-2 spacecraft is a new instrument developed by China. Its goal is the anisotropy and energy spectra of space particles on manned space flight orbit. The ODPD measures the energy spectra and pitch angle distributions of high energy electrons and protons. It consists of one electron spectrum telescope, one proton spectrum telescope and sixteen directional flux telescopes. The ODPD is designed to measure the protons spectrum from 2.5MeV to 150MeV, electrons spectrum from 0.2MeV to 1.5MeV, the flux of electrons energy >200keV and protons energy>1.5MeV on 2∏ space, also the ODPD has a small sensor to measure the LET spectrum from 1-100MeV/cm2sr. The primary advantage can give the particle's pitch angle distributions at any time because of the sixteen flux telescopes arrange form 0 to 180 degree. This is the first paper dealing with ODPD data, so we firstly spend some time describing the instrument, its theory of operation and its calibration. Then we give the preliminary detecting results.

  9. ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison

    Science.gov (United States)

    Krisko, P. H.; Flegel, S.

    2014-01-01

    The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publically released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in low Earth orbit (LEO) to geosynchronous orbit (GEO). The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs, particularly in LEO. These objects are much more numerous than larger trackable debris and can have enough momentum to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. In this paper, we present and detail the 1 mm to 1 cm orbital debris populations from both ORDEM 3.0 and MASTER-2009 in LEO. We review population categories: particle sources for MASTER-2009, particle densities for ORDEM 3.0. We describe data sources and their uses, and supporting models. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  10. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns

    Science.gov (United States)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  11. Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft

    Science.gov (United States)

    Wiegmann, Bruce M.

    2017-01-01

    There is great interest in examining the outer planets of our solar system and Heliopause region (edge of Solar System) and beyond regions of interstellar space by both the Planetary and Heliophysics communities. These needs are well docu-mented in the recent National Academy of Sciences Decadal Surveys. There is significant interest in developing revolutionary propulsion techniques that will enable such Heliopause scientific missions to be completed within 10 to15 years of the launch date. One such enabling propulsion technique commonly known as Electric Sail (E-Sail) propulsion employs positively charged bare wire tethers that extend radially outward from a rotating spacecraft spinning at a rate of one revolution per hour. Around the positively charged bare-wire tethers, a Debye Sheath is created once positive voltage is applied. This sheath stands off of the bare wire tether at a sheath diameter that is proportional to the voltage in the wire coupled with the flux density of solar wind ions within the solar system (or the location of spacecraft in the solar system. The protons that are expended from the sun (solar wind) at 400 to 800 km/sec are electrostatically repelled away from these positively charged Debye sheaths and propulsive thrust is produced via the resulting momentum transfer. The amount of thrust produced is directly proportional to the total wire length. The Marshall Space Flight Center (MSFC) Electric Sail team is currently funded via a two year Phase II NASA Innovative Advanced Concepts (NIAC) awarded in July 2015. The team's current activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers and tethers to enable successful de-ployment of multiple, multi km length bare tethers

  12. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  13. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    Science.gov (United States)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  14. Wave-Based Attitude Control of Spacecraft with Fuel Sloshing Dynamics

    Directory of Open Access Journals (Sweden)

    Thompson Joseph William

    2016-06-01

    Full Text Available Wave-Based Control has been previously applied successfully to simple under-actuated flexible mechanical systems. Spacecraft and rockets with structural flexibility and sloshing are examples of such systems but have added difficulties due to non-uniform structure, external disturbing forces and non-ideal actuators and sensors. The aim of this paper is to extend the application of WBC to spacecraft systems, to compare the performance of WBC to other popular controllers and to carry out experimental validation of the designed control laws. A mathematical model is developed for an upper stage accelerating rocket moving in a single plane. Fuel sloshing is represented by an equivalent mechanical pendulum model. A wave-based controller is designed for the upper stage AVUM of the European launcher Vega. In numerical simulations the controller successfully suppresses the sloshing motion. A major advantage of the strategy is that no measurement of the pendulum states (sloshing motion is required.

  15. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    Science.gov (United States)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  16. Thermal Protection System Mass Estimating Relationships For Blunt-Body, Earth Entry Spacecraft

    Science.gov (United States)

    Sepka, Steven A.; Samareh, Jamshid A.

    2015-01-01

    Mass estimating relationships (MERs) are developed to predict the amount of thermal protection system (TPS) necessary for safe Earth entry for blunt-body spacecraft using simple correlations that are non-ITAR and closely match estimates from NASA's highfidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT). These MERs provide a first order estimate for rapid feasibility studies. There are 840 different trajectories considered in this study, and each TPS MER has a peak heating limit. MERs for the vehicle forebody include the ablators Phenolic Impregnated Carbon Ablator (PICA) and Carbon Phenolic atop Advanced Carbon-Carbon. For the aftbody, the materials are Silicone Impregnated Reusable Ceramic Ablator (SIRCA), Acusil II, SLA- 561V, and LI-900. The MERs are accurate to within 14% (at one standard deviation) of FIAT prediction, and the most any MER can under predict FIAT TPS thickness is 18.7%. This work focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.

  17. Observing System Simulations for Small Satellite Formations Estimating Bidirectional Reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; de Weck, Olivier

    2015-01-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: Use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  18. Observing system simulations for small satellite formations estimating bidirectional reflectance

    Science.gov (United States)

    Nag, Sreeja; Gatebe, Charles K.; Weck, Olivier de

    2015-12-01

    The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a function of illumination geometry and viewing geometry, hence carries information about the anisotropy of the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects (for example in image standardization and mosaicing), for deriving albedo, for land cover classification, for cloud detection, for atmospheric correction, and other applications. However, current spaceborne instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal requirements, we propose a new measurement technique: use of small satellites in formation flight, each satellite with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous measurements of every ground spot in the swath at multiple angles. This paper describes an observing system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal formation architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mission data. The formations can fill angular sampling gaps and enable better BRDF products than currently possible.

  19. Reduced Order Electrostatic Force Field Modeling of 3D Spacecraft Shapes

    Data.gov (United States)

    National Aeronautics and Space Administration — The Autonomous Vehicles Systems (AVS) Lab at CU Boulder has been pursuing research in Coulomb charge control of spacecraft for several years. The electrostatic...

  20. Quick Spacecraft Thermal Analysis Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  1. Contributions of microgravity test results to the design of spacecraft fire-safety systems

    Science.gov (United States)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  2. Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems

    Science.gov (United States)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  3. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    Science.gov (United States)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  4. Optimal Sliding Mode Controllers for Attitude Stabilization of Flexible Spacecraft

    Directory of Open Access Journals (Sweden)

    Chutiphon Pukdeboon

    2011-01-01

    Full Text Available The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.

  5. Design feasibility via ascent optimality for next-generation spacecraft

    Science.gov (United States)

    Miele, A.; Mancuso, S.

    This paper deals with the optimization of the ascent trajectories for single-stage-sub-orbit (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem is studied for different values of the engine specific impulse and spacecraft structural factor. The main conclusions are that: feasibility of SSSO spacecraft is guaranteed for all the parameter combinations considered; feasibility of SSTO spacecraft depends strongly on the parameter combination chosen; not only feasibility of TSTO spacecraft is guaranteed for all the parameter combinations considered, but the TSTO payload is several times the SSTO payload. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, aerodynamic improvements do not yield significant improvements in payload. For SSSO, SSTO, and TSTO spacecraft, simple engineering approximations are developed connecting the maximum payload weight to the engine specific impulse and spacecraft structural factor. With reference to the specific impulse/structural factor domain, these engineering approximations lead to the construction of zero-payload lines separating the feasibility region (positive payload) from the unfeasibility region (negative payload).

  6. Development of Star Tracker System for Accurate Estimation of Spacecraft Attitude

    Science.gov (United States)

    2009-12-01

    For a high- cost spacecraft with accurate pointing requirements, the use of a star tracker is the preferred method for attitude determination. The...solutions, however there are certain costs with using this algorithm. There are significantly more features a triangle can provide when compared to an...to the other. The non-rotating geocentric equatorial frame provides an inertial frame for the two-body problem of a satellite in orbit. In this

  7. Performance Testing of a Photocatalytic Oxidation Module for Spacecraft Cabin Atmosphere Revitalization

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Scott, Joseph P.; Kaiser, Mark; Seminara, Gary; Bershitsky, Alex

    2011-01-01

    Photocatalytic oxidation (PCO) is a candidate process technology for use in high volumetric flow rate trace contaminant control applications in sealed environments. The targeted application for PCO as applied to crewed spacecraft life support system architectures is summarized. Technical challenges characteristic of PCO are considered. Performance testing of a breadboard PCO reactor design for mineralizing polar organic compounds in a spacecraft cabin atmosphere is described. Test results are analyzed and compared to results reported in the literature for comparable PCO reactor designs.

  8. Small-scale gradients of charged particles in the heliospheric magnetic field

    International Nuclear Information System (INIS)

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  9. Investigation of Phase Transition-Based Tethered Systems for Small Body Sample Capture

    Science.gov (United States)

    Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Scharf, Daniel; Mukherjee, Rudranarayan

    2009-01-01

    This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and possible return to Earth. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.

  10. Foil Gas Bearing Supported Quiet Fan for Spacecraft Ventilation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Developing a quiet fan for Environmental Control and Life Support systems to enhance the livable environment within the spacecraft has been a challenge. A Foil Gas...

  11. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  12. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  13. State-of-the-Art for Small Satellite Propulsion Systems

    Science.gov (United States)

    Parker, Khary I.

    2016-01-01

    SmallSats are a low cost access to space with an increasing need for propulsion systems. NASA, and other organizations, will be using SmallSats that require propulsion systems to: a) Conduct high quality near and far reaching on-orbit research and b) Perform technology demonstrations. Increasing call for high reliability and high performing for SmallSat components. Many SmallSat propulsion technologies are currently under development: a) Systems at various levels of maturity and b) Wide variety of systems for many mission applications.

  14. Small Drinking Water Systems Communication and Outreach ...

    Science.gov (United States)

    As part of our small drinking water systems efforts, this poster highlights several communications and outreach highlights that EPA's Office of Research and Development and Office of Water have been undertaking in collaboration with states and the Association of State Drinking Water Administrators. To share information at EPA's annual small drinking water systems workshop

  15. Project-based learning applied to spacecraft power systems: a long-term engineering and educational program at UPM University

    Science.gov (United States)

    Pindado, Santiago; Cubas, Javier; Roibás-Millán, Elena; Sorribes-Palmer, Félix

    2018-03-01

    The IDR/UPM Institute is the research center responsible for the Master in Space Systems (MUSE) of Universidad Politécnica de Madrid (UPM). This is a 2-year (120 ECTS) master's degree focused on space technology. The UPMSat-2 satellite program has become an excellent educational framework in which the academic contents of the master are trained through project-based learning and following a multidisciplinary approach. In the present work, the educational projects developed and carried out in relation to spacecraft power systems at the IDR/UPM Institute are described. These projects are currently being developed in the framework represented by the aforementioned MUSE master's program and UPMSat-2.

  16. Plasma Interactions with Spacecraft. Volume 2, NASCAP-2K Scientific Documentation for Version 4.1

    Science.gov (United States)

    2011-04-15

    surface is taken as the equipotential surface at  = ±ln2. This choice is made because the attracted species is absorbed by the sheath, so we have only...spacecraft-generated plasma environments on spacecraft systems. This document describes the physics and numeric models used in the surface charging...2 2.1 Surface Charging from Orbit Limited Currents

  17. Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh

    Science.gov (United States)

    Green, Steven T.; Burkey, Russell C.; Sudermann, James

    2010-01-01

    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.

  18. Model-based software engineering for an optical navigation system for spacecraft

    Science.gov (United States)

    Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.

    2018-06-01

    The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.

  19. Model-based software engineering for an optical navigation system for spacecraft

    Science.gov (United States)

    Franz, T.; Lüdtke, D.; Maibaum, O.; Gerndt, A.

    2017-09-01

    The project Autonomous Terrain-based Optical Navigation (ATON) at the German Aerospace Center (DLR) is developing an optical navigation system for future landing missions on celestial bodies such as the moon or asteroids. Image data obtained by optical sensors can be used for autonomous determination of the spacecraft's position and attitude. Camera-in-the-loop experiments in the Testbed for Robotic Optical Navigation (TRON) laboratory and flight campaigns with unmanned aerial vehicle (UAV) are performed to gather flight data for further development and to test the system in a closed-loop scenario. The software modules are executed in the C++ Tasking Framework that provides the means to concurrently run the modules in separated tasks, send messages between tasks, and schedule task execution based on events. Since the project is developed in collaboration with several institutes in different domains at DLR, clearly defined and well-documented interfaces are necessary. Preventing misconceptions caused by differences between various development philosophies and standards turned out to be challenging. After the first development cycles with manual Interface Control Documents (ICD) and manual implementation of the complex interactions between modules, we switched to a model-based approach. The ATON model covers a graphical description of the modules, their parameters and communication patterns. Type and consistency checks on this formal level help to reduce errors in the system. The model enables the generation of interfaces and unified data types as well as their documentation. Furthermore, the C++ code for the exchange of data between the modules and the scheduling of the software tasks is created automatically. With this approach, changing the data flow in the system or adding additional components (e.g., a second camera) have become trivial.

  20. Theoretical analysis of infrared radiation shields of spacecraft

    Science.gov (United States)

    Shealy, D. L.

    1984-01-01

    For a system of N diffuse, gray body radiation shields which view only adjacent surfaces and space, the net radiation method for enclosures has been used to formulate a system of linear, nonhomogeneous equations in terms of the temperatures to the fourth power of each surface in the coupled system of enclosures. The coefficients of the unknown temperatures in the system of equations are expressed in terms of configuration factors between adjacent surfaces and the emissivities. As an application, a system of four conical radiation shields for a spin stabilized STARPROBE spacecraft has been designed and analyzed with respect to variations of the cone half angles, the intershield spacings, and emissivities.

  1. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    Science.gov (United States)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility

  2. An Overview of the Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Garrett, Henry B.; Miller, Sharon K.; Peddie, Darilyn; Porter Ron; Spann, James F.; Xapsos, Michael A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore our Earth, and the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge on the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments fields that will serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environment and spacecraft effects (SESE) organization. This SESE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems, and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system, and system-level response to the space environment and include the selection and testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with

  3. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  4. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  5. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  6. The Near Earth Object (NEO) Scout Spacecraft: A Low-cost Approach to In-situ Characterization of the NEO Population

    Science.gov (United States)

    Woeppel, Eric A.; Balsamo, James M.; Fischer, Karl J.; East, Matthew J.; Styborski, Jeremy A.; Roche, Christopher A.; Ott, Mackenzie D.; Scorza, Matthew J.; Doherty, Christopher D.; Trovato, Andrew J.; hide

    2014-01-01

    This paper describes a microsatellite spacecraft with supporting mission profile and architecture, designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonably low cost. The spacecraft will be referred to as the NEO-Scout. NEO-Scout spacecraft are to be placed in Geosynchronous Equatorial Orbit (GEO), cis-lunar space, or on earth escape trajectories as secondary payloads on launch vehicles headed for GEO or beyond, and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO-Scout system is to design the spacecraft and mission timeline so as to enable rendezvous with and landing on the target NEO during NEO close approach (the Earth-Moon system using low-thrust/high-impulse propulsion systems. Mission durations are on the order 100 to 400 days. Mission feasibility and preliminary design analysis are presented, along with detailed trajectory calculations.

  7. X-Ray Detection and Processing Models for Spacecraft Navigation and Timing

    Science.gov (United States)

    Sheikh, Suneel; Hanson, John

    2013-01-01

    The current primary method of deepspace navigation is the NASA Deep Space Network (DSN). High-performance navigation is achieved using Delta Differential One-Way Range techniques that utilize simultaneous observations from multiple DSN sites, and incorporate observations of quasars near the line-of-sight to a spacecraft in order to improve the range and angle measurement accuracies. Over the past four decades, x-ray astronomers have identified a number of xray pulsars with pulsed emissions having stabilities comparable to atomic clocks. The x-ray pulsar-based navigation and time determination (XNAV) system uses phase measurements from these sources to establish autonomously the position of the detector, and thus the spacecraft, relative to a known reference frame, much as the Global Positioning System (GPS) uses phase measurements from radio signals from several satellites to establish the position of the user relative to an Earth-centered fixed frame of reference. While a GPS receiver uses an antenna to detect the radio signals, XNAV uses a detector array to capture the individual xray photons from the x-ray pulsars. The navigation solution relies on detailed xray source models, signal processing, navigation and timing algorithms, and analytical tools that form the basis of an autonomous XNAV system. Through previous XNAV development efforts, some techniques have been established to utilize a pulsar pulse time-of-arrival (TOA) measurement to correct a position estimate. One well-studied approach, based upon Kalman filter methods, optimally adjusts a dynamic orbit propagation solution based upon the offset in measured and predicted pulse TOA. In this delta position estimator scheme, previously estimated values of spacecraft position and velocity are utilized from an onboard orbit propagator. Using these estimated values, the detected arrival times at the spacecraft of pulses from a pulsar are compared to the predicted arrival times defined by the pulsar s pulse

  8. A Memory/Immunology-Based Control Approach with Applications to Multiple Spacecraft Formation Flying

    Directory of Open Access Journals (Sweden)

    Liguo Weng

    2013-01-01

    Full Text Available This paper addresses the problem of formation control for multiple spacecrafts in Planetary Orbital Environment (POE. Due to the presence of diverse interferences and uncertainties in the outer space, such as the changing spacecraft mass, unavailable space parameters, and varying gravity forces, traditional control methods encounter great difficulties in this area. A new control approach inspired by human memory and immune system is proposed, and this approach is shown to be capable of learning from past control experience and current behavior to improve its performance. It demands much less system dynamic information as compared with traditional controls. Both theoretic analysis and computer simulation verify its effectiveness.

  9. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    2002-07-01

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  10. An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft

    Science.gov (United States)

    Burnside, Christopher G.; Trinh, Huu P.; Pedersen, Kevin W.

    2013-01-01

    The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.

  11. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation

    Science.gov (United States)

    Yang, Yaguang; Zhou, Zhiqiang

    2016-01-01

    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  12. Physics and chemistry of the solar system

    CERN Document Server

    Lewis, John S

    2004-01-01

    Physics and Chemistry of the Solar System, 2nd Edition, is a comprehensive survey of the planetary physics and physical chemistry of our own solar system. It covers current research in these areas and the planetary sciences that have benefited from both earth-based and spacecraft-based experimentation. These experiments form the basis of this encyclopedic reference, which skillfully fuses synthesis and explanation. Detailed chapters review each of the major planetary bodies as well as asteroids, comets, and other small orbitals. Astronomers, physicists, and planetary scientists can use this state-of-the-art book for both research and teaching. This Second Edition features extensive new material, including expanded treatment of new meteorite classes, spacecraft findings from Mars Pathfinder through Mars Odyssey 2001, recent reflections on brown dwarfs, and descriptions of planned NASA, ESA, and Japanese planetary missions.* New edition features expanded treatment of new meteorite classes, the latest spacecraft...

  13. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (MACINTOSH A/UX VERSION)

    Science.gov (United States)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a

  14. DET/MPS - THE GSFC ENERGY BALANCE PROGRAM, DIRECT ENERGY TRANSFER/MULTIMISSION SPACECRAFT MODULAR POWER SYSTEM (DEC VAX VMS VERSION)

    Science.gov (United States)

    Jagielski, J. M.

    1994-01-01

    The DET/MPS programs model and simulate the Direct Energy Transfer and Multimission Spacecraft Modular Power System in order to aid both in design and in analysis of orbital energy balance. Typically, the DET power system has the solar array directly to the spacecraft bus, and the central building block of MPS is the Standard Power Regulator Unit. DET/MPS allows a minute-by-minute simulation of the power system's performance as it responds to various orbital parameters, focusing its output on solar array output and battery characteristics. While this package is limited in terms of orbital mechanics, it is sufficient to calculate eclipse and solar array data for circular or non-circular orbits. DET/MPS can be adjusted to run one or sequential orbits up to about one week, simulated time. These programs have been used on a variety of Goddard Space Flight Center spacecraft projects. DET/MPS is written in FORTRAN 77 with some VAX-type extensions. Any FORTRAN 77 compiler that includes VAX extensions should be able to compile and run the program with little or no modifications. The compiler must at least support free-form (or tab-delineated) source format and 'do do-while end-do' control structures. DET/MPS is available for three platforms: GSC-13374, for DEC VAX series computers running VMS, is available in DEC VAX Backup format on a 9-track 1600 BPI tape (standard distribution) or TK50 tape cartridge; GSC-13443, for UNIX-based computers, is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format; and GSC-13444, for Macintosh computers running AU/X with either the NKR FORTRAN or AbSoft MacFORTRAN II compilers, is available on a 3.5 inch 800K Macintosh format diskette. Source code and test data are supplied. The UNIX version of DET requires 90K of main memory for execution. DET/MPS was developed in 1990. A/UX and Macintosh are registered trademarks of Apple Computer, Inc. VMS, DEC VAX and TK50 are trademarks of Digital Equipment Corporation. UNIX is a

  15. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  16. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  17. Spacecraft Swarm Coordination and Planning Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractionated spacecraft architectures to distribute mission performance from a single, monolithic satellite across large number of smaller spacecraft, for missions...

  18. A spacecraft's own ambient environment: The role of simulation-based research

    Energy Technology Data Exchange (ETDEWEB)

    Ketsdever, Andrew D. [University of Colorado Colorado Springs, Department of Mechanical and Aerospace Engineering, Colorado Springs, CO (United States); Gimelshein, Sergey [University of Southern California, Department of Astronautical Engineering, Los Angeles, CA (United States)

    2014-12-09

    Spacecraft contamination has long been a subject of study in the rarefied gas dynamics community. Professor Mikhail Ivanov coined the term a spacecraft's 'own ambient environment' to describe the effects of natural and satellite driven processes on the conditions encountered by a spacecraft in orbit. Outgassing, thruster firings, and gas and liquid dumps all contribute to the spacecraft's contamination environment. Rarefied gas dynamic modeling techniques, such as Direct Simulation Monte Carlo, are well suited to investigate these spacebased environments. However, many advances were necessary to fully characterize the extent of this problem. A better understanding of modeling flows over large pressure ranges, for example hybrid continuum and rarefied numerical schemes, were required. Two-phase flow modeling under rarefied conditions was necessary. And the ability to model plasma flows for a new era of propulsion systems was also required. Through the work of Professor Ivanov and his team, we now have a better understanding of processes that create a spacecraft's own ambient environment and are able to better characterize these environments. Advances in numerical simulation have also spurred on the development of experimental facilities to study these effects. The relationship between numerical results and experimental advances will be explored in this manuscript.

  19. Integration and Testing Challenges of Small Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Tom

    2007-01-01

    The Space Technology 5(ST5) payload was successfully carried into orbit on an OSC Pegasus XL launch vehicle, which was carried aloft and dropped from the OSC Lockheed L-1011 from Vandenberg Air Force Base March 22,2006, at 9:03 am Eastern time, 6:03 am Pacific time. In order to reach the completion of the development and successful launch of ST 5, the systems integration and test(I&T) team determined that a different approach was required to meet the project requirements rather than the standard I&T approach used for single, room-sized satellites. The ST5 payload, part of NASA's New Millennium Program headquartered at JPL, consisted of three micro satellites (approximately 30 kg each) and the Pegasus Support Structure (PSS), the system that connected the spacecrafts to the launch vehicle and deployed the spacecrafts into orbit from the Pegasus XL launch vehicle. ST5 was a technology demonstration payload, intended to test six (6) new technologies for potential use for future space flights along with demonstrating the ability of small satellites to perform quality science. The main technology was a science grade magnetometer designed to take measurements of the earth's magnetic field. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center with integration and environmental testing occurring in the Bldg. 7-1 0-15-29. The three spacecraft were integrated and tested by the same I&T team. The I&T Manager determined that there was insufficient time in the schedule to perform the three I&T spacecraft activities in series used standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all

  20. Fifty-one years of Los Alamos Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  1. Comparison of technologies for deorbiting spacecraft from low-earth-orbit at end of mission

    Science.gov (United States)

    Sánchez-Arriaga, G.; Sanmartín, J. R.; Lorenzini, E. C.

    2017-09-01

    An analytical comparison of four technologies for deorbiting spacecraft from Low-Earth-Orbit at end of mission is presented. Basic formulas based on simple physical models of key figures of merit for each device are found. Active devices - rockets and electrical thrusters - and passive technologies - drag augmentation devices and electrodynamic tethers - are considered. A basic figure of merit is the deorbit device-to-spacecraft mass ratio, which is, in general, a function of environmental variables, technology development parameters and deorbit time. For typical state-of-the-art values, equal deorbit time, middle inclination and initial altitude of 850 km, the analysis indicates that tethers are about one and two orders of magnitude lighter than active technologies and drag augmentation devices, respectively; a tether needs a few percent mass-ratio for a deorbit time of a couple of weeks. For high inclination, the performance drop of the tether system is moderate: mass ratio and deorbit time increase by factors of 2 and 4, respectively. Besides collision risk with other spacecraft and system mass considerations, such as main driving factors for deorbit space technologies, the analysis addresses other important constraints, like deorbit time, system scalability, manoeuver capability, reliability, simplicity, attitude control requirement, and re-entry and multi-mission capability (deorbit and re-boost) issues. The requirements and constraints are used to make a critical assessment of the four technologies as functions of spacecraft mass and initial orbit (altitude and inclination). Emphasis is placed on electrodynamic tethers, including the latest advances attained in the FP7/Space project BETs. The superiority of tape tethers as compared to round and multi-line tethers in terms of deorbit mission performance is highlighted, as well as the importance of an optimal geometry selection, i.e. tape length, width, and thickness, as function of spacecraft mass and initial

  2. Thermal shock induced dynamics of a spacecraft with a flexible deploying boom

    Science.gov (United States)

    Shen, Zhenxing; Li, Huijian; Liu, Xiaoning; Hu, Gengkai

    2017-12-01

    The dynamics in the process of deployment of a flexible extendible boom as a deployable structure on the spacecraft is studied. For determining the thermally induced vibrations of the boom subjected to an incident solar heat flux, an axially moving thermal-dynamic beam element based on the absolute nodal coordinate formulation which is able to precisely describe the large displacement, rotation and deformation of flexible body is presented. For the elastic forces formulation of variable-length beam element, the enhanced continuum mechanics approach is adopted, which can eliminate the Poisson locking effect, and take into account the tension-bending-torsion coupling deformations. The main body of the spacecraft, modeled as a rigid body, is described using the natural coordinates method. In the derived nonlinear thermal-dynamic equations of rigid-flexible multibody system, the mass matrix is time-variant, and a pseudo damping matrix which is without actual energy dissipation, and a heat conduction matrix which is relative to the moving speed and the number of beam element are arisen. Numerical results give the dynamic and thermal responses of the nonrotating and spinning spacecraft, respectively, and show that thermal shock has a significant influence on the dynamics of spacecraft.

  3. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft. M.S. Thesis

    Science.gov (United States)

    Stoll, John C.

    1995-01-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  4. Small SWAP 3D imaging flash ladar for small tactical unmanned air systems

    Science.gov (United States)

    Bird, Alan; Anderson, Scott A.; Wojcik, Michael; Budge, Scott E.

    2015-05-01

    The Space Dynamics Laboratory (SDL), working with Naval Research Laboratory (NRL) and industry leaders Advanced Scientific Concepts (ASC) and Hood Technology Corporation, has developed a small SWAP (size, weight, and power) 3D imaging flash ladar (LAser Detection And Ranging) sensor system concept design for small tactical unmanned air systems (STUAS). The design utilizes an ASC 3D flash ladar camera and laser in a Hood Technology gyro-stabilized gimbal system. The design is an autonomous, intelligent, geo-aware sensor system that supplies real-time 3D terrain and target images. Flash ladar and visible camera data are processed at the sensor using a custom digitizer/frame grabber with compression. Mounted in the aft housing are power, controls, processing computers, and GPS/INS. The onboard processor controls pointing and handles image data, detection algorithms and queuing. The small SWAP 3D imaging flash ladar sensor system generates georeferenced terrain and target images with a low probability of false return and system SWAP estimate of system is modeled using LadarSIM, a MATLAB® and Simulink®- based ladar system simulator designed and developed by the Center for Advanced Imaging Ladar (CAIL) at Utah State University. We will present the concept design and modeled performance predictions.

  5. Training for spacecraft technical analysts

    Science.gov (United States)

    Ayres, Thomas J.; Bryant, Larry

    1989-01-01

    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  6. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    Science.gov (United States)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    measurements that would be needed to meet the required orbit determination accuracies. Analysts used the Orbit Determination Error Analysis System (ODEAS) to perform covariance analyses using various tracking data schedules. From this analysis, it was determined that 3.5 hours of DSN TRK-2-34 range and Doppler tracking data every other day would suffice to meet the predictive orbit knowledge accuracies in the Lissajous region. The results of this analysis are presented. Both GTDS and ODTK have high-fidelity environmental orbit force models that allow for very accurate orbit estimation in the lunar Lissajous regime. These models include solar radiation pressure, Earth and Moon gravity models, third body gravitational effects from the Sun, and to a lesser extent third body gravitational effects from Jupiter, Venus, Saturn, and Mars. Increased position and velocity uncertainties following each maneuver, due to small execution performance errors, requires that several days of post-maneuver tracking data be processed to converge on an accurate post-maneuver orbit solution. The effects of maneuvers on orbit determination accuracy will be presented, including a comparison of the batch least squares technique to the extended Kalman filter/smoother technique. We will present the maneuver calibration results derived from processing post-maneuver tracking data. A dominant error in the orbit estimation process is the uncertainty in solar radiation pressure and the resultant force on the spacecraft. An estimation of this value can include many related factors, such as the uncertainty in spacecraft reflectivity and surface area which is a function of spacecraft orientation (spin-axis attitude), uncertainty in spacecraft wet mass, and potential seasonal variability due to the changing direction of the Sun line relative to the Earth-Moon Lissajous reference frame. In addition, each spacecraft occasionally enters into Earth or Moon penumbra or umbra and these shadow crossings reduche solar

  7. Multi-spacecraft observations of solar hard X-ray bursts

    International Nuclear Information System (INIS)

    Kane, S.R.

    1981-01-01

    The role of multi-spacecraft observations in solar flare research is examined from the point of view of solar hard X-ray bursts and their implications with respect to models of the impulsive phase. Multi-spacecraft measurements provide a stereoscopic view of the flare region, and hence represent the only direct method of measuring directivity of X-rays. In absence of hard X-ray imaging instruments with high spatial and temporal resolution, multi-spacecraft measurements provide the only means of determining the radial (vertical) structure of the hard X-ray source. This potential of the multi-spacecraft observations is illustrated with an analysis of the presently available observations of solar hard X-ray bursts made simultaneously by two or more of the following spacecraft: International Sun Earth Explorer-3 (ISEE-3), Pioneer Venus Orbiter (PVO), Helios-B and High Energy Astrophysical Observatory-A (HEAO-A). In particular, some conclusions have been drawn about the spatial structure and directivity of 50-100 keV X-rays from impulsive flares. Desirable features of future multi-spacecraft missions are briefly discussed followed by a short description of the hard X-ray experiment on the International Solar Polar Mission which has been planned specifically for multi-spacecraft observations of the Sun. (orig.)

  8. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  9. Final results of the Resonance spacecraft calibration effort

    Science.gov (United States)

    Sampl, Manfred; Macher, Wolfgang; Gruber, Christian; Oswald, Thomas; Rucker, Helmut O.

    2010-05-01

    We report our dedicated analyses of electrical field sensors onboard the Resonance spacecraft with a focus on the high-frequency electric antennas. The aim of the Resonance mission is to investigate wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth, with a focus on phenomena occurring along the same field line and within the same flux tube of the Earth's magnetic field. Four spacecraft will be launched, in the middle of the next decade, to perform these observations and measurements. Amongst a variety of instruments and probes several low- and high-frequency electric sensors will be carried which can be used for simultaneous remote sensing and in-situ measurements. The high-frequency electric sensors consist of cylindrical antennas mounted on four booms extruded from the central body of the spacecraft. In addition, the boom rods themselves are used together with the these sensors for mutual impedance measurements. Due to the parasitic effects of the conducting spacecraft body the electrical antenna representations (effective length vector, capacitances) do not coincide with their physical representations. The analysis of the reception properties of these antennas is presented, along with a contribution to the understanding of their impairment by other objects; in particular the influence of large magnetic loop sensors is studied. In order to analyse the antenna system, we applied experimental and numerical methods. The experimental method, called rheometry, is essentially an electrolytic tank measurement, where a scaled-down spacecraft model is immersed into an electrolytic medium (water) with corresponding measurements of voltages at the antennas. The numerical method consists of a numerical solution of the underlying field equations by means of computer programs, which are based on wire-grid and patch-grid models. The experimental and numerical results show that parasitic effects of the antenna-spacecraft assembly alter the

  10. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  11. A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions

    Science.gov (United States)

    Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver

    2016-01-01

    Satellite constellations present unique capabilities and opportunities to Earth orbiting and near-Earth scientific and communications missions, but also present new challenges to cost estimators. An effective and adaptive cost model is essential to successful mission design and implementation, and as Distributed Spacecraft Missions (DSM) become more common, cost estimating tools must become more representative of these types of designs. Existing cost models often focus on a single spacecraft and require extensive design knowledge to produce high fidelity estimates. Previous research has examined the limitations of existing cost practices as they pertain to the early stages of mission formulation, for both individual satellites and small satellite constellations. Recommendations have been made for how to improve the cost models for individual satellites one-at-a-time, but much of the complexity in constellation and DSM cost modeling arises from constellation systems level considerations that have not yet been examined. This paper constitutes a survey of the current state-of-theart in cost estimating techniques with recommendations for improvements to increase the fidelity of future constellation cost estimates. To enable our investigation, we have developed a cost estimating tool for constellation missions. The development of this tool has revealed three high-priority shortcomings within existing parametric cost estimating capabilities as they pertain to DSM architectures: design iteration, integration and test, and mission operations. Within this paper we offer illustrative examples of these discrepancies and make preliminary recommendations for addressing them. DSM and satellite constellation missions are shifting the paradigm of space-based remote sensing, showing promise in the realms of Earth science, planetary observation, and various heliophysical applications. To fully reap the benefits of DSM technology, accurate and relevant cost estimating capabilities

  12. Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Loeb, Abraham, E-mail: thiemhoang@kasi.re.kr, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-10-10

    A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ∼0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.

  13. Attitude dynamics and control of spacecraft with a partially filled liquid tank and flexible panels

    Science.gov (United States)

    Liu, Feng; Yue, Baozeng; Zhao, Liangyu

    2018-02-01

    A liquid-filled flexible spacecraft is essentially a time-variant fully-coupled system, whose dynamics characteristics are closely associated with its motion features. This paper focuses on the mathematical modelling and attitude control of the spacecraft coupled with fuel sloshing dynamics and flexible solar panels vibration. The slosh motion is represented by a spherical pendulum, whose motion description method is improved by using split variable operation. Benefiting from this improvement, the nonlinear lateral sloshing and the rotary sloshing as well as the rigid motion of a liquid respect to the spacecraft can be approximately described. The assumed modes discretization method has been adopted to approximate the elastic displacements of the attached panels, and the coupled dynamics is derived by using the Lagrangian formulation. A variable substitution method is proposed to obtain the apparently-uncoupled mathematical model of the rigid-flexible-liquid spacecraft. After linearization, this model can be directly used for designing Lyapunov output-feedback attitude controller (OFAC). With only torque actuators, and attitude and rate sensors installed, this kind of attitude controller, as simulation results show, is capable of not only bringing the spacecraft to the desired orientation, but also suppressing the effect of flex and slosh on the attitude motion of the spacecraft.

  14. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  15. Developing Large-Scale Bayesian Networks by Composition: Fault Diagnosis of Electrical Power Systems in Aircraft and Spacecraft

    Science.gov (United States)

    Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga

    2009-01-01

    In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)

  16. Power system small signal stability analysis and control

    CERN Document Server

    Mondal, Debasish; Sengupta, Aparajita

    2014-01-01

    Power System Small Signal Stability Analysis and Control presents a detailed analysis of the problem of severe outages due to the sustained growth of small signal oscillations in modern interconnected power systems. The ever-expanding nature of power systems and the rapid upgrade to smart grid technologies call for the implementation of robust and optimal controls. Power systems that are forced to operate close to their stability limit have resulted in the use of control devices by utility companies to improve the performance of the transmission system against commonly occurring power system

  17. Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges

    Science.gov (United States)

    Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  18. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    Science.gov (United States)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  19. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.

    Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  20. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    Science.gov (United States)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  1. Development of Educational Management System in Small Primary School

    Science.gov (United States)

    Alsammarry, Yupayao; Sirisuthi, Chaiyuth; Duangcharthom, Surat

    2016-01-01

    The purposes of the research were: (1) to study the factors of Educational Management System in Small Primary School; (2) to investigate current situations problems and guidelines of developing educational management in small primary school; (3) to develop Educational Management System in Small Primary School; and (4) to examine the results of…

  2. Spacecraft systems engineering: An introduction to the process at GSFC

    Science.gov (United States)

    Fragomeni, Tony; Ryschkewitsch, Michael G.

    1993-01-01

    The main objective in systems engineering is to devise a coherent total system design capable of achieving the stated requirements. Requirements should be rigid. However, they should be continuously challenged, rechallenged and/or validated. The systems engineer must specify every requirement in order to design, document, implement and conduct the mission. Each and every requirement must be logically considered, traceable and evaluated through various analysis and trade studies in a total systems design. Margins must be determined to be realistic as well as adequate. The systems engineer must also continuously close the loop and verify system performance against the requirements. The fundamental role of the systems engineer, however, is to engineer, not manage. Yet, in large, complex missions, where more than one systems engineer is required, someone needs to manage the systems engineers, and we call them 'systems managers.' Systems engineering management is an overview function which plans, guides, monitors and controls the technical execution of a project as implemented by the systems engineers. As the project moves on through Phases A and B into Phase C/D, the systems engineering tasks become a small portion of the total effort. The systems management role increases since discipline subsystem engineers are conducting analyses and reviewing test data for final review and acceptance by the systems managers.

  3. Air dehumidification by membrane with cold water for manned spacecraft environmental control

    Directory of Open Access Journals (Sweden)

    Shang Yonghong

    2017-01-01

    Full Text Available The traditional condensation dehumidification method requires additional gas-liquid separation and water recovery process in the manned spacecraft humidity control system, which would increase weight and complexity of systems. A new membrane dehumidification with cold water is proposed, which uses water vapor partial pressure difference to promote water vapor transmembrane mass transfer for dehumidification. The permeability of the membrane was measured and the experimental results agree well with the theoretical calculations. Based on the simulation of dehumidification process of cold water-membrane, the influence of module structure and working condition on dehumidification performance was analyzed, which provided reference for the design of membrane module construct. It can be seen from the simulation and experiments that the cold water-membrane dehumidification can effectively reduce the thermal load of the manned spacecraft.

  4. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    Science.gov (United States)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  5. Compact Water Vapor Exchanger for Regenerative Life Support Systems

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Anderson, Molly; Hodgson, Edward

    2012-01-01

    Thermal and environmental control systems for future exploration spacecraft must meet challenging requirements for efficient operation and conservation of resources. Regenerative CO2 removal systems are attractive for these missions because they do not use consumable CO2 absorbers. However, these systems also absorb and vent water to space along with carbon dioxide. This paper describes an innovative device designed to minimize water lost from regenerative CO2 control systems. Design studies and proof-of-concept testing have shown the feasibility of a compact, efficient membrane water vapor exchanger (WVX) that will conserve water while meeting challenging requirements for operation on future spacecraft. Compared to conventional WVX designs, the innovative membrane WVX described here has the potential for high water recovery efficiency, compact size, and very low pressure losses. The key innovation is a method for maintaining highly uniform flow channels in a WVX core built from water-permeable membranes. The proof-of-concept WVX incorporates all the key design features of a prototypical unit, except that it is relatively small scale (1/23 relative to a unit sized for a crew of six) and some components were fabricated using non-prototypical methods. The proof-of-concept WVX achieved over 90% water recovery efficiency in a compact core in good agreement with analysis models. Furthermore the overall pressure drop is very small (less than 0.5 in. H2O, total for both flow streams) and meets requirements for service in environmental control and life support systems on future spacecraft. These results show that the WVX provides very uniform flow through flow channels for both the humid and dry streams. Measurements also show that CO2 diffusion through the water-permeable membranes will have negligible effect on the CO2 partial pressure in the spacecraft atmosphere.

  6. VEGA, a small launch vehicle

    Science.gov (United States)

    Duret, François; Fabrizi, Antonio

    1999-09-01

    Several studies have been performed in Europe aiming to promote the full development of a small launch vehicle to put into orbit one ton class spacecrafts. But during the last ten years, the european workforce was mainly oriented towards the qualification of the heavy class ARIANE 5 launch vehicle.Then, due also to lack of visibility on this reduced segment of market, when comparing with the geosatcom market, no proposal was sufficiently attractive to get from the potentially interrested authorities a clear go-ahead, i.e. a financial committment. The situation is now rapidly evolving. Several european states, among them ITALY and FRANCE, are now convinced of the necessity of the availability of such a transportation system, an important argument to promote small missions, using small satellites. Application market will be mainly scientific experiments and earth observation; some telecommunications applications may be also envisaged such as placement of little LEO constellation satellites, or replacement after failure of big LEO constellation satellites. FIAT AVIO and AEROSPATIALE have proposed to their national agencies the development of such a small launch vehicle, named VEGA. The paper presents the story of the industrial proposal, and the present status of the project: Mission spectrum, technical definition, launch service and performance, target development plan and target recurring costs, as well as the industrial organisation for development, procurement, marketing and operations.

  7. The Near Earth Object Scout Spacecraft: A Low Cost Approach to in-situ Characterization of the NEO Population

    Science.gov (United States)

    Koontz, Steven L.; Condon, Gerald; Graham, Lee; Bevilacqua, Ricardo

    2014-01-01

    In this paper we describe a micro/nano satellite spacecraft and a supporting mission profile and architecture designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonable cost. The spacecraft will be referred to as the NEO Scout. NEO Scout spacecraft are to be placed in GTO, GEO, or cis-lunar space as secondary payloads on launch vehicles headed for GTO or beyond and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO scout system is to design the mission timeline and spacecraft to rendezvous with and land on the target NEOs during close approach to the Earth-Moon system using low-thrust/high- impulse propulsion systems. Mission feasibility and preliminary design analysis are presented along with detailed trajectory calculations. The use of micro/nano satellites in low-cost interplanetary exploration is attracting increasing attention and is the subject of several annual workshops and published design studies (1-4). The NEO population consists of those asteroids and short period comets orbiting the Sun with a perihelion of 1.3 astronomical units or less (5-8). As of July 30, 2013 10065 Near-Earth objects have been discovered. The spin rate, mass, density, surface physical (especially mechanical) properties, composition, and mineralogy of the vast majority of these objects are highly uncertain and the limited available telescopic remote sensing data imply a very diverse population (5-8). In-situ measurements by robotic spacecraft are urgently needed to provide the characterization data needed to support hardware and mission design for more ambitious human and robotic NEO operations. Large numbers of NEOs move into close proximity with the Earth-Moon system every year (9). The JPL Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) (10) has produced detailed mission profile and delta V requirements for various NEO missions ranging from 30

  8. Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

    Directory of Open Access Journals (Sweden)

    Sung-Woo Kim

    2012-12-01

    Full Text Available The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS. An ANFIS produces a control signal for one of the three axes of a spacecraft’s body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

  9. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  10. Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

    Science.gov (United States)

    Lee, Kwangwon; Oh, Hyungjik; Park, Han-Earl; Park, Sang-Young; Park, Chandeok

    2015-12-01

    This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.

  11. Thermodynamics of small systems two volumes bound as one

    CERN Document Server

    Hill, Terrel L

    1994-01-01

    This authoritative summary of the basics of small system, or nonmacroscopic, thermodynamics was written by the field's founder. Originally published in two volumes, the text remains essential reading in an area in which the practical aim is to derive equations that provide interconnections among various thermodynamic functions. Part I introduces the basics of small system thermodynamics, exploring environmental variables, noting throughout the ways in which small thermodynamic systems differ operationally from macroscopic systems. Part II explores binding on macromolecules and aggregation, completes the discussion of environmental variables, and includes brief summaries of certain special topics, including electric and magnetic fields, spherical drops and bubbles, and polydisperse systems.

  12. Spacecraft attitude maneuver control using two parallel mounted 3-DOF spherical actuators

    Directory of Open Access Journals (Sweden)

    Guidan Li

    2017-02-01

    Full Text Available A parallel configuration using two 3-degree-of-freedom (3-DOF spherical electromagnetic momentum exchange actuators is investigated for large angle spacecraft attitude maneuvers. First, the full dynamic equations of motion for the spacecraft system are derived by the Newton-Euler method. To facilitate computation, virtual gimbal coordinate frames are established. Second, a nonlinear control law in terms of quaternions is developed via backstepping method. The proposed control law compensates the coupling torques arising from the spacecraft rotation, and is robust against the external disturbances. Then, the singularity problem is analyzed. To avoid singularities, a modified weighed Moore-Pseudo inverse velocity steering law based on null motion is proposed. The weighted matrices are carefully designed to switch the actuators and redistribute the control torques. The null motion is used to reorient the rotor away from the tilt angle saturation state. Finally, numerical simulations of rest-to-rest maneuvers are performed to validate the effectiveness of the proposed method.

  13. A design for a reusable water-based spacecraft known as the spacecoach

    CERN Document Server

    McConnell, Brian

    2016-01-01

     Based on components already in existence, this manual details a reference design for an interplanetary spacecraft that is simple, durable, fully reusable and comprised mostly of water. Using such an accessible material leads to a spacecraft architecture that is radically simpler, safer and cheaper than conventional capsule based designs. If developed, the potential affordability of the design will substantially open all of the inner solar system to human exploration. A spacecraft that is comprised mostly of water will be much more like a living cell or a terrarium than a conventional rocket and capsule design. It will use water for many purposes before it is superheated in electric engines for propulsion, purposes which include radiation shielding, heat management, basic life support, crew consumption and comfort. The authors coined the term "spacecoaches" to describe them, as an allusion to the Prairie Schooners of the Old West, which were simple, rugged, and could live off the land.

  14. International Symposium on Spacecraft Ground Control and Flight Dynamics, SCD1, Sao Jose dos Campos, Brazil, Feb. 7-11, 1994

    Science.gov (United States)

    Rozenfeld, Pawel; Kuga, Helio Koiti; Orlando, Valcir

    An international symposium on spacecraft flight dynamics and ground control systems produced 85 papers in the areas of attitude determination and control, orbit control, satellite constellation strategies, stationkeeping, spacecraft maneuvering, orbit determination, astrodynamics, ground command and control systems, and mission operations. Several papers included discussions on the application of artificial intelligence, neural networks, expert systems, and ion propulsion. For individual titles, see A95-89098 through A95-89182.

  15. The Small Explorer Data System - A data system based on standard interfaces

    Science.gov (United States)

    Smith, Brian S.; Hengemihle, Jerome

    1990-01-01

    The Small Explorer Data System was developed by NASA Goddard Space Flight Center using a 'standard interfaces' approach. Standard interfaces make it adaptable to a wide variety of missions. The paper describes the Small Explorer Data System with particular emphasis on the standard interfaces incorporated in both the hardware and software.

  16. Integrating small satellite communication in an autonomous vehicle network: A case for oceanography

    Science.gov (United States)

    Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando

    2018-04-01

    Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.

  17. LDEF materials results for spacecraft applications: Executive summary

    Science.gov (United States)

    Whitaker, A. F.; Dooling, D.

    1995-03-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  18. 3D Display of Spacecraft Dynamics Using Real Telemetry

    Directory of Open Access Journals (Sweden)

    Sanguk Lee

    2002-12-01

    Full Text Available 3D display of spacecraft motion by using telemetry data received from satellite in real-time is described. Telemetry data are converted to the appropriate form for 3-D display by the real-time preprocessor. Stored playback telemetry data also can be processed for the display. 3D display of spacecraft motion by using real telemetry data provides intuitive comprehension of spacecraft dynamics.

  19. Numerical Analysis of Magnetic Sail Spacecraft

    International Nuclear Information System (INIS)

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-01-01

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  20. Integral design method for simple and small Mars lander system using membrane aeroshell

    Science.gov (United States)

    Sakagami, Ryo; Takahashi, Ryohei; Wachi, Akifumi; Koshiro, Yuki; Maezawa, Hiroyuki; Kasai, Yasko; Nakasuka, Shinichi

    2018-03-01

    To execute Mars surface exploration missions, spacecraft need to overcome the difficulties of the Mars entry, descent, and landing (EDL) sequences. Previous landing missions overcame these challenges with complicated systems that could only be executed by organizations with mature technology and abundant financial resources. In this paper, we propose a novel integral design methodology for a small, simple Mars lander that is achievable even by organizations with limited technology and resources such as universities or emerging countries. We aim to design a lander (including its interplanetary cruise stage) whose size and mass are under 1 m3 and 150 kg, respectively. We adopted only two components for Mars EDL process: a "membrane aeroshell" for the Mars atmospheric entry and descent sequence and one additional mechanism for the landing sequence. The landing mechanism was selected from the following three candidates: (1) solid thrusters, (2) aluminum foam, and (3) a vented airbag. We present a reasonable design process, visualize dependencies among parameters, summarize sizing methods for each component, and propose the way to integrate these components into one system. To demonstrate the effectiveness, we applied this methodology to the actual Mars EDL mission led by the National Institute of Information and Communications Technology (NICT) and the University of Tokyo. As a result, an 80 kg class Mars lander with a 1.75 m radius membrane aeroshell and a vented airbag was designed, and the maximum landing shock that the lander will receive was 115 G.

  1. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  2. Experimental overview on small collision systems at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Loizides, Constantin

    2016-12-15

    These conferences proceedings summarize the experimental findings obtained in small collision systems at the LHC, as presented in the special session on “QGP in small systems?” at the Quark Matter 2015 conference.

  3. Management system requirements for small reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.A., E-mail: kenneth.jones@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2013-07-01

    This abstract identifies the management system requirements for the life cycle of small reactors from initial conception through completion of decommissioning. For small reactors, the requirements for management systems remain the same as those for 'large' reactors regardless of the licensee' business model and objectives. The CSA N-Series of standards provides an interlinked set of requirements for the management of nuclear facilities. CSA N286 provides overall direction to management to develop and implement sound management practices and controls, while other CSA nuclear standards provide technical requirements and guidance that support the management system. CSA N286 is based on a set of principles. The principles are then supported by generic requirements that are applicable to the life cycle of nuclear facilities. CNSC regulatory documents provide further technical requirements and guidance. (author)

  4. Spacecraft fabrication and test MODIL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.T.

    1994-05-01

    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  5. High-Temperature Superconductors as Electromagnetic Deployment and Support Structures in Spacecraft. [NASA NIAC Phase I

    Science.gov (United States)

    Getliffe, Gwendolyn V.; Inamdar, Niraj K.; Masterson, Rebecca; Miller, David W.

    2012-01-01

    This report, concluding a one-year NIAC Phase I study, describes a new structural and mechanical technique aimed at reducing the mass and increasing the deployed-to-stowed length and volume ratios of spacecraft systems. This technique uses the magnetic fields generated by electrical current passing through coils of high-temperature superconductors (HTSs) to support spacecraft structures and deploy them to operational configurations from their stowed positions inside a launch vehicle fairing.

  6. High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime

    Science.gov (United States)

    Turansky, Craig P.

    The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.

  7. Modeling Temporal Processes in Early Spacecraft Design: Application of Discrete-Event Simulations for Darpa's F6 Program

    Science.gov (United States)

    Dubos, Gregory F.; Cornford, Steven

    2012-01-01

    While the ability to model the state of a space system over time is essential during spacecraft operations, the use of time-based simulations remains rare in preliminary design. The absence of the time dimension in most traditional early design tools can however become a hurdle when designing complex systems whose development and operations can be disrupted by various events, such as delays or failures. As the value delivered by a space system is highly affected by such events, exploring the trade space for designs that yield the maximum value calls for the explicit modeling of time.This paper discusses the use of discrete-event models to simulate spacecraft development schedule as well as operational scenarios and on-orbit resources in the presence of uncertainty. It illustrates how such simulations can be utilized to support trade studies, through the example of a tool developed for DARPA's F6 program to assist the design of "fractionated spacecraft".

  8. High accuracy autonomous navigation using the global positioning system (GPS)

    Science.gov (United States)

    Truong, Son H.; Hart, Roger C.; Shoan, Wendy C.; Wood, Terri; Long, Anne C.; Oza, Dipak H.; Lee, Taesul

    1997-01-01

    The application of global positioning system (GPS) technology to the improvement of the accuracy and economy of spacecraft navigation, is reported. High-accuracy autonomous navigation algorithms are currently being qualified in conjunction with the GPS attitude determination flyer (GADFLY) experiment for the small satellite technology initiative Lewis spacecraft. Preflight performance assessments indicated that these algorithms are able to provide a real time total position accuracy of better than 10 m and a velocity accuracy of better than 0.01 m/s, with selective availability at typical levels. It is expected that the position accuracy will be increased to 2 m if corrections are provided by the GPS wide area augmentation system.

  9. Customizing graphical user interface technology for spacecraft control centers

    Science.gov (United States)

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald

    1993-01-01

    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  10. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    Science.gov (United States)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  11. Modeling and Testing of Phase Transition-Based Deployable Systems for Small Body Sample Capture

    Science.gov (United States)

    Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Keim, Jason; Mukherjee, Rudranarayan

    2009-01-01

    This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and return. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.

  12. A Sampling Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications

    Science.gov (United States)

    Starek, Joseph A.; Barbee, Brent W.; Pavone, Marco

    2015-01-01

    This paper presents a methods for safe spacecraft autonomous maneuvering that leverages robotic motion-planning techniques to spacecraft control. Specifically the scenario we consider is an in-plan rendezvous of a chaser spacecraft in proximity to a target spacecraft at the origin of the Clohessy Wiltshire Hill frame. The trajectory for the chaser spacecraft is generated in a receding horizon fashion by executing a sampling based robotic motion planning algorithm name Fast Marching Trees (FMT) which efficiently grows a tree of trajectories over a set of probabillistically drawn samples in the state space. To enforce safety the tree is only grown over actively safe samples for which there exists a one-burn collision avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc and that can be executed under potential thrusters failures. The overall approach establishes a provably correct framework for the systematic encoding of safety specifications into the spacecraft trajectory generations process and appears amenable to real time implementation on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous approach to a single client in Low Earth Orbit.

  13. Software for Engineering Simulations of a Spacecraft

    Science.gov (United States)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  14. Special Semaphore Scheme for UHF Spacecraft Communications

    Science.gov (United States)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  15. Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft

    Science.gov (United States)

    Bevilacqua, R.; Lehmann, T.; Romano, M.

    2011-04-01

    This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decisional logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the Naval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption.

  16. Degradation mechanisms of small scale piping systems

    International Nuclear Information System (INIS)

    Bartonicek, J.; Koenig, G.; Blind, D.

    1996-01-01

    Operational experience shows that many degradation mechanisms can have an effect on small-scale piping systems. We can see from the analyses carried out that the degradation which has occurred is primarily linked with the fact that these piping systems were classified as being of low safety relevance. This is mainly due to such components being classified into low safety relevance category at the design stage, as well as to the low level of operational monitoring. Since in spite of the variety of designs and operational modes the degradation mechanisms detected may be attributed to the piping systems, we can make decisive statements on how to avoid such degradation mechanisms. Even small-scale piping systems may achieve guaranteed integrity in such cases by taking the appropriate action. (orig.) [de

  17. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  18. Monitoring on board spacecraft by means of passive detectors

    International Nuclear Information System (INIS)

    Ambrozova, I.; Brabcova, K.; Spurny, F.; Shurshakov, V. A.; Kartsev, I. S.; Tolochek, R. V.

    2011-01-01

    To estimate the radiation risk of astronauts during space missions, it is necessary to measure dose characteristics in various compartments of the spacecraft; this knowledge can be further used for estimating the health hazard in planned missions. This contribution presents results obtained during several missions on board the International Space Station (ISS) during 2005-09. A combination of thermoluminescent and plastic nuclear track detectors was used to measure the absorbed dose and dose equivalent. These passive detectors have several advantages, especially small dimensions, which enabled their placement at various locations in different compartments inside the ISS or inside the phantom. Variation of dosimetric quantities with the phase of the solar cycle and the position inside the ISS is discussed. (authors)

  19. Silicon Cold Plate for CubeSat/SmallSat Thermal Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of advanced small spacecraft with increased capability and performance requires new technologies and approaches to thermal management. Newer and more...

  20. Telemetry Timing Analysis for Image Reconstruction of Kompsat Spacecraft

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2000-06-01

    Full Text Available The KOMPSAT (KOrea Multi-Purpose SATellite has two optical imaging instruments called EOC (Electro-Optical Camera and OSMI (Ocean Scanning Multispectral Imager. The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transferred from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  1. RFP to work on formation flying capabilities for spacecrafts for the GRACE project

    DEFF Research Database (Denmark)

    Riis, Troels; Thuesen, Gøsta; Kilsgaard, Søren

    1999-01-01

    The National Aeronautics and Space Agency of USA, NASA, are working on formation flying capabilities for spacecrafts, GRACE Project. IAU and JPL are developing the inter spacecraft attitude link to be used on the two spacecrafts.......The National Aeronautics and Space Agency of USA, NASA, are working on formation flying capabilities for spacecrafts, GRACE Project. IAU and JPL are developing the inter spacecraft attitude link to be used on the two spacecrafts....

  2. The Effect of Golden Pothos in Reducing the Level of Volatile Organic Compounds in a Simulated Spacecraft Cabin

    Science.gov (United States)

    Ursprung, Matthew; Amiri, Azita; Kayatin, Matthew; Perry, Jay

    2016-01-01

    The impact of Golden Pothos on indoor air quality was studied against a simulated spacecraft trace contaminant load model, consistent with the International Space Station (ISS), containing volatile organic compounds (VOCs) and formaldehyde. Previous research provides inconclusive results on the efficacy of plant VOC removal which this projects seeks to rectify through a better experimental design. This work develops a passive system for removing common VOC's from spacecraft and household indoor air and decreasing the necessity for active cabin trace contaminant removal systems.

  3. Effort to recover SOHO spacecraft continue as investigation board focuses on most likely causes

    Science.gov (United States)

    1998-07-01

    Meanwhile, the ESA/NASA investigation board concentrates its inquiry on three errors that appear to have led to the interruption of communications with SOHO on June 25. Officials remain hopeful that, based on ESA's successful recovery of the Olympus spacecraft after four weeks under similar conditions in 1991, recovery of SOHO may be possible. The SOHO Mission Interruption Joint ESA/NASA Investigation Board has determined that the first two errors were contained in preprogrammed command sequences executed on ground system computers, while the last error was a decision to send a command to the spacecraft in response to unexpected telemetry readings. The spacecraft is controlled by the Flight Operations Team, based at NASA's Goddard Space Flight Center, Greenbelt, MD. The first error was in a preprogrammed command sequence that lacked a command to enable an on-board software function designed to activate a gyro needed for control in Emergency Sun Reacquisition (ESR) mode. ESR mode is entered by the spacecraft in the event of anomalies. The second error, which was in a different preprogrammed command sequence, resulted in incorrect readings from one of the spacecraft's three gyroscopes, which in turn triggered an ESR. At the current stage of the investigation, the board believes that the two anomalous command sequences, in combination with a decision to send a command to SOHO to turn off a gyro in response to unexpected telemetry values, caused the spacecraft to enter a series of ESRs, and ultimately led to the loss of control. The efforts of the investigation board are now directed at identifying the circumstances that led to the errors, and at developing a recovery plan should efforts to regain contact with the spacecraft succeed. ESA and NASA engineers believe the spacecraft is currently spinning with its solar panels nearly edge-on towards the Sun, and thus not generating any power. Since the spacecraft is spinning around a fixed axis, as the spacecraft progresses

  4. SSS-A spacecraft and experiment description.

    Science.gov (United States)

    Longanecker, G. W.; Hoffman, R. A.

    1973-01-01

    The scientific objectives of the Explorer-45 mission are discussed. The primary objective is the study of the ring current responsible for the main phase of magnetic storms. Closely associated with this objective is the determination of the relationship between magnetic storms, substorms, and the acceleration of charged particles in the magnetosphere. Further objectives are the measurement of a wide range of proton, electron and alpha-particle energies, and studies of wave-particle interactions responsible for particle transport and loss in the inner magnetosphere. The orbital parameters, the spacecraft itself, and some of its unique features, such as the data handling system, which is programmable from the ground, are described.

  5. Spacecraft charging: incoming and outgoing electrons

    CERN Document Server

    Lai, Shu T.

    2013-04-22

    This paper presents an overview of the roles played by incoming and outgoing electrons in spacecraft surface and stresses the importance of surface conditions for spacecraft charging. The balance between the incoming electron current from the ambient plasma and the outgoing currents of secondary electrons, backscattered electrons, and photoelectrons from the surfaces determines the surface potential. Since surface conditions significantly affect the outgoing currents, the critical temperature and the surface potential are also significantly affected. As a corollary, high level differential charging of adjacent surfaces with very different surface conditions is a space hazard.

  6. Dream missions space colonies, nuclear spacecraft and other possibilities

    CERN Document Server

    van Pelt, Michel

    2017-01-01

    This book takes the reader on a journey through the history of extremely ambitious, large and complex space missions that never happened. What were the dreams and expectations of the visionaries behind these plans, and why were they not successful in bringing their projects to reality thus far? As spaceflight development progressed, new technologies and ideas led to pushing the boundaries of engineering and technology though still grounded in real scientific possibilities. Examples are space colonies, nuclear-propelled interplanetary spacecraft, space telescopes consisting of multiple satellites and canon launch systems. Each project described in this book says something about the dreams and expectations of their time, and their demise was often linked to an important change in the cultural, political and social state of the world. For each mission or spacecraft concept, the following will be covered: • Description of the design. • Overview of the history of the concept and the people involved. • Why it...

  7. The Rosetta Mission - Where no Spacecraft has gone before

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    This Talk will provide an overview on the Scientific Highlights of the Rosetta Mission. After travelling through the Solar System for nearly 10 years Rosetta arrived at its main target, Comet 67/P Churyumov-Gerasimenko, in August 2014. Following an initial characterisation of the Comet, the lander unit Philae touched down on the partly active Nucleus on November 12 of the same year. The data acquired from the numerous instruments onboard the Spacecraft provides a unique insight into the properties of the Comets. While most of the measurements and processing of the data are still ongoing, the results from the Mission provide continuous surprises to the scientific community. While the Lander has been reactivated with some difficulties after a few months of inactivity due to low insolation levels, the Orbiter is pursuing its main mission objectives until the end of its extended Mission in Autumn 2016. During the long journey, the Spacecraft had encountered Earth, Mars and two Asteroids ( 2867 Šteins and 21 Lu...

  8. Leo Spacecraft Charging Design Guidelines: A Proposed NASA Standard

    Science.gov (United States)

    Hillard, G. B.; Ferguson, D. C.

    2004-01-01

    Over the past decade, Low Earth Orbiting (LEO) spacecraft have gradually required ever-increasing power levels. As a rule, this has been accomplished through the use of high voltage systems. Recent failures and anomalies on such spacecraft have been traced to various design practices and materials choices related to the high voltage solar arrays. NASA Glenn has studied these anomalies including plasma chamber testing on arrays similar to those that experienced difficulties on orbit. Many others in the community have been involved in a comprehensive effort to understand the problems and to develop practices to avoid them. The NASA Space Environments and Effects program, recognizing the timeliness of this effort, commissioned and funded a design guidelines document intended to capture the current state of understanding. This document, which was completed in the spring of 2003, has been submitted as a proposed NASA standard. We present here an overview of this document and discuss the effort to develop it as a NASA standard.

  9. High energy density propulsion systems and small engine dynamometer

    Science.gov (United States)

    Hays, Thomas

    2009-07-01

    Scope and Method of Study. This study investigates all possible methods of powering small unmanned vehicles, provides reasoning for the propulsion system down select, and covers in detail the design and production of a dynamometer to confirm theoretical energy density calculations for small engines. Initial energy density calculations are based upon manufacturer data, pressure vessel theory, and ideal thermodynamic cycle efficiencies. Engine tests are conducted with a braking type dynamometer for constant load energy density tests, and show true energy densities in excess of 1400 WH/lb of fuel. Findings and Conclusions. Theory predicts lithium polymer, the present unmanned system energy storage device of choice, to have much lower energy densities than other conversion energy sources. Small engines designed for efficiency, instead of maximum power, would provide the most advantageous method for powering small unmanned vehicles because these engines have widely variable power output, loss of mass during flight, and generate rotational power directly. Theoretical predictions for the energy density of small engines has been verified through testing. Tested values up to 1400 WH/lb can be seen under proper operating conditions. The implementation of such a high energy density system will require a significant amount of follow-on design work to enable the engines to tolerate the higher temperatures of lean operation. Suggestions are proposed to enable a reliable, small-engine propulsion system in future work. Performance calculations show that a mature system is capable of month long flight times, and unrefueled circumnavigation of the globe.

  10. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  11. A user's guide to the Flexible Spacecraft Dynamics and Control Program

    Science.gov (United States)

    Fedor, J. V.

    1984-01-01

    A guide to the use of the Flexible Spacecraft Dynamics Program (FSD) is presented covering input requirements, control words, orbit generation, spacecraft description and simulation options, and output definition. The program can be used in dynamics and control analysis as well as in orbit support of deployment and control of spacecraft. The program is applicable to inertially oriented spinning, Earth oriented or gravity gradient stabilized spacecraft. Internal and external environmental effects can be simulated.

  12. Generating Animated Displays of Spacecraft Orbits

    Science.gov (United States)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  13. Flyby Characterization of Lower-Degree Spherical Harmonics Around Small Bodies

    Science.gov (United States)

    Takahashi, Yu; Broschart, Stephen; Lantoine, Gregory

    2014-01-01

    Interest in studying small bodies has grown significantly in the last two decades, and there are a number of past, present, and future missions. These small body missions challenge navigators with significantly different kinds of problems than the planets and moons do. The small bodies' shape is often irregular and their gravitational field significantly weak, which make the designing of a stable orbit a complex dynamical problem. In the initial phase of spacecraft rendezvous with a small body, the determination of the gravitational parameter and lower-degree spherical harmonics are of crucial importance for safe navigation purposes. This motivates studying how well one can determine the total mass and lower-degree spherical harmonics in a relatively short time in the initial phase of the spacecraft rendezvous via flybys. A quick turnaround for the gravity data is of high value since it will facilitate the subsequent mission design of the main scientific observation campaign. We will present how one can approach the problem to determine a desirable flyby geometry for a general small body. We will work in the non-dimensional formulation since it will generalize our results across different size/mass bodies and the rotation rate for a specific combination of gravitational coefficients.

  14. Formation of disintegration particles in spacecraft recorders

    International Nuclear Information System (INIS)

    Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.

    1986-01-01

    Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors

  15. Preliminary thermal design of the COLD-SAT spacecraft

    Science.gov (United States)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  16. Spacecraft charging and related effects during Halley encounter

    International Nuclear Information System (INIS)

    Young, D.T.

    1983-01-01

    Hypervelocity (69 km/s) impact of cometary material with surfaces of the GIOTTO spacecraft will induce a number of spurious and possibly harmful phenomena. The most serious of these is likely to be spacecraft charging that results from impact-produced plasma distributions surrounding GIOTTO. The ESA Plasma Environment Working Group, whose studies are the basis for this report, finds that charging may become significant within approx. 10 5 km of the nucleus where potentials of approx. = +20 V are to be expected. In addition to spacecraft charging, impact produced plasma may interfere with in situ plasma measurements, particularly those of ion plasma analyzers and mass spectrometers

  17. Lifetime predictions for the Solar Maximum Mission (SMM) and San Marco spacecraft

    Science.gov (United States)

    Smith, E. A.; Ward, D. T.; Schmitt, M. W.; Phenneger, M. C.; Vaughn, F. J.; Lupisella, M. L.

    1989-01-01

    Lifetime prediction techniques developed by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) are described. These techniques were developed to predict the Solar Maximum Mission (SMM) spacecraft orbit, which is decaying due to atmospheric drag, with reentry predicted to occur before the end of 1989. Lifetime predictions were also performed for the Long Duration Exposure Facility (LDEF), which was deployed on the 1984 SMM repair mission and is scheduled for retrieval on another Space Transportation System (STS) mission later this year. Concepts used in the lifetime predictions were tested on the San Marco spacecraft, which reentered the Earth's atmosphere on December 6, 1988. Ephemerides predicting the orbit evolution of the San Marco spacecraft until reentry were generated over the final 90 days of the mission when the altitude was less than 380 kilometers. The errors in the predicted ephemerides are due to errors in the prediction of atmospheric density variations over the lifetime of the satellite. To model the time dependence of the atmospheric densities, predictions of the solar flux at the 10.7-centimeter wavelength were used in conjunction with Harris-Priester (HP) atmospheric density tables. Orbital state vectors, together with the spacecraft mass and area, are used as input to the Goddard Trajectory Determination System (GTDS). Propagations proceed in monthly segments, with the nominal atmospheric drag model scaled for each month according to the predicted monthly average value of F10.7. Calibration propagations are performed over a period of known orbital decay to obtain the effective ballistic coefficient. Progagations using plus or minus 2 sigma solar flux predictions are also generated to estimate the despersion in expected reentry dates. Definitive orbits are compared with these predictions as time expases. As updated vectors are received, these are also propagated to reentryto continually update the lifetime predictions.

  18. Proceedings: Small Wind Turbine Systems, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Small wind turbine technology is discussed. Systems development, test programs, utility interface issues, safety and reliability programs, applications, and marketing are discussed. For individual titles, see N83-23723 through N83-23741.

  19. Advances in Small Particle Handling of Astromaterials in Preparation for OSIRIS-REx and Hayabusa2: Initial Developments

    Science.gov (United States)

    Snead, C. J.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.

    2018-01-01

    The Astromaterials Acquisition and Curation office at NASA Johnson Space Center has established an Advanced Curation program that is tasked with developing procedures, technologies, and data sets necessary for the curation of future astromaterials collections as envisioned by NASA exploration goals. One particular objective of the Advanced Curation program is the development of new methods for the collection, storage, handling and characterization of small (less than 100 micrometer) particles. Astromaterials Curation currently maintains four small particle collections: Cosmic Dust that has been collected in Earth's stratosphere by ER2 and WB-57 aircraft, Comet 81P/Wild 2 dust returned by NASA's Stardust spacecraft, interstellar dust that was returned by Stardust, and asteroid Itokawa particles that were returned by the JAXA's Hayabusa spacecraft. NASA Curation is currently preparing for the anticipated return of two new astromaterials collections - asteroid Ryugu regolith to be collected by Hayabusa2 spacecraft in 2021 (samples will be provided by JAXA as part of an international agreement), and asteroid Bennu regolith to be collected by the OSIRIS-REx spacecraft and returned in 2023. A substantial portion of these returned samples are expected to consist of small particle components, and mission requirements necessitate the development of new processing tools and methods in order to maximize the scientific yield from these valuable acquisitions. Here we describe initial progress towards the development of applicable sample handling methods for the successful curation of future small particle collections.

  20. Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.

    Science.gov (United States)

    Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.