WorldWideScience

Sample records for small scale chp

  1. Small-scale biomass CHP using gasa turbines: a scoping study

    International Nuclear Information System (INIS)

    James, D.W.; Landen, R.

    1996-01-01

    Various options for small-scale (up to 250 KWe) Combined Heat and Power (CHP) plants evaluated in this scoping study. Plants using small gas turbines, and able to use biomass fuels when available are included. Three detailed case studies of small-scale biomass CHP plants are compared to match specific technical options with customer requirements. The commercial development of such biomass-fired CHP units, using gas turbines, is shown to be economically viable depending on fuel costs and the continuation of existing financial incentives. (UK)

  2. Small scale CHP: Alternative integration forms in the Danish energy system

    International Nuclear Information System (INIS)

    Boeg, Rasmus; Gatautis, Ramunas; Engberg Pedersen, Thomas; Schmidt, Rune; Ravn, Hans F.

    2003-01-01

    In Denmark, introduction of small scale combined heat and power (CHP) plants were part of the energy policy during the 1990's. Thus, the installed electricity capacity on this type of units multiplied approximately ten times during this decade, to constitute more than 2000 MW in 2000, or around 20% of total installed electricity capacity. The motivation for this development was mainly energy savings due to the relatively high thermal efficiency in combined production, and the associated reduction of emissions. The remuneration for the electricity delivered to the electrical network was in part based on a feed in tariff. The construction of the tariff reflected estimated benefits to the electrical system. With the liberalisation of the electricity markets this arrangement has been questioned, and it has been suggested that the differentiated payment to local CHP should be based on electricity market prising. For Denmark this would imply that the local CHP should trade the electricity on the Nordpool electricity spot market. This paper analyses parts of these two alternative ways of economic arrangements in relation to small scale CHP. First it describes the development and status till now. Then it analyses the production patterns and associated economic consequences of a change from the tariff based system to a market system. (BA)

  3. Increased power to heat ratio of small scale CHP plants using biomass fuels and natural gas

    International Nuclear Information System (INIS)

    Savola, Tuula; Fogelholm, Carl-Johan

    2006-01-01

    In this paper, we present a systematic study of process changes for increased power production in 1-20 MW e combined heat and power (CHP) plants. The changes are simulated, and their economic feasibility evaluated by using existing small scale CHP case plants. Increasing power production in decentralised CHP plants that operate according to a certain heat demand could reduce the fuel consumption and CO 2 emissions per power unit produced and improve the feasibility of CHP plant investments. The CHP plant process changes were simulated under design and off design conditions and an analysis of power and heat production, investment costs and CO 2 emissions was performed over the whole annual heat demand. The results show that using biomass fuels, there are profitable possibilities to increase the current power to heat ratios, 0.23-0.48, of the small scale CHP plants up to 0.26-0.56, depending on the size of the plant. The profitable changes were a two stage district heat exchanger and the addition of a steam reheater and a feed water preheater. If natural gas is used as an additional fuel, the power to heat ratio may be increased up to 0.35-0.65 by integrating a gas engine into the process. If the CO 2 savings from the changes are also taken into account, the economic feasibility of the changes increases. The results of this work offer useful performance simulation and investment cost knowledge for the development of more efficient and economically feasible small scale CHP processes

  4. A microeconomic analysis of decentralized small scale biomass based CHP plants—The case of Germany

    International Nuclear Information System (INIS)

    Wittmann, Nadine; Yildiz, Özgür

    2013-01-01

    Alternative energy sources, such as biomass CHP plants, have recently gained significantly in importance and action is due both on the large scale corporate level and on the small scale. Hence, making the scope and economic outline of such projects easily intelligible without losing relevant details seems a key factor to further promote the necessary developments. The model setup presented in this paper may therefore serve as a starting point for generating numerical results based on real life cases or scenarios. Its focus lies on the economic analysis of decentralized biomass CHP plants. It presents a new approach to analyzing the economic aspects of biomass CHP plants implementing a formal microeconomic approach. As Germany claims a leading role in the market for renewable energy production, the paper also takes a closer look on the effects of German energy policy with respect to biomass CHP plants. - Highlights: • A formal microeconomic model is used to analyse a decentralized biomass CHP plant. • Model setup is used to generate numerical results based on real life scenarios. • Nested CES production function is a new approach to model economics of biomass CHP. • Analysis presents insight into microeconomics and cost drivers of biomass CHP. • Evaluation of energy policy design with respect to environmental policy goals

  5. Assessment of the implementation issues for fuel cells in domestic and small scale stationary power generation and CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Graham, G.; Cruden, A.; Hart, J.

    2002-07-01

    This report discusses implementation issues associated with the use of fuel cells in <10 kW domestic, small-scale power generation and combined heat and power (CHP) operations in the UK. The report examines the key issues (fuel cell system standards and certification, fuel infrastructure, commercial issues and competing CHP technologies), before discussing non-technical issues including finance, ownership, import and export configuration, pricing structure, customer acceptability, installation, operation and training of servicing and commissioning personnel. The report goes on to discuss market and technical drivers, grid connection issues and solutions, operations and maintenance. Recommendations for the future are made.

  6. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    International Nuclear Information System (INIS)

    Lund, H.; Andersen, A.N.

    2005-01-01

    Combined Heat and Power production (CHP) are essential for implementation of the climate change response objectives in many countries. In an introduction period, small CHP plants have typically been offered fixed electricity prices, but in many countries, such pricing conditions are now being replaced by spot market prices. Consequently, new methodologies and tools for the optimisation of small CHP plant designs are needed. The small CHP plants in Denmark are already experienced in optimising their electricity production against the triple tariff, which has existed for almost 10 years. Consequently, the CHP plants have long term experience in organising when to switch on and off the CHP units in order to optimise their profit. Also, the CHP owners have long term experience in designing their plants. For instance, small CHP plants in Denmark have usually invested in excess capacity on the CHP units in combination with heat storage capacity. Thereby, the plants have increased their performance in order to optimise revenues. This paper presents the Danish experience with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff. Moreover, the changes in such methodologies and tools in order to optimise performance in a market with fluctuating electricity prices are presented and discussed

  7. Modeling work of a small scale gasifier/SOFC CHP system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Aravind, P.V.; Qu, Z.; Woudstra, N.; Verkooijen, A.H.M. [Delft University of Technology (Netherlands). Dept. of Mechanical Engineering], Emails: ming.liu@tudelft.nl, p.v.aravind@tudelft.nl, z.qu@tudelft.nl, n.woudstra@tudelft.nl, a. h. m. verkooijen@tudelft.nl; Cobas, V.R.M. [Federal University of Itajuba (UNIFEI), Pinheirinhos, MG (Brazil). Dept. of Mechanical Engineering], E-mail: vlad@unifei.edu.br

    2009-07-01

    For a highly efficient biomass gasification/Solid Oxide Fuel Cell (SOFC) Combined Heat and Power (CHP) generation system, the gasifier, the accompanying gas cleaning technologies and the CHP unit must be carefully designed as an integrated unit. This paper describes such a system involving a two-stage fixed-bed down draft gasifier, a SOFC CHP unit and a gas cleaning system. A gas cleaning system with both low temperature and high temperature sections is proposed for coupling the gasifier and the SOFC. Thermodynamic modeling was carried out for the gasifier/SOFC system with the proposed gas cleaning system. The net AC electrical efficiency of this system is around 30% and the overall system efficiency is around 60%. This paper also describes various exergy losses in the system and the future plans for integrated gasifier-GCU-SOFC experiments from which the results will be used to validate the modeling results of this system. (author)

  8. Small-scale CHP Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels- Development, Technology and Operating Experiences

    DEFF Research Database (Denmark)

    Obernberger, I.; Carlsen, Henrik; Biedermann, F.

    2003-01-01

    ) process and the Stirling engine process. The ORC process represents an economically interesting technology for small-scale biomass-fired combined heat and power plants in a power range between 400 and 1,500 kWel. A newly developed ORC technology with a nominal electric capacity of 1,000 kW was implemented...... in the biomass CHP plant Lienz (A) in the framework of an EU demonstration project. This plant was put in operation in February 2002. Stirling engines are a promising solution for installations with nominal electric capacities between 10 and 150 kW. A biomass CHP pilot plant based on a 35 kWel-Stirling engine...

  9. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    DEFF Research Database (Denmark)

    Lund, Henrik; Andersen, A.N.

    2005-01-01

    The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff.......The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff....

  10. Micro scale CHP based on biomass intelligent heat transfer with thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.; Aigenbauer, S.; Heckmann, M.; Friedl, G. (Austrian Bioenergy Centre GmbH, Wieselburg (Austria)); Hofbauer, H. (Institute of Chemical Engineering, Vienna University of Technology (Austria))

    2007-07-01

    Pellet burners need auxiliary electrical power to provide CO{sub 2} balanced heat in a comfortable and environment friendly way. The idea is to produce this and some extra electricity within the device in order to save resources and to gain operation reliability and independency. An option for micro scale CHP is the usage of thermoelectric generators (TEGs). They allow direct conversion of heat into electrical power. They have the advantage of a long maintenance free durability and noiseless operation without moving parts or any working fluid. The useful heat remains almost unaffected and can still be used for heating. TEGs are predestined for the use in micro scale CHP based on solid biomass. In this paper the first results from the fully integrated prototype are presented. The performance of the TEG was observed for different loads and operating conditions in order to realise an optimised micro scale CHP based on solid biomass. (orig.)

  11. Performance study of an innovative natural gas CHP system

    International Nuclear Information System (INIS)

    Fu, Lin; Zhao, Xiling; Zhang, Shigang; Li, Yan; Jiang, Yi; Li, Hui; Sun, Zuoliang

    2011-01-01

    In the last decade, technological innovation and changes in the economic and regulatory environment have resulted in increased attention to distributed energy systems (DES). Combined cooling heating and power (CHP) systems based on the gas-powered internal combustion engine (ICE) are increasingly used as small-scale distribution co-generators. This paper describes an innovative ICE-CHP system with an exhaust-gas-driven absorption heat pump (AHP) that has been set up at the energy-saving building in Beijing, China. The system is composed of an ICE, an exhaust-gas-driven AHP, and a flue gas condensation heat exchanger (CHE), which could recover both the sensible and latent heat of the flue gas. The steady performance and dynamic response of the innovative CHP system with different operation modes were tested. The results show that the system's energy utilization efficiency could reach above 90% based on lower heating value (LHV) of natural gas; that is, the innovative CHP system could increase the heat utilization efficiency 10% compared to conventional CHP systems, and the thermally activated components of the system have much more thermal inertia than the electricity generation component. The detailed test results provide important insight into CHP performance characteristics and could be valuable references for the control of CHP systems. The novel CHP system could take on a very important role in the CHP market. (author)

  12. Evaluation of an alkaline fuel cell system as a micro-CHP

    International Nuclear Information System (INIS)

    Verhaert, Ivan; Mulder, Grietus; De Paepe, Michel

    2016-01-01

    Highlights: • Sensitivity analysis on system configuration of the AFC as a micro-CHP. • Flow rate in the secondary heating circuit can be used to control water management. • Part load behavior of fuel cells is compared to other micro-CHP technologies. • For future energy demand in buildings fuel cells have the best performance. - Abstract: Micro-cogeneration is an emerging technology to reduce the non-renewable energy demand in buildings and reduce peak load in the grid. Fuel cell based cogeneration (CHP) has interesting prospects for building applications, even at relatively low heat demand. This is due to their partial load behavior which is completely different, compared to other micro-CHP technologies. Within the fuel cell technologies suitable for small scale CHP or micro-CHP, the existing configuration of an alkaline fuel cell system is analyzed. This analysis is based on validated models and offers a control strategy to optimize both water management and energy performance of the alkaline fuel cell system. Finally, the model of the alkaline fuel cell system with optimized control strategy is used to compare its part load behavior to other micro-CHP technologies.

  13. Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels

    DEFF Research Database (Denmark)

    Biedermann, F.; Carlsen, Henrik; Schoech, M.

    2003-01-01

    Within the scope of the RD&D project presented a small-scale CHP plant with a hermetic four cylinder Stirling engine for biomass fuels was developed and optimised in cooperation with the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GesmbH, an Austrian biomass furnace and boiler...... exchanger of the Stirling engine, of the air preheater and of the entire combustion system. Furthermore, the optimisation of the pneumatic cleaning system to reduce ash deposition in the hot heat exchanger is of great relevance....... manufacturer, and BIOS BIOENERGIESYSTEME GmbH, an Austrian development and engineering company. Based on the technology developed, a pilot plant was designed and erected in Austria. The nominal electric power output of the plant is 35 kWel and the nominal thermal output amounts to approx. 220 kWth. The plant...

  14. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  15. A general technoeconomic and environmental procedure for assessment of small-scale cogeneration scheme installations: Application to a local industry operating in Thrace, Greece, using microturbines

    International Nuclear Information System (INIS)

    Katsigiannis, P.A.; Papadopoulos, D.P.

    2005-01-01

    The present paper describes a proposed general systematic procedure for small-scale combined heat and power (CHP) exploitation (where 'small-scale CHP' refers to CHP installations with electric capacities up to 1 MW). The mentioned systematic procedure is implemented through a developed computer code and may be applied to any such small-scale project in order to assess its suitability based on technoeconomic and environmental considerations. A dynamic database based on small-scale CHP units (available in the world market) and their pertinent technical, economical and environmental features is created and, in conjunction with the developed program, is used for determination of a suitable CHP unit (or system) size and the selection of the associated proper prime mover type for any project of interest. Using well-known economic criteria, the economic analysis is performed, including the sensitivity analysis of the considered project based on the main key system parameters. In terms of the socioeconomic analysis, a carbon tax (CT) scenario is considered, and its effect on the economic behavior of the project is investigated. Last, with respect to environmental considerations, the program calculates, for any such project, the avoided main pollutants and the fuel savings when a CHP system is applied. As a case study, a small textile industry operating in the Eastern Macedonia-Thrace Region of Greece is considered, and its associated (electrical and thermal) data are used as input data to the proposed computer program. In this application, two microturbine units are selected and thoroughly evaluated, and the pertinent simulation results are presented and discussed accordingly

  16. MicroCHP: Overview of selected technologies, products and field test results

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Vollrad [Berliner Energieagentur GmbH, Franzoesische Strasse 23, 10117 Berlin (Germany); Klemes, Jiri; Bulatov, Igor [Centre for Process Integration, CEAS, The University of Manchester, P.O. Box 88, M60 1QD Manchester (United Kingdom)

    2008-11-15

    This paper gives an overview on selected microCHP technologies and products with the focus on Stirling and steam machines. Field tests in Germany, the UK and some other EC countries are presented, assessed and evaluated. Test results show the overall positive performance with differences in sectors (domestic vs. small business). Some negative experiences have been received, especially from tests with the Stirling engines and the free-piston steam machine. There are still obstacles for market implementation. Further projects and tests of microCHP are starting in various countries. When positive results will prevail and deficiencies are eliminated, a way to large-scale production and market implementation could be opened. (author)

  17. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  18. High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles

    OpenAIRE

    Costante Mario Invernizzi; Nadeem Ahmed Sheikh

    2018-01-01

    Small-CHP (Combined Heat and Power) systems are generally considered a valuable technological option to the conventional boilers, in a technology developed context. If small-CHP systems are associated with the use of renewable energies (biomass, for example) they could play an important role in distributed generation even in developing countries or, in any case, where there are no extensive electricity networks. Traditionally the considered heat engines for micro- or mini-CHP are: the gas eng...

  19. Benefits of CHP Partnership

    Science.gov (United States)

    Learn about the benefits of being a EPA CHP Partner, which include expert advice and answers to questions, CHP news, marketing resources, publicity and recognition, and being associated with EPA through a demonstrated commitment to CHP.

  20. Micro-CHP systems for residential applications

    International Nuclear Information System (INIS)

    Paepe, Michel de; D'Herdt, Peter; Mertens, David

    2006-01-01

    Micro-CHP systems are now emerging on the market. In this paper, a thorough analysis is made of the operational parameters of 3 types of micro-CHP systems for residential use. Two types of houses (detached and terraced) are compared with a two storey apartment. For each building type, the energy demands for electricity and heat are dynamically determined. Using these load profiles, several CHP systems are designed for each building type. Data were obtained for two commercially available gas engines, two Stirling engines and a fuel cell. Using a dynamic simulation, including start up times, these five system types are compared to the separate energy system of a natural gas boiler and buying electricity from the grid. All CHP systems, if well sized, result in a reduction of primary energy use, though different technologies have very different impacts. Gas engines seem to have the best performance. The economic analysis shows that fuel cells are still too expensive and that even the gas engines only have a small internal rate of return (<5%), and this only occurs in favourable economic circumstances. It can, therefore, be concluded that although the different technologies are technically mature, installation costs should at least be reduced by 50% before CHP systems become interesting for residential use. Condensing gas boilers, now very popular in new homes, prove to be economically more interesting and also have a modest effect on primary energy consumption

  1. Cost of electricity from small scale co-generation of electricity and heat

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, Bjoern

    2012-07-15

    There is an increasing interest in Sweden for using also small heat loads for cogeneration of electricity and heat. Increased use of small CHP-plants with heat supply capacities from a few 100 kW(h) up to 10 MW(h) cannot change the structure of the electricity supply system significantly, but could give an important contribution of 2 - 6 TWh(e) annually. The objective of this study was to clarify under what conditions electricity can be generated in small wood fired CHP-plants in Sweden at costs that can compete with those for plants using fossil fuels or nuclear energy. The capacity range studied was 2 - 10 MW(h). The results should facilitate decisions about the meaningfulness of considering CHP as an option when new heat supply systems for small communities or sawmills are planned. At the price for green certificates in Sweden, 250 - 300 SEK/MWh(e), generation costs in small wood fired CHP-plants should be below about 775 SEK/MWh(e) to compete with new nuclear power plants and below about 925 SEK/MWh(e) to compete with generation using fossil fuels.

  2. Cost and primary energy efficiency of small-scale district heating systems

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed minimum-cost options for small-scale DHSs under different contexts. • District heat production cost increases with reduced DHS scales. • Fewer technical options are suitable for small-scale DHSs. • Systems with combined technologies are less sensitive to changes in fuel prices. - Abstract: Efficient district heat production systems (DHSs) can contribute to achieving environmental targets and energy security for countries that have demands for space and water heating. The optimal options for a DHS vary with the environmental and social-political contexts and the scale of district heat production, which further depends on the size of the community served and the local climatic conditions. In this study, we design a small-scale, minimum-cost DHS that produces approximately 100 GWh heat per year and estimate the yearly production cost and primary energy use of this system. We consider conventional technologies, such as heat-only boilers, electric heat pumps and combined heat and power (CHP) units, as well as emerging technologies, such as biomass-based organic Rankine cycle (BORC) and solar water heating (SWH). We explore how different environmental and social-political situations influence the design of a minimum-cost DHS and consider both proven and potential technologies for small-scale applications. Our calculations are based on the real heat load duration curve for a town in southern Sweden. We find that the district heat production cost increases and that the potential for cogeneration decreases with smaller district heat production systems. Although the selection of technologies for a minimum-cost DHS depends on environmental and social-political contexts, fewer technical options are suitable for small-scale systems. Emerging technologies such as CHP-BORC and SWH improve the efficiency of primary energy use for heat production, but these technologies are more costly than conventional heat-only boilers. However, systems with

  3. Should a small combined heat and power plant (CHP) open to its regional power and heat networks? Integrated economic, energy, and emergy evaluation of optimization plans for Jiufa CHP

    International Nuclear Information System (INIS)

    Peng, T.; Lu, H.F.; Wu, W.L.; Campbell, D.E.; Zhao, G.S.; Zou, J.H.; Chen, J.

    2008-01-01

    The development of industrial ecology has led company managers to increasingly consider their company's niche in the regional system, and to develop optimization plans. We used emergy-based, ecological-economic synthesis to evaluate two optimization plans for the Jiufa Combined Heat and Power (CHP) Plant, Shandong China. In addition, we performed economic input-output analysis and energy analysis on the system. The results showed that appropriately incorporating a firm with temporary extra productivity into its regional system will help maximize the total productivity and improve ecological-economic efficiency and benefits to society, even without technical optimization of the firm itself. In addition, developing a closer relationship between a company and its regional system will facilitate the development of new optimization opportunities. Small coal-based CHP plants have lower-energy efficiency, higher environmental loading, and lower sustainability than large fossil fuel and renewable energy-based systems. The emergy exchange ratio (EER) proved to be an important index for evaluating the vitality of highly developed ecological-economic systems

  4. Risk analysis for CHP decision making within the conditions of an open electricity market

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad; Kozuh, Mitja

    2007-01-01

    Decision making under uncertainty is a difficult task in most areas. Investment decisions for combined heat and power production (CHP) are certainly one of the areas where it is difficult to find an optimal solution since the payback period is several years and parameters change due to different perturbing factors of economic and mostly political nature. CHP is one of the most effective measures for saving primary energy and reduction of greenhouse gas emissions. The implementation of EU directives on the promotion of cogeneration based on useful heat demand in the internal energy market will accelerate CHP installation. The expected number of small CHP installations will be very high in the near future. A quick, reliable and simple tool for economic evaluation of small CHP systems is required. Since evaluation is normally made by sophisticated economic computer models which are rather expensive, a simple point estimate economic model was developed which was later upgraded by risk methodology to give more informative results for better decision making. This paper presents a reliable computer model entitled 'Computer program for economic evaluation analysis of CHP' as a tool for analysis and economic evaluation of small CHP systems with the aim of helping the decision maker. The paper describes two methods for calculation of the sensitivity of the economic results to changes of input parameters and the uncertainty of the results: the classic/static method and the risk method. The computer program uses risk methodology by applying RISK software on an existing conventional economic model. The use of risk methodology for economic evaluation can improve decisions by incorporating all possible information (knowledge), which cannot be done in the conventional economic model due to its limitations. The methodology was tested on the case of a CHP used in a smaller hospital

  5. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karl Mayer

    2010-03-31

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical

  6. Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania

    International Nuclear Information System (INIS)

    Lund, H.; Siupsinskas, G.; Martinaitis, V.

    2005-01-01

    Within five years from now, Lithuania is going to close down Ignalina, the only nuclear-power plant in the country. Since Ignalina generates more than 75% of the Lithuanian electricity production, new generation capacities are needed. Traditional steam-turbines, fuelled with fossil fuels, would mean further imports of fuel as well as a rise in CO 2 emissions. At the same time, several small district-heating companies one suffering from high heating-prices. Typically, the price in small towns is 20-50% higher than the price in large urban areas. Consequently, alternative strategies should be considered. This article analyses the conditions for one such strategy, namely the replacement of boilers in the existing district-heating supplies with combined heat-and-power production (CHP). Compared with new power stations, fuel can be saved and CO 2 -emissions reduced. Also this strategy can be used to level the difference between low heating prices in the large urban areas and high prices in small towns and villages. (Author)

  7. Energy policy responses to the climate change challenge: The consistency of European CHP, renewables and energy efficiency policies

    International Nuclear Information System (INIS)

    Grohnheit, P.E.

    1999-09-01

    This report is Volume 14 of individual reports of the Shared Analysis Project prepared for the European Commission, Directorate General for Energy. The three major objectives of the project were: to design a common framework of energy analysis that aimed to involve all Member States and the experts of industrial research groups (the shared approach to energy analysis); To analyse generic EU-wide issues important for energy policy and for future energy demand and production, putting particular emphasis on world energy market trends, strategic energy policy responses to the Kyoto process, and evaluation of response strategies to increasing energy import dependence and to climate change activities; to carry out quantitative analyses of energy trends and scenarios as an input for discussion. The present volume considers three main issues concerning energy policy responses to the climate change challenge: the penetration of CHP and renewables according to official objectives, focusing on infrastructure and institutions rather than technology; the consistency of promotion of CHP, renewables and energy savings at the same time; consumers' choices and priorities in a liberalised market. The volume describes examples of policies in several Member States for these technologies with emphasis on CHP for both large-scale and small-scale district heating systems. The penetration of CHP technologies is analysed quantitatively using a traditional optimisation model approach for stylised regions with heat markets suitable for CHP and facing a competitive European market for electricity. The Joint Final Report of the project, titled 'Economic Foundations for Energy Policy' is published as a Special Issue of Energy in Europe, December 1999. All reports are available on the Internet, www.shared-analysis.fhg.de/ The project started in January 1998, involving about 100 months of scientific labour. The project consortium consisted of nine member institutes co-ordinated by the Fraunhofer

  8. Review of CHP projections tp 2010

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, W.

    2003-07-01

    This report summarises the findings of a study examining market conditions for combined heat and power since 2000 and assessing the commercial position of cogeneration (CHP) in order to provide advice on likely distributed generation in relation to technology, location and commissioning timetables. Details are given of the modelling of the development of 'good quality' CHP by Cambridge Econometrics (CE), and the work carried out by ILEX updating the CE study. Modelling assumptions, market conditions for CHP since the CE study, the effect of market conditions on CE modelling assumptions, justified changes in assumptions, and evaluation of likely CHP capacity to 2010 are discussed.

  9. Deployment of FlexCHP System

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David [Gas Technology Inst., Des Plaines, IL (United States)

    2015-11-01

    The Gas Technology Institute (GTI), along with its partner Integrated CHP Systems Corporation, has developed and demonstrated an Ultra-Low-Nitrogen Oxide (ULN) Flexible Combined Heat and Power (FlexCHP) system that packages a state-of-the-art Capstone C65 gas microturbine and Johnston PFXX100 boiler with an innovative natural gas-fired supplemental burner. Supplemental burners add heat as needed in response to facility demand, which increases energy efficiency, but typically raises exhaust NOx levels, degrading local air quality unless a costly and complicated catalytic treatment system is added. The FlexCHP system increases energy efficiency and achieves the 2007 California Air Resource Board (CARB) distributed generation emissions standards for Nitrogen oxides (NOx), Carbon Monoxide (CO), and Total Hydrocarbons (THC) without catalytic exhaust gas treatment. The key to this breakthrough performance is a simple and reliable burner design which utilizes staged combustion with engineered internal recirculation. This ULN burner system successfully uses turbine exhaust as an oxidizer, while achieving high efficiencies and low emissions. In tests at its laboratory facilities in Des Plaines, Illinois, GTI validated the ability of the system to achieve emissions of NOx, CO, and THC below the CARB criteria of 0.07, 0.10, and 0.02 lb/MW-h respectively. The FlexCHP system was installed at the field demonstration site, Inland Empire Foods, in Riverside, California to verify performance of the technology in an applied environment. The resulting Combined Heat and Power (CHP) package promises to make CHP implementation more attractive, mitigate greenhouse gas emissions, and improve the reliability of electricity supply.

  10. Islanded house operation using a micro CHP

    NARCIS (Netherlands)

    Molderink, Albert; Bakker, Vincent; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2007-01-01

    The µCHP is expected as the successor of the conventional high-efficiency boiler producing next to heat also electricity with a comparable overall efficiency. A µCHP appliance saves money and reduces greenhouse gas emission. An additional functionality of the µCHP is using the appliance as a

  11. CHP in Switzerland from 1990 to 1998. Thermal power generation including combined heat and power

    International Nuclear Information System (INIS)

    Kaufmann, U.

    1999-01-01

    The results of a study on thermal power generation in Switzerland show that combined heat and power (CHP) systems have grown rapidly. Statistics are presented on the development of CHP-based power and also on thermal power stations without waste heat usage. Figures are given for gas and steam turbine installations, combined gas and steam turbine stations and motor-driven CHP units. Power production is categorised, separating small and large (over 1 Megawatt electrical) power generation facilities. On-site, distributed power generation at consumers' premises and the geographical distribution of plant is described

  12. Analysis and optmization of CHP, CCHP, CHP-ORC, and CCHP-ORC systems

    Science.gov (United States)

    Hueffed, Anna Kathrine

    Increased demand for energy, rising energy costs, and heightened environmental concerns are driving forces that continually press for the improvement and development of new technologies to promote energy savings and emissions reduction. Combined heating and power (CHP), combined cooling, heating, and power (CCHP), and organic Rankine cycles (ORC) are a few of the technologies that promise to reduce primary energy consumption (PEC), cost, and emissions. CHP systems generate electricity at or near the place of consumption using a prime mover, e.g. a combustion engine or a turbine, and utilize the accompanying exhaust heat that would otherwise be wasted to satisfy the building's thermal demand. In the case of CCHP systems, exhaust heat also goes to satisfy a cooling load. An organic Rankine cycle (ORC) combined with a CHP or CCHP system can generate electricity from any surplus low-grade heat, thereby reducing the total primary energy, cost, and emissions.

  13. Decentralised CHP in a competitive market

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article agues that decentralised CHP plants is an important part of energy supply in Denmark.......The article agues that decentralised CHP plants is an important part of energy supply in Denmark....

  14. Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis

    International Nuclear Information System (INIS)

    Saari, Jussi; Sermyagina, Ekaterina; Kaikko, Juha; Vakkilainen, Esa; Sergeev, Vitaly

    2016-01-01

    Wood-fired combined heat and power (CHP) plants are a proven technology for producing domestic, carbon-neutral heat and power in Nordic countries. One drawback of CHP plants is the low capacity factors due to varying heat loads. In the current economic environment, uncertainty over energy prices creates also uncertainty over investment profitability. Hydrothermal carbonization (HTC) is a promising thermochemical conversion technology for producing an improved, more versatile wood-based fuel. Integrating HTC with a CHP plant allows simplifying the HTC process and extending the CHP plant operating time. An integrated polygeneration plant producing three energy products is also less sensitive to price changes in any one product. This study compares three integration cases chosen from the previous paper, and the case of separate stand-alone plants. The best economic performance is obtained using pressurized hot water from the CHP plant boiler drum as HTC process water. This has the poorest efficiency, but allows the greatest cost reduction in the HTC process and longest CHP plant operating time. The result demonstrates the suitability of CHP plants for integration with a HTC process, and the importance of economic and operational analysis considering annual load variations in sufficient detail. - Highlights: • Integration of wood hydrothermal carbonization with a small CHP plant studied. • Operation and economics of three concepts and stand-alone plants are compared. • Sensitivity analysis is performed. • Results show technical and thermodynamic analysis inadequate and misleading alone. • Minimizing HTC investment, extending CHP operating time important for profitability.

  15. Micro CHP: implications for energy companies

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Jeremy [EA Technology (United Kingdom); Kolin, Simon; Hestevik, Svein [Sigma Elektroteknisk A/S (Norway)

    2000-08-01

    This article explains how micro combined heat and power (CHP) technology may help UK energy businesses to maintain their customer base in the current climate of liberalisation and competition in the energy market The need for energy companies to adopt new technologies and adapt to changes in the current aggressive environment, the impact of privatisation, and the switching of energy suppliers by customers are discussed. Three potential routes to success for energy companies are identified, namely, price reductions, branding and affinity marketing, and added value services. Details are given of the implementation of schemes to encourage energy efficiency, the impact of the emissions targets set at Kyoto, the advantages of micro CHP generation, business opportunities for CHP, business threats from existing energy companies and others entering the field, and the commercial viability of micro CHP.

  16. Combined Heat and Power (CHP) Partnership

    Science.gov (United States)

    The CHP Partnership seeks to reduce air pollution and water usage associated with electric power generation by promoting the use of CHP. The Partnership works to remove policy barriers and to facilitate the development of new projects.

  17. High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Costante Mario Invernizzi

    2018-04-01

    Full Text Available Small-CHP (Combined Heat and Power systems are generally considered a valuable technological option to the conventional boilers, in a technology developed context. If small-CHP systems are associated with the use of renewable energies (biomass, for example they could play an important role in distributed generation even in developing countries or, in any case, where there are no extensive electricity networks. Traditionally the considered heat engines for micro- or mini-CHP are: the gas engine, the gas turbine (with internal combustion, the steam engine, engine working according to the Stirling and to the Rankine cycles, the last with organic fluids. In principle, also fuel cells could be used. In this paper, we focus on small size Rankine cycles (10–15 k W with organic working fluids. The assumed heat source is hot combustion gases at high temperature (900–950 ∘ C and we assume to use only single stages axial turbines. The need to work at high temperatures, limits the choice of the right organic working fluids. The calculation results show the limitation in the performances of simple cycles and suggest the opportunity to resort to complex (binary cycle configurations to achieve high net conversion efficiencies (15–16%.

  18. Energy policy responses to the climate change challenge: The consistency of European CHP, renewables and energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Grohnheit, P.E.

    1999-09-01

    This report is Volume 14 of individual reports of the Shared Analysis Project prepared for the European Commission, Directorate General for Energy. The three major objectives of the project were: to design a common framework of energy analysis that aimed to involve all Member States and the experts of industrial research groups (the shared approach to energy analysis); To analyse generic EU-wide issues important for energy policy and for future energy demand and production, putting particular emphasis on world energy market trends, strategic energy policy responses to the Kyoto process, and evaluation of response strategies to increasing energy import dependence and to climate change activities; to carry out quantitative analyses of energy trends and scenarios as an input for discussion. The present volume considers three main issues concerning energy policy responses to the climate change challenge: the penetration of CHP and renewables according to official objectives, focusing on infrastructure and institutions rather than technology; the consistency of promotion of CHP, renewables and energy savings at the same time; consumers' choices and priorities in a liberalised market. The volume describes examples of policies in several Member States for these technologies with emphasis on CHP for both large-scale and small-scale district heating systems. The penetration of CHP technologies is analysed quantitatively using a traditional optimisation model approach for stylised regions with heat markets suitable for CHP and facing a competitive European market for electricity. The Joint Final Report of the project, titled 'Economic Foundations for Energy Policy' is published as a Special Issue of Energy in Europe, December 1999. All reports are available on the Internet, www.shared-analysis.fhg.de/ The project started in January 1998, involving about 100 months of scientific labour. The project consortium consisted of nine member institutes co-ordinated by

  19. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, David P [ORNL; McGervey, Joseph [SRA International, Inc.; Curran, Scott [ORNL

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making

  20. Kyoto commitments: CHP will help the UK

    International Nuclear Information System (INIS)

    Knowles, Michael

    1998-01-01

    In order to meet the United Kingdom's targets for carbon dioxide emissions reduction, agreed at the Kyoto Summit, the UK Government is promoting the use of combined heat and power (CHP) plants. Such schemes need to offer over 70% efficiency, have on-site or nearby heat uses, and allow flexibility for the export of electricity where this is appropriate. Electricity trading arrangements will need to be re-organised in line with similar commodities, in order to facilitate and promote the growth of CHP and renewable energy schemes. Financial incentives and regulation of electricity prices will also contribute to the promotion of CHP schemes, ultimately leading to reduced CO 2 pollution as a result of the growth in the UK's CHP capacity. (UK)

  1. Small-Scale Combined Heat and Power Plants Using Biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Salomon-Popa, Marianne [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-11-01

    In this time period where energy supply and climate change are of special concern, biomass-based fuels have attracted much interest due to their plentiful supply and favorable environmental characteristics (if properly managed). The effective capture and continued sustainability of this renewable resource requires a new generation of biomass power plants with high fuel energy conversion. At the same time, deregulation of the electricity market offers new opportunities for small-scale power plants in a decentralized scheme. These two important factors have opened up possibilities for small-scale combined heat and power (CHP) plants based on biofuels. The objective of this pre-study is to assess the possibilities and technical limitations for increased efficiency and energy utilization of biofuels in small size plants (approximately 10 MWe or lower). Various energy conversion technologies are considered and proven concepts for large-scale fossil fuel plants are an especially important area. An analysis has been made to identify the problems, technical limitations and different possibilities as recognized in the literature. Beyond published results, a qualitative survey was conducted to gain first-hand, current knowledge from experts in the field. At best, the survey results together with the results of personal interviews and a workshop on the role of small-scale plants in distributed generation will serve a guideline for future project directions and ideas. Conventional and novel technologies are included in the survey such as Stirling engines, combustion engines, gas turbines, steam turbines, steam motors, fuel cells and other novel technologies/cycles for biofuels. State-of-the-art heat and power plants will be identified to clarify of the advantages and disadvantages as well as possible obstacles for their implementation.

  2. 330 kWe Packaged CHP System with Reduced Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Plahn, Paul [Cummins Power Generation, Minneapolis, MN (United States); Keene, Kevin [Cummins Power Generation, Minneapolis, MN (United States); Pendray, John [Cummins Power Generation, Minneapolis, MN (United States)

    2015-03-31

    The objective of this project was to develop a flexible, 330 kWe packaged Combined Heat and Power (CHP) system that can be deployed to commercial and light industrial applications at a lower total cost of ownership than current CHP solutions. The project resulted in a CHP system that is easy to use and inexpensive to install, offering world class customer support, while providing a low-emissions, higher-efficiency internal combustion engine for a CHP system of this size.

  3. Large-scale integration of off-shore wind power and regulation strategies of cogeneration plants in the Danish electricity system

    DEFF Research Database (Denmark)

    Østergaard, Poul Alberg

    2005-01-01

    The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply......The article analyses how the amount of a small-scale CHP plants and heat pumps and the regulation strategies of these affect the quantity of off-shore wind power that may be integrated into Danish electricity supply...

  4. Dicty_cDB: CHP827 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP827 (Link to dictyBase) - - - Contig-U15898-1 - (Link to Or...iginal site) CHP827F 148 - - - - - - Show CHP827 Library CH (Link to library) Clone ID CHP827 (Link to dicty...Base) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15898-1 Original site URL http://dictycdb.b...ments: (bits) Value N AC116984 |AC116984.2 Dictyostelium discoideum chromosome 2 map 2567470-3108875 strain ...18q21 clone:RP11-866E20, WORKING DRAFT SEQUENCE, 18 unordered pieces. 42 0.073 4 CK406764 |CK406764.1 AUF_IfLvr_212_c09 Ict

  5. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA

    DEFF Research Database (Denmark)

    Christensen, S.K.; Pedersen, K.; Hansen, Flemming G.

    2003-01-01

    Prokaryotic chromosomes encode toxin-antitoxin loci, often in multiple copies. In most cases, the function of these genes is not known. The chpA (mazEF) locus of Escherichia coli has been described as a cell killing module that induces bacterial apoptosis during nutritional stress. However, we...... found recently that ChpAK (MazF) does not confer cell killing but rather, induces a bacteriostatic condition from which the cells could be resuscitated. Results presented here yield a mechanistic explanation for the detrimental effect on cell growth exerted by ChpAK and the homologous ChpBK protein of E......AK cleaved tmRNA in its coding region. Thus, ChpAK and ChpBK inhibit translation by a mechanism very similar to that of E. coli RelE. On the basis of these results, we propose a model that integrates TA loci into general prokaryotic stress physiology....

  6. Small scale combined woodgas power plant

    International Nuclear Information System (INIS)

    Gulbis, V.

    2003-01-01

    As a first attempt to introduce biomass gasification technology in Latvia at the Faculty of Engineering of Latvia University of Agriculture an integral small scale combined heat and power (CHP) system based on a used Russian-made diesel-alternator set with electrical output 100 kWe was developed. The diesel is converted to dual fuel gas engine, using producer gas as the main fuel and gas oil as pilot fuel. To get sufficiently clean (tar content ≤ 250 mg/m 3 ) woodgas for using in IC engine a downdraft type of gasifier was chosen designed and constructed on the IMBERT gasifier principles. The test runs of the first experimental model showed that the engine does not develop expected power because of high resistance of gasifier and gas cleaning system does not work sufficiently enough. There was rather high level of tar content in woodgas because the temperature in the reduction zone was low. Calculations were carried out and new technological scheme of gasification system was worked out, introducing innovative ideas aimed on improving the working parameters (author)

  7. Optimal integrated sizing and planning of hubs with midsize/large CHP units considering reliability of supply

    International Nuclear Information System (INIS)

    Moradi, Saeed; Ghaffarpour, Reza; Ranjbar, Ali Mohammad; Mozaffari, Babak

    2017-01-01

    Highlights: • New hub planning formulation is proposed to exploit assets of midsize/large CHPs. • Linearization approaches are proposed for two-variable nonlinear CHP fuel function. • Efficient operation of addressed CHPs & hub devices at contingencies are considered. • Reliability-embedded integrated planning & sizing is formulated as one single MILP. • Noticeable results for costs & reliability-embedded planning due to mid/large CHPs. - Abstract: Use of multi-carrier energy systems and the energy hub concept has recently been a widespread trend worldwide. However, most of the related researches specialize in CHP systems with constant electricity/heat ratios and linear operating characteristics. In this paper, integrated energy hub planning and sizing is developed for the energy systems with mid-scale and large-scale CHP units, by taking their wide operating range into consideration. The proposed formulation is aimed at taking the best use of the beneficial degrees of freedom associated with these units for decreasing total costs and increasing reliability. High-accuracy piecewise linearization techniques with approximation errors of about 1% are introduced for the nonlinear two-dimensional CHP input-output function, making it possible to successfully integrate the CHP sizing. Efficient operation of CHP and the hub at contingencies is extracted via a new formulation, which is developed to be incorporated to the planning and sizing problem. Optimal operation, planning, sizing and contingency operation of hub components are integrated and formulated as a single comprehensive MILP problem. Results on a case study with midsize CHPs reveal a 33% reduction in total costs, and it is demonstrated that the proposed formulation ceases the need for additional components/capacities for increasing reliability of supply.

  8. CHP Partnership Partners

    Science.gov (United States)

    Partners of EPA's Combined Heat and Power Partnership include federal, state, and local government agencies and private organizations such as energy users, energy service companies, CHP project developers and consultants, and equipment manufacturers.

  9. Optimal design of CHP-based microgrids: Multiobjective optimisation and life cycle assessment

    International Nuclear Information System (INIS)

    Zhang, Di; Evangelisti, Sara; Lettieri, Paola; Papageorgiou, Lazaros G.

    2015-01-01

    As an alternative to current centralised energy generation systems, microgrids are adopted to provide local energy with lower energy expenses and gas emissions by utilising distributed energy resources (DER). Several micro combined heat and power technologies have been developed recently for applications at domestic scale. The optimal design of DERs within CHP-based microgrids plays an important role in promoting the penetration of microgrid systems. In this work, the optimal design of microgrids with CHP units is addressed by coupling environmental and economic sustainability in a multi-objective optimisation model which integrates the results of a life cycle assessment of the microgrids investigated. The results show that the installation of multiple CHP technologies has a lower cost with higher environmental saving compared with the case when only a single technology is installed in each site, meaning that the microgrid works in a more efficient way when multiple technologies are selected. In general, proton exchange membrane (PEM) fuel cells are chosen as the basic CHP technology for most solutions, which offers lower environmental impacts at low cost. However, internal combustions engines (ICE) and Stirling engines (SE) are preferred if the heat demand is high. - Highlights: • Optimal design of microgrids is addressed by coupling environmental and economic aspects. • An MILP model is formulated based on the ε-constraint method. • The model selects a combination of CHP technologies with different technical characteristics for optimum scenarios. • The global warming potential (GWP) and the acidification potential (AP) are determined. • The output of LCA is used as an input for the optimisation model

  10. The design of Chp plants

    International Nuclear Information System (INIS)

    Tomassetti, G.

    2001-01-01

    Chp is considered with a bottom-up view, as the most efficient way to satisfy the needs of the users. In order to achieve optimal results a particular care must be used in analyzing the thermal and electrical loads and their interactions. On this basis and taking into account the relationships among the user and the suppliers of electricity, fuels and heat, the energy market structure, the cost of energy and the tax assessment it is possible to properly design Chp plants with benefits for the users [it

  11. The impact of small scale cogeneration on the gas demand at distribution level

    International Nuclear Information System (INIS)

    Vandewalle, J.; D’haeseleer, W.

    2014-01-01

    Highlights: • Impact on the gas network of a massive implementation of cogeneration. • Distributed energy resources in a smart grid environment. • Optimisation of cogeneration scheduling. - Abstract: Smart grids are often regarded as an important step towards the future energy system. Combined heat and power (CHP) or cogeneration has several advantages in the context of the smart grid, which include the efficient use of primary energy and the reduction of electrical losses through transmission. However, the role of the gas network is often overlooked in this context. Therefore, this work presents an analysis of the impact of a massive implementation of small scale (micro) cogeneration units on the gas demand at distribution level. This work shows that using generic information in the simulations overestimates the impact of CHP. Furthermore, the importance of the thermal storage tank capacity on the impact on the gas demand is shown. Larger storage tanks lead to lower gas demand peaks and hence a lower impact on the gas distribution network. It is also shown that the use of an economically led controller leads to similar results compared to classical heat led control. Finally, it results that a low sell back tariff for electricity increases the impact of cogeneration on the gas demand peak

  12. Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis

    International Nuclear Information System (INIS)

    Westner, Günther; Madlener, Reinhard

    2012-01-01

    In this paper, we apply a spread-based real options approach to analyze the decision-making problem of an investor who has the choice between an irreversible investment in a condensing power plant without heat utilization and a plant with combined heat-and-power (CHP) generation. Our investigation focuses on large-scale fossil-fueled generation technologies and is based on a stochastic model that uses copula functions to provide the input parameters of the real options model. We define the aggregated annual spread as assessment criteria for our investigation since it contains all relevant volatile input parameters that have an impact on the evaluation of investment decisions. We show that the specific characteristics of CHP plants, such as additional revenues from heat sales, promotion schemes, specific operational features, and a beneficial allocation of CO 2 allowances, have a significant impact on the option value and therefore on the optimal timing for investment. For the two fossil-fueled CHP technologies investigated (combined-cycle gas turbine and steam turbine), we conclude from our analysis that a high share of CHP generation reduces the risk exposure for the investor. The maximal possible CHP generation depends significantly on the local heat demand in the surroundings of the power plant. Considering this, the size of the heat sink available could gain more relevance in the future selection process of sites for new large-scale fossil power plants.

  13. Stockholm CHP potential - An opportunity for CO2 reductions?

    International Nuclear Information System (INIS)

    Danestig, Maria; Gebremehdin, Alemayehu; Karlsson, Bjoern

    2007-01-01

    The potential for combined heat and power (CHP) generation in Stockholm is large and a total heat demand of about 10 TWh/year can be met in a renewed large district heating system. This model of the Stockholm district heating system shows that CHP generation can increase from 8% in 2004 to 15.5% of the total electricity generation in Sweden. Increased electricity costs in recent years have awakened an interest to invest in new electricity generation. Since renewable alternatives are favoured by green certificates, bio-fuelled CHP is most profitable at low electricity prices. Since heat demand in the district heating network sets the limit for possible electricity generation, a CHP alternative with a high electricity to heat ratio will be more profitable at when electricity prices are high. The efficient energy use in CHP has the potential to contribute to reductions in carbon dioxide emissions in Europe, when they are required and the European electricity market is working perfectly. The potential in Stockholm exceeds Sweden's undertakings under the Kyoto protocol and national reduction goals. (author)

  14. CHP expansion strategy in North Rhine-Westphalia. A blueprint for other regions

    International Nuclear Information System (INIS)

    Holzapfel, Dominik; Schneider, Sabine

    2015-01-01

    The North Rhine-Westphalian state government intends to increase the share of combined heat and power (CHP) generation to at least 25 % by 2020. Since 2013, the campaign ''CHP.NRW - Power Meets Heat'' (''KWK.NRW - Strom trifft Waerme'') of the EnergyAgency.NRW, is has been running on behalf of the NRW Climate Protection Ministry, to publicise this technology and to promote its expansion. The campaign accompanies the State Government's CHP Stimulus Programme. The EnergyAgency.NRW has organised companies and research institutions, associations and interest groups under the umbrella of ''CHP.NRW - Power Meets Heat'', aiming at co-ordinated and intensified activities in the field of combined heat and power generation. The target of the initial-project ''roadmap/CHP.NRW'' of the ''Virtual Institute / CHP.NRW'' is to develop a guideline for the application and optimisation of CHP-systems.

  15. CHP plant Legionowo Poland. Description of the electricity market in Poland/CHP-feasibility analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    In 1997, a new energy law was passed in Poland. An important element of the law is that local energy is made obligatory. The law describes obligatory tasks and procedures for the Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for energy supply plans in the three municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continued/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the combined cycle type should be investigated. The present report describes the electricity market in Poland, the market in which a CHP plant in Legionowo will have to operate. Furthermore the report presents the results of the feasibility analysis carried out for a new CHP plant in Legionowo. (BA)

  16. Micro-CHP Systems for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the

  17. Methodology for evaluation of industrial CHP production

    International Nuclear Information System (INIS)

    Pavlovic, Nenad V.; Studovic, Milovan

    2000-01-01

    At the end of the century industry switched from exclusive power consumer into power consumer-producer which is one of the players on the deregulated power market. Consequently, goals of industrial plant optimization have to be changed, making new challenges that industrial management has to be faced with. In the paper is reviewed own methodology for evaluation of industrial power production on deregulated power market. The methodology recognizes economic efficiency of industrial CHP facilities as a main criterion for evaluation. Energy and ecological efficiency are used as additional criteria, in which implicit could be found social goals. Also, methodology recognizes key and limit factors for CHP production in industry. It could be successful applied, by use of available commercial software for energy simulation in CHP plants and economic evaluation. (Authors)

  18. Biomass CHP Catalog of Technologies

    Science.gov (United States)

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  19. Evaluation of the impact of the liberalisation of the European electricity market on the CHP, District heating and cooling sector; 'Save CHP/DHC'. Final report

    International Nuclear Information System (INIS)

    2000-08-01

    Improved energy efficiency will play a key role in meeting the EU Kyoto target economically. In addition to a significant positive environmental impact, improved energy efficiency will lead to a more sustainable energy policy and enhanced security of supply. The study: 1) Identifies and evaluates parameters and conditions which in relation to the liberalisation of the electricity market will have an impact on the CHP/DHC sector in EU15 and Poland. 2) Establishes an information base on CHP/DHC systems in EU15 and Poland. 3) Analyses the CHP/DHC sector and its ability to meet changing market conditions. 4) Assesses the effect of the liberalised electricity market on electricity production in relation to CHP/district heating and cooling. 5) Identifies threats for the viability of CHP/DHC in a liberalised market and evaluates means and measures to overcome such threats. The study brings forward the goals and commitments in respect of European energy and environmental policy and gives an overview of the present and expected future framework in which CHP/DHC is to operate. The study evaluates the viability of the sector at an overall level and for different groups/categories of CHP/DHC systems in different countries. The effects of existing or proposed national public measures are analysed. The analyses are essential to decision makers in the transition process towards a fully liberalised market. Recognised uncertainties in the market during the transition period may cause either a temporary or a permanent recession for the CHP/DHC sector. Improved understanding and recognition of threats and opportunities is important to all actors just now. The study can be considered a first step of a process to create a market situation, where the energy customers can make their choices under competition rules and where environmentally friendly and efficient CHP and DHC is considered an attractive business opportunity in competition with other energy supplies. (EHS)

  20. Optimal Design and Operation of A Syngas-fuelled SOFC Micro-CHP System for Residential Applications in Different Climate Zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Liso, Vincenzo; Zhao, Yingru

    2013-01-01

    heat-to-power load ratio. Therefore, the aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability of the micro-CHP to cover the heat and electricity demand of a 70m2...... demand. Numerical simulations are conducted in Matlab environment. System design trade-offs are discussed to determine the optimal match between the energy demand of the household for different climates across China and the energy supply of the micro-CHP during the whole year. Moreover, criteria...

  1. Multi-criteria evaluation for CHP system options

    International Nuclear Information System (INIS)

    Pilavachi, P.A.; Roumpeas, C.P.; Minett, S.; Afgan, N.H.

    2006-01-01

    Several Combined Heat and Power (CHP) system options have been considered for evaluation with respect to the end-user requirements. These included Internal Combustion Engines (Otto and Diesel), Gas Turbines, Steam Turbines and Combined Cycles covering a wide range of electrical output. Data have been obtained from literature and the CHP systems have been evaluated using different criteria such as overall efficiency, investment cost, fuel cost, electricity cost, heat cost, CO 2 production and footprint. A multi-criteria method is used with an agglomeration function based on the statistical evaluation of weight factors. The technical, economic and social aspects of each system have been evaluated in an integrated manner and the results have been compared by means of the Sustainability Index. Based on the above criteria and depending on the user requirements, the best CHP system options have been established

  2. CHP systems to save money and cut carbon.

    Science.gov (United States)

    Hopkins, Ian

    2014-10-01

    According to Ian Hopkins, a director of ENER-G Combined Power--which has delivered more than 50 CHP-led energy services contracts within the healthcare sector, having, for the past 30 years, designed and manufactured CHP systems at its global headquarters and R&D centre in Salford--'the energy cost and carbon-saving benefits of combined heat and power are difficult to match where there is a large heating/cooling demand over extended periods'. In this article, he explains how hospitals and other busy healthcare facilities thus 'make ideal bedfellows' for CHP, and outlines the key criteria and considerations, such as sizing, for healthcare engineers, when looking to specify such a system.

  3. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo

    2014-01-01

    under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability...... of the micro-CHP to cover the heat and electricity demand of a 70 m2 single-family apartment with an average number of occupants of 3 is evaluated. A detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. System design trade-offs are discussed...

  4. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    Energy Technology Data Exchange (ETDEWEB)

    Mago, Pedro [Mississippi State Univ., Mississippi State, MS (United States); Newell, LeLe [Mississippi State Univ., Mississippi State, MS (United States)

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  5. Is micro-CHP price controllable under price signal controlled Virtual Power Plants?

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2011-01-01

    As micro-combined heat and power (micro-CHP) systems move towards mass deployment together with other kinds of distributed energy resources (DER), an increasing emphasis has been placed on how to coordinate such a large diversified DER portfolio in an efficient way by the Virtual Power Plant (VPP...... for three different micro-CHP systems to investigate the feasibility of being controlled by price. Such analysis is relevant for both controller designs for micro-CHP systems and VPP related operations. The results indicate that controlling the micro-CHP systems by price is feasible but could result...

  6. Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Cioccolanti, Luca; Renzi, Massimiliano

    2014-01-01

    This study investigates the potential of energy efficiency, renewables, and micro-cogeneration to reduce household consumption in a medium Italian town and analyses the scope for municipal local policies. The study also investigates the effects of tourist flows on town's energy consumption by modelling energy scenarios for permanent and summer homes. Two long-term energy scenarios (to 2030) were modelled using the MarkAL-TIMES generator model: BAU (business as usual), which is the reference scenario, and EHS (exemplary household sector), which involves targets of penetration for renewables and micro-cogeneration. The analysis demonstrated the critical role of end-use energy efficiency in curbing residential consumption. Cogeneration and renewables (PV (photovoltaic) and solar thermal panels) were proven to be valuable solutions to reduce the energetic and environmental burden of the household sector (−20% in 2030). Because most of household energy demand is ascribable to space-heating or hot water production, this study finds that micro-CHP technologies with lower power-to-heat ratios (mainly, Stirling engines and microturbines) show a higher diffusion, as do solar thermal devices. The spread of micro-cogeneration implies a global reduction of primary energy but involves the internalisation of the primary energy, and consequently CO 2 emissions, previously consumed in a centralised power plant within the municipality boundaries. - Highlights: • Energy consumption in permanent homes can be reduced by 20% in 2030. • High efficiency appliances have different effect according to their market penetration. • Use of electrical heat pumps shift consumption from natural gas to electricity. • Micro-CHP entails a global reduction of energy consumption but greater local emissions. • The main CHP technologies entering the residential market are Stirling and μ-turbines

  7. An improved reactor system for small-scale fuel processing - the Optiformer concept

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Karlsson, Charlotte (Catator AB, Lund (Sweden))

    2008-08-15

    Catator AB (CAT) has evaluated a revised design of the previously described Ultraformer concept. In comparison to the original Ultraformer, the new reformer concept (Optiformer) shows enhanced performances with respect to thermo-mechanic durability and conversion efficiencies. The unit is also easy to manufacture and ordinary high-temperature steel alloys may be used. The new concept is based on a helix-shaped tubular heat-exchanger reactor designed by ICI Caldaie (ICI) fitted with CATs proprietary wire-mesh catalyst. The concept has currently been evaluated for production rates between 0.5 and 30 nm3/hr of hydrogen and this report describes a detailed study of a unit for small-scale CHP-applications. Such systems will involve a fuel processor together with a suitable fuel cell, e.g. a solid-oxide fuel cell (SOFC) or a high-temperature PEFC (HT-PEFC). The evaluations performed in this study indicate stable operation over a wide window of capacities with negligible emissions of hydrocarbons. Since it is possible to operate the redesigned unit at a higher temperature (>900 deg C) than the original Ultraformer unit (750- 800 deg C), the conversion degree is much higher for thermo-dynamical reasons. The redesigned unit contains all necessary structures for vaporization, recuperation, effect supply and gas purification in a highly integrated structure. Furthermore, the unit is equipped with an internal insulation and a cooling jacked to reduce the skin temperature of the unit. The reactor has undergone about 100 full thermal cycles without any thermo-mechanical issues or catalyst degradation. Natural gas and different kerosene qualities have so far been evaluated with respect to conversion degree and possible slip of hydrocarbons. The conversion degree at rated load (100%) was above 99%, which enable us to reach superior efficiencies. If the unit were to be used together with a SOFC, the WGS-step could be omitted, reducing the size and weight further from about 2.2 l

  8. ANALYSIS OF CHP POTENTIAL AT FEDERAL SITES

    Energy Technology Data Exchange (ETDEWEB)

    HADLEY, S.W.

    2002-03-11

    This document was prepared at the request of the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) under its Technical Guidance and Assistance and Project Financing Programs. The purpose was to provide an estimate of the national potential for combined heat and power (also known as CHP; cogeneration; or cooling, heating, and power) applications at federal facilities and the associated costs and benefits including energy and emission savings. The report provides a broad overview for the U.S. Department of Energy (DOE) and other agencies on when and where CHP systems are most likely to serve the government's best interest. FEMP's mission is to reduce the cost to and environmental impact of the federal government by advancing energy efficiency and water conservation, promoting the use of renewable energy, and improving utility management decisions at federal sites. FEMP programs are driven by its customers: federal agency sites. FEMP monitors energy efficiency and renewable energy technology developments and mounts ''technology-specific'' programs to make technologies that are in strong demand by agencies more accessible. FEMP's role is often one of helping the federal government ''lead by example'' through the use of advanced energy efficiency/renewable energy (EERE) technologies in its own buildings and facilities. CHP was highlighted in the Bush Administration's National Energy Policy Report as a commercially available technology offering extraordinary benefits in terms of energy efficiencies and emission reductions. FEMP's criteria for emphasizing a technology are that it must be commercially available; be proven but underutilized; have a strong constituency and momentum; offer large energy savings and other benefits of interest to federal sites and FEMP mission; be in demand; and carry sufficient federal market potential. As discussed in the report, CHP meets all

  9. Micro-CHP Technologies Roadmap: Meeting 21st Century Residential Energy Needs

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-12-01

    On June 11-12, 2003, at Greenbelt, Maryland, key stakeholders from industry, government agencies, universities, and others involved in combined heat and power and the residential buildings industry explores solutions to technical, institutional, and market barriers facing micro-combined heat and power systems (mCHP). Participants outlined a desired future for mCHP systems, identified specific interim technology cost and performance targets, and developed actions to achieve the interim targets and vision. This document, The Micro-CHP Technologies Roadmap, is a result of their deliberations. It outlines a set of actions that can be pursued by both the government and industry to develop mCHP appliances for creating a new approach for households to meet their energy needs.

  10. CHP and District Cooling: An Assessment of Market and Policy Potential in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This report contains an assessment of India's CHP/DC status and recommendations for addressing barriers to allow India to meet its energy efficiency targets. Such barriers include a lack of governmental emphasis on CHP, the absence of a clear methodology for calculating CO2 emission reductions from CHP/DHC, and a tax and duty structure for CHP capital equipment that is not as attractive as for other renewable energy technologies.

  11. The role of combined heat and power (CHP) in energy and climate policy

    International Nuclear Information System (INIS)

    Conrad, F.

    1993-03-01

    In the energy- and environment context CHP is said to be especially energy saving and climate preserving. This report shows that from the standpoint of energy economics as well as under technical aspects this judgement holds true only under special conditions. Depending on the technical parameters, the concrete circumstances of operation and the characteristics of the power plants and heating systems compared to CHP-plants the range of realistic energy savings turns out to be very large. Related overstimations are to a good extend caused by the traditional practice of granting the energetic advantage of CHP exclusively to the district heating. If this advantage is credited to heat and power as equal shares space heating with cogenerated power of 80% efficiency reveals to be very energy conserving. The uno actu utilization of cogenerated heat and power, for the same purpose could facilitate the expansion of CHP, since the problems related to the feeding of cogenerated power into the grid for general purposes would disappear. The second main issue of this report concerns the abatement of CO 2 -emissions with the aid of CHP. Fuelled with natural gas, CHP-plants are attractive instruments for climate policy. This is especially true if CHP is compared to old coal-based power plants and oil-fuelled old heating systems. In the FRG, however, hard coal, and not natural gas, will be the main fuel for future CHP, lowering its CO 2 -advantage considerably. On the other hand high efficient combi-power plants (gas turbine plus condensing turbine) and gas heating systems have to be included in the comparative analyse. Compared to these advanced systems the CO 2 -characteristics of CHP are inferior. Moreover, the specific CO 2 -advantage of natural gas is better used by such modern mono systems rather than CHP-plants. (orig.) [de

  12. CHP as a Boiler Replacement Opportunity (Webinar) – April 30, 2013

    Science.gov (United States)

    This webinar provides information about the benefits of replacing a boiler with a CHP system, describes CHP project analysis and delivery processes, and highlights a case study at Penn State University.

  13. Performance and cost results from a DOE Micro-CHP demonstration facility at Mississippi State University

    International Nuclear Information System (INIS)

    Giffin, Paxton K.

    2013-01-01

    Highlights: ► We examine the cost and performance results of a Micro-CHP demonstration facility. ► Evaluation includes both summer and winter performance. ► Evaluation in comparison to a conventional HVAC system using grid power. ► Influence of improperly sized equipment. ► Influence of natural gas prices on the viability of CHP projects using that fuel. - Abstract: Cooling, Heating, and Power (CHP) systems have been around for decades, but systems that utilize 20 kW or less, designated as Micro-CHP, are relatively new. A demonstration site has been constructed at Mississippi State University (MSU) to show the advantages of these micro scale systems. This study is designed to evaluate the performance of a Micro-CHP system as opposed to a conventional high-efficiency Heating, Ventilation, and Air Conditioning (HVAC) system that utilizes electrical power from the existing power grid. Raw data was collected for 7 months to present the following results. The combined cycle efficiency from the demonstration site was averaged at 29%. The average combined boiler and engine cost was $1.8 h −1 of operation for heating season and $3.9 h −1 of operation for cooling season. The cooling technology used, an absorption chiller exhibited an average Coefficient of Performance (COP) of 0.27. The conventional high-efficiency system, during cooling season, had a COP of 4.7 with a combined cooling and building cost of $0.2 h −1 of operation. During heating mode, the conventional system had an efficiency of 47% with a fuel and building electrical cost of $0.28 h −1 of operation.

  14. Optimization of operation for combined heat and power plants - CHP plants - with heat accumulators using a MILP formulation

    Energy Technology Data Exchange (ETDEWEB)

    Grue, Jeppe; Bach, Inger [Aalborg Univ. (Denmark). Inst. of Energy Technology]. E-mails: jeg@iet.auc.dk; ib@iet.auc.dk

    2000-07-01

    The power generation system in Denmark is extensively based on small combined heat and power plants (CHP plants), producing both electricity and district heating. This project deals with smaller plants spread throughout the country. Often a heat accumulator is used to enable electricity production, even when the heat demand is low. This system forms a very complex problem, both for sizing, designing and operation of CHP plants. The objective of the work is the development of a tool for optimisation of the operation of CHP plants, and to even considering the design of the plant. The problem is formulated as a MILP-problem. An actual case is being tested, involving CHP producing units to cover the demand. The results from this project show that it is of major importance to consider the operation of the plant in detail already in the design phase. It is of major importance to consider the optimisation of the plant operation, even at the design stage, as it may cause the contribution margin to rise significantly, if the plant is designed on the basis of a de-tailed knowledge of the expected operation. (author)

  15. A Study of a Diesel Engine Based Micro-CHP System

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP

  16. Assessment of advanced small-scale combined heat and power production

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, J. [Joanneum Research (Austria)

    1996-12-31

    To increase the share of renewable energy sources, bioenergy has to be used for electricity generation, preferably in combined heat and power (CHP) production systems, besides its traditional use in space heating. The need for small-scale, i.e. below 5 MW{sub el}, CHP production arises from the fact that a considerable portion of the available solid biofuels may not be transported over long distances for economic reasons and that in many cases the heat demand is below 10 MW{sub el} in district heating schemes in communities with less than 10 000 inhabitants. The available technical options have to be assessed with respect to performance, reliability and economy. Such an assessment has been performed in a study where the following options have been compared: Gasification - combustion engine or gas turbine; Combustion - steam turbine/engine; Combustion - hot air turbine; Combustion - Stirling engine. While conventional steam cycle systems are available and reliable they are generally not economical in the power range under consideration. Among the other systems, which are not yet commercially available, the Stirling engine system seems to be attractive in the power range below 500 kW{sub el} and the hot air system could close the gap to the steam cycle systems, i.e. cover the power range between 0.5 and 5.0 MW{sub el}. Gasification schemes seem less suitable: The power generation part (combustion engine and gas turbine) is well established for natural gas, with the combustion engine in the lower (<5 MW{sub el}) and the gas turbine in the higher (>5MW{sub el}) power range. However, the gas quality needed for the operation of a combustion engine requires expensive pre-treatment of the gas from wood gasification so that this scheme is less attractive for the power range under consideration. These conclusions lead to R and D efforts in Austria in two directions: Hot air turbine: A utility demonstration plant is under construction with a power of 1 600 kW{sub el

  17. Assessment of advanced small-scale combined heat and power production

    Energy Technology Data Exchange (ETDEWEB)

    Spitzer, J [Joanneum Research (Austria)

    1997-12-31

    To increase the share of renewable energy sources, bioenergy has to be used for electricity generation, preferably in combined heat and power (CHP) production systems, besides its traditional use in space heating. The need for small-scale, i.e. below 5 MW{sub el}, CHP production arises from the fact that a considerable portion of the available solid biofuels may not be transported over long distances for economic reasons and that in many cases the heat demand is below 10 MW{sub el} in district heating schemes in communities with less than 10 000 inhabitants. The available technical options have to be assessed with respect to performance, reliability and economy. Such an assessment has been performed in a study where the following options have been compared: Gasification - combustion engine or gas turbine; Combustion - steam turbine/engine; Combustion - hot air turbine; Combustion - Stirling engine. While conventional steam cycle systems are available and reliable they are generally not economical in the power range under consideration. Among the other systems, which are not yet commercially available, the Stirling engine system seems to be attractive in the power range below 500 kW{sub el} and the hot air system could close the gap to the steam cycle systems, i.e. cover the power range between 0.5 and 5.0 MW{sub el}. Gasification schemes seem less suitable: The power generation part (combustion engine and gas turbine) is well established for natural gas, with the combustion engine in the lower (<5 MW{sub el}) and the gas turbine in the higher (>5MW{sub el}) power range. However, the gas quality needed for the operation of a combustion engine requires expensive pre-treatment of the gas from wood gasification so that this scheme is less attractive for the power range under consideration. These conclusions lead to R and D efforts in Austria in two directions: Hot air turbine: A utility demonstration plant is under construction with a power of 1 600 kW{sub el

  18. Screening of CHP Potential at Federal Sites in Select Regions of the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Energy Nexus Group, . .

    2002-02-25

    Combined Cooling Heat and Power (CHP) is a master term for onsite power generation technologies that sequentially produce electrical or mechanical energy and useful thermal energy. Some form of CHP has existed for more than 100 years and it is now achieving a greater level of acceptance due to an increasing need for reliable power service and energy cost management. Capturing and using the heat produced as a byproduct of generating electricity from fuel sources increases the usable energy that can be obtained from the original fuel source. CHP technologies have the potential to reduce energy consumption through increased efficiency--decreasing energy bills as well as pollution. The EPA recognizes CHP as a potent climate change mitigation measure. The U.S. Department of Energy (D.O.E.) Federal Energy Management Program (FEMP) is assisting Federal agencies to realize their energy efficiency goals. CHP is an efficiency measure that is receiving growing attention because of its sizable potential to provide efficiency, environmental, and reliability benefits. CHP therefore benefits the host facility, the electric infrastructure, and the U.S. society as a whole. This report and study seeks to make a preliminary inquiry into near term CHP opportunities for federal facilities in selected U.S. regions. It offers to help focus the attention of policy makers and energy facility managers on good candidate facilities for CHP. First, a ranked list of high potential individual sites is identified. Then, several classes of federal facilities are identified for the multiple opportunities they offer as a class. Recommendations are then offered for appropriate next steps for the evaluation and cost effective implementation of CHP. This study was designed to ultimately rank federal facilities in terms of their potential to take advantage of CHP economic and external savings in the near term. In order to best serve the purposes of this study, projections have been expressed in terms of

  19. Why small-scale cannabis growers stay small: five mechanisms that prevent small-scale growers from going large scale.

    Science.gov (United States)

    Hammersvik, Eirik; Sandberg, Sveinung; Pedersen, Willy

    2012-11-01

    Over the past 15-20 years, domestic cultivation of cannabis has been established in a number of European countries. New techniques have made such cultivation easier; however, the bulk of growers remain small-scale. In this study, we explore the factors that prevent small-scale growers from increasing their production. The study is based on 1 year of ethnographic fieldwork and qualitative interviews conducted with 45 Norwegian cannabis growers, 10 of whom were growing on a large-scale and 35 on a small-scale. The study identifies five mechanisms that prevent small-scale indoor growers from going large-scale. First, large-scale operations involve a number of people, large sums of money, a high work-load and a high risk of detection, and thus demand a higher level of organizational skills than for small growing operations. Second, financial assets are needed to start a large 'grow-site'. Housing rent, electricity, equipment and nutrients are expensive. Third, to be able to sell large quantities of cannabis, growers need access to an illegal distribution network and knowledge of how to act according to black market norms and structures. Fourth, large-scale operations require advanced horticultural skills to maximize yield and quality, which demands greater skills and knowledge than does small-scale cultivation. Fifth, small-scale growers are often embedded in the 'cannabis culture', which emphasizes anti-commercialism, anti-violence and ecological and community values. Hence, starting up large-scale production will imply having to renegotiate or abandon these values. Going from small- to large-scale cannabis production is a demanding task-ideologically, technically, economically and personally. The many obstacles that small-scale growers face and the lack of interest and motivation for going large-scale suggest that the risk of a 'slippery slope' from small-scale to large-scale growing is limited. Possible political implications of the findings are discussed. Copyright

  20. CHP plant Legionowo Poland - Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-01

    In 1997, a new Energy Law was passed in Poland. An important element of the law is that local energy planning is made obligatory. The law describes obligatory tasks and procedures for Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law of 1997, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for the Energy Supply Plans in these municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continues/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the Combined Cycle type should be investigated. The present report is the final Master Plan based on the following reports: Master Plan for Legionowo - Status Report; Master Plan for Legionowo - Hydraulic Analysis; CHP Plant Legionowo Poland - CHP Feasibility Analysis. The final Master Plan describes the status in the DH Company in Legionowo, possible improvements and an investment plan for the selected scenario. (BA)

  1. Modelling Danish local CHP on market conditions

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla

    2004-01-01

    with the liberalisation process of the energy sectors of the EU countries, it is however anticipated that Danish local CHP are to begin operating on market conditions within the year 2005. This means that the income that the local CHPs previously gained from selling electricity at the feed-in tariff is replaced in part...... the consequences of acting in a liberalised market for a given CHP plant, based on the abovementioned bottom-up model. The key assumption determining the bottom line is the electricity spot price. The formation of the spot price in the Nordic area depends heavily upon the state of the water reservoirs in Norway...

  2. A study on electricity export capability of the μCHP system with spot price

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2009-01-01

    of the muCHP unit, which influence the export capability of muCHP system, is firstly carried out in the intraday case study, followed by the annual case study which explores the annual system performance. The results show that the electricity export capability of a muCHP system is closely related to its...

  3. Biomass gasification for CHP with dry gas cleaning and regenerative heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Small scale CHP plants based on biomass gasification technologies are generally expensive and not very efficient due to gas quality problems which increase operation and maintenance cost as well as breakdown. To overcome this situation the team has developed, integrated and tested a complete biomass gasification combine heat and power prototype plant of 250 kWth equipped with a specifically developed dry gas cleaning and heat recovery system. The dry gas cleaning device is a simple dry gas regenerative heat exchanger where tars are stopped by condensation but working at a temperature above due point in order to avoid water condensation. Two types of heat particles separation devices have been tested in parallel multi-cyclone and ceramic filters. After several month spent on modelling design, construction and optimisation, a full test campaign of 400 hours continuous monitoring has been done where all working parameters has been monitored and gas cleaning device performances has been assessed. Results have shown: Inappropriateness of the ceramic filters for the small scale unit due to operation cost and too high sensibility of the filters to the operation conditions fluctuating in a wide range, despite a very high particle separation efficiency 99 %; Rather good efficiency of the multi-cyclone 72% but not sufficient for engine safety. Additional conventional filters where necessary for the finest part; Inappropriateness of the dry gas heat exchanger device for tar removal partly due to a low tar content of the syngas generated, below 100 mg/Nm{sup 3} , but also due to their composition which would have imposed, to be really efficient, a theoretical condensing temperature of 89 C below the water condensation temperature. These results have been confirmed by laboratory tests and modelling. However the tar cracking phase have shown very interesting results and proved the feasibility of thermal cracking with full cleaning of the heat exchanger without further mechanical

  4. MICRO-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  5. Management of fluctuations in wind power and CHP comparing two possible Danish strategies

    International Nuclear Information System (INIS)

    Lund, H.; Clark, W.W.

    2002-01-01

    Both CHP (combined heat and power production) and wind power are important elements of Danish energy policy. Today, approximately 50% of both the Danish electricity and heat demand are produced in CHP and more than 15% of the electricity demand is produced by wind turbines. Both technologies are essential for the implementation of Danish climate change response objectives, and both technologies are intended for further expansion in the coming decade. Meanwhile, the integration of CHP and wind power is subject to fluctuations in electricity production. Wind turbines depend on the wind, and CHP depends on the heat demand. This article discusses and analyses two different national strategies for solving this problem. One strategy, which is the current official government policy known as the export strategy, proposes to take advantage of the Nordic and European markets for selling and buying electricity. In this case, surplus electricity from wind power and CHP simply will be sold to neighbouring countries. Another strategy, the self-supply strategy, runs the CHP units to meet both demand and the fluctuations in the wind scheduling. In this case, investments in heat storages are necessary and heat pumps have to be added to the CHP units. Based on official Danish energy policy and energy plans, this article quantifies the problem for the year 2015 in terms of the amount of surplus electricity, and investments in heat pumps, etc. needed to solve the problem are calculated. Based on these results between the two different strategies, the conclusion is that the self-supply strategy is recommended over the official export strategy. (author)

  6. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    International Nuclear Information System (INIS)

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-01-01

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications

  7. Future market relevance of CHP installations with electrical ratings from 1 to 1000 kW

    International Nuclear Information System (INIS)

    Eicher, H.; Rigassi, R.

    2003-12-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the future market relevance of combined heat and power (CHP) installations with electrical ratings from 1 to 1000 kW. Developments over the past ten years are reviewed. Important reductions in the price of motor-driven CHP units and the price of the electrical power produced are noted and commented on. The technical market potential of CHP units and the degree to which this potential has been implemented are commented on. Work done, including CHP implementation in the industrial, commercial and residential areas, is commented on. Future developments both in the technical area as well as in commercial areas are commented on. Micro-gas-turbine based CHP systems are also discussed, as are fuel-cell based systems in both the higher and lower capacity power generation area. The prospects for CHP systems in general in the electricity generation area are discussed

  8. Biomass from agriculture in small-scale combined heat and power plants - A comparative life cycle assessment

    International Nuclear Information System (INIS)

    Kimming, M.; Sundberg, C.; Nordberg, A.; Baky, A.; Bernesson, S.; Noren, O.; Hansson, P.-A.

    2011-01-01

    Biomass produced on farm land is a renewable fuel that can prove suitable for small-scale combined heat and power (CHP) plants in rural areas. However, it can still be questioned if biomass-based energy generation is a good environmental choice with regards to the impact on greenhouse gas emissions, and if there are negative consequences of using of agricultural land for other purposes than food production. In this study, a simplified life cycle assessment (LCA) was conducted over four scenarios for supply of the entire demand of power and heat of a rural village. Three of the scenarios are based on utilization of biomass in 100 kW (e) combined heat and power (CHP) systems and the fourth is based on fossil fuel in a large-scale plant. The biomass systems analyzed were based on 1) biogas production with ley as substrate and the biogas combusted in a microturbine, 2) gasification of willow chips and the product gas combusted in an IC-engine and 3) combustion of willow chips for a Stirling engine. The two first scenarios also require a straw boiler. The results show that the biomass-based scenarios reduce greenhouse gas emissions considerably compared to the scenario based on fossil fuel, but have higher acidifying emissions. Scenario 1 has by far the best performance with respect to global warming potential and the advantage of utilizing a byproduct and thus not occupying extra land. Scenario 2 and 3 require less primary energy and less fossil energy input than 1, but set-aside land for willow production must be available. The low electric efficiency of scenario 3 makes it an unsuitable option.

  9. Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle

    International Nuclear Information System (INIS)

    Calise, Francesco; D’Accadia, Massimo Dentice; Vicidomini, Maria; Scarpellino, Marco

    2015-01-01

    Highlights: • A novel small scale solar power plant was designed and simulated. • The system is based on evacuated solar thermal collectors and an ORC system. • An average electric efficiency of 10% was found for the ORC. • The efficiency of solar collectors was found to be high in summer (>50%). • Pay-back periods lower than 5 years were estimated, in case of public funding. - Abstract: This paper presents a dynamic simulation model of a novel prototype of a 6 kW e solar power plant. The system is based on the coupling of innovative solar thermal collectors with a small Organic Rankine Cycle (ORC), simultaneously producing electric energy and low temperature heat. The novelty of the proposed system lies in the solar collector field, which is based on stationary evacuated flat-plate solar thermal collectors capable to achieve the operating temperatures typical of the concentrating solar thermal collectors. The solar field consists of about 73.5 m 2 of flat-plate evacuated solar collectors, heating a diathermic oil up to a maximum temperature of 230 °C. A diathermic oil storage tank is employed in order to mitigate the fluctuations due to the variability of solar energy availability. The hot diathermic oil exiting from the tank passes through an auxiliary gas-fired burner which provides eventual additional thermal energy. The inlet temperature of the diathermic oil entering the ORC system varies as a function of the availability of solar energy, also determining an oscillating response of the ORC. The ORC was simulated in Engineering Equation Solver (EES), using zero-dimensional energy and mass balances. The ORC model was subsequently implemented in a more general TRNSYS model, including all the remaining components of the system. The model was used to evaluate the energy and economic performance of the solar CHP system under analysis, in different climatic conditions. The results show that the efficiency of the ORC does not significantly vary during the

  10. Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification

    International Nuclear Information System (INIS)

    Ziębik, Andrzej; Malik, Tomasz; Liszka, Marcin

    2015-01-01

    Integration of a CHP steam plant with an installation of coal gasification and gas turbine leads to an IGCC-CHP (integrated gasification combined cycle-combined heat and power). Two installations of coal gasification have been analyzed, i.e. pressurized entrained flow gasifier – case 1 and pressurized fluidized bed gasifier with CO_2 recirculation – case 2. Basing on the results of mathematical modelling of an IGCC-CHP plant, the algorithms of calculating typical energy indices have been derived. The following energy indices are considered, i.e. coefficient of heat performance and relative savings of chemical energy of fuels. The results of coefficients of heat performance are contained between 1.87 and 2.37. Values exceeding 1 are thermodynamically justified because the idea of cogeneration of heat and electricity based on combining cycles of the heat engine and heat pump the efficiency of which exceeds 1. Higher values concerning waste heat replace more thermodynamically effective sources of heat in CHP plants. Relative savings of the chemical energy of fuels are similar in both cases of IGCC-CHP plants and are contained between the lower value of the CHP (combined heat and power) plants fuelled with coal and higher value of CHP plants fired with natural gas. - Highlights: • Energy savings of fuel is an adequate measure of cogeneration. • Relative energy savings of IGCC-CHP is near the result of a gas and steam CHP. • COHP (coefficient of heat performance) can help to divide fuel between heat fluxes. • Higher values of COHP in the case of waste heat recovery result from the lower thermal parameters.

  11. Economic dispatch of a single micro-gas turbine under CHP operation

    International Nuclear Information System (INIS)

    Rist, Johannes F.; Dias, Miguel F.; Palman, Michael; Zelazo, Daniel; Cukurel, Beni

    2017-01-01

    Highlights: •Economic dispatch of a micro gas turbine is considered for smart grid integration. •A detailed thermodynamic cycle analysis is conducted for variable load CHP operation. •Benefits are shown for case studies with real demand profiles and energy tariffs. •Optimal unit schedule can be electricity, heat, revenue or maintenance-cost driven. -- Abstract: This work considers the economic dispatch of a single micro-gas turbine under combined heat and power (CHP) operation. A detailed thermodynamic cycle analysis is conducted on a representative micro-gas turbine unit with non-constant component efficiencies and recuperator bypass. Based on partial and full load configurations, an accurate optimization model is developed for solving the economic dispatch problem of integrating the turbine into the grid. The financial benefit and viability of this approach is then examined on four detailed scenarios using real data on energy demand profiles and electricity tariffs. The analysis considers the optimal operation in a large hotel, a full-service restaurant, a small hotel, and a residential neighborhood during various seasons. The optimal schedule follows four fundamental economic drivers which are electricity, heat, revenue, and maintenance-cost driven.

  12. Analysis of the location for peak heating in CHP based combined district heating systems

    International Nuclear Information System (INIS)

    Wang, Haichao; Lahdelma, Risto; Wang, Xin; Jiao, Wenling; Zhu, Chuanzhi; Zou, Pinghua

    2015-01-01

    Combined heat and power (CHP) is the main technology for providing the base load of district heating in China. However, CHP is not efficient for providing the peak load; instead, a peak boiler with high efficiency could be used to compensate the peak load. This paper studies how the location of the peak boiler can affect the energy efficiency and economic performance of such CHP based combined district heating system. Firstly, the connection mode and the control strategy for different peak heating locations are analyzed. Then the effect of the peak boiler's location on the initial investment of the network and the cost for distributing heat is studied. The objective is to place the peak boiler in a location where the overall costs are the smallest. Following this rule, the results indicate that the peak boiler should be located at the CHP plant if that allows using cheaper ‘self-use electricity’ in CHP for distributing the heat. However, if the market electricity price is used everywhere, or if energy efficiency is more emphasized, the location of the peak boiler should be closer to the users with dense heat loads. - Highlights: • Location for peak heating in the CHP based combined DH system is studied. • Regulation or control strategies for combined DH are summarized. • The heat load duration curve for combined DH is demonstrated. • Network design for combined DH with peak boiler outside of the CHP is analyzed

  13. Dynamic analysis of PEMFC-based CHP systems for domestic application

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.; Ottaviano, A.

    2012-01-01

    Highlights: ► Dynamic model of a CHP energy system based on a PEM fuel cell was developed. ► The CHP system behavior at variable electrical and thermal load was investigated. ► The optimal RH value was assessed maximizing PEMFC performance through simulations. ► The system best operating conditions are characterized by a RH value equal to 50%. -- Abstract: Fuel cell-based CHP systems for distributed residential power generation represent an interesting alternative to traditional thermoelectric plants. This is mainly due to the high efficiency obtainable in the production of electricity and heat in a decentralised, quiet and environmental friendly way. The current paper focuses on the development, in Matlab®Simulink environment, of a complete dynamic model of a residential cogenerative (CHP) energy system consisting of the Proton Exchange Membrane fuel cell (PEMFC), fuel processor, heat exchangers, humidifier and auxiliary hot water boiler. The target of the study is the investigation through such a model of the behavior of CHP systems based on fuel cell (FC) at variable electrical and thermal load, in reference to typical load curves of residential users. With the aim to evaluate the system performance (efficiency, fuel consumption, hot water production, response time) and then to characterize its better operating conditions with particular attention to air relative humidity, suitable simulations were carried out. They are characterized by the following of a typical electrical load trend and in relation to two different thermal load profiles. The dynamic model presented in this paper has allowed to observe the fully functioning of the FC based system under variable loads and it has permitted to design appropriate control logics for this system.

  14. Preliminary experimental investigation of a natural gas-fired ORC-based micro-CHP system for residential buildings

    International Nuclear Information System (INIS)

    Farrokhi, M.; Noie, S.H.; Akbarzadeh, A.A.

    2014-01-01

    The continual increases in energy demand and greenhouse gas emissions, call for efficient use of energy resources. Decentralized combined heat and power (CHP) technology provides an alternative for the world to meet and solve energy-related problems including energy shortages, energy supply security, emission control and conservation of energy. This paper presents the preliminary results of an experimental investigation of a natural gas-fired micro-CHP system for residential buildings based on an organic Rankine cycle (ORC). Isopentane was used as the ORC working fluid in consideration of several criteria including its environmentally-friendly characteristics. Experiments were conducted to evaluate the performance of the developed system at different heat source temperatures of nominally 85, 80, 75, 70, and 65 °C. The maximum electrical power output of 77.4 W was generated at heating water entry temperature of 84.1 °C, corresponding to net cycle electrical efficiency of 1.66%. Further work will be done with a view to increasing the cycle electrical efficiency by using more efficient components, in particular the expander and generator. - Highlights: •A natural gas-fired ORC-based micro-scale CHP system has been developed and tested. •The good agreement between the mechanical and gross power validates the assumptions. •A vane expander suits a micro-CHP system based on an organic Rankine cycle. •A vane expander does not suit power generation by a Trilateral Flash Cycle (TFC). •Domestic gas-fired ORC systems may reduce reliance on central power stations

  15. Annual energy balances of CHP-units supplying households; Jahresenergiebilanzen von KWK-Anlagen zur Hausenergieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, B.; Muehlbacher, H. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Energiewirtschaft und Anwendungstechnik

    2008-07-01

    A method to balance CHP-units for use in households on an annual basis has been developed. Seasonal as well as intraday fluctuations of the CHP-units are accounted for in the model. The results of this new method were validated in a test facility for certain days. Together with experimentally obtained data from a CHP-unit, the potential for technical improvements and a more favourable operational mode can be derived from the model. (orig.)

  16. Alternative depreciation policies for promoting combined heat and power (CHP) development in Brazil

    International Nuclear Information System (INIS)

    Soares, Jeferson Borghetti; Szklo, Alexandre Salem; Tolmasquim, Mauricio Tiomno

    2006-01-01

    This paper assessed the economic impact of alternative depreciation methods on the development of combined heat-and-power (CHP) systems in the Brazilian industrial sector. Alternative depreciation methods were proposed and the case study of a Brazilian chemical plant showed that the most effective depreciation method for the promotion of CHP plants in Brazil was the Matheson method with an accelerated depreciation schedule of 7 years. This alternative method was then applied to the Brazilian chemical industry as a whole, increasing its installed capacity in CHP systems by 24%. Therefore, fiscal incentives can be an interesting tool for promoting energy efficiency in the Brazilian industrial sector, promoting the expansion of CHP plants. It reduces government fiscal revenues, but it also induces the technological reposition and improves the feasibility of ventures that are not installed without this kind of incentive

  17. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    , and they contribute significantly to the electricity production. CHP is, together with the wind power, the almost exclusive distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas system and the electricity system. In particular, the relationship between the peak hour......Local combined heat and power (CHP) plants in Denmark constitute an important part of the national energy conversion capacity. In particular they supply a large share of the district heating networks with heat. At the same time they are important consumers as seen from the gas network system...... characteristics of the electricity and gas systems will be investigated. The point is here that the two systems will tend to have peak demand during the same hours. This is the typical situation, since load is high during the same hours of the day and of the year. Moreover, the random variations in the load...

  18. Design of Biomass Combined Heat and Power (CHP Systems based on Economic Risk using Minimax Regret Criterion

    Directory of Open Access Journals (Sweden)

    Ling Wen Choong

    2018-01-01

    Full Text Available It is a great challenge to identify optimum technologies for CHP systems that utilise biomass and convert it into heat and power. In this respect, industry decision makers are lacking in confidence to invest in biomass CHP due to economic risk from varying energy demand. This research work presents a linear programming systematic framework to design biomass CHP system based on potential loss of profit due to varying energy demand. Minimax Regret Criterion (MRC approach was used to assess maximum regret between selections of the given biomass CHP design based on energy demand. Based on this, the model determined an optimal biomass CHP design with minimum regret in economic opportunity. As Feed-in Tariff (FiT rates affects the revenue of the CHP plant, sensitivity analysis was then performed on FiT rates on the selection of biomass CHP design. Besides, design analysis on the trend of the optimum design selected by model was conducted. To demonstrate the proposed framework in this research, a case study was solved using the proposed approach. The case study focused on designing a biomass CHP system for a palm oil mill (POM due to large energy potential of oil palm biomass in Malaysia.

  19. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    Science.gov (United States)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  20. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net

  1. An updated assessment of the prospects for fuel cells in stationary power and CHP. An information paper

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, T.K. [Future Energy Solutions, Harwell (United Kingdom)

    2005-07-01

    This report presents updated conclusions of the Department of Trade and Industry's research and development programme to assess the commercial prospects for advanced fuel cells in stationary power and combined heat and power (CHP) systems. The programme has focussed on low temperature solid polymer fuel cells (SPFCs) for transport and combined heat and power (CHP)/distributed power and high temperature solid oxide fuel cells (SOFCs) for CHP/distributed power. As well as assessing the prospects for SPFCs and SOFCs in stationary power and CHP applications, the report examines those for molten carbonate fuel cells (MCFCs) and phosphoric acid fuel cells (PAFCs). The report provides an assessment of the status of technology development for these different types of fuel cells in terms of applications to stationary power and CHP, and offers estimates of market potential for SOFCs in CHP markets, SPFCs in CHP markets and SOFCs in distributed power generation markets. Both large SPFC and SOFC CHP systems require further development to deliver the necessary cost reductions in materials and manufacturing processes before pre-commercial sales can begin. The routes taken by different manufacturers and their choice of preferred technology are explained. A discussion of the prospects and barriers for fuel cell cars concludes that while cost reduction is a major barrier to the successful commercialisation of fuel cells, there are insufficient data available from operating fuel cells systems (other than PAFC) in stationary power and CHP applications to assess the economic attractiveness of fuel cells compared with existing systems. More field trials are required to confirm energy and environmental performance in such applications and to evaluate operational and economic performance under commercial operating conditions. Such field trials could also provide a focus for the required developments in fuel cells for stationary power/CHP systems.

  2. Strandby Harbour on solar cooling. Demonstration of 8.000 m{sup 2} solar collectors combined with flue gas cooling with a absorption cooling system; Combined heat and power plant (CHP); Strandby havn paa solkoeling. Demonstration af 8.000 m{sup 2} solfangere kombineret med roeggaskoeling med absorptionskoeleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Flemming (Strandby Varmevaerk, Strandby (Denmark)); Soerensen, Per Alex (PlanEnergi, Skoerping (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Sloth, H. (Houe and Olsen, Thisted (Denmark))

    2010-04-15

    The aim of the project was to demonstrate 1) high solar heating ratio (18% annually) at a decentralized natural gas combined heat and power plant; 2) increased efficiency (5% of the heat consumption) in a natural gas CHP by using an extra flue gas cooler and an absorption heat pump; 3) a double tank system where a new tank during winter is used for cooling/ heat storage for the absorption heat pump and during summer for solar heat storage in serial operation with the old tank. The concept of combining solar power, absorption cooling and natural gas-fired small-scale CHP in Strandby met expectations and could be replicated in other CHP plants. However, it is important to note that if major construction modifications in the flue gas condensation system in the boiler or engine are required, the operating hours must not be reduced significantly in the amortisation period for the conversion. (ln)

  3. Combustion Turbine CHP System for Food Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    This factsheet describes a combined heat and power (CHP) demonstration project that reduces the energy costs and environmental impact of a plant while easing congestion on the constrained Northeast power grid.

  4. SOFC/TEG hybrid mCHP system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-15

    The starting point for this project have been the challenge has been to develop a cost effective solution with long term stability. This is where a focused effort in a strong consortium covering material research, module development and manufacture as well as device design and optimization can make a real difference. In March 2010 the SOFTEG phase II project was initiated and a cooperation organization was established to implement the project as a development and demonstration project involving the staff from all project partners. The project is now completed with excellent and documented outcome. The final results by Alpcon have been demonstration as a TEG-based mCHP system calls CHP Dual Engine Power System, which will be applicable as both a standalone TEG-CHP hybrid system, but also as an auxiliary power unit and power booster for the SOFC system. However the SOFC system cannot cover the household's heat demand alone so it is necessary to combine a SOFC system together with a water heater/boiler system to cover the peak heat demand of a residential house or a complex building. The SOFTEG project partners achieved significant results that mainly can be outlined as following: 1) University of Aarhus has improved the thermal stability of ZnSb by optimizing the concentration of Nano composite material. 2) The grain size and its influence on the sintering process by spark plasma method are investigated by Aarhus University, but further work seems to be necessary. 3) The TE material is going to commercialization by Aarhus University. 4) Aalborg University has prepared simulation tools for complex thermoelectric simulation in non-steady state condition. 5) The new type DCDC interleaved converter using the MPPT system for optimal power tracing is designed, build and tested by Aalborg University in cooperation with Alpcon. This task is included overall system design, control system implementation and power electronic control design. 6) Full scale practical

  5. Development of Next Generation micro-CHP System

    DEFF Research Database (Denmark)

    Arsalis, Alexandros

    Novel proposals for the modeling and operation of a micro-CHP (combined-heat-andpower) residential system based on HT-PEMFC (High Temperature-Proton Exchange Membrane Fuel Cell) technology are described and analyzed to investigate the technical feasibility of such systems. The proposed systems must...

  6. A family of serine proteases of Clavibacter michiganensis subsp. michiganensis: chpC plays a role in colonization of the host plant tomato.

    Science.gov (United States)

    Stork, Ines; Gartemann, Karl-Heinz; Burger, Annette; Eichenlaub, Rudolf

    2008-09-01

    Genes for seven putative serine proteases (ChpA-ChpG) belonging to the trypsin subfamily and homologous to the virulence factor pat-1 were identified on the chromosome of Clavibacter michiganensis subsp. michiganensis (Cmm) NCPPB382. All proteases have signal peptides indicating export of these proteins. Their putative function is suggested by two motifs and an aspartate residue typical for serine proteases. Furthermore, six cysteine residues are located at conserved positions. The genes are clustered in a chromosomal region of about 50 kb with a significantly lower G + C content than common for Cmm. The genes chpA, chpB and chpD are pseudogenes as they contain frame shifts and/or in-frame stop codons. The genes chpC and chpG were inactivated by the insertion of an antibiotic resistance cassette. The chpG mutant was not impaired in virulence. However, in planta the titre of the chpC mutant was drastically reduced and only weak disease symptoms were observed. Complementation of the chpC mutant by the wild-type allele restored full virulence. ChpC is the first chromosomal gene of Cmm identified so far that affects the interaction of the pathogen with the host plant.

  7. ChpK and MazF of the toxin-antitoxin modules are involved in the virulence of Leptospira interrogans during infection.

    Science.gov (United States)

    Komi, Komi Koukoura; Ge, Yu-Mei; Xin, Xiao-Yang; Ojcius, David M; Sun, Dexter; Hu, Wei-Lin; Zhao, Xin; Lin, Xu'ai; Yan, Jie

    2015-01-01

    Pathogenic Leptospira species are the causative agents of leptospirosis, a global zoonotic infectious disease. Toxin-antitoxin (TA) modules have been confirmed as stress-response elements that induce prokaryotic and eukaryotic cell-growth arrest or death, but their role in the virulence of Leptospira has not been reported. Here, we confirmed that all the tested leptospiral strains had the chpIK and mazEF TA modules with highly-conserved sequences. The transcription and expression of the chpI, chpK, mazE, and mazF genes of Leptospira interrogans strain Lai were significantly increased during infection of phorbol 12-myristate 13-acetate-induced human THP-1 macrophages. The toxic ChpK and MazF but not the antitoxic ChpI and MazE proteins were detectable in the cytoplasmic fraction of leptospire-infected THP-1 cells, indicating the external secretion of ChpK and MazF during infection. Transfection of the chpK or mazF gene caused decreased viability and necrosis in THP-1 cells, whereas the chpI or mazE gene transfection did not affect the viability of THP-1 cells but blocked the ChpK or MazF-induced toxicity. Deletion of the chpK or mazF gene also decreased the late-apoptotic and/or necrotic ratios of THP-1 cells at the late stages of infection. The recombinant protein MazF (rMazF) cleaved the RNAs but not the DNAs from Leptospira and THP-1 cells, and this RNA cleavage was blocked by rMazE. However, the rChpK had no RNA or DNA-degrading activity. All these findings indicate that the ChpK and MazF proteins in TA modules are involved in the virulence of L. interrogans during infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  8. Small scale optics

    CERN Document Server

    Yupapin, Preecha

    2013-01-01

    The behavior of light in small scale optics or nano/micro optical devices has shown promising results, which can be used for basic and applied research, especially in nanoelectronics. Small Scale Optics presents the use of optical nonlinear behaviors for spins, antennae, and whispering gallery modes within micro/nano devices and circuits, which can be used in many applications. This book proposes a new design for a small scale optical device-a microring resonator device. Most chapters are based on the proposed device, which uses a configuration know as a PANDA ring resonator. Analytical and nu

  9. Modeling and simulation of a residential micro-CHP system based on HT-PEMFC technology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    Combined-heat-and-power (CHP) technology is a well known and proved method to produce simultaneously power and heat at high efficiencies. This can be further improved by the introduction of a novel micro-CHP residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC......). The HT-PEMFC (based on PBI-membrane technology) operates at temperatures near 200oC, and this can be an ideal match for cogeneration residential systems. The proposed system provides electric power, hot water, and space heating for a typical household (1-5 kWe, 5-10 kWth). The micro-CHP system...

  10. Process Intensification in Fuel Cell CHP Systems, the ReforCELL Project

    Directory of Open Access Journals (Sweden)

    José Luis Viviente

    2016-10-01

    Full Text Available This paper reports the findings of a FP7/FCH JU project (ReforCELL that developed materials (catalysts and membranes and an advance autothermal membrane reformer for a micro Combined Heat and Power (CHP system of 5 kWel based on a polymer electrolyte membrane fuel cell (PEMFC. In this project, an active, stable and selective catalyst was developed for the reactions of interest and its production was scaled up to kg scale (TRL5 (TRL: Technology Readiness Level. Simultaneously, new membranes for gas separation were developed. In particular, dense supported thin palladium-based membranes were developed for hydrogen separation from reactive mixtures. These membranes were successfully scaled up to TRL4 and used in lab-scale reactors for fluidized bed steam methane reforming (SMR and autothermal reforming (ATR and in a prototype reactor for ATR. Suitable sealing techniques able to integrate the different membranes in lab-scale and prototype reactors were also developed. The project also addressed the design and optimization of the subcomponents (BoP for the integration of the membrane reformer to the fuel cell system.

  11. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...

  12. New CHP plant for a rubber products manufacturer

    International Nuclear Information System (INIS)

    Vila, R.; Martí, C.

    2016-01-01

    At the end of 2014 the company Industrias de Hule Galgo decided to undertake the installation project of an efficient CHP plant for its production plant, with the aim of bringing down energy costs and improving the company’s competitive position in the market. The new plant has already started its first operational phase. The project has comprised the installation of a single cycle with gas-powered gensets providing a total electrical capacity of 6.6 MW. This provides the necessary thermal oil for the production plant; covers 100% of the electrical power consumed by the industrial complex; and also generates cooling water, giving improved production capacity by supercooling the extrusion system. To execute these works, Industrias de Hule Galgo contracted the services of engineering company AESA to provide the engineering, procurement and construction of the CHP plant. (Author)

  13. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    Science.gov (United States)

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  14. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    Science.gov (United States)

    Matysko, Robert; Mikielewicz, Jarosław; Ihnatowicz, Eugeniusz

    2014-03-01

    The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle) cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power) system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser) and the heat supply pump in failure conditions.

  15. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    Directory of Open Access Journals (Sweden)

    Matysko Robert

    2014-03-01

    Full Text Available The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser and the heat supply pump in failure conditions.

  16. Utilization of straw in district heating and CHP plants

    International Nuclear Information System (INIS)

    Nikolaisen, L.

    1993-01-01

    In Denmark 64 straw-fired district heating plants and 6 decentral CHP plants have been built since 1980 which are completely or partly straw-fired. The annual straw consumption in the district heating plants is 275,000 tons and in the decentral plants about 200,000 tons. The size of the district heating plants amounts to 0.5 MW - 10 MW and that of the CHP plants to 7 MW - 67 MW heat flow rate. Either whole bales or cut/scarified straw is used for firing. Hesston bales of about 450 kg control the market. The Centre of Biomass Technology is an activity supported 100 % by the Danish Energy Agency with the purpose of increasing the use of straw and wood in the energy supply (orig.)

  17. Environmental sustainability analysis of UK whole-wheat bioethanol and CHP systems

    International Nuclear Information System (INIS)

    Martinez-Hernandez, Elias; Ibrahim, Muhammad H.; Leach, Matthew; Sinclair, Phillip; Campbell, Grant M.; Sadhukhan, Jhuma

    2013-01-01

    The UK whole-wheat bioethanol and straw and DDGS-based combined heat and power (CHP) generation systems were assessed for environmental sustainability using a range of impact categories or characterisations (IC): cumulative primary fossil energy (CPE), land use, life cycle global warming potential over 100 years (GWP 100 ), acidification potential (AP), eutrophication potential (EP) and abiotic resources use (ARU). The European Union (EU) Renewable Energy Directive's target of greenhouse gas (GHG) emission saving of 60% in comparison to an equivalent fossil-based system by 2020 seems to be very challenging for stand-alone wheat bioethanol system. However, the whole-wheat integrated system, wherein the CHP from the excess straw grown in the same season and from the same land is utilised in the wheat bioethanol plant, can be demonstrated for potential sustainability improvement, achieving 85% emission reduction and 97% CPE saving compared to reference fossil systems. The net bioenergy from this system and from 172,370 ha of grade 3 land is 12.1 PJ y −1 providing land to energy yield of 70 GJ ha −1 y −1 . The use of DDGS as an animal feed replacing soy meal incurs environmental emission credit, whilst its use in heat or CHP generation saves CPE. The hot spots in whole system identified under each impact category are as follows: bioethanol plant and wheat cultivation for CPE (50% and 48%), as well as for ARU (46% and 52%). EP and GWP 100 are distributed among wheat cultivation (49% and 37%), CHP plant (26% and 30%) and bioethanol plant (25%, and 33%), respectively. -- Highlights: ► UK whole-wheat energy system can achieve 85% GHG emission reduction. ► UK whole-wheat energy system can achieve 97% primary energy saving. ► The land to energy yield of the UK whole-wheat system is 70 GJ ha −1 y −1 . ► Fertiliser production is the hotspot. ► DDGS and straw-based CHP system integration to wheat bioethanol is feasible

  18. Elimination of restraints on the propagation of combined heat and power (CHP) generation systems in Switzerland

    International Nuclear Information System (INIS)

    Rieder, S.; Landis, F.; Lienhard, A.; Marti Locher, F.; Krummenacher, S.

    2009-04-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the results of study initiated by the SFOE that was to investigate the reasons for the low level of proliferation of CHP technology in Switzerland. The two main questions asked - which factors inhibit the use of CHP in particular application areas and which energy-policy measures can remove such obstacles - are discussed. The use of CHP in various areas of application from waste incineration plants through to units used in residential buildings is analysed and commented on. Recommendations on measures that can be taken to enhance the use of CHP are discussed. Three strategy variants available to the public services area are presented and discussed. It is noted that a consensus between players in the technical and political areas is necessary

  19. Techno, Economic and Environmental Assessment of a Combined Heat and Power (CHP System—A Case Study for a University Campus

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2018-05-01

    Full Text Available Universities in the United Kingdom that have installed Combined Heat and Power (CHP technology are making good moves towards achieving their CO2 reduction targets. However, CHP may not always be an economical option for a university campus due to numerous factors. Identification of such factors is highly important before making an investment decision. A detailed technical, economic, and environmental feasibility of CHP is, therefore, indispensable. This study aims to undertake a detailed assessment of CHP for a typical university campus and attempts to highlight the significance of such factors. Necessary data and information were collected through site visits, whereas the CHP sizing was performed using the London South Bank University (LSBU CHP model. The results suggest that there is a strong opportunity of installing a 230 kW CHP that will offset grid electricity and boilers thermal supply by 47% and 75%, respectively, and will generate financial and environmental yearly savings of £51k and 395 t/CO2, respectively. A wider spark gap decreases the payback period of the project and vice versa. The capital cost of the project could affect the project’s economics due to factors, such as unavailability of space for CHP, complex existing infrastructure, and unavailability of a gas connection.

  20. Large-scale heat pumps in sustainable energy systems: System and project perspectives

    Directory of Open Access Journals (Sweden)

    Blarke Morten B.

    2007-01-01

    Full Text Available This paper shows that in support of its ability to improve the overall economic cost-effectiveness and flexibility of the Danish energy system, the financially feasible integration of large-scale heat pumps (HP with existing combined heat and power (CHP plants, is critically sensitive to the operational mode of the HP vis-à-vis the operational coefficient of performance, mainly given by the temperature level of the heat source. When using ground source for low-temperature heat source, heat production costs increases by about 10%, while partial use of condensed flue gasses for low-temperature heat source results in an 8% cost reduction. Furthermore, the analysis shows that when a large-scale HP is integrated with an existing CHP plant, the projected spot market situation in The Nordic Power Exchange (Nord Pool towards 2025, which reflects a growing share of wind power and heat-supply constrained power generation electricity, further reduces the operational hours of the CHP unit over time, while increasing the operational hours of the HP unit. In result, an HP unit at half the heat production capacity as the CHP unit in combination with a heat-only boiler represents as a possibly financially feasible alternative to CHP operation, rather than a supplement to CHP unit operation. While such revised operational strategy would have impacts on policies to promote co-generation, these results indicate that the integration of large-scale HP may jeopardize efforts to promote co-generation. Policy instruments should be designed to promote the integration of HP with lower than half of the heating capacity of the CHP unit. Also it is found, that CHP-HP plant designs should allow for the utilization of heat recovered from the CHP unit’s flue gasses for both concurrent (CHP unit and HP unit and independent operation (HP unit only. For independent operation, the recovered heat is required to be stored. .

  1. CHP expansion strategy in North Rhine-Westphalia. A blueprint for other regions; KWK-Ausbaustrategie in NRW. Eine Blaupause fuer andere Regionen

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, Dominik [EnergieAgentur.NRW, Duesseldorf (Germany); Schneider, Sabine [EnergieAgentur.NRW, Wuppertal (Germany)

    2015-10-01

    The North Rhine-Westphalian state government intends to increase the share of combined heat and power (CHP) generation to at least 25 % by 2020. Since 2013, the campaign ''CHP.NRW - Power Meets Heat'' (''KWK.NRW - Strom trifft Waerme'') of the EnergyAgency.NRW, is has been running on behalf of the NRW Climate Protection Ministry, to publicise this technology and to promote its expansion. The campaign accompanies the State Government's CHP Stimulus Programme. The EnergyAgency.NRW has organised companies and research institutions, associations and interest groups under the umbrella of ''CHP.NRW - Power Meets Heat'', aiming at co-ordinated and intensified activities in the field of combined heat and power generation. The target of the initial-project ''roadmap/CHP.NRW'' of the ''Virtual Institute / CHP.NRW'' is to develop a guideline for the application and optimisation of CHP-systems.

  2. Contribution of wind power and CHP to exports from Western Denmark during 2000-2004

    International Nuclear Information System (INIS)

    Mignard, D.; Harrison, G.P.; Pritchard, C.L.

    2007-01-01

    The experience of Denmark is used by the United Kingdom's anti-wind lobby to demonstrate that intermittency and inaccuracies in wind forecasting make wind power ineffective and expensive. A further assertion is that most of the power is 'unwanted' since up to 80% of it is exported. Here, available data for Danish energy production for 2000-2004 is used to assess the link between wind generation and exports and test the validity of these claims. Net exports in Western Denmark showed good correlation with wind production. However, they were more significantly correlated with the production from local combined heat and power (CHP) plants. In order to test the 80% export claim, a simple technique was devised to correlate and rank hourly net exports and generation from wind and local CHP. In the case where net exports were primarily attributed to (or blamed on) wind, 44-84% of annual wind production was deemed to be exported, with wind 'causing' 57-79% of net annual exports. For this extreme scenario, the percentage values are in line with those of critics. However, under the opposite extreme scenario in which exports are attributed to local CHP, 77-94% of exports were caused by CHP and only 4-32% of wind production was exported. Overall, this study shows that there is some degree of correlation between net exports and wind power, but that the claim that 80% is exported is unwarranted since it ignores the demonstrably stronger influence of local CHP. (author)

  3. Ecological assessment of new CHP systems and their combination; Oekologische Bewertung neuer WKK-Systeme und Systemkombinationen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Primas, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reports on new developments in the Combined Heat and Power (CHP) generation area. The objective of this study is an ecological and technical evaluation of various CHP systems and system combinations. These also include suitable combinations with other technologies. Systems for five different temperature levels are quantified according to their environmental impact. Various possible applications are compared with a highly efficient reference system using separate heat and power generation - a combined-cycle plant and a heat pump. For chilled water production a combination of the CHP system with an absorption chiller is investigated. The results of the investigations are presented and commented on. Also, advantageous applications of CHP systems are noted.

  4. Demonstration Stirling Engine based Micro-CHP with ultra-low emissions

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, Rolf; Olsson, Fredrik [Carl Bro Energikonsult AB (Sweden); Paalsson, Magnus [Lund Inst. of Technology (Sweden)

    2004-03-01

    This project has been initiated in order to develop a new type of natural gas fired low emission combustion system for a Stirling engine CHP-unit, and to demonstrate and evaluate the unit with the newly developed combustion system in a CHP application. The Stirling engine technology is well developed, but mostly used in special applications and CHP-applications are scarce. The very low exhaust emissions with the new combustion system would make the Stirling engine very suitable for installation in as a CHP-unit in domestic areas. The Stirling engine used in the project has been a V161 engine produced by Solo Kleinmotoren GmbH in Sindelfingen. The unit has a nominal output of 7,5 kW{sub el} and 20 kW{sub heat} (Hot water). The new combustion system was developed at Lund University and the very strict emission targets that were set up could be achieved, both in the laboratory tests and during the site-testing period. Typical performance and emission figures measured at the site installation are: Generator output (kW): 7,3; Hot water output (kW): 15; El. efficiency (%): 25,4; Total efficiency (%): 77,8; NO{sub x} (ppm): 14; CO (ppm): 112; HC (ppm): < 1; O{sub 2} (%): 8,0; Noise level 1 m from the unit (dBA): 83. The NO{sub x} emissions were reduced with almost 97 % as compared to a standard Stirling combustion system. The emission figures are considerably lower than what could be achieved in an internal combustion engine of similar size with an oxidation catalyst (report SGC 106), while the performance figures are similar for the two technologies. The site testing was carried out during a period of 1,5 year at a site owned by Goeteborg Energi. The site comprises a building structure with workshops, offices etc. covering a ground area of 2,500 m{sup 2}. A gas fired boiler with an output of 250 kW supplies hot water to a local grid for heating and tap water. The annual heat demand is typically 285 MWh and the hot water temperatures are normally 60-80 deg C. The site

  5. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Mortensen, Paw Vestergård; Enkeshafi, Ali A.

    2011-01-01

    and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating...... the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business...

  6. Potential for CHP in Africa

    International Nuclear Information System (INIS)

    Yameogo, Gabriel

    2000-01-01

    It is suggested that many industries in Africa could benefit from biomass-fired cogeneration so long as the correct structures and learning processes are put in place. The article discusses Africa's energy background and gives figures for generation sources and consumption. A profile of Sudan and its energy needs is presented. It is argued that although some barriers do exist, a move to cogeneration is essential. CHP should be particularly attractive for industries able to use thermal energy for drying, heating and cooling: typical areas would be pharmaceutical and chemical plants, textile factories, cement works and steel mills

  7. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  8. Evaluation of Combined Heat and Power (CHP Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS

    Directory of Open Access Journals (Sweden)

    Fausto Cavallaro

    2016-06-01

    Full Text Available Combined heat and power (CHP or cogeneration can play a strategic role in addressing environmental issues and climate change. CHP systems require less fuel than separate heat and power systems in order to produce the same amount of energy saving primary energy, improving the security of the supply. Because less fuel is combusted, greenhouse gas emissions and other air pollutants are reduced. If we are to consider the CHP system as “sustainable”, we must include in its assessment not only energetic performance but also environmental and economic aspects, presenting a multicriteria issue. The purpose of the paper is to apply a fuzzy multicriteria methodology to the assessment of five CHP commercial technologies. Specifically, the combination of the fuzzy Shannon’s entropy and the fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS approach will be tested for this purpose. Shannon’s entropy concept, using interval data such as the α-cut, is a particularly suitable technique for assigning weights to criteria—it does not require a decision-making (DM to assign a weight to the criteria. To rank the proposed alternatives, a fuzzy TOPSIS method has been applied. It is based on the principle that the chosen alternative should be as close as possible to the positive ideal solution and be as far as possible from the negative ideal solution. The proposed approach provides a useful technical–scientific decision-making tool that can effectively support, in a consistent and transparent way, the assessment of various CHP technologies from a sustainable point of view.

  9. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    Energy Technology Data Exchange (ETDEWEB)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system

  10. Grid Interaction of MV-connected CHP-plants during disturbances

    NARCIS (Netherlands)

    Coster, E.J.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    Nowadays the amount of distributed generation (DG) units is increasing rapidly. Most dominant are combined heat and power (CHP) plants and wind turbines. At this moment, in most systems, there are no requirements defined for short-circuit behavior of such generators connected to the medium voltage

  11. Validation of a HT-PEMFC stack for CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasupathi, S.; Ulleberg, Oe. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Bujlo, P. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Electrotechnical Institute Wroclaw Division (Poland); Scholta, J. [Centre for Solar Energy and Hydrogen Research (ZSW) (Germany)

    2010-07-01

    Fuel cell systems are very attractive for stationary co-generation applications as they can produce heat and electricity efficiently in a decentralized and environmentally friendly manner. PEMFC stacks operating at temperatures above 120 C, specifically in the range of 140-180 C, are ideal for co-generation purposes. In this study, preliminary results from a HTPEMFC stack designed for CHP applications is presented and discussed. A short, five-cell, HT-PEMFC stack was assembled with Celtec- P-2100 MEAs and validated in terms of electrical performance. The stack was operated with hydrogen and air at 160 C and the utilization curves for anode and cathode were recorded for a wide range of gas utilization at a current density of 0.52 A/cm{sup 2}. The current voltage characteristic was measured at optimal utilization values at 160 C. A 1kW stack is assembled and is currently being validated for its performance under various operating conditions for use in CHP applications. (orig.)

  12. Micro-CHP for self-supply in the housing industry. Profitability and system integration; Mikro-BHKW zur Eigenversorgung in der Wohnungswirtschaft. Wirtschaftlichkeit und Systemintegration

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, Raphael; Buettner, Markus; Erge, Thomas; Wille-Haussmann, Bernhard; Wittwer, Christof [Fraunhofer-Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2011-07-01

    The use of micro-CHP units in multifamily buildings is particularly profitable if the produced electricity - coupled with the thermal energy production - is used directly by the operator or sold locally. To maximize the share of own consumption the use of thermal storages to operate the CHP at times of high electrical demand is necessary. By conducting a field test it is shown that the share of own consumption can be increased by predictive control of CHP with thermal storages. The approach increases the profitability of the CHP operation under today's conditions as well as the system integration of the CHP electricity. (orig.)

  13. Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo; Järvinen, Mika; Fogelholm, Carl-Johan

    2013-01-01

    Highlights: ► We simulate CHP-integrated production of wood pellets, torrefied wood pellets and pyrolysis slurry. ► Integration increases operation hours and district heat output by up to 38% and 22%. ► Additionally installed equipment reduces yearly power generation by up to 7%. ► Wood pellet production performs best energetically and environmentally. ► Integrated concepts substantially reduce fuel consumption and CO 2 emissions. - Abstract: In order to react on future expected increased competition on restricted biomass resources, communal combined heat and power (CHP) plants can be integrated with biomass upgrading processes that add valuable products to the portfolio. In this paper, outgoing from a base case, the retrofit integration of production of wood pellets (WPs), torrefied wood pellets (TWPs) and wood fast pyrolysis slurry (PS) with an existing wood-fired CHP plant was simulated. Within the integration concept, free boiler capacity during times of low district heat demands is used to provide energy for the upgrading processes. By detailed part-load modelling, critical process parameters are discussed. With help of a multiperiod model of the heat duration curve, the work further shows the influence of the integration on plant operating hours, electricity production and biomass throughput. Environmental and energetic performance is assessed according to European standard EN 15603 and compared to the base case as well as to stand-alone production in two separate units. The work shows that all three integration options are well possible within the operational limits of the CHP plant. Summarising, this work shows that integration of WP, TWP and PS production from biomass with a CHP plant by increasing the yearly boiler workload leads to improved primary energy efficiency, reduced CO 2 emissions, and, when compared to stand-alone production, also to substantial fuel savings

  14. Anti-diabetic effect of Cyclo-His-Pro (CHP)-enriched yeast ...

    African Journals Online (AJOL)

    Anti-diabetic effect of Cyclo-His-Pro (CHP)-enriched yeast hydrolysate in ... The present study was designed to investigate the hypoglycemic effects of the daily ... in the area under curve (AUC) value of YH supplemented groups as compared ...

  15. Integrated energy markets and varying degrees of liberalisation: price links, bundled sales and CHP production exemplified by Northern European experiences

    International Nuclear Information System (INIS)

    Jacobsen, H.K.; Fristrup, P.; Munksgaard, J.

    2006-01-01

    Liberalisation of energy markets has during the last 20 years been gradually introduced in many countries. The liberalisation has led to concerns regarding the markets' state of competition and fears that market power existence can result in less efficiency gains than what is expected from liberalisation. Concerns have also been raised as to whether specific consumer groups will be affected by limited competition in markets. Much of the concern has been concentrated on the electricity markets, but the development of energy sectors with integration of activities within natural gas, electricity and the oil sector creates the need to examine market power aspects across these markets. This paper examines the concentration trends in the Northern European markets for electricity and natural gas, combined with regional district heating aspects, especially with respect to the situation in Denmark. The situation with natural gas companies supplying to both small-scale CHP and to retail heat customers is discussed, for instance, which changes of regulatory regime for domestic heating customers should be considered when the natural gas market is being liberalised? The interlinked nature of the energy markets is described and examples of impacts from one market with limited competition to other markets with seemingly well-functioning competition are given. The specific case of large CHP production facilities with output on the regulated district heating market and the competitive Nordic electricity market is examined. How much of the fluctuations in price experienced in electricity markets should be reflected in the price of heating supplies? To which degree do the heating customers have to bear the burden of low-electricity market prices? Regulation of liberalised markets is discussed focusing on the interaction between one regulated market and the related energy markets that are liberalised. Existing regulation on the markets are compared to a situation where liberalisation

  16. Integrated energy markets and varying degrees of liberalisation: Price links, bundled sales and CHP production exemplified by Northern European experiences

    International Nuclear Information System (INIS)

    Klinge Jacobsen, Henrik; Fristrup, Peter; Munksgaard, Jesper

    2006-01-01

    Liberalisation of energy markets has during the last 20 years been gradually introduced in many countries. The liberalisation has led to concerns regarding the markets' state of competition and fears that market power existence can result in less efficiency gains than what is expected from liberalisation. Concerns have also been raised as to whether specific consumer groups will be affected by limited competition in markets. Much of the concern has been concentrated on the electricity markets, but the development of energy sectors with integration of activities within natural gas, electricity and the oil sector creates the need to examine market power aspects across these markets. This paper examines the concentration trends in the Northern European markets for electricity and natural gas, combined with regional district heating aspects, especially with respect to the situation in Denmark. The situation with natural gas companies supplying to both small-scale CHP and to retail heat customers is discussed, for instance, which changes of regulatory regime for domestic heating customers should be considered when the natural gas market is being liberalised? The interlinked nature of the energy markets is described and examples of impacts from one market with limited competition to other markets with seemingly well-functioning competition are given. The specific case of large CHP production facilities with output on the regulated district heating market and the competitive Nordic electricity market is examined. How much of the fluctuations in price experienced in electricity markets should be reflected in the price of heating supplies? To which degree do the heating customers have to bear the burden of low-electricity market prices? Regulation of liberalised markets is discussed focusing on the interaction between one regulated market and the related energy markets that are liberalised. Existing regulation on the markets are compared to a situation where liberalisation

  17. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  18. Experimental study on a project with CHP system basing on absorption cycles

    International Nuclear Information System (INIS)

    Sun, Jian; Fu, Lin; Sun, Fangtian; Zhang, Shigang

    2014-01-01

    A new heat recovery system for the CHP (combined heating and power) is presented, and HRU (heat recovery unit) and AHE (absorption heat exchanger) are invented to improve the total energy efficiency of the conventional CHP system by more than 20%, which are installed at the thermal power plant and the heating substation separately. The HRU could recover the low grade heat of exhausted steam from the turbine directly, and the AHE could decrease the temperature of back water of primary pipe to a lower temperature than that of secondary pipe without changing the flow rate of secondary pipe. A large demonstration project employing this technology has been built in Datong of China. And experimental results of HRU and AHE are presented to evaluate this system. - Highlights: • The total energy efficiency of CHP could by increased by more than 20%. • Temperature of back water of primary pipe could be lower than that of secondary pipe. • Heating capacity of primary pipe could be increased significantly. • Low grade heat of exhausted steam from turbine could be recovered directly

  19. IVO`s CHP know-how: experience, inventions, patents

    Energy Technology Data Exchange (ETDEWEB)

    Aeijaelae, M.; Ohtonen, V. [ed.

    1997-11-01

    IVO can justly claim mastery in the co-generation of district heat and electricity - CHP. As well as looking at the issue from the viewpoint of planners, builders and operators, IVO`s engineers also view power plants through the eyes of the product developer and inventor. This approach has resulted in successful power plant configurations, inventions and patents and visions

  20. Small scale structure on cosmic strings

    International Nuclear Information System (INIS)

    Albrecht, A.

    1989-01-01

    I discuss our current understanding of cosmic string evolution, and focus on the question of small scale structure on strings, where most of the disagreements lie. I present a physical picture designed to put the role of the small scale structure into more intuitive terms. In this picture one can see how the small scale structure can feed back in a major way on the overall scaling solution. I also argue that it is easy for small scale numerical errors to feed back in just such a way. The intuitive discussion presented here may form the basis for an analytic treatment of the small structure, which I argue in any case would be extremely valuable in filling the gaps in our resent understanding of cosmic string evolution. 24 refs., 8 figs

  1. Crystallization and preliminary crystallographic analysis of the human calcineurin homologous protein CHP2 bound to the cytoplasmic region of the Na+/H+ exchanger NHE1

    International Nuclear Information System (INIS)

    Ben Ammar, Youssef; Takeda, Soichi; Sugawara, Mitsuaki; Miyano, Masashi; Mori, Hidezo; Wakabayashi, Shigeo

    2005-01-01

    Crystallization of the human CHP2–NHE1 binding domain complex. Calcineurin homologous protein (CHP) is a Ca 2+ -binding protein that directly interacts with and regulates the activity of all plasma-membrane Na + /H + -exchanger (NHE) family members. In contrast to the ubiquitous isoform CHP1, CHP2 is highly expressed in cancer cells. To understand the regulatory mechanism of NHE1 by CHP2, the complex CHP2–NHE1 (amino acids 503–545) has been crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as precipitant. The crystals diffract to 2.7 Å and belong to a tetragonal space group, with unit-cell parameters a = b = 49.96, c = 103.20 Å

  2. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  3. Multi-Objective Analysis of a CHP Plant Integrated Microgrid in Pakistan

    Directory of Open Access Journals (Sweden)

    Asad Waqar

    2017-10-01

    Full Text Available In developing countries like Pakistan, the capacity shortage (CS of electricity is a critical problem. The frequent natural gas (NG outages compel consumers to use electricity to fulfill the thermal loads, which ends up as an increase in electrical load. In this scenario, the authors have proposed the concept of a combined heat & power (CHP plant to be a better option for supplying both electrical and thermal loads simultaneously. A CHP plant-based microgrid comprising a PV array, diesel generators and batteries (operating in grid-connected as well as islanded modes has been simulated using the HOMER Pro software. Different configurations of distributed generators (DGs with/without batteries have been evaluated considering multiple objectives. The multiple objectives include the minimization of the total net present cost (TNPC, cost of generated energy (COE and the annual greenhouse gas (GHG emissions, as well as the maximization of annual waste heat recovery (WHR of thermal units and annual grid sales (GS. These objectives are subject to the constraints of power balance, battery operation within state of charge (SOC limits, generator operation within capacity limits and zero capacity shortage. The simulations have been performed on six cities including Islamabad, Lahore, Karachi, Peshawar, Quetta and Gilgit. The simulation results have been analyzed to find the most optimal city for the CHP plant integrated microgrid.

  4. Economic, energy and GHG emissions performance evaluation of a WhisperGen Mk IV Stirling engine μ-CHP unit in a domestic dwelling

    International Nuclear Information System (INIS)

    Conroy, G.; Duffy, A.; Ayompe, L.M.

    2014-01-01

    Highlights: • The performance of a Stirling engine MK IV micro-CHP unit was evaluated in a domestic dwelling in Ireland. • The performance of the micro-CHP was compare to that of a condensing gas boiler. • The micro-CHP unit resulted in an annual cost saving of €180 compared to the condensing gas boiler. • Electricity imported from the grid decreased by 20.8% while CO 2 emissions decreased by 16.1%. • The micro-CHP unit used 2889 kW h of gas more than the condensing gas boiler during one year of operation. - Abstract: This paper presents an assessment of the energy, economic and greenhouse gas emissions performances of a WhisperGen Mk IV Stirling engine μ-CHP unit for use in a conventional house in the Republic of Ireland. The energy performance data used in this study was obtained from a field trial carried out in Belfast, Northern Ireland during the period June 2004–July 2005 by Northern Ireland Electricity and Phoenix Gas working in collaboration with Whispertech UK. A comparative performance analysis between the μ-CHP unit and a condensing gas boiler revealed that the μ-CHP unit resulted in an annual cost saving of €180 with an incremental simple payback period of 13.8 years when compared to a condensing gas boiler. Electricity imported from the grid decreased by 20.8% while CO 2 emissions decreased by 16.1%. The μ-CHP unit used 2889 kW h of gas more than the condensing gas boiler

  5. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  6. EPA's Air Quality Rules for Reciprocating Internal Combustion Engines (RICE) and their Application to CHP (Webinar) – June 24, 2014

    Science.gov (United States)

    This webinar discusses the effect of EPA's air quality regulations on CHP facilities and stationary RICE, and describes how CHP systems can comply with air quality regulations by using stationary RICE.

  7. Distributed Control in a Network of Households with microCHP

    NARCIS (Netherlands)

    Larsen, Gunn; Scherpen, Jacquelien M.A.; van Foreest, Nicolaas

    2011-01-01

    This is an application of a dynamic price mechanism to distributed optimization of a network of houses which are both producers and consumers of electricity. One possibility for domestic generation is the Micro Combined Heat Power system (µCHP). We use a pricing mechanism based on dual

  8. Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2014-01-01

    Energy investments in Poland are currently focused on supercritical coal-fired unit technology. It is likely, that in the future, these units are to be integrated with carbon capture and storage (CCS) installations, which enable a significant reduction of greenhouse gas emissions into the atmosphere. A significant share of the energy market in Poland is constituted by coal-fired combined heat and power (CHP) plants. The integration of these units with CCS installation can be economically inefficient. However, the lack of such integration enhances the investment risk due to the possibility of appearing on the market in the near future high prices of emission allowances. The aforementioned factors and additional favorable conditions for the development of cogeneration can cause one to consider investing in large supercritical CHP plants. This paper presents the results of an economic analysis aimed at comparing three cases of CHP plants, one without an integrated CCS installation and two with such installations. The same steam cycle structure for all variants was adopted. The cases of integrated CHP plants differ from each other in the manner in which they recover heat. For the evaluation of the respective solutions, the break-even price of electricity and avoided emission cost were used. - Highlights: • The simulations of operation of CHP plants under changing load have been realized. • For analyzed cases sensitivity analyses of economic indices have been conducted. • Conditions of competitiveness for integration with CCS units have been identified. • Integration can be profitable if prices of allowance will reach high values, exceeding 50 €/MgCO 2 . • Others important factors are the investment costs and operation and maintenance costs

  9. Energy System Analysis of Large-Scale Integration of Wind Power

    International Nuclear Information System (INIS)

    Lund, Henrik

    2003-11-01

    The paper presents the results of two research projects conducted by Aalborg University and financed by the Danish Energy Research Programme. Both projects include the development of models and system analysis with focus on large-scale integration of wind power into different energy systems. Market reactions and ability to exploit exchange on the international market for electricity by locating exports in hours of high prices are included in the analyses. This paper focuses on results which are valid for energy systems in general. The paper presents the ability of different energy systems and regulation strategies to integrate wind power, The ability is expressed by three factors: One factor is the degree of electricity excess production caused by fluctuations in wind and CHP heat demands. The other factor is the ability to utilise wind power to reduce CO 2 emission in the system. And the third factor is the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system, in which 50 per cent of the electricity demand is produced in CHP, a number of future energy systems with CO 2 reduction potentials are analysed, i.e. systems with more CHP, systems using electricity for transportation (battery or hydrogen vehicles) and systems with fuel-cell technologies. For the present and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and grid stability and investments in electric heating, heat pumps and heat storage capacity. Also the potential of energy management has been analysed. The results of the analyses make it possible to compare short-term and long-term potentials of different strategies of large-scale integration of wind power

  10. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...

  11. Crystallization and preliminary crystallographic analysis of the human calcineurin homologous protein CHP2 bound to the cytoplasmic region of the Na{sup +}/H{sup +} exchanger NHE1

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ammar, Youssef [Department of Molecular Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Takeda, Soichi [Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Sugawara, Mitsuaki; Miyano, Masashi [Structural Biophysics Laboratory, RIKEN Harima Institute at SPring-8, Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan); Mori, Hidezo [Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Wakabayashi, Shigeo, E-mail: wak@ri.ncvc.go.jp [Department of Molecular Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan)

    2005-10-01

    Crystallization of the human CHP2–NHE1 binding domain complex. Calcineurin homologous protein (CHP) is a Ca{sup 2+}-binding protein that directly interacts with and regulates the activity of all plasma-membrane Na{sup +}/H{sup +}-exchanger (NHE) family members. In contrast to the ubiquitous isoform CHP1, CHP2 is highly expressed in cancer cells. To understand the regulatory mechanism of NHE1 by CHP2, the complex CHP2–NHE1 (amino acids 503–545) has been crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as precipitant. The crystals diffract to 2.7 Å and belong to a tetragonal space group, with unit-cell parameters a = b = 49.96, c = 103.20 Å.

  12. The Design, Construction, and Experimental Evaluation of a Compact Thermoacoustic-Stirling Engine Generator for Use in a micro-CHP Appliance

    Science.gov (United States)

    Wilcox, Douglas A., Jr.

    Micro combined heat and power or micro-CHP is the simultaneous generation of useful heat and electricity on a residential scale. The heat and electricity are produced at the point of use, avoiding the distribution losses associated with a centralized power plant. These appliances combine a conventional gas-fired condensing boiler with an electric power module capable of generating electricity from the heat of combustion. Currently, the leading power modules for micro-CHP appliances are free-piston Stirling engines (FPSEs) which can generate 1050 watts of electricity at a thermal-to-electric efficiency of 26%.[1] These external combustion engines have been under development for the last 25 years, with FPSE micro-CHP appliances only recently being introduced to the commercial market. Publications by developers assert unlimited service life and high efficiency, with low noise and emissions; but despite these claims, the actual reliability and cost of manufacturing has prevented their successful mass-market adoption. A Thermoacoustic-Stirling Engine Generator or TaSEG is one possible alternative to FPSE's. A TaSEG uses a thermoacoustic engine, or acoustic heat engine, which can efficiently convert high temperature heat into acoustic power while maintaining a simple design with fewer moving parts than traditional FPSE's. This simpler engine is coupled to an electrodynamic alternator capable of converting acoustic power into electricity. This thesis outlines the design, construction, and experimental evaluation of a TaSEG which is appropriate for integration with a gas burner inside of a residential micro- CHP appliance. The design methodology is discussed, focusing on how changes in the geometry affected the predicted performance. Details of its construction are given and the performance of the TaSEG is then outlined. The TaSEG can deliver 132 watts of electrical output power to an electric load with an overall measured thermal-to-electric (first law) efficiency of eta

  13. Financing CHP Projects at Wastewater Treatment Facilities with Clean Water State Revolving Funds

    Science.gov (United States)

    This factsheet provides information about CHP at wastewater treatment facilities, including applications, financial challenges, and financial opportunities, such as the Clean Water State Revolving Fund.

  14. Analysis of the impact of Heat-to-Power Ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Brandon, Nigel

    2011-01-01

    In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single-family hous......In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single...... according to the summer energy demand. The winter energy demand shows a Heat-to-Power Ratio which cannot be covered by the mCHP unit alone. To ensure that the mCHP system meets both the thermal and electrical energy demand over the entire year, an auxiliary boiler and a hot water storage tank need...

  15. On the Analysis and Fault-Diagnosis Tools for Small-Scale Heat and Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Arriagada, Jaime

    2003-12-01

    The deregulation of the electricity market drives utilities and independent power producers to operate heat and power plants as profit centers. In order to keep the economic margins on the credit side, the preferred measures have been to improve the electrical efficiency through changes in the hardware and boost the overall efficiency through e.g. combined heat and power (CHP) generation. The better understanding of global environmental issues is also pushing the development toward more advanced power plant technology that at the introduction stage may represent a risky option for the plant owner. Recently, there is a growing interest in improving the plant operation instead, and therefore the focus has been put on aspects related to the RAM (reliability-availability-maintenance) of the plants. Small- and mid-scale CHP plants, especially natural gas- and biomass-fueled, have been identified to be important to satisfy the needs of the energy market and help to mitigate the environmental factors in the short- and middle-term. One of the major challenges that these types of plants will face is attaining good RAM at the same time that they cannot support big O and M costs and a lot of personnel. Therefore the implementation of cheap and reliable IT-based tools that help to achieve this goal is essential. Most power plants today are equipped with modern distributed control systems that through a considerable number of sensors deliver large amounts of data to the control room. This paves the way to the introduction of intelligent tools - derived from the artificial intelligence technology - such as artificial neural networks (ANNs) and genetic algorithms (GA). ANNs have a learning ability that makes them useful for the construction of powerful non-physical models based on data from the process, while GA has shown to be a robust optimization method based on the principle of the 'survival-of-the-fittest'. Principally ANNs, but also to a lesser extent GA, have

  16. Flue gas condensation in straw fired CHP plants; Roeggaskondensation i halmfyrede kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-15

    The high price of straw and a general demand for increased use of straw in power and heat production are expected to result in an increased need for efficient fuel utilization. The use of flue gas condensation in straw fired CHP plants can contribute to a higher exploitation of energy, and at the same time open of the possibility of utilization of wet (cheaper) fuels without energy loss. Furthermore flue gas condensation can contribute to the flue gas cleaning process through removal of HCl and SO{sub 2} as well as in particle cleaning in wet cleaning processes. With starting point in a straw fired CHP plant the technical and economic consequences of installation of a flue gas condensation system are investigated. Fuel exploitation and power/heat production distribution is included in the investigation. (BA)

  17. A Stochastic Unit Commitment Model for a Local CHP Plant

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla

    2005-01-01

    Local CHP development in Denmark has during the 90’s been characterised by large growth primarily due to government subsidies in the form of feed-in tariffs. In line with the liberalisation process in the EU, Danish local CHPs of a certain size must operate on market terms from 2005. This paper...

  18. Development of a CHP/DH system for the new town of Parand: An opportunity to mitigate global warming in Middle East

    International Nuclear Information System (INIS)

    Mostafavi Tehrani, S. Saeed; Saffar-Avval, M.; Mansoori, Z.; Behboodi Kalhori, S.; Abbassi, A.; Dabir, B.; Sharif, M.

    2013-01-01

    As a result of the worldwide concern about global warming, projects that target reduction of greenhouse gas emissions have gained a lot of interest. The idea of this paper is to recover exhaust hot gases of an existing gas turbine power plant to meet dynamic thermal energy requirements of a residential area (the new town of Parand) situated in the suburb of Tehran, and also use the rest of the heat source potential to feed a steam turbine cycle. In close proximity to this town, there are two GT plants: Parand (954 MW e ) and Rudeshur (790 MW e ). For handling the CHP/STC/DH plant, two methods are considered along with thermal load following operation strategy: maximum power generation (MPG) and minimum fuel consumption (MFC). Then, the alternatives are compared in terms of annual PES, CO 2 abatement and NPV. For the best design from environmental viewpoint (Parand CHP-B), PES, CO 2 abatement and NPV are calculated to be 27.31%, 2.56 million tons and 1491 million dollar, respectively. -- Highlights: • To propose a technical and financial methodology to evaluate CHP/DH projects. • To address environmental advantages of CHPs with conventional plants. • To present practical operation strategies to increase benefits of CHP/DH plants. • To report/compare benefits of various CHP/DH alternatives for a case study in Iran. • To conduct a comprehensive energy analysis of proposed CHP/DH design options

  19. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance.

    Science.gov (United States)

    Li, Cuiling; Lv, Jian; Zhao, Xin; Ai, Xinghui; Zhu, Xinlei; Wang, Mengcheng; Zhao, Shuangyi; Xia, Guangmin

    2010-09-01

    The plant response to abiotic stresses involves both abscisic acid (ABA)-dependent and ABA-independent signaling pathways. Here we describe TaCHP, a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene extracted from bread wheat (Triticum aestivum), is differentially expressed during abiotic stress between the salinity-sensitive cultivar Jinan 177 and its tolerant somatic hybrid introgression cultivar Shanrong No.3. TaCHP expressed in the roots of seedlings at the three-leaf stage, and the transcript localized within the cells of the root tip cortex and meristem. TaCHP transcript abundance was higher in Shanrong No.3 than in Jinan 177, but was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA. When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performance in the face of salinity stress was improved, and the ectopic expression of TaCHP in Arabidopsis (Arabidopsis thaliana) also improved the ability of salt tolerance. The expression level of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABI1) was raised in the transgenic lines in the presence of salinity stress, while that of AtMYB15, AtABA2, and AtAAO3 was reduced in its absence. The presence in the upstream region of the TaCHP open reading frame of the cis-elements ABRE, MYBRS, and MYCRS suggests that it is a component of the ABA-dependent and -independent signaling pathways involved in the plant response to abiotic stress. We suggest that TaCHP enhances stress tolerance via the promotion of CBF3 and DREB2A expression.

  20. The effectiveness of heat pumps as part of CCGT-190/220 Tyumen CHP-1

    Directory of Open Access Journals (Sweden)

    Tretyakova Polina

    2017-01-01

    Full Text Available The article considers the possibility of increasing the energy efficiency of CCGT-190/220 Tyumen CHP-1 due to the utilization of low-grade heat given off in the condenser unit of the steam turbine. To assess the effectiveness of the proposed system, the indexes of thermal efficiency are given. As a result of a research the following conclusions are received: The heat-transfer agent heat pump, when heated uses low-grade heat TPP and increases heat output, but consumes the electricity. Using a heat pump is effective for a small temperature difference between the condenser and the evaporator. Good example is heating water before chemical treatment. This method is more efficient than using a replacement boiler and it is used in steam selection.

  1. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 - Emission factors and emission inventory for decentralised CHP production

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, M.

    2010-06-15

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity < 25MWe have been estimated based on project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines combusting residual oil and reciprocating engines combusting biomass producer gas based on wood. The emission factors for MSW incineration plants are much lower than the emission factors that were estimated for year 2000. The considerable reduction in the emission factors is a result of lower emission limit values in Danish legislation since 2006 that has lead to installation of new and improved flue gas cleaning systems in most MSW incineration plants. For CHP plants combusting wood or straw no major technical improvements have been implemented. The emission factors for natural gas fuelled reciprocating engines have been reduced since year 2000 as a result of technical improvements that have been carried out due to lower emission limit values in Danish legislation. The NO{sub x} emission factor for natural gas fuelled gas turbines has decreased 62 % since year 2000. This is a result of installation of low-NO{sub x} burners in almost all gas turbines that has been necessary to meet new emission limits in Danish legislation. The emission measurements programme included screening of the emissions of HCB, PCB, PCDD/-F and PBDD/-F. Compared to the Danish national emission decentralized CHP plants are major emission sources for CH{sub 4}, NO{sub x}, SO{sub 2}, heavy metals and HCB. (author)

  2. Energy transfers in large-scale and small-scale dynamos

    Science.gov (United States)

    Samtaney, Ravi; Kumar, Rohit; Verma, Mahendra

    2015-11-01

    We present the energy transfers, mainly energy fluxes and shell-to-shell energy transfers in small-scale dynamo (SSD) and large-scale dynamo (LSD) using numerical simulations of MHD turbulence for Pm = 20 (SSD) and for Pm = 0.2 on 10243 grid. For SSD, we demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers move towards lower wavenumbers as dynamo evolves, which is the reason for the growth of the magnetic fields at the large scales. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. For LSD, we show that the magnetic energy growth takes place via energy transfers from large-scale velocity field to large-scale magnetic field. We observe forward U2U and B2B energy flux, similar to SSD.

  3. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...... work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10PJ/year. The added value of fruit trees pruning...... biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost....

  4. The Phenomenology of Small-Scale Turbulence

    Science.gov (United States)

    Sreenivasan, K. R.; Antonia, R. A.

    I have sometimes thought that what makes a man's work classic is often just this multiplicity [of interpretations], which invites and at the same time resists our craving for a clear understanding. Wright (1982, p. 34), on Wittgenstein's philosophy Small-scale turbulence has been an area of especially active research in the recent past, and several useful research directions have been pursued. Here, we selectively review this work. The emphasis is on scaling phenomenology and kinematics of small-scale structure. After providing a brief introduction to the classical notions of universality due to Kolmogorov and others, we survey the existing work on intermittency, refined similarity hypotheses, anomalous scaling exponents, derivative statistics, intermittency models, and the structure and kinematics of small-scale structure - the latter aspect coming largely from the direct numerical simulation of homogeneous turbulence in a periodic box.

  5. Putney Basketville Site Biomass CHP Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  6. Operational Strategies for a Portfolio of Wind Farms and CHP Plants in a Two-Price Balancing Market

    DEFF Research Database (Denmark)

    Hellmers, Anna; Zugno, Marco; Skajaa, Anders

    2015-01-01

    In this paper we explore the portfolio effect of a system consisting of a Combined Heat and Power (CHP) plant and a wind farm. The goal is to increase the overall profit of the portfolio by reducing imbalances, and consequently their implicit penalty in a two-price balancing market for electricity......-horizon fashion, so that forecasts for heat demand, wind power production and market prices are updated at each iteration. We conclude that the portfolio strategy is the most profitable due to the two-price structure of the balancing market. This encourages producers to handle their imbalances outside the market........ We investigate two different operational strategies, which differ in whether the CHP plant and the wind farm are operated jointly or independently, and we evaluate their economic performance on a real case study based on a CHP-wind system located in the western part of Denmark. We present...

  7. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    International Nuclear Information System (INIS)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying; Duh, Yih-Shing

    2012-01-01

    Highlights: ► We analyzed fire and explosion incidents in a plant producing CHP and DCPO. ► Data from calorimeters reveal causes and phenomena associated with the incidents. ► The credible worst scenario was thermal explosion. ► Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile–butadiene–styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  8. Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Tichi, S.G.; Ardehali, M.M.; Nazari, M.E.

    2010-01-01

    The current subsidized energy prices in Iran are proposed to be gradually eliminated over the next few years. The objective of this study is to examine the effects of current and future energy price policies on optimal configuration of combined heat and power (CHP) and combined cooling, heating, and power (CCHP) systems in Iran, under the conditions of selling and not-selling electricity to utility. The particle swarm optimization algorithm is used for minimizing the cost function for owning and operating various CHP and CCHP systems in an industrial dairy unit. The results show that with the estimated future unsubsidized utility prices, CHP and CCHP systems operating with reciprocating engine prime mover have total costs of 5.6 and $2.9x10 6 over useful life of 20 years, respectively, while both systems have the same capital recovery periods of 1.3 years. However, for the same prime mover and with current subsidized prices, CHP and CCHP systems require 4.9 and 5.2 years for capital recovery, respectively. It is concluded that the current energy price policies hinder the promotion of installing CHP and CCHP systems and, the policy of selling electricity to utility as well as eliminating subsidies are prerequisites to successful widespread utilization of such systems.

  9. Future market relevance of CHP installations with electrical ratings from 1 to 1000 kW; Zukuenftige Marktbedeutung von WKK-Anlagen mit 1 - 1000 kW elektrischer Leistung

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Rigassi, R.

    2003-12-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the future market relevance of combined heat and power (CHP) installations with electrical ratings from 1 to 1000 kW. Developments over the past ten years are reviewed. Important reductions in the price of motor-driven CHP units and the price of the electrical power produced are noted and commented on. The technical market potential of CHP units and the degree to which this potential has been implemented are commented on. Work done, including CHP implementation in the industrial, commercial and residential areas, is commented on. Future developments both in the technical area as well as in commercial areas are commented on. Micro-gas-turbine based CHP systems are also discussed, as are fuel-cell based systems in both the higher and lower capacity power generation area. The prospects for CHP systems in general in the electricity generation area are discussed

  10. Are US utility standby rates inhibiting diffusion of customer-owned generating systems?

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2007-01-01

    New, small-scale electric generation technologies permit utility customers to generate some of their own electric power and to utilize waste heat for space heating and other applications at the building site. This combined heat and power (CHP) characteristic can provide significant energy-cost savings. However, most current US utility regulations leave CHP standby rate specification largely to utility discretion resulting in claims by CHP advocates that excessive standby rates are significantly reducing CHP-related savings and inhibiting CHP diffusion. The impacts of standby rates on the adoption of CHP are difficult to determine; however, because of the characteristically slow nature of new technology diffusion. This study develops an agent-based microsimulation model of CHP technology choice using cellular automata to represent new technology information dispersion and knowledge acquisition. Applying the model as an n-factorial experiment quantifies the impacts of standby rates on CHP technologies under alternative diffusion paths. Analysis of a sample utility indicates that, regardless of the likely diffusion process, reducing standby rates to reflect the cost of serving a large number of small, spatially clustered CHP systems significantly increases the adoption of these technologies

  11. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...... the two remaining can be located at positions with availability of high temperature sources by utilising the DH network to distribute the heat. A large amount of operational and economic constraints limit the applicability of HPs operated with natural working fluids, which may be the only feasible choice...... representation allows infeasible production. Using MIP or NLP optimisation, the number of operation hours and the total production of heat from HPs are significantly increased, as the HPs may be used to shave the load patterns of CHP units in significantly constrained energy systems. A MIP energy system model...

  12. Innovative Hybrid CHP systems for high temperature heating plant in existing buildings

    NARCIS (Netherlands)

    de Santoli, Livio; Lo Basso, Gianluigi; Nastasi, B.; d’Ambrosio Alfano, Francesca R.; Mazzarella and Piercarlo, Livio

    2017-01-01

    This paper deals with the potential role of new hybrid CHP systems application providing both electricity and heat which are compatible with the building architectural and landscape limitations. In detail, three different plant layout options for high temperature heat production along with the

  13. Application of biogas for combined heat and power production in the rural region

    International Nuclear Information System (INIS)

    Kozak, T.; Majchrzycka, A.

    2009-01-01

    The paper discusses combined production of heat and power (CHP) from biogas in a small-scale power plant placed in the rural region. Based on power and heat demands of the rural region and biomass supply, the CHP system was selected. Keywords: biogas, cogeneration

  14. The Significance of a Building’s Energy Consumption Profiles for the Optimum Sizing of a Combined Heat and Power (CHP System—A Case Study for a Student Residence Hall

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2018-06-01

    Full Text Available University buildings, such as student residence halls with year-round consistent energy demands, offer strong opportunities for Combined Heat and Power (CHP systems. The economic and environmental feasibility of a CHP project is strongly linked with its optimum sizing. This study aims to undertake such an assessment for a CHP system for a student residence hall located in London, the United Kingdom (UK. The study also aims to undertake a sensitivity analysis to investigate the effect of different parameters on the project’s economics. Necessary data are collected via interviews with the University’s Energy Manager. Modeling of the CHP system is performed using the London South Bank University (LSBU, London, the UK CHP model. Results demonstrate that optimum sizing of CHP is crucial for achieving higher economic and environmental benefits and strongly depends on the authenticity of the energy consumption data, based on which the CHP is being sized. Use of incorrect energy data could result in an undersized or oversized CHP system, where an oversized system will result in higher negative results compared to an undersized system. Finally, Monto Carlo statistical analysis shows that electricity price is the significant factor that could affect the project’s economics. With an increasing spark gap, the payback period decreases, and vice versa.

  15. Morocco - Small-Scale Fisheries

    Data.gov (United States)

    Millennium Challenge Corporation — The final performance evaluation roadmap for the Small-Scale Fisheries Project (PPA-MCC) is developed using a grid constructed around indicators relating to Project...

  16. Development of small-scale peat production; Pienturvetuotannon kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Erkkilae, A.; Kallio, E. [VTT Energy, Jyvaeskylae (Finland)

    1997-12-01

    The aim of the project is to develop production conditions, methods and technology of small-scale peat production to such a level that the productivity is improved and competitivity maintained. The aim in 1996 was to survey the present status of small-scale peat production, and research and development needs and to prepare a development plan for small-scale peat production for a continued project in 1997 and for the longer term. A questionnaire was sent to producers by mail, and its results were completed by phone interviews. Response was obtained from 164 producers, i.e. from about 75 - 85 % of small-scale peat producers. The quantity of energy peat produced by these amounted to 3.3 TWh and that of other peat to 265 000 m{sup 3}. The total production of energy peat (large- scale producers Vapo Oy and Turveruukki Oy included) amounted to 25.0 TWh in 1996 in Finland, of which 91 % (22.8 TWh) was milled peat and 9 % (2.2 TWh) of sod peat. The total production of peat other than energy peat amounted to 1.4 million m{sup 3}. The proportion of small-scale peat production was 13 % of energy peat, 11 % of milled peat and 38 % of sod peat. The proportion of small-scale producers was 18 % of other peat production. The results deviate clearly from those obtained in a study of small-scale production in the 1980s. The amount of small-scale production is clearly larger than generally assessed. Small-scale production focuses more on milled peat than on sod peat. The work will be continued in 1997. Based on development needs appeared in the questionnaire, the aim is to reduce environmental impacts and runoff effluents from small- scale production, to increase the efficiency of peat deliveries and to reduce peat production costs by improving the service value of machines by increasing co-operative use. (orig.)

  17. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying [Department of Occupational Safety and Health, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC (China); Duh, Yih-Shing, E-mail: yihshingduh@yahoo.com.tw [Department of Safety, Health and Environmental Engineering, National United University, No. 1 Lien-Da, Miaoli, Taiwan, ROC (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer We analyzed fire and explosion incidents in a plant producing CHP and DCPO. Black-Right-Pointing-Pointer Data from calorimeters reveal causes and phenomena associated with the incidents. Black-Right-Pointing-Pointer The credible worst scenario was thermal explosion. Black-Right-Pointing-Pointer Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  18. A Guide to Bundling Small-scale CDM Projects

    International Nuclear Information System (INIS)

    Mariyappan, J.; Bhardwaj, N.; De Coninck, H.; Van der Linden, N.

    2005-07-01

    Small-scale renewable energy and energy efficiency projects that fit the development needs of many developing countries, can potentially be supported via the Clean Development Mechanism (CDM), one of the Kyoto Protocol's flexible mechanisms for tackling climate change. However, there is concern that due to high transaction costs, as well as many existing barriers, very few investments will be made in small-scale projects, which are often the most suitable development option in countries such as India. In view of this, the 'bundling' together of appropriate small-scale projects on a regional basis has been proposed as a way in which funding can be leveraged from international sources and transaction costs reduced. IT Power, IT Power India and the Energy research Centre of the Netherlands (ECN) are carrying out a 2-year project to establish the capacity within India to enable individual small scale projects to be bundled as a single CDM project. Overall objectives are to develop the necessary institutional capabilities to formulate and implement small scale CDM projects in India; to provide a guide on how to bundle small scale projects under the CDM in developing countries; and to raise the awareness of the potential for investment in small scale energy projects which can gain funding through the CDM

  19. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...

  20. Development of a Wood Powder Fuelled 35 kW Stirling CHP Unit

    DEFF Research Database (Denmark)

    Pålsson, M.; Carlsen, Henrik

    2003-01-01

    For biomass fuelled CHP in sizes below 100 kW, Stirling engines are the only feasible alternative today. Using wood powder as fuel, the Stirling engine can be heated directly by the flame like when using a gaseous or liquid fuel burner. However, the combustion chamber will have to be much larger...... recirculation (CGR) a smaller air preheater can be used, while system efficiency will increase compared with using excess air for flame cooling. In a three-year project, a wood powder fuelled Stirling engine CHP unit will be developed and run in field test. The project will use the double-acting four......-cylinder Stirling engine SM3D with an electric output of 35 kW. This engine is a further development of the engine SM3B that has been developed at the Technical University of Denmark. The engine heater is being adapted for use with wood powder as fuel. During a two-year period a combustion system for this engine...

  1. Economic potentials of CHP connected to district heat systems in Germany. Implementation of the EU Efficiency Directive

    International Nuclear Information System (INIS)

    Eikmeier, Bernd

    2015-01-01

    The EU Efficiency Directive (2012/27/EU) is requiring all member states to carry out an evaluation of the potential for highly efficient CHP and the efficient use of district heating and cooling by December 2015. The German Federal Ministry of Economic Affairs and Energy appointed this task to the Fraunhofer Institute for Manufacturing and Advanced Materials, division for Energy Systems Analysis (formerly Bremer Energie Institut) in conjunction with other partners. The results for the sector district- and communal heating with CHP, sub-sectors private households, trade and services industry, are presented in this article.

  2. Small scale smugglers in Tamaulipas, Mexico

    Directory of Open Access Journals (Sweden)

    Simón Pedro Izcara Palacios

    2013-07-01

    Full Text Available Small-scale part-time smugglers are embedded in the migrant community itself. They work in the United States for several months before returning to their place of origin to organize, with the help of several assistants, a small group of migrants, who are transported where the coyotes themselves are going. This article analyses small-scale smuggling carried out by Tamaulipas' polleros, who transport to the United States, one or a few times per year, migrants from their hometowns or other neighboring areas in order to be employed in the farming sector.

  3. EFFICIENCY OF THE USE OF HEAT PUMPS ON THE CHP PLANTS

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2007-04-01

    Full Text Available The work is dedicated to the calculus of the efficiency of the use of heat pumps on the CHP plants. There are presented the interdependences between the pay-back period and NPV of heat pump and the price of 1 kWt of thermal power of heat pump and of the tariff of electricity.

  4. Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China

    International Nuclear Information System (INIS)

    Liao, Chunhui; Ertesvåg, Ivar S.; Zhao, Jianing

    2013-01-01

    The efficiencies of coal-fired CHP (combined heat and power) plants used in the district heating systems of China were analyzed with a thermodynamic model in the Hysys program. The influences of four parameters were evaluated by the Taguchi method. The results indicated that the extraction steam flow rate and extraction steam pressure are the most important parameters for energetic and exergetic efficiencies, respectively. The relations between extraction steam flow rate, extraction steam pressure and the energetic and exergetic efficiencies were investigated. The energetic and exergetic efficiencies were compared to the RPES (relative primary energy savings) and the RAI (relative avoided irreversibility). Compared to SHP (separate heat and power) generation, the CHP systems save fuel energy when extraction ratio is larger than 0.15. In the analysis of RAI, the minimum extraction ratio at which CHP system has advantages compared with SHP varies between 0.25 and 0.6. The higher extraction pressure corresponds to a higher value. Two of the examined plants had design conditions giving RPES close to zero and negative RAI. The third had both positive RPES and RAI at design conditions. The minimum extraction ratio can be used as an indicator to design or choose CHP plant for a given district heating system. - Highlights: • Extraction flow rate and extraction pressure are the most important parameters. • The exergetic efficiency depends on the energy to exergy ratio and system boundary. • The minimum extraction ratio is a key indicator for CHP plants. • Program Hysys and Taguchi method are used in this research

  5. An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom

    International Nuclear Information System (INIS)

    Kelly, Scott; Pollitt, Michael

    2010-01-01

    As global fuel reserves are depleted, alternative and more efficient forms of energy generation and delivery will be required. Combined heat and power with district heating (CHP-DH) provides an alternative energy production and delivery mechanism that is less resource intensive, more efficient and provides greater energy security than many popular alternatives. It will be shown that the economic viability of CHP-DH networks depends on several principles, namely (1) the optimisation of engineering and design principles; (2) organisational and regulatory frameworks; (3) financial and economic factors. It was found that in the long term DH is competitive with other energy supply and distribution technologies such as electricity and gas. However, in the short to medium term it is shown that economic risk, regulatory uncertainty and lock-in of existing technology are the most significant barriers to CHP-DH development. This research suggests that under the present regulatory and economic paradigm, the infrastructure required for DH networks remains financially prohibitive; the implementation of government policies are complicated and impose high transaction costs, while engineering solutions are frequently not implemented or economically optimised. If CHP-DH is going to play any part in meeting climate change targets then collaboration between public and private organisations will be required. It is clear from this analysis that strong local government involvement is therefore necessary for the co-ordination, leadership and infrastructural deployment of CHP-DH.

  6. Stirling Energy Module (SEM) as Micro-CHP; Stirling Energy Module (SEM) als Mini-BHKW

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, A.

    2006-07-01

    Since many years, a lot of effort is being put into the development of combined heat and power units (CHP) for the decentralised production of electric power. For long time, the main focus was on fuel cells. In the meantime, the Stirling technology, which is based upon classical mechanical engineering and innovative technical concepts, proceeded in its development as well. The following article describes the technology and the actual state of the development of the Stirling Energy Module (SEM) for the application as Micro-CHP in one-family-houses. SEM is based on a free-piston engine with a linear power generator, producing electric power while heating. The Stirling engine is planned the be introduced into the market as a replacement for the conventional heating systems within a couple of years. (author)

  7. Small-scale household biogas digesters

    DEFF Research Database (Denmark)

    Bruun, Sander; Jensen, Lars Stoumann; Khanh Vu, Van Thi

    2014-01-01

    There are a number of advantages to small-scale biogas production on farms, including savings on firewood or fossil fuels and reductions in odour and greenhouse gas emissions. For these reasons, governments and development aid agencies have supported the installation of biogas digesters. However......, biogas digesters are often poorly managed and there is a lack of proper distribution systems for biogas. This results in methane being released inadvertently through leaks in digesters and tubing, and intentionally when production exceeds demand. As methane has a global warming potential 25 times greater......% of the produced biogas is released, depending on the type of fuel that has been replaced. The limited information available as regards methane leaking from small-scale biogas digesters in developing countries indicates that emissions may be as high as 40%. With the best estimates of global numbers of small...

  8. Experimental development, 1D CFD simulation and energetic analysis of a 15 kw micro-CHP unit based on reciprocating internal combustion engine

    International Nuclear Information System (INIS)

    Muccillo, M.; Gimelli, A.

    2014-01-01

    Cogeneration is commonly recognized as one of the most effective solutions to achieve the increasingly stringent reduction in primary energy consumption and greenhouse emissions. This characteristic led to the adoption of specific directives promoting this technique. In addition, a strategic role in power reliability is recognized to distributed generation. The study and prototyping of cogeneration plants, therefore, has involved many research centres. This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant based on a LPG reciprocating engine designed, built and grid connected. The plant consists of a heat recovery system characterized by a single water circuit recovering heat from exhaust gases, from engine coolant and from the energy radiated by the engine within the shell hosting the plant. Some tests were carried out at whole open throttle and the experimental data were collected. However it was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. As the heat actually recovered depends on the user's thermal load, particularly from the required temperature's level, a comparison of the results for six types of users were performed: residential, hospital, office, commercial, sports, hotel. Both Italian legislative indexes IRE and LT were evaluated, as defined by A.E.E.G resolution n. 42/02 and subsequent updates, as well as the plant's total Primary Energy Saving. - Highlights: • This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant. • The 15 kW micro-CHP plant is based on a GPL reciprocating engine designed, built and grid connected. • Some tests were carried out at whole open throttle and the experimental data were collected. • It was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. • The analysed solution is particularly suited for

  9. Small-scale eruptive filaments on the quiet sun

    International Nuclear Information System (INIS)

    Hermans, L.M.; Martin, S.F.

    1986-01-01

    A study of a little known class of eruptive events on the quiet sun was conducted. All of 61 small-scale eruptive filamentary structures were identified in a systematic survey of 32 days of H alpha time-lapse films of the quiet sun acquired at Big Bear Solar Observatory. When fully developed, these structures have an average length of 15 arc seconds before eruption. They appear to be the small-scale analog of large-scale eruptive filaments observed against the disk. At the observed rate of 1.9 small-scale eruptive features per field of view per average 7.0 hour day, the rate of occurence of these events on the sun were estimated to be greater than 600 per 24 hour day.. The average duration of the eruptive phase was 26 minutes while the average lifetime from formation through eruption was 70 minutes. A majority of the small-scale filamentary sturctures were spatially related to cancelling magnetic features in line-of-sight photospheric magnetograms. Similar to large-scale filaments, the small-scale filamentary structures sometimes divided opposite polarity cancelling fragments but often had one or both ends terminating at a cancellation site. Their high numbers appear to reflect the much greater flux on the quiet sun. From their characteristics, evolution, and relationship to photospheric magnetic flux, it was concluded that the structures described are small-scale eruptive filaments and are a subset of all filaments

  10. Undermining the myths about small-scale mining

    NARCIS (Netherlands)

    Verbrugge, B.L.P.; Besmanos, B.

    2015-01-01

    Along with many other countries, in recent decades the Philippines –have witnessed a dramatic expansion of small-scale mining (SSM), mostly (but not exclusively)in the form of small-scale gold mining. As can be seen in the graph below (figure 1), official gold production fromSSM has

  11. An energetic-exergetic analysis of a residential CHP system based on PEM fuel cell

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.; Ottaviano, A.

    2011-01-01

    Highlights: → A zero-dimensional of a micro cogenerative (CHP) energy system based on a Proton Exchange Membrane fuel cell (PEMFC) has been developed. → The electrochemical model has been validated with experimental data. → The performances of this CHP system have been evaluated through a series of simulations. → An energy/exergy analysis of the simulation results has allowed to define the PEMFC optimal operating conditions. → The PEMFC optimal operating conditions detected are: 1 atm, 353.15 K and 100% RH. -- Abstract: The use of fuel cell systems for distributed residential power generation represents an interesting alternative to traditional thermoelectric plants due to their high efficiency and the potential recovering of the heat generated by the internal electrochemical reactions. In this paper the study of a micro cogenerative (CHP) energy system based on a Proton Exchange Membrane fuel cell (PEMFC) is reported. With the aim to evaluate the performance and then the feasibility of this non-conventional energy system, in consideration of thermal and electrical basic demand of a multifamily apartment blocks, a zero-dimensional PEMFC model in Aspen Plus environment has been developed. A simulations sequence has been carried out at different operating conditions of the fuel cell (varying temperature, pressure and relative humidity). Subsequently, on the basis of the obtained results, an energy/exergy analysis has been conducted to define the optimal operating conditions of the PEMFC that ensures the most efficient use of the energy and exergy inputs.

  12. Analyzing Sustainable Energy Opportunities for a Small Scale Off-Grid Facility: A Case Study at Experimental Lakes Area (ELA), Ontario

    Science.gov (United States)

    Duggirala, Bhanu

    This thesis explored the opportunities to reduce energy demand and renewable energy feasibility at an off-grid science "community" called the Experimental Lakes Area (ELA) in Ontario. Being off-grid, ELA is completely dependent on diesel and propane fuel supply for all its electrical and heating needs, which makes ELA vulnerable to fluctuating fuel prices. As a result ELA emits a large amount of greenhouse gases (GHG) for its size. Energy efficiency and renewable energy technologies can reduce energy consumption and consequently energy cost, as well as GHG. Energy efficiency was very important to ELA due to the elevated fuel costs at this remote location. Minor upgrades to lighting, equipment and building envelope were able to reduce energy costs and reduce load. Efficient energy saving measures were recommended that save on operating and maintenance costs, namely, changing to LED lights, replacing old equipment like refrigerators and downsizing of ice makers. This resulted in a 4.8% load reduction and subsequently reduced the initial capital cost for biomass by 27,000, by 49,500 for wind power and by 136,500 for solar power. Many alternative energies show promise as potential energy sources to reduce the diesel and propane consumption at ELA including wind energy, solar heating and biomass. A biomass based CHP system using the existing diesel generators as back-up has the shortest pay back period of the technologies modeled. The biomass based CHP system has a pay back period of 4.1 years at 0.80 per liter of diesel, as diesel price approaches $2.00 per liter the pay back period reduces to 0.9 years, 50% the generation cost compared to present generation costs. Biomass has been successfully tried and tested in many off-grid communities particularly in a small-scale off-grid setting in North America and internationally. Also, the site specific solar and wind data show that ELA has potential to harvest renewable resources and produce heat and power at competitive

  13. A MATHEMATICAL MODEL OF CHP 2000 TYPE PROGRESSIVE GEAR

    Directory of Open Access Journals (Sweden)

    Paweł Lonkwic

    2016-12-01

    Full Text Available The project of CHP2000 type progressive gear has been presented in the article. The offered solution from its construction point of view differs from the existing solutions due to the application of Belleville springs packets supporting the braking roller cam and achieving a flexible range of the gear loading. The standard concept of the gear loading within a mathematical and a geometrical model has been presented in the article. The proposed solution can be used in the friction lifts with the loading capacity from 8500 up to 20000 N.

  14. The development for small scale soft X-ray spectrometer

    International Nuclear Information System (INIS)

    Sun Kexu; Jiang Shaoen; Yi Rongqing; Cui Yanli

    2004-12-01

    For the development of small-scale soft X-ray spectrometer, first, some small-scale soft X-ray detection elements are developed, it is included GaAs irradiated with neutron, GaAs irradiated with proton, multi-layer mirror, plane mirror and small scale X-ray diode et al. Soft X-ray spectrometers built of multi-layer mirror-GaAs (with neutron irradiation), and plane mirror-small-scale XRD, and plane mirror-GaAs (with proton irradiation) are prepared. These spectrometers are examined in Shen Guang-II laser facility, and some external estimation are given. (authors)

  15. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    Directory of Open Access Journals (Sweden)

    S Hoyt Peckham

    2007-10-01

    Full Text Available Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna.30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS. We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1 observe two small-scale fleets that operated closest to the high use area and 2 through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1, rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge.Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in

  16. Small-scale fisheries bycatch jeopardizes endangered Pacific loggerhead turtles.

    Science.gov (United States)

    Peckham, S Hoyt; Maldonado Diaz, David; Walli, Andreas; Ruiz, Georgita; Crowder, Larry B; Nichols, Wallace J

    2007-10-17

    Although bycatch of industrial-scale fisheries can cause declines in migratory megafauna including seabirds, marine mammals, and sea turtles, the impacts of small-scale fisheries have been largely overlooked. Small-scale fisheries occur in coastal waters worldwide, employing over 99% of the world's 51 million fishers. New telemetry data reveal that migratory megafauna frequent coastal habitats well within the range of small-scale fisheries, potentially producing high bycatch. These fisheries occur primarily in developing nations, and their documentation and management are limited or non-existent, precluding evaluation of their impacts on non-target megafauna. 30 North Pacific loggerhead turtles that we satellite-tracked from 1996-2005 ranged oceanwide, but juveniles spent 70% of their time at a high use area coincident with small-scale fisheries in Baja California Sur, Mexico (BCS). We assessed loggerhead bycatch mortality in this area by partnering with local fishers to 1) observe two small-scale fleets that operated closest to the high use area and 2) through shoreline surveys for discarded carcasses. Minimum annual bycatch mortality in just these two fleets at the high use area exceeded 1000 loggerheads year(-1), rivaling that of oceanwide industrial-scale fisheries, and threatening the persistence of this critically endangered population. As a result of fisher participation in this study and a bycatch awareness campaign, a consortium of local fishers and other citizens are working to eliminate their bycatch and to establish a national loggerhead refuge. Because of the overlap of ubiquitous small-scale fisheries with newly documented high-use areas in coastal waters worldwide, our case study suggests that small-scale fisheries may be among the greatest current threats to non-target megafauna. Future research is urgently needed to quantify small-scale fisheries bycatch worldwide. Localizing coastal high use areas and mitigating bycatch in partnership with small-scale

  17. Rolling at small scales

    DEFF Research Database (Denmark)

    Nielsen, Kim L.; Niordson, Christian F.; Hutchinson, John W.

    2016-01-01

    The rolling process is widely used in the metal forming industry and has been so for many years. However, the process has attracted renewed interest as it recently has been adapted to very small scales where conventional plasticity theory cannot accurately predict the material response. It is well....... Metals are known to be stronger when large strain gradients appear over a few microns; hence, the forces involved in the rolling process are expected to increase relatively at these smaller scales. In the present numerical analysis, a steady-state modeling technique that enables convergence without...

  18. A multi scale model for small scale plasticity

    International Nuclear Information System (INIS)

    Zbib, Hussein M.

    2002-01-01

    Full text.A framework for investigating size-dependent small-scale plasticity phenomena and related material instabilities at various length scales ranging from the nano-microscale to the mesoscale is presented. The model is based on fundamental physical laws that govern dislocation motion and their interaction with various defects and interfaces. Particularly, a multi-scale model is developed merging two scales, the nano-microscale where plasticity is determined by explicit three-dimensional dislocation dynamics analysis providing the material length-scale, and the continuum scale where energy transport is based on basic continuum mechanics laws. The result is a hybrid simulation model coupling discrete dislocation dynamics with finite element analyses. With this hybrid approach, one can address complex size-dependent problems, including dislocation boundaries, dislocations in heterogeneous structures, dislocation interaction with interfaces and associated shape changes and lattice rotations, as well as deformation in nano-structured materials, localized deformation and shear band

  19. Small-scale dynamo at low magnetic Prandtl numbers

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S.

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓϑ, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm(1-ϑ)/(1+ϑ). We furthermore discuss the critical magnetic Reynolds number Rmcrit, which is required for small-scale dynamo action. The value of Rmcrit is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rmcrit provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  20. Small-scale dynamo at low magnetic Prandtl numbers.

    Science.gov (United States)

    Schober, Jennifer; Schleicher, Dominik; Bovino, Stefano; Klessen, Ralf S

    2012-12-01

    The present-day Universe is highly magnetized, even though the first magnetic seed fields were most probably extremely weak. To explain the growth of the magnetic field strength over many orders of magnitude, fast amplification processes need to operate. The most efficient mechanism known today is the small-scale dynamo, which converts turbulent kinetic energy into magnetic energy leading to an exponential growth of the magnetic field. The efficiency of the dynamo depends on the type of turbulence indicated by the slope of the turbulence spectrum v(ℓ)∝ℓ^{ϑ}, where v(ℓ) is the eddy velocity at a scale ℓ. We explore turbulent spectra ranging from incompressible Kolmogorov turbulence with ϑ=1/3 to highly compressible Burgers turbulence with ϑ=1/2. In this work, we analyze the properties of the small-scale dynamo for low magnetic Prandtl numbers Pm, which denotes the ratio of the magnetic Reynolds number, Rm, to the hydrodynamical one, Re. We solve the Kazantsev equation, which describes the evolution of the small-scale magnetic field, using the WKB approximation. In the limit of low magnetic Prandtl numbers, the growth rate is proportional to Rm^{(1-ϑ)/(1+ϑ)}. We furthermore discuss the critical magnetic Reynolds number Rm_{crit}, which is required for small-scale dynamo action. The value of Rm_{crit} is roughly 100 for Kolmogorov turbulence and 2700 for Burgers. Furthermore, we discuss that Rm_{crit} provides a stronger constraint in the limit of low Pm than it does for large Pm. We conclude that the small-scale dynamo can operate in the regime of low magnetic Prandtl numbers if the magnetic Reynolds number is large enough. Thus, the magnetic field amplification on small scales can take place in a broad range of physical environments and amplify week magnetic seed fields on short time scales.

  1. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    International Nuclear Information System (INIS)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku

    2010-01-01

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO 2 -intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO 2 -intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  2. Small-scale soft-bodied robot with multimodal locomotion

    Science.gov (United States)

    Hu, Wenqi; Lum, Guo Zhan; Mastrangeli, Massimo; Sitti, Metin

    2018-02-01

    Untethered small-scale (from several millimetres down to a few micrometres in all dimensions) robots that can non-invasively access confined, enclosed spaces may enable applications in microfactories such as the construction of tissue scaffolds by robotic assembly, in bioengineering such as single-cell manipulation and biosensing, and in healthcare such as targeted drug delivery and minimally invasive surgery. Existing small-scale robots, however, have very limited mobility because they are unable to negotiate obstacles and changes in texture or material in unstructured environments. Of these small-scale robots, soft robots have greater potential to realize high mobility via multimodal locomotion, because such machines have higher degrees of freedom than their rigid counterparts. Here we demonstrate magneto-elastic soft millimetre-scale robots that can swim inside and on the surface of liquids, climb liquid menisci, roll and walk on solid surfaces, jump over obstacles, and crawl within narrow tunnels. These robots can transit reversibly between different liquid and solid terrains, as well as switch between locomotive modes. They can additionally execute pick-and-place and cargo-release tasks. We also present theoretical models to explain how the robots move. Like the large-scale robots that can be used to study locomotion, these soft small-scale robots could be used to study soft-bodied locomotion produced by small organisms.

  3. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land: Case of Croatia

    International Nuclear Information System (INIS)

    Pfeifer, Antun; Dominković, Dominik Franjo; Ćosić, Boris; Duić, Neven

    2016-01-01

    Highlights: • Potential of unused agricultural land for biomass and fruit production is assessed. • Technical and energy potential of biomass from SRC and fruit pruning is calculated. • Economic feasibility of CHP plants utilizing biomass from SRC is presented for Croatia. • Sensitivity analysis and recommendations for shift toward feasibility are provided. - Abstract: In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused for food crops, represent significant potential for growing biomass that could be used for energy. This biomass could be used to supply power plants of up to 15 MW_e in accordance with heat demands of the chosen locations. The methodology for regional energy potential assessment was elaborated in previous work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10 PJ/year. The added value of fruit trees pruning biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost.

  4. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  5. Spatial distribution of pollutants in the area of the former CHP plant

    Science.gov (United States)

    Cichowicz, Robert

    2018-01-01

    The quality of atmospheric air and level of its pollution are now one of the most important issues connected with life on Earth. The frequent nuisance and exceedance of pollution standards often described in the media are generated by both low emission sources and mobile sources. Also local organized energy emission sources such as local boiler houses or CHP plants have impact on air pollution. At the same time it is important to remember that the role of local power stations in shaping air pollution immission fields depends on the height of emitters and functioning of waste gas treatment installations. Analysis of air pollution distribution was carried out in 2 series/dates, i.e. 2 and 10 weeks after closure of the CHP plant. In the analysis as a reference point the largest intersection of streets located in the immediate vicinity of the plant was selected, from which virtual circles were drawn every 50 meters, where 31 measuring points were located. As a result, the impact of carbon dioxide, hydrogen sulfide and ammonia levels could be observed and analyzed, depending on the distance from the street intersection.

  6. Small-scale rural bakery; Maaseudun pienleipomo

    Energy Technology Data Exchange (ETDEWEB)

    Alkula, R.; Malin, A.; Reisbacka, A.; Rytkoenen, A.

    1997-12-31

    The purpose of the study was to clarify how running a small-scale bakery can provide a farming enterprise with its primary or secondary source of livelihood. A questionnaire and interviews were conducted to clarify the current situation concerning small-scale rural bakeries. The experimental part of the study looked into different manners of production, devices used in preparing and processing of doughs, and baking of different kinds of pastries in different types of ovens in laboratory conditions. Based on the results obtained, solutions serving as examples were formulated for small-scale bakeries run with various modes and methods of production. Additionally, market reviews were conducted concerning appropriate equipment for small-scale bakeries. Baking for commercial purposes on the farm is still something new as ca. 80 % of the enterprises covered by the study had operated for no more than five years. Many entrepreneurs (ca. 70 %) expressed a need for supplementary knowledge from some field related to baking. Rural bakeries are small-scale operations with one-person enterprises amounting to 69 % and two-person enterprises to 29 %. Women are primarily responsible for baking. On average, the enterprises baked seven different products, but the amounts baked were usually small. In the experimental part of the study, loaves of rye bread were baked using five different types and sizes of oven accommodating 5-22 loaves of rye bread at the one time. The oven type was found not to affect bread structure. The energy consumption for one ovenful varied between 2.4 and 7.0 kWh, i.e. 0.25-0.43 kWh per kilo. When baking rolls (30-140 rolls at a time), the power consumption varied between 1.2 and 3.5 kWh, i.e. 0.32-0.53 kWh per kilo. The other devices included in the comparative study were an upright deep-freezer, a multi-temperature cabinet and a fermenting cabinet. Furthermore, making rolls by hand was compared to using a machine for the same job, and likewise manual

  7. A Co-Powered Biomass and Concentrated Solar Power Rankine Cycle Concept for Small Size Combined Heat and Power Generation

    Directory of Open Access Journals (Sweden)

    Eileen Tortora

    2013-03-01

    Full Text Available The present work investigates the matching of an advanced small scale Combined Heat and Power (CHP Rankine cycle plant with end-user thermal and electric load. The power plant consists of a concentrated solar power field co-powered by a biomass furnace to produce steam in a Rankine cycle, with a CHP configuration. A hotel was selected as the end user due to its high thermal to electric consumption ratio. The power plant design and its operation were modelled and investigated by adopting transient simulations with an hourly distribution. The study of the load matching of the proposed renewable power technology and the final user has been carried out by comparing two different load tracking scenarios, i.e., the thermal and the electric demands. As a result, the power output follows fairly well the given load curves, supplying, on a selected winter day, about 50 GJ/d of thermal energy and the 6 GJ/d of electric energy, with reduced energy dumps when matching the load.

  8. Elimination of restraints on the propagation of combined heat and power (CHP) generation systems in Switzerland; Beseitigung von Hemmnissen bei der Verbreitung von Waermekraftkopplung (WKK) in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, S.; Landis, F. [Interface Politikstudien Forschung Beratung, Luzern (Switzerland); Lienhard, A.; Marti Locher, F. [Universitaet Bern, Kompetenzzentrum fuer Public Management (KPM), Bern (Switzerland); Krummenacher, S. [Enerprice Partners AG, Technopark Luzern, Root Laengenbold (Switzerland)

    2009-04-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the results of study initiated by the SFOE that was to investigate the reasons for the low level of proliferation of CHP technology in Switzerland. The two main questions asked - which factors inhibit the use of CHP in particular application areas and which energy-policy measures can remove such obstacles - are discussed. The use of CHP in various areas of application from waste incineration plants through to units used in residential buildings is analysed and commented on. Recommendations on measures that can be taken to enhance the use of CHP are discussed. Three strategy variants available to the public services area are presented and discussed. It is noted that a consensus between players in the technical and political areas is necessary

  9. CHP and Local Governments: Case Studies and EPA’s New Guide (Webinar) – September 30, 2014

    Science.gov (United States)

    This webinar presents two case studies of CHP development projects undertaken through cooperation between private companies and government entities, and introduces an EPA guide to assist local governments to reduce greenhouse gas (GHG) emissions.

  10. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  11. Optimal fuel-mix in CHP plants under a stochastic permit price: Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli, E-mail: pauli.lappi@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikka, Kimmo, E-mail: kimmo.ollikka@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikainen, Markku, E-mail: markku.ollikainen@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion.

  12. Techno-economic performance analysis of bio-oil based Fischer-Tropsch and CHP synthesis platform

    International Nuclear Information System (INIS)

    Ng, Kok Siew; Sadhukhan, Jhuma

    2011-01-01

    The techno-economic potential of the UK poplar wood and imported oil palm empty fruit bunch derived bio-oil integrated gasification and Fischer-Tropsch (BOIG-FT) systems for the generation of transportation fuels and combined heat and power (CHP) was investigated. The bio-oil was represented in terms of main chemical constituents, i.e. acetic acid, acetol and guaiacol. The compositional model of bio-oil was validated based on its performance through a gasification process. Given the availability of large scale gasification and FT technologies and logistic constraints in transporting biomass in large quantities, distributed bio-oil generations using biomass pyrolysis and centralised bio-oil processing in BOIG-FT system are technically more feasible. Heat integration heuristics and composite curve analysis were employed for once-through and full conversion configurations, and for a range of economies of scale, 1 MW, 675 MW and 1350 MW LHV of bio-oil. The economic competitiveness increases with increasing scale. A cost of production of FT liquids of 78.7 Euro/MWh was obtained based on 80.12 Euro/MWh of electricity, 75 Euro/t of bio-oil and 116.3 million Euro/y of annualised capital cost. -- Highlights: → Biomass to liquid process and gas to liquid process synthesis. → Biorefinery economic analysis. → Pyrolysis oil to biofuel. → Gasification and Fischer-Tropsch. → Process integration, pinch analysis and energy efficiency.

  13. Responsible and Sustainable Tourism : Strengthening Small-Scale ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Responsible and Sustainable Tourism : Strengthening Small-Scale ... to work with the Costa Rican association of small and medium tourism enterprises of the ... as the hub of a network of small service providers operating within the model. ... marketing and outreach, distance learning, and the integration of services that are ...

  14. Biofuels in Africa: growing small-scale opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Sulle, Emmanuel [Tanzania Natural Resources Forum (Tanzania, United Republic of); Fauveaud, Swan [Renewable Energy Group, Environment and Solidarity (France); Vermeulen, Sonja

    2009-11-15

    Global demand for climate-friendly transport fuels is driving vast commercial biofuels projects in developing countries. At the opposite end of the spectrum is small-scale bioenergy production. This offers a way for the poor to meet their energy needs and diversify their livelihoods without compromising food security or environmental integrity. Governments hope that it will be possible to combine the advantages of both large- and small-scale production of biofuels to generate energy security and GDP at the national level, while opening up local opportunities. In Africa, most governments are keen to attract foreign direct investment, and see big business as a strategic means of scaling up rural development. But there is a middle way. By encouraging business models that bridge large and small enterprise, African governments could show that commercial competition can go hand in hand with a range of real local benefits.

  15. Health and Safety Management for Small-scale Methane Fermentation Facilities

    Science.gov (United States)

    Yamaoka, Masaru; Yuyama, Yoshito; Nakamura, Masato; Oritate, Fumiko

    In this study, we considered health and safety management for small-scale methane fermentation facilities that treat 2-5 ton of biomass daily based on several years operation experience with an approximate capacity of 5 t·d-1. We also took account of existing knowledge, related laws and regulations. There are no qualifications or licenses required for management and operation of small-scale methane fermentation facilities, even though rural sewerage facilities with a relative similar function are required to obtain a legitimate license. Therefore, there are wide variations in health and safety consciousness of the operators of small-scale methane fermentation facilities. The industrial safety and health laws are not applied to the operation of small-scale methane fermentation facilities. However, in order to safely operate a small-scale methane fermentation facility, the occupational safety and health management system that the law recommends should be applied. The aims of this paper are to clarify the risk factors in small-scale methane fermentation facilities and encourage planning, design and operation of facilities based on health and safety management.

  16. Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2012-01-01

    A high temperature-proton exchange membrane (HT-PEMFC)-based micro-combined-heat-and-power (CHP) residential system is designed and optimized, using a genetic algorithm (GA) optimization strategy. The proposed system consists of a fuel cell stack, steam methane reformer (SMR) reactor, water gas...

  17. In-situ corrosion investigation at Masnedø CHP plant - a straw-fired power plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Various austenitic and ferritic steels were exposed on a water-cooled probe in the superheater area of a straw-fired CHP plant. The temperature of the probe ranged from 450-600°C and the period of exposure was 1400 hours. The rate of corrosion was assessed based on unattacked metal remaining...

  18. Small-scale impacts as potential trigger for landslides on small Solar system bodies

    Science.gov (United States)

    Hofmann, Marc; Sierks, Holger; Blum, Jürgen

    2017-07-01

    We conducted a set of experiments to investigate whether millimetre-sized impactors impinging on a granular material at several m s-1 are able to trigger avalanches on small, atmosphereless planetary bodies. These experiments were carried out at the Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) drop tower facility in Bremen, Germany to facilitate a reduced gravity environment. Additional data were gathered at Earth gravity levels in the laboratory. As sample materials we used a ground Howardites, Eucrites and Diogenites (HED) meteorite and the Johnson Space Center (JSC) Mars-1 Martian soil simulant. We found that this type of small-scale impact can trigger avalanches with a moderate probability, if the target material is tilted to an angle close to the angle of repose. We additionally simulated a small-scale impact using the discrete element method code esys-particle. These simulations show that energy transfer from impactor to the target material is most efficient at low- and moderate-impactor inclinations and the transferred energy is retained in particles close to the surface due to a rapid dissipation of energy in lower material layers driven by inelastic collisions. Through Monte Carlo simulations we estimate the time-scale on which small-scale impacts with the observed characteristics will trigger avalanches covering all steep slopes on the surface of a small planetary body to be of the order 105 yr.

  19. Comparison between full- and small-scale sensory assessments of air quality

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Sabikova, J.; Lagercrantz, Love Per

    2002-01-01

    Thirty-nine untrained subjects made small- and full-scale evaluations of the acceptability of the quality of air at 22 deg.C and 40% RH, polluted by either carpet, felt floor covering, painted gypsum board, linoleum or chipboard. Small-scale evaluations were made on the air extracted from 200-L......-scale sensory ratings of acceptability of air polluted by carpet and by linoleum were systematically better than small-scale assessments, but not for the other three materials. Calculated sensory emission rates from carpet and linoleum were significantly lower in full scale than in small scale. When modelling...

  20. Still Another Book of Small-Scale Motets

    OpenAIRE

    Rodríguez-Garcia, Esperanza

    2016-01-01

    UID/EAT/00693/2013 PTDC/CPC-MMU/0314/2014 ‘Still another book of small-scale motets: Sebastián Raval’s Motecta (1600)’ Lodovico Viadana’s Cento concerti ecclesiastici (Venice: Giacomo Vincenti, 1602), a collection of small-scale motets with basso continuo, is still considered ‘chronologically the first publication to include a basso continuo with sacred vocal music’. It has become the epitome of the advent of the Baroque in Italian sacred music. But, as has been argued in recent times, ...

  1. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2011-10-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.

  2. Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings

    International Nuclear Information System (INIS)

    Bianchi, Michele; Ferrari, Claudio; Melino, Francesco; Peretto, Antonio

    2012-01-01

    Highlights: ► The profitability of Thermo-Photo-Voltaic generator systems for a single-family dwelling is analyzed. ► Heat and electricity load profiles depending on hour of the day are considered for an entire year. ► The effect of Thermo-Photo-Voltaic generator size is evaluated for different household utilities. ► Results allow to identify the conditions for the energetic and economic convenience of Thermo-Photo-Voltaic system. -- Abstract: The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic gas furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

  3. Is small beautiful? A multicriteria assessment of small-scale energy technology applications in local governments

    International Nuclear Information System (INIS)

    Burton, Jonathan; Hubacek, Klaus

    2007-01-01

    In its 2003 White Paper the UK government set ambitious renewable energy targets. Local governments and households have an increasing role in the overall energy system as consumers, suppliers of smaller-scale applications and citizens discussing energy projects. In this paper, we consider if small-scale or large-scale approaches to renewable energy provision can achieve energy targets in the most socially, economically and environmentally (SEE) effective way. We take a local case study of renewable energy provision in the Metropolitan Borough of Kirklees in Yorkshire, UK, and apply a multi-criteria decision analysis methodology to compare the small-scale schemes implemented in Kirklees with large-scale alternatives. The results indicate that small-scale schemes are the most SEE effective, despite large-scale schemes being more financially viable. The selection of the criteria on which the alternatives are assessed and the assigned weights for each criterion are of crucial importance. It is thus very important to include the relevant stakeholders to elicit this information

  4. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems

    DEFF Research Database (Denmark)

    Chen, Min; Lund, Henrik; Rosendahl, Lasse

    2010-01-01

    benefits, together with the environmental impact of this deployment, will then be estimated. By using the Danish thermal energy system as a paradigm, this paper will consider the TEG application to district heating systems and power plants through the EnergyPLAN model, which has been created to design......High efficiency thermoelectric generators (TEG) can recover waste heat from both industrial and private sectors. Thus, the development and deployment of TEG may represent one of the main drives for technological change and fuel substitution. This paper will present an analysis of system efficiency...... configurations for combustion systems. The feasible deployment of TEG in various CHP plants will be examined in terms of heat source temperature range, influences on CHP power specification and thermal environment, as well as potential benefits. The overall conversion efficiency improvements and economic...

  5. Small is beautiful: Marine small-scale fisheries catches from the South-West Maluku Regency

    Science.gov (United States)

    Hutubessy, BG; Mosse, JW; Hayward, P.

    2017-10-01

    The fisheries data supplied by fisheries agency have served as the primary tool for regional fisheries statistics. However, it is recognized these data are incomplete and often underestimate actual catches, particularly for small-scale fisheries. There is no widely accepted definition of small-scale fisheries or global data on number of small-scale fishers and their catches. This study reconstructed total marine catches from 1980 to 2015 for South-west Maluku (MBD) regency, by applying an established catch construction approach utilizing all available quantitative and qualitative data, combined with assumption-based estimations and interpolations. As newly established regency since 2009, there is lack of fisheries data available which is needed for fisheries management. Fishers’ knowledge is important information taken from to construct long-term fisheries data. Estimated total fish withdrawal from MBD waters was 86,849.66 tonnes during 1980 - 2015, dominated by pelagic fishes. Consistency of estimated total removal and total landings at MBD regency play important role in small-scale fisheries management and this method of visualizing the history of fishery from poor-data condition might be an optimistic effort.

  6. A price mechanism for supply demand matching in local grid of households with micro-CHP

    NARCIS (Netherlands)

    Larsen, G.K.H.; van Foreest, N.D.; Scherpen, J.M.A.

    2012-01-01

    This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household

  7. Modeling and parametric study of a 1 kWe HT-PEMFC-based residential micro-CHP system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    A detailed thermodynamic, kinetic and geometric model of a micro-CHP (Combined-Heatand-Power) residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC) technology is developed, implemented and validated. HT-PEMFC technology is investigated as a possible candidate...

  8. Chemical Transfer (Single Small-Scale) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Chemical Transfer Facility (CTF)  is the only U.S. single small-scale  facility, a single repository for the Army’s...

  9. Technical efficiency of small-scale fishing households in Tanzanian ...

    African Journals Online (AJOL)

    This paper examines the technical efficiency of Tanzanian small-scale fishing households, based on data from two coastal villages located near Bagamoyo and Zanzibar, using a stochastic frontier model with technical inefficiency. The estimated mean technical efficiency of small-scale fishing households was 52%, showing ...

  10. Fuel cell power plants for decentralised CHP applications

    International Nuclear Information System (INIS)

    Ohmer, Martin; Mattner, Katja

    2015-01-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO 2 and other emissions (NO x , SO x and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  11. Economic Analysis of Small Scale Fish Pond Production in Oguta ...

    African Journals Online (AJOL)

    What are the costs and returns of small-scale fishpond enterprises? What problems hinder the development of small-scale fishpond production? Data were collected with the aid of structured questionnaires and interviews. Descriptive statistics, gross margin and likert scale were employed in data analysis. Gross margin ...

  12. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F.; Joergensen, P.F. [KanEnergi, Rud (Norway)

    1997-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  13. Biomass for energy - small scale technologies

    Energy Technology Data Exchange (ETDEWEB)

    Salvesen, F; Joergensen, P F [KanEnergi, Rud (Norway)

    1998-12-31

    The bioenergy markets and potential in EU region, the different types of biofuels, the energy technology, and the relevant applications of these for small-scale energy production are reviewed in this presentation

  14. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  15. Engineering development for a small-scale recirculator experiment

    International Nuclear Information System (INIS)

    Newton, M.A.; Deadrick, F.J.; Hanks, R.L.; Hawkins, S.A.; Holm, K.A.; Kirbie, H.C.; Karpenko, V.P.; Nattrass, L.A.; Longinotti, D.B.

    1995-01-01

    Lawrence Livermore National Laboratory (LLNL) is evaluating the physics and technology of recirculating induction accelerators for heavy-ion inertial-fusion drivers. As part of this evaluation, the authors are building a small-scale recirculator to demonstrate the concept and to use as a test bed for the development of recirculator technologies. System designs have been completed and components are presently being designed and developed for the small-scale recirculator. This paper discusses results of the design and development activities that are presently being conducted to implement the small-scale recirculator experiments. An, overview of the system design is presented along with a discussion of the implications of this design on the mechanical and electrical hardware. The paper focuses primarily on discussions of the development and design of the half-lattice period hardware and the advanced solid-state modulator

  16. Micro CHP as a new business model. Trianel distribution system decentralised production; Mikro-BHKW als neues Geschaeftsmodell. Trianel-Netzwerk Dezentrale Erzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Michel [Trianel GmbH, Aachen (Germany)

    2013-04-29

    About four years ago, an energy distribution company in Hamburg (Federal Republic of Germany) reported on mini and micro CHP in the media. When it comes to a decentralized production of electricity and heat, however public utilities are the perfect partner: the decentralized power generation in flexible adjustable combined heat and power plants offers the opportunity to provide highly efficient heat and power directly at the place of consumption. In addition, regional and municipal utilities score with the theme mini and micro CHP for their customers due to the support on the way to more energy efficiency.

  17. THE DEVELOPMENT OF SMALL-SCALE BUSINESS IN RUSSIA, TYPES OF FUNDING

    Directory of Open Access Journals (Sweden)

    Kirill O. Voronin

    2015-01-01

    Full Text Available In Russia small-scale business originated in the end of 1980s duringRestructuring. It has been developing as fast as Russian economics.Unlike large industrial companies, which just continued to run businessas they used to, small-scale businessmen had to start from scratch ordisaffiliate with large organizations. Basically, in 1990-s small-scale business as a financial institute was self-regulated due to its highcriminalization and nonpayment of tax.For a period of only 25 years small-scale business has improved muchand now provides well-being to the country. The improvement happeneddue to the following factors:- propitious economic and political climate of the country against thebackground of global economy and the years of restricting- important and useful measures for economic development were taken - important and useful measures for development of small-scale enterprises were takenThe development of this new financial institute is quite fast, but historyhas other examples of such phenomenon. In the 21st century RussianFederation adopted experience of advanced countries and imposed it onits historic experience. However, we can’t say that small-scale business is on its top of development in our country. Nowadays development of small-scale business is one of the priorities of the Russian government.

  18. Transaction Cost Of Borrowing Among Small Scale Farmers In ...

    African Journals Online (AJOL)

    The study examined transaction cost of borrowing among small scale farmers in Rivers State, Nigeria. Data was collected with the aid of structured questionnaire from 109 randomly selected small scale farmers in the study area. Data analysis was by frequency, percentage and mean. It was found that farmers mostly ...

  19. Evaluation of the environmental sustainability of a micro CHP system fueled by low-temperature geothermal and solar energy

    International Nuclear Information System (INIS)

    Ruzzenenti, Franco; Bravi, Mirko; Tempesti, Duccio; Salvatici, Enrica; Manfrida, Giampaolo; Basosi, Riccardo

    2014-01-01

    Highlights: • Binary, ORC technology avoids CO 2 , but raises questions about environmental impact. • We proposed a micro-size system that combines geothermal energy with solar energy. • The small scale and the solar energy input edges the energy profitability. • The system’s performance is appreciable if applied to existing wells. • The feasibility of exploiting abandoned wells is preliminarily evaluated. - Abstract: In this paper we evaluate the environmental sustainability of a small combined heat and power (CHP) plant operating through an Organic Rankine Cycle (ORC). The heat sources of the system are from geothermal energy at low temperature (90–95 °C) and solar energy. The designed system uses a solar field composed only of evacuated, non-concentrating solar collectors, and work is produced by a single turbine of 50 kW. The project addresses an area of Tuscany, but it could be reproduced in areas where geothermal energy is extensively developed. Therefore, the aim is to exploit existing wells that are either unfit for high-enthalpy technology, abandoned or never fully developed. Furthermore, this project aims to aid in downsizing the geothermal technology in order to reduce the environmental impact and better tailor the production system to the local demand of combined electric and thermal energy. The environmental impact assessment was performed through a Life Cycle Analysis and an Exergy Life Cycle Analysis. According to our findings the reservoir is suitable for a long-term exploitation of the designed system, however, the sustainability and the energy return of this latter is edged by the surface of the heat exchanger and the limited running hours due to the solar plant. Therefore, in order to be comparable to other renewable resources or geothermal systems, the system needs to develop existing wells, previously abandoned

  20. Small signal gain measurements in a small scale HF overtone laser

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, C.F.; Hewett, K.B.; Manke, G.C. II; Hager, G.D. [Air Force Research Laboratory, Directed Energy Directorate, 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117-5776 (United States); Crowell, P.G. [Northrup Grumman Information Technology, Science and Technology Operating Unit, Advanced Technology Division, P.O. Box 9377, Albuquerque, NM 87119-9377 (United States); Truman, C.R. [Mechanical Engineering Department, University of New Mexico, Albuquerque, NM 87131 (United States)

    2003-07-01

    The overtone gain medium of a small-scale HF overtone laser was probed using a sub-Doppler tunable diode laser. Two-dimensional spatially resolved small signal gain and temperature maps were generated for several ro-vibrational transitions in the HF (v=2{yields}v=0) overtone band. Our results compare well with previous measurements of the overtone gain in a similar HF laser device. (orig.)

  1. A Compound Herbal Preparation (CHP) in the Treatment of Children with ADHD: A Randomized Controlled Trial

    Science.gov (United States)

    Katz, M.; Adar Levine, A.; Kol-Degani, H.; Kav-Venaki, L.

    2010-01-01

    Objective: Evaluation of the efficacy of a patented, compound herbal preparation (CHP) in improving attention, cognition, and impulse control in children with ADHD. Method: Design: A randomized, double-blind, placebo-controlled trial. Setting: University-affiliated tertiary medical center. Participants: 120 children newly diagnosed with ADHD,…

  2. Comparison Between Overtopping Discharge in Small and Large Scale Models

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, Hans F.

    2006-01-01

    The present paper presents overtopping measurements from small scale model test performed at the Haudraulic & Coastal Engineering Laboratory, Aalborg University, Denmark and large scale model tests performed at the Largde Wave Channel,Hannover, Germany. Comparison between results obtained from...... small and large scale model tests show no clear evidence of scale effects for overtopping above a threshold value. In the large scale model no overtopping was measured for waveheights below Hs = 0.5m as the water sunk into the voids between the stones on the crest. For low overtopping scale effects...

  3. Atomistic Simulations of Small-scale Materials Tests of Nuclear Materials

    International Nuclear Information System (INIS)

    Shin, Chan Sun; Jin, Hyung Ha; Kwon, Jun Hyun

    2012-01-01

    Degradation of materials properties under neutron irradiation is one of the key issues affecting the lifetime of nuclear reactors. Evaluating the property changes of materials due to irradiations and understanding the role of microstructural changes on mechanical properties are required for ensuring reliable and safe operation of a nuclear reactor. However, high dose of neuron irradiation capabilities are rather limited and it is difficult to discriminate various factors affecting the property changes of materials. Ion beam irradiation can be used to investigate radiation damage to materials in a controlled way, but has the main limitation of small penetration depth in the length scale of micro meters. Over the past decade, the interest in the investigations of size-dependent mechanical properties has promoted the development of various small-scale materials tests, e.g. nanoindentation and micro/nano-pillar compression tests. Small-scale materials tests can address the issue of the limitation of small penetration depth of ion irradiation. In this paper, we present small-scale materials tests (experiments and simulation) which are applied to study the size and irradiation effects on mechanical properties. We have performed molecular dynamics simulations of nanoindentation and nanopillar compression tests. These atomistic simulations are expected to significantly contribute to the investigation of the fundamental deformation mechanism of small scale irradiated materials

  4. Fair trade for coffee producing small-scale farmers in Mexico

    Directory of Open Access Journals (Sweden)

    Nam kwon Mun

    2012-10-01

    Full Text Available The agriculture played an important role in the industrialization process of Mexico. However, the agricultural policy of State has isolated small scale farmers, giving priority just to large agricultural exporters. This study analyzes the implications that can have fair trade for the Mexican small scale farmers. The fair trade tries to cover the production cost and basic necessities for the small scale farmers, making direct ties between producers and consumers. This type of linkage guarantees the minimum price and the extra social payment to the small scale farmers, grouped in cooperatives o associations.Coffee is one of the most known fair trade product, and Mexico is one of the most important coffer exporters of the world. The fair trade of coffee production where many small farmers work is carried out by cooperative like UCIRI (Unión de Comunidades Indígenas de la Región Istmo. The case study shows that fair trade cannot provide complete answers to the all problems that have small farmers. But, since fair trade tries to promote small farmers well-being and many small farmers could get rid of extreme poverty thanks to fair trade, it might be possible to say that fair trade can be one valuable option for the sustainable development of small farmers.

  5. Comparative analysis of organizational obstacles to CHP/DH

    Energy Technology Data Exchange (ETDEWEB)

    Ruedig, W.

    1986-04-01

    An explanation is given of the vast differences between the countries of Western Europe in the adoption of combined heat and power (CHP) for district heating (DH). The history of this technology in FR Germany and the UK is analysed in detail, and experiences of other countries are reviewed. It is concluded that the over centralization of the electricity supply industry is a major obstacle in the widespread adoption of combined heat and power and district heating. Significant improvements of energy efficiency would thus require organizational reforms giving greater powers to local energy organizations. This, however, should not imply total decentralization of energy supply. Instead, a two-tier system is proposed in which central organizations remain responsible for bulk supply but where local or regional bodies are in charge of all gas, electricity and heat supplies to the final user.

  6. Exposure of Small-Scale Gold Miners in Prestea to Mercury, Ghana, 2012.

    Science.gov (United States)

    Mensah, Ebenezer Kofi; Afari, Edwin; Wurapa, Frederick; Sackey, Samuel; Quainoo, Albert; Kenu, Ernest; Nyarko, Kofi Mensah

    2016-01-01

    Small-scale gold miners in Ghana have been using mercury to amalgamate gold for many years. Mercury is toxic even at low concentration. We assessed occupational exposure of small-scale gold miners to mercury in Prestea, a gold mining town in Ghana . We conducted a cross-sectional study in which we collected morning urine samples from 343 small-scale gold miners and tested for elemental mercury. Data on small-scale gold miner's socio-demographics, adverse health effects and occupational factors for mercury exposure were obtained and analyzed using SPSS Version 16 to determine frequency and percentage. Bivariate analysis was used to determine occupational factors associated with mercury exposure at 95% confidence level. The mean age of the small-scale gold miners was 29.5 ±9.6 years, and 323(94.20%) were males. One hundred and sixty (46.65%) of the small-scale gold miners had urine mercury above the recommended exposure limit (mercury exposure among those who have previously worked at other small-scale gold mines (χ 2 =4.96, p=0.03). The use of personal protective equipment among the small-scale gold miners was low. Retorts, which are globally recommended for burning amalgam, were not found at mining sites. A large proportion of small-scale gold miners in Prestea were having mercury exposure in excess of occupational exposure limits, and are at risk of experiencing adverse health related complications. Ghana Environmental Protection Agency should organize training for the miners.

  7. Smoke emissions in small-scale burning of wood

    International Nuclear Information System (INIS)

    Tuomi, S.

    1993-01-01

    The article is based on research carried out in Finland and Sweden on the subject of emissions of smoke in the small-scale burning of wood and the factors affecting it. Due to incomplete combustion, small-scale burning of wood is particularly typified by its emissions of solid particles, carbon monoxide, hydrocarbons and PAH compounds. Included among factors influencing the volume of emissions are the load imposed on the heating device, the manner in which the fuel is fed into the firebox, fuel quality, and heating device structure. Emissions have been found to be at their minimum in connection with heating systems based on accumulators. Emissions can be significantly reduced by employing state-of-the-art technology, appropriate ways of heating and by dry fuel. A six-year bioenergy research programme was launched early in 1993 in Finland. All leading research institutions and enterprises participate in this programme. Reduction of emissions has been set as the central goal in the part dealing with small-scale burning of wood. Application of catalytic combustion in Finnish-made heating devices is one of the programmes development targets. Up to this date, the emissions produced in the small-scale burning of wood are not mentioned in official regulations pertaining to approved heating devices. In Sweden tar emissions are applied as a measure of the environmental impact imposed by heating devices

  8. Small-scale microwave background anisotropies implied by large-scale data

    Science.gov (United States)

    Kashlinsky, A.

    1993-01-01

    In the absence of reheating microwave background radiation (MBR) anisotropies on arcminute scales depend uniquely on the amplitude and the coherence length of the primordial density fluctuations (PDFs). These can be determined from the recent data on galaxy correlations, xi(r), on linear scales (APM survey). We develop here expressions for the MBR angular correlation function, C(theta), on arcminute scales in terms of the power spectrum of PDFs and demonstrate their accuracy by comparing with detailed calculations of MBR anisotropies. We then show how to evaluate C(theta) directly in terms of the observed xi(r) and show that the APM data give information on the amplitude, C(O), and the coherence angle of MBR anisotropies on small scales.

  9. Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II)

    International Nuclear Information System (INIS)

    Song, Kee Nam; Lee, Heong Yeon; Hong, Sung Deok; Park, Hong Yoon

    2011-01-01

    The IHX (intermediate heat exchanger) of a VHTR (very high-temperature reactor) is a core component that transfers the high heat generated by the VHTR at 950 .deg. C to a hydrogen production plant. Korea Atomic Energy Research Institute manufactured a small-scale prototype of a PCHE (printed circuit heat exchanger) that was being considered as a candidate for the IHX. In this study, as a part of high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and elastic structural analysis for the small-scale PCHE prototype under small-scale gas-loop test conditions. The modeling and analysis were performed as a precedent study prior to the performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE. Moreover, these results will be used in the design of a medium-scale PCHE prototype

  10. Small-scale power plant potential in Finland

    International Nuclear Information System (INIS)

    Helynen, S.

    1993-01-01

    The presentation discusses the small-scale power plant potential in Finland. The study of the potential is limited to W-scale power plants producing both electric power and heat using solid fuels. The basic power plant dimensioning and electric power load determination is based on traditional boiler and gas turbine technology. The possible sites for power plants are communities using district heating, and industrialized sites needing process steam or heat. In 1990 70 % (17 TWh) of district heat was produced by gas turbines. Ten communities have an own back-pressure power plant, and 40 communities buy heat from industrial plants, owing back-pressure power generation. Additionally about 40 communes buy district heat from companies, owned by power companies and industry. Estimates of small-scale power plant potential has been made plant wise on the basis of district heat loads and industrial heat needs. The scale of the plants has been limited to scale 3 MWe or more. The choosing of the fuel depends on the local conditions. The cheapest indigenous fuels in many communes are industrial wood wastes, and both milled and sod peat. The potential of steam technology based small-scale power plants has been estimated to be about 50 plants in 1992/1993, the total power of which is 220-260 MW. The largest estimate is base situation, in which there would be energy cooperation between the communes and industry. The fuel used by the power plants would be about 5.4-6.6 TWh/a corresponding to 270-330 million FIM/a. The total investment costs of the plants would be about 2.0 billion FIM. The plants would employ about 250 persons, and the fuel supply (wood or peat) about 100 persons

  11. Small-Scale Renewable Energy Converters for Battery Charging

    Directory of Open Access Journals (Sweden)

    Mohd Nasir Ayob

    2018-03-01

    Full Text Available This paper presents two wave energy concepts for small-scale electricity generation. In the presented case, these concepts are installed on the buoy of a heaving, point-absorbing wave energy converter (WEC for large scale electricity production. In the studied WEC, developed by Uppsala University, small-scale electricity generation in the buoy is needed to power a tidal compensating system designed to increase the performance of the WEC in areas with high tides. The two considered and modeled concepts are an oscillating water column (OWC and a heaving point absorber. The results indicate that the OWC is too small for the task and does not produce enough energy. On the other hand, the results show that a hybrid system composed of a small heaving point absorber combined with a solar energy system would be able to provide a requested minimum power of around 37.7 W on average year around. The WEC and solar panel complement each other, as the WEC produces enough energy by itself during wintertime (but not in the summer, while the solar panel produces enough energy in the summer (but not in the winter.

  12. Empirical spatial econometric modelling of small scale neighbourhood

    Science.gov (United States)

    Gerkman, Linda

    2012-07-01

    The aim of the paper is to model small scale neighbourhood in a house price model by implementing the newest methodology in spatial econometrics. A common problem when modelling house prices is that in practice it is seldom possible to obtain all the desired variables. Especially variables capturing the small scale neighbourhood conditions are hard to find. If there are important explanatory variables missing from the model, the omitted variables are spatially autocorrelated and they are correlated with the explanatory variables included in the model, it can be shown that a spatial Durbin model is motivated. In the empirical application on new house price data from Helsinki in Finland, we find the motivation for a spatial Durbin model, we estimate the model and interpret the estimates for the summary measures of impacts. By the analysis we show that the model structure makes it possible to model and find small scale neighbourhood effects, when we know that they exist, but we are lacking proper variables to measure them.

  13. Prospects for city-scale combined heat and power in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, John [Finnpower, High Wycombe (United Kingdom); Amos, John [Hoare Lea and Partners, Bristol (United Kingdom); Hutchinson, David [London Research Centre (United Kingdom); Denman, Malcolm [Sheffield Hallam Univ. (United Kingdom). School of Engineering

    1996-07-01

    City-scale combined heat and power/district heating (CHP/DH) brings to a number of European countries major social and commercial benefits which have been almost totally overlooked in the UK. To bring CHP/DH to the UK, it is necessary first to convince people of the benefits and then to persuade the Government to introduce the necessary legislation to allow the establishment of true city energy utilities on European lines. Neither task will be easy because of the resultant effect on the British fuel industries. The necessary changes must inevitably be gradual and there would, in any case, be a substantial role for the fuel industries - which they must be made aware of. (author)

  14. Formation and fate of marine snow: small-scale processes with large- scale implications

    Directory of Open Access Journals (Sweden)

    Thomas Kiørboe

    2001-12-01

    Full Text Available Marine snow aggregates are believed to be the main vehicles for vertical material transport in the ocean. However, aggregates are also sites of elevated heterotrophic activity, which may rather cause enhanced retention of aggregated material in the upper ocean. Small-scale biological-physical interactions govern the formation and fate of marine snow. Aggregates may form by physical coagulation: fluid motion causes collisions between small primary particles (e.g. phytoplankton that may then stick together to form aggregates with enhanced sinking velocities. Bacteria may subsequently solubilise and remineralise aggregated particles. Because the solubilization rate exceeds the remineralization rate, organic solutes leak out of sinking aggregates. The leaking solutes spread by diffusion and advection and form a chemical trail in the wake of the sinking aggregate that may guide small zooplankters to the aggregate. Also, suspended bacteria may enjoy the elevated concentration of organic solutes in the plume. I explore these small-scale formation and degradation processes by means of models, experiments and field observations. The larger scale implications for the structure and functioning of pelagic food chains of export vs. retention of material will be discussed.

  15. Advanced m-CHP fuel cell system based on a novel bio-ethanol fluidized bed membrane reformer

    NARCIS (Netherlands)

    Viviente, J.L.; Melendez Rey, J.; Pacheco Tanaka, D.A.; Gallucci, F.; Spallina, V.; Manzolini, G.; Foresti, S.; Palma, V.; Ruocco, C.; Roses, L.

    2017-01-01

    Distributed power generation via Micro Combined Heat and Power (m-CHP) systems, has been proven to over-come disadvantages of centralized generation since it can give savings in terms of Primary Energy consumption and energy costs. The FluidCELL FCH JU/FP7 project aims at providing the Proof of

  16. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...

  17. Renewables and CHP with District Energy in Support of Sustainable Communities

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Chris

    2010-09-15

    This paper addresses the powerful idea of connecting many energy users to environmentally optimum energy sources through integrated community energy systems. Such systems require piping networks for distributing thermal energy, i.e., district heating and cooling (DHC) systems. The possibilities and advantages of the application of integrated energy concepts are discussed, including the economic and environmental benefits of integrating localized electrical generating systems (CHP), transportation systems, industrial processes and other thermal energy requirements. Examples of a number of operating systems are provided. Some of the R and D carried out by the IEA Implementing Agreement on District Heating and Cooling is also described.

  18. The hazardous nature of small scale underground mining in Ghana

    Directory of Open Access Journals (Sweden)

    K.J. Bansah

    2016-01-01

    Full Text Available Small scale mining continues to contribute significantly to the growth of Ghana's economy. However, the sector poses serious dangers to human health and the environment. Ground failures resulting from poorly supported stopes have led to injuries and fatalities in recent times. Dust and fumes from drilling and blasting of ore present health threats due to poor ventilation. Four prominent small scale underground mines were studied to identify the safety issues associated with small scale underground mining in Ghana. It is recognized that small scale underground mining in Ghana is inundated with unsafe acts and conditions including stope collapse, improper choice of working tools, absence of personal protective equipment and land degradation. Inadequate monitoring of the operations and lack of regulatory enforcement by the Minerals Commission of Ghana are major contributing factors to the environmental, safety and national security issues of the operations.

  19. Energy versus economic effectiveness in CHP (combined heat and power) applications: Investigation on the critical role of commodities price, taxation and power grid mix efficiency

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Rossi, Mosè

    2016-01-01

    Starting from PES (primary energy saving) and CSR (cost saving ratio) definitions the work pinpoints a “grey area” in which CHP (combined heat and power – cogeneration) units can operate with profit and negative PES. In this case, CHP can be profitably operated with lower efficiency with respect to separate production of electrical and thermal energy. The work defines the R-index as the ratio between the cost of fuel and electricity. The optimal value of R-index for which CHP units operate with both environmental benefit (PES > 0) and economic profitability (CSR > 0) is the reference value of electrical efficiency, η_e_l_-_r_e_f, of separate production (national power grid mix). As a consequence, optimal R-index varies from Country to Country. The work demonstrates that the value of R corresponds to the minimum value of electrical efficiency for which any power generator operates with profit. The paper demonstrates that, with regard to the profitability of cogeneration, the ratio between the cost of commodities is more important than their absolute value so that different taxation of each commodity can be a good leverage for energy policy makers to promote high efficiency cogeneration, even in the absence of an incentive mechanism. The final part of the study presents an analysis on micro-CHP technologies payback times for different European Countries. - Highlights: • Investigation of the grey area where CHP profitably operates also with negative PES. • Study starts from definition of primary energy saving PES and cost saving ratio CSR. • Definition of the R-index as the ratio between the cost of fuel and electricity. • The optimal value of R for which the “grey area” disappears is R = η_e_l_-_r_e_f. • R is also the value of η_e_l for which any electric generator profitably operates.

  20. Economic efficiency among small scale poultry farmers in Imo State ...

    African Journals Online (AJOL)

    ... household size and extension, were found to be the significant factors that account for the observed variation in efficiency among the small scale poultry farmers. Keywords: economic efficiency, small scale poultry farmers, stochastic frontier production model. International Journal of Agriculture and Rural Development Vol.

  1. Pervious concrete fill in Pearl-Chain Bridges: Using small-scale results in full-scale implementation

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Truelsen, R.

    2016-01-01

    distribution and strength properties is determined for 800 mm high blocks cast in different numbers of layers, and (2) full-scale implementation in a 26 m long Pearl-Chain Bridge. With a layer thickness of 27 cm, the small-scale tests indicated homogenous results; however, for the full-scale implementation......Pearl-Chain Bridge technology is a new prefabricated arch solution for highway bridges. This study investigates the feasibility of pervious concrete as a filling material in Pearl-Chain Bridges. The study is divided into two steps: (1) small-scale tests where the variation in vertical void...

  2. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, Marianne

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been...... estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines...

  3. Small scale wood combustion in Germany. Recent research and trends

    Energy Technology Data Exchange (ETDEWEB)

    Maier, H.; Unterberger, S.; Hein, K.R.G. [Institute of Process Engineering and Power Plant Technology, University of Stuttgart (Germany)

    1998-12-31

    To reduce Europe`s greenhouse gas emission CO{sub 2} it is a challenging task utilising biomass fuels as there are wood or wood residues from the forest industry. The utilisation can be done either in commercially operated medium (> 50 kWth) or full scale (> 1 MWth) decentralised heat and power stations or in small scale (< 50 kWth) domestic heating systems. In small scale heating systems untreated wood logs, wood briquette or wood pellets and in few cases wood chips are used. The present market in Germany is focused on the use of wood logs. Presently, the use of wood pellets in small scale automatically operated boilers < 15 kW especially for low energy houses is discussed more and more. Since 1980 the installation of new wood fired small scale domestic heating systems reached a significant size due to the interest of the customers to have a alternative inhouse heating system and to increase the living comfort. In 1994 the amount of sold small scale heaters in Germany were in total about 133.258 units. The thermal power of in 1994 sold units is estimated of about 1350 MW which is a significant size in total with regard to domestic heating purposes. Since few years there is a clear market trend in Germany towards the installation of open fire stoves. Due to this trend in Germany and the design characteristic of open fire stoves using huge glass doors of glass windows it is very difficult to achieve a further reduction of emissions like CO and unburned volatile hydrocarbons (VOC). In the text the requirements for modern small scale wood fired stoves in Germany as well as the actual stage and trend of research and development (R and D) are discussed 4 refs.

  4. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    Science.gov (United States)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of

  5. Assessing the Efficiency of Small-Scale and Bottom Trawler Vessels in Greece

    Directory of Open Access Journals (Sweden)

    Dario Pinello

    2016-07-01

    Full Text Available This study explores the technical and scale efficiency of two types of Greek fishing vessels, small-scale vessels and bottom trawlers, using a bias-corrected input-oriented Data Envelopment Analysis model. Moreover, the associations between efficiency scores and vessel’s and skipper’s characteristics are also explored. The results indicate that small-scale vessels achieve a very low average technical efficiency score (0.42 but a much higher scale efficiency score (0.81. Conversely, bottom trawlers achieve lower scale but higher technical efficiency scores (0.68 and 0.73, respectively. One important finding of this study is that the technical efficiency of small-scale vessels, in contrast to trawlers, is positively associated with the experience of the skipper. In a looser context, it can be said that small-scale fisheries mainly rely on skill, whereas bottom trawlers rely more on technology. This study concludes that there is space for improvement in efficiency, mainly for small-scale vessels, which could allow the achievement of the same level of output by using reduced inputs.

  6. Impact of small-scale structures on estuarine circulation

    Science.gov (United States)

    Liu, Zhuo; Zhang, Yinglong J.; Wang, Harry V.; Huang, Hai; Wang, Zhengui; Ye, Fei; Sisson, Mac

    2018-05-01

    We present a novel and challenging application of a 3D estuary-shelf model to the study of the collective impact of many small-scale structures (bridge pilings of 1 m × 2 m in size) on larger-scale circulation in a tributary (James River) of Chesapeake Bay. We first demonstrate that the model is capable of effectively transitioning grid resolution from 400 m down to 1 m near the pilings without introducing undue numerical artifact. We then show that despite their small sizes and collectively small area as compared to the total channel cross-sectional area, the pilings exert a noticeable impact on the large-scale circulation, and also create a rich structure of vortices and wakes around the pilings. As a result, the water quality and local sedimentation patterns near the bridge piling area are likely to be affected as well. However, when evaluating over the entire waterbody of the project area, the near field effects are weighed with the areal percentage which is small compared to that for the larger unaffected area, and therefore the impact on the lower James River as a whole becomes relatively insignificant. The study highlights the importance of the use of high resolution in assessing the near-field impact of structures.

  7. Small Scale Regenerative Desulfurization of Biogas

    NARCIS (Netherlands)

    Linders, M.J.G.; Stille, L.C.; Miedema, M.C.; Groenestijn, J.W. van; Goetheer, E.L.V.

    2016-01-01

    The application of small scale biogas digesters to supply biogas to households in developing countries is well established. The biogas is used for different applications, amongst other cooking. Generally, no further treatment of the biogas is applied. Hydrogen Sulfide (H2S) is present in varying

  8. Socio-technical study of small-scale gold mining in Suriname

    NARCIS (Netherlands)

    Seccatore, J; de Theije, M.E.M.

    2017-01-01

    Small-scale gold mining is Suriname’s main economic sector, producing about two thirds of the nation’s gold. Despite this, the sector is only very loosely regulated and most small-scale mining activities are informal. Surinamese miners are only a minority: the majority are Brazilian migrants, who

  9. a Model Study of Small-Scale World Map Generalization

    Science.gov (United States)

    Cheng, Y.; Yin, Y.; Li, C. M.; Wu, W.; Guo, P. P.; Ma, X. L.; Hu, F. M.

    2018-04-01

    With the globalization and rapid development every filed is taking an increasing interest in physical geography and human economics. There is a surging demand for small scale world map in large formats all over the world. Further study of automated mapping technology, especially the realization of small scale production on a large scale global map, is the key of the cartographic field need to solve. In light of this, this paper adopts the improved model (with the map and data separated) in the field of the mapmaking generalization, which can separate geographic data from mapping data from maps, mainly including cross-platform symbols and automatic map-making knowledge engine. With respect to the cross-platform symbol library, the symbol and the physical symbol in the geographic information are configured at all scale levels. With respect to automatic map-making knowledge engine consists 97 types, 1086 subtypes, 21845 basic algorithm and over 2500 relevant functional modules.In order to evaluate the accuracy and visual effect of our model towards topographic maps and thematic maps, we take the world map generalization in small scale as an example. After mapping generalization process, combining and simplifying the scattered islands make the map more explicit at 1 : 2.1 billion scale, and the map features more complete and accurate. Not only it enhance the map generalization of various scales significantly, but achieve the integration among map-makings of various scales, suggesting that this model provide a reference in cartographic generalization for various scales.

  10. Small-Scale Spray Releases: Additional Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the

  11. Electric Energy Consumption of the Full Scale Research Biogas Plant “Unterer Lindenhof”: Results of Longterm and Full Detail Measurements

    Directory of Open Access Journals (Sweden)

    Thomas Jungbluth

    2012-12-01

    Full Text Available This work thoroughly evaluates the electric power consumption of a full scale, 3 × 923 m3 complete stirred tank reactor (CSTR research biogas plant with a production capacity of 186 kW of electric power. The plant was fed with a mixture of livestock manure and renewable energy crops and was operated under mesophilic conditions. This paper will provide an insight into precise electric energy consumption measurements of a full scale biogas plant over a period of two years. The results showed that a percentage of 8.5% (in 2010 and 8.7% (in 2011 of the produced electric energy was consumed by the combined heat and power unit (CHP, which was required to operate the biogas plant. The consumer unit agitators with 4.3% (in 2010 and 4.0% (in 2011 and CHP unit with 2.5% (in 2010 and 2011 accounted for the highest electrical power demand, in relation to the electric energy produced by the CHP unit. Calculations show that 51% (in 2010 and 46% (in 2011 of the total electric energy demand was due to the agitators. The results finally showed the need for permanent measurements to identify and quantify the electric energy saving potentials of full scale biogas plants.

  12. Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions

    International Nuclear Information System (INIS)

    Compernolle, Tine; Witters, Nele; Van Passel, Steven; Thewys, Theo

    2011-01-01

    To counter global warming, a transition to a low-carbon economy is needed. The greenhouse sector can contribute by installing Combined Heat and Power (CHP) systems, known for their excellent energy efficiency. Due to the recent European liberalization of the energy market, glass horticulturists have the opportunity to sell excess electricity to the market and by tailored policy and support measures, regional governments can fill the lack of technical and economic knowledge, causing initial resistance. This research investigates the economic and environmental opportunities using two detailed cases applying a self managed cogeneration system. The Net Present Value is calculated to investigate the economic feasibility. The Primary Energy Saving, the CO 2 Emission Reduction indicator and an Emission Balance are applied to quantify the environmental impact. The results demonstrate that a self-managed CHP system is economic viable and that CO 2 emissions are reduced.

  13. New markets for small-scale hydro

    International Nuclear Information System (INIS)

    Maurer, E.A.

    1997-01-01

    The market for small and medium sized hydro-electric power plant is more attractive than ever. The boom in Europe has increasingly spread to the emerging countries, and here too small hydro plays an important ecological role. In addition to new plant rehabilitation of 'historical' plant is now a major factor. The last few years have seen a market shift from single machine components to complete plant and systems, requiring a strategy re-think on the part of larger companies. Following the influx of private capital into the power industry, business conditions have also undergone a thorough transformation. In place of 'fast money', hydro power offers the prospect of earning longer-term, sustainable money'. The term small-scale hydro-electric power (or simply 'small hydro') is used slightly differently depending on the country and market. Here, it is used to denote plant with turbines up to 10 MW. (Author)

  14. Analysis of small-scale rotor hover performance data

    Science.gov (United States)

    Kitaplioglu, Cahit

    1990-01-01

    Rotor hover-performance data from a 1/6-scale helicopter rotor are analyzed and the data sets compared for the effects of ambient wind, test stand configuration, differing test facilities, and scaling. The data are also compared to full scale hover data. The data exhibited high scatter, not entirely due to ambient wind conditions. Effects of download on the test stand proved to be the most significant influence on the measured data. Small-scale data correlated resonably well with full scale data; the correlation did not improve with Reynolds number corrections.

  15. MMS Multipoint Electric Field Observations of Small-Scale Magnetic Holes

    Science.gov (United States)

    Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnus, Werner

    2016-01-01

    Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earths magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (p(sib i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.

  16. Scaling and percolation in the small-world network model

    Energy Technology Data Exchange (ETDEWEB)

    Newman, M. E. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States); Watts, D. J. [Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 (United States)

    1999-12-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society.

  17. Scaling and percolation in the small-world network model

    International Nuclear Information System (INIS)

    Newman, M. E. J.; Watts, D. J.

    1999-01-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Pade approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model. (c) 1999 The American Physical Society

  18. DEVELOPMENT OF THE CHP-THERMAL SCHEMES IN CONTEXTS OF THE CONSOLIDATED ENERGY SYSTEM OF BELARUS

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper deals with the structural specifics of the Belarus Consolidated Energy System capacities in view of their ongoing transfer to the combined-cycle technology, building the nuclear power plant and necessity for the generating capacity regulation in compliance with the load diagram. With the country’s economic complex energy utilization pattern being preserved, the generating capacities are subject to restructuring and the CHP characteristics undergo enhancement inter alia a well-known increase of the specific electricity production based on the heat consumption. Because of this the steam-turbine condensation units which are the traditional capacity regulators for the energy systems with heat power plants dominance are being pushed out of operation. In consequence of this complex of changes the issue of load diagram provision gains momentum which in evidence is relevant to the Consolidated Energy System of Belarus. One of the ways to alleviate acuteness of the problem could be the specific electric energy production cut on the CHP heat consumption with preserving the heat loads and without their handover to the heat generating capacities of direct combustion i.e. without fuel over-burning. The solution lies in integrating the absorption bromous-lithium heat pump units into the CHP thermal scheme. Through their agency low-temperature heat streams of the generator cooling, the lubrication and condensation heat-extraction of steam minimal passing to the condenser systems are utilized. As a case study the authors choose one of the CHPs in the conditions of which the corresponding employment of the said pumps leads to diminution of the fuel-equivalent specific flow-rate by 20−25 g for 1 kW⋅h production and conjoined electric energy generation capacity lowering. The latter will be handed over to other generating capacities, and the choice of them affects economic expediency of the absorption bromous-lithium heat pump-units installation

  19. Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration report.

    Science.gov (United States)

    2015-05-01

    This report describes the performance and results of the INFLO Prototype Small-Scale Demonstration. The purpose of : the Small-Scale Demonstration was to deploy the INFLO Prototype System to demonstrate its functionality and : performance in an opera...

  20. Degradation mechanisms of small scale piping systems

    International Nuclear Information System (INIS)

    Bartonicek, J.; Koenig, G.; Blind, D.

    1996-01-01

    Operational experience shows that many degradation mechanisms can have an effect on small-scale piping systems. We can see from the analyses carried out that the degradation which has occurred is primarily linked with the fact that these piping systems were classified as being of low safety relevance. This is mainly due to such components being classified into low safety relevance category at the design stage, as well as to the low level of operational monitoring. Since in spite of the variety of designs and operational modes the degradation mechanisms detected may be attributed to the piping systems, we can make decisive statements on how to avoid such degradation mechanisms. Even small-scale piping systems may achieve guaranteed integrity in such cases by taking the appropriate action. (orig.) [de

  1. Validity of thermally-driven small-scale ventilated filling box models

    Science.gov (United States)

    Partridge, Jamie L.; Linden, P. F.

    2013-11-01

    The majority of previous work studying building ventilation flows at laboratory scale have used saline plumes in water. The production of buoyancy forces using salinity variations in water allows dynamic similarity between the small-scale models and the full-scale flows. However, in some situations, such as including the effects of non-adiabatic boundaries, the use of a thermal plume is desirable. The efficacy of using temperature differences to produce buoyancy-driven flows representing natural ventilation of a building in a small-scale model is examined here, with comparison between previous theoretical and new, heat-based, experiments.

  2. Philippines: Small-scale renewable energy update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.

  3. CO2-impacts of a small-scale consumers levy

    International Nuclear Information System (INIS)

    1995-02-01

    Because of a number of developments (altered budgets of Dutch ministries and implementation of environmental policy plans of energy distribution companies in the Netherlands) the 1993 analyses of the effects of a small-scale consumer levy on the emission of CO 2 are updated. First, attention is paid to the conservation impetus as a result of an increase of the energy price for small-scale consumers. Next, the effects that can occur as a consequence of the presently suggested form of the levy (in particular, the exemption of renewable energy and waste heat) are discussed. Subsequently, the alterations of other policy tools, that are necessary in case a higher effectiveness of conservation measures is realized, are dealt with. The direct effect of a higher energy price on the saving behavior of the small-scale consumers is calculated by means of the CENECA-model. 4 tabs., 1 appendix, 8 refs

  4. Biomass combustion gas turbine CHP

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, D.

    2002-07-01

    This report summarises the results of a project to develop a small scale biomass combustor generating system using a biomass combustor and a micro-gas turbine indirectly fired via a high temperature heat exchanger. Details are given of the specification of commercially available micro-turbines, the manufacture of a biomass converter, the development of a mathematical model to predict the compatibility of the combustor and the heat exchanger with various compressors and turbines, and the utilisation of waste heat for the turbine exhaust.

  5. Small scale hydroelectric power potential in Nevada: a preliminary reconnaissance survey

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, G.F.; Fordham, J.W.; Richard, K.; Loux, R.

    1981-04-01

    This preliminary reconnaissance survey is intended to: develop a first estimate as to the potential number, location and characteristics of small-scale (50 kW to 15 MW) hydroelectric sites in Nevada; provide a compilation of various Federal and state laws and regulations, including tax and financing regulations, that affect small-scale hydroelectric development and provide information on sources of small-scale hydroelectric generation hardware and consultants/ contractors who do small scale hydroelectric work. The entire survey has been conducted in the office working with various available data bases. The site survey and site evaluation methods used are described, and data are tabulated on the flow, power potential, predicted capital expenditures required, etc. for 61 potential sites with measured flows and for 77 sites with derived flows. A map showing potential site locations is included. (LCL)

  6. Small scale structure formation in chameleon cosmology

    International Nuclear Information System (INIS)

    Brax, Ph.; Bruck, C. van de; Davis, A.C.; Green, A.M.

    2006-01-01

    Chameleon fields are scalar fields whose mass depends on the ambient matter density. We investigate the effects of these fields on the growth of density perturbations on sub-galactic scales and the formation of the first dark matter halos. Density perturbations on comoving scales R<1 pc go non-linear and collapse to form structure much earlier than in standard ΛCDM cosmology. The resulting mini-halos are hence more dense and resilient to disruption. We therefore expect (provided that the density perturbations on these scales have not been erased by damping processes) that the dark matter distribution on small scales would be more clumpy in chameleon cosmology than in the ΛCDM model

  7. Total cost of ownership of CHP SOFC systems: Effect of installation context

    International Nuclear Information System (INIS)

    Arduino, Francesco; Santarelli, Massimo

    2016-01-01

    Solid oxide fuel cells (SOFC) are one of the most interesting between the emerging technologies for energy production. Although some information about the production cost of these devices are already known, their operational cost has not been studied yet with sufficient accuracy. This paper presents a life cycle cost (LCC) analysis of CHP (combined heat and power) SOFC systems performed in hospitals located in various cities of the US and one in Italy. In this study the strong effects of the installation context will be analyzed using a customized use phase model for each location. The cost effectiveness of these devices has been proved without credits in Mondovi (IT), New York (NY) and Minneapolis (MN) where the payback time goes from 10 to 7 years. Considering the credits, it is possible to obtain economic feasibility also in Chicago (IL) and reduce the payback for other cities to values from 4 to 6 years. In other cities like Phoenix (AZ) and Houston (TX) the payback can’t be reached in any case. The life cycle impact assessment analysis has shown how, even in the cities with cleaner electricity grid, there is a reduction in the emissions of both greenhouse gases and pollutants. - Highlights: •Life cycle cost analysis has been performed for CHP SOFC systems. •The strong effects of the installation context have been analyzed. •Economic feasibility has been proven in new york, Minneapolis and Mondovi. •Economic feasibility can’t be reached in phoenix and Houston. •SOFC always provide a reduction in the emissions of greenhouse gases and pollutant.

  8. Optimization of a High Temperature PEMFC micro-CHP System by Formulation and Application of a Process Integration Methodology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2013-01-01

    A 1 kWe micro combined heat and power (CHP) system based on high temperature proton exchange membrane fuel cell (PEMFC) technology is modeled and optimized by formulation and application of a process integration methodology. The system can provide heat and electricity for a singlefamily household...

  9. Energetic and Exergetic Analysis of a Heat Exchanger Integrated in a Solid Biomass-Fuelled Micro-CHP System with an Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Marie Creyx

    2016-04-01

    Full Text Available A specific heat exchanger has been developed to transfer heat from flue gas to the working fluid (hot air of the Ericsson engine of a solid biomass-fuelled micro combined heat and power (CHP. In this paper, the theoretical and experimental energetic analyses of this heat exchanger are compared. The experimental performances are described considering energetic and exergetic parameters, in particular the effectiveness on both hot and cold sides. A new exergetic parameter called the exergetic effectiveness is introduced, which allows a comparison between the real and the ideal heat exchanger considering the Second Law of Thermodynamics. A global analysis of exergetic fluxes in the whole micro-CHP system is presented, showing the repartition of the exergy destruction among the components.

  10. Profitability and sustainability of small - medium scale palm biodiesel plant

    Science.gov (United States)

    Solikhah, Maharani Dewi; Kismanto, Agus; Raksodewanto, Agus; Peryoga, Yoga

    2017-06-01

    The mandatory of biodiesel application at 20% blending (B20) has been started since January 2016. It creates huge market for biodiesel industry. To build large-scale biodiesel plant (> 100,000 tons/year) is most favorable for biodiesel producers since it can give lower production cost. This cost becomes a challenge for small - medium scale biodiesel plants. However, current biodiesel plants in Indonesia are located mainly in Java and Sumatra, which then distribute biodiesel around Indonesia so that there is an additional cost for transportation from area to area. This factor becomes an opportunity for the small - medium scale biodiesel plants to compete with the large one. This paper discusses the profitability of small - medium scale biodiesel plants conducted on a capacity of 50 tons/day using CPO and its derivatives. The study was conducted by performing economic analysis between scenarios of biodiesel plant that using raw material of stearin, PFAD, and multi feedstock. Comparison on the feasibility of scenarios was also conducted on the effect of transportation cost and selling price. The economic assessment shows that profitability is highly affected by raw material price so that it is important to secure the source of raw materials and consider a multi-feedstock type for small - medium scale biodiesel plants to become a sustainable plant. It was concluded that the small - medium scale biodiesel plants will be profitable and sustainable if they are connected to palm oil mill, have a captive market, and are located minimally 200 km from other biodiesel plants. The use of multi feedstock could increase IRR from 18.68 % to 56.52 %.

  11. UP-scaling of inverted small molecule based organic solar cells

    DEFF Research Database (Denmark)

    Patil, Bhushan Ramesh; Madsen, Morten

    Organic solar cells (OSC), in spite of being a promising technology, still face challenges regarding large-scale fabrication. Although efficiencies of up to 12 % has been reached for small molecule OSC, their performance, both in terms of device efficiency and stability, is significantly reduced...... during up-scaling processes. The work presented here is focused on an approach towards up-scaling of small molecule based OSC with inverted device configuration. Bilayer OSC from Tetraphenyldibenzoperiflanthene (DBP) and Fullerenes (C70), as electron donor and acceptor respectively, with cell area...

  12. A Small-Scale Low-Cost Gas Chromatograph

    Science.gov (United States)

    Gros, Natasa; Vrtacnik, Margareta

    2005-01-01

    The design and application of a small-scale portable gas chromatograph for learning of the basic concepts of chromatography is described. The apparatus consists of two basic separable units, which includes a chromatographic unit and an electronic unit.

  13. Biomass gasification systems for residential application: An integrated simulation approach

    International Nuclear Information System (INIS)

    Prando, Dario; Patuzzi, Francesco; Pernigotto, Giovanni; Gasparella, Andrea; Baratieri, Marco

    2014-01-01

    The energy policy of the European member States is promoting high-efficiency cogeneration systems by means of the European directive 2012/27/EU. Particular facilitations have been implemented for the small-scale and micro-cogeneration units. Furthermore, the directive 2010/31/EU promotes the improvement of energy performance of buildings and use of energy from renewable sources for the building sector. In this scenario, systems based on gasification are considered a promising technological solution when dealing with biomass and small scale systems. In this paper, an integrated approach has been implemented to assess the energy performance of combined heat and power (CHP) systems based on biomass gasification and installed in residential blocks. The space-heating loads of the considered building configurations have been simulated by means of EnergyPlus. The heat load for domestic hot water demand has been calculated according to the average daily profiles suggested by the Italian and European technical standards. The efficiency of the whole CHP system has been evaluated supplementing the simulation of the gasification stage with the energy balance of the cogeneration set (i.e., internal combustion engine) and implementing the developed routines in the Matlab-Simulink environment. The developed model has been used to evaluate the primary energy saving (PES) of the CHP system compared to a reference case of separate production of heat and power. Economic analyses are performed either with or without subsidizations for the generated electricity. The results highlight the capability of the integrated approach to estimate both energy and economic performances of CHP systems applied to the residential context. Furthermore, the importance of the generated heat valorisation and the proper system sizing have been discussed. - Highlights: • CHP system based on biomass gasification to meet household energy demand is studied. • Influence of CHP size and operation time on

  14. Cogeneration in Europe: heading for applications below 10 kW

    International Nuclear Information System (INIS)

    Huhn, K.

    2001-01-01

    This article focuses on the anticipation of a vibrant market for small scale combined heat and power (CHP) systems and the role of residential boiler manufacturers, installers and utilities in determining market penetration. Details are given of the countries with the largest markets (eg., Germany, UK, the Netherlands), the penetration of micro CHP into the total power generation market, and comparisons between Europe and the US and Asian markets. The division of European countries into four classes of market attractiveness is discussed

  15. Scale dependence and small-x behaviour of polarized parton distributions

    International Nuclear Information System (INIS)

    Ball, R.D.; Forte, S.; Ridolfi, G.

    1995-01-01

    We discuss perturbative evolution of the polarized structure function g 1 in the (x, Q 2 ) plane, with special regard to the small-x region. We determine g 1 in terms of polarized quark and gluon distributions using coefficient functions to order α s . At small x g 1 then displays substantial scale dependence, which necessarily implies a corresponding scale dependence in the large-x region. This scale dependence has significant consequences for the extraction of the first moment from the experimental data, reducing its value while increasing the error. Conversely, the scale dependence may be used to constrain the size of the polarized gluon distribution. ((orig.))

  16. Scale dependence and small x behaviour of polarized parton distributions

    CERN Document Server

    Ball, R D; Ridolfi, G; Forte, S; Ridolfi, G

    1995-01-01

    We discuss perturbative evolution of the polarized structure function g_1 in the (x,Q^2) plane, with special regard to the small-x region. We determine g_1 in terms of polarized quark and gluon distributions using coefficient functions to order alpha_s. At small x g_1 then displays substantial scale dependence, which necessarily implies a corresponding scale dependence in the large-x region. This scale dependence has significant consequences for the extraction of the first moment from the experimental data, reducing its value while increasing the error. Conversely, the scale dependence may be used to constrain the size of the polarized gluon distribution.

  17. Fractal properties and small-scale structure of cosmic string networks

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Shellard, E.P.S.

    2006-01-01

    We present results from a detailed numerical study of the small-scale and loop production properties of cosmic string networks, based on the largest and highest resolution string simulations to date. We investigate the nontrivial fractal properties of cosmic strings, in particular, the fractal dimension and renormalized string mass per unit length, and we also study velocity correlations. We demonstrate important differences between string networks in flat (Minkowski) spacetime and the two very similar expanding cases. For high resolution matter era network simulations, we provide strong evidence that small-scale structure has converged to 'scaling' on all dynamical length scales, without the need for other radiative damping mechanisms. We also discuss preliminary evidence that the dominant loop production size is also approaching scaling

  18. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj

    2013-12-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20 on 10243 grid using the pseudospectral method. We demonstrate that the magnetic energy growth is caused by nonlocal energy transfers from the large-scale or forcing-scale velocity field to small-scale magnetic field. The peak of these energy transfers moves towards lower wave numbers as dynamo evolves, which is the reason why the integral scale of the magnetic field increases with time. The energy transfers U2U (velocity to velocity) and B2B (magnetic to magnetic) are forward and local. Copyright © EPLA, 2013.

  19. Category, narrative and value in the governance of small-scale fisheries

    NARCIS (Netherlands)

    Johnson, D.S.

    2006-01-01

    Since the 1970s, small-scale fisheries have had an important place in fisheries social science and in fisheries management. While there has been substantial discussion of what constitutes the category of small-scale fisheries, its considerable ambiguity is nevertheless often passed over. This paper

  20. A CSP plant combined with biomass CHP using ORC-technology in Bronderslev Denmark

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Yuan, Guofeng

    2017-01-01

    A new CSP plant combined with biomass CHP, using ORC technology, will be built and taken into operation in Bronderslev, Denmark during spring 2017. The price for Biomass is expected to increase with more and more use of this very limited energy source and then CSP will be cost effective in the long...... run, also in the Danish climate. Oil is used as heat transfer fluid instead of steam giving several advantages in this application for district heating at high latitudes. Total efficiencies and costs, competitive to PV plants. are expected....

  1. Contribution to a Danish action plan for development and demonstration of CHP from solid biomass; Oplaeg til en national handlingsplan for udvikling og demonstration indenfor kraftvarme fra fast biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Morten Tony

    2011-01-15

    The report is the contribution from the industry to an action plan for development and demonstration of CHP technology for solid biomass. The report aims to serve as inspiration and basis for administrators and applicants of Danish funding schemes for development and demonstration in future tenders. Although Danish-based cogeneration technologies for solid biofuels are advanced compared to the competitors in many areas there is a large need to continuously improve the technology by sustained development and demonstration activities. The aim is to overcome the technological barriers that this project has identified and thus maintain competitiveness. The industry currently has very strong focus on market deployment of especially technologies for cogeneration in small scale (up to 15 MW thermal power) and on the overall economy of these plants. Reference installations that displays many operational hours with a reasonable economy, are crucial for investors. Currently, no companies market commercial plants that have sufficiently low costs to operate under Danish conditions and few do for the conditions found internationally. Thus, from the industry perspective there is still a need for development and demonstration of CHP technology below 15 MW thermal. The analysis does not exclude any technology tracks, but the development and demonstration efforts should lead to improvements in conditions such as availability, efficiencies and operating and maintenance costs. Also technologies for large plants and systems need to be improved with respect to availability and efficiency and reduced operating and maintenance costs. For all technologies, there is a need to develop the use of special solid biofuels that on the one hand may have troublesome characteristics but on the other may help lower operating costs. The Danish-based companies have good opportunities to find support for the development and demonstration effort. A number of support programs and pools are in place and

  2. Integration of fuel cells into residential buildings

    International Nuclear Information System (INIS)

    Bell, J.M.; Entchev, E.; Gusdorf, J.; Szadkowski, F.; Swinton, M.; Kalbfleisch, W.; Marchand, R.

    2004-01-01

    Integration of small combined heat and power systems (CHP) into residential buildings is challenging as the loads are small, the load diversity is limited and there are a number of unresolved issues concerning sizing, control, peak loads, emergency operation, grid connection and export, etc. Natural Resources Canada has undertaken an initiative to investigate and develop techniques for the integration of small CHP systems into residential buildings using a highly instrumented house modified to allow quick installation and thorough monitoring of CHP integration techniques as well determining the performance of the CHP systems themselves when operating in a house. The first CHP system installed was a Stirling engine residential CHP system. It was used to examine the completeness of the CHP modifications to the house, to evaluate various building integration techniques and to measure the performance of the CHP system itself. The testing demonstrated the modified house to be an excellent facility for the development of CHP building integration techniques and the testing of residential CHP systems. The Stirling engine CHP system was found to operate well and produce meaningful input to the house. A second system (residential fuel cell) is presently being installed and building integration techniques and the performance of the fuel cell will be tested over the coming year. (author)

  3. Small-Scale Shock Testing of Propellants and Ingredients

    National Research Council Canada - National Science Library

    Dawley, S

    2004-01-01

    .... The use of small-scale gap testing to evaluate the shock sensitivity of individual propellant ingredients and propellant formulations is a valuable method for experimentally establishing shock...

  4. Scale Effects Related to Small Physical Modelling of Overtopping of Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke

    2009-01-01

    By comparison of overtopping discharges recorded in prototype and small scale physical models it was demonstrated in the EU-CLASH project that small scale tests significantly underestimate smaller discharges. Deviations in overtopping are due to model and scale effects. These effects are discusse...... armour on the upper part of the slope. This effect is believed to be the main reason for the found deviations between overtopping in prototype and small scale tests....

  5. Biomedical device prototype based on small scale hydrodynamic cavitation

    Science.gov (United States)

    Ghorbani, Morteza; Sozer, Canberk; Alcan, Gokhan; Unel, Mustafa; Ekici, Sinan; Uvet, Huseyin; Koşar, Ali

    2018-03-01

    This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH)). The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice) based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice) was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  6. Biomedical device prototype based on small scale hydrodynamic cavitation

    Directory of Open Access Journals (Sweden)

    Morteza Ghorbani

    2018-03-01

    Full Text Available This study presents a biomedical device prototype based on small scale hydrodynamic cavitation. The application of small scale hydrodynamic cavitation and its integration to a biomedical device prototype is offered as an important alternative to other techniques, such as ultrasound therapy, and thus constitutes a local, cheap, and energy-efficient solution, for urinary stone therapy and abnormal tissue ablation (e.g., benign prostate hyperplasia (BPH. The destructive nature of bubbly, cavitating, flows was exploited, and the potential of the prototype was assessed and characterized. Bubbles generated in a small flow restrictive element (micro-orifice based on hydrodynamic cavitation were utilized for this purpose. The small bubbly, cavitating, flow generator (micro-orifice was fitted to a small flexible probe, which was actuated with a micromanipulator using fine control. This probe also houses an imaging device for visualization so that the emerging cavitating flow could be locally targeted to the desired spot. In this study, the feasibility of this alternative treatment method and its integration to a device prototype were successfully accomplished.

  7. Notes on a Dramaturgical Analysis of Unequal Small-Scale Corruption Experiences

    OpenAIRE

    Edgar Daniel Manchinelly Mota

    2017-01-01

    In the last two decades, corruption has emerged as a relevant subject on a worldwide scale, because of its negative effects on the economy and State institutions, among other things. Research has focused on the macro aspects of corruption, emphasizing its causes and consequences. However, small-scale corruption has not been studied in such detail. This document proposes a theoretical-methodological framework for a dramaturgical analysis of small-scale corruption, with the aim of demonstrating...

  8. 2010 Thin Film & Small Scale Mechanical Behavior Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Thomas Balk

    2010-07-30

    Over the past decades, it has been well established that the mechanical behavior of materials changes when they are confined geometrically at least in one dimension to small scale. It is the aim of the 2010 Gordon Conference on 'Thin Film and Small Scale Mechanical Behavior' to discuss cutting-edge research on elastic, plastic and time-dependent deformation as well as degradation mechanisms like fracture, fatigue and wear at small scales. As in the past, the conference will benefit from contributions from fundamental studies of physical mechanisms linked to material science and engineering reaching towards application in modern applications ranging from optical and microelectronic devices and nano- or micro-electrical mechanical systems to devices for energy production and storage. The conference will feature entirely new testing methodologies and in situ measurements as well as recent progress in atomistic and micromechanical modeling. Particularly, emerging topics in the area of energy conversion and storage, such as material for batteries will be highlighted. The study of small-scale mechanical phenomena in systems related to energy production, conversion or storage offer an enticing opportunity to materials scientists, who can provide new insight and investigate these phenomena with methods that have not previously been exploited.

  9. Effects of thermal inflation on small scale density perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sungwook E. [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Seoul 130-722 (Korea, Republic of); Lee, Hyung-Joo; Lee, Young Jae; Stewart, Ewan D. [Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Zoe, Heeseung, E-mail: swhong@kias.re.kr, E-mail: ohsk111@kaist.ac.kr, E-mail: noasac@kaist.ac.kr, E-mail: jcap@profstewart.org, E-mail: heezoe@dgist.ac.kr [School of Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno jungang-daero, Daegu 711-873 (Korea, Republic of)

    2015-06-01

    In cosmological scenarios with thermal inflation, extra eras of moduli matter domination, thermal inflation and flaton matter domination exist between primordial inflation and the radiation domination of Big Bang nucleosynthesis. During these eras, cosmological perturbations on small scales can enter and re-exit the horizon, modifying the power spectrum on those scales. The largest modified scale, k{sub b}, touches the horizon size when the expansion changes from deflation to inflation at the transition from moduli domination to thermal inflation. We analytically calculate the evolution of perturbations from moduli domination through thermal inflation and evaluate the curvature perturbation on the constant radiation density hypersurface at the end of thermal inflation to determine the late time curvature perturbation. Our resulting transfer function suppresses the power spectrum by a factor 0∼ 5 at k >> k{sub b}, with k{sub b} corresponding to anywhere from megaparsec to subparsec scales depending on the parameters of thermal inflation. Thus, thermal inflation might be constrained or detected by small scale observations such as CMB distortions or 21cm hydrogen line observations.

  10. Homogeneity of small-scale earthquake faulting, stress, and fault strength

    Science.gov (United States)

    Hardebeck, J.L.

    2006-01-01

    Small-scale faulting at seismogenic depths in the crust appears to be more homogeneous than previously thought. I study three new high-quality focal-mechanism datasets of small (M angular difference between their focal mechanisms. Closely spaced earthquakes (interhypocentral distance small volumes of crust, while faults of many orientations may or may not be present, only similarly oriented fault planes produce earthquakes contemporaneously. On these short length scales, the crustal stress orientation and fault strength (coefficient of friction) are inferred to be homogeneous as well, to produce such similar earthquakes. Over larger length scales (???2-50 km), focal mechanisms become more diverse with increasing interhypocentral distance (differing on average by 40-70??). Mechanism variability on ???2- to 50 km length scales can be explained by ralatively small variations (???30%) in stress or fault strength. It is possible that most of this small apparent heterogeneity in stress of strength comes from measurement error in the focal mechanisms, as negligibble variation in stress or fault strength (<10%) is needed if each earthquake is assigned the optimally oriented focal mechanism within the 1-sigma confidence region. This local homogeneity in stress orientation and fault strength is encouraging, implying it may be possible to measure these parameters with enough precision to be useful in studying and modeling large earthquakes.

  11. A review on technology maturity of small scale energy storage technologies★

    Directory of Open Access Journals (Sweden)

    Nguyen Thu-Trang

    2017-01-01

    Full Text Available This paper reviews the current status of energy storage technologies which have the higher potential to be applied in small scale energy systems. Small scale energy systems can be categorized as ones that are able to supply energy in various forms for a building, or a small area, or a limited community, or an enterprise; typically, they are end-user systems. Energy storage technologies are classified based on their form of energy stored. A two-step evaluation is proposed for selecting suitable storage technologies for small scale energy systems, including identifying possible technical options, and addressing techno-economic aspects. Firstly, a review on energy storage technologies at small scale level is carried out. Secondly, an assessment of technology readiness level (TRL is conducted. The TRLs are ranked according to information gathered from literature review. Levels of market maturity of the technologies are addressed by taking into account their market development stages through reviewing published materials. The TRLs and the levels of market maturity are then combined into a technology maturity curve. Additionally, market driving factors are identified by using different stages in product life cycle. The results indicate that lead-acid, micro pumped hydro storage, NaS battery, NiCd battery, flywheel, NaNiCl battery, Li-ion battery, and sensible thermal storage are the most mature technologies for small scale energy systems. In the near future, hydrogen fuel cells, thermal storages using phase change materials and thermochemical materials are expected to become more popular in the energy storage market.

  12. Productive Efficiency of Small Scale Sawmilling Industries in Mufindi ...

    African Journals Online (AJOL)

    A structured questionnaire was used to collect data from 80 small-scale sawmills in Mufindi District. Data were analysed using descriptive as well as quantitative methods. Technical, scale and allocative efficiency score of sawmills were computed using data envelopment analysis programme developed by Coelli. Censored ...

  13. design of a small scale wind generator for low wind speed areas

    African Journals Online (AJOL)

    USER

    Most small scale level wind turbine generators are directly driven system, variable speed, and partially ... the best solutions for small-scale wind power plants. Low-speed multi-pole PM generators ..... Designs of the Same Magnet Structure for.

  14. The Impact of Small Scale Mining on Irrigation Water Quality in ...

    African Journals Online (AJOL)

    Small scale mining is a major threat to water resources and agricultural activities in most mining communities across Ghana. This study investigated the effect of small scale mining on the quality of water for irrigation from some selected sites along a river and a reservoir which was used as a control. The physical and ...

  15. Large-scale integration of wind power into different energy systems

    DEFF Research Database (Denmark)

    Lund, Henrik

    2005-01-01

    The paper presents the ability of different energy systems and regulation strategies to integrate wind power. The ability is expressed by the following three factors: the degree of electricity excess production caused by fluctuations in wind and Combined Heat and Power (CHP) heat demands......, the ability to utilise wind power to reduce CO2 emission in the system, and the ability to benefit from exchange of electricity on the market. Energy systems and regulation strategies are analysed in the range of a wind power input from 0 to 100% of the electricity demand. Based on the Danish energy system...... and such potential future energy systems different regulation strategies have been analysed, i.e. the inclusion of small CHP plants into the regulation task of electricity balancing and ancillary grid stability services and investments in electric heating, heat pumps and heat storage capacity. The results...

  16. Factors associated with public awareness of the Crown Health Program in the Al-Jouf Region.

    Science.gov (United States)

    Memish, Ziad A; Saeedi, Mohammad Y; Al Madani, Ahmed J; Junod, Bernard; Jamo, Abdelgadier; Abid, Omer; Alanazi, Faisal M; Alrewally, Fayez G; Mandil, Ahmed M A

    2015-01-01

    A community-based intervention, the Crown Health Project (CHP), was developed by the Ministry of Health. It was implemented on a small-scale in Al-Jouf Region in Northern Kingdom of Saudi Arabia to assess its feasibility and effectiveness so that it can be scaled up. This study primarily aimed at investigating factors associated with the awareness of CHP in order to improve subsequent campaigns for the program in Al-Jouf and other regions. A secondary aim was to assess possible changes of public awareness during intensification of the awareness campaign between October 2011 and May 2012. A pre- and post-questionnaire cross-sectional approach was undertaken, and the intervention was an awareness campaign. Variables collected included demographic characteristics (e.g., age, gender, education, occupation, urban/rural residence) and CHP awareness (its existence, sources of knowledge about CHP, its goals and objectives, its target diseases, location of activities, participation in such activities). Logistic regression was used to analyze the awareness of the program according to participant characteristics, with a time of the survey as a variable. Awareness of the program was found to be 11 times higher among postsurvey respondents than presurvey respondents. Respondents of the second survey were better at correctly identifying "health education" as the main goal of the CHP (odds ratio [OR], 4.1; 95% confidence interval [CI], 3.1-5.5), "noncommunicable diseases" as the main diseases targeted (OR, 4.8; 95% CI, 3.6-6.4) and "attention to health" as the purpose (OR, 6.0; 95% CI, 4.0-8.9). The different activities of the CHP were successful in dramatically increasing awareness of the CHP program in Al-Jouf.

  17. Contributions of Small-Scale Community-Owned Infrastructure (SCI ...

    African Journals Online (AJOL)

    Contributions of Small-Scale Community-Owned Infrastructure (SCI) and Asset ... Descriptive analysis was employed to explain access to productive rural ... for asset maintenance and replacement; support targeted value chains given the ...

  18. Strengthening industry-research linkage for small scale industrial ...

    African Journals Online (AJOL)

    Strengthening industry-research linkage for small scale industrial development in Ghana - the relevance of scientific and technological information. ... Journal of Applied Science and Technology. Journal Home · ABOUT · Advanced Search ...

  19. Small-scale Aquaculture to Strengthen Food Security in Cambodia ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Small-scale Aquaculture to Strengthen Food Security in Cambodia (CIFSRF) ... for their families' consumption in the same ponds as large fish, which can be sold for income. ... The project also studies opportunities to scale up the model for broader use ... Assessing improvements in nutrition outcomes following agricultural ...

  20. The legalization of small scale mining in Colombia

    Directory of Open Access Journals (Sweden)

    Alexandra Urán

    2013-11-01

    Full Text Available The following article presents conceptual and analytical elements that allow us to broaden the debate about the legalization of the mining in Colombia. Looking for items to be able to propose alternatives in order to consolidate a new mining process socially and environmentally sustainable, claiming the value of the ancestral practices and forms of the redistributive production. To this end, it is necessary to start with the discussion of the concepts of formalization and legality, so that we can generate a theoretical framework that will allow us to explore such delicate matter, we will continue to make the framework socio-political, in which it is based that strategy. Then there is a brief context of thereformulation of legal mining, focusing our attention particularly standards which involves or has effects on artisanal mining and/or small-scale mining. There we will find ourselves with a debate on the typology of the mining and the current difficulties to define schemasof legalization or formalization of small-scale mining in Colombia. To conclude with a proposal to formalize as a mechanism of transition to an administrative system - legislativethat will connect more effectively with the realities and skills of the ethnic communities that practice small-scale mining.

  1. Small-scale gradients of charged particles in the heliospheric magnetic field

    International Nuclear Information System (INIS)

    Guo, Fan; Giacalone, Joe

    2014-01-01

    Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.

  2. New CHP plant for a rubber products manufacturer; Nueva planta e cogeneración para un fabricante de productos de hule

    Energy Technology Data Exchange (ETDEWEB)

    Vila, R.; Martí, C.

    2016-07-01

    At the end of 2014 the company Industrias de Hule Galgo decided to undertake the installation project of an efficient CHP plant for its production plant, with the aim of bringing down energy costs and improving the company’s competitive position in the market. The new plant has already started its first operational phase. The project has comprised the installation of a single cycle with gas-powered gensets providing a total electrical capacity of 6.6 MW. This provides the necessary thermal oil for the production plant; covers 100% of the electrical power consumed by the industrial complex; and also generates cooling water, giving improved production capacity by supercooling the extrusion system. To execute these works, Industrias de Hule Galgo contracted the services of engineering company AESA to provide the engineering, procurement and construction of the CHP plant. (Author)

  3. Small-scale classification schemes

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2004-01-01

    Small-scale classification schemes are used extensively in the coordination of cooperative work. This study investigates the creation and use of a classification scheme for handling the system requirements during the redevelopment of a nation-wide information system. This requirements...... classification inherited a lot of its structure from the existing system and rendered requirements that transcended the framework laid out by the existing system almost invisible. As a result, the requirements classification became a defining element of the requirements-engineering process, though its main...... effects remained largely implicit. The requirements classification contributed to constraining the requirements-engineering process by supporting the software engineers in maintaining some level of control over the process. This way, the requirements classification provided the software engineers...

  4. Examples of backreaction of small-scale inhomogeneities in cosmology

    Science.gov (United States)

    Green, Stephen R.; Wald, Robert M.

    2013-06-01

    In previous work, we introduced a new framework to treat large-scale backreaction effects due to small-scale inhomogeneities in general relativity. We considered one-parameter families of spacetimes for which such backreaction effects can occur, and we proved that, provided the weak energy condition on matter is satisfied, the leading effect of small-scale inhomogeneities on large-scale dynamics is to produce a traceless effective stress-energy tensor that itself satisfies the weak energy condition. In this work, we illustrate the nature of our framework by providing two explicit examples of one-parameter families with backreaction. The first, based on previous work of Berger, is a family of polarized vacuum Gowdy spacetimes on a torus, which satisfies all of the assumptions of our framework. As the parameter approaches its limiting value, the metric uniformly approaches a smooth background metric, but spacetime derivatives of the deviation of the metric from the background metric do not converge uniformly to zero. The limiting metric has nontrivial backreaction from the small-scale inhomogeneities, with an effective stress energy that is traceless and satisfies the weak energy condition, in accord with our theorems. Our second one-parameter family consists of metrics which have a uniform Friedmann-Lemaître-Robertson-Walker limit. This family satisfies all of our assumptions with the exception of the weak energy condition for matter. In this case, the limiting metric has an effective stress-energy tensor which is not traceless. We emphasize the importance of imposing energy conditions on matter in studies of backreaction.

  5. Carbon Debt Payback Time for a Biomass Fired CHP Plant—A Case Study from Northern Europe

    Directory of Open Access Journals (Sweden)

    Kristian Madsen

    2018-03-01

    Full Text Available The European Union (EU has experienced a large increase in the use of biomass for energy in the last decades. In 2015, biomass used to generate electricity, heat, and to a limited extent, liquid fuels accounted for 51% of the EU’s renewable energy production. Bioenergy use is expected to grow substantially to meet energy and climate targets for 2020 and beyond. This development has resulted in analyses suggesting the increased use of biomass for energy might initially lead to increased greenhouse gas (GHG emissions to the atmosphere, a so-called carbon debt. Here, we analyze carbon debt and payback time of substituting coal with forest residues for combined heat and power generation (CHP. The analysis is, in contrast to most other studies, based on empirical data from a retrofit of a CHP plant in northern Europe. The results corroborate findings of a carbon debt, here 4.4 kg CO2eq GJ−1. The carbon debt has a payback time of one year after conversion, and furthermore, the results show that GHG emissions are reduced to 50% relative to continued coal combustion after about 12 years. The findings support the use of residue biomass for energy as an effective means for climate change mitigation.

  6. Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The objective of the project ''Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization'' was to combine the Danish experiences with the Stirling engine and updraft gasification with the application of the FLOX gas burner technology for developing and demonstrating a flexible biomass-based small scale CHP plant with 75 kW electrical output, high power efficiency and low emissions. Further, the project has aimed at increasing the technology's reliability and decreasing the need for service. Also, the project has included the development of a control and communication system for unmanned start-up and operation of the plant. During the project the objective was altered and so the development of a new Stirling engine design was done on the 4-cylindred 35 kWe Stirling engine instead of the 8-cylindred 75 kWe Stirling engine. Focus has been on designing a more durable engine designed for easy and fast service. Cold test of the engine has been successful and now full-scale hot tests are to be performed. In the project Stirling DK has also in cooperation with project partner Danish gas Technology Centre developed the Stirling Engine with Diluted Oxidation (SEDIOX) concept which is a combustion technology based on the diluted oxidation principle. A trademark is obtained and also a patent application is filed and pending regarding the SEDIOX combustion chamber concept. All components for the Stirling gasification plant were produced and installed at Svanholm Estate. The plant consisted of one conventional combustion chamber and one SD3E-type Stirling engine. The plant was commissioned in June 2009 and 1,472 hours of operation and 43 MWh of electricity production was achieved before the plant was de-commissioned in February 2010 due to divergences between Svanholm Estate and Stirling DK. During operation the control system including remote access was tested thoroughly and with great success. The new overall

  7. Airfoil optimization for noise emission problem on small scale turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gocmen, Tuhfe; Ozerdem, Baris [Mechanical Engineering Department, Yzmir Institute of Technology (Turkey)

    2011-07-01

    Wind power is a preferred natural resource and has had benefits for the energy industry and for the environment all over the world. However, noise emission from wind turbines is becoming a major concern today. This study paid close attention to small scale wind turbines close to urban areas and proposes an optimum number of six airfoils to address noise emission concerns and performance criteria. The optimization process aimed to decrease the noise emission levels and enhance the aerodynamic performance of a small scale wind turbine. This study determined the sources and the operating conditions of broadband noise emissions. A new design is presented which enhances aerodynamic performance and at the same time reduces airfoil self noise. It used popular aerodynamic functions and codes based on aero-acoustic empirical models. Through numerical computations and analyses, it is possible to derive useful improvements that can be made to commercial airfoils for small scale wind turbines.

  8. Optimal economic dispatch of FC-CHP based heat and power micro-grids

    International Nuclear Information System (INIS)

    Nazari-Heris, Morteza; Abapour, Saeed; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • The multi objective economic/environmental heat and power MG dispatch is solved. • The heat and power MG include FC, CHP, boiler, storage system, and heat buffer tank. • Multi objective scheduling of heat and power MG is solved using ε-constraint method. • DR program is employed in the stochastic programming of heat and power MG dispatch. • The uncertainties for load demand and price signals are taken into account. - Abstract: Micro-grids (MGs) are introduced as a solution for distributed energy resource (DER) units and energy storage systems (ESSs) to participate in providing the required electricity demand of controllable and non-controllable loads. In this paper, the authors study the short-term scheduling of grid-connected industrial heat and power MG which contains a fuel cell (FC) unit, combined heat and power (CHP) generation units, power-only unit, boiler, battery storage system, and heat buffer tank. The paper is aimed to solve the multi-objective MG dispatch problem containing cost and emission minimization with the considerations of demand response program and uncertainties. A probabilistic framework based on a scenario method, which is considered for load demand and price signals, is employed to overcome the uncertainties in the optimal energy management of the MG. In order to reduce operational cost, time-of-use rates of demand response programs have been modeled, and the effects of such programs on the load profile have been discussed. To solve the multi-objective optimization problem, the ε-constraint method is used and a fuzzy satisfying approach has been employed to select the best compromise solution. Three cases are studied in this research to confirm the performance of the proposed method: islanded mode, grid-connected mode, and the impact of time of the use-demand response program on MG scheduling.

  9. Small-scale tearing mode in tokamaks

    International Nuclear Information System (INIS)

    Ivanov, N.V.

    1983-01-01

    Considerations are given on the possible effect of small-scale tearing mode with m >> 1 on the plasma electron thermal conductivity in a tokamak. The estimate of the electron thermal conductivity coefficient is obtained. Calculation results are compared with experimental data. The calculated dependence of radial distribution of electron temperature is shown to vary weakly with the tn(m 2 /m 1 ) alteration everywhere, except for the vicinity of point r approximately 0

  10. Microcredit Loan Repayment Default among Small Scale ...

    African Journals Online (AJOL)

    The model is applied to primary data from a survey of 200 small scale entrepreneurs in the Upper West Region of Ghana. Results show that enterprise size, interest rate, loan duration, level of profit and loan amount are the simultaneous determinants of probability and rate of default. The study recommends that the National ...

  11. Small-scale tunnel test for blast performance

    International Nuclear Information System (INIS)

    Felts, J E; Lee, R J

    2014-01-01

    The data reported here provide a validation of a small-scale tunnel test as a tool to guide the optimization of new explosives for blast performance in tunnels. The small-scale arrangement consisted of a 2-g booster and 10-g sample mounted at the closed end of a 127 mm diameter by 4.6-m long steel tube with pressure transducers along its length. The three performance characteristics considered were peak pressure, initial energy release, and impulse. The relative performance from five explosives was compared to that from a 1.16-m diameter by 30-m long tunnel that used 2.27-kg samples. The peak pressure values didn't correlate between the tunnels. Partial impulse for the explosives did rank similarly. The initial energy release was determined from a one-dimensional point-source analysis, which nearly tracked with impulse suggesting additional energy released further down the tunnel for some explosives. This test is a viable tool for optimizing compositional variations for blast performance in target scenarios of similar geometry.

  12. Sustainability Metrics of a Small Scale Turbojet Engine

    Science.gov (United States)

    Ekici, Selcuk; Sohret, Yasin; Coban, Kahraman; Altuntas, Onder; Karakoc, T. Hikmet

    2018-05-01

    Over the last decade, sustainable energy consumption has attracted the attention of scientists and researchers. The current paper presents sustainability indicators of a small scale turbojet engine, operated on micro-aerial vehicles, for discussion of the sustainable development of the aviation industry from a different perspective. Experimental data was obtained from an engine at full power load and utilized to conduct an exergy-based sustainability analysis. Exergy efficiency, waste exergy ratio, recoverable exergy ratio, environmental effect factor, exergy destruction factor and exergetic sustainability index are evaluated as exergetic sustainability indicators of the turbojet engine under investigation in the current study. The exergy efficiency of the small scale turbojet engine is calculated as 27.25 % whereas the waste exergy ratio, the exergy destruction factor and the sustainability index of the engine are found to be 0.9756, 0.5466 and 0.2793, respectively.

  13. A spatial method to calculate small-scale fisheries effort in data poor scenarios.

    Science.gov (United States)

    Johnson, Andrew Frederick; Moreno-Báez, Marcia; Giron-Nava, Alfredo; Corominas, Julia; Erisman, Brad; Ezcurra, Exequiel; Aburto-Oropeza, Octavio

    2017-01-01

    To gauge the collateral impacts of fishing we must know where fishing boats operate and how much they fish. Although small-scale fisheries land approximately the same amount of fish for human consumption as industrial fleets globally, methods of estimating their fishing effort are comparatively poor. We present an accessible, spatial method of calculating the effort of small-scale fisheries based on two simple measures that are available, or at least easily estimated, in even the most data-poor fisheries: the number of boats and the local coastal human population. We illustrate the method using a small-scale fisheries case study from the Gulf of California, Mexico, and show that our measure of Predicted Fishing Effort (PFE), measured as the number of boats operating in a given area per day adjusted by the number of people in local coastal populations, can accurately predict fisheries landings in the Gulf. Comparing our values of PFE to commercial fishery landings throughout the Gulf also indicates that the current number of small-scale fishing boats in the Gulf is approximately double what is required to land theoretical maximum fish biomass. Our method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This new method provides an important first step towards estimating the fishing effort of small-scale fleets globally.

  14. Public and stakeholder perceptions of 2030 bioenergy scenarios for the Yorkshire and Humber region

    International Nuclear Information System (INIS)

    Upham, Paul; Shackley, Simon; Waterman, Holly

    2007-01-01

    This study develops contrasting 2030 bioenergy scenarios for the Yorkshire and Humber region of the UK, primarily for wood, and documents the associated opinions of policy stakeholders and members of the public with a practical interest in renewable energy. Use of the region's wood resource for small- and medium-sized CHP and heat plants was found to be more attractive to these groups than use of the same resource for large or small electric power plants. Key reasons mentioned by stakeholders and the informed public groups are the higher energetic efficiency of CHP and heat relative to electricity, and perceptions of better performance in terms of local employment, local environmental impact and associated social benefits. There was also a common feeling that small-scale electric power plants were, to date, less technologically proven

  15. An accurate and computationally efficient small-scale nonlinear FEA of flexible risers

    OpenAIRE

    Rahmati, MT; Bahai, H; Alfano, G

    2016-01-01

    This paper presents a highly efficient small-scale, detailed finite-element modelling method for flexible risers which can be effectively implemented in a fully-nested (FE2) multiscale analysis based on computational homogenisation. By exploiting cyclic symmetry and applying periodic boundary conditions, only a small fraction of a flexible pipe is used for a detailed nonlinear finite-element analysis at the small scale. In this model, using three-dimensional elements, all layer components are...

  16. Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2017-01-01

    Highlights: • Stochastic model is proposed for coordinated scheduling of renewable energy sources. • The effect of combined heat and power is considered. • Uncertainties of wind speed, solar radiation and electricity market price are considered. • Profit maximization, emission and AENS minimization are considered as objective functions. • Modified firefly algorithm is employed to solve the problem. - Abstract: Nowadays the operation of renewable energy sources and combined heat and power (CHP) units is increased in micro grids; therefore, to reach optimal performance, optimal scheduling of these units is required. In this regard, in this paper a micro grid consisting of proton exchange membrane fuel cell-combined heat and power (PEMFC-CHP), wind turbines (WT) and photovoltaic (PV) units, is modeled to determine the optimal scheduling state of these units by considering uncertain behavior of renewable energy resources. For this purpose, a scenario-based method is used for modeling the uncertainties of electrical market price, the wind speed, and solar irradiance. It should be noted that the hydrogen storage strategy is also applied in this study for PEMFC-CHP units. Market profit, total emission production, and average energy not supplied (AENS) are the objective functions considered in this paper simultaneously. Consideration of the above-mentioned objective functions converts the proposed problem to a mixed integer nonlinear programming. To solve this problem, a multi-objective firefly algorithm is used. The uncertainties of parameters convert the mixed integer nonlinear programming problem to a stochastic mixed integer nonlinear programming problem. Moreover, optimal coordinated scheduling of renewable energy resources and thermal units in micro-grids improve the value of the objective functions. Simulation results obtained from a modified 33-bus distributed network as a micro grid illustrates the effectiveness of the proposed method.

  17. Small-scale field-aligned currents observed by the AKEBONO (EXOS-D) satellite

    International Nuclear Information System (INIS)

    Fukunishi, H.; Oya, H.; Kokubun, S.; Tohyama, F.; Mukai, T.; Fujii, R.

    1991-01-01

    The EXOS-D fluxgate magnetometer data obtained at 3,000-10,000 km altitude have shown that small-scale field-aligned currents always exist in large-scale region 1, region 2, cusp and polar cap current systems. Assuming that these small-scale field-aligned currents have current sheet structure, the width of current sheet is estimated to be 5-20 km at ionospheric altitude. By comparing the magnetometer data with charged particle and high frequency plasma wave data simultaneously obtained from EXOS-D, it is found that small-scale currents have one-to-one correspondence with localized electron precipitation events characterized by flux enhancement over a wide energy range from 10 eV to several keV and broadband electrostatic bursts occasionally extending above local plasma frequencies or electron cyclotron frequencies

  18. Design and Modelling of Small Scale Low Temperature Power Cycles

    DEFF Research Database (Denmark)

    Wronski, Jorrit

    he work presented in this report contributes to the state of the art within design and modelling of small scale low temperature power cycles. The study is divided into three main parts: (i) fluid property evaluation, (ii) expansion device investigations and (iii) heat exchanger performance......-oriented Modelica code and was included in the thermo Cycle framework for small scale ORC systems. Special attention was paid to the valve system and a control method for variable expansion ratios was introduced based on a cogeneration scenario. Admission control based on evaporator and condenser conditions...

  19. Effect of Integrated Pest Management Training on Ugandan Small-Scale Farmers

    DEFF Research Database (Denmark)

    Clausen, Anna Sabine; Jørs, Erik; Atuhaire, Aggrey

    2017-01-01

    Small-scale farmers in developing countries use hazardous pesticides taking few or no safety measures. Farmer field schools (FFSs) teaching integrated pest management (IPM) have been shown to reduce pesticide use among trained farmers. This cross-sectional study compares pesticide-related knowledge......-reported symptoms. The study supports IPM as a method to reduce pesticide use and potential exposure and to improve pesticide-related KAP among small-scale farmers in developing countries....

  20. Scaling effects concerning the analysis of small break experiments

    International Nuclear Information System (INIS)

    Austregesilo Filho, H.

    1985-01-01

    Some scaling effects related to the experimental facilities as well as to the analytical models used for the design and safety analysis of nuclear power plants are discussed or the basis of phenomena expected to occur during small-break loss - of - coolant accidents. The results of isolated small-break experiments should not be directly extrapolated to the safety analysis of commercial reactors, due to the scaling distortions inherent to the test facilities. With respect to the analytical models used to simulate thermohydraulic processes in experimental facilities, their eventual dependence relative to the system dimension should be examined in order to assess their applicability to the safety analysis of commercial power plants. (Author) [pt

  1. N2O emission hotspots at different spatial scales and governing factors for small scale hotspots

    International Nuclear Information System (INIS)

    Heuvel, R.N. van den; Hefting, M.M.; Tan, N.C.G.; Jetten, M.S.M.; Verhoeven, J.T.A.

    2009-01-01

    Chronically nitrate-loaded riparian buffer zones show high N 2 O emissions. Often, a large part of the N 2 O is emitted from small surface areas, resulting in high spatial variability in these buffer zones. These small surface areas with high N 2 O emissions (hotspots) need to be investigated to generate knowledge on the factors governing N 2 O emissions. In this study the N 2 O emission variability was investigated at different spatial scales. Therefore N 2 O emissions from three 32 m 2 grids were determined in summer and winter. Spatial variation and total emission were determined on three different scales (0.3 m 2 , 0.018 m 2 and 0.0013 m 2 ) at plots with different levels of N 2 O emissions. Spatial variation was high at all scales determined and highest at the smallest scale. To test possible factors inducing small scale hotspots, soil samples were collected for slurry incubation to determine responses to increased electron donor/acceptor availability. Acetate addition did increase N 2 O production, but nitrate addition failed to increase total denitrification or net N 2 O production. N 2 O production was similar in all soil slurries, independent of their origin from high or low emission soils, indicating that environmental conditions (including physical factors like gas diffusion) rather than microbial community composition governed N 2 O emission rates

  2. Small-scale variability in tropical tropopause layer humidity

    Science.gov (United States)

    Jensen, E. J.; Ueyama, R.; Pfister, L.; Karcher, B.; Podglajen, A.; Diskin, G. S.; DiGangi, J. P.; Thornberry, T. D.; Rollins, A. W.; Bui, T. V.; Woods, S.; Lawson, P.

    2016-12-01

    Recent advances in statistical parameterizations of cirrus cloud processes for use in global models are highlighting the need for information about small-scale fluctuations in upper tropospheric humidity and the physical processes that control the humidity variability. To address these issues, we have analyzed high-resolution airborne water vapor measurements obtained in the Airborne Tropical TRopopause EXperiment over the tropical Pacific between 14 and 20 km. Using accurate and precise 1-Hz water vapor measurements along approximately-level aircraft flight legs, we calculate structure functions spanning horizontal scales ranging from about 0.2 to 50 km, and we compare the water vapor variability in the lower (about 14 km) and upper (16-19 km) Tropical Tropopause Layer (TTL). We also compare the magnitudes and scales of variability inside TTL cirrus versus in clear-sky regions. The measurements show that in the upper TTL, water vapor concentration variance is stronger inside cirrus than in clear-sky regions. Using simulations of TTL cirrus formation, we show that small variability in clear-sky humidity is amplified by the strong sensitivity of ice nucleation rate to supersaturation, which results in highly-structured clouds that subsequently drive variability in the water vapor field. In the lower TTL, humidity variability is correlated with recent detrainment from deep convection. The structure functions indicate approximately power-law scaling with spectral slopes ranging from about -5/3 to -2.

  3. Small Scale Problems of the ΛCDM Model: A Short Review

    Directory of Open Access Journals (Sweden)

    Antonino Del Popolo

    2017-02-01

    Full Text Available The ΛCDM model, or concordance cosmology, as it is often called, is a paradigm at its maturity. It is clearly able to describe the universe at large scale, even if some issues remain open, such as the cosmological constant problem, the small-scale problems in galaxy formation, or the unexplained anomalies in the CMB. ΛCDM clearly shows difficulty at small scales, which could be related to our scant understanding, from the nature of dark matter to that of gravity; or to the role of baryon physics, which is not well understood and implemented in simulation codes or in semi-analytic models. At this stage, it is of fundamental importance to understand whether the problems encountered by the ΛDCM model are a sign of its limits or a sign of our failures in getting the finer details right. In the present paper, we will review the small-scale problems of the ΛCDM model, and we will discuss the proposed solutions and to what extent they are able to give us a theory accurately describing the phenomena in the complete range of scale of the observed universe.

  4. Notes on a Dramaturgical Analysis of Unequal Small-Scale Corruption Experiences

    Directory of Open Access Journals (Sweden)

    Edgar Daniel Manchinelly Mota

    2017-10-01

    Full Text Available In the last two decades, corruption has emerged as a relevant subject on a worldwide scale, because of its negative effects on the economy and State institutions, among other things. Research has focused on the macro aspects of corruption, emphasizing its causes and consequences. However, small-scale corruption has not been studied in such detail. This document proposes a theoretical-methodological framework for a dramaturgical analysis of small-scale corruption, with the aim of demonstrating that it is a stratified interaction. In this sense, corruption is an unequal experience for citizens, which depends on individuals’ social position.

  5. Factors associated with public awareness of the Crown Health Program in the Al-Jouf Region

    Directory of Open Access Journals (Sweden)

    Ziad A Memish

    2015-01-01

    Full Text Available Objectives: A community-based intervention, the Crown Health Project (CHP, was developed by the Ministry of Health. It was implemented on a small-scale in Al-Jouf Region in Northern Kingdom of Saudi Arabia to assess its feasibility and effectiveness so that it can be scaled up. This study primarily aimed at investigating factors associated with the awareness of CHP in order to improve subsequent campaigns for the program in Al-Jouf and other regions. A secondary aim was to assess possible changes of public awareness during intensification of the awareness campaign between October 2011 and May 2012. Methods: A pre- and post-questionnaire cross-sectional approach was undertaken, and the intervention was an awareness campaign. Variables collected included demographic characteristics (e.g., age, gender, education, occupation, urban/rural residence and CHP awareness (its existence, sources of knowledge about CHP, its goals and objectives, its target diseases, location of activities, participation in such activities. Logistic regression was used to analyze the awareness of the program according to participant characteristics, with a time of the survey as a variable. Results: Awareness of the program was found to be 11 times higher among postsurvey respondents than presurvey respondents. Respondents of the second survey were better at correctly identifying "health education" as the main goal of the CHP (odds ratio [OR], 4.1; 95% confidence interval [CI], 3.1-5.5, "noncommunicable diseases" as the main diseases targeted (OR, 4.8; 95% CI, 3.6-6.4 and "attention to health" as the purpose (OR, 6.0; 95% CI, 4.0-8.9. Conclusion: The different activities of the CHP were successful in dramatically increasing awareness of the CHP program in Al-Jouf.

  6. Adopting small-scale production of electricity

    Energy Technology Data Exchange (ETDEWEB)

    Tengvard, Maria; Palm, Jenny (Linkoeping Univ., Dept. of Technology and Social Change, Linkoeping (Sweden)). e-mail: maria.tengvard@liu.se

    2009-07-01

    In Sweden in 2008, a 'new' concept for small-scale electricity production attracted massive media attention. This was mainly due to the efforts of Swedish company Egen El, which is marketing small-scale photovoltaics (PVs) and wind turbines to households, both homeowners and tenants. Their main selling point is simplicity: their products are so easy to install that everyone can do it. Autumn 2008 also saw IKEA announce that within three years it would market solar panels. How, then, do households perceive these products? Why would households choose to buy them? How do households think about producing their own electricity? Analysis of material based on in-depth interviews with members of 20 households reveals that environmental concerns supply the main motive for adopting PVs or micro wind power generation. In some cases, the adopting households have an extensively ecological lifestyle and such adoption represents a way to take action in the energy area. For some, this investment is symbolic: a way of displaying environmental consciousness or setting an example to others. For still others, the adoption is a protest against 'the system' with its large dominant actors or is a way to become self-sufficient. These microgeneration installations are rejected mainly on economic grounds; other motives are respect for neighbours and difficulties finding a place to install a wind turbine.

  7. Atmospheric dispersion modelling over complex terrain at small scale

    Science.gov (United States)

    Nosek, S.; Janour, Z.; Kukacka, L.; Jurcakova, K.; Kellnerova, R.; Gulikova, E.

    2014-03-01

    Previous study concerned of qualitative modelling neutrally stratified flow over open-cut coal mine and important surrounding topography at meso-scale (1:9000) revealed an important area for quantitative modelling of atmospheric dispersion at small-scale (1:3300). The selected area includes a necessary part of the coal mine topography with respect to its future expansion and surrounding populated areas. At this small-scale simultaneous measurement of velocity components and concentrations in specified points of vertical and horizontal planes were performed by two-dimensional Laser Doppler Anemometry (LDA) and Fast-Response Flame Ionization Detector (FFID), respectively. The impact of the complex terrain on passive pollutant dispersion with respect to the prevailing wind direction was observed and the prediction of the air quality at populated areas is discussed. The measured data will be used for comparison with another model taking into account the future coal mine transformation. Thus, the impact of coal mine transformation on pollutant dispersion can be observed.

  8. Economic potentials of CHP connected to district heat systems in Germany. Implementation of the EU Efficiency Directive; Wirtschaftliche Potenziale der waermeleitungsgebundenen Siedlungs-KWK in Deutschland. Umsetzung der EU-Energieeffizienzrichtlinie

    Energy Technology Data Exchange (ETDEWEB)

    Eikmeier, Bernd [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung IFAM, Bremen (Germany). Organisationseinheit Systemanalyse; Bremen Univ. (Germany)

    2015-07-01

    The EU Efficiency Directive (2012/27/EU) is requiring all member states to carry out an evaluation of the potential for highly efficient CHP and the efficient use of district heating and cooling by December 2015. The German Federal Ministry of Economic Affairs and Energy appointed this task to the Fraunhofer Institute for Manufacturing and Advanced Materials, division for Energy Systems Analysis (formerly Bremer Energie Institut) in conjunction with other partners. The results for the sector district- and communal heating with CHP, sub-sectors private households, trade and services industry, are presented in this article.

  9. Genetically modified crops and small-scale farmers: main opportunities and challenges

    OpenAIRE

    Azadi, Hossein; Samiee, Atry; Mahmoudi, Hossein; Jouzi, Zeynab; Rafiaani Khachak, Parisa; De Maeyer, Philippe; Witlox, Frank

    2015-01-01

    Although some important features of genetically modified (GM) crops such as insect resistance, herbicide tolerance, and drought tolerance might seem to be beneficial for small-scale farmers, the adoption of GM technology by smallholders is still slight. Identifying pros and cons of using this technology is important to understand the impacts of GM crops on these farmers. This article reviews the main opportunities and challenges of GM crops for small-scale farmers in developing countrie...

  10. Scaling criteria and an assessment of Semiscale Mod-3 scaling for small-break loss-of-coolant transients

    International Nuclear Information System (INIS)

    Larson, T.K.; Anderson, J.L.; Shimeck, D.J.

    1982-01-01

    Various methods of scaling fluid thermal-hydraulic test facilities and their relative merits and disadvantages are examined in light of nuclear reactor safety considerations. Particular emphasis is placed on examination of the scaling of the Semiscale Mod-3 system and determination of thermal-hydraulic phenomena thought to be important during a small break loss-of-coolant accident in a pressurized water nuclear reactor. The influence of geometric and dynamic scaling concerns in the Mod-3 system on small break behavior are addressed from an engineering viewpoint and corrective measures contemplated or required to make results from Semiscale tests more meaningful relative to expected PWR response are discussed

  11. Productivity and production efficiency among small scale irrigated ...

    African Journals Online (AJOL)

    The study examined productivity and production efficiency among small scale irrigated sugarcane farmers in Niger State, Nigeria using a stochastic translog frontier function. Data for the study were obtained using structured questionnaires administered to 100 randomly selected sugarcane farmers from Paiko and Gurara ...

  12. New perspectives in small-scale fisheries management: challenges ...

    African Journals Online (AJOL)

    This is in response to the recognition that conventional fisheries management is not equipped to deal with the complexities, uncertainties and challenges prevalent in small-scale fishery systems. Consequently, a new fisheries paradigm is emerging based on the principles and ideas underpinning systems thinking, ...

  13. Optimal design of integrated CHP systems for housing complexes

    International Nuclear Information System (INIS)

    Fuentes-Cortés, Luis Fabián; Ponce-Ortega, José María; Nápoles-Rivera, Fabricio; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2015-01-01

    Highlights: • An optimization formulation for designing domestic CHP systems is presented. • The operating scheme, prime mover and thermal storage system are optimized. • Weather conditions and behavior demands are considered. • Simultaneously economic and environmental objectives are considered. • Two case studies from Mexico are presented. - Abstract: This paper presents a multi-objective optimization approach for designing residential cogeneration systems based on a new superstructure that allows satisfying the demands of hot water and electricity at the minimum cost and the minimum environmental impact. The optimization involves the selection of technologies, size of required units and operating modes of equipment. Two residential complexes in different cities of the State of Michoacán in Mexico were considered as case studies. One is located on the west coast and the other one is in the mountainous area. The results show that the implementation of the proposed optimization method yields significant economic and environmental benefits due to the simultaneous reduction in the total annual cost and overall greenhouse gas emissions

  14. The Practical Application of Minor Element Control in Small Scale Melts

    Science.gov (United States)

    Jablonski, P. D.; Hawk, J. A.

    Many times small scale melts are made for the purposes of alloy development, component evaluation, or simply economic concerns when "commercial" alloys are unavailable in small quantities. Not only is it critical that the major alloy elements meet the desired levels, but "tramp" elements or trace element additions must also be controlled. Control of tramp and trace elements on the small scale is often done differently simply due to the scale of the melt or the equipment available. In this paper several approaches will be presented that have been used at NETL in manufacturing alloys for in-house research, including, for example, vacuum refining. Also, the relative effectiveness of various gettering elements will be explored. The successes achieved as well as the failures of the various approaches will be discussed in terms of thermodynamic and kinetic considerations. The presentation will conclude with practical alloy examples.

  15. Mercury Pollution Due to Small-Scale Gold Mining in the Philippines: An Economic Analysis

    OpenAIRE

    Orbeta, Aniceto C.; Israel, Danilo C.; Asirot, Jasminda

    2000-01-01

    The study reviews small-scale gold mining in the Philippines and economically assesses mercury pollution and other development problems in the industry. The end purpose is to suggest measures to address the problems and promote better environmental and overall management of small-scale mining. The study has used secondary data from mining institutions and primary data from key informants and small-scale gold miners and processors in the two case study sites.

  16. Mercury Pollution Due to Small-Scale Gold Mining in the Philippines: An Economic Analysis

    OpenAIRE

    Israel, Danilo C.; Asirot, Jasminda

    2002-01-01

    The study reviews small-scale gold mining in the Philippines and economically assesses mercury pollution and other development problems in the industry. The end purpose is to suggest measures to address the problems and promote better environmental and overall management of small-scale mining. The study has used secondary data from mining institutions and primary data from key informants and small-scale gold miners and processors in the two case study sites. brazzer

  17. Researching of the possibility of using absorption heat exchangers for creating the low return temperature heat supply systems based on CHP generation

    Science.gov (United States)

    Yavorovsky, Y. V.; Malenkov, A. S.; Zhigulina, Y. V.; Romanov, D. O.; Kurzanov, S. Y.

    2017-11-01

    This paper deals with the variant of modernization of the heat point within urban heat supply network in order to create the system of heat and cold supply on its basis, providing the suppliers with heat in cold months and with heat and cold in warm months. However, in cold months in the course of heating system operation, the reverse delivery water temperature is maintained below 40 °C. The analysis of heat and power indicators of the heat and cold supply system under different operating conditions throughout the year was conducted. The possibility to use the existing heat networks for the cold supply needs was estimated. The advantages of the system over the traditional heat supply systems that use Combined Heat and Power (CHP) plant as a heat source as exemplified by heat supply system from CHP with ST-80 turbine were demonstrated.

  18. Broad-scale small-world network topology induces optimal synchronization of flexible oscillators

    International Nuclear Information System (INIS)

    Markovič, Rene; Gosak, Marko; Marhl, Marko

    2014-01-01

    The discovery of small-world and scale-free properties of many man-made and natural complex networks has attracted increasing attention. Of particular interest is how the structural properties of a network facilitate and constrain its dynamical behavior. In this paper we study the synchronization of weakly coupled limit-cycle oscillators in dependence on the network topology as well as the dynamical features of individual oscillators. We show that flexible oscillators, characterized by near zero values of divergence, express maximal correlation in broad-scale small-world networks, whereas the non-flexible (rigid) oscillators are best correlated in more heterogeneous scale-free networks. We found that the synchronization behavior is governed by the interplay between the networks global efficiency and the mutual frequency adaptation. The latter differs for flexible and rigid oscillators. The results are discussed in terms of evolutionary advantages of broad-scale small-world networks in biological systems

  19. Thermodynamic, ecological and economic aspects of the use of the gas turbine for heat supply to the stripping process in a supercritical CHP plant integrated with a carbon capture installation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2014-01-01

    Highlights: • Variants of integration of CHP plant with CCS and gas turbine unit were analyzed. • The simulations of operation of plants under changing load were realized. • Conditions of competitiveness for all solutions were identified. • Integration can be profitable if prices of allowance will reach values >60 €/MgCO 2 . - Abstract: This paper presents the results of thermodynamic and economic analyses for eight variants of a combined heat and power (CHP) plant fuelled with coal working under supercritical steam parameters and integrated with a CO 2 capture installation and a gas turbine system. The motivation behind using a gas turbine in the system was to generate steam to supply heat for the stripping process that occurs in the separation installation to regenerate the sorbent. Additional analyses were conducted for the reference case, a CHP unit in which the CO 2 separation process was not conducted, to enable an economic evaluation of the integration of a CHP unit with a CO 2 separation installation according to the variants proposed. The break-even price of electricity and avoided emission costs were used to evaluate the respective solutions. In this paper, the results of the sensitivity analysis of the economic evaluation indicators in terms of the change in the annual operation time, price of emission allowance and heat demand rate for the realization of the stripping process for all cases are presented

  20. Methodological foundations of evaluation of effectiveness indicators of small-scale business activities

    Directory of Open Access Journals (Sweden)

    Ivanova T.

    2013-01-01

    Full Text Available The methodological approach to the measurement of financial indicators of small-scale enterprises has been developed. It enables to secure the comparability of financial condition indicators and the results of small-scale enterprise activities, and also to develop the methods of vertical integral estimate calculation at separate aspects of financial condition and the results of smallscale enterprise activities.

  1. THE BREAKEVEN POINT GIVEN LIMIT COST USING BIOMASS CHP PLANT

    Directory of Open Access Journals (Sweden)

    Paula VOICU

    2015-06-01

    Full Text Available Biomass is a renewable source, non-fossil, from which can be obtained fuels, which can be used in power generation systems. The main difference of fossil fuels is the availability biomass in nature and that it is in continue "reproduction". The use its enable the use of materials that could be destined destruction, as a source of energy "renewable", though result with many ecological values. In this paper we will study, applying a calculation model in view optimal sizing of the cogeneration plant based on biomass, biomass cost limit for the net present value is zero. It will consider that in cogeneration systems and in heating peak systems using biomass. After applying the mathematical model for limit value of biomass cost will determine the nominal optimal coefficient of cogeneration, for which discounted net revenue value is zero. Optimal sizing of CHP plants based on using biomass will be given by optimum coefficient of cogeneration determined following the application of the proposed mathematical model.

  2. The Role of Small-Scale Biofuel Production in Brazil: Lessons for Developing Countries

    Directory of Open Access Journals (Sweden)

    Arielle Muniz Kubota

    2017-07-01

    Full Text Available Small-scale biofuel initiatives to produce sugarcane ethanol are claimed to be a sustainable opportunity for ethanol supply, particularly for regions with price-restricted or no access to modern biofuels, such as communities located far from the large ethanol production centers in Brazil and family-farm communities in Sub-Saharan Africa, respectively. However, smallholders often struggle to achieve economic sustainability with ethanol microdistilleries. The aim of this paper is to provide an assessment of the challenges faced by small-scale bioenergy initiatives and discuss the conditions that would potentially make these initiatives economically feasible. Ethanol microdistilleries were assessed through a critical discussion of existent models and through an economic analysis of different sugarcane ethanol production models. The technical-economic analysis showed that the lack of competitiveness against large-scale ethanol distillery, largely due to both low crop productivity and process efficiency, makes it unlikely that small-scale distilleries can compete in the national/international ethanol market without governmental policies and subsidies. Nevertheless, small-scale projects intended for local supply and integrated food–fuel systems seem to be an interesting alternative that can potentially make ethanol production in small farms viable as well as increase food security and project sustainability particularly for local communities in developing countries.

  3. A comparison of working in small-scale and large-scale nursing homes: A systematic review of quantitative and qualitative evidence.

    Science.gov (United States)

    Vermeerbergen, Lander; Van Hootegem, Geert; Benders, Jos

    2017-02-01

    Ongoing shortages of care workers, together with an ageing population, make it of utmost importance to increase the quality of working life in nursing homes. Since the 1970s, normalised and small-scale nursing homes have been increasingly introduced to provide care in a family and homelike environment, potentially providing a richer work life for care workers as well as improved living conditions for residents. 'Normalised' refers to the opportunities given to residents to live in a manner as close as possible to the everyday life of persons not needing care. The study purpose is to provide a synthesis and overview of empirical research comparing the quality of working life - together with related work and health outcomes - of professional care workers in normalised small-scale nursing homes as compared to conventional large-scale ones. A systematic review of qualitative and quantitative studies. A systematic literature search (April 2015) was performed using the electronic databases Pubmed, Embase, PsycInfo, CINAHL and Web of Science. References and citations were tracked to identify additional, relevant studies. We identified 825 studies in the selected databases. After checking the inclusion and exclusion criteria, nine studies were selected for review. Two additional studies were selected after reference and citation tracking. Three studies were excluded after requesting more information on the research setting. The findings from the individual studies suggest that levels of job control and job demands (all but "time pressure") are higher in normalised small-scale homes than in conventional large-scale nursing homes. Additionally, some studies suggested that social support and work motivation are higher, while risks of burnout and mental strain are lower, in normalised small-scale nursing homes. Other studies found no differences or even opposing findings. The studies reviewed showed that these inconclusive findings can be attributed to care workers in some

  4. Computer experimental analysis of the CHP performance of a 100 kW e SOFC Field Unit by a factorial design

    Science.gov (United States)

    Calì, M.; Santarelli, M. G. L.; Leone, P.

    Gas Turbine Technologies (GTT) and Politecnico di Torino, both located in Torino (Italy), have been involved in the design and installation of a SOFC laboratory in order to analyse the operation, in cogenerative configuration, of the CHP 100 kW e SOFC Field Unit, built by Siemens-Westinghouse Power Corporation (SWPC), which is at present (May 2005) starting its operation and which will supply electric and thermal power to the GTT factory. In order to take the better advantage from the analysis of the on-site operation, and especially to correctly design the scheduled experimental tests on the system, we developed a mathematical model and run a simulated experimental campaign, applying a rigorous statistical approach to the analysis of the results. The aim of this work is the computer experimental analysis, through a statistical methodology (2 k factorial experiments), of the CHP 100 performance. First, the mathematical model has been calibrated with the results acquired during the first CHP100 demonstration at EDB/ELSAM in Westerwoort. After, the simulated tests have been performed in the form of computer experimental session, and the measurement uncertainties have been simulated with perturbation imposed to the model independent variables. The statistical methodology used for the computer experimental analysis is the factorial design (Yates' Technique): using the ANOVA technique the effect of the main independent variables (air utilization factor U ox, fuel utilization factor U F, internal fuel and air preheating and anodic recycling flow rate) has been investigated in a rigorous manner. Analysis accounts for the effects of parameters on stack electric power, thermal recovered power, single cell voltage, cell operative temperature, consumed fuel flow and steam to carbon ratio. Each main effect and interaction effect of parameters is shown with particular attention on generated electric power and stack heat recovered.

  5. Air pollution and economics: Alternate use of fuels in small scale industries

    International Nuclear Information System (INIS)

    Rao, B.P.S.; Pandit, V.I.

    1999-01-01

    In developing countries the problem of air pollution was recognized earlier, however, it has acquired a greater dimension due to the conventional use of low grade fuels like coal, baggase, rice husk, etc. having high sulphur and ash content. The industrial sources contribute about 30--40% of the total emissions. In India, the small scale industries (low investment group) contribute about 60--80% of the total industrial emissions. These industries are characterized with various environmental pollution problems due to cluster of small scale industries located in sensitive area; use of low grade fuel, primitive processing techniques without emission abatement facilities etc., thus leading to enormous pollution in an confined region. Acute need was felt to reduce the pollution problem associated with small scale industries by use of cleaner fuel so as to reduce the localized problem. The paper presents the emissions associated with use of coal/coke, natural gas, LPG, and propane along with the fuel cost for small scale industrial sector of Agra, Firozabad and Mathura region. The studies carried out would find applicability to meet the air pollution standards based on shift in fuel and associated cost

  6. Options for Sustaining Small and Medium Scale Enterprises in ...

    African Journals Online (AJOL)

    FIRST LADY

    problems in Nigeria due to numerous domestic and global economic problems, and policy ... national income till today remains low (Osamwonyi, 2009). For ... managers. Nwakoby (1988) defines Small and Medium-Scale business as “any.

  7. Constraints on small-scale cosmological fluctuations from SNe lensing dispersion

    International Nuclear Information System (INIS)

    Ben-Dayan, Ido; Takahashi, Ryuichi

    2015-04-01

    We provide predictions on small-scale cosmological density power spectrum from supernova lensing dispersion. Parameterizing the primordial power spectrum with running α and running of running β of the spectral index, we exclude large positive α and β parameters which induce too large lensing dispersions over current observational upper bound. We ran cosmological N-body simulations of collisionless dark matter particles to investigate non-linear evolution of the primordial power spectrum with positive running parameters. The initial small-scale enhancement of the power spectrum is largely erased when entering into the non-linear regime. For example, even if the linear power spectrum at k>10 hMpc -1 is enhanced by 1-2 orders of magnitude, the enhancement much decreases to a factor of 2-3 at late time (z≤1.5). Therefore, the lensing dispersion induced by the dark matter fluctuations weakly constrains the running parameters. When including baryon-cooling effects (which strongly enhance the small-scale clustering), the constraint is comparable or tighter than the PLANCK constraint, depending on the UV cut-off. Further investigations of the non-linear matter spectrum with baryonic processes is needed to reach a firm constraint.

  8. Battery energy storage systems: Assessment for small-scale renewable energy integration

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Nirmal-Kumar C.; Garimella, Niraj [Power Systems Group, Department of Electrical and Computer Engineering, The University of Auckland, 38 Princes Street, Science Centre, Auckland 1142 (New Zealand)

    2010-11-15

    Concerns arising due to the variability and intermittency of renewable energy sources while integrating with the power grid can be mitigated to an extent by incorporating a storage element within the renewable energy harnessing system. Thus, battery energy storage systems (BESS) are likely to have a significant impact in the small-scale integration of renewable energy sources into commercial building and residential dwelling. These storage technologies not only enable improvements in consumption levels from renewable energy sources but also provide a range of technical and monetary benefits. This paper provides a modelling framework to be able to quantify the associated benefits of renewable resource integration followed by an overview of various small-scale energy storage technologies. A simple, practical and comprehensive assessment of battery energy storage technologies for small-scale renewable applications based on their technical merit and economic feasibility is presented. Software such as Simulink and HOMER provides the platforms for technical and economic assessments of the battery technologies respectively. (author)

  9. Impact of small-scale geometric roughness on wetting behavior.

    Science.gov (United States)

    Kumar, Vaibhaw; Errington, Jeffrey R

    2013-09-24

    We examine the extent to which small-scale geometric substrate roughness influences the wetting behavior of fluids at solid surfaces. Molecular simulation is used to construct roughness wetting diagrams wherein the progression of the contact angle is traced from the Cassie to Wenzel to impregnation regime with increasing substrate strength for a collection of systems with rectangularly shaped grooves. We focus on the evolution of these diagrams as the length scale of the substrate features approaches the size of a fluid molecule. When considering a series of wetting diagrams for substrates with fixed shape and variable feature periodicity, we find that the diagrams progressively shift away from a common curve as the substrate features become smaller than approximately 10 fluid diameters. It is at this length scale that the macroscopic models of Cassie and Wenzel become unreliable. Deviations from the macroscopic models are attributed to the manner in which the effective substrate-fluid interaction strength evolves with periodicity and the important role that confinement effects play for substrates with small periodicities.

  10. management and growth paradox of rural small-scale industrial

    African Journals Online (AJOL)

    User

    Keywords: Rural Small-Scale Industries, firm growth, management, proprietors, workforce ... veloping countries as a solution to the problem of scarcity .... In the analysis logistic regression sta- ..... of imported raw materials such as high cost and.

  11. Financing small scale wind energy projects in the UK

    International Nuclear Information System (INIS)

    Mitchell, Catherine

    1993-01-01

    This paper shows how wind energy projects in the UK have obtained finance. It attempts to list the financing options open to small scale developments and to note any likely problems which may occur. (UK)

  12. Enhancing stewardship in Latin America and Caribbean small-scale fisheries : challenges and opportunities

    NARCIS (Netherlands)

    Gasalla, M.A.; de Castro, F.

    2016-01-01

    This thematic series, entitled “Enhancing Stewardship in Latin America and Caribbean Small-Scale Fisheries”, emerged as part of a joint effort to bridge Latin-American scholars interested in networking on small-scale fisheries in the region. Built on results presented at two meetings (‘Too Big to

  13. Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system

    International Nuclear Information System (INIS)

    Meybodi, Mehdi Aghaei; Behnia, Masud

    2013-01-01

    Methane, a major contributor to global warming, is a greenhouse gas emitted from coal mines. Abundance of coal mines and consequently a considerable amount of methane emission requires drastic measures to mitigate harmful effects of coal mining on the environment. One of the commonly adopted methods is to use emitted methane to fuel power generation systems; however, instability of fuel sources hinders the development of systems using conventional prime movers. To address this, application of Stirling engines may be considered. Here, we develop a techno-economic methodology for conducting an optimisation-based feasibility study on the application of Stirling engines as the prime movers of coal mine CHP systems from an economic and an environmental point of view. To examine the impact of environmental policies on the economics of the system, the two commonly implemented ones (i.e. a carbon tax and emissions trading scheme) are considered. The methodology was applied to a local coal mine. The results indicate that incorporating the modelled system not only leads to a substantial reduction in greenhouse gas emissions, but also to improved economics. Further, due to the heavy economic burden, the carbon tax scheme creates great incentive for coal mine industry to address the methane emissions. -- Highlights: •We study the application of Stirling engines in coal mine CHP systems. •We develop a thermo-economic approach based on the net present worth analysis. •We examine the impact of a carbon tax and ETS on the economics of the system. •The modeled system leads to a substantial reduction in greenhouse gas emissions. •Carbon tax provides a greater incentive to address the methane emissions

  14. Climate change adaptation strategies by small-scale farmers in ...

    African Journals Online (AJOL)

    Mburu

    SPSS) ... were financial constraints (93.4%), lack of relevant skills (74.5%) and lack of ... Key words: Climate change, small-scale farmers, adaptation strategies. ... investment in irrigation infrastructure, high post-harvest ..... 72.0 School drop out.

  15. Resource-Use Efficiency in Rice Production Under Small Scale ...

    African Journals Online (AJOL)

    acer

    specific objectives of the study were to determine resource use efficiency, describe ... economic level. ... this key variable with a view to stepping ... focused on small-scale irrigation systems for ... farmers were assumed to be operating under.

  16. Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence

    Science.gov (United States)

    Frost, Daniel A.; Garnero, Edward J.; Rost, Sebastian

    2018-01-01

    We identify PKP • PKP scattered waves (also known as P‧ •P‧) from earthquakes recorded at small-aperture seismic arrays at distances less than 65°. P‧ •P‧ energy travels as a PKP wave through the core, up into the mantle, then scatters back down through the core to the receiver as a second PKP. P‧ •P‧ waves are unique in that they allow scattering heterogeneities throughout the mantle to be imaged. We use array-processing methods to amplify low amplitude, coherent scattered energy signals and resolve their incoming direction. We deterministically map scattering heterogeneity locations from the core-mantle boundary to the surface. We use an extensive dataset with sensitivity to a large volume of the mantle and a location method allowing us to resolve and map more heterogeneities than have previously been possible, representing a significant increase in our understanding of small-scale structure within the mantle. Our results demonstrate that the distribution of scattering heterogeneities varies both radially and laterally. Scattering is most abundant in the uppermost and lowermost mantle, and a minimum in the mid-mantle, resembling the radial distribution of tomographically derived whole-mantle velocity heterogeneity. We investigate the spatial correlation of scattering heterogeneities with large-scale tomographic velocities, lateral velocity gradients, the locations of deep-seated hotspots and subducted slabs. In the lowermost 1500 km of the mantle, small-scale heterogeneities correlate with regions of low seismic velocity, high lateral seismic gradient, and proximity to hotspots. In the upper 1000 km of the mantle there is no significant correlation between scattering heterogeneity location and subducted slabs. Between 600 and 900 km depth, scattering heterogeneities are more common in the regions most remote from slabs, and close to hotspots. Scattering heterogeneities show an affinity for regions close to slabs within the upper 200 km of the

  17. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    Science.gov (United States)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  18. Small-scale upgrading and refinement of biogas; Smaaskalig uppgradering och foeraedling av biogas

    Energy Technology Data Exchange (ETDEWEB)

    Blom, Helena; Mccann, Michael; Westman, Johan (Poeyry SwedPower AB, Stockholm (Sweden))

    2012-02-15

    Small-scale upgrading and refinement of biogas is a report which aims to compile the state of knowledge in small-scale biogas upgrading. The project have been a collaboration with Agrovaest and Energy Farm and was funded by the Foundation for Agricultural Research, Western Goetaland and the Agriculture Department. The technology available for small scale upgrade has been examined from the technical and economic standpoint. An economic comparison has been made and the production of upgraded biogas has been estimated for different raw gas flows. The work also contains information related to biogas production, upgrading and a comparison of liquid biogas, DME and Ecopar-diesel

  19. Process Intensification Tools in the Small‐Scale Pharmaceutical Manufacturing of Small Molecules

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Gernaey, Krist V.

    2015-01-01

    of processes are in a state of change. However, it is important to note that not all processes can be intensified easily, such as slow chemical reactions, processes with solids, slurries, and on the like. This review summarizes applications of promising tools for achieving process intensification in the small......‐scale pharmaceutical manufacturing of so‐called small molecules. The focus is on microwave radiation, microreactors, ultrasounds, and meso‐scale tubular reactors....

  20. Development of small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Kim, D.; Suckewer, S.; Princeton Univ., NJ; Skinner, C.H.; Voorhees, D.

    1991-05-01

    At present rapid progress is being made in the application of soft x-ray lasers to fields such as microscopy and microlithography. A critical factor in the range of suitable applications is the scale and hence cost of the soft x-ray lasers. At Princeton, gain at 183 angstrom has been obtained with relatively low pump laser energies (as low as 6J) in a ''portable'' small-scale soft x-ray laser system. We will also discuss aspects of data interpretation and pitfalls to be avoided in measurements of gain in such systems. 14 refs., 7 figs

  1. Experience of Implementing a Distributed Control System for Thermal and Mechanical and Electrical Equipment at the South-West CHP

    Energy Technology Data Exchange (ETDEWEB)

    Babkin, K. V., E-mail: babkin@uztec.ru; Tsvetkov, M. S.; Kostyuk, R. I.; Chugin, A. V. [SC “South-West CHP” (Russian Federation); Bilenko, V. A.; Molchanov, K. A.; Fedunov, V. V. [JSC “Interautomatika” (Russian Federation)

    2015-01-15

    Results of implementing an SPPA-T3000-based unified distributed control system for thermal and mechanical and electrical equipment at the South-West CHP are discussed. Hardware solutions for integration with local control systems, control of electrical equipment in compliance with the standards IEC 61850, Modbus RTU, and communication between the plant control system and the System Operator of the Unified Power System are described.

  2. Experience of Implementing a Distributed Control System for Thermal and Mechanical and Electrical Equipment at the South-West CHP

    International Nuclear Information System (INIS)

    Babkin, K. V.; Tsvetkov, M. S.; Kostyuk, R. I.; Chugin, A. V.; Bilenko, V. A.; Molchanov, K. A.; Fedunov, V. V.

    2015-01-01

    Results of implementing an SPPA-T3000-based unified distributed control system for thermal and mechanical and electrical equipment at the South-West CHP are discussed. Hardware solutions for integration with local control systems, control of electrical equipment in compliance with the standards IEC 61850, Modbus RTU, and communication between the plant control system and the System Operator of the Unified Power System are described

  3. Leadership solves collective action problems in small-scale societies

    Science.gov (United States)

    Glowacki, Luke; von Rueden, Chris

    2015-01-01

    Observation of leadership in small-scale societies offers unique insights into the evolution of human collective action and the origins of sociopolitical complexity. Using behavioural data from the Tsimane forager-horticulturalists of Bolivia and Nyangatom nomadic pastoralists of Ethiopia, we evaluate the traits of leaders and the contexts in which leadership becomes more institutional. We find that leaders tend to have more capital, in the form of age-related knowledge, body size or social connections. These attributes can reduce the costs leaders incur and increase the efficacy of leadership. Leadership becomes more institutional in domains of collective action, such as resolution of intragroup conflict, where collective action failure threatens group integrity. Together these data support the hypothesis that leadership is an important means by which collective action problems are overcome in small-scale societies. PMID:26503683

  4. Leadership solves collective action problems in small-scale societies.

    Science.gov (United States)

    Glowacki, Luke; von Rueden, Chris

    2015-12-05

    Observation of leadership in small-scale societies offers unique insights into the evolution of human collective action and the origins of sociopolitical complexity. Using behavioural data from the Tsimane forager-horticulturalists of Bolivia and Nyangatom nomadic pastoralists of Ethiopia, we evaluate the traits of leaders and the contexts in which leadership becomes more institutional. We find that leaders tend to have more capital, in the form of age-related knowledge, body size or social connections. These attributes can reduce the costs leaders incur and increase the efficacy of leadership. Leadership becomes more institutional in domains of collective action, such as resolution of intragroup conflict, where collective action failure threatens group integrity. Together these data support the hypothesis that leadership is an important means by which collective action problems are overcome in small-scale societies. © 2015 The Author(s).

  5. Energy Analysis and Multi-Objective Optimization of an Internal Combustion Engine-Based CHP System for Heat Recovery

    Directory of Open Access Journals (Sweden)

    Abdolsaeid Ganjehkaviri

    2014-10-01

    Full Text Available A comprehensive thermodynamic study is conducted of a diesel based Combined Heat and Power (CHP system, based on a diesel engine and an Organic Rankine Cycle (ORC. Present research covers both energy and exergy analyses along with a multi-objective optimization. In order to determine the irreversibilities in each component of the CHP system and assess the system performance, a complete parametric study is performed to investigate the effects of major design parameters and operating conditions on the system’s performance. The main contribution of the current research study is to conduct both exergy and multi-objective optimization of a system using different working fluid for low-grade heat recovery. In order to conduct the evolutionary based optimization, two objective functions are considered in the optimization; namely the system exergy efficiency, and the total cost rate of the system, which is a combination of the cost associated with environmental impact and the purchase cost of each component. Therefore, in the optimization approach, the overall cycle exergy efficiency is maximized satisfying several constraints while the total cost rate of the system is minimized. To provide a better understanding of the system under study, the Pareto frontier is shown for multi-objective optimization and also an equation is derived to fit the optimized point. In addition, a closed form relationship between exergy efficiency and total cost rate is derived.

  6. Five-year outcomes for frontline brentuximab vedotin with CHP for CD30-expressing peripheral T-cell lymphomas.

    Science.gov (United States)

    Fanale, Michelle A; Horwitz, Steven M; Forero-Torres, Andres; Bartlett, Nancy L; Advani, Ranjana H; Pro, Barbara; Chen, Robert W; Davies, Andrew; Illidge, Tim; Uttarwar, Mayur; Lee, Shih-Yuan; Ren, Hong; Kennedy, Dana A; Shustov, Andrei R

    2018-05-10

    This phase 1 study evaluated frontline brentuximab vedotin in combination with cyclophosphamide, doxorubicin, and prednisone (BV+CHP; 6 cycles, then up to 10 cycles of brentuximab vedotin monotherapy) in 26 patients with CD30 + peripheral T-cell lymphoma, including 19 with systemic anaplastic large cell lymphoma. All patients (100%) achieved an objective response, with a complete remission (CR) rate of 92%; none received a consolidative stem cell transplant. After a median observation period of 59.6 months (range, 4.6-66.0) from first dose, neither the median progression-free survival (PFS) nor the median overall survival (OS) was reached. No progression or death was observed beyond 35 months. The estimated 5-year PFS and OS rates were 52% and 80%, respectively. Eighteen of 19 patients (95%) with treatment-emergent peripheral neuropathy (PN) reported resolution or improvement of symptoms. Thirteen patients (50%) remained in remission at the end of the study, with PFS ranging from 37.8+ to 66.0+ months. Eight of these 13 patients received the maximum 16 cycles of study treatment. These final results demonstrate durable remissions in 50% of patients treated with frontline BV+CHP, suggesting a potentially curative treatment option for some patients. This trial was registered at www.clinicaltrials.gov as #NCT01309789. © 2018 by The American Society of Hematology.

  7. Nitrate-nitrogen removal with small-scale reverse osmosis ...

    African Journals Online (AJOL)

    The nitrate-nitrogen concentration in water supplied to clinics in Limpopo Province is too high to be fit for human consumption (35 to 75 mg/ℓ NO3-N). Therefore, small-scale technologies (reverse osmosis, ion-exchange and electrodialysis) were evaluated for nitrate-nitrogen removal to make the water potable (< 10 mg/ℓ ...

  8. Training needs of small scale poultry farmers on improved ...

    African Journals Online (AJOL)

    Poultry business is a job opportunity for numerous for earning income and ... needs of the small scale commercial poultry farmers to improve poultry production ... strategies (88%) while only 24.1% of the respondents need training on types of ...

  9. Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2005-01-01

    More than 2000 hours of gas engine operation with producer gas from biomass as fuel has been conducted on the gasification CHP demonstration and research plant, named “Viking” at the Technical University of Denmark. The gas engine is an integrated part of the entire gasification plant. The excess...... operates with varying excess of air due to variation in gas composition and thus stoichiometry, and a second where the excess of air in the exhaust gas is fixed and the flow rate of produced gas from the gasifier is varying. The interaction between the gas engine and the gasification system has been...... investigated. The engine and the plant are equipped with continuously data acquisition that monitors the operation including the composition of the producer gas and the flow. Producer gas properties and contaminations have been investigated. No detectable tar or particle content was observed...

  10. The case for small-scale domestic cannabis cultivation.

    Science.gov (United States)

    Decorte, Tom

    2010-07-01

    The shift to (inter)regional production, trade and domestic cultivation has become an irreversible international trend. Until now, the focus of most empirical work has been on large-scale, commercially oriented and professionally organized segments of the cannabis industry, often based on police data and on the perspective of law enforcement agencies. This paper offers a review of recent Dutch-language research that focuses on cannabis cultivation. Empirical studies were identified through literature searches using relevant search terms and Web of Science, Elin, Social Science Research Network and Elsevier ScienceDirect. The paper presents the main findings of Dutch and Belgian empirical work on the factors that stimulated the import substitution process on the cannabis market, aspects related to quality and potency issues, typologies of cannabis growers, and (unintended) effects of pursued policies. In the light of this (selective) review the author offers some commentary and analysis concerning the claims made by different stakeholders, and concludes with some reflections on future research and on policy implications. The author outlines the importance of small-scale, independent or ideologically oriented cannabis cultivation as an under-researched market segment. The author also makes a case for greater toleration of small-scale cannabis cultivation, to secure the least worst of cannabis markets. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  11. Financing Energy Services for Small-scale Energy-users - project FINESSE

    International Nuclear Information System (INIS)

    Annan, R.; Saunders, R.J.; Hassing, P.

    1994-01-01

    This paper presents the FINESSE (Financing Energy Services for Small-scale Energy users) launched in 1989 by World Bank 's Energy Sector Assistance Program (ESMAP) in association with the US Department of Energy and the Netherlands Ministry for Development Cooperation, whose purpose is to address financial, institutional and policy issues related to enhancing energy services for residential and commercial energy consumers in the Developing World. It describes the related technology benefits of renewable energy and energy efficiency, as well as a technology overview and outlines the strategies for financing alternatives in the Developing World. It concludes with a description of successful experiences in small-scale energy services, especially in Asia. (TEC). 8 figs

  12. A comparative study of open and closed heat-engines for small-scale CHP applications

    OpenAIRE

    Eames, Ian W.; Evans, Kieran; Pickering, Stephen

    2016-01-01

    In this paper the authors compare and contrast open and closed-cycle heat engines. First of all, by way of example and to aid discussion, the performance of proprietary externally heated closed-cycle Stirling engines is compared with that of internally heated open Otto cycle engines. Both types of engine have disadvantages and merits and this suggested that in order to accommodate the best of both engine types an externally-heated open-cycle engine might offer a more satisfactory solution for...

  13. Modelling aggregation on the large scale and regularity on the small scale in spatial point pattern datasets

    DEFF Research Database (Denmark)

    Lavancier, Frédéric; Møller, Jesper

    We consider a dependent thinning of a regular point process with the aim of obtaining aggregation on the large scale and regularity on the small scale in the resulting target point process of retained points. Various parametric models for the underlying processes are suggested and the properties...

  14. A hysteretic model considering Stribeck effect for small-scale magnetorheological damper

    Science.gov (United States)

    Zhao, Yu-Liang; Xu, Zhao-Dong

    2018-06-01

    Magnetorheological (MR) damper is an ideal semi-active control device for vibration suppression. The mechanical properties of this type of devices show strong nonlinear characteristics, especially the performance of the small-scale dampers. Therefore, developing an ideal model that can accurately describe the nonlinearity of such device is crucial to control design. In this paper, the dynamic characteristics of a small-scale MR damper developed by our research group is tested, and the Stribeck effect is observed in the low velocity region. Then, an improved model based on sigmoid model is proposed to describe this Stribeck effect observed in the experiment. After that, the parameters of this model are identified by genetic algorithms, and the mathematical relationship between these parameters and the input current, excitation frequency and amplitude is regressed. Finally, the predicted forces of the proposed model are validated with the experimental data. The results show that this model can well predict the mechanical properties of the small-scale damper, especially the Stribeck effect in the low velocity region.

  15. Exploring the role of small-scale livestock keepers for national biosecurity-The pig case.

    Science.gov (United States)

    Correia-Gomes, Carla; Henry, Madeleine K; Auty, Harriet K; Gunn, George J

    2017-09-15

    Small-scale keepers are less likely to engage with production organisations and may therefore be less aware of legislation, rules and biosecurity practices which are implemented in the livestock sector. Their role in the transmission of endemic and exotic diseases is not well studied, but is believed to be important. The authors use small-scale pig keepers in Scotland as an example of how important small-scale livestock keepers might be for national biosecurity. In Scotland more than two thirds of pig producers report that they keep less than 10 pigs, meaning that biosecurity practices and pig health status on a substantial number of holdings are largely unknown; it is considered important to fill this knowledge gap. A questionnaire was designed and implemented in order to gather some of this information. The questionnaire comprised a total of 37 questions divided into seven sections (location of the enterprise, interest in pigs, details about the pig enterprise, marketing of pigs, transport of pigs, pig husbandry, and pig health/biosecurity). Over 610 questionnaires were sent through the post and the questionnaire was also available online. The questionnaire was implemented from June to October 2013 and 135 questionnaires were returned by target respondents. The responses for each question are discussed in detail in this paper. Overall, our results suggest that the level of disease identified by small-scale pig keepers is low but the majority of the small-scale pig keepers are mixed farms, with associated increased risk for disease transmission between species. Almost all respondents implemented at least one biosecurity measure, although the measures taken were not comprehensive in the majority of cases. Overall as interaction between small-scale keepers and commercial producers exists in Scotland the former can pose a risk for commercial production. This investigation fills gaps in knowledge which will allow industry stakeholders and policy makers to adapt their

  16. Synthesis of underreported small-scale fisheries catch in Pacific island waters

    Science.gov (United States)

    Zeller, D.; Harper, S.; Zylich, K.; Pauly, D.

    2015-03-01

    We synthesize fisheries catch reconstruction studies for 25 Pacific island countries, states and territories, which compare estimates of total domestic catches with officially reported catch data. We exclude data for the large-scale tuna fleets, which have largely foreign beneficial ownership, even when flying Pacific flags. However, we recognize the considerable financial contributions derived from foreign access or charter fees for Pacific host countries. The reconstructions for the 25 entities from 1950 to 2010 suggested that total domestic catches were 2.5 times the data reported to FAO. This discrepancy was largest in early periods (1950: 6.4 times), while for 2010, total catches were 1.7 times the reported data. There was a significant difference in trend between reported and reconstructed catches since 2000, with reconstructed catches declining strongly since their peak in 2000. Total catches increased from 110,000 t yr-1 in 1950 (of which 17,400 t were reported) to a peak of over 250,000 t yr-1 in 2000, before declining to around 200,000 t yr-1 by 2010. This decrease is driven by a declining artisanal (small-scale commercial) catch, which was not compensated for by increasing domestic industrial (large-scale commercial) catches. The artisanal fisheries appear to be declining from a peak of 97,000 t yr-1 in 1992 to less than 50,000 t yr-1 by 2010. However, total catches were dominated by subsistence (small-scale, non-commercial) fisheries, which accounted for 69 % of total catches, with the majority missing from the reported data. Artisanal catches accounted for 22 %, while truly domestic industrial fisheries accounted for only 6 % of total catches. The smallest component is the recreational (small-scale, non-commercial and largely for leisure) sector (2 %), which, although small in catch, is likely of economic importance in some areas due to its direct link to tourism income.

  17. Growing magma chambers control the distribution of small-scale flood basalts.

    Science.gov (United States)

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2015-11-19

    Small-scale continental flood basalts are a global phenomenon characterized by regular spatio-temporal distributions. However, no genetic mechanism has been proposed to explain the visible but overlooked distribution patterns of these continental basaltic volcanism. Here we present a case study from eastern China, combining major and trace element analyses with Ar-Ar and K-Ar dating to show that the spatio-temporal distribution of small-scale flood basalts is controlled by the growth of long-lived magma chambers. Evolved basalts (SiO2 > 47.5 wt.%) from Xinchang-Shengzhou, a small-scale Cenozoic flood basalt field in Zhejiang province, eastern China, show a northward younging trend over the period 9.4-3.0 Ma. With northward migration, the magmas evolved only slightly ((Na2O + K2O)/MgO = 0.40-0.66; TiO2/MgO = 0.23-0.35) during about 6 Myr (9.4-3.3 Ma). When the flood basalts reached the northern end of the province, the magmas evolved rapidly (3.3-3.0 Ma) through a broad range of compositions ((Na2O + K2O)/MgO = 0.60-1.28; TiO2/MgO = 0.30-0.57). The distribution and two-stage compositional evolution of the migrating flood basalts record continuous magma replenishment that buffered against magmatic evolution and induced magma chamber growth. Our results demonstrate that the magma replenishment-magma chamber growth model explains the spatio-temporal distribution of small-scale flood basalts.

  18. High-Performance Small-Scale Solvers for Moving Horizon Estimation

    DEFF Research Database (Denmark)

    Frison, Gianluca; Vukov, Milan; Poulsen, Niels Kjølstad

    2015-01-01

    implementation techniques focusing on small-scale problems. The proposed MHE solver is implemented using custom linear algebra routines and is compared against implementations using BLAS libraries. Additionally, the MHE solver is interfaced to a code generation tool for nonlinear model predictive control (NMPC...

  19. Dark matter self-interactions and small scale structure

    Science.gov (United States)

    Tulin, Sean; Yu, Hai-Bo

    2018-02-01

    We review theories of dark matter (DM) beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe. Self-interactions are motivated, in part, due to the potential to explain long-standing (and more recent) small scale structure observations that are in tension with collisionless cold DM (CDM) predictions. Simple particle physics models for SIDM can provide a universal explanation for these observations across a wide range of mass scales spanning dwarf galaxies, low and high surface brightness spiral galaxies, and clusters of galaxies. At the same time, SIDM leaves intact the success of ΛCDM cosmology on large scales. This report covers the following topics: (1) small scale structure issues, including the core-cusp problem, the diversity problem for rotation curves, the missing satellites problem, and the too-big-to-fail problem, as well as recent progress in hydrodynamical simulations of galaxy formation; (2) N-body simulations for SIDM, including implications for density profiles, halo shapes, substructure, and the interplay between baryons and self-interactions; (3) semi-analytic Jeans-based methods that provide a complementary approach for connecting particle models with observations; (4) merging systems, such as cluster mergers (e.g., the Bullet Cluster) and minor infalls, along with recent simulation results for mergers; (5) particle physics models, including light mediator models and composite DM models; and (6) complementary probes for SIDM, including indirect and direct detection experiments, particle collider searches, and cosmological observations. We provide a summary and critical look for all current constraints on DM self-interactions and an outline for future directions.

  20. Mercury use in small scale gold mining in Ghana: an assessment of its impact on miners

    International Nuclear Information System (INIS)

    Biagya, Robert Yakubu

    2002-12-01

    Small scale gold mining is responsible for about 5% of Ghana’s annual gold production. It is estimated that between 80,000 and 100,000 people are engaged in small scale gold mining either on part-time or permanent basis. Amalgamation is the preferred method used by small scale gold miners for extracting free gold from its ores. The rate at which mercury, an important input in this method, is discharged into the atmosphere and water bodies is alarming. This research describes the various mining and processing methods in small scale gold mining and the extent of mercury use and releases to the environment. It discusses mercury and its human and environmental effects. It defines the various forms of mercury, routes of exposure, toxic effects. The levels of exposure to mercury by all groups of small scale gold miners are determined, and the impacts on the miners and the environment are assessed. It concludes that: • Mercury is mainly released into the environment as a result of small scale gold mining through spillage of elemental mercury and evaporation of mercury from the amalgam and sponge gold when they are heated on open fire. • Mercury in environmental samples from small scale gold mining areas is well above standard limit values. • Mercury released into the environment through small scale gold mining impacts negatively on the miners themselves and the general environment. Finally, it recommends the need for the adoption of mercury emission reduction strategies for dealing with the mercury problem. (au)

  1. Small-scale fluctuations in the microwave background radiation and multiple gravitational lensing

    International Nuclear Information System (INIS)

    Kashlinsky, A.

    1988-01-01

    It is shown that multiple gravitational lensing of the microwave background radiation (MBR) by static compact objects significantly attenuates small-scale fluctuations in the MBR. Gravitational lensing, by altering trajectories of MBR photons reaching an observer, leads to (phase) mixing of photons from regions with different initial fluctuations. As a result of this diffusion process the original fluctuations are damped on scales up to several arcmin. An equation that describes this process and its general solution are given. It is concluded that the present upper limits on the amplitude of the MBR fluctuations on small scales cannot constrain theories of galaxy formation. 25 references

  2. Basic principles of taxation of small-scale enterprises in the Russian Federation

    OpenAIRE

    Khodyreva Viktoriia Andreevna

    2015-01-01

    This research is devoted to general principles of taxation of small-scale enterprises. Development of small-scale enterprises is one of the most important lines of tax policy in Russian Federation. The development of principles of taxation is important while forming a strong state system of taxation. In this work basic principles and some specific are provided. This work is of great scientific interest to law students, graduates, teachers and other persons interested in law and particularly i...

  3. Marketing strategy for retailing small-scale wind energy turbines in Indian markets

    OpenAIRE

    Harjula, Nina

    2009-01-01

    The study analyzes the small-scale wind energy markets in Mumbai, focusing on questions: How feasible is the wind energy for SME businesses in Mumbai, and what are the main challenges and opportunities of small-scale wind energy in Mumbai? The study is a qualitative case study, in which, the data has been collected through observing the markets by visiting wind energy sites and companies, interviewing and meeting potential customers and other stakeholders in the market. Theoretical frame...

  4. "Non-cold" dark matter at small scales: a general approach

    Science.gov (United States)

    Murgia, R.; Merle, A.; Viel, M.; Totzauer, M.; Schneider, A.

    2017-11-01

    Structure formation at small cosmological scales provides an important frontier for dark matter (DM) research. Scenarios with small DM particle masses, large momenta or hidden interactions tend to suppress the gravitational clustering at small scales. The details of this suppression depend on the DM particle nature, allowing for a direct link between DM models and astrophysical observations. However, most of the astrophysical constraints obtained so far refer to a very specific shape of the power suppression, corresponding to thermal warm dark matter (WDM), i.e., candidates with a Fermi-Dirac or Bose-Einstein momentum distribution. In this work we introduce a new analytical fitting formula for the power spectrum, which is simple yet flexible enough to reproduce the clustering signal of large classes of non-thermal DM models, which are not at all adequately described by the oversimplified notion of WDM . We show that the formula is able to fully cover the parameter space of sterile neutrinos (whether resonantly produced or from particle decay), mixed cold and warm models, fuzzy dark matter, as well as other models suggested by effective theory of structure formation (ETHOS). Based on this fitting formula, we perform a large suite of N-body simulations and we extract important nonlinear statistics, such as the matter power spectrum and the halo mass function. Finally, we present first preliminary astrophysical constraints, based on linear theory, from both the number of Milky Way satellites and the Lyman-α forest. This paper is a first step towards a general and comprehensive modeling of small-scale departures from the standard cold DM model.

  5. THE SUN'S SMALL-SCALE MAGNETIC ELEMENTS IN SOLAR CYCLE 23

    International Nuclear Information System (INIS)

    Jin, C. L.; Wang, J. X.; Song, Q.; Zhao, H.

    2011-01-01

    With the unique database from the Michelson Doppler Imager on board the Solar and Heliospheric Observatory in an interval embodying solar cycle 23, the cyclic behavior of solar small-scale magnetic elements is studied. More than 13 million small-scale magnetic elements are selected, and the following results are found. (1) The quiet regions dominated the Sun's magnetic flux for about 8 years in the 12.25 year duration of cycle 23. They contributed (0.94-1.44) x10 23 Mx flux to the Sun from the solar minimum to maximum. The monthly average magnetic flux of the quiet regions is 1.12 times that of the active regions in the cycle. (2) The ratio of quiet region flux to that of the total Sun equally characterizes the course of a solar cycle. The 6 month running average flux ratio of the quiet regions was larger than 90.0% for 28 continuous months from July 2007 to October 2009, which very well characterizes the grand solar minima of cycles 23-24. (3) From the small to the large end of the flux spectrum, the variations of numbers and total flux of the network elements show no correlation, anti-correlation, and correlation with sunspots, respectively. The anti-correlated elements, covering the flux of (2.9-32.0)x10 18 Mx, occupy 77.2% of the total element number and 37.4% of the quiet-Sun flux. These results provide insight into the reason for anti-correlations of small-scale magnetic activity during the solar cycle.

  6. Small-scale hydroelectric power in the Pacific Northwest: new impetus for an old energy source

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Energy supply is one of the most important issues facing Northwestern legislators today. To meet the challenge, state legislatures must address the development of alternative energy sources. The Small-Scale Hydroelectric Power Policy Project of the National Conference of State Legislators (NCSL) was designed to assist state legislators in looking at the benefits of one alternative, small-scale hydro. Because of the need for state legislative support in the development of small-scale hydroelectric, NCSL, as part of its contract with the Department of Energy, conducted the following conference on small-scale hydro in the Pacific Northwest. The conference was designed to identify state obstacles to development and to explore options for change available to policymakers. A summary of the conference proceedings is presented.

  7. Seismic detection method for small-scale discontinuities based on dictionary learning and sparse representation

    Science.gov (United States)

    Yu, Caixia; Zhao, Jingtao; Wang, Yanfei

    2017-02-01

    Studying small-scale geologic discontinuities, such as faults, cavities and fractures, plays a vital role in analyzing the inner conditions of reservoirs, as these geologic structures and elements can provide storage spaces and migration pathways for petroleum. However, these geologic discontinuities have weak energy and are easily contaminated with noises, and therefore effectively extracting them from seismic data becomes a challenging problem. In this paper, a method for detecting small-scale discontinuities using dictionary learning and sparse representation is proposed that can dig up high-resolution information by sparse coding. A K-SVD (K-means clustering via Singular Value Decomposition) sparse representation model that contains two stage of iteration procedure: sparse coding and dictionary updating, is suggested for mathematically expressing these seismic small-scale discontinuities. Generally, the orthogonal matching pursuit (OMP) algorithm is employed for sparse coding. However, the method can only update one dictionary atom at one time. In order to improve calculation efficiency, a regularized version of OMP algorithm is presented for simultaneously updating a number of atoms at one time. Two numerical experiments demonstrate the validity of the developed method for clarifying and enhancing small-scale discontinuities. The field example of carbonate reservoirs further demonstrates its effectiveness in revealing masked tiny faults and small-scale cavities.

  8. Growth and Efficiency of Small Scale Industry and its Impact on Economic Development of Sindh

    Directory of Open Access Journals (Sweden)

    Mumtaz Ali Junejo

    2008-09-01

    Full Text Available The purpose of this study is to analyze the growth, efficiency, causes of sickness of small scale industry, emergence of entrepreneur and competencies of entrepreneurs at Larkana estate area of Sindh Province. The study examines the educational background of the entrepreneurs of small scale industry who are the helm of affairs and its impact on the growth of sales of the every year. Strong evidence emerges that owners of small industrial units are family concern and having a low educational background, lack of managerial knowledge and conservation-oriented attitude results in under utilization of capacity and low growth of units established every year. This research paper provides a survey of the theoretical and empirical literature relating to promote the small scale industry in the Larkana region. This study indicates effective policy measures to promote the small scale industry particularly in Larkana region and generally in Pakistan.

  9. Agricultural Credit Utilization among Small Scale Women Farmers in ...

    African Journals Online (AJOL)

    ... monitor regularly the disbursement of agricultural loan to women farmers at the appropriate planning season with reasonable interest charge and that extension agents should ensure that the loan is utilized for only agricultural purposes. Key words: Credit utilization, small-scale farmer's income generation, Niger State.

  10. The small-scale spatial distribution of an invading moth

    DEFF Research Database (Denmark)

    Nash, David Richard; Agassiz, David J. L.; Godfray, H. C. J.

    1995-01-01

    We studied the spread of a small leaf-mining moth [Phyllonorycter leucographella (Zeller), Gracillariidae] after its accidental introduction into the British Isles. At large geographical scales, previous work had shown the spread to be well described by a travelling wave of constant velocity. Her...

  11. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Al-Shemmeri, T.T.; Yedla, R.; Wardle, D.

    2015-01-01

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  12. Hydrocarbon emissions from gas engine CHP-units. 2011 measurement program

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, G.H.J. [KEMA, Arnhem (Netherlands)

    2012-06-15

    In December 2009, the Ministry of Infrastructure and Environment (IandM) issued the Decree on Emission Limits for Middle Sized Combustion Installations (BEMS). This decree imposes a first-time emission limit value (ELV) of 1500 mg C/m{sup 3}{sub o} at 3% O{sub 2} for hydrocarbons emitted by gas engines. IandM used the findings of two hydrocarbon emission measurement programs, executed in 2007 and 2009, as a guideline for this initial ELV. The programs did reveal substantial variation in the hydrocarbon emissions of the gas engines tested. This variation, and especially the uncertainty as to the role of engine and/or other parameters causing such variation, was felt to hamper further policy development. IandM therefore commissioned KEMA to perform follow-up measurements on ten gas engine CHP-units in 2011. Aim of this 2011 program is to assess hydrocarbon emission variation in relation to engine parameters and process conditions including maintenance status, and to atmospheric conditions. The 2011 program comprised two identical measurement sessions, one in spring and one in winter.

  13. Managing Small-Scale Fisheries : Alternative Directions and Methods

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Small-scale Fisheries va plus loin que le champ d'application de la gestion classique des pêches pour aborder d'autres concepts, outils, méthodes et ... Les gestionnaires des pêches, tant du secteur public que du secteur privé, les chargés de cours et les étudiants en gestion des pêches, les organisations et les ...

  14. The status of development of energy technologies to reduce greenhousegas emissions in Finland

    International Nuclear Information System (INIS)

    Salokoski, P.; Aeijaelae, M.

    1997-01-01

    In Finland there is a versatile energy production in which the combined heat and power production (CHP) plays a remarkable role. In the total power supply, the CHP production accounts for about 30 %. Biomass is also widely used. In all fuels, wood and peat accounts for 21 %, the largest share in Western Countries. The utilization of wood based fuels is also remarkable, about 16 %. The high rate of CHP production and the utilization of biomass have contributed to the lower CO 2 -emissions. In future, fossil fuels will probably be utilized in larger volumes because there are limits to the increasing of the capacity of the CHP production, biomass utilization, nuclear power and hydro power. Consequently added use of fossil fuels will increase the CO 2 -emissions. The methods with most potential in reducing CO 2 -emissions in Finland are an increased use of biomass, an expanding production of nuclear power, a larger number of CHP plants and an increase in the utilization of natural gas. Other important methods with a minor effect are technologies which increase the power/heat ratio or the efficiency. These technologies include the IGCC-technologies, the gasification-diesel or the diesel technology in general with small heat loads. These technologies will grow in importance if the substitutive fuel is biomass. Most of the technologies mentioned above are in use in Finland and, in our experience, can be recommended to other countries. Viable commercial technologies are, for example, the CHP techniques in both district heating and industrial processes, various small-scale power plants integrated to CHP or condensate power plants, the fluidized-bed technology in power production or heat production only the diesel technology; the cofiring of biomass and coal as well as the harvesting, handling, drying and utilization technologies of biomass. Technologies still in the developmental stage include the IGCC-technology for biomasses, the gasification-diesel, and the production

  15. Small Scale Hydrocarbon Fire Test Concept

    Directory of Open Access Journals (Sweden)

    Joachim Søreng Bjørge

    2017-11-01

    Full Text Available In the oil and gas industry, hydrocarbon process equipment was previously often thermally insulated by applying insulation directly to the metal surface. Fire protective insulation was applied outside the thermal insulation. In some cases, severe corrosion attacks were observed due to ingress of humidity and condensation at cold surfaces. Introducing a 25 mm air gap to prevent wet thermal insulation and metal wall contact is expected to solve the corrosion issues. This improved insulation methodology does, however, require more space that may not be available when refurbishing older process plants. Relocating structural elements would introduce much hot work, which should be minimized in live plants. It is also costly. The aim of the present study is therefore to develop a test concept for testing fire resistance of equipment protected with only air-gap and thermal insulation, i.e., without the fire-protective insulation. The present work demonstrates a conceptual methodology for small scale fire testing of mockups resembling a section of a distillation column. The mockups were exposed to a small-scale propane flame in a test configuration where the flow rate and the flame zone were optimized to give heat flux levels in the range 250–350 kW/m2. Results are presented for a mockup resembling a 16 mm thick distillation column steel wall. It is demonstrated that the modern distance insulation in combination with the heat capacity of the column wall indicates 30+ minutes fire resistance. The results show that this methodology has great potentials for low cost fire testing of other configurations, and it may serve as a set-up for product development.

  16. The economic performance of combined heat and power from biogas produced from manure in Sweden – A comparison of different CHP technologies

    International Nuclear Information System (INIS)

    Lantz, Mikael

    2012-01-01

    Highlights: ► Interest in biogas from manure is increasing rapidly due to its climate benefits. ► Farm-scale production of CHP from manure-based biogas is not profitable in Sweden. ► Minor changes in energy prices or suggested production subsidies will make it profitable. ► Profitability is also affected by efficiency of scale and introduction of thermophilic conditions. -- Abstract: Interest in the generation of biogas from agricultural residues is increasing rapidly due to its climate benefits. In this study, an evaluation of the economic feasibility of various technologies, also on different scales, for the production of combined heat and power from manure-based biogas in Sweden is presented. The overall conclusion is that such production is not profitable under current conditions. Thus, the gap between the calculated biogas production cost and the acceptable cost for break-even must be bridged by, for example, different policy instruments. In general, efficiency of scale favors large-scale plants compared to individual farm-scale ones. However, a large, centralized biogas plant, using manure from numerous farms, is not always more cost efficient than a large, farm-scale plant treating manure from a few neighboring farms. The utilization of the produced heat, electricity prices, and political incentives, all have a significant impact on the economic outcome, whereas the value of the digestate as fertilizer is currently having a minor impact. Utilization of heat is, however, often limited by the lack of local heat sinks, in which case the implementation of a biogas process operating under thermophilic conditions could increase the profitability due to a more efficient utilization of reactor volume by using more process heat. The results from this study could be utilized by policy makers when implementing policy instruments considering biogas production from manure as well as companies involved in production and utilization of biogas.

  17. Experimental, theoretical, and numerical studies of small scale combustion

    Science.gov (United States)

    Xu, Bo

    Recently, the demand increased for the development of microdevices such as microsatellites, microaerial vehicles, micro reactors, and micro power generators. To meet those demands the biggest challenge is obtaining stable and complete combustion at relatively small scale. To gain a fundamental understanding of small scale combustion in this thesis, thermal and kinetic coupling between the gas phase and the structure at meso and micro scales were theoretically, experimentally, and numerically studied; new stabilization and instability phenomena were identified; and new theories for the dynamic mechanisms of small scale combustion were developed. The reduction of thermal inertia at small scale significantly reduces the response time of the wall and leads to a strong flame-wall coupling and extension of burning limits. Mesoscale flame propagation and extinction in small quartz tubes were theoretically, experimentally and numerically studied. It was found that wall-flame interaction in mesoscale combustion led to two different flame regimes, a heat-loss dominant fast flame regime and a wall-flame coupling slow flame regime. The nonlinear transition between the two flame regimes was strongly dependent on the channel width and flow velocity. It is concluded that the existence of multiple flame regimes is an inherent phenomenon in mesoscale combustion. In addition, all practical combustors have variable channel width in the direction of flame propagation. Quasi-steady and unsteady propagations of methane and propane-air premixed flames in a mesoscale divergent channel were investigated experimentally and theoretically. The emphasis was the impact of variable cross-section area and the flame-wall coupling on the flame transition between different regimes and the onset of flame instability. For the first time, spinning flames were experimentally observed for both lean and rich methane and propane-air mixtures in a broad range of equivalence ratios. An effective Lewis number

  18. Properties of a Small-scale Short-duration Solar Eruption with a Driven Shock

    Science.gov (United States)

    Ying, Beili; Feng, Li; Lu, Lei; Zhang, Jie; Magdalenic, Jasmina; Su, Yingna; Su, Yang; Gan, Weiqun

    2018-03-01

    Large-scale solar eruptions have been extensively explored over many years. However, the properties of small-scale events with associated shocks have rarely been investigated. We present analyses of a small-scale, short-duration event originating from a small region. The impulsive phase of the M1.9-class flare lasted only four minutes. The kinematic evolution of the CME hot channel reveals some exceptional characteristics, including a very short duration of the main acceleration phase (fast and impulsive kinematics subsequently results in a piston-driven shock related to a metric type II radio burst with a high starting frequency of ∼320 MHz of the fundamental band. The type II source is formed at a low height of below 1.1 R ⊙ less than ∼2 minutes after the onset of the main acceleration phase. Through the band-split of the type II burst, the shock compression ratio decreases from 2.2 to 1.3, and the magnetic field strength of the shock upstream region decreases from 13 to 0.5 Gauss at heights of 1.1–2.3 R ⊙. We find that the CME (∼4 × 1030 erg) and flare (∼1.6 × 1030 erg) consume similar amounts of magnetic energy. The same conclusion for large-scale eruptions implies that small- and large-scale events possibly share a similar relationship between CMEs and flares. The kinematic particularities of this event are possibly related to the small footpoint-separation distance of the associated magnetic flux rope, as predicted by the Erupting Flux Rope model.

  19. Small-Scale Helicopter Automatic Autorotation : Modeling, Guidance, and Control

    NARCIS (Netherlands)

    Taamallah, S.

    2015-01-01

    Our research objective consists in developing a, model-based, automatic safety recovery system, for a small-scale helicopter Unmanned Aerial Vehicle (UAV) in autorotation, i.e. an engine OFF flight condition, that safely flies and lands the helicopter to a pre-specified ground location. In pursuit

  20. Risk management strategies utilized by small scale poultry farmers ...

    African Journals Online (AJOL)

    Birds can only tolerate narrow temperature changes; therefore, poultry flocks are vulnerable to climate induced risk. This study investigated risk management strategies utilized by small scale poultry farmers in Oyo state. A total of 118 respondents were sampled using multi stage sampling procedure. Interview schedule was ...

  1. Estimating the “Forgone” ESVs for Small-Scale Gold Mining Using Historical Image Data

    Directory of Open Access Journals (Sweden)

    Ernest Frimpong Asamoah

    2017-10-01

    Full Text Available Ghana’s economic development relies largely on the mining industry, but the ecological cost is very high, particularly for the small-scale sector. To ascertain and give an account of the ecological pressures from the small-scale gold mining sector, we quantified and appraised the ecosystems (land cover types degradation due to mining land use along portions of the renowned Pra River basin of Ghana. The study classified and analysed high-quality Landsat image data (1986–2016 to monitor processes and changes in the river basin and adopted the Ecosystem Service Value (ESV model to quantify the forgone value in monetary term. The results revealed that the initial ESV of 17.69 million US$ in 1986 increased to 18.40 million US$ in 2002 for the study landscape with the small-scale mining sector accounting for 8.4% of the trade-off costs. The expansion of forest areas and its higher value coefficient (VC was, however, prevalent and this resulted in a net positive change during this period. However, in 2016, out of the total ESV of 14.63 million US$ obtained, the small-scale mining activities accounted for 36.8% of the trade-off costs. The substantial increase in trade-off costs with a subsequent decrease in ESV in the study landscape, following the intensification of small-scale gold mining, indicates that their activities have been degrading the watershed ecosystem and are, therefore, unsustainable. The study affirms the need for policymakers/government to review the laws, particularly on post-mining monitoring schemes to deter illegal miners and support the registered small-scale miners who are willing to implement land rehabilitation activities.

  2. Small-scale engagement model with arrivals: analytical solutions

    International Nuclear Information System (INIS)

    Engi, D.

    1977-04-01

    This report presents an analytical model of small-scale battles. The specific impetus for this effort was provided by a need to characterize hypothetical battles between guards at a nuclear facility and their potential adversaries. The solution procedure can be used to find measures of a number of critical parameters; for example, the win probabilities and the expected duration of the battle. Numerical solutions are obtainable if the total number of individual combatants on the opposing sides is less than 10. For smaller force size battles, with one or two combatants on each side, symbolic solutions can be found. The symbolic solutions express the output parameters abstractly in terms of symbolic representations of the input parameters while the numerical solutions are expressed as numerical values. The input parameters are derived from the probability distributions of the attrition and arrival processes. The solution procedure reduces to solving sets of linear equations that have been constructed from the input parameters. The approach presented in this report does not address the problems associated with measuring the inputs. Rather, this report attempts to establish a relatively simple structure within which small-scale battles can be studied

  3. Reducing the network load and optimization of the economic efficiency of CHP plants by forecast-guided control; Verringerung der Netzbelastung und Optimierung der Wirtschaftlichkeit von KWK-Anlagen durch prognosegefuehrte Steuerung

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Daniel; Adelhardt, Stefan [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Sensorik; beECO GmbH, Erlangen (Germany)

    2012-07-01

    Heat-guided combined heat and power (CHP) plants often cause large compensation energy amounts, additional costs to the operator respectively and another burden on the parent network. The balance energy is caused by errors in the production forecast whose quality heavily depends on the heat load performance. This paper identifies the forecasting problems with heat-guided CHP and reveals how the accompanying cost and the network burden can be reduced. This is achieved by an improvement of the forecast in conjunction with a forecast-guided control without affecting the heat supply. In addition, an outlook on further measures to the earnings with the system is presented. (orig.)

  4. Sizing a solar dish Stirling micro-CHP system for residential application in diverse climatic conditions based on 3E analysis

    International Nuclear Information System (INIS)

    Moghadam, Ramin Shabanpour; Sayyaadi, Hoseyn; Hosseinzade, Hadi

    2013-01-01

    Highlights: • 3E analysis was performed on solar CHP systems. • Significant primary energy saving and greenhouse gas reduction were obtained. • The engine was sized so that it had the best economic sound. • Various criteria at different weathers were used for sizing the engine. - Abstract: A solar dish Stirling cogeneration system is considered to provide energy demands of a residential building. As energy demands of the building and output power of the engine are functions of weather condition and solar irradiation flux, the benchmark building was considered to be located in five different cities in Iran with diverse climatic and solar irradiation conditions. The proposed solar dish Stirling micro-CHP system was analyzed based on 3E analysis. The 3E analysis evaluated primary energy saving analysis (energy analysis), carbon dioxide emission reduction (environmental analysis) and payback period for return of investment (economic analysis) and was compared to a reference building that utilized primary energy carriers for its demands. Three scenarios were considered for assessment and sizing the solar dish Stirling engine. In the first scenario, size of the solar dish Stirling engine was selected based on the lowest annual electric power demand while, in second, the highest annual electric power consumption was considered to specify size of the engine. In the third scenario, a solar dish Stirling engine with constant output capacity was considered for the five locations. It was shown that implementing the solar dish Stirling micro-CHP system had good potential in primary energy saving and carbon dioxide emission reduction in all scenarios and acceptable payback period for return of the investment in some scenarios. Finally, the best scenario for selecting size of the engine in each city was introduced using the TOPSIS decision making method. It was demonstrated that, for dry weather, the first scenario was the best while, for hot and humid cities and

  5. Small-scale hydropower in the Netherlands : problems and strategies of system builders

    NARCIS (Netherlands)

    Manders, T.N.; Höffken, J.I.; van der Vleuten, E.B.A.

    2016-01-01

    Small-scale hydroelectricity (hydel) currently receives worldwide attention as a clean, green, and socially just energy technology. People generally assume that downsizing hydel plants reduces harmful impacts. However, recent debates call for careful circumspection of small hydel’s environmental,

  6. Genetically modified crops and small-scale farmers: main opportunities and challenges.

    Science.gov (United States)

    Azadi, Hossein; Samiee, Atry; Mahmoudi, Hossein; Jouzi, Zeynab; Khachak, Parisa Rafiaani; De Maeyer, Philippe; Witlox, Frank

    2016-01-01

    Although some important features of genetically modified (GM) crops such as insect resistance, herbicide tolerance, and drought tolerance might seem to be beneficial for small-scale farmers, the adoption of GM technology by smallholders is still slight. Identifying pros and cons of using this technology is important to understand the impacts of GM crops on these farmers. This article reviews the main opportunities and challenges of GM crops for small-scale farmers in developing countries. The most significant advantages of GM crops include being independent to farm size, environment protection, improvement of occupational health issues, and the potential of bio-fortified crops to reduce malnutrition. Challenges faced by small-scale farmers for adoption of GM crops comprise availability and accessibility of GM crop seeds, seed dissemination and price, and the lack of adequate information. In addition, R&D and production costs in using GM crops make it difficult for these farmers to adopt the use of these crops. Moreover, intellectual property right regulations may deprive resource poor farmers from the advantages of GM technology. Finally, concerns on socio-economic and environment safety issues are also addressed in this paper.

  7. 2012 THIN FILM AND SMALL SCALE MECHANICAL BEHAVIOR GRS/GRC, JULY 21-27, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Balk, Thomas

    2012-07-27

    The mechanical behavior of materials with small dimension(s) is of both fundamental scientific interest and technological relevance. The size effects and novel properties that arise from changes in deformation mechanism have important implications for modern technologies such as thin films for microelectronics and MEMS devices, thermal and tribological coatings, materials for energy production and advanced batteries, etc. The overarching goal of the 2012 Gordon Research Conference on "Thin Film and Small Scale Mechanical Behavior" is to discuss recent studies and future opportunities regarding elastic, plastic and time-dependent deformation, as well as degradation and failure mechanisms such as fatigue, fracture and wear. Specific topics of interest include, but are not limited to: fundamental studies of physical mechanisms governing small-scale mechanical behavior; advances in test techniques for materials at small length scales, such as nanotribology and high-temperature nanoindentation; in-situ mechanical testing and characterization; nanomechanics of battery materials, such as swelling-induced phenomena and chemomechanical behavior; flexible electronics; mechanical properties of graphene and carbon-based materials; mechanical behavior of small-scale biological structures and biomimetic materials. Both experimental and computational work will be included in the oral and poster presentations at this Conference.

  8. Enhancing consumers' voluntary use of small-scale wind turbines to generate own electricity in South Africa

    OpenAIRE

    Brendan Whelan; Edwin Muchapondwa

    2009-01-01

    This paper investigates whether South African households and small businesses can take advantage of the country’s substantial wind resources to produce their own power from small-scale wind turbines in a viable way. The viability of small-scale wind turbines is assessed by means of a financial analysis based on the internal rate of return method. The recently announced wind feed-in tariff will not affect the viability of consumer-based small-scale wind turbines considered in this paper sinc...

  9. Cracked-Mixture Sieving Rates And Efficiencies In Small-Scale ...

    African Journals Online (AJOL)

    A number of innovations, including the inclined manual rotary sieve or trommel, have been introduced by small-scale process equipment manufacturers and are being used in palm-nut cracked mixture separation. But the proficiency of these innovations has not been officially established. The study measures the sieving ...

  10. Adapted Technology for Small-scale Manufacture of Caerphilly-Type ...

    African Journals Online (AJOL)

    Adapted Technology for Small-scale Manufacture of Caerphilly-Type Cheese from Cow's Milk in the Western Highlands Region of Cameroon. ... The production of the cheese should be encouraged at the household level. The Journal of Food Technology in Africa Volume 5 Number 4 (October - December 2000), pp. 120- ...

  11. A feasibility and implementation model of small-scale hydropower ...

    African Journals Online (AJOL)

    Large numbers of households and communities will not be connected to the national electricity grid for the foreseeable future due to high cost of transmission and distribution systems to remote communities and the relatively low electricity demand within rural communities. Small-scale hydropower used to play a very ...

  12. Small-scale multi-axial hybrid simulation of a shear-critical reinforced concrete frame

    Science.gov (United States)

    Sadeghian, Vahid; Kwon, Oh-Sung; Vecchio, Frank

    2017-10-01

    This study presents a numerical multi-scale simulation framework which is extended to accommodate hybrid simulation (numerical-experimental integration). The framework is enhanced with a standardized data exchange format and connected to a generalized controller interface program which facilitates communication with various types of laboratory equipment and testing configurations. A small-scale experimental program was conducted using a six degree-of-freedom hydraulic testing equipment to verify the proposed framework and provide additional data for small-scale testing of shearcritical reinforced concrete structures. The specimens were tested in a multi-axial hybrid simulation manner under a reversed cyclic loading condition simulating earthquake forces. The physical models were 1/3.23-scale representations of a beam and two columns. A mixed-type modelling technique was employed to analyze the remainder of the structures. The hybrid simulation results were compared against those obtained from a large-scale test and finite element analyses. The study found that if precautions are taken in preparing model materials and if the shear-related mechanisms are accurately considered in the numerical model, small-scale hybrid simulations can adequately simulate the behaviour of shear-critical structures. Although the findings of the study are promising, to draw general conclusions additional test data are required.

  13. GENDER DIFFERENTIALS IN FACTORS AFFECTING PERFORMANCE OF SMALL-SCALE ENTERPRISES IN LAGOS STATE – NIGERIA

    Directory of Open Access Journals (Sweden)

    Yusuff Olabisi Sherifat

    2013-05-01

    Full Text Available There is a lack of empirical data segregation on factors affecting gender as the variable of interest. However, previous research had indicated several factors that affect business performances among small-scale enterprise owners. Using feminist theory and a descriptive survey research design, data were collected from fifty (50 small-scale enterprise owners that were purposively chosen across the study area. The findings show that the factors that were significant for female were significantly different from male. For female small scale enterprise owners, marital status (64% Age of Children (68%, Role Model/ advisors (58% were significant factors that affect their business performance. For male small-scale enterprise owners, Friends (70%, a lack of Government support (80%, inability to display innovativeness (78% and Risk-Taking (84% were significant for male. Lack of availability of capital and finances were significant for the two. Other factors that affect performance include friends, inadequate training and business location. Adequate knowledge of factors that affect gender enterprise performance will go a long way in alleviating these problems. Small-scale enterprises should be supported for poverty alleviation, especially among women and for the nation’s economic development

  14. Small-Scale High Temperature Melter-1 (SSHTM-1) Data Package. Appendix B

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This appendix provides the data for Alternate HTM Flowsheet 2 (Glycolic Acid) melter feed preparation activities in both the laboratory- and small-scale testing. The first section provides an outline of this appendix. The melter feed preparation data are presented in the next two main sections, laboratory melter feed preparation data and small-scale melter feed preparation data. Section 3.0 provides the laboratory data which is discussed in the main body of the Small-Scale High Temperature-1 (SSHTM-1) Data Package, milestone C95-02.02Y. Section 3.1 gives the flowsheet in outline form as used in the laboratory-scale tests. This section also includes the ``Laboratory Melter Feed Preparation Activity Log`` which gives A chronological account of the test in terms of time, temperature, slurry pH, and specific observations about slurry appearance, acid addition rates, and samples taken. The ``Laboratory Melter Feed Preparation Activity Log`` provides a road map to the reader by which all the activity and data from the laboratory can be easily accessed. A summary of analytical data is presented next, section 3.2, which covers starting materials and progresses to the analysis of the melter feed. The next section, 3.3, characterizes the off-gas generation that occurs during the slurry processing. The following section, 3.4, provides the rheology data gathered including gram waste oxide loading information for the various slurries tested. The final section, 3.5, includes data from standard crucible redox testing. Section 4.0 provides the small-scale data in parallel form to section 3.0. Section 5.0 concludes with the references for this appendix.

  15. Combined heat and power's potential to meet New York City's sustainability goals

    International Nuclear Information System (INIS)

    Howard, Bianca; Saba, Alexis; Gerrard, Michael; Modi, Vijay

    2014-01-01

    Combined Heat and Power (CHP) has been proven as a mature technology that can benefit both building owners and utility operators. As the economic and environmental benefits of CHP in urban centers gain recognition, regulations and policies have evolved to encourage their deployment. However, the question remains whether these policies are sufficient in helping to achieve the larger sustainability goals, such as the New York City-specific goal of incorporating 800 MW of distributed generation. In this paper, the current regulatory and policy environment for CHP is discussed. Then, an engineering analysis estimating the potential for CHP in NYC at the individual building and microgrid scale, considered a city block, is performed. This analysis indicates that over 800 MW of individual building CHP systems would qualify for the current incentives but many systems would need to undergo more cumbersome air permitting processes reducing the viable capacity to 360 MW. In addition microgrid CHP systems with multiple owners could contribute to meeting the goal even after considering air permits; however, these systems may incorporate many residential customers. The regulatory framework for microgrids with multiple owners and especially residential customers is particularly uncertain therefore additional policies would be needed to facilitate their development. - Highlights: • Estimates 1580 MW and 3042 MW CHP capacity at the building and microgrid scales. • Citywide emissions could reduce 4% at the building and 9% at the microgrid scale. • CHP microgrid systems operate at similar efficiencies while providing energy to buildings not viable for CHP. • Current regulatory and policy mechanisms would affect at least 800 MW of CHP systems. • Microgrid CHP systems may be necessary to the City's meet distributed generation goals

  16. Analysis of the Determinants of Small-Scale Farmers' Grain Market ...

    African Journals Online (AJOL)

    In some cases, farmers may sell at low price when they face financial constraints, especially ... Analysis of the Determinants of Small-Scale Farmers' Grain Market Participations. [76] ...... An MSc Thesis Presented to the School of Graduate.

  17. Characteristics of small-scale palm oil production enterprise in ...

    African Journals Online (AJOL)

    The study examined characteristics of small-scale palm oil production enterprise in Anambra State, Nigeria. All the palm oil producers in Anambra State formed the population of the study. Multi-stage sampling technique was used to select 120 respondents for the study. Data were collected from primary source through ...

  18. Development of small-scale fisheries in Yemen: An exploration

    NARCIS (Netherlands)

    Wagenaar, A.; Haese, D' M.F.C.

    2007-01-01

    Yemen is one of the poorest countries in the world. The development of its fishery sector is increasingly being mentioned as a source of livelihood creation. The aims of this paper are to: (a) provide an overview of the institutional environment in which small-scale fishermen in Yemen operate; (b)

  19. Lessons from Small-scale Standardised Testing of English Reading ...

    African Journals Online (AJOL)

    The superior performance by the public school can partly be explained by teachers teaching experience, most of them have been teaching for more than ten years and greater community support for the school. It is recommended that data produced through small-scale standardised testing should be used by school ...

  20. Designing of network planning system for small-scale manufacturing

    Science.gov (United States)

    Kapulin, D. V.; Russkikh, P. A.; Vinnichenko, M. V.

    2018-05-01

    The paper presents features of network planning in small-scale discrete production. The procedure of explosion of the production order, considering multilevel representation, is developed. The software architecture is offered. Approbation of the network planning system is carried out. This system allows carrying out dynamic updating of the production plan.

  1. Work related injuries and associated factors among small scale ...

    African Journals Online (AJOL)

    Objective: This study aims to assess the magnitude of work related injury and associated factors among small scale industrial workers in Mizan-Aman town, Bench Maji Zone, Southwest Ethiopia. Method: A cross-sectional study design was conducted from February to May, 2016. Data was collected using a structured face to ...

  2. Occupational health issues in small-scale industries in Sri Lanka: An underreported burden.

    Science.gov (United States)

    Suraweera, Inoka K; Wijesinghe, Supun D; Senanayake, Sameera J; Herath, Hema D B; Jayalal, T B Ananda

    2016-10-17

    Work-related diseases and occupational accidents affect a significant number of workers globally. The majority of these diseases and accidents are reported from developing countries; and a large percentage of the workforce in developing countries is estimated to be employed in small-scale industries. Sri Lanka is no exception. These workers are exposed to occupational hazards and are at a great risk of developing work- related diseases and injuries. To identify occupational health issues faced by small-scale industry workers in Sri Lanka. A cross sectional study was conducted among workers in four selected small-scale industry categories in two districts of Sri Lanka. A small-scale industry was defined as a work setting with less than 20 workers. Cluster sampling using probability proportionate to size of workers was used. Eighty clusters with a cluster size of eight from each district were selected. Data was collected using a pre-tested interviewer administered questionnaire. Our study surveyed 198 industries. Headache (2.2%, 95% CI 1.5-3.1) and eye problems (2.1%, 95% CI 1.4-2.9) were the commonest general health issues detected. Back pain (4.8%, 95% CI 3.8-6.1) was the most prevalent work-related musculoskeletal pain reported. Knee pain was the second highest (4.4%, 95% CI 3.4-5.6). Most of the work-related musculoskeletal pain was either of short duration or long lasting. Work-related musculoskeletal pain was much more common than the general health issues reported. Health promotional programs at workplaces focusing ergonomics will benefit the workers at small-scale industries inSri Lanka.

  3. Small-Scale Spray Releases: Initial Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2013-05-29

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and

  4. Small-Scale Spray Releases: Initial Aerosol Test Results

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2012-11-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  5. Small-Scale Smart Grid Construction and Analysis

    Science.gov (United States)

    Surface, Nicholas James

    The smart grid (SG) is a commonly used catch-phrase in the energy industry yet there is no universally accepted definition. The objectives and most useful concepts have been investigated extensively in economic, environmental and engineering research by applying statistical knowledge and established theories to develop simulations without constructing physical models. In this study, a small-scale version (SSSG) is constructed to physically represent these ideas so they can be evaluated. Results of construction show data acquisition three times more expensive than the grid itself although mainly due to the incapability to downsize 70% of data acquisition costs to small-scale. Experimentation on the fully assembled grid exposes the limitations of low cost modified sine wave power, significant enough to recommend pure sine wave investment in future SSSG iterations. Findings can be projected to full-size SG at a ratio of 1:10, based on the appliance representing average US household peak daily load. However this exposes disproportionalities in the SSSG compared with previous SG investigations and recommended changes for future iterations are established to remedy this issue. Also discussed are other ideas investigated in the literature and their suitability for SSSG incorporation. It is highly recommended to develop a user-friendly bidirectional charger to more accurately represent vehicle-to-grid (V2G) infrastructure. Smart homes, BEV swap stations and pumped hydroelectric storage can also be researched on future iterations of the SSSG.

  6. Scaling Up Small Millet Post-Harvest and Nutritious Food Products ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Technology solutions to improve processing Processing millets for modern food ... Small scale, large impact By the end of the project, two new business models will be ... The Royal Institution for the Advancement of Learning/McGill University.

  7. Small-scale production and utilization of wood fuels; Puupolttoaineen pientuotanto ja -kaeyttoe - katsaus tutkimus- projekteihin

    Energy Technology Data Exchange (ETDEWEB)

    Tuomi, S [Work Efficiency Inst., Rajamaeki (Finland)

    1997-12-31

    The objective of the research on small-scale production of wood fuels was to promote the forest owners` own utilization and procurement of firewood. The profitability of firewood was improved by developing new farm-tractor mountable equipment and methods for forest owners and small-entrepreneurs for harvesting of first-thinning wood and other small-dimeter wood. Totally new solution for machine felling of small trees and chopwood production were developed to serial production level. Recyclable processing and delivery units were developed for delivery of chopwood. A calculation model for analysing the costs of small-scale production of firewood became ready. A guide on the development of heating-entrepreneur activities, serving the entrepreneurs, was published. The objective of the firewood utilization research was to reduce the technical barriers of the utilization of firewood in small-house and real-estate scales. The main aim was to reduce the flue-gas emissions. The emissions of the fireplaces were reduced by developing the construction of fireplaces, catalytic combustion and heating methods. An automatic stoker-burner was developed for real-estate scale and a boiler series was designed for biofuels

  8. Small-scale production and utilization of wood fuels; Puupolttoaineen pientuotanto ja -kaeyttoe - katsaus tutkimus- projekteihin

    Energy Technology Data Exchange (ETDEWEB)

    Tuomi, S. [Work Efficiency Inst., Rajamaeki (Finland)

    1996-12-31

    The objective of the research on small-scale production of wood fuels was to promote the forest owners` own utilization and procurement of firewood. The profitability of firewood was improved by developing new farm-tractor mountable equipment and methods for forest owners and small-entrepreneurs for harvesting of first-thinning wood and other small-dimeter wood. Totally new solution for machine felling of small trees and chopwood production were developed to serial production level. Recyclable processing and delivery units were developed for delivery of chopwood. A calculation model for analysing the costs of small-scale production of firewood became ready. A guide on the development of heating-entrepreneur activities, serving the entrepreneurs, was published. The objective of the firewood utilization research was to reduce the technical barriers of the utilization of firewood in small-house and real-estate scales. The main aim was to reduce the flue-gas emissions. The emissions of the fireplaces were reduced by developing the construction of fireplaces, catalytic combustion and heating methods. An automatic stoker-burner was developed for real-estate scale and a boiler series was designed for biofuels

  9. Small Scale Turbopump Manufacturing Technology and Material Processes

    Science.gov (United States)

    Alvarez, Erika; Morgan, Kristin; Wells, Doug; Zimmerman, Frank

    2011-01-01

    As part of an internal research and development project, NASA Marshall Space Flight Center (MSFC) has been developing a high specific impulse 9,000-lbf LOX/LH2 pump-fed engine testbed with the capability to throttle 10:1. A Fuel Turbopump (FTP) with the ability to operate across a speed range of 30,000-rpm to 100,000-rpm was developed and analyzed. This small size and flight-like Fuel Turbopump has completed the design and analysis phase and is currently in the manufacturing phase. This paper highlights the manufacturing and processes efforts to fabricate an approximately 20-lb turbopump with small flow passages, intricately bladed components and approximately 3-in diameter impellers. As a result of the small scale and tight tolerances of the hardware on this turbopump, several unique manufacturing and material challenges were encountered. Some of the technologies highlighted in this paper include the use of powder metallurgy technology to manufacture small impellers, electron beam welding of a turbine blisk shroud, and casting challenges. The use of risk reduction efforts such as non-destructive testing (NDT) and evaluation (NDE), fractography, material testing, and component spin testing are also discussed in this paper.

  10. The Challenges Facing Small-Scale Women Entrepreneurs: A Case of Kenya

    OpenAIRE

    Fridah Muriungi Mwobobia

    2012-01-01

    The study sought to identify the challenges facing small scale women entrepreneurs in Kenya and initiatives put in place to counter the challenges. The study employed desktop research. MSEs Baseline survey, recorded that 612,848 women in Micro and Small Enterprises (MSEs) in Kenya, accounting for 47.4 per cent of all those in MSEs. The study showed that women tended to operate enterprises associated with traditional women¡¯s roles, such as hairstyling. The small and micro enterprises (SMEs) p...

  11. Energy efficiency analysis of Organic Rankine Cycles with scroll expanders for cogenerative applications

    International Nuclear Information System (INIS)

    Clemente, Stefano; Micheli, Diego; Reini, Mauro; Taccani, Rodolfo

    2012-01-01

    Highlights: ► We present an ORC model composed of a scroll 1D model and a cycle thermodynamic one. ► High-series production components from HVAC field are considered to reduce costs. ► Couplings of the micro-CHP with low-temperature heat sources are analyzed. ► Small and low-cost CHP systems with acceptable electrical efficiency are realizable. ► Higher electrical efficiency are possible modifying the scroll geometry. -- Abstract: Small scale Organic Rankine Cycle (ORC) systems has been the object of a large number of studies in the last decade, because of their suitability for energy recovery and cogenerative applications. The paper presents an ORC numerical model and its applications to two different case studies; the code has been obtained by combining a one-dimensional model of a scroll machine and a thermodynamic model of a whole ORC system. Series production components, such as scroll compressors, from HVAC field, have been first considered in order to reduce costs, because this is a critical issue for small scale energy recovery and cogeneration systems. The detailed model of the scroll machine is capable to calculate the performances of both a compressor and an expander, as function of the geometry of the device and of the working fluid. The model has been first tested and validated by comparing its outputs with experimental tests on a commercial scroll compressor, then used to calculate the working curves of commercial scroll machines originally designed as compressors in the HVAC field, but operating as expanders. The model of the expander has been then integrated in the thermodynamic model of the ORC system. A series of comparisons have been carried out in order to evaluate how the performances are influenced by cycle parameters, scroll geometry and working fluid for different applications. The results confirm the feasibility of small scale CHP systems with acceptable electrical efficiency, taking into account the low-temperature thermal source

  12. Interactions between finite amplitude small and medium-scale waves in the MLT region.

    Science.gov (United States)

    Heale, C. J.; Snively, J. B.

    2016-12-01

    Small-scale gravity waves can propagate high into the thermosphere and deposit significant momentum and energy into the background flow [e.g., Yamada et al., 2001, Fritts et al., 2014]. However, their propagation, dissipation, and spectral evolution can be significantly altered by other waves and dynamics and the nature of these complex interactions are not yet well understood. While many ray-tracing and time-dependent modeling studies have been performed to investigate interactions between waves of varying scales [e.g., Eckermann and Marks .1996, Sartelet. 2003, Liu et al. 2008, Vanderhoff et al., 2008, Senf and Achatz., 2011, Heale et al., 2015], the majority of these have considered waves of larger (tidal) scales, or have simplified one of the waves to be an imposed "background" and discount (or limit) the nonlinear feedback mechanisms between the two waves. In reality, both waves will influence each other, especially at finite amplitudes when nonlinear effects become important or dominant. We present a study of fully nonlinear interactions between small-scale 10s km, 10 min period) and medium-scale wave packets at finite amplitudes, which include feedback between the two waves and the ambient atmosphere. Time-dependence of the larger-scale wave has been identified as an important factor in reducing reflection [Heale et al., 2015] and critical level effects [Sartelet, 2003, Senf and Achatz, 2011], we choose medium-scale waves of different periods, and thus vertical scales, to investigate how this influences the propagation, filtering, and momentum and energy deposition of the small-scale waves, and in turn how these impacts affect the medium-scale waves. We also consider the observable features of these interactions in the mesosphere and lower thermosphere.

  13. Exergoeconomic analysis of small-scale biomass steam cogeneration

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Sotomonte, Cesar Adolfo; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba, MG (Brazil)], e-mails: c.rodriguez32@unifei.edu.br, electo@unifei.edu.br; Venturini, Osvaldo Jose; Escobar, Jose Carlos [Universidad Federal de Itajuba, MG (Brazil)], e-mail: osvaldo@unifei.edu.br

    2010-07-01

    The principal objective of this work is to develop a calculation process, based on the second law of thermodynamics, for evaluating the thermoeconomic potential of a small steam cogeneration plant using waste from pulp processing and/or sawmills as fuel. Four different configurations are presented and assessed. The exergetic efficiency of the cycles that use condensing turbines is found to be around 11%, which has almost 3 percent higher efficiency than cycles with back pressure turbines. The thermoeconomic equations used in this paper estimated the production costs varying the fuel price. The main results show that present cost of technologies in a small-scale steam cycle cogeneration do not justify the implementation of more efficient systems for biomass prices less than 100 R$/t. (author)

  14. Small scale soft x-ray lasers

    International Nuclear Information System (INIS)

    Skinner, C.H.; DiCicco, D.S.; Kim, D.; Voorhees, D.; Suckewer, S.

    1990-01-01

    The widespread application of soft x-ray laser technology is contingent on the development of small scale soft x-ray lasers that do not require large laser facilities. Progress in the development of soft x-ray lasers pumped by a Nd laser of energy 6-12J is reported below. Application of an existing soft x-ray laser to x-ray microscopy has begun. A soft x-ray laser of output energy 1-3 mJ at 18,2 nm has been used to record high resolution images of biological specimens. The contact images were recorded on photoresist which was later viewed in a scanning electron microscope. The authors present a composite optical x-ray laser microscope design

  15. Studying small molecule-aptamer interactions using MicroScale Thermophoresis (MST).

    Science.gov (United States)

    Entzian, Clemens; Schubert, Thomas

    2016-03-15

    Aptamers are potent and versatile binding molecules recognizing various classes of target molecules. Even challenging targets such as small molecules can be identified and bound by aptamers. Studying the interaction between aptamers and drugs, antibiotics or metabolites in detail is however difficult due to the lack of sophisticated analysis methods. Basic binding parameters of these small molecule-aptamer interactions such as binding affinity, stoichiometry and thermodynamics are elaborately to access using the state of the art technologies. The innovative MicroScale Thermophoresis (MST) is a novel, rapid and precise method to characterize these small molecule-aptamer interactions in solution at microliter scale. The technology is based on the movement of molecules through temperature gradients, a physical effect referred to as thermophoresis. The thermophoretic movement of a molecule depends - besides on its size - on charge and hydration shell. Upon the interaction of a small molecule and an aptamer, at least one of these parameters is altered, leading to a change in the movement behavior, which can be used to quantify molecular interactions independent of the size of the target molecule. The MST offers free choice of buffers, even measurements in complex bioliquids are possible. The dynamic affinity range covers the pM to mM range and is therefore perfectly suited to analyze small molecule-aptamer interactions. This section describes a protocol how quantitative binding parameters for aptamer-small molecule interactions can be obtained by MST. This is demonstrated by mapping down the binding site of the well-known ATP aptamer DH25.42 to a specific region at the adenine of the ATP molecule. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Food Security in Africa and Asia: Strategies for Small-scale ...

    African Journals Online (AJOL)

    GGBT_2

    chapters. The focus is on small-scale agricultural development. It identifies ... Asia through a system of producer and consumer subsidies (pp. 195-196). ... Doha Round of the WTO and the position of African countries. In what ways will.

  17. Effects of artisanal small-scale gold mining on fisheries ...

    African Journals Online (AJOL)

    Artisanal Small-scale Gold Mining (ASGM) has direct and indirect impacts on fisheries management. These impacts are mainly about the quality of the water where fish lives, ownership of the surrounding waters, land and human health. This study was carried out in two landing sites of Wagusu and Riskis Kogwari in ...

  18. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    International Nuclear Information System (INIS)

    Druzhinin, O; Troitskaya, Yu; Zilitinkevich, S

    2016-01-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface. (paper)

  19. INCOME OVER FEED COST FOR SMALL- TO MEDIUM-SCALE BEEF CATTLE FATTENING OPERATIONS IN EAST JAVA

    Directory of Open Access Journals (Sweden)

    A. Priyanti

    2014-10-01

    Full Text Available An evaluation was conducted of the returns to fattening cattle of small- and medium-scaleenterprises in East Java. The objective was to analyze income over feed costs (IOFC based on locallyavailable feedstuffs to increase liveweight gain. The study was conducted during July-September 2010and January-March 2011, representing relative dry and wet season. The breeds were PO and Limousinand Simmental crossed with PO (LimPO and SimPO. Small-scale farmers owning 1-2 bulls andmedium-scale farmers fattening 10-20 bulls in one period. Fattening period was 58 and 46 days,respectively for dry and wet season. Monthly measurements included liveweight, feed intake, input andoutput prices. Mean values of growth rates and IOFC were compared using t-tests. The results indicatedthat, for small-scale operations, SimPO bulls gave a significantly higher return than either PO or LimPObulls. Likewise, LimPO gave a higher IOFC than SimPO in medium-scale operations. Small-scalefarmers achieved equal or higher IOFC for European-cross than medium-scale farmers in both seasons.This reflects that cash outlays for feed were about two-thirds that of medium-scale operations whiledaily growth rates were similar. Small-scale fattening operations using European-cross can befinancially competitive with medium-scale operations in both wet and dry seasons.

  20. Energy transfers and magnetic energy growth in small-scale dynamo

    KAUST Repository

    Kumar, Rohit Raj; Verma, Mahendra K.; Samtaney, Ravi

    2013-01-01

    In this letter we investigate the dynamics of magnetic energy growth in small-scale dynamo by studying energy transfers, mainly energy fluxes and shell-to-shell energy transfers. We perform dynamo simulations for the magnetic Prandtl number Pm = 20

  1. Large Scale Community Detection Using a Small World Model

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Behera

    2017-11-01

    Full Text Available In a social network, small or large communities within the network play a major role in deciding the functionalities of the network. Despite of diverse definitions, communities in the network may be defined as the group of nodes that are more densely connected as compared to nodes outside the group. Revealing such hidden communities is one of the challenging research problems. A real world social network follows small world phenomena, which indicates that any two social entities can be reachable in a small number of steps. In this paper, nodes are mapped into communities based on the random walk in the network. However, uncovering communities in large-scale networks is a challenging task due to its unprecedented growth in the size of social networks. A good number of community detection algorithms based on random walk exist in literature. In addition, when large-scale social networks are being considered, these algorithms are observed to take considerably longer time. In this work, with an objective to improve the efficiency of algorithms, parallel programming framework like Map-Reduce has been considered for uncovering the hidden communities in social network. The proposed approach has been compared with some standard existing community detection algorithms for both synthetic and real-world datasets in order to examine its performance, and it is observed that the proposed algorithm is more efficient than the existing ones.

  2. Additional renewable energy growth through small-scale community orientated energy policies

    International Nuclear Information System (INIS)

    Hain, J.J.; Ault, G.W.; Galloway, S.J.; Cruden, A.; McDonald, J.R.

    2005-01-01

    This paper summarises the energy policies that the UK Government has enacted in order to achieve its renewable targets by 2010. Current policies are designed primarily to support large-scale renewable projects through Renewable Obligation Certificates, Levy Exemption Certificates and capital grant schemes. Non-profit domestic and non-profit community renewable projects are also eligible for grant support. First-hand experience of privately owned renewable projects indicate that existing renewable policy is insufficient in its support of both small-scale and community-based profit oriented renewable energy (RE) schemes. Primary and secondary survey information suggests that people living in regions where RE will be situated may generally be inclined to support broader uses of renewables in these regions. Small-scale renewables can make a significant cumulative contribution to the RE mix. The results reported in this paper support the contention that the Government could go further towards approaching its targets through rural-focused changes to its energy incentive programmes

  3. Cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors

    NARCIS (Netherlands)

    Budzaki, S.; Miljic, G.; Sundaram, S.; Tisma, M.; Hessel, V.

    2017-01-01

    A cost analysis of enzymatic biodiesel production in small-scaled packed-bed reactors using refined sunflower oil is performed in this work. A few enzymatic micro-flow reactors have so far reached a performance close to gram-scale, which might be sufficient for the pharmaceutical industry. This

  4. High-Temperature Structural Analysis of a Small-Scale PHE Prototype under the Test Condition of a Small-Scale Gas Loop

    International Nuclear Information System (INIS)

    Song, K.; Hong, S.; Park, H.

    2012-01-01

    A process heat exchanger (PHE) is a key component for transferring the high-temperature heat generated from a very high-temperature reactor (VHTR) to a chemical reaction for the massive production of hydrogen. The Korea Atomic Energy Research Institute has designed and assembled a small-scale nitrogen gas loop for a performance test on VHTR components and has manufactured a small-scale PHE prototype made of Hastelloy-X alloy. A performance test on the PHE prototype is underway in the gas loop, where different kinds of pipelines connecting to the PHE prototype are tested for reducing the thermal stress under the expansion of the PHE prototype. In this study, to evaluate the high-temperature structural integrity of the PHE prototype under the test condition of the gas loop, a realistic and effective boundary condition imposing the stiffness of the pipelines connected to the PHE prototype was suggested. An equivalent spring stiffness to reduce the thermal stress under the expansion of the PHE prototype was computed from the bending deformation and expansion of the pipelines connected to the PHE. A structural analysis on the PHE prototype was also carried out by imposing the suggested boundary condition. As a result of the analysis, the structural integrity of the PHE prototype seems to be maintained under the test condition of the gas loop.

  5. III. FROM SMALL TO BIG: METHODS FOR INCORPORATING LARGE SCALE DATA INTO DEVELOPMENTAL SCIENCE.

    Science.gov (United States)

    Davis-Kean, Pamela E; Jager, Justin

    2017-06-01

    For decades, developmental science has been based primarily on relatively small-scale data collections with children and families. Part of the reason for the dominance of this type of data collection is the complexity of collecting cognitive and social data on infants and small children. These small data sets are limited in both power to detect differences and the demographic diversity to generalize clearly and broadly. Thus, in this chapter we will discuss the value of using existing large-scale data sets to tests the complex questions of child development and how to develop future large-scale data sets that are both representative and can answer the important questions of developmental scientists. © 2017 The Society for Research in Child Development, Inc.

  6. Financing small-scale infrastructure investments in developing countries

    OpenAIRE

    Daniel L. Bond; Daniel Platz; Magnus Magnusson

    2012-01-01

    In most developing countries a shortage of long-term, local-currency financing for small-scale infrastructure projects impedes local economic development. Inadequate fiscal transfers, little own source revenue and low creditworthiness make it difficult for local governments to fully fund projects on their own. This paper proposes the use of project finance as a means to attract financing from domestic banks and institutional investors. Donors can play a catalytic role by providing technical a...

  7. Evaluating the transport in small-world and scale-free networks

    International Nuclear Information System (INIS)

    Juárez-López, R.; Obregón-Quintana, B.; Hernández-Pérez, R.; Reyes-Ramírez, I.; Guzmán-Vargas, L.

    2014-01-01

    We present a study of some properties of transport in small-world and scale-free networks. Particularly, we compare two types of transport: subject to friction (electrical case) and in the absence of friction (maximum flow). We found that in clustered networks based on the Watts–Strogatz (WS) model, for both transport types the small-world configurations exhibit the best trade-off between local and global levels. For non-clustered WS networks the local transport is independent of the rewiring parameter, while the transport improves globally. Moreover, we analyzed both transport types in scale-free networks considering tendencies in the assortative or disassortative mixing of nodes. We construct the distribution of the conductance G and flow F to evaluate the effects of the assortative (disassortative) mixing, finding that for scale-free networks, as we introduce different levels of the degree–degree correlations, the power-law decay in the conductances is altered, while for the flow, the power-law tail remains unchanged. In addition, we analyze the effect on the conductance and the flow of the minimum degree and the shortest path between the source and destination nodes, finding notable differences between these two types of transport

  8. The underlying processes of a soil mite metacommunity on a small scale

    Science.gov (United States)

    Guo, Chuanwei; Lin, Lin; Wu, Donghui; Zhang, Limin

    2017-01-01

    Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m) in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran’s eigenvector maps (MEMs) were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables) and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA) were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend), indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important in the

  9. The underlying processes of a soil mite metacommunity on a small scale.

    Directory of Open Access Journals (Sweden)

    Chengxu Dong

    Full Text Available Metacommunity theory provides an understanding of how ecological processes regulate local community assemblies. However, few field studies have evaluated the underlying mechanisms of a metacommunity on a small scale through revealing the relative roles of spatial and environmental filtering in structuring local community composition. Based on a spatially explicit sampling design in 2012 and 2013, this study aims to evaluate the underlying processes of a soil mite metacommunity on a small spatial scale (50 m in a temperate deciduous forest located at the Maoershan Ecosystem Research Station, Northeast China. Moran's eigenvector maps (MEMs were used to model independent spatial variables. The relative importance of spatial (including trend variables, i.e., geographical coordinates, and broad- and fine-scale spatial variables and environmental factors in driving the soil mite metacommunity was determined by variation partitioning. Mantel and partial Mantel tests and a redundancy analysis (RDA were also used to identify the relative contributions of spatial and environmental variables. The results of variation partitioning suggested that the relatively large and significant variance was a result of spatial variables (including broad- and fine-scale spatial variables and trend, indicating the importance of dispersal limitation and autocorrelation processes. The significant contribution of environmental variables was detected in 2012 based on a partial Mantel test, and soil moisture and soil organic matter were especially important for the soil mite metacommunity composition in both years. The study suggested that the soil mite metacommunity was primarily regulated by dispersal limitation due to broad-scale and neutral biotic processes at a fine-scale and that environmental filtering might be of subordinate importance. In conclusion, a combination of metacommunity perspectives between neutral and species sorting theories was suggested to be important

  10. Integration of torrefaction in CHP plants – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Tomas Aparicio, Elena; Li, Hailong; Dotzauer, Erik

    2015-01-01

    Highlights: • We model the integration of a torrefaction reactor in a CHP plant. • Techno-economic analysis for the system is performed. • Flue gas integration of torrefaction show better performance. • Heat or electricity production is not compromised in the proposed system. - Abstract: Torrefied biomass shows characteristics that resemble those of coal. Therefore, torrefied biomass can be co-combusted with coal in existing coal mills and burners. This paper presents simulation results of a case study where a torrefaction reactor was integrated in an existing combined heat and power plant and sized to replace 25%, 50%, 75% or 100% of the fossil coal in one of the boilers. The simulations show that a torrefaction reactor can be integrated with existing plants without compromising heat or electricity production. Economic and sensitivity analysis show that the additional cost for integrating a torrefaction reactor is low which means that with an emission allowance cost of 37 €/ton CO 2 , the proposed integrated system can be profitable and use 100% renewable fuels. The development of subsidies will affect the process economy. The determinant parameters are electricity and fuel prices

  11. Chipmunk parvovirus is distinct from members in the genus Erythrovirus of the family Parvoviridae.

    Directory of Open Access Journals (Sweden)

    Zhaojun Chen

    2010-12-01

    Full Text Available The transcription profile of chipmunk parvovirus (ChpPV, a tentative member of the genus Erythrovirus in the subfamily Parvovirinae of the family Parvoviridae, was characterized by transfecting a nearly full-length genome. We found that it is unique from the profiles of human parvovirus B19 and simian parvovirus, the members in the genus Erythrovirus so far characterized, in that the small RNA transcripts were not processed for encoding small non-structural proteins. However, like the large non-structural protein NS1 of the human parvovirus B19, the ChpPV NS1 is a potent inducer of apoptosis. Further phylogenetic analysis of ChpPV with other parvoviruses in the subfamily Parvovirinae indicates that ChpPV is distinct from the members in genus Erythrovirus. Thus, we conclude that ChpPV may represent a new genus in the family Parvoviridae.

  12. Small watershed-scale research and the challenges ahead

    Science.gov (United States)

    Larsen, M. C.; Glynn, P. D.

    2008-12-01

    For the past century, Federal mission science agencies (eg. USFS, NRCS, ARS, USGS) have had the long- term agency goals, infrastructure, and research staff to conduct research and data collection in small watersheds as well as support these activities for non-Federal partners. The National Science Foundation has been a strong partner with the Federal mission science agencies, through the LTER network, which is dependent on Federally supported research sites, and more recently with the emerging CUAHSI, WATERS, CZEN, and NEON initiatives. Much of the NSF-supported research builds on the foundations provided by their Federally supported partners, who sustain the long-term, extensive monitoring activity and research sites, including making long-term data available to all users via public interfaces. The future of these programs, and their enhancement/expansion to face the intensifying concurrent challenges of population growth, land-use change, and climate change, is dependent on a well-funded national commitment to basic science. Such a commitment will allow the scientific community to advance our understanding of these scientific challenges and to synthesize our understanding among research sites and at the national scale. Small watersheds serve as essential platforms where hypotheses can be tested, as sentinels for climate change, and as a basis for comparing and scaling up local information and syntheses to regional and continental scales. The science guides resource management and mitigation decisions and is fundamental to the development of predictive models. Furthermore, small-watershed research and monitoring programs are generally undervalued because many research questions that can be addressed now or in the future were not anticipated when the sites were initiated. Some examples include: 1) the quantification, characterization, and understanding of how emerging contaminants, personal care products, and endocrine disruptors affect organisms - substances that

  13. Climate change impacts and adaptations on small-scale livestock production

    Directory of Open Access Journals (Sweden)

    Taruvinga, A.

    2013-06-01

    Full Text Available The paper estimated the impacts of climate change and adaptations on small-scale livestock production. The study is based on a survey of 1484 small-scale livestock rural farmers across the Eastern Cape Province of South Africa. Regression estimates finds that with warming, the probability of choosing the following species increases; goats, dual purpose chicken (DPC, layers, donkeys and ducks. High precipitation increases the probability of choosing the following animals; beef, goats, DPC and donkeys. Further, socio-economic estimates indicate that livestock selection choices are also conditioned by gender, age, marital status, education and household size. The paper therefore concluded that as climate changes, rural farmers switch their livestock combinations as a coping strategy. Unfortunately, rural farmers face a limited preferred livestock selection pool that is combatable to harsh climate which might translate to a bleak future for rural livestock farmers.

  14. New limits to the small scale fluctuations in the cosmic background radiation

    International Nuclear Information System (INIS)

    Kellermann, K.I.; Fomalont, E.B.; Wall, J.V.

    1983-01-01

    The VLA has been used at 4.9 GHz to observe a small region of sky in order to extend the radio source count to low flux density (Fomalont et al., these proceedings) and to look for small scale fluctuations in the 2.7 K cosmic microwave background radiation. (Auth.)

  15. Cold dark matter: Controversies on small scales.

    Science.gov (United States)

    Weinberg, David H; Bullock, James S; Governato, Fabio; Kuzio de Naray, Rachel; Peter, Annika H G

    2015-10-06

    The cold dark matter (CDM) cosmological model has been remarkably successful in explaining cosmic structure over an enormous span of redshift, but it has faced persistent challenges from observations that probe the innermost regions of dark matter halos and the properties of the Milky Way's dwarf galaxy satellites. We review the current observational and theoretical status of these "small-scale controversies." Cosmological simulations that incorporate only gravity and collisionless CDM predict halos with abundant substructure and central densities that are too high to match constraints from galaxy dynamics. The solution could lie in baryonic physics: Recent numerical simulations and analytical models suggest that gravitational potential fluctuations tied to efficient supernova feedback can flatten the central cusps of halos in massive galaxies, and a combination of feedback and low star formation efficiency could explain why most of the dark matter subhalos orbiting the Milky Way do not host visible galaxies. However, it is not clear that this solution can work in the lowest mass galaxies, where discrepancies are observed. Alternatively, the small-scale conflicts could be evidence of more complex physics in the dark sector itself. For example, elastic scattering from strong dark matter self-interactions can alter predicted halo mass profiles, leading to good agreement with observations across a wide range of galaxy mass. Gravitational lensing and dynamical perturbations of tidal streams in the stellar halo provide evidence for an abundant population of low-mass subhalos in accord with CDM predictions. These observational approaches will get more powerful over the next few years.

  16. Resonant Wave Energy Converters: Small-scale field experiments and first full-scale prototype

    International Nuclear Information System (INIS)

    Arena, Felice; Fiamma, Vincenzo; Iannolo, Roberto; Laface, Valentina; Malara, Giovanni; Romolo, Alessandra; Strati Federica Maria

    2015-01-01

    The Resonant Wave Energy Converter 3 (REWEC3) is a device belonging to the family of Oscillating Water Columns (OWCs), that can convert the energy of incident waves into electrical energy via turbines. In contrast to classical OWCs, it incorporates a small vertical U-shaped duct to connect the water column to the open wave field. This article shows the results of a small-scale field experiment involving a REWEC3 designed for working with a 2 kW turbine. Then, the next experimental activity on a REWEC3 installed in the NOEL laboratory with the collaboration of ENEA, is presented. Finally, the first prototype of ReWEC3 under construction in Civitavecchia (Rome, Italy) is shown. The crucial features of the construction stage are discussed and some initial performances are provided. [it

  17. Experimental evidence for convergent evolution of maternal care heuristics in industrialized and small-scale populations.

    Science.gov (United States)

    Kushnick, Geoff; Hanowell, Ben; Kim, Jun-Hong; Langstieh, Banrida; Magnano, Vittorio; Oláh, Katalin

    2015-06-01

    Maternal care decision rules should evolve responsiveness to factors impinging on the fitness pay-offs of care. Because the caretaking environments common in industrialized and small-scale societies vary in predictable ways, we hypothesize that heuristics guiding maternal behaviour will also differ between these two types of populations. We used a factorial vignette experiment to elicit third-party judgements about likely caretaking decisions of a hypothetical mother and her child when various fitness-relevant factors (maternal age and access to resources, and offspring age, sex and quality) were varied systematically in seven populations-three industrialized and four small-scale. Despite considerable variation in responses, we found that three of five main effects, and the two severity effects, exhibited statistically significant industrialized/ small-scale population differences. All differences could be explained as adaptive solutions to industrialized versus small-scale caretaking environments. Further, we found gradients in the relationship between the population-specific estimates and national-level socio-economic indicators, further implicating important aspects of the variation in industrialized and small-scale caretaking environments in shaping heuristics. Although there is mounting evidence for a genetic component to human maternal behaviour, there is no current evidence for interpopulation variation in candidate genes. We nonetheless suggest that heuristics guiding maternal behaviour in diverse societies emerge via convergent evolution in response to similar selective pressures.

  18. Concepts for Small-Scale Testing of Used Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Marschman, Steven Craig [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Philip Lon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report documents a concept for a small-scale test involving between one and three Boiling Water Rector (BWR) high burnup (HBU) fuel assemblies. This test would be similar to the DOE funded High Burn-Up (HBU) Confirmatory Data Project to confirm the behavior of used high burn-up fuel under prototypic conditions, only on a smaller scale. The test concept proposed would collect data from fuel stored under prototypic dry storage conditions to mimic, as closely as possible, the conditions HBU UNF experiences during all stages of dry storage: loading, cask drying, inert gas backfilling, and transfer to an Independent Spent Fuel Storage Installation (ISFSI) for multi-year storage.

  19. DIRECTIONS OF THE SMALL-SCALE ENTERPRISES FINANCIAL STABILITY GROTH IN THE REGION

    Directory of Open Access Journals (Sweden)

    A.Y. Makarova

    2008-12-01

    Full Text Available Directions of the small-scale business financial stability increase, focused on its economic power strengthening, are offered. They are connected with development of the external factors of financial stability and the internal factors including orientation of the small enterprises in strategic management on the company's value growth. Applicability of a balanced scorecard which fully reflects interrelation of small enterprises’ both financial and non-financial indicators of work to maintenance those small enterprises’ growth of cost and their embedding into the system of the economic power of state and large business is proved.

  20. Wallowa County Integrated Biomass Energy Center

    Energy Technology Data Exchange (ETDEWEB)

    Christoffersen, Nils [Wallowa Resources Community Solutions Inc., Wallowa, OR (United States)

    2014-05-02

    The Integrated Biomass Energy Center (IBEC) is an approximately 0.1 MW CHP integrated biorefinery in Northeastern Oregon which will demonstrate and validate small-scale combined heat and power from lignin intermediates/residues. IBEC will be co-located with feedstock suppliers and thermal and power customers for distributed generation. The project was developed by Wallowa Resources Community Solutions Inc.

  1. Small Scale Irrigation within Water, Energy and Food Nexus Framework in Ethiopia.

    Science.gov (United States)

    Gerik, T.; Worqlul, A. W.; Yihun, D.; Bizimana, J. C.; Jeong, J.; Schmitter, P.; Srinivasan, R.; Richardson, J. W.; Clark, N.

    2017-12-01

    This study presents the nexus of food, energy and water framework in the context of small scale irrigation for vegetable production during the dry season in an irrigated agriculture system in Ethiopia. The study is based on detailed data collected in three sites of the Innovation Lab for Small Scale Irrigation (ILSSI) project in Ethiopia. The sites were Robit, Dangishta and Lemo and detailed field data was collected in 18 households in each site. The field data collected includes crop management (such as irrigation amount and dates, fertilizer rates, tillage practices, irrigation technologies, etc.) and agricultural production (crop yield, biomass, etc.) on tomato, onion and cabbage during the dry season. Four different water lifting technologies - namely rope with pulley and bucket, rope and washer pump, solar pump and motor pump - were used for water withdrawal from shallow groundwater wells. The Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) models were used in an integrated manner to assess water resource potential and develop water use efficiency of vegetables, which is a relationship between amount of water applied and vegetable yield. The water use efficiency for each vegetable crops were translated into energy requirement as pumping hours and potential irrigable areas for the water lifting technologies. This integrated approach was found useful to optimize water and energy use for sustainable food production using small scale irrigation. The holistic approach will not only provide a significant contribution to achieving food self-sufficiency, but will also be effective for optimizing agricultural input. Keyword: small scale irrigation, integrated modeling, water lifting technology, East Africa

  2. Fabrication and testing of small scale mock-ups of ITER shielding blanket

    International Nuclear Information System (INIS)

    Hatano, Toshihisa; Sato, Satoshi; Suzuki, Satoshi; Yokoyama, Kenji; Furuya, Kazuyuki; Kuroda, Toshimasa; Enoeda, Mikio; Takatsu, Hideyuki; Ohara, Yoshihiro

    1998-12-01

    Small scale mock-ups of the primary first wall, the baffle first wall, the shield block and a partial model for the edge of the primary first wall module were designed and fabricated incorporating most of the key design features of the ITER shielding blanket. All mock-ups featured the DSCu heat sink, the built-in SS coolant tubes within the heat sink and the SS shield block. CFC tiles was used as the protection armor for the baffle first wall mock-up. The small scale shield block mock-up, integrated with the first wall, was designed to have a poloidal curvature specified in the ITER design. Fabrication routes of mock-ups were decided based on the single step solid HIP of DSCu/DSCu, DSCu/SS and SS/SS reflecting the results of previous joining techniques development and testing. For attaching the CFC tiles onto DSCu heat sink in the fabrication of the baffle first wall mock-up, a two-step brazing was tried. All mock-ups and the partial model were successfully fabricated with a satisfactory dimensional accuracy. The small scale primary first wall mock-up was thermo-mechanically tested under high heat fluxes of 5-7 MW/m 2 for 2500 cycles in total. Satisfactory heat removal performance and integrity of the mock-up against cyclic high heat flux loads were confirmed by measurement during the tests and destructive examination after the tests. Similar high heat flux tests were also performed with the small scale baffle first wall mock-up under 5-10 MW/m 2 for 4500 cycles in total resulting in sufficient heat removal capability and integrity confirmed by measurements during the tests. (author)

  3. Fabrication and analysis of small-scale thermal energy storage with conductivity enhancement

    International Nuclear Information System (INIS)

    Thapa, Suvhashis; Chukwu, Sam; Khaliq, Abdul; Weiss, Leland

    2014-01-01

    Highlights: • Useful thermal conductivity envelope established for small scale TES. • Paraffin conductivity enhanced from .5 to 3.8 W/m K via low-cost copper insert. • Conductivity increase beyond 5 W/m K shows diminished returns. • Storage with increased conductivity lengthened thermoelectric output up to 247 s. - Abstract: The operation and useful operating parameters of a small-scale Thermal Energy Storage (TES) device that collects and stores heat in a Phase Change Material (PCM) is explored. The PCM utilized is an icosane wax. A physical device is constructed on the millimeter scale to examine specific effects of low-cost thermal conductivity enhancements that include copper foams and other metallic inserts. Numerical methods are utilized to establish useful operating range of small-scale TES devices in general, and the limits of thermal conductivity enhancement on thermoelectric operation specifically. Specific attention is paid to the manufacturability of the various constructs as well as the resulting thermal conductivity enhancement. A maximum thermal conductivity of 3.8 W/m K is achieved in experimental testing via copper foam enhancement. A simplified copper matrix achieves conductivity of 3.7 W/m K and allows significantly reduced fabrication effort. These results compare favorably to baseline wax conductivity of .5 W/m K. Power absorption is recorded of about 900 W/m 2 . Modeling reveals diminishing returns beyond 4–6 W/m K for devices on this scale. Results show the system capable of extending thermoelectric operation several minutes through the use of thermal energy storage techniques within the effective conductivity ranges

  4. Variations in the small-scale galactic magnetic field and short time-scale intensity variations of extragalactic radio sources

    International Nuclear Information System (INIS)

    Simonetti, J.H.

    1985-01-01

    Structure functions of the Faraday rotation measures (RMs) of extragalactic radio sources are used to investigate variations in the interstellar magnetic field on length scales of approx.0.01 to 100 pc. Model structure functions derived assuming a power-law power spectrum of irregularities in n/sub e/B, are compared with those observed. The results indicate an outer angular scale for RM variations of approximately less than or equal to 5 0 and evidence for RM variations on scales as small as 1'. Differences in the variance of n/sub e/B fluctuations for various lines of sight through the Galaxy are found. Comparison of pulsar scintillations in right- and left-circular polarizations yield an upper limit to the variations in n/sub e/ on a length scale of approx.10 11 cm. RMs were determined through high-velocity molecular flows in galactic star-formation regions, with the goal of constraining magnetic fields in and near the flows. RMs of 7 extragalactic sources with a approx.20 arcmin wide area seen through Cep A, fall in two groups separated by approx.150 rad m -2 - large given our knowledge of RM variations on small angular scales and possibly a result of the anisotropy of the high-velocity material

  5. The Impact of Micro-Finance on the Performance of Small-Scale ...

    African Journals Online (AJOL)

    2014-10-02

    Oct 2, 2014 ... Department of Planning and Management ... Keywords: Small-scale Enterprises, Micro-Financing, Micro-Credit, Sales Revenue, .... The Wa Municipality is often acclaimed as a private-sector business enclave in the Upper.

  6. STATISTICAL EVALUATION OF SMALL SCALE MIXING DEMONSTRATION SAMPLING AND BATCH TRANSFER PERFORMANCE - 12093

    Energy Technology Data Exchange (ETDEWEB)

    GREER DA; THIEN MG

    2012-01-12

    The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste Treatment and Immobilization Plant (WTP) presents a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS) has previously presented the results of mixing performance in two different sizes of small scale DSTs to support scale up estimates of full scale DST mixing performance. Currently, sufficient sampling of DSTs is one of the largest programmatic risks that could prevent timely delivery of high level waste to the WTP. WRPS has performed small scale mixing and sampling demonstrations to study the ability to sufficiently sample the tanks. The statistical evaluation of the demonstration results which lead to the conclusion that the two scales of small DST are behaving similarly and that full scale performance is predictable will be presented. This work is essential to reduce the risk of requiring a new dedicated feed sampling facility and will guide future optimization work to ensure the waste feed delivery mission will be accomplished successfully. This paper will focus on the analytical data collected from mixing, sampling, and batch transfer testing from the small scale mixing demonstration tanks and how those data are being interpreted to begin to understand the relationship between samples taken prior to transfer and samples from the subsequent batches transferred. An overview of the types of data collected and examples of typical raw data will be provided. The paper will then discuss the processing and manipulation of the data which is necessary to begin evaluating sampling and batch transfer performance. This discussion will also include the evaluation of the analytical measurement capability with regard to the simulant material used in the demonstration tests. The

  7. Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale.

    Science.gov (United States)

    Espinosa, J R; Grojean, C; Panico, G; Pomarol, A; Pujolàs, O; Servant, G

    2015-12-18

    Recently, a new mechanism to generate a naturally small electroweak scale has been proposed. It exploits the coupling of the Higgs boson to an axionlike field and a long era in the early Universe where the axion unchains a dynamical screening of the Higgs mass. We present a new realization of this idea with the new feature that it leaves no sign of new physics at the electroweak scale, and up to a rather large scale, 10^{9}  GeV, except for two very light and weakly coupled axionlike states. One of the scalars can be a viable dark matter candidate. Such a cosmological Higgs-axion interplay could be tested with a number of experimental strategies.

  8. Performance of small-scale photovoltaic systems and their potential for rural electrification in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Stutenbaeumer, Ulrich; Negash, Tesfaye; Abdi, Amensisa [Addis Ababa Univ., Dept. of Physics, Addis Ababa (Ethiopia)

    1999-09-01

    The performance of small-scale stand-alone photovoltaic systems is tested under the climatic conditions of Addis Ababa, Ethiopia. With climatic data obtained at a station in the Rift Valley, the photovoltaic systems performance is estimated for those climatic conditions. The economics of small-scale stand-alone photovoltaic system applications under Ethiopian conditions are analysed. The potential of photovoltaics for the rural electrification of Ethiopia is discussed. (Author)

  9. Small Scale Yielding Correction of Constraint Loss in Small Sized Fracture Toughness Test Specimens

    International Nuclear Information System (INIS)

    Kim, Maan Won; Kim, Min Chul; Lee, Bong Sang; Hong, Jun Hwa

    2005-01-01

    Fracture toughness data in the ductile-brittle transition region of ferritic steels show scatter produced by local sampling effects and specimen geometry dependence which results from relaxation in crack tip constraint. The ASTM E1921 provides a standard test method to define the median toughness temperature curve, so called Master Curve, for the material corresponding to a 1T crack front length and also defines a reference temperature, T 0 , at which median toughness value is 100 MPam for a 1T size specimen. The ASTM E1921 procedures assume that high constraint, small scaling yielding (SSY) conditions prevail at fracture along the crack front. Violation of the SSY assumption occurs most often during tests of smaller specimens. Constraint loss in such cases leads to higher toughness values and thus lower T 0 values. When applied to a structure with low constraint geometry, the standard fracture toughness estimates may lead to strongly over-conservative estimates. A lot of efforts have been made to adjust the constraint effect. In this work, we applied a small-scale yielding correction (SSYC) to adjust the constraint loss of 1/3PCVN and PCVN specimens which are relatively smaller than 1T size specimen at the fracture toughness Master Curve test

  10. Amplification of Marzagao small scale hydroelectric power plant; Ampliacao da PCH de Marzagao

    Energy Technology Data Exchange (ETDEWEB)

    Zeller, A.R.; Porto, D.S.; Pinto, F.S. [Leme Engenharia, MG (Brazil); Melo, A.U.; Almeida, A.M.; Pereira, D.R. [Fertiligas Industria e Comercio Ltda., MG (Brazil)

    1991-12-31

    This work presents the modernization and power augmentation of Marzagao small scale hydroelectric power plant. In order that the costs of the project be compatible to the total of investments in the project, it was necessary the adoption of methodologies and time scales different from those used for large and medium scale hydroelectric power plants 5 figs.

  11. A Success Story of Organizing Small Scale Farmers in Kenya

    DEFF Research Database (Denmark)

    Buch-Hansen, Mogens

    2012-01-01

    , but not least to be used in PES schemes. The article emphasizes vertical integration and production diversification, enabling market conditions, and democratization as the main factors in KTDA’s success that could possibly be replicated in promoting small scale farmers participating in the post-Kyoto carbon...

  12. Small-scale gold mining and the state in the Philippines

    NARCIS (Netherlands)

    Verbrugge, B.L.P.; Engels, B.; Dietz, K.

    2017-01-01

    This chapter analyses the expansion of informal small-scale mining (SSM) in the southern Philippines against the background of open-ended, contested processes of state formation. It is first demonstrated that the expansion of informal SSM has, somewhat counter-intuitively, gone hand in hand with a

  13. Importance of woodlots to local communities, small scale entrepreneurs and indigenous forest conservation – A case study

    CSIR Research Space (South Africa)

    Ham, C

    2000-01-01

    Full Text Available forestry, South Africa The Importance of Woodlots to Local Communities, Small-scale Entrepreneurs and Indigenous Forest Conservation A case study Cori Ham ii The Importance of Woodlots to Local Communities, Small Scale Entrepreneurs... by the financial support of the UK Department for International Development and the European Commission iii Citation: Ham, C. 2000. The importance of woodlots to local communities, small scale entrepreneurs and indigenous forest conservation– A case study...

  14. Fuel cell power plants for decentralised CHP applications; Brennstoffzellen-Kraftwerke fuer dezentrale KWK-Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Ohmer, Martin; Mattner, Katja [FuelCell Energy Solutions GmbH, Dresden (Germany)

    2015-06-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO{sub 2} and other emissions (NO{sub x}, SO{sub x} and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  15. Possible effects of small-scale intermittency in turbulent reacting flows

    International Nuclear Information System (INIS)

    Sreenivasan, K.R.

    2006-12-01

    It is now well established that quantities such as energy dissipation, scalar dissipation and enstrophy possess huge fluctuations in turbulent flows, and that the fluctuations become increasingly stronger with increasing Reynolds number of the flow. The effects of this small-scale 'intermittency' on various aspects of reacting flows have not been addressed fully. This paper draws brief attention to a few possible effects on reaction rates, flame extinction, flamelet approximation, conditional moment closure methods, and so forth, besides commenting on possible effects on the resolution requirements of direct numerical simulations of turbulence. We also discuss the likelihood that large-amplitude events in a given class of shear flows are characteristic of that class, and that, plausible estimates of such quantities cannot be made, in general, on the hypothesis that large and small scales are independent. Finally, we briefly describe some ideas from multifractals as a potentially useful tool for an economical handling of a few of the problems touched upon here. (author)

  16. A high-frequency sonar for profiling small-scale subaqueous bedforms

    Science.gov (United States)

    Dingler, J.R.; Boylls, J.C.; Lowe, R.L.

    1977-01-01

    A high-resolution ultrasonic profiler has been developed which permits both laboratory and field studies of small-scale subaqueous bedforms. The device uses a 2.5-cm diameter piezoelectric ceramic crystal pulsed at a frequency of 4.5 MHz to obtain vertical accuracy and resolution of at least 1 mm. Compared to other small-scale profiling methods, this ultrasonic technique profiles the bottom more accurately and more rapidly without disturbing the bedforms. These characteristics are vital in wave-dominated nearshore zones where oscillatory flow and low visibility for the most part have stymied detailed bedform studies. In the laboratory the transducer is mounted directly to an instrument carriage. For field work the transducer housing is mounted in a 2 m long aluminum frame which is situated and operated by scuba divers. Observations using the device include ripple geometry and migration, the suspension height of sand during sheet flow, and long-term erosion/deposition at a point. ?? 1977.

  17. Investigation of small break loss-of-coolant phenomena in a small scale nonnuclear test facility

    International Nuclear Information System (INIS)

    Cozzuol, J.M.; Fauble, T.J.; Harvego, E.A.

    1980-01-01

    A small-scale nonnuclear integral test facility designed to simulate a pressurized water reactor (PWR) system was used to evaluate the effects of a small break loss-of-coolant accident (LOCA) on the system thermal-hydraulic response. The experiment approximated a 2.5% (11-cm diameter) communicative break in the cold leg of a PWR, and included initial conditions which were similar to conditions in a PWR operating at full power. The 2.5% break size ensured that the nominal break flow rate was greater than the high pressure injection system (HPIS) flow rate, thus providing the potential for a continuous system depressurization. The sequence of events was similar to that used in evaluation model analysis of small break loss-of-coolant accidents, and included simulated reactor scram and loss of offsite power. Comparisions of experimental data with computer code calculations are used to demonstrate the capabilities and limitations of integral system calculations used to predict phenomena which can be important in the assessment of a small break LOCA in a PWR

  18. Intelligent Network Flow Optimization (INFLO) prototype : Seattle small-scale demonstration plan.

    Science.gov (United States)

    2015-01-01

    This report describes the INFLO Prototype Small-Scale Demonstration to be performed in Seattle Washington. This demonstration is intended to demonstrate that the INFLO Prototype, previously demonstrated in a controlled environment, functions well in ...

  19. Pervasive Rise of Small-scale Deforestation in Amazonia.

    Science.gov (United States)

    Kalamandeen, Michelle; Gloor, Emanuel; Mitchard, Edward; Quincey, Duncan; Ziv, Guy; Spracklen, Dominick; Spracklen, Benedict; Adami, Marcos; Aragão, Luiz E O C; Galbraith, David

    2018-01-25

    Understanding forest loss patterns in Amazonia, the Earth's largest rainforest region, is critical for effective forest conservation and management. Following the most detailed analysis to date, spanning the entire Amazon and extending over a 14-year period (2001-2014), we reveal significant shifts in deforestation dynamics of Amazonian forests. Firstly, hotspots of Amazonian forest loss are moving away from the southern Brazilian Amazon to Peru and Bolivia. Secondly, while the number of new large forest clearings (>50 ha) has declined significantly over time (46%), the number of new small clearings (<1 ha) increased by 34% between 2001-2007 and 2008-2014. Thirdly, we find that small-scale low-density forest loss expanded markedly in geographical extent during 2008-2014. This shift presents an important and alarming new challenge for forest conservation, despite reductions in overall deforestation rates.

  20. The average carbon-stock approach for small-scale CDM AR projects

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Quijano, J.F.; Muys, B. [Katholieke Universiteit Leuven, Laboratory for Forest, Nature and Landscape Research, Leuven (Belgium); Schlamadinger, B. [Joanneum Research Forschungsgesellschaft mbH, Institute for Energy Research, Graz (Austria); Emmer, I. [Face Foundation, Arnhem (Netherlands); Somogyi, Z. [Forest Research Institute, Budapest (Hungary); Bird, D.N. [Woodrising Consulting Inc., Belfountain, Ontario (Canada)

    2004-06-15

    In many afforestation and reforestation (AR) projects harvesting with stand regeneration forms an integral part of the silvicultural system and satisfies local timber and/or fuelwood demand. Especially clear-cut harvesting will lead to an abrupt and significant reduction of carbon stocks. The smaller the project, the more significant the fluctuations of the carbon stocks may be. In the extreme case a small-scale project could consist of a single forest stand. In such case, all accounted carbon may be removed during a harvesting operation and the time-path of carbon stocks will typically look as in the hypothetical example presented in the report. For the aggregate of many such small-scale projects there will be a constant benefit to the atmosphere during the projects, due to averaging effects.