WorldWideScience

Sample records for small rotational barriers

  1. Rotational Spectrum and Internal Rotation Barrier of 1-Chloro-1,1-difluoroethane

    Science.gov (United States)

    Alonso, José L.; López, Juan C.; Blanco, Susana; Guarnieri, Antonio

    1997-03-01

    The rotational spectra of 1-chloro-1,1-difluoroethane (HCFC-142b) has been investigated in the frequency region 8-115 GHz with Stark, waveguide Fourier transform (FTMW), and millimeter-wave spectrometers. Assignments in large frequency regions with the corresponding frequency measurements have been made for the ground andv18= 1 (CH3torsion) vibrational states of the35Cl isotopomer and for the ground state of the37Cl species. Accurate rotational, quartic centrifugal distortion, and quadrupole coupling constants have been determined from global fits considering all these states. SmallA-Einternal rotation splittings have been observed for thev18= 1 vibrational state using FTMW spectroscopy. The barrier height for the internal rotation of the methyl group has been determined to be 3751 (4) cal mol-1, in disagreement with the previous microwave value of 4400 (100) cal mol-1reported by G. Graner and C. Thomas [J. Chem. Phys.49,4160-4167 (1968)].

  2. Partitioning of methyl internal rotational barrier energy of ...

    Indian Academy of Sciences (India)

    The nature of methyl internal rotational barrier in thioacetaldehyde has been investigated by relaxation effect, natural bond orbital (NBO) analysis and Pauling exchange interactions. The true experimental barrier can be obtained by considering fully relaxed rotation. Nuclear-electron attraction term is a barrier forming term in ...

  3. Theoretical analysis of the rotational barrier of ethane.

    Science.gov (United States)

    Mo, Yirong; Gao, Jiali

    2007-02-01

    The understanding of the ethane rotation barrier is fundamental for structural theory and the conformational analysis of organic molecules and requires a consistent theoretical model to differentiate the steric and hyperconjugation effects. Due to recently renewed controversies over the barrier's origin, we developed a computational approach to probe the rotation barriers of ethane and its congeners in terms of steric repulsion, hyperconjugative interaction, and electronic and geometric relaxations. Our study reinstated that the conventional steric repulsion overwhelmingly dominates the barriers.

  4. The low internal rotation barriers of halogenated toluenes: Rotational spectrum of 2,4-difluorotoluene

    Science.gov (United States)

    Nair, K. P. Rajappan; Herbers, Sven; Obenchain, Daniel A.; Grabow, Jens-Uwe; Lesarri, Alberto

    2018-02-01

    The rotational spectrum of 2,4-difluorotoluene in the region 5-25 GHz has been studied by pulsed supersonic jet using Fourier transform microwave spectroscopy. The tunneling splitting due to the methyl internal rotation in the ground torsional state could be unambiguously identified and the threefold (V3) potential barrier hindering the internal rotation of the methyl top was determined as 2.80144 (82) kJ/mol. The ground-state rotational parameters for the parent and seven 13C isotopic species in natural abundance were determined with high accuracy, including all quartic centrifugal distortion constants. The electric dipole moment μ = 1.805(42) D was obtained from Stark effect measurements. The molecular structure was derived using the substitution (rs) method. Supporting ab initio (MP2) calculations provided comparative values for the potential barrier and molecular parameters.

  5. Refueling system with small diameter rotatable plugs

    International Nuclear Information System (INIS)

    Ritz, W.C.

    1987-01-01

    This patent describes a liquid-metal fastbreeder nuclear reactor comprising a reactor pressure vessel and closure head therefor, a reactor core barrel disposed within the reactor vessel and enclosing a reactor core having therein a large number of closely spaced fuel assemblies, and the reactor core barrel and the reactor core having an approximately concentric circular cross-sectional configuration with a geometric center in predetermined location within the reactor vessel. The improved refueling system described here comprises: a large controllably rotatable plug means comprising the substantial portion of the closure head, a reactor upper internals structure mounted from the large rotatable plug means. The large rotatable plug means has an approximately circular configuration which approximates the cross-sectional configuration of the reactor core barrel with a center of rotation positioned a first predetermined distance from the geometric center of the reactor core barrel so that the large rotatable plug means rotates eccentrically with respect to the reactor core barrel; a small controllably rotatable plug means affixed to the large rotatable plug means and rotatable with respect thereto. The small rotatable plug means has a center of rotation which is offset a second predetermined distance from the rotational center of the large rotatable plug means so that the small rotatable plug means rotates eccentrically with respect to the large rotatable plug means

  6. The consequences of translational and rotational entropy lost by small molecules on binding to proteins

    Science.gov (United States)

    Murray, Christopher W.; Verdonk, Marcel L.

    2002-10-01

    When a small molecule binds to a protein, it loses a significant amount of rigid body translational and rotational entropy. Estimates of the associated energy barrier vary widely in the literature yet accurate estimates are important in the interpretation of results from fragment-based drug discovery techniques. This paper describes an analysis that allows the estimation of the rigid body entropy barrier from the increase in binding affinities that results when two fragments of known affinity and known binding mode are joined together. The paper reviews the relatively rare number of examples where good quality data is available. From the analysis of this data, we estimate that the barrier to binding, due to the loss of rigid-body entropy, is 15-20 kJ/mol, i.e. around 3 orders of magnitude in affinity at 298 K. This large barrier explains why it is comparatively rare to observe multiple fragments binding to non-overlapping adjacent sites in enzymes. The barrier is also consistent with medicinal chemistry experience where small changes in the critical binding regions of ligands are often poorly tolerated by enzymes.

  7. A high rotational barrier for physisorbed hydrogen in an fcu-metal-organic framework

    KAUST Repository

    Pham, Tony T.; Forrest, Katherine A.; Georgiev, Peter A L; Lohstroh, Wiebke; Xue, Dongxu; Hogan, Adam; Eddaoudi, Mohamed; Space, Brian; Eckert, Juergen

    2014-01-01

    A combined inelastic neutron scattering (INS) and theoretical study of H2 sorption in Y-FTZB, a recently reported metal-organic framework (MOF) with fcu topology, reveals that the strongest binding site in the MOF causes a high barrier to rotation on the sorbed H2. This rotational barrier for H2 is the highest yet of reported MOF materials based on physisorption. This journal is

  8. Low Barrier Methyl Rotation in 3-PENTYN-1-OL as Observed by Microwave Spectroscopy

    Science.gov (United States)

    Eibl, Konrad; Kannengießer, Raphaela; Stahl, Wolfgang; Nguyen, Ha Vinh Lam; Kleiner, Isabelle

    2016-06-01

    It is known that the barrier to internal rotation of the methyl groups in ethane (1) is about 1000 wn. If a C-C-triple bond is inserted between the methyl groups as a spacer (2), the torsional barrier is assumed to be dramatically lower, which is a common feature of ethinyl groups in general. To study this effect of almost free internal rotation, we measured the rotational spectrum of 3-pentyn-1-ol (3) by pulsed jet Fourier transform microwave spectroscopy in the frequency range from 2 to 26.5 GHz. Quantum chemical calculations at the MP2/6-311++G(d,p) level of theory yielded five stable conformers on the potential energy surface. The most stable conformer, which possesses C1 symmetry, was assigned and fitted using two theoretical approaches treating internal rotations, the rho axis method (BELGI-C1) and the combined axis method (XIAM). The molecular parameters as well as the internal rotation parameters were determined. A very low barrier to internal rotation of the methyl group of only 9.4545(95) wn was observed. R. M. Pitzer, Acc. Chem. Res., 1983, 16, 207-210

  9. Determination of the Rotational Barrier in Ethane by Vibrational Spectroscopy and Statistical Thermodynamics

    Science.gov (United States)

    Ercolani, Gianfranco

    2005-01-01

    The finite-difference boundary-value method is a numerical method suited for the solution of the one-dimensional Schrodinger equation encountered in problems of hindered rotation. Further, the application of the method, in combination with experimental results for the evaluation of the rotational energy barrier in ethane is presented.

  10. Rotation and impurity studies in the presence of MHD activity and internal transport barriers on TCV

    Energy Technology Data Exchange (ETDEWEB)

    Federspiel, L. I.

    2014-07-01

    This thesis focuses on measurements of toroidal rotation and impurity profiles in improved plasma scenarios and in the presence of magneto-hydrodynamic (MHD) activity. Experiments were performed on TCV, the Tokamak a Configuration Variable in Lausanne. In TCV, plasma rotation is measured by the charge exchange recombination spectroscopy diagnostic (CXRS). The CXRS is associated with a low power diagnostic neutral beam injector (DNBI) that provides CX emission from the hot plasma core, without perturbing the plasma with additional torque. The beam is observed transversally by the CXRS diagnostic so that local ion temperature, density and intrinsic velocity measurements are obtained. The three systems composing the present day CXRS2013 diagnostic cover the entire TCV radial midplane with up to 80 measurement locations separated by around 7 mm with a time resolution ranging from 2-30 ms. The main upgrades concerned the installation of new sensitive cameras, the overhaul of the toroidal system, the extended-chord configuration and the automation of the acquisition and analysis processes. These new Cars capabilities permitted the investigation of more complex scenarios featuring low intensity and/or fast events, like the low density electron internal transport barriers (eITBs) and the sawtooth (ST) instability. A comparison between rotation profiles measured over several sawtooth events and across a 'canonical' sawtooth cycle has been undertaken in limited L-mode plasmas. The averaged rotation profiles obtained with the upgraded CXRS diagnostic show that ST restrict the maximum attainable and that the rotation profiles are flattened and almost always display a small co-current contribution. It is this effect that results in the 1/I{sub p} scaling observed in TCV limited L-mode plasmas. The co-current core contribution is related to the ST crash, whilst, during the quiescent ramp of the sawtooth period, a plasma recoil outside the mixing radius is observed. A

  11. Rotation and impurity studies in the presence of MHD activity and internal transport barriers on TCV

    International Nuclear Information System (INIS)

    Federspiel, L. I.

    2014-01-01

    This thesis focuses on measurements of toroidal rotation and impurity profiles in improved plasma scenarios and in the presence of magneto-hydrodynamic (MHD) activity. Experiments were performed on TCV, the Tokamak a Configuration Variable in Lausanne. In TCV, plasma rotation is measured by the charge exchange recombination spectroscopy diagnostic (CXRS). The CXRS is associated with a low power diagnostic neutral beam injector (DNBI) that provides CX emission from the hot plasma core, without perturbing the plasma with additional torque. The beam is observed transversally by the CXRS diagnostic so that local ion temperature, density and intrinsic velocity measurements are obtained. The three systems composing the present day CXRS2013 diagnostic cover the entire TCV radial midplane with up to 80 measurement locations separated by around 7 mm with a time resolution ranging from 2-30 ms. The main upgrades concerned the installation of new sensitive cameras, the overhaul of the toroidal system, the extended-chord configuration and the automation of the acquisition and analysis processes. These new Cars capabilities permitted the investigation of more complex scenarios featuring low intensity and/or fast events, like the low density electron internal transport barriers (eITBs) and the sawtooth (ST) instability. A comparison between rotation profiles measured over several sawtooth events and across a 'canonical' sawtooth cycle has been undertaken in limited L-mode plasmas. The averaged rotation profiles obtained with the upgraded CXRS diagnostic show that ST restrict the maximum attainable and that the rotation profiles are flattened and almost always display a small co-current contribution. It is this effect that results in the 1/I p scaling observed in TCV limited L-mode plasmas. The co-current core contribution is related to the ST crash, whilst, during the quiescent ramp of the sawtooth period, a plasma recoil outside the mixing radius is observed. A high

  12. The rotational barrier in ethane: a molecular orbital study.

    Science.gov (United States)

    Quijano-Quiñones, Ramiro F; Quesadas-Rojas, Mariana; Cuevas, Gabriel; Mena-Rejón, Gonzalo J

    2012-04-20

    The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σ(s) molecular orbital stabilizes the staggered conformation while the stabilizes the eclipsed conformation and destabilize the staggered conformation. The π(z) and molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the π(v) and molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C-C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.

  13. The Rotational Barrier in Ethane: A Molecular Orbital Study

    Directory of Open Access Journals (Sweden)

    Gonzalo J. Mena-Rejón

    2012-04-01

    Full Text Available The energy change on each Occupied Molecular Orbital as a function of rotation about the C-C bond in ethane was studied using the B3LYP, mPWB95 functional and MP2 methods with different basis sets. Also, the effect of the ZPE on rotational barrier was analyzed. We have found that σ and π energies contribution stabilize a staggered conformation. The σs molecular orbital stabilizes the staggered conformation while the  stabilizes the eclipsed conformation and destabilize the staggered conformation. The πz and  molecular orbitals stabilize both the eclipsed and staggered conformations, which are destabilized by the πv and  molecular orbitals. The results show that the method of calculation has the effect of changing the behavior of the energy change in each Occupied Molecular Orbital energy as a function of the angle of rotation about the C–C bond in ethane. Finally, we found that if the molecular orbital energy contribution is deleted from the rotational energy, an inversion in conformational preference occurs.

  14. Rotation and diffusion of naphthalene on Pt(111)

    Science.gov (United States)

    Kolsbjerg, E. L.; Goubert, G.; McBreen, P. H.; Hammer, B.

    2018-03-01

    The behavior of naphthalene on Pt(111) surfaces is studied by combining insight from scanning tunneling microscopy (STM) and van der Waals enabled density functional theory. Adsorption, diffusion, and rotation are investigated by a series of variable temperature STM experiments revealing naphthalene ability to rotate on-site with ease with a rotational barrier of 0.69 eV. Diffusion to neighbouring sites is found to be more difficult. The experimental results are in good agreement with the theoretical investigations which confirm that the barrier for diffusion is slightly higher than the one for rotation. The theoretical barriers for rotation and translation are found to be 0.75 and 0.78 eV, respectively. An automatic mapping of the possible diffusion pathways reveals very detailed diffusion paths with many small local minima that would have been practically impossible to find manually. This automated procedure provides detailed insight into the preferred diffusion pathways that are important for our understanding of molecule-substrate interactions.

  15. Rotation of small clusters in sheared metallic glasses

    International Nuclear Information System (INIS)

    Delogu, Francesco

    2011-01-01

    Graphical abstract: When a Cu 50 Ti 50 metallic glass is shear-deformed, the irreversible rearrangement of local structures allows the rigid body rotation of clusters. Highlights: → A shear-deformed Cu 50 Ti 50 metallic glass was studied by molecular dynamics. → Atomic displacements occur at irreversible rearrangements of local structures. → The dynamics of such events includes the rigid body rotation of clusters. → Relatively large clusters can undergo two or more complete rotations. - Abstract: Molecular dynamics methods were used to simulate the response of a Cu 50 Ti 50 metallic glass to shear deformation. Attention was focused on the atomic displacements taking place during the irreversible rearrangement of local atomic structures. It is shown that the apparently disordered dynamics of such events hides the rigid body rotation of small clusters. Cluster rotation was investigated by evaluating rotation angle, axis and lifetimes. This permitted to point out that relatively large clusters can undergo two or more complete rotations.

  16. Chaotic Zones around Rotating Small Bodies

    Energy Technology Data Exchange (ETDEWEB)

    Lages, José; Shevchenko, Ivan I. [Institut UTINAM, Observatoire des Sciences de l’Univers THETA, CNRS, Université de Franche-Comté, Besançon F-25030 (France); Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr [Laboratoire de Physique Théorique du CNRS, IRSAMC, Université de Toulouse, UPS, Toulouse F-31062 (France)

    2017-06-01

    Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples of the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.

  17. Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates

    Science.gov (United States)

    SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro

    2016-11-01

    Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.

  18. Intrinsic Rotation and Momentum Transport in Reversed Shear Plasmas with Internal Transport Barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2010-11-01

    The intrinsic rotation in fusion plasmas is believed to be generated via the residual stress without external momentum input. The physical mechanism responsible for the generation and transport of intrinsic rotation in L- and H-mode tokamak plasmas has been studied extensively. However, it is noted that the physics of intrinsic rotation generation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) tokamak plasmas have not been explored in detail, which is the main subject in the present work. A global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. The role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking mechanism in RS plasmas.

  19. Barriers to occupational health and safety management in small Brazilian enterprises

    OpenAIRE

    Garnica, Guilherme Besse; Barriga, Gladys Dorotea Cacsire

    2018-01-01

    Abstract Paper aims To determine main barriers to the implementation of occupational health and safety management systems OHSMS in the context of small Brazilian enterprises from the perspectives of owners/managers, labor auditors, and OHS consultants. Originality: Survey with three different perspectives on small Brazilian enterprises. Research method: Survey conducted with stakeholders who influence the safety culture in small enterprises to identify the main barriers to the implementati...

  20. Massive star formation by accretion. II. Rotation: how to circumvent the angular momentum barrier?

    Science.gov (United States)

    Haemmerlé, L.; Eggenberger, P.; Meynet, G.; Maeder, A.; Charbonnel, C.; Klessen, R. S.

    2017-06-01

    Context. Rotation plays a key role in the star-formation process, from pre-stellar cores to pre-main-sequence (PMS) objects. Understanding the formation of massive stars requires taking into account the accretion of angular momentum during their PMS phase. Aims: We study the PMS evolution of objects destined to become massive stars by accretion, focusing on the links between the physical conditions of the environment and the rotational properties of young stars. In particular, we look at the physical conditions that allow the production of massive stars by accretion. Methods: We present PMS models computed with a new version of the Geneva Stellar Evolution code self-consistently including accretion and rotation according to various accretion scenarios for mass and angular momentum. We describe the internal distribution of angular momentum in PMS stars accreting at high rates and we show how the various physical conditions impact their internal structures, evolutionary tracks, and rotation velocities during the PMS and the early main sequence. Results: We find that the smooth angular momentum accretion considered in previous studies leads to an angular momentum barrier and does not allow the formation of massive stars by accretion. A braking mechanism is needed in order to circumvent this angular momentum barrier. This mechanism has to be efficient enough to remove more than two thirds of the angular momentum from the inner accretion disc. Due to the weak efficiency of angular momentum transport by shear instability and meridional circulation during the accretion phase, the internal rotation profiles of accreting stars reflect essentially the angular momentum accretion history. As a consequence, careful choice of the angular momentum accretion history allows circumvention of any limitation in mass and velocity, and production of stars of any mass and velocity compatible with structure equations.

  1. Rotational spectrum of 1,1-difluoroethane-argon: influence of the interaction with the Ar atom on the V 3 barrier to internal rotation of the methyl group

    Science.gov (United States)

    Velino, Biagio; Melandri, Sonia; Favero, Paolo G.; Dell'Erba, Adele; Caminati, Walther

    2000-01-01

    The free-jet millimeter-wave absorption spectrum of 1,1-difluoroethane-Ar is reported. Most of the measured lines are split due to internal rotation of the methyl group and the tunnelling motion of Ar connecting two equivalent potential energy minima. The Ar atom, close to the CHF 2 group, eclipses one of the methylic hydrogens in the symmetryless geometry of the complex, reducing in this way the barrier to the internal rotation of the methyl group with respect to isolated 1,1-difluoroethane. For high J levels the distance of Ar from the molecule increases, however, due to the centrifugal distortion, and the barrier increases towards the value for 1,1-difluoroethane.

  2. Symmetry breaking in small rotating clouds of trapped ultracold Bose atoms

    International Nuclear Information System (INIS)

    Dagnino, D.; Barberan, N.; Riera, A.; Osterloh, K.; Lewenstein, M.

    2007-01-01

    We study the signatures of rotational and phase symmetry breaking in small rotating clouds of trapped ultracold Bose atoms by looking at rigorously defined condensate wave function. Rotational symmetry breaking occurs in narrow frequency windows, where energy degeneracy between the lowest energy states of different total angular momentum takes place. This leads to a complex condensate wave function that exhibits vortices clearly seen as holes in the density, as well as characteristic local phase patterns, reflecting the appearance of vorticities. Phase symmetry (or gauge symmetry) breaking, on the other hand, is clearly manifested in the interference of two independent rotating clouds

  3. Barriers to occupational health and safety management in small Brazilian enterprises

    Directory of Open Access Journals (Sweden)

    Guilherme Besse Garnica

    2018-02-01

    Full Text Available Abstract Paper aims To determine main barriers to the implementation of occupational health and safety management systems OHSMS in the context of small Brazilian enterprises from the perspectives of owners/managers, labor auditors, and OHS consultants. Originality: Survey with three different perspectives on small Brazilian enterprises. Research method: Survey conducted with stakeholders who influence the safety culture in small enterprises to identify the main barriers to the implementation of OHSMS. Main findings: Owners/managers tend to blame employees and the government for difficulty in implementing OHSMS, and external actors tend to blame management and resource allocation. Opinions converge on inappropriate management behavior, ineffective information and communication and production prioritization. Implications for theory and practice: These barriers should be overcome not only to facilitate the implementation of OHSMS but also to improve the conditions for the management of all small business operations.

  4. Gyrofluid Simulations of Intrinsic Rotation Generation in Reversed Shear Plasmas with Internal Transport Barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Kwon, J. M.; Terzolo, L.; Kim, J. Y.; Diamond, P. H.

    2010-11-01

    It is accepted that the intrinsic rotation is generated via the residual stress, which is non-diffusive components of the turbulent Reynolds stress, without external momentum input. The physics leading to the onset of intrinsic rotation in L- and H- mode plasmas have been elucidated elsewhere. However, the physics responsible for the generation and transport of the intrinsic rotation and its relationship to the formation of internal transport barriers (ITBs) in reversed shear (RS) plasmas have not been explored in detail, which is the main subject in the present work. The revised version of the global gyrofluid code TRB is used for this study. It is found that the large intrinsic rotation (˜10-30% of the ion sound speed depending on ITB characteristics) is generated near the ITB region and propagates into the core. The intrinsic rotation increases linearly as the temperature gradient at ITB position increases, albeit not indefinitely. Key parameters related to the symmetry breaking, such as turbulent intensity and its gradient, the flux surface averaged parallel wavenumber are evaluated dynamically during the ITB formation. In particular, the role of reversed shear and the q-profile curvature is presented in relation to the symmetry breaking in RS plasmas.

  5. Internationalisation Barriers of Small and Medium-sized Manufacturing Enterprises in Ethiopia: Leather and Leather Products Industry in Focus

    Directory of Open Access Journals (Sweden)

    Yehualashet Demeke Lakew

    2015-11-01

    Full Text Available The purpose of this study was to examine internationalisation barriers of manufacturing SMEs operating in Leather and Leather Products Industry located in the capital city of Ethiopia. The small and medium sized enterprises (SMEs sector in Ethiopia is a significant group within the economy in terms of firm numbers and total employment. However, the SMEs sector’s share of exports is disproportionately small, which raised considerable research concerns. Firm export propensity was the dependent variable and internal and external export barrier factors were used as explanatory variables. The study was conducted through mixed research design of quantitative survey and case study. From the population of manufacturing SMEs operating in the Leather and Leather products Industry, a sample was selected through the use of stratified random sampling to ensure the effective representation of the population of exporting and non-exporting SMEs in the capital of Ethiopia. In order to complement survey results nine (4 exporting and 5 non-exporting SMEs were selected through critical case purposive sampling and an in-depth interviews were conducted. Statistical package for the social sciences (SPSS 20 was used to analyse the quantitative data whereas, qualitative data were analysed manually. Exploratory factor analysis with Varimax rotation and Binary logistic regression analysis are the analytical methods used. The statistical result showed that, logistics problem, insufficient finance, functional barriers, lack of export knowledge and information, procedural barriers and international trade barriers are the most significant obstacles of export trade in Ethiopia. The overall results revealed that explanatory variables used in the analysis significantly predict the dependent variable at 95% confidence level. Taken together, these results prompted the presentation of numerous implications for theory, practice, and future research. Finally, the paper recommended

  6. Artificial barriers prevent genetic recovery of small isolated populations of a low-mobility freshwater fish.

    Science.gov (United States)

    Coleman, R A; Gauffre, B; Pavlova, A; Beheregaray, L B; Kearns, J; Lyon, J; Sasaki, M; Leblois, R; Sgro, C; Sunnucks, P

    2018-01-12

    Habitat loss and fragmentation often result in small, isolated populations vulnerable to environmental disturbance and loss of genetic diversity. Low genetic diversity can increase extinction risk of small populations by elevating inbreeding and inbreeding depression, and reducing adaptive potential. Due to their linear nature and extensive use by humans, freshwater ecosystems are especially vulnerable to habitat loss and fragmentation. Although the effects of fragmentation on genetic structure have been extensively studied in migratory fishes, they are less understood in low-mobility species. We estimated impacts of instream barriers on genetic structure and diversity of the low-mobility river blackfish (Gadopsis marmoratus) within five streams separated by weirs or dams constructed 45-120 years ago. We found evidence of small-scale (barriers, as expected for a fish with low mobility. Genetic diversity was lower above barriers in small streams only, regardless of barrier age. In particular, one isolated population showed evidence of a recent bottleneck and inbreeding. Differentiation above and below the barrier (F ST  = 0.13) was greatest in this stream, but in other streams did not differ from background levels. Spatially explicit simulations suggest that short-term barrier effects would not be detected with our data set unless effective population sizes were very small (barriers is reduced and requires more genetic markers compared to panmictic populations. We also demonstrate the importance of accounting for natural population genetic structure in fragmentation studies.

  7. Control of vortex breakdown in a closed cylinder with a small rotating rod

    DEFF Research Database (Denmark)

    Lo Jacono, D.; Sørensen, Jens Nørkær; Thompson, M.C.

    2008-01-01

    Effective control of vortex breakdown in a cylinder with a rotating lid was achieved with small rotating rods positioned on the stationary lid. After validation with accurate measurements using a novel stereoscopic particle image velocimetry (SPIV) technique, analysis of numerical simulations using...... a high-order spectral element method has been undertaken. The effect of a finite length rod creates additional source terms of vorticity as the rod rotates. These additional source terms and their spatial locations influence the occurrence of the vortex breakdown....

  8. Hindered rotational energy barriers of BH4- tetrahedra in β-Mg(BH4)2 from quasielastic neutron scattering and DFT calculations

    DEFF Research Database (Denmark)

    Blanchard, Didier; Maronsson, Jon Bergmann; Riktor, M.D.

    2012-01-01

    , around the 2-fold (C2) and 3-fold (C3) axes were observed at temperatures from 120 to 440 K. The experimentally obtained activation energies (EaC2 = 39 and 76 meV and EaC3 = 214 meV) and mean residence times between reorientational jumps are comparable with the energy barriers obtained from DFT......In this work, hindered rotations of the BH4- tetrahedra in Mg(BH4)2 were studied by quasielastic neutron scattering, using two instruments with different energy resolution, in combination with density functional theory (DFT) calculations. Two thermally activated reorientations of the BH4- units...... calculations. A linear dependency of the energy barriers for rotations around the C2 axis parallel to the Mg-Mg axis with the distance between these two axes was revealed by the DFT calculations. At the lowest temperature (120 K) only 15% of the BH4- units undergo rotational motion and from comparison with DFT...

  9. Prognostic Factors Affecting Rotator Cuff Healing After Arthroscopic Repair in Small to Medium-sized Tears.

    Science.gov (United States)

    Park, Ji Soon; Park, Hyung Jun; Kim, Sae Hoon; Oh, Joo Han

    2015-10-01

    Small and medium-sized rotator cuff tears usually have good clinical and anatomic outcomes. However, healing failure still occurs in some cases. To evaluate prognostic factors for rotator cuff healing in patients with only small to medium-sized rotator cuff tears. Case-control study; Level of evidence, 3. Data were prospectively collected from 339 patients with small to medium-sized rotator cuff tears who underwent arthroscopic repair by a single surgeon between March 2004 and August 2012 and who underwent magnetic resonance imaging or computed tomographic arthrography at least 1 year after surgery. The mean age of the patients was 59.8 years (range, 39-80 years), and the mean follow-up time was 20.8 months (range, 12-66 months). The functional evaluation included the visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons score, Constant-Murley score, and Simple Shoulder Test. Postoperative VAS for pain and functional scores improved significantly compared with preoperative values (P rotator cuff healing (P 2 cm in size (34.2%) compared with patients with a tear ≤2 cm (10.6%) (P rotator cuff tears, grade II fatty degeneration of the infraspinatus muscle according to the Goutallier classification could be a reference point for successful healing, and anatomic outcomes might be better if repair is performed before the patient is 69 years old and the tear size exceeds 2 cm. © 2015 The Author(s).

  10. Theoretical and Spectroscopic investigations of conformations, rotational barriers and scaled vibrations of 2,3-dimethyl hexane

    Directory of Open Access Journals (Sweden)

    Aziz Aboulmouhajir

    2017-01-01

    Full Text Available The 2,3-dimethyl hexane conformational isomerism has been investigated in detail, based on HF, Post-HF and DFT calculations at different basis set. The effect of size of basis, ZPE, thermal contributions, electronic correlation and optimization methods on the conformational stability was discussed. The rotational barriers from the most stable conformer to the lowest energy secondary conformers and their correspondent inversion barriers at both HF and MP2 methods using 6-31G* basis set have also been approached. A normal mode calculation of the most and less-stable conformers using a scaled ab initio force field in terms of non-redundant local symmetry coordinates have been made to elucidate the conformational dependence of the vibrational spectra.

  11. Theoretical study of formic acid: A new look at the origin of the planar Z conformation and C-O rotational barrier

    International Nuclear Information System (INIS)

    Hirao, Hajime

    2008-01-01

    The E and Z rotamers of formic acid (HCOOH) and its barrier to internal rotation about the C-O bond were computationally explored at the HF/6-311 + G**, B3LYP/cc-pVTZ, and CCSD(T)/cc-pVTZ levels of theory. All calculations yielded similar results consistent with experimental observations. Subsequent analysis of the interaction between formate ion (HCOO - ) and proton (H + ) within formic acid demonstrated a direct correlation between the changes in fragment interaction energy and the total energy of formic acid upon rotation. To obtain further insights into the interaction, energy decomposition analysis based on the reactive bond orbital (RBO) method was carried out using the 6-311 + G** basis set. The analysis showed the electrostatic effect constitutes a major component that gives rise to the interaction energy variation along the rotation path. Thus, the electrostatic environment of HCOO - can be viewed as the key factor determining the Z ground state and C-O rotational barrier of formic acid. The anisotropic electrostatic environment of formate that favors planar conformations of formic acid may be due to the in-plane distribution of carbonyl lone pairs, and the larger electrostatic attraction in the Z form appears to come from a secondary electrostatic interaction between the proton and the distal oxygen. At the rotational transition state, the O-H bond was not exactly perpendicular to the molecular plane, but slightly tilted toward the E side, which can also be explained by the electrostatic hypothesis. Charge-transfer stabilization was smallest in the Z conformation, but it gradually increased upon rotation to a maximum at the E conformation. Therefore, charge - transfer does not explain the geometry of formic acid. The important role of the electrostatic effect was also observed in in-plane rotation of the O-H bond

  12. Small scale monitoring of a bioremediation barrier using miniature electrical resistivity tomography

    Science.gov (United States)

    Sentenac, Philippe; Hogson, Tom; Keenan, Helen; Kulessa, Bernd

    2015-04-01

    The aim of this study was to assess, in the laboratory, the efficiency of a barrier of oxygen release compound (ORC) to block and divert a diesel plume migration in a scaled aquifer model using miniature electrical resistivity tomography (ERT) as the monitoring system. Two plumes of contaminant (diesel) were injected in a soil model made of local sand and clay. The diesel plumes migration was imaged and monitored using a miniature resistivity array system that has proved to be accurate in soil resistivity variations in small-scaled models of soil. ERT results reflected the lateral spreading and diversion of the diesel plumes in the unsaturated zone. One of the contaminant plumes was partially blocked by the ORC barrier and a diversion and reorganisation of the diesel in the soil matrix was observed. The technique of time-lapse ERT imaging showed that a dense non-aqueous phase liquid (DNAPL) contaminant like diesel can be monitored through a bioremediation barrier and the technique is well suited to monitor the efficiency of the barrier. Therefore, miniature ERT as a small-scale modelling tool could complement conventional techniques, which require more expensive and intrusive site investigation prior to remediation.

  13. Poloidal rotation dynamics, radial electric field, and neoclassical theory in the jet internal-transport-barrier region.

    Science.gov (United States)

    Crombé, K; Andrew, Y; Brix, M; Giroud, C; Hacquin, S; Hawkes, N C; Murari, A; Nave, M F F; Ongena, J; Parail, V; Van Oost, G; Voitsekhovitch, I; Zastrow, K-D

    2005-10-07

    Results from the first measurements of a core plasma poloidal rotation velocity (upsilontheta) across internal transport barriers (ITB) on JET are presented. The spatial and temporal evolution of the ITB can be followed along with the upsilontheta radial profiles, providing a very clear link between the location of the steepest region of the ion temperature gradient and localized spin-up of upsilontheta. The upsilontheta measurements are an order of magnitude higher than the neoclassical predictions for thermal particles in the ITB region, contrary to the close agreement found between the determined and predicted particle and heat transport coefficients [K.-D. Zastrow, Plasma Phys. Controlled Fusion 46, B255 (2004)]. These results have significant implications for the understanding of transport barrier dynamics due to their large impact on the measured radial electric field profile.

  14. Rotation Frequencies of Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    Science.gov (United States)

    French, Linda M.; Stephens, Robert D.; James, David J.; Coley, Daniel; Connour, Kyle

    2015-11-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half the 131 objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015).A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004).Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  15. ANALISIS FAKTOR PENGHAMBAT EKSPOR BAGI UKM Small and Medium Enterprise’s Export Barrier Factor Analyses

    Directory of Open Access Journals (Sweden)

    Elvia Ivada

    2015-12-01

    Full Text Available The intention of this research are to analyze Small and Medium Enterprises’ export barriers in Solo Raya (Surakarta, Boyolali, Sukoharjo, Karanganyar, Wonogiri, Sragen, Klaten and to prove that all indicators which are knowledge barriers, resources barriers, procedurs barriers and exogenous barrier support export barriers as its construct. This research provides a measurement tool for the next export barriers research as well This study combines questioner’s statements  that were developed by researchers from  previous studies in European countries and export obstacle expressions suggested by Indonesian’s expert. Using Small and Medium Enterprises in Solo Raya region as its respondent sample, and we can collect 400 respondent of SME.  There was no such researches in Indonesia before, thus this is the first study using export barrier’s questioner. That’s why Structural Equation Modelling (SEM is used to provide all construct variables and their indicators become acceptable as a measurement tool for this kind of research. When the researcher run the data using SEM, it showed that construct variables can  support the model. In other words, the model does fit the datas. Except for the exogenous barriers that don’t have significant influence to other two barrier which are resources and procedures.

  16. Plasma rotation evolution near the peripheral transport barrier in the presence of low-frequency MHD bursts in TUMAN-3M tokamak

    International Nuclear Information System (INIS)

    Bulanin, V V; Askinazi, L G; Lebedev, S V; Gorohov, M V; Kornev, V A; Petrov, A V; Tukachinsky, A S; Vildjunas, M I

    2006-01-01

    The experiments described in the paper are aimed at investigating the possible influence of the low frequency magnetohydrodynamic (MHD) activity burst on the Ohmic H-mode in the TUMAN-3M tokamak. During the MHD burst a transient deterioration of improved confinement was observed. The study has been focused on the measurements of plasma fluctuation poloidal velocity performed by microwave Doppler reflectometry. The plasma fluctuation rotation observed before the MHD burst in the vicinity of the edge transport barrier was in the direction of plasma drift in the negative radial electric field. During the MHD activity the measured poloidal velocity was drastically decreased and even changed its sign. Radial profiles of the poloidal velocity measured in a set of reproducible tokamak shots exhibited the plasma fluctuation rotation in the ion diamagnetic drift direction at the location of the peripheral transport barrier. The possible reasons for this phenomenon are discussed

  17. Rotation, Stability and Transport

    Energy Technology Data Exchange (ETDEWEB)

    Connor, J. W.

    2007-07-01

    Tokamak plasmas can frequently exhibit high levels of rotation and rotation shear. This can usually be attributed to various sources: injection of momentum, e.g. through neutral beams, flows driven by plasma gradients or torques resulting from non-ambipolar particle loss; however, the source sometimes remains a mystery, such as the spontaneous rotation observed in Ohmic plasmas. The equilibrium rotation profile is given by the balance of these sources with transport and other losses; the edge boundary conditions can play an important role in determining this profile . Such plasma rotation, particularly sheared rotation, is predicted theoretically to have a significant influence on plasma behaviour. In the first place, sonic flows can significantly affect tokamak equilibria and neoclassical transport losses. However, the influence of rotation on plasma stability and turbulence is more profound. At the macroscopic level it affects the behaviour of the gross MHD modes that influence plasma operational limits. This includes sawteeth, the seeding of neoclassical tearing modes, resistive wall modes and the onset of disruptions through error fields, mode locking and reconnection. At the microscopic level it has a major effect on the stability of ballooning modes, both ideal MHD and drift wave instabilities such as ion temperature gradient (ITG) modes. In the non-linear state, as unstable drift waves evolve into turbulent structures, sheared rotation also tears apart eddies, thereby reducing the resulting transport. There is considerable experimental evidence for these effects on both MHD stability and plasma confinement. In particular, the appearance of improved confinement modes with transport barriers, such as edge H-mode barriers and internal transport barriers (ITBs) appears to correlate well with the presence of sheared plasma rotation. This talk will describe the theory underlying some of these phenomena involving plasma rotation, on both macroscopic and microscopic

  18. Stereodynamic tetrahydrobiisoindole “NU-BIPHEP(O”s: functionalization, rotational barriers and non-covalent interactions

    Directory of Open Access Journals (Sweden)

    Golo Storch

    2016-07-01

    Full Text Available Stereodynamic ligands offer intriguing possibilities in enantioselective catalysis. “NU-BIPHEPs” are a class of stereodynamic diphosphine ligands which are easily accessible via rhodium-catalyzed double [2 + 2 + 2] cycloadditions. This study explores the preparation of differently functionalized “NU-BIPHEP(O” compounds, the characterization of non-covalent adduct formation and the quantification of enantiomerization barriers. In order to explore the possibilities of functionalization, we studied modifications of the ligand backbone, e.g., with 3,5-dichlorobenzoyl chloride. Diastereomeric adducts with Okamoto-type cellulose derivatives and on-column deracemization were realized on the basis of non-covalent interactions. Enantioselective dynamic HPLC (DHPLC allowed for the determination of rotational barriers of ΔG‡298K = 92.2 ± 0.3 kJ mol−1 and 99.5 ± 0.1 kJ mol−1 underlining the stereodynamic properties of “NU-BIPHEPs” and “NU-BIPHEP(Os”, respectively. These results make the preparation of tailor-made functionalized stereodynamic ligands possible and give an outline for possible applications in enantioselective catalysis.

  19. The torsional barriers of two equivalent methyl internal rotations in 2,5-dimethylfuran investigated by microwave spectroscopy

    Science.gov (United States)

    Van, Vinh; Bruckhuisen, Jonas; Stahl, Wolfgang; Ilyushin, Vadim; Nguyen, Ha Vinh Lam

    2018-01-01

    The microwave spectrum of 2,5-dimethylfuran was recorded using two pulsed molecular jet Fourier transform microwave spectrometers which cover the frequency range from 2 to 40 GHz. The internal rotations of two equivalent methyl tops with a barrier height of approximately 439.15 cm-1 introduce torsional splittings of all rotational transitions in the spectrum. For the spectral analysis, two different computer programs were applied and compared, the PAM-C2v-2tops code based on the principal axis method which treats several torsional states simultaneously, and the XIAM code based on the combined axis method, yielding accurate molecular parameters. The experimental work was supplemented by quantum chemical calculations. Two-dimensional potential energy surfaces depending on the torsional angles of both methyl groups were calculated and parametrized.

  20. Rotational barriers in ammonium hexachlorometallates as studied by NMR, tunneling spectroscopy and ab initio calculations

    DEFF Research Database (Denmark)

    Birczynski, A.; Lalowicz, Z.T.; Lodziana, Zbigniew

    2004-01-01

    Ammonium hexachlorometallates, (NH4)(2)MCl6 With M = Pd, Pt, Ir, Os, Re, Se, Sn, Te and Pb, comprise a set of compounds with systematically changing properties. The compounds may be ordered according to decreasing tunnelling frequency (TF) of ammonium ions, which is related to the increasing...... structure explain observed variation of the tunnelling frequencies for NH4+. The theory provides also M-Cl distances and barriers for C-2 and C-3 rotations of ammonium ions in respective compounds, which show good agreement with experimental values. (C) 2004 Elsevier B.V. All rights reserved....

  1. Rotating Algal Biofilm Reactors: Mathematical Modeling and Lipid Production

    OpenAIRE

    Woolsey, Paul A.

    2011-01-01

    Harvesting of algal biomass presents a large barrier to the success of biofuels made from algae feedstock. Small cell sizes coupled with dilute concentrations of biomass in lagoon systems make separation an expensive and energy intense-process. The rotating algal biofilm reactor (RABR) has been developed at USU to provide a sustainable technology solution to this issue. Algae cells grown as a biofilm are concentrated in one location for ease of harvesting of high density biomass. A mathematic...

  2. Rotating bubble and toroidal nuclei and fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Haddad, F.; Jouault, B.

    1995-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy-ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. The potential barriers standing in these exotic deformation paths are compared with the three dimensional and plane fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localised below the plane fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension. (author)

  3. Barriers and Solutions to Fieldwork Education in Hand Therapy.

    Science.gov (United States)

    Short, Nathan; Sample, Shelby; Murphy, Malachi; Austin, Brittany; Glass, Jillian

    2017-08-09

    Survey. Fieldwork education is a vital component of training the next generation of CHTs. Barriers and solutions to fieldwork rotations in hand therapy are examined, as well as proposed solutions, including recommendations for student preparation. This descriptive study examined barriers for certified hand therapist clinicians to accept students for clinical rotations and clinicians' preferences for student preparation before a rotation in a hand setting. A survey was developed, peer reviewed, and distributed using the electronic mailing list of the Hand Therapy Certification Commission via SurveyMonkey. Aggregate responses were analyzed to identify trends including barriers to student clinical rotations and recommendations for students to prepare for hand rotations. A total of 2080 participants responded to the survey, representing a 37% response rate. Common logistical barriers were identified for accepting students such as limited clinical time and space. Many clinicians (32% agree and 8% strongly agree) also felt that the students lack the clinical knowledge to be successful. Areas of knowledge, skill set, and experience were surveyed for development before a clinical rotation in a hand setting. Most respondents (74%) reported increased likelihood of accepting a student with the recommended preparation. Novel qualitative responses to improve clinical experiences are presented as well. Student preparation before a clinical rotation in a hand setting appears to be a significant barrier based on the survey results. Areas of recommended knowledge, skill set, and experience may serve to guide both formal and informal methods of student preparation before a hand-specific clinical rotation to facilitate knowledge translation from experienced certified hand therapists to the next generation. Although logistical barriers may be difficult to overcome, hand-specific preparation based on clinician' recommendations may facilitate student acceptance and success in hand

  4. Determination of the Rotational Barrier for Kinetically Stable Conformational Isomers via NMR and 2D TLC: An Introductory Organic Chemistry Experiment

    Science.gov (United States)

    Rushton, Gregory T.; Burns, William G.; Lavin, Judi M.; Chong, Yong S.; Pellechia, Perry; Shimizu, Ken D.

    2007-01-01

    An experiment to determine the rotational barrier about a C[subscript aryl]-N[subscript imide] single bond that is suitable for first-semester organic chemistry students is presented. The investigation begins with the one-step synthesis of a N,N'-diaryl naphthalene diimide, which exists as two room temperature-stable atropisomers (syn and anti).…

  5. Structure of molecules and internal rotation

    CERN Document Server

    Mizushima, San-Ichiro

    1954-01-01

    Structure of Molecules and Internal Rotation reviews early studies on dihalogenoethanes. This book is organized into two parts encompassing 8 chapters that evaluate the Raman effect in ethane derivatives, the energy difference between rotational isomers, and the infrared absorption of ethane derivatives. Some of the topics covered in the book are the potential barrier to internal rotation; nature of the hindering potential; entropy difference between the rotational isomers; internal rotation in butane, pentane, and hexane; and internal rotation in long chain n-paraffins. Other chapters deal wi

  6. 78 FR 66950 - Trade Barriers That U.S. Small and Medium-Sized Enterprises Perceive as Affecting Exports to the...

    Science.gov (United States)

    2013-11-07

    ... report that catalogs trade barriers that U.S. small and medium-sized enterprises (SMEs) perceive as... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-541] Trade Barriers That U.S. Small and Medium-Sized Enterprises Perceive as Affecting Exports to the European Union; Rescheduling of Washington...

  7. Rotational rates of very small asteroids - 123 Brunhild, 376 Geometria, 437 Rhodia and 1224 Fantasia

    Science.gov (United States)

    Barucci, M. A.; di Martino, M.

    1984-07-01

    This paper presents observations of four small main belt asteroids (D Geometria, an accurate rotational period was determined. For the other two asteroids, 437 Rhodia and 1224 Fantasia, only tentative periods are suggested.

  8. Arthroscopic repair of partial-thickness and small full-thickness rotator cuff tears: tendon quality as a prognostic factor for repair integrity.

    Science.gov (United States)

    Chung, Seok Won; Kim, Jae Yoon; Yoon, Jong Pil; Lyu, Seong Hwa; Rhee, Sung Min; Oh, Se Bong

    2015-03-01

    The healing failure rate is high for partial-thickness or small full-thickness rotator cuff tears. To retrospectively evaluate and compare outcomes after arthroscopic repair of high-grade partial-thickness and small full-thickness rotator cuff tears and factors affecting rotator cuff healing. Cohort study; Level of evidence, 3. Included in the study were 55 consecutive patients (mean age, 57.9 ± 7.2 years) who underwent arthroscopic repair for high-grade partial-thickness (n = 34) and small full-thickness (n = 21) rotator cuff tears. The study patients also underwent magnetic resonance imaging (MRI) preoperatively and computed tomography arthrography (CTA) at least 6 months postoperatively, and their functional outcomes were evaluated preoperatively and at the last follow-up (>24 months). All partial-thickness tears were repaired after being converted to full-thickness tears; thus, the repair process was almost the same as for small full-thickness tears. The tendinosis of the torn tendon was graded from the MRI images using a 4-point scale, and the reliabilities were assessed. The outcomes between high-grade partial-thickness tears that were converted to small full-thickness tears and initially small full-thickness tears were compared, and factors affecting outcomes were evaluated. The inter- and intraobserver reliabilities of the tendinosis grade were good (intraclass correlation coefficient, 0.706 and 0.777, respectively). Failure to heal as determined by CTA was observed in 12 patients with a high-grade partial-thickness tear (35.3%; complete failure in 4 and partial failure in 8) and in 3 patients with a small full-thickness tear (14.3%; complete failure in 1 and partial failure in 2). The patients with high-grade partial-thickness rotator cuff tears showed a higher tendinosis grade than did those with small full-thickness tears (P = .014), and the severity of the tendinosis was related to the failure to heal (P = .037). Tears with a higher tendinosis grade

  9. Barriers to fusion

    International Nuclear Information System (INIS)

    Berriman, A.C.; Butt, R.D.; Dasgupta, M.; Hinde, D.J.; Morton, C.R.; Newton, J.O.

    1999-01-01

    The fusion barrier is formed by the combination of the repulsive Coulomb and attractive nuclear forces. Recent research at the Australian National University has shown that when heavy nuclei collide, instead of a single fusion barrier, there is a set of fusion barriers. These arise due to intrinsic properties of the interacting nuclei such deformation, rotations and vibrations. Thus the range of barrier energies depends on the properties of both nuclei. The transfer of matter between nuclei, forming a neck, can also affect the fusion process. High precision data have been used to determine fusion barrier distributions for many nuclear reactions, leading to new insights into the fusion process

  10. Hindered Csbnd N bond rotation in triazinyl dithiocarbamates

    Science.gov (United States)

    Jung, Taesub; Do, Hee-Jin; Son, Jongwoo; Song, Jae Hee; Cha, Wansik; Kim, Yeong-Joon; Lee, Kyung-Koo; Kwak, Kyungwon

    2018-01-01

    The substituent and solvent effects on the rotation around a Csbnd N amide bond were studied for a series of triazine dibenzylcarbamodithioates. The Gibbs free energies (ΔG‡) were measured to be 16-18 kcal/mol in DMSO-d6 and toluene-d8 using variable-temperature nuclear magnetic resonance (VT-1H NMR) spectroscopy. Density functional theory (DFT) calculations reproduced the experimental observations with various substituents, as well as solvents. From the detailed analysis of the DFT results, we found that the electron donating dibenzyl amine group increased the electron population on the triazinyl ring, which decreased the rotational barrier of the Csbnd N bond in the dithiocarbamate group attached to the triazinyl ring. The higher electron population on the triazine moiety stabilizes the partial double bond character of the Ssbnd C bond, which competitively excludes the double bond character of the Csbnd N bond. Therefore, the rotational dynamics of the Csbnd N bond in dithiocarbamates can be a sensitive probe to small differences in the electron population of substituents on sulfur.

  11. THE FORMATION AND ERUPTION OF A SMALL CIRCULAR FILAMENT DRIVEN BY ROTATING MAGNETIC STRUCTURES IN THE QUIET SUN

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Xu, Zhe, E-mail: boyang@ynao.ac.cn, E-mail: yjy@ynao.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, P.O. Box 110, Kunming 650011 (China)

    2015-04-20

    We present the first observation of the formation and eruption of a small circular filament driven by a rotating network magnetic field (RNF) in the quiet Sun. In the negative footpoint region of an inverse J-shaped dextral filament, the RNF was formed by the convergence to supergranular junctions of several magnetic flux patches of the same polarity, and it then rotated counterclockwise (CCW) for approximately 11 hr and showed up as a CCW rotating EUV cyclone, during which time the filament gradually evolved into a circular filament that surrounded the cyclone. When the calculated convergence and vortex flows appeared around the RNF during its formation and rotation phases, the injected magnetic helicity calculation also showed negative helicity accumulation during the RNF rotation that was consistent with the dextral chirality of the filament. Finally, the RNF rotation stopped and the cyclone disappeared, and, probably due to an emerging bipole and its forced cancellation with the RNF, the closure filament underwent an eruption along its axis in the (clockwise) direction opposite to the rotation directions of the RNF and cyclone. These observations suggest that the RNFs might play an important role in the formation of nearby small-scale circular filaments as they transport and inject magnetic energy and helicity, and the formation of the EUV cyclones may be a further manifestation of the helicity injected into the corona by the rotation of the RNFs in the photosphere. In addition, the new emerging bipole observed before the filament eruption might be responsible for destabilizing the system and triggering the magnetic reconnection which proves useful for the filament eruption.

  12. Modified small angle magnetization rotation method in multilayer magnetic microwires

    International Nuclear Information System (INIS)

    Torrejon, J.; Badini, G.; Pirota, K.; Vazquez, M.

    2007-01-01

    The small angle magnetization rotation (SAMR) technique is a widely used method to quantify magnetostriction in elongated ultrasoft magnetic materials. In the present work, we introduce significant optimization of the method, particularly simplification of the required equipment, profiting of the very peculiar characteristics of a recently introduced family of multilayer magnetic microwires consisting of a soft magnetic core, insulating intermediate layer and a hard magnetic outer layer. The introduced modified SAMR method is used not only to determine the saturation magnetostriction constant of the soft magnetic nucleus but also the magnetoelastic and magnetostatic coupling. This new method has a great potential in multifunctional sensor applications

  13. Storm impacts on small barrier islands

    DEFF Research Database (Denmark)

    Kroon, Aart; Fruergaard, Mikkel

    The shorelines of the Baltic Sea and the inner coastal waters in Denmark consist of many barrier islands. These sandy barrier islands were mainly formed in the Holocene and are still very dynamic. The present day changes in the morphology are dominantly governed by storm waves and associated high...

  14. Small Jovian Trojan Asteroids: An Excess of Slow Rotators

    Science.gov (United States)

    French, Linda M.

    2016-01-01

    Several lines of evidence support a common origin for, and possible hereditary link between, cometary nuclei and jovian Trojan asteroids. Due to their distance and low albedos, few comet-sized Trojans have been studied. We discuss the rotation properties of Jovian Trojan asteroids less than 30 km in diameter. Approximately half of the objects discussed here were studied using densely sampled lightcurves (French et al. 2015a, b); Stephens et al. 2015), and the other half were sparse lightcurves obtained by the Palomar Transient Factory (PTF; Waszcazk et al. 2015). A significant fraction (~40%) of the objects in the ground-based sample rotate slowly (P > 24h), with measured periods as long as 375 h (Warner and Stephens 2011). The PTF data show a similar excess of slow rotators. Only 5 objects in the combined data set have rotation periods of less than six hours. Three of these fast rotators were contained in the data set of French et al. these three had a geometric mean rotation period of 5.29 hours. A prolate spheroid held together by gravity rotating with this period would have a critical density of 0.43 gm/cm3, a density similar to that of comets (Lamy et al. 2004). Harris et al. (2012) and Warner et al. (2011) have explored the possible effects on asteroid rotational statistics with the results from wide-field surveys. We will examine Trojan rotation statistics with and without the results from the PTF.

  15. Adaptive, Small-Rotation-Based, Corotational Technique for Analysis of 2D Nonlinear Elastic Frames

    Directory of Open Access Journals (Sweden)

    Jaroon Rungamornrat

    2014-01-01

    Full Text Available This paper presents an efficient and accurate numerical technique for analysis of two-dimensional frames accounted for both geometric nonlinearity and nonlinear elastic material behavior. An adaptive remeshing scheme is utilized to optimally discretize a structure into a set of elements where the total displacement can be decomposed into the rigid body movement and one possessing small rotations. This, therefore, allows the force-deformation relationship for the latter part to be established based on small-rotation-based kinematics. Nonlinear elastic material model is integrated into such relation via the prescribed nonlinear moment-curvature relationship. The global force-displacement relation for each element can be derived subsequently using corotational formulations. A final system of nonlinear algebraic equations along with its associated gradient matrix for the whole structure is obtained by a standard assembly procedure and then solved numerically by Newton-Raphson algorithm. A selected set of results is then reported to demonstrate and discuss the computational performance including the accuracy and convergence of the proposed technique.

  16. Exploring drivers and barriers to sustainability green business practices within small medium sized enterprises: primary findings

    Directory of Open Access Journals (Sweden)

    Amir Aghelie

    2017-03-01

    Full Text Available Presently the conducted studies on how SMEs should integrate sustainability align with their core business principle is limited. Most of the discussion on this field is emphasized to address issues for larger organizations and very limited effort on small firms. The drivers and barriers of approaching sustainability practices in SMEs are different from those in large organizations since SMEs lack technical specialist, experience and money required to make such strategy. Since SMEs play a significant role in nation’s economic growth, it is essential to study and find their drivers and barriers toward sustainability business practices constitutes main motivation of this paper. This is a primary finding that aims to understand the SME motivation and barriers that are facing in implementing green sustainable business practices to offer insight look to small firms to find key factors that influence adoption of sustainability business approach within their management practices.

  17. Pathways for Small Molecule Delivery to the Central Nervous System Across the Blood-Brain Barrier

    OpenAIRE

    Mikitsh, John L; Chacko, Ann-Marie

    2014-01-01

    The treatment of central nervous system (CNS) disease has long been difficult due to the ineffectiveness of drug delivery across the blood-brain barrier (BBB). This review summarizes important concepts of the BBB in normal versus pathophysiology and how this physical, enzymatic, and efflux barrier provides necessary protection to the CNS during drug delivery, and consequently treatment challenging. Small molecules account for the vast majority of available CNS drugs primarily due to their abi...

  18. An innovative program to address learning barriers in small schools: Washington State School Nurse Corps.

    Science.gov (United States)

    Fast, Gail Ann; Gray, Lorali; Miles-Koehler, Mona

    2013-01-01

    While all schools in Washington State have had to deal with shrinking financial resources, small, rural school districts, with fewer than 2,000 students, face unique circumstances that further challenge their ability to meet rising student health needs. This article will explore how small districts utilize the services of the Washington State School Nurse Corps (SNC), an innovative program that supports student health and safety while reducing barriers to learning. Through direct registered nursing services and regional nurse administrative consultation and technical assistance, the SNC strengthens rural school districts' capacity to provide a safe and healthy learning environment. In addition, we will examine current research that links health and learning to discover how the SNC model is successful in addressing health risks as barriers to learning. Lastly, as resources continue to dwindle, partnerships between schools, the SNC, and state and local health and education organizations will be critical in maintaining health services and learning support to small, rural schools.

  19. A Survey of Rotation Lightcurves of Small Jovian Trojan Asteroids in the L4 Cloud

    Science.gov (United States)

    French, Linda M.; Stephens, Robert; Warner, Brian; James, David; Rohl, Derrick; Connour, Kyle

    2017-10-01

    Jovian Trojan asteroids are of interest both as objects in their own right and as possible relics of Solar System formation. Several lines of evidence support a common origin for, and possible hereditary link between, Jovian Trojan asteroids and cometary nuclei. Asteroid lightcurves give information about processes that have affected a group of asteroids including their density. Due to their distance and low albedos, few comet-sized Trojans have been studied. We have been carrying out a survey of Trojan lightcurve properties comparing small Trojan asteroids with comets (French et al 2015). We present new lightcurve information for 39 Trojans less than about 35 km in diameter. We report our latest results and compare them with results from the sparsely-sampled lightcurves from the Palomar Transient Factory (Waszazak et al., Chang et al. 2015). The minimum densities for objects with complete lightcurves are estimated and are found to becomparable to those measured for cometary nuclei. A significant fraction (~40%) of thisobserved small Trojan population rotates slowly (P > 24 hours), with measured periods as over 500 hours (Waszczak et al 2015). The excess of slow rotators may be due to the YORP effect. Results of the Kolmogorov-Smirnov test suggest that the distribution of Trojan rotation rates is dissimilar to those of Main Belt Asteroids of the same size.

  20. Fission barriers of light nuclei

    International Nuclear Information System (INIS)

    Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.

    1989-01-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems

  1. Employees' Perceptions of Barriers to Participation in Training and Development in Small Engineering Businesses

    Science.gov (United States)

    Susomrith, Pattanee; Coetzer, Alan

    2015-01-01

    Purpose: This paper aims to investigate barriers to employee participation in voluntary formal training and development opportunities from the perspective of employees in small engineering businesses. Design/methodology/approach: An exploratory qualitative methodology involving data collection via site visits and in-depth semi-structured…

  2. 75 FR 9431 - Small and Medium-Sized Enterprises: U.S. and EU Export Activities, and Barriers and Opportunities...

    Science.gov (United States)

    2010-03-02

    ... to the USTR on the first investigation, No. 332-508, Small and Medium-Sized Enterprises: Overview of..., investigation No. 332-509, Small and Medium-Sized Enterprises: U.S. and EU Export Activities, and Barriers and Opportunities Experienced by U.S. Firms, and investigation No. 332- 510, Small and Medium-Sized Enterprises...

  3. Mucosal pathobiology and molecular signature of epithelial barrier dysfunction in the small intestine in irritable bowel syndrome.

    Science.gov (United States)

    González-Castro, Ana M; Martínez, Cristina; Salvo-Romero, Eloísa; Fortea, Marina; Pardo-Camacho, Cristina; Pérez-Berezo, Teresa; Alonso-Cotoner, Carmen; Santos, Javier; Vicario, María

    2017-01-01

    Irritable bowel syndrome (IBS) is one of the most prevalent gastrointestinal disorders in developed countries. Its etiology remains unknown; however, a common finding, regardless of IBS subtype, is the presence of altered intestinal barrier. In fact, signaling and location of cell-to-cell adhesion proteins, in connection with increased immune activity, seem abnormal in the intestinal epithelium of IBS patients. Despite that most research is performed on distal segments of the intestine, altered permeability has been reported in both, the small and the large bowel of all IBS subtypes. The small intestine carries out digestion and nutrient absorption and is also the site where the majority of immune responses to luminal antigens takes place. In fact, the upper intestine is more exposed to environmental antigens than the colon and is also a site of symptom generation. Recent studies have revealed small intestinal structural alterations of the epithelial barrier and mucosal immune activation in association with intestinal dysfunction, suggesting the commitment of the intestine as a whole in the pathogenesis of IBS. This review summarizes the most recent findings on mucosal barrier alterations and its relationship to symptoms arising from the small intestine in IBS, including epithelial structural abnormalities, mucosal immune activation, and microbial dysbiosis, further supporting the hypothesis of an organic origin of IBS. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  4. Geometrical changes during the internal rotation in ethane

    NARCIS (Netherlands)

    Monkhorst, H. J.

    Theoretical and experimental indications are presented that the predominant geometrical change during the internal rotation in ethane is a stretching of the CC bond by about 1%. going from the staggered to the eclipsed conformation. This suggests that the rotation barrier is primarily caused by the

  5. Origin of methyl torsional potential barrier – An overview

    Indian Academy of Sciences (India)

    Unknown

    The effect of skeletal flexing on the picture of barrier .... views to explain the origin of the barrier to this rotation have been proposed, but none of .... molecule, a model is always advantageous to predict the barrier and its cause in a given.

  6. Simplified equations for the rotational speed response to inflow velocity variation in fixed-pitch small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H; Hasegawa, Y, E-mail: hsuzuki@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan)

    2015-02-01

    We propose simplified equations for the rotational speed response to inflow velocity variation in fixed-pitch small wind turbines. The present formulation is derived by introducing a series expansion for the torque coefficient at the constant tip-speed ratio. By focusing on the first- and second-order differential coefficients of the torque coefficient, we simplify the original differential equation. The governing equation based only on the first-order differential coefficient is found to be linear, whereas the second-order differential coefficient introduces nonlinearity. We compare the numerical solutions of the three governing equations for rotational speed in response to sinusoidal and normal-random variations of inflow velocity. The linear equation gives accurate solutions of amplitude and phase lag. Nonlinearity occurs in the mean value of rotational speed variation. We also simulate the rotational speed in response to a step input of inflow velocity using the conditions of two previous studies, and note that the form of this rotational speed response is a system of first-order time lag. We formulate the gain and time constant for this rotational speed response. The magnitude of the gain is approximately three when the wind turbine is operated at optimal tip-speed ratio. We discuss the physical meaning of the derived time constant. (paper)

  7. Toroidal and rotating bubble nuclei and the nuclear fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Fauchard, C.; Haddad, F.; Jouault, B.

    1997-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. Previously, a one-parameter shape sequence has been defined to describe the path leading to pumpkin-like configurations and toroidal shapes. New analytical expressions for the shape dependent functions have been obtained. The potential barriers standing in these exotic deformation paths are compared with the three-dimensional and plane-fragmentation barriers. Metastable bubble-like minima only appear at very high angular momentum and above the three dimensional fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localized below the plane-fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension

  8. Probing the Electronic Environment of Methylindoles using Internal Rotation and (14)N Nuclear Quadrupole Coupling.

    Science.gov (United States)

    Gurusinghe, Ranil M; Tubergen, Michael J

    2016-05-26

    High-resolution rotational spectra were recorded in the 10.5-21.0 GHz frequency range for seven singly methylated indoles. (14)N nuclear quadrupole hyperfine structure and spectral splittings arising from tunneling along the internal rotation of the methyl group were resolved for all indole species. The nuclear quadrupole coupling constants were used to characterize the electronic environment of the nitrogen atom, and the program XIAM was used to fit the barrier to internal rotation to the measured transition frequencies. The best fit barriers were found to be 277.1(2), 374.32(4), 414.(5), 331.6(2), 126.8675(15), 121.413(4), and 426(3) cm(-1) for 1-methylindole through 7-methylindole, respectively. The fitted barriers were found to be in good agreement with barriers calculated at the ωB97XD/6-311++G(d,p) level. The complete set of experimental barriers is compared to theoretical investigations of the origins of methyl torsional barriers and confirms that the magnitude of these barriers is an overall effect of individual hyperconjugative and structural interactions of many bonding/antibonding orbitals.

  9. Fisher information and steric effect: study of the internal rotation barrier of ethane.

    Science.gov (United States)

    Esquivel, Rodolfo O; Liu, Shubin; Angulo, Juan Carlos; Dehesa, Jesús S; Antolín, Juan; Molina-Espíritu, Moyocoyani

    2011-05-05

    On the basis of a density-based quantification of the steric effect [Liu, S. B. J. Chem. Phys.2007, 126, 244103], the origin of the internal rotation barrier between the eclipsed and staggered conformers of ethane is systematically investigated in this work from an information-theoretical point of view by using the Fisher information measure in conjugated spaces. Two kinds of computational approaches are considered in this work: adiabatic (with optimal structure) and vertical (with fixed geometry). The analyses are performed systematically by following, in each case, the conformeric path by changing the dihedral angle from 0 to 180° . This is calculated at the HF, MP2, B3LYP, and CCSD(T) levels of theory and with several basis sets. Selected descriptors of the densities are utilized to support the observations. Our results show that in the adiabatic case the eclipsed conformer possesses a larger steric repulsion than the staggered conformer, but in the vertical cases the staggered conformer retains a larger steric repulsion. Our results verify the plausibility for defining and computing the steric effect in the post-Hartree-Fock level of theory according to the scheme proposed by Liu.

  10. TGF-β Small Molecule Inhibitor SB431542 Reduces Rotator Cuff Muscle Fibrosis and Fatty Infiltration By Promoting Fibro/Adipogenic Progenitor Apoptosis.

    Directory of Open Access Journals (Sweden)

    Michael R Davies

    Full Text Available Rotator cuff tears represent a large burden of muscle-tendon injuries in our aging population. While small tears can be repaired surgically with good outcomes, critical size tears are marked by muscle atrophy, fibrosis, and fatty infiltration, which can lead to failed repair, frequent re-injury, and chronic disability. Previous animal studies have indicated that Transforming Growth Factor-β (TGF-β signaling may play an important role in the development of these muscle pathologies after injury. Here, we demonstrated that inhibition of TGF-β1 signaling with the small molecule inhibitor SB431542 in a mouse model of massive rotator cuff tear results in decreased fibrosis, fatty infiltration, and muscle weight loss. These observed phenotypic changes were accompanied by decreased fibrotic, adipogenic, and atrophy-related gene expression in the injured muscle of mice treated with SB431542. We further demonstrated that treatment with SB431542 reduces the number of fibro/adipogenic progenitor (FAP cells-an important cellular origin of rotator cuff muscle fibrosis and fatty infiltration, in injured muscle by promoting apoptosis of FAPs. Together, these data indicate that the TGF-β pathway is a critical regulator of the degenerative muscle changes seen after massive rotator cuff tears. TGF-β promotes rotator cuff muscle fibrosis and fatty infiltration by preventing FAP apoptosis. TGF-β regulated FAP apoptosis may serve as an important target pathway in the future development of novel therapeutics to improve muscle outcomes following rotator cuff tear.

  11. Working with What We've Got: Perceptions of Barriers and Supports among Small-Metropolitan-Area Same-Sex Adopting Couples

    Science.gov (United States)

    Kinkler, Lori A.; Goldberg, Abbie E.

    2011-01-01

    In seeking to adopt, lesbians and gay men may confront various barriers and obstacles. Ideally, they have access to a variety of support resources that can help to buffer the negative effects of these barriers. Lesbians and gay men living in small metropolitan communities may have limited access to support resources, however. The current…

  12. Barriers to energy efficiency in small industry clusters: Multi-criteria-based prioritization using the analytic hierarchy process

    International Nuclear Information System (INIS)

    Nagesha, N.; Balachandra, P.

    2006-01-01

    The small scale industry (SSI) is an important component of Indian economy and a majority of SSI units tend to exist in geographical clusters. Energy efficiency is crucial for the survival and growth of energy intensive SSI clusters, not only to improve their competitiveness through cost reduction but also to minimize adverse environmental impacts. However, this is easier said than done due to the presence of a variety of barriers. The identification of relevant barriers and their appropriate prioritization in such clusters is a prerequisite to effectively tackle them. This paper identifies relevant barriers to energy efficiency and their dimensions in SSI clusters. Further, the barriers are prioritized based on the perceptions and experiences of entrepreneurs, the main stakeholders of SSIs, using the analytic hierarchy process (AHP). The field data from two energy intensive clusters of foundry and brick and tile in Karnataka (a state in India) reveal that the prioritization remained the same despite differences in the relative weights of barrier groups. The financial and economic barrier (FEB) and behavioural and personal barrier (BPB) have emerged as the top two impediments to energy efficiency improvements

  13. Engaging the small commercial sector: new approaches for solving market barriers

    International Nuclear Information System (INIS)

    Dandridge, Cyane; Walton, Jennifer; Bertoldi, Paolo

    2005-01-01

    This paper examines how effectively working with students and contractors can engage small commercial businesses in energy efficiency measures. Small commercial businesses are an underserved and hard-to-reach market for energy efficiency services. Yet, this sector comprises a significant percentage of all businesses and aggregate energy usage. Two main barriers to doing an energy retrofit in small businesses include getting the business to agree to participate and getting them to implement suggested measures. Student outreach addresses the first, and using a mechanical or electrical contractor as an ESCO is a great way to address the second. The Awareness for Community Energy (ACE) Program is currently being offered throughout the United States. ACE employs high school and college students as interns and trains them in small business energy auditing. The business more readily accepts the marketing of energy services by a student, since it is seen as an opportunity to contribute to a student's educational experience. In one case, ACE program participants audited over 150 small businesses in a three-month period. Electrical and mechanical contractors are prime candidates to both disseminate information on energy efficiency and carry out the necessary retrofits. The owners of most energy using facilities already have trusted mechanical/electrical service contractors. By diffusing ESCO concepts amongst existing service contractors, there is a far greater chance of upgrading the energy efficiency throughout the small business sector. Such diffusion activities will involve training and awareness programs for contractors, as well as encouragement of financial institutions to develop supportive financing products

  14. Show small close comfort and listen - How to overcome barriers in the use of social media

    NARCIS (Netherlands)

    Verjans, Steven

    2011-01-01

    Verjans, S. (2011, 23 November). Show small close comfort and listen - How to overcome barriers in the use of social media. Presentation at the SVEA Final Conference "Next Generation Learning - How to Integrate Social Media in Vocational and Adult Training", Brussels, Belgium.

  15. Experimental and ab initio study on structures and internal barriers to rotation in α-stannyl, germanium, and silicon carbamates

    Science.gov (United States)

    Jadidi, Khosrow; Khaligh, Nader Ghaffari; Islami, Parisa; Aryan, Reza; Arvin-Nezhad, Hamid

    2009-02-01

    A detailed study of structural parameters and internal rotational barriers in α-stannyl, germanium and silicon carbamates 1 [H 3 CX-CH 2-N(Me)CO 2Me X dbnd C, Si, Ge, Sn] were calculated at HF/6-311G, HF/3-21G and B3LYP/3-21G//HF/3-21G levels and compared with DNMR data of synthesized molecules and a literature X-ray data. Two minimum-energy conformers, namely A and B, with almost similar energies were found for these molecules. Effect of heteroatom on structure and relative energies ( Erel) between the participants in the conformational equilibrium (A ↔ B) of these carbamates has been investigated.

  16. Hanford protective barriers program: Status of asphalt barrier studies - FY 1989

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gee, G.W.

    1989-11-01

    The Hanford Protective Barrier Program is evaluating alternate barriers to provide a means of meeting stringent water infiltration requirements. One type of alternate barrier being considered is an asphalt-based layer, 1.3 to 15 cm thick. Evaluations of these barriers were initiated in FY 1988, and, based on laboratory studies, two asphalt formulations were selected for further testing in small-tube lysimeters: a hot rubberized asphalt and an admixture of cationic asphalt emulsion and concrete sand containing 24 wt% residual asphalt. Eight lysimeters containing asphalt seals were installed as part of the Small Tube Lysimeter Test Facility on the Hanford Site. Two control lysimeters containing Hanford sand with a surface gravel treatment were also installed for comparison. 5 refs., 13 figs., 1 tab

  17. Primary human polarized small intestinal epithelial barriers respond differently to a hazardous and an innocuous protein.

    Science.gov (United States)

    Eaton, A D; Zimmermann, C; Delaney, B; Hurley, B P

    2017-08-01

    An experimental platform employing human derived intestinal epithelial cell (IEC) line monolayers grown on permeable Transwell ® filters was previously investigated to differentiate between hazardous and innocuous proteins. This approach was effective at distinguishing these types of proteins and perturbation of monolayer integrity, particularly transepithelial electrical resistance (TEER), was the most sensitive indicator. In the current report, in vitro indicators of monolayer integrity, cytotoxicity, and inflammation were evaluated using primary (non-transformed) human polarized small intestinal epithelial barriers cultured on Transwell ® filters to compare effects of a hazardous protein (Clostridium difficile Toxin A [ToxA]) and an innocuous protein (bovine serum albumin [BSA]). ToxA exerted a reproducible decrease on barrier integrity at doses comparable to those producing effects observed from cell line-derived IEC monolayers, with TEER being the most sensitive indicator. In contrast, BSA, tested at concentrations substantially higher than ToxA, did not cause changes in any of the tested variables. These results demonstrate a similarity in response to certain proteins between cell line-derived polarized IEC models and a primary human polarized small intestinal epithelial barrier model, thereby reinforcing the potential usefulness of cell line-derived polarized IECs as a valid experimental platform to differentiate between hazardous and non-hazardous proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Charge modification of the endothelial surface layer modulates the permeability barrier of isolated rat mesenteric small arteries

    NARCIS (Netherlands)

    van Haaren, Paul M. A.; VanBavel, Ed; Vink, Hans; Spaan, Jos A. E.

    2005-01-01

    We hypothesized that modulation of the effective charge density of the endothelial surface layer ( ESL) results in altered arterial barrier properties to transport of anionic solutes. Rat mesenteric small arteries ( diameter similar to 190 mu m) were isolated, cannulated, perfused, and superfused

  19. Stability of barrier buckets with zero RF-barrier separations

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-03-01

    A barrier bucket with very small separation between the rf barriers (relative to the barrier widths) or even zero separation has its synchrotron tune decreasing rather slowly from a large value towards the boundary of the bucket. As a result, large area at the bucket edges can become unstable under the modulation of rf voltage and/or rf phase. In addition, chaotic regions may form near the bucket center and extend outward under increasing modulation. Application is made to those barrier buckets used in the process of momentum mining at the Fermilab Recycler Ring.

  20. Arthroscopic proximal versus open subpectoral biceps tenodesis with arthroscopic repair of small- or medium-sized rotator cuff tears.

    Science.gov (United States)

    Yi, Young; Lee, Jong-Myoung; Kwon, Seok Hyun; Kim, Jeong-Woo

    2016-12-01

    The study was aimed to compare arthroscopic proximal biceps tenodesis and open subpectoral biceps tenodesis in repair of small or medium rotator cuff tears. Eighty-five patients underwent biceps tenodesis with arthroscopic repair of a rotator cuff tear, and 66 patients were followed for median of 26.8 (18-42) months with ultrasonography were reviewed. The arthroscopic biceps tenodesis group included 34 cases, and the open subpectoral biceps group included 32 cases. Patients were evaluated using visual analogue scale (VAS), American Shoulder and Elbow Surgeons (ASES), and constant scores. Rotator cuff repair and fixation of the biceps tendon were assessed by ultrasonography. Fixation failure and degree of deformity were evaluated by the pain in the bicipital groove and biceps apex distance (BAD). VAS score and tenderness at the bicipital groove decreased significantly in the open subpectoral group at 3 months postoperative. In both groups, the range of motion, ASES score, and constant score increased significantly (P tendinitis and using intra-bicipital groove tenodesis technique. III.

  1. Implementation of a Non-Metallic Barrier in an Electric Motor

    Science.gov (United States)

    M'Sadoques, George A. (Inventor); Carra, Michael R. (Inventor); Beringer, Durwood M. (Inventor)

    2013-01-01

    A motor for use in a volatile environment includes a rotor exposed to the volatile environment, electronics for rotating the rotor, an impervious ceramic barrier separating the electronics and the rotor, and a flexible seal for preventing the volatile environment from contacting the electronics and for minimizing vibratory and twisting loads upon the barrier to minimize damage to the barrier.

  2. Single-row versus double-row arthroscopic rotator cuff repair in small- to medium-sized tears.

    Science.gov (United States)

    Aydin, Nuri; Kocaoglu, Baris; Guven, Osman

    2010-07-01

    Double-row rotator cuff repair leads to superior cuff integrity and clinical results compared with single-row repair. The study enrolled 68 patients with a full-thickness rotator cuff tear who were divided into 2 groups of 34 patients according to repair technique. The patients were followed-up for at least 2 years. The results were evaluated by Constant score. Despite the biomechanical studies and cadaver studies that proved the superiority of double-row fixation over single-row fixation, our clinical results show no difference in functional outcome between the two methods. It is evident that double-row repair is more technically demanding, expensive, and time-consuming than single-row repair, without providing a significant improvement in clinical results. Comparison between groups did not show significant differences. At the final follow-up, the Constant score was 82.2 in the single-row group and 78.8 in the double-row group. Functional outcome was improved in both groups after surgery, but the difference between the 2 groups was not significant. At long-term follow-up, arthroscopic rotator cuff repair with the double-row technique showed no significant difference in clinical outcome compared with single-row repair in small to medium tears. 2010 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  3. Barriers to reducing climate enhanced disaster risks in Least Developed Country-Small Islands through anticipatory adaptation

    Directory of Open Access Journals (Sweden)

    Natasha Kuruppu

    2015-03-01

    Full Text Available Small Island Developing States (SIDS classified as Least Developed Countries (LDCs are particularly vulnerable to the projected impacts of climate change. Given their particular vulnerabilities, climate adaptation investments are being made through both national and international efforts to build the capacity of various sectors and communities to reduce climate risks and associated disasters. Despite these efforts, reducing climate risks is not free of various challenges and barriers. This paper aims to synthesise a set of critical socio-economic barriers present at various spatial scales that are specific to Least Developed Country SIDS. It also aims to identify the processes that give rise to these barriers. Drawing on theories from natural hazards, a systematic literature review method was adopted to identify and organise the set of barriers by focussing on both academic papers and grey literature. The data revealed a notable lack of studies on adaptation within African and Caribbean LDC-SIDS. In general, there was a paucity of academic as well as grey literature being produced by authors from LDC-SIDS to challenge existing discourses related to adaptation barriers. The most common barriers identified included those related to governance, technical, cognitive and cultural. Three key findings can be drawn from this study in relation to formal adaptation initiatives. Firstly, the lack of focus on the adaptive capacity needs of Local Government or Island Councils and communities was a key barrier to ensure success of adaptation interventions. Secondly, international adaptation funding modalities did little to address root causes of vulnerability or support system transformations. These funds were geared at supporting sectoral level adaptation initiatives for vulnerable natural resource sectors such as water, biodiversity and coastal zones. Thirdly, there is a need to recognise the significance of cultural knowledge and practices in shaping

  4. Barriers to reducing climate enhanced disaster risks in Least Developed Country-Small Islands through anticipatory adaptation

    Science.gov (United States)

    Kuruppu, N.; Willie, R.

    2015-12-01

    Small Island Developing States (SIDS) classified as Least Developed Countries (LDCs) are particularly vulnerable to the projected impacts of climate change. Given their particular vulnerabilities, climate adaptation investments are being made through both national and international efforts to build the capacity of various sectors and communities to reduce climate risks and associated disasters. Despite these efforts, reducing climate risks is not free of various challenges and barriers. This paper aims to synthesise a set of critical socio-economic barriers present at various spatial scales that are specific to Least Developed Country SIDS. It also aims to identify the processes that give rise to these barriers. Drawing on theories from natural hazards, a systematic literature review method was adopted to identify and organise the set of barriers by focussing both on academic papers and grey literature. The data revealed a notable lack of studies on adaptation within African and Caribbean LDC-SIDS. In general, there was a paucity of academic as well as grey literature being produced by authors from LDC-SIDS to challenge existing discourses related to adaptation barriers. The most common barriers identified included those related to governance, technical, cognitive and cultural. Three key findings can be drawn from this study in relation to formal adaptation initiatives. Firstly, the lack of focus on the adaptive capacity needs of Local Government or Island Councils and communities was a key barrier to ensuring success of adaptation interventions. Secondly, international adaptation funding modalities did little to address root causes of vulnerability or support system transformations. These funds were geared at supporting sectoral level adaptation initiatives for vulnerable natural resource sectors such as water, biodiversity and coastal zones. Thirdly, there is a need to recognise the significance of cultural knowledge and practices in shaping adaptive choices of

  5. Political rotations and cross-province acquisitions in China

    DEFF Research Database (Denmark)

    Muratova, Yulia; Arnoldi, Jakob; Chen, Xin

    2018-01-01

    The underdeveloped institutional framework and trade barriers between China’s provinces make cross-province acquisitions challenging. We explore how Chinese firms can mitigate this problem. Drawing on social network theory we propose that cross-province rotation of political leaders—a key element...... of the promotion system of political cadres in China—is a mechanism enabling growth through cross-province acquisitions. We conceptualize rotated leaders as brokers between two geographically dispersed networks. We contribute to the literature on the characteristics of Chinese social networks, the effect...... of political connections on firm strategy, and the impact of political rotations on firm growth in China’s provinces....

  6. Ultrafast rotation in an amphidynamic crystalline metal organic framework.

    Science.gov (United States)

    Vogelsberg, Cortnie S; Uribe-Romo, Fernando J; Lipton, Andrew S; Yang, Song; Houk, K N; Brown, Stuart; Garcia-Garibay, Miguel A

    2017-12-26

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn 4 O cubic lattice. Using spin-lattice relaxation 1 H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3-80 K, we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol -1 These results were confirmed with 2 H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. The ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.

  7. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  8. INFALLING–ROTATING MOTION AND ASSOCIATED CHEMICAL CHANGE IN THE ENVELOPE OF IRAS 16293–2422 SOURCE A STUDIED WITH ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198 (Japan); Ceccarelli, Cecilia; Lefloch, Bertrand; Favre, Cécile, E-mail: oya@taurus.phys.s.u-tokyo.ac.jp [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France)

    2016-06-20

    We have analyzed rotational spectral line emission of OCS, CH{sub 3}OH, HCOOCH{sub 3}, and H{sub 2}CS observed toward the low-mass Class 0 protostellar source IRAS 16293–2422 Source A at a sub-arcsecond resolution (∼0.″6 × 0.″5) with ALMA. Significant chemical differentiation is found on a scale of 50 au. The OCS line is found to trace well the infalling–rotating envelope in this source. On the other hand, the distributions of CH{sub 3}OH and HCOOCH{sub 3} are found to be concentrated around the inner part of the infalling–rotating envelope. With a simple ballistic model of the infalling–rotating envelope, the radius of the centrifugal barrier (a half of the centrifugal radius) and the protostellar mass are evaluated from the OCS data to be from 40 to 60 au and from 0.5 to 1.0 M {sub ⊙}, respectively, assuming the inclination angle of the envelope/disk structure to be 60° (90° for the edge-on configuration). Although the protostellar mass is correlated with the inclination angle, the radius of the centrifugal barrier is not. This is the first indication of the centrifugal barrier of the infalling–rotating envelope in a hot corino source. CH{sub 3}OH and HCOOCH{sub 3} may be liberated from ice mantles by weak accretion shocks around the centrifugal barrier and/or by protostellar heating. The H{sub 2}CS emission seems to come from the disk component inside the centrifugal barrier in addition to the envelope component. The centrifugal barrier plays a central role not only in the formation of a rotationally supported disk but also in the chemical evolution from the envelope to the protoplanetary disk.

  9. Unraveling the interplay between hydrogen bonding and rotational energy barrier to fine-tune the properties of triazine molecular glasses.

    Science.gov (United States)

    Laventure, Audrey; De Grandpré, Guillaume; Soldera, Armand; Lebel, Olivier; Pellerin, Christian

    2016-01-21

    Mexylaminotriazine derivatives form molecular glasses with outstanding glass-forming ability (GFA), high resistance to crystallization (glass kinetic stability, GS), and a glass transition temperature (Tg) above room temperature that can be conveniently modulated by selection of the headgroup and ancillary groups. A common feature of all these compounds is their secondary amino linkers, suggesting that they play a critical role in their GFA and GS for reasons that remain unclear because they can simultaneously form hydrogen (H) bonds and lead to a high interconversion energy barrier between different rotamers. To investigate independently and better control the influence of H bonding capability and rotational energy barrier on Tg, GFA and GS, a library of twelve analogous molecules was synthesized with different combinations of NH, NMe and O linkers. Differential scanning calorimetry (DSC) revealed that these compounds form, with a single exception, kinetically stable glasses with Tg values spanning a very broad range from -25 to 94 °C. While variable temperature infrared spectroscopy combined to chemometrics reveals that, on average, around 60% of the NH groups are still H-bonded as high as 40 °C above Tg, critical cooling rates obtained by DSC clearly show that molecules without H-bond donating linkers also present an outstanding GFA, meaning that H bonding plays a dominant role in controlling Tg but is not required to prevent crystallization. It is a high interconversion energy barrier, provoking a distribution of rotamers, that most efficiently promotes both GFA and resistance to crystallization. These new insights pave the way to more efficient glass engineering by extending the possible range of accessible Tg, allowing in particular the preparation of homologous glass-formers with high GS at ambient temperature in either the viscous or vitreous state.

  10. Barriers to Energy Efficiency in Swedish Non-Energy-Intensive Micro- and Small-Sized Enterprises—A Case Study of a Local Energy Program

    Directory of Open Access Journals (Sweden)

    Fredrik Backman

    2017-01-01

    Full Text Available Improved energy efficiency has become a strategic issue and represents a priority for European competitiveness. Countries adopt various energy policies on local and national levels where energy audit programs are the most common energy end-use efficiency policy for industrial small- and medium-sized enterprises (SMEs. However, studies indicate that cost-efficient energy conservation measures are not always implemented, which can be explained by the existence of barriers to energy efficiency. This paper investigates how Swedish municipalities can support local micro- and small-sized enterprises with improved energy efficiency and the existence of different barriers to the implementation of energy efficiency. Relating this empirical case study to the theoretical barriers outlined in the text, this study found that the major explanatory factors related to non-implementation of cost-effective energy efficiency measures among micro- and small-sized industrial enterprises were bounded rationality (lack of time and/or other priorities, split incentives (having other priorities for capital investments, and imperfect information (slim organization and lack of technical skill. This study also found that information in the form of a report was the main thing that companies gained from working on the project “Energy-Driven Business”. Notably, the study involved companies that had participated in a local energy program and, still, companies face major barriers inhibiting implementation, indicating a need to further study other alternative policy models and how knowledge transfer can be improved.

  11. Rotational Spectrum and Conformational Analysis of N-methyl-2-aminoethanol: Insights into the Shape of Adrenergic Neurotransmitters

    Science.gov (United States)

    Calabrese, Camilla; Maris, Assimo; Evangelisti, Luca; Piras, Anna; Parravicini, Valentina; Melandri, Sonia

    2018-02-01

    Abstract We describe an experimental and quantum chemical study for the accurate determination of the conformational space of small molecular systems governed by intramolecular non-covalent interactions. The model systems investigated belong to the biological relevant aminoalcohol’s family, and include 2-aminophenylethanol, 2-methylaminophenylethanol, noradrenaline, adrenaline 2-aminoethanol and N-methyl-2-aminoethanol. For the latter molecule, the rotational spectrum in the 6-18 and 59.6-74.4 GHz ranges was recorded in the isolated conditions of a free jet expansion. Based on the analysis of the rotational spectra, two different conformational species and 11 isotopologues were observed and their spectroscopic constants, including 14N-nuclear hyperfine coupling constants and methyl internal rotation barriers, were determined. From the experimental data a structural determination was obtained, which was also used to benchmark accurate quantum chemical calculations on the whole conformational space. Atom in molecules and non-covalent interactions theories allowed the characterization of the position of the intramolecular non-covalent interactions and the energies involved, highlighting the subtle balance responsible of the stabilization of all the molecular systems.

  12. BARRIERS IN IMPLEMENTATION OF E-BUSINESS TECHNOLOGIES IN SMALL AND MEDIUM ENTERPRISES (SMEs IN PAKISTAN

    Directory of Open Access Journals (Sweden)

    Anwar Ali Shah G. SYED

    2012-05-01

    Full Text Available The current research investigates the Barriers in implementation of E-Business Technologies in Small and Medium enterprises (SMEs in Pakistan. Data were collected from 2000 respondents by using simple random technique. A structural questionnaire was developed for the data collection and reliability and validity of data. It was revealed that most of the SMEs business owners are not familiar in using internet and in many cases they are not computer literate. It was further revealed that Government should provide some basic computer training to the Small and Medium Enterprises so they will able to use computer. The proper implementation of E-Business technologies in SMEs in Pakistan, Government and other related agencies can initiate E-Business in SMEs to achieve competitive edge.

  13. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure.

    Science.gov (United States)

    El Asmar, Ramzi; Panigrahi, Pinaki; Bamford, Penelope; Berti, Irene; Not, Tarcisio; Coppa, Giovanni V; Catassi, Carlo; Fasano, Alessio; El Asmar, Rahzi

    2002-11-01

    Enteric infections have been implicated in the pathogenesis of both food intolerance and autoimmune diseases secondary to the impairment of the intestinal barrier. On the basis of our recent discovery of zonulin, a modulator of small-intestinal tight junctions, we asked whether microorganisms might induce zonulin secretion and increased small-intestinal permeability. Both ex vivo mammalian small intestines and intestinal cell monolayers were exposed to either pathogenic or nonpathogenic enterobacteria. Zonulin production and changes in paracellular permeability were monitored in Ussing chambers and micro-snapwells. Zonula occludens 1 protein redistribution after bacteria colonization was evaluated on cell monolayers. Small intestines exposed to enteric bacteria secreted zonulin. This secretion was independent of either the species of the small intestines or the virulence of the microorganisms tested, occurred only on the luminal aspect of the bacteria-exposed small-intestinal mucosa, and was followed by a decrease in small-intestinal tissue resistance (transepithelial electrical resistance). The transepithelial electrical resistance decrement was secondary to the zonulin-induced tight junction disassembly, as also shown by the disengagement of the protein zonula occludens 1 protein from the tight junctional complex. This zonulin-driven opening of the paracellular pathway may represent a defensive mechanism, which flushes out microorganisms and contributes to the host response against bacterial colonization of the small intestine.

  14. Rotation and transport in Alcator C-Mod ITB plasmas

    Science.gov (United States)

    Fiore, C. L.; Rice, J. E.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.; Hughes, J. W.; Reinke, M.

    2010-06-01

    Internal transport barriers (ITBs) are seen under a number of conditions in Alcator C-Mod plasmas. Most typically, radio frequency power in the ion cyclotron range of frequencies (ICRFs) is injected with the second harmonic of the resonant frequency for minority hydrogen ions positioned off-axis at r/a > 0.5 to initiate the ITBs. They can also arise spontaneously in ohmic H-mode plasmas. These ITBs typically persist tens of energy confinement times until the plasma terminates in radiative collapse or a disruption occurs. All C-Mod core barriers exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles and thermal transport coefficients that approach neoclassical values in the core. The strongly co-current intrinsic central plasma rotation that is observed following the H-mode transition has a profile that is peaked in the centre of the plasma and decreases towards the edge if the ICRF power deposition is in the plasma centre. When the ICRF resonance is placed off-axis, the rotation develops a well in the core region. The central rotation continues to decrease as long as the central density peaks when an ITB develops. This rotation profile is flat in the centre (0 ITB density profile is observed (0.5 ITB foot that is sufficiently large to stabilize ion temperature gradient instabilities that dominate transport in C-Mod high density plasmas.

  15. Asymptotic solutions of steady magneto-fluid-dynamic motion between two rotating disks with a small gap

    International Nuclear Information System (INIS)

    Xu, J.J.; Woo, J.T.

    1987-01-01

    The steady-state flow of a conducting fluid between two coaxial rotating disks in the presence of an axial magnetic field is considered for the following conditions: (1) the gap d between two disks is very small compared with the radial extension of the disks R; (2) the angular velocity of the disks is not too high, so that the thickness of the Eckman layer δ is still larger than the gap d, (d/δ) 1 /sup // 4 2 /d 2 . Under these conditions asymptotic solutions to the problem are obtained in terms of the small parameter Epsilon = d/R. The results show that to the lowest-order approximation, the electric properties of the disks are not important to the flow field, while the magnitude of the magnetic field plays an important role in the equilibrium flow profile

  16. Prenatal ethanol enhances rotational behavior to apomorphine in the 24-month-old rat offspring with small striatal lesion.

    Science.gov (United States)

    Gomide, Vânia C; Chadi, Gerson

    2004-01-01

    Pregnant Wistar rats received a hyperproteic liquid diet containing 37.5% ethanol-derived calories during gestation. Isocaloric amount of liquid diet, with maltose-dextrin substituted for ethanol, was given to control pair-fed dams. Offsprings were allowed to survive until 24 months of age. A set of aged female offsprings of both control diet and ethanol diet groups was registered for spontaneous motor activity, by means of an infrared motion sensor activity monitor, or for apomorphine-induced rotational behavior, while another lot of male offsprings was submitted to an unilateral striatal small mechanical lesion by a needle, 6 days before rotational recordings. Prenatal ethanol did not alter spontaneous motor parameters like resting time as well as the events of small and large movements in the aged offsprings. Bilateral circling behavior was already increased 5 min after apomorphine in the unlesioned offsprings of both the control and ethanol diet groups. However, it lasted more elevated for 45- to 75-min time intervals in the gestational ethanol-exposed offsprings, while decreasing faster in the control offsprings. Apomorphine triggered a strong and sustained elevation of contraversive turns in the striatal-lesioned 24-month-old offsprings of the ethanol group, but only a small and transient elevation was seen in the offsprings of the control diet group. Astroglial and microglial reactions were seen surrounding the striatal needle track lesion. Microdensitometric image analysis demonstrated no differences in the levels of tyrosine hydroxylase immunoreactivity in the striatum of 24-month-old unlesioned and lesioned offsprings of control and alcohol diet groups. The results suggest that ethanol exposure during gestation may alter the sensitivity of dopamine receptor in aged offsprings, which is augmented by even a small striatal lesion.

  17. Apparatus for sealing a rotatable shield plug in a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    Winkleblack, R.K.

    1980-01-01

    An apparatus for sealing a rotatable shield plug in a nuclear reactor having liquid metal coolant is described. The apparatus includes a dip -ring seal adapted to provide a fluid barrier between the liquid metal and the atmosphere and to permit rotation of the shield plug. The apparatus also includes a static seal for the rotatable shield plug located between the dip-ring seal and the liquid metal. The static seal isolates the dip-ring seal from the liquid metal vapor during operation at power and can be disengaged for rotation of the shield plug

  18. Strategies to overcome barriers for cleaner generation technologies in small developing power systems: Sri Lanka case study

    International Nuclear Information System (INIS)

    Wijayatunga, Priyantha D.C.; Siriwardena, Kanchana; Fernando, W.J.L.S.; Shrestha, Ram M.; Attalage, Rahula A.

    2006-01-01

    The penetration of cleaner and energy efficient technologies in small power systems such as the one in Sri Lanka has encountered many problems. This has caused major concerns among the policy makers, mainly in the context of the growing need to reduce harmful emissions in the electricity supply industry from the point of view of both local environmental pollution as well as the global warming concerns. This paper presents the outcome of a study involved in identifying and ranking the barriers to the promotion of cleaner and energy efficient technologies and strategies to overcome these barriers in Sri Lanka. Barriers for renewable energy based systems such as wind and wood fuel fired plants (dendro thermal power) and cleaner technologies such as liquefied natural gas (LNG) fired combined cycle and IGCC (coal) were identified based on a survey. A direct assessment multi-criteria decision making method called Analytic Hierarchy Process (AHP) was used to rank the barriers. The most effective strategies are proposed to address the three major barriers for each of these technologies based on extensive discussions with all the stakeholders in the electricity industry. It was found that lack of financing instruments, high initial cost and lack of assurance of resource supply or availability are the main barriers for renewable technologies. As for cleaner fuel and technology options associated with conventional generation systems, the lack of a clear government policy, uncertainty of fuel supplies and their prices and the reliability of the technologies themselves are the major barriers. Strategies are identified to overcome the above barriers. Establishment of a proper feed in tariff, geographical diversification of installations and capacity building in commercial banks are suggested for wind power. Investment incentives, streamlining of wood production and research on site identification are proposed for wood fuel fired plants. Also the study suggests delayed

  19. Ultrafast rotation in an amphidynamic crystalline metal organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsberg, Cortnie S.; Uribe-Romo, Fernando J.; Lipton, Andrew S.; Yang, Song; Houk, K. N.; Brown, Stuart; Garcia-Garibay, Miguel A.

    2017-12-11

    Amphidynamic crystals are an emergent class of condensed phase matter designed with a combination of lattice-forming elements linked to components that display engineered dynamics in the solid state. Here, we address the design of a crystalline array of molecular rotors with inertial diffusional rotation at the nanoscale, characterized by the absence of steric or electronic barriers. We solved this challenge with 1,4-bicyclo[2.2.2]octane dicarboxylic acid (BODCA)-MOF, a metal-organic framework (MOF) built with a high-symmetry bicyclo[2.2.2]octane dicarboxylate linker in a Zn4O cubic lattice. Using spin-lattice relaxation 1H solid-state NMR at 29.49 and 13.87 MHz in the temperature range of 2.3–80 K, we showed that internal rotation occurs in a potential with energy barriers of 0.185 kcal mol-1. These results were confirmed with 2H solid-state NMR line-shape analysis and spin-lattice relaxation at 76.78 MHz obtained between 6 and 298 K, which, combined with molecular dynamics simulations, indicate that inertial diffusional rotation is characterized by a broad range of angular displacements with no residence time at any given site. The ambient temperature rotation of the bicyclo[2.2.2]octane (BCO) group in BODCA-MOF constitutes an example where engineered rotational dynamics in the solid state are as fast as they would be in a high-density gas or in a low-density liquid phase.

  20. Antimicrobial Peptides, Infections and the Skin Barrier

    DEFF Research Database (Denmark)

    Clausen, Maja Lisa; Agner, Tove

    2016-01-01

    The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis and trans......The skin serves as a strong barrier protecting us from invading pathogens and harmful organisms. An important part of this barrier comes from antimicrobial peptides (AMPs), which are small peptides expressed abundantly in the skin. AMPs are produced in the deeper layers of the epidermis...

  1. Poster - 11: Radiation barrier thickness calculations for the GammaPod

    International Nuclear Information System (INIS)

    La Russa, Daniel; Vandervoort, Eric; Wilkins, David

    2016-01-01

    A consortium of radiotherapy centers in North America is in the process of evaluating a novel new 60 Co teletherapy device, called the GammaPod™ (Xcision Medical Systems, Columbia Maryland), designed specifically for breast SBRT. The GammaPod consists of 36 collimated 60 Co sources with a total activity of 4320 Ci. The sources are housed in a hemispherical source carrier that rotates during treatment to produce a cylindrically symmetric cone of primary beam spanning 16° – 54° degrees from the horizontal. This unique beam geometry presents challenges when designing or evaluating room shielding for the purposes of meeting regulatory requirements, and for ensuring the safety of staff and the public in surrounding areas. Conventional methods for calculating radiation barrier thicknesses have been adapted so that barrier transmission factors for the GammaPod can be determined from a few relevant distances and characteristics of the primary beam. Simple formalisms have been determined for estimating shielding requirements for primary radiation (with a rotating and non-rotating source carrier), patient-scattered radiation, and leakage radiation. When making worst case assumptions, it was found that conventional barrier thicknesses associated with linac treatment suites are sufficient for shielding all sources of radiation from the GammaPod.

  2. Poster - 11: Radiation barrier thickness calculations for the GammaPod

    Energy Technology Data Exchange (ETDEWEB)

    La Russa, Daniel; Vandervoort, Eric; Wilkins, David [Radiation Medicine Program, The Ottawa Hospital (Canada)

    2016-08-15

    A consortium of radiotherapy centers in North America is in the process of evaluating a novel new {sup 60}Co teletherapy device, called the GammaPod™ (Xcision Medical Systems, Columbia Maryland), designed specifically for breast SBRT. The GammaPod consists of 36 collimated {sup 60}Co sources with a total activity of 4320 Ci. The sources are housed in a hemispherical source carrier that rotates during treatment to produce a cylindrically symmetric cone of primary beam spanning 16° – 54° degrees from the horizontal. This unique beam geometry presents challenges when designing or evaluating room shielding for the purposes of meeting regulatory requirements, and for ensuring the safety of staff and the public in surrounding areas. Conventional methods for calculating radiation barrier thicknesses have been adapted so that barrier transmission factors for the GammaPod can be determined from a few relevant distances and characteristics of the primary beam. Simple formalisms have been determined for estimating shielding requirements for primary radiation (with a rotating and non-rotating source carrier), patient-scattered radiation, and leakage radiation. When making worst case assumptions, it was found that conventional barrier thicknesses associated with linac treatment suites are sufficient for shielding all sources of radiation from the GammaPod.

  3. Differential rotation in magnetic stars

    International Nuclear Information System (INIS)

    Moss, D.

    1981-01-01

    The possibility that large-scale magnetic fields in stars are the product of a contemporary dynamo situated in the convective stellar core, rather than being a fossil from an earlier stage in the history of the star, is investigated. It is demonstrated that then the envelope will almost inevitably be in a state of differential rotation. Some simple models are constructed to illustrate the magnitude of the effects on the structure of the envelope and magnetic field. It is found that, for models which are relatively rapidly rotating, a modest differential rotation at the surface of the core may increase considerably the ratio of internal to surface field, but only give rise to a small surface differential rotation. (author)

  4. On rotational solutions for elliptically excited pendulum

    International Nuclear Information System (INIS)

    Belyakov, Anton O.

    2011-01-01

    The author considers the planar rotational motion of the mathematical pendulum with its pivot oscillating both vertically and horizontally, so the trajectory of the pivot is an ellipse close to a circle. The analysis is based on the exact rotational solutions in the case of circular pivot trajectory and zero gravity. The conditions for existence and stability of such solutions are derived. Assuming that the amplitudes of excitations are not small while the pivot trajectory has small ellipticity the approximate solutions are found both for high and small linear dampings. Comparison between approximate and numerical solutions is made for different values of the damping parameter. -- Highlights: → We study rotations of the mathematical pendulum when its pivot moves along an ellipse. → There are stable exact solutions for a circular pivot trajectory and zero gravity. → Asymptotic solutions are found for an elliptical pivot trajectory

  5. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    Science.gov (United States)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  6. Quantitative rotating frame relaxometry methods in MRI.

    Science.gov (United States)

    Gilani, Irtiza Ali; Sepponen, Raimo

    2016-06-01

    Macromolecular degeneration and biochemical changes in tissue can be quantified using rotating frame relaxometry in MRI. It has been shown in several studies that the rotating frame longitudinal relaxation rate constant (R1ρ ) and the rotating frame transverse relaxation rate constant (R2ρ ) are sensitive biomarkers of phenomena at the cellular level. In this comprehensive review, existing MRI methods for probing the biophysical mechanisms that affect the rotating frame relaxation rates of the tissue (i.e. R1ρ and R2ρ ) are presented. Long acquisition times and high radiofrequency (RF) energy deposition into tissue during the process of spin-locking in rotating frame relaxometry are the major barriers to the establishment of these relaxation contrasts at high magnetic fields. Therefore, clinical applications of R1ρ and R2ρ MRI using on- or off-resonance RF excitation methods remain challenging. Accordingly, this review describes the theoretical and experimental approaches to the design of hard RF pulse cluster- and adiabatic RF pulse-based excitation schemes for accurate and precise measurements of R1ρ and R2ρ . The merits and drawbacks of different MRI acquisition strategies for quantitative relaxation rate measurement in the rotating frame regime are reviewed. In addition, this review summarizes current clinical applications of rotating frame MRI sequences. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Stellarator fields with small PS current at small rotational transform

    International Nuclear Information System (INIS)

    Herrnegger, F.

    2001-01-01

    One aspect of the optimization concept of stellarators is the reduction of the normalized Pfirsch-Schlueter current density p arallel 2 / j p erpendikular 2 > 1/2 to a reasonable level but obeying other side conditions, e.g., concerning small bootstrap currents, good stability properties, reasonable aspect ratio, etc. This problem is addressed in the present work. Various stellarator vacuum field are given analytically for M 2, 3, 5, 10, 12 (M is the number of field period around the torus) where the PS-current density is reduced by more than a factor of ten to rather small values around 0.3 even at small i-values

  8. Understanding barriers to the introduction of precision medicines in non-small cell lung cancer: A qualitative interview protocol.

    Science.gov (United States)

    Wright, Stuart; Daker-White, Gavin; Newman, William; Payne, Katherine

    2018-01-01

    Background: While precision medicines targeting genetic mutations and alterations in non-small cell lung cancer (NSCLC) have been available since 2010, their adoption into clinical practice has been slow. Evidence suggests that a number of barriers, such as insufficient clinician knowledge, a need for training of test providers, or a lack of specific clinical guidelines, may slow the implementation of precision in general. However, little attention has been given to the barriers to providing precision medicines in NSCLC. The purpose of this protocol is to outline the design for a qualitative interview study to identify the barriers and facilitators to the provision of precision medicines for NSCLC. Methods: This study will use semi-structured interviews with clinicians (n=10), test providers (n=10), and service commissioners (n=10) to identify the perceived barriers and facilitators to providing historical, current, and future precision medicines in NSCLC. Participants will be identified through mailing list advertisements and snowball sampling. Recruitment will continue until data saturation, indicated by no new themes arising from the data. Interviews will be conducted by telephone to facilitate geographical diversity. The qualitative data will be analysed using a framework analysis with themes anticipated to relate to; relevant barriers to providing precision medicines, the impact of different barriers on medicine provision, changes in the ability to provide precision medicines over time, and strategies to facilitate the provision of precision medicines. Ethics: This study has been approved by the University of Manchester Proportionate Review Research Ethics Committee (Reference number: 2017-1885-3619). Written consent will be obtained from all participants. Conclusion: This study is the first to explore the barriers and facilitators to providing precision medicines for NSCLC in the English NHS. The findings will inform strategies to improve the implementation

  9. Methyl internal rotation in the microwave spectrum of vinyl acetate.

    Science.gov (United States)

    Nguyen, Ha Vinh Lam; Jabri, Atef; Van, Vinh; Stahl, Wolfgang

    2014-12-26

    The rotational spectrum of vinyl acetate, CH3(CO)OCH═CH2, was measured using two molecular beam Fourier transform microwave spectrometers operating in the frequency range from 2 to 40 GHz. Large splittings up to 2 GHz occurred due to the internal rotation of the acetyl methyl group CH3CO with a V3 potential of 151.492(34) cm(-1), much larger than the barrier of approximately 100 cm(-1) often found in acetates. The torsional transitions were fitted using three different programs XIAM, ERHAM, and BELGI-Cs, whereby the rotational constants, centrifugal distortion constants, and the internal rotation parameters could be determined with very high accuracy. The experimental results were supported by quantum chemical calculations. For a conformational analysis, potential energy surfaces were calculated.

  10. Observation of rotating nuclear molecules and determination of their lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Comas, V.; Heinz, S.; Ackermann, D.; Heredia, J.; Hessberger, F.P.; Khuyagbaatar, J.; Kindler, B.; Lommel, B.; Mann, R. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Hofmann, S. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Goethe-Universitaet Frankfurt, Institut fuer Physik, Frankfurt (Germany)

    2012-12-15

    Long-living rotating nuclear molecules (or ''dinuclear systems'') have been observed at the velocity filter SHIP at GSI in reactions of {sup 64}Ni + {sup 207}Pb at Coulomb barrier energies. The rotation was directly revealed by the velocity spectra of deep inelastic target-like transfer products which are formed during the lifetime of the nuclear molecule and emitted after its breakup. The corresponding rotation angles were about 180 degree pointing to long nuclear interaction times or lifetimes of the system, respectively. We deduced the lifetimes from the lines in the velocity spectra originating from two different rotation angles. Further, the unambiguous correlation of a certain transfer product with its individual velocity spectrum allowed us to study the lifetimes as a function of the number of transferred protons. (orig.)

  11. Rotational Spectrum and Conformational Analysis of N-Methyl-2-Aminoethanol: Insights into the Shape of Adrenergic Neurotransmitters

    Directory of Open Access Journals (Sweden)

    Camilla Calabrese

    2018-02-01

    Full Text Available We describe an experimental and quantum chemical study for the accurate determination of the conformational space of small molecular systems governed by intramolecular non-covalent interactions. The model systems investigated belong to the biological relevant aminoalcohol's family, and include 2-amino-1-phenylethanol, 2-methylamino-1-phenylethanol, noradrenaline, adrenaline 2-aminoethanol, and N-methyl-2-aminoethanol. For the latter molecule, the rotational spectrum in the 6–18 and 59.6–74.4 GHz ranges was recorded in the isolated conditions of a free jet expansion. Based on the analysis of the rotational spectra, two different conformational species and 11 isotopologues were observed and their spectroscopic constants, including 14N-nuclear hyperfine coupling constants and methyl internal rotation barriers, were determined. From the experimental data a structural determination was performed, which was also used to benchmark accurate quantum chemical calculations on the whole conformational space. Atom in molecules and non-covalent interactions theories allowed the characterization of the position of the intramolecular non-covalent interactions and the energies involved, highlighting the subtle balance responsible of the stabilization of all the molecular systems.

  12. Mechanised harvesting of short-rotation coppices

    OpenAIRE

    Vanbeveren, Stefan P.P.; Spinelli, Raffaele; Eisenbies, Mark; Schweier, Janine; Mola-Yudego, Blas; Magagnotti, Natascia; Acuna, Mauricio; Dimitriou, Ioannis; Ceulemans, Reinhart

    2017-01-01

    Abstract: Short-rotation coppice (SRC) is an important source of woody biomass for bioenergy. Despite the research carried out on several aspects of SRC production, many uncertainties create barriers to farmers establishing SRC plantations. One of the key economic sources of uncertainty is harvesting methods and costs; more specifically, the performance of contemporary machine methods is reviewed. We collected data from 25 literature references, describing 166 field trials. Three harvesting s...

  13. Small-scale barriers mitigate desertification processes and enhance plant recruitment in a degraded semiarid grassland

    Science.gov (United States)

    Fick, Stephen E; Decker, Cheryl E.; Duniway, Michael C.; Miller, Mark E.

    2016-01-01

    Anthropogenic desertification is a problem that plagues drylands globally; however, the factors which maintain degraded states are often unclear. In Canyonlands National Park on the Colorado Plateau of southeastern Utah, many degraded grasslands have not recovered structure and function >40 yr after release from livestock grazing pressure, necessitating active restoration. We hypothesized that multiple factors contribute to the persistent degraded state, including lack of seed availability, surficial soil-hydrological properties, and high levels of spatial connectivity (lack of perennial vegetation and other surface structure to retain water, litter, seed, and sediment). In combination with seeding and surface raking treatments, we tested the effect of small barrier structures (“ConMods”) designed to disrupt the loss of litter, seed and sediment in degraded soil patches within the park. Grass establishment was highest when all treatments (structures, seed addition, and soil disturbance) were combined, but only in the second year after installation, following favorable climatic conditions. We suggest that multiple limiting factors were ameliorated by treatments, including seed limitation and microsite availability, seed removal by harvester ants, and stressful abiotic conditions. Higher densities of grass seedlings on the north and east sides of barrier structures following the summer months suggest that structures may have functioned as artificial “nurse-plants”, sheltering seedlings from wind and radiation as well as accumulating wind-blown resources. Barrier structures increased the establishment of both native perennial grasses and exotic annuals, although there were species-specific differences in mortality related to spatial distribution of seedlings within barrier structures. The unique success of all treatments combined, and even then only under favorable climatic conditions and in certain soil patches, highlights that restoration success (and

  14. Origin of methyl torsional potential barrier – An overview

    Indian Academy of Sciences (India)

    Unknown

    This paper presents the evolution of views on methyl internal rotation ... recognized in the early years of quantum theory.1 Since then, detailed experimental and ..... C−C bond in the methyl conjugated molecules is an important factor for barrier.

  15. Rotating Polygons on a Fluid Surface

    DEFF Research Database (Denmark)

    Bohr, Tomas; Jansson, Thomas; Haspang, Martin

    spontaneously and the surface can take the shape of a rigidly rotating polygon. With water we have observed polygons with up to 6 corners. The rotation speed of the polygons does not coincide with that of the plate, but it is often mode-locked, such that the polygon rotates by one corner for each complete...... and R. Miraghaie, ”Symmetry breaking in free-surface cylinder flows”, J. Fluid Mech., 502, 99 (2004)). The polygons occur at much larger Reynolds numbers, for water around 500.000. Correspondingly, the dependence on viscosity is rather small....

  16. Effect of wild-type Shigella species and attenuated Shigella vaccine candidates on small intestinal barrier function, antigen trafficking, and cytokine release.

    Directory of Open Access Journals (Sweden)

    Maria Fiorentino

    Full Text Available Bacterial dysentery due to Shigella species is a major cause of morbidity and mortality worldwide. The pathogenesis of Shigella is based on the bacteria's ability to invade and replicate within the colonic epithelium, resulting in severe intestinal inflammatory response and epithelial destruction. Although the mechanisms of pathogenesis of Shigella in the colon have been extensively studied, little is known on the effect of wild-type Shigella on the small intestine and the role of the host response in the development of the disease. Moreover, to the best of our knowledge no studies have described the effects of apically administered Shigella flexneri 2a and S. dysenteriae 1 vaccine strains on human small intestinal enterocytes. The aim of this study was to assess the coordinated functional and immunological human epithelial responses evoked by strains of Shigella and candidate vaccines on small intestinal enterocytes. To model the interactions of Shigella with the intestinal mucosa, we apically exposed monolayers of human intestinal Caco2 cells to increasing bacterial inocula. We monitored changes in paracellular permeability, examined the organization of tight-junctions and the pro-inflammatory response of epithelial cells. Shigella infection of Caco2 monolayers caused severe mucosal damage, apparent as a drastic increase in paracellular permeability and disruption of tight junctions at the cell-cell boundary. Secretion of pro-inflammatory IL-8 was independent of epithelial barrier dysfunction. Shigella vaccine strains elicited a pro-inflammatory response without affecting the intestinal barrier integrity. Our data show that wild-type Shigella infection causes a severe alteration of the barrier function of a small intestinal cell monolayer (a proxy for mucosa and might contribute (along with enterotoxins to the induction of watery diarrhea. Diarrhea may be a mechanism by which the host attempts to eliminate harmful bacteria and transport them

  17. Do we need to overcome barriers to learning in the workplace for foundation trainees rotating in neurosurgery in order to improve training satisfaction?

    Science.gov (United States)

    Phan, Pho Nh; Patel, Keyur; Bhavsar, Amar; Acharya, Vikas

    2016-01-01

    Junior doctors go through a challenging transition upon qualification; this repeats every time they start a rotation in a new department. Foundation level doctors (first 2 years postqualification) in neurosurgery are often new to the specialty and face various challenges that may result in significant workplace dissatisfaction. The neurosurgical environment is a clinically demanding area with a high volume of unwell patients and frequent emergencies - this poses various barriers to learning in the workplace for junior doctors. We identify a number of key barriers and review ideas that can be trialed in the department to overcome them. Through an evaluation of current suggestions in the literature, we propose that learning opportunities need to be made explicit to junior doctors in order to encourage them to participate as a member of the team. We consider ideas for adjustments to the induction program and the postgraduate medical curriculum to shift the focus from medical knowledge to improving confidence and clinical skills in newly qualified doctors. Despite being a powerful window for opportunistic learning, the daily ward round is unfortunately not maximized and needs to be more learner focused while maintaining efficiency and time consumption. Finally, we put forward the idea of an open forum where trainees can talk about their learning experiences, identify subjective barriers, and suggest solutions to senior doctors. This would be achieved through departmental faculty development. These interventions are presented within the context of the neurosurgical ward; however, they are transferable and can be adapted in other specialties and departments.

  18. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; A randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; Vos, De Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm J.H.M.; Wit, De Nicole J.W.; Bron, Peter A.; Masclee, Ad A.M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  19. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; Vos, de Paul; Boekschoten, Mark; Govers, Coen; Pieters, Harm J.H.M.; Wit, de Nicole; Bron, Peter A.; Masclee, Ad A.M.; Troost, Freddy J.

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein rearrangement,

  20. The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial

    NARCIS (Netherlands)

    Mujagic, Zlatan; de Vos, Paul; Boekschoten, Mark V.; Govers, Coen; Pieters, Harm-Jan H M; de Wit, Nicole J. W.; Bron, Peter A.; Masclee, Ad A M; Troost, Freddy J

    2017-01-01

    The aim of this study was to investigate the effects of three Lactobacillus plantarum strains on in-vivo small intestinal barrier function and gut mucosal gene transcription in human subjects. The strains were selected for their differential effects on TLR signalling and tight junction protein

  1. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  2. A study of small, medium, and micro-sized enterprise (SMME business owner and stakeholder perceptions of barriers and enablers in the South African retail sector

    Directory of Open Access Journals (Sweden)

    Mlenga G Jere

    2015-11-01

    Full Text Available Despite the support extended to the small business sector in South Africa, the growth and survival rates of small, medium, and micro-sized enterprises (SMMEs are lower than expected. This paper investigates business owner and stakeholder perceptions of barriers and enablers of the start-up, survival, and growth of SMMEs in the South African retail sector. A qualitative research design using semi-structured interviews was employed for data collection from samples of stakeholders and business owners. Framework analysis was used to analyse both sets of data. The findings show that the stakeholders and business owners consider the lack of support, competition, skills shortages, and poor internal controls as the key barriers to the start-up, survival, and growth of SMMEs. Stakeholders considered the business environment as the key enabler while the business owners regarded increasing demand as the key enabler. To address the barriers, recommendations relating to skills development, funding, shelter and services, and other business development resources are presented

  3. Barriers to energy efficiency improvement. Empirical evidence from small-and-medium-sized enterprises in China

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Genia; Moslener, Ulf; Andreas, Jan G.

    2012-07-01

    This paper analyzes barriers for energy efficiency investments for small-and medium-sized enterprises (SMEs) in China. Based on a survey of 480 SMEs in Zhejiang Province, this study assesses financial, informational, and organizational barriers for energy efficiency investments in the SME sector. The conventional view has been that the lack of appropriate financing mechanisms particularly hinders SMEs to adopt cost-effective energy efficiency measures. As such, closing the financing gap for SMEs is seen as a prerequisite in order to promote energy efficiency in the sector. The econometric estimates of this study, however, suggest that access to information is an important determinant of investment outcomes, while this is less clear with respect to financial and organizational factors. More than 40 percent of enterprises in the sample declared that that they are not aware of energy saving equipments or practices in their respective business area, indicating that there are high transaction costs for SMEs to gather, assess, and apply information about energy saving potentials and relevant technologies. One implication is that the Chinese government may assume an active role in fostering the dissemination of energy-efficiency related information in the SME sector. (orig.)

  4. Heterotaxy syndromes and abnormal bowel rotation

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Beverley [Stanford University, Lucile Packard Children' s Hospital, Department of Radiology, Stanford, CA (United States); Koppolu, Raji; Sylvester, Karl [Lucile Packard Children' s Hospital at Stanford, Department of Surgery, Stanford, CA (United States); Murphy, Daniel [Lucile Packard Children' s Hospital at Stanford, Department of Cardiology, Stanford, CA (United States)

    2014-05-15

    Bowel rotation abnormalities in heterotaxy are common. As more children survive cardiac surgery, the management of gastrointestinal abnormalities has become controversial. To evaluate imaging of malrotation in heterotaxy with surgical correlation and provide an algorithm for management. Imaging reports of heterotaxic children with upper gastrointestinal (UGI) and/or small bowel follow-through (SBFT) were reviewed. Subsequently, fluoroscopic images were re-reviewed in conjunction with CT/MR studies. The original reports and re-reviewed images were compared and correlated with surgical findings. Nineteen of 34 children with heterotaxy underwent UGI, 13/19 also had SBFT. In 15/19 reports, bowel rotation was called abnormal: 11 malrotation, 4 non-rotation, no cases of volvulus. Re-review, including CT (10/19) and MR (2/19), designated 17/19 (90%) as abnormal, 10 malrotation (abnormal bowel arrangement, narrow or uncertain length of mesentery) and 7 non-rotation (small bowel and colon on opposite sides plus low cecum with probable broad mesentery). The most useful CT/MR findings were absence of retroperitoneal duodenum in most abnormal cases and location of bowel, especially cecum. Abnormal orientation of mesenteric vessels suggested malrotation but was not universal. Nine children had elective bowel surgery; non-rotation was found in 4/9 and malrotation was found in 5/9, with discrepancies (non-rotation at surgery, malrotation on imaging) with 4 original interpretations and 1 re-review. We recommend routine, early UGI and SBFT studies once other, urgent clinical concerns have been stabilized, with elective laparoscopic surgery in abnormal or equivocal cases. Cross-sectional imaging, usually obtained for other reasons, can contribute diagnostically. Attempting to assess mesenteric width is important in differentiating non-rotation from malrotation and more accurately identifies appropriate surgical candidates. (orig.)

  5. Heterotaxy syndromes and abnormal bowel rotation

    International Nuclear Information System (INIS)

    Newman, Beverley; Koppolu, Raji; Sylvester, Karl; Murphy, Daniel

    2014-01-01

    Bowel rotation abnormalities in heterotaxy are common. As more children survive cardiac surgery, the management of gastrointestinal abnormalities has become controversial. To evaluate imaging of malrotation in heterotaxy with surgical correlation and provide an algorithm for management. Imaging reports of heterotaxic children with upper gastrointestinal (UGI) and/or small bowel follow-through (SBFT) were reviewed. Subsequently, fluoroscopic images were re-reviewed in conjunction with CT/MR studies. The original reports and re-reviewed images were compared and correlated with surgical findings. Nineteen of 34 children with heterotaxy underwent UGI, 13/19 also had SBFT. In 15/19 reports, bowel rotation was called abnormal: 11 malrotation, 4 non-rotation, no cases of volvulus. Re-review, including CT (10/19) and MR (2/19), designated 17/19 (90%) as abnormal, 10 malrotation (abnormal bowel arrangement, narrow or uncertain length of mesentery) and 7 non-rotation (small bowel and colon on opposite sides plus low cecum with probable broad mesentery). The most useful CT/MR findings were absence of retroperitoneal duodenum in most abnormal cases and location of bowel, especially cecum. Abnormal orientation of mesenteric vessels suggested malrotation but was not universal. Nine children had elective bowel surgery; non-rotation was found in 4/9 and malrotation was found in 5/9, with discrepancies (non-rotation at surgery, malrotation on imaging) with 4 original interpretations and 1 re-review. We recommend routine, early UGI and SBFT studies once other, urgent clinical concerns have been stabilized, with elective laparoscopic surgery in abnormal or equivocal cases. Cross-sectional imaging, usually obtained for other reasons, can contribute diagnostically. Attempting to assess mesenteric width is important in differentiating non-rotation from malrotation and more accurately identifies appropriate surgical candidates. (orig.)

  6. Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Kusano, Yukihiro; Hansen, F.

    2010-01-01

    , is used for the experiments. A rotating knife was inoculated with L. innocua. The surface of the rotating knife was partly exposed to an atmospheric pressure dielectric barrier discharge operated in air, where the knife itself served as a ground electrode. The rotation of the knife ensures a treatment...... of the whole cutting tool. A log 5 reduction of L. innocua is obtained after 340 s of plasma operation. The temperature of the knife after treatment was found to be below 30 °C. The design of the setup allows a decontamination during slicing operation....

  7. Breakdown of mucin as barrier to digestive enzymes in the ischemic rat small intestine.

    Directory of Open Access Journals (Sweden)

    Marisol Chang

    Full Text Available Loss of integrity of the epithelial/mucosal barrier in the small intestine has been associated with different pathologies that originate and/or develop in the gastrointestinal tract. We showed recently that mucin, the main protein in the mucus layer, is disrupted during early periods of intestinal ischemia. This event is accompanied by entry of pancreatic digestive enzymes into the intestinal wall. We hypothesize that the mucin-containing mucus layer is the main barrier preventing digestive enzymes from contacting the epithelium. Mucin breakdown may render the epithelium accessible to pancreatic enzymes, causing its disruption and increased permeability. The objective of this study was to investigate the role of mucin as a protection for epithelial integrity and function. A rat model of 30 min splanchnic arterial occlusion (SAO was used to study the degradation of two mucin isoforms (mucin 2 and 13 and two epithelial membrane proteins (E-cadherin and toll-like receptor 4, TLR4. In addition, the role of digestive enzymes in mucin breakdown was assessed in this model by luminal inhibition with acarbose, tranexamic acid, or nafamostat mesilate. Furthermore, the protective effect of the mucin layer against trypsin-mediated disruption of the intestinal epithelium was studied in vitro. Rats after SAO showed degradation of mucin 2 and fragmentation of mucin 13, which was not prevented by protease inhibition. Mucin breakdown was accompanied by increased intestinal permeability to FITC-dextran as well as degradation of E-cadherin and TLR4. Addition of mucin to intestinal epithelial cells in vitro protected against trypsin-mediated degradation of E-cadherin and TLR4 and reduced permeability of FITC-dextran across the monolayer. These results indicate that mucin plays an important role in the preservation of the mucosal barrier and that ischemia but not digestive enzymes disturbs mucin integrity, while digestive enzymes actively mediate epithelial cell

  8. Effect of toroidal field ripple on the formation of internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Vries, P C de; Hawkes, N C; Challis, C D; Andrew, Y; Beurskens, M; Brix, M; Giroud, C; Zastrow, K-D [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Joffrin, E [EFDA-JET CSU, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Litaudon, X [Association EURATOM-CEA, DSM/DFRC, CEA Cadarache, 13108, St Paul lez Durance (France); Brzozowski, J; Johnson, T [Association EURATOM-VR, Fusion Plasma Physics, EES, KTH, Stockholm (Sweden); Crombe, K [Department of Applied Physics, Ghent University, Ghent (Belgium); Hobirk, J [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, 85748 Garching (Germany); Loennroth, J; Salmi, A [Association Euratom-Tekes, Helsinki University of Technology, PO Box 4100, 02015 TKK (Finland); Tala, T [Association Euratom-Tekes, VTT, PO Box 1000, 02044 VTT (Finland); Yavorskij, V [Institute for Theoretical Physics, Association EURATOM-OEAW, University of Innsbruck (Austria)], E-mail: Peter.de.Vries@jet.uk

    2008-06-15

    The effect of a toroidal field (TF) ripple on the formation and performance of internal transport barriers (ITBs) has been studied in JET. It was found that the TF ripple had a profound effect on the toroidal plasma rotation. An increased TF ripple up to {delta} = 1% led to a lower rotation and reduced the rotational shear in the region where the ITBs were formed. ITB triggering events were observed in all cases and it is thought that the rotational shear may be less important for this process than, for example, the q-profile. However, the increase in the pressure gradient following the ITB trigger was reduced in discharges with a larger TF ripple and consequently a lower rotational shear. This suggests that toroidal rotation and its shear play a role in the growth of the ITB once it has been triggered.

  9. SUBARCSECOND ANALYSIS OF THE INFALLING–ROTATING ENVELOPE AROUND THE CLASS I PROTOSTAR IRAS 04365+2535

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Takeshi [Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hirota, Tomoya [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Aikawa, Yuri [Center for Computational Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Ceccarelli, Cecilia; Lefloch, Bertrand; Kahane, Claudine [Universite de Grenoble Alpes, IPAG, F-38000 Grenoble (France); Caux, Emmanuel; Vastel, Charlotte [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France)

    2016-04-01

    Subarcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365+2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The velocity structure of the compact component of CS reveals infalling–rotating motion conserving the angular momentum. It is well explained by a ballistic model of an infalling–rotating envelope with the radius of the centrifugal barrier (one-half of the centrifugal radius) of 50 au, although the distribution of the infalling gas is asymmetric around the protostar. The distribution of SO is mostly concentrated around the radius of the centrifugal barrier of the simple model. Thus, a drastic change in chemical composition of the gas infalling onto the protostar is found to occur at a 50 au scale probably due to accretion shocks, demonstrating that the infalling material is significantly processed before being delivered into the disk.

  10. SMEs and Barriers to Skill Development: A Scottish Perspective.

    Science.gov (United States)

    Lange, Thomas; Ottens, Melanie; Taylor, Andrea

    2000-01-01

    Analysis of Scottish small and medium-sized enterprises reveals that small business culture is a significant barrier to skill development. Other barriers include awareness, finance, and access to training. A welter of recent policy initiatives has added to a state of confusion about the role of training. (SK)

  11. A study of the deep structure of the energy landscape of glassy polystyrene: the exponential distribution of the energy barriers revealed by high-field electron spin resonance spectroscopy

    International Nuclear Information System (INIS)

    Bercu, V; Martinelli, M; Massa, C A; Pardi, L A; Leporini, D

    2004-01-01

    The reorientation of one small paramagnetic molecule (spin probe) in glassy polystyrene (PS) is studied by high-field electron spin resonance spectroscopy at two different Larmor frequencies (190 and 285 GHz). The exponential distribution of the energy barriers for the rotational motion of the spin probe is unambiguously evidenced at both 240 and 270 K. The same shape for the distribution of the energy barriers of PS was evidenced by the master curves provided by previous mechanical and light scattering studies. The breadth of the energy barrier distribution of the spin probe is in the range of the estimates of the breadth of the PS energy barrier distribution. The evidence that the deep structure of the energy landscape of PS exhibits the exponential shape of the energy barrier distribution agrees with the results from extreme-value statistics (Bouchaud and Mezard 1997 J. Phys. A: Math. Gen. 30 7997) and the trap model by Bouchaud and co-workers (1996 J. Phys. A: Math. Gen. 29 3847, 2001 Phys. Rev. B 64 104417). (letter to the editor)

  12. Development of simplified rotating plug seal structure

    International Nuclear Information System (INIS)

    Ueta, M.; Ichimiya, M.; Kanaoka, T.; Sekiya, H.; Ueda, S.; Ishibashi, S.

    1991-01-01

    We studied a compact and simplified rotating plug seal structure and conducted experiments for key elements of the concept such us the mechanical seal structure and sodium deposit prevention system. Good characteristics were confirmed for the mechanical seal structure, which utilizes an elastomer seal and thin lathe bearing. Applicability of the density barrier concept was also confirmed as the sodium deposit prevention system. This concept can be applied to actual plants. (author)

  13. Barriers to Business Model Innovation in Swedish Agriculture

    Directory of Open Access Journals (Sweden)

    Olof Sivertsson

    2015-02-01

    Full Text Available Swedish agricultural companies, especially small farms, are struggling to be profitable in difficult economic times. It is a challenge for Swedish farmers to compete with imported products on prices. The agricultural industry, however, supports the view that through business model innovation, farms can increase their competitive advantage. This paper identifies and describes some of the barriers Swedish small farms encounter when they consider business model innovation. A qualitative approach is used in the study. Agriculture business consultants were interviewed. In a focus group led by the researchers, farmers discussed business model innovation, including the exogenous and endogenous barriers to such innovation. The paper concludes many barriers exist when farmers consider innovation of agricultural business models. Some barriers are caused by human factors, such as individuals’ attitudes, histories, and traditions. Other barriers are more contextual in nature and relate to a particular industry or company setting. Still other barriers, such as government regulations, value chain position, and weather, are more abstract. All barriers, however, merit attention when Swedish agricultural companies develop new business models.

  14. Internal rotation in trifluoromethylsulfur pentafluoride: CF3SF5 by Fourier transform microwave spectroscopy

    Science.gov (United States)

    Hirota, Eizi; Kawasima, Yoshiyuki; Ajiki, Ken

    2017-12-01

    Trifluoromethylsulfur pentafluoride CF3SF5, which has been attracting much attention because of its unusually large global warming potential, was investigated by Fourier transform microwave spectroscopy in order to determine the twelve-fold potential barrier to internal rotation in this molecule. We have found the V12 value to be close to zero. Relaxation among internal-rotation and overall-rotation levels was found inhomogeneous, resulting in distributions quite different from thermal in low-temperature molecular beam, which might affect significantly thermodynamic properties of the molecule. Rotational spectra of the 13C species and the 34S species were also observed in natural abundance, leading to the rs Csbnd S bond length of 1.8808 (7) Å.

  15. Effects of rotation radiographic dimensions of metacarpals

    International Nuclear Information System (INIS)

    Armes, F.M.; Horsman, A.; Bentley, H.B.

    1979-01-01

    An experiment is described which shows that small rotations of metacarpals about their long axis produce small systematic changes in the cortical dimensions as measured by radiographic morphometry. The effect is of no significance in cross-sectional studies but is an important source of error in sequential studies. (author)

  16. Nugget Structure Evolution with Rotation Speed for High-Rotation-Speed Friction-Stir-Welded 6061 Aluminum Alloy

    Science.gov (United States)

    Zhang, H. J.; Wang, M.; Zhu, Z.; Zhang, X.; Yu, T.; Wu, Z. Q.

    2018-03-01

    High-rotation-speed friction stir welding (HRS-FSW) is a promising technique to reduce the welding loads during FSW and thus facilitates the application of FSW for in situ fabrication and repair. In this study, 6061 aluminum alloy was friction stir welded at high-rotation speeds ranging from 3000 to 7000 rpm at a fixed welding speed of 50 mm/min, and the effects of rotation speed on the nugget zone macro- and microstructures were investigated in detail in order to illuminate the process features. Temperature measurements during HRS-FSW indicated that the peak temperature did not increase consistently with rotation speed; instead, it dropped remarkably at 5000 rpm because of the lowering of material shear stress. The nugget size first increased with rotation speed until 5000 rpm and then decreased due to the change of the dominant tool/workpiece contact condition from sticking to sliding. At the rotation speed of 5000 rpm, where the weld material experienced weaker thermal effect and higher-strain-rate plastic deformation, the nugget exhibited relatively small grain size, large textural intensity, and high dislocation density. Consequently, the joint showed superior nugget hardness and simultaneously a slightly low tensile ductility.

  17. Molecular Viscosity Sensors with Two Rotators for Optimizing the Fluorescence Intensity-Contrast Trade-Off.

    Science.gov (United States)

    Lee, Seung-Chul; Lee, Chang-Lyoul; Heo, Jeongyun; Jeong, Chan-Uk; Lee, Gyeong-Hui; Kim, Sehoon; Yoon, Woojin; Yun, Hoseop; Park, Sung O; Kwak, Sang Kyu; Park, Sung-Ha; Kwon, O-Pil

    2018-02-26

    A series of fluorescent molecular rotors obtained by introducing two rotational groups ("rotators"), which exhibit different rotational and electron-donating abilities, are discussed. Whereas the control molecular rotor, PH, includes a single rotator (the widely used phenyl group), the PO molecular rotors consist of two rotators (a phenyl group and an alkoxy group), which exhibit simultaneous strongly electron-donating and easy rotational abilities. Compared with the control rotor PH, PO molecular rotors exhibited one order of magnitude higher quantum yield (fluorescence intensity) and simultaneously exhibited significantly higher fluorescence contrast. These properties are directly related to the strong electron-donating ability and low energy barrier of rotation of the alkoxy group, as confirmed by dynamic fluorescence experiments and quantum chemical calculations. The PO molecular rotors exhibited two fluorescence relaxation pathways, whereas the PH molecular rotor exhibited a single fluorescence relaxation pathway. Cellular fluorescence imaging with PO molecular rotors for mapping cellular viscosity was successfully demonstrated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The structure of rotational discontinuities

    International Nuclear Information System (INIS)

    Neugebauer, M.

    1989-01-01

    This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle θ between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When θ is large, angular overshoots are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (i.e., when θ is small), many different types of structure are seen, ranging from straight lines, the S-shaped curves, to complex, disorganized shapes

  19. Tokamak rotation and charge exchange

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Rowan, W.L.; Solano, E.R.; Valanju, P.M.

    1991-01-01

    In the absence of momentum input, tokamak toroidal rotation rates are typically small - no larger in particular than poloidal rotation - even when the radial electric field is strong, as near the plasma edge. This circumstance, contradicting conventional neoclassical theory, is commonly attributed to the rotation damping effect of charge exchange, although a detailed comparison between charge-exchange damping theory and experiment is apparently unavailable. Such a comparison is attempted here in the context of recent TEXT experiments, which compare rotation rates, both poloidal and toroidal, in helium and hydrogen discharges. The helium discharges provide useful data because they are nearly free of ion-neutral charge exchange; they have been found to rotate toroidally in reasonable agreement with neoclassical predictions. The hydrogen experiments show much smaller toroidal motion as usual. The theoretical calculation uses the full charge-exchange operator and assumes plateau collisionality, roughly consistent with the experimental conditions. The authors calculate the ion flow as a function of v cx /v c , where v cx is the charge exchange rate and v c the Coulomb collision frequency. The results are in reasonable accord with the observations. 1 ref

  20. Emission-angle and polarization-rotation effects in the lensed CMB

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Antony [Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH (United Kingdom); Hall, Alex [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Challinor, Anthony, E-mail: antony@cosmologist.info, E-mail: ahall@roe.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk [Institute of Astronomy and Kavli Institute for Cosmology, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-08-01

    Lensing of the CMB is an important effect, and is usually modelled by remapping the unlensed CMB fields by a lensing deflection. However the lensing deflections also change the photon path so that the emission angle is no longer orthogonal to the background last-scattering surface. We give the first calculation of the emission-angle corrections to the standard lensing approximation from dipole (Doppler) sources for temperature and quadrupole sources for temperature and polarization. We show that while the corrections are negligible for the temperature and E-mode polarization, additional large-scale B-modes are produced with a white spectrum that dominates those from post-Born field rotation (curl lensing). On large scales about one percent of the total lensing-induced B-mode amplitude is expected to be due to this effect. However, the photon emission angle does remain orthogonal to the perturbed last-scattering surface due to time delay, and half of the large-scale emission-angle B modes cancel with B modes from time delay to give a total contribution of about half a percent. While not important for planned observations, the signal could ultimately limit the ability of delensing to reveal low amplitudes of primordial gravitational waves. We also derive the rotation of polarization due to multiple deflections between emission and observation. The rotation angle is of quadratic order in the deflection angle, and hence negligibly small: polarization typically rotates by less than an arcsecond, orders of magnitude less than a small-scale image rotates due to post-Born field rotation (which is quadratic in the shear). The field-rotation B modes dominate the other effects on small scales.

  1. Small wind turbine energy policies for residential and small business usage in Ontario, Canada

    International Nuclear Information System (INIS)

    Heagle, A.L.B.; Naterer, G.F.; Pope, K.

    2011-01-01

    This paper examines the social barriers, policies, and incentive programs for residential and small business small wind (RBSW) projects, particularly in Ontario, Canada, as well as comparisons with California, US, and the United Kingdom. The alignment between socio-political and community acceptance is considered for its impact on market acceptance of the technology. Barriers inhibiting social acceptance of RBSW projects include adequate capacity factor, cost effectiveness, wind variability, audio-esthetics impact, health and safety, procedural fairness, and transparency. A review of the policies for implementation of small wind projects in each location is presented. Strategies to overcome barriers to social acceptance are examined, along with recommendations for the increased implementation of RBSW projects worldwide. Recommendations to increase social acceptance and subsequent implementation of RBSW projects include the collaboration of government agencies, industry and community members, during RBSW implementation processes, and the provision of consistent, long-term, supportive policies and incentive programs for project owners. - Highlights: → This paper examines the social barriers, policies, and incentive programs for residential and small business small wind (RBSW) projects, particularly in Ontario, Canada, as well as comparisons with California, US, and the United Kingdom. → Barriers inhibiting social acceptance of RBSW projects include adequate capacity factor, cost effectiveness, wind variability, audio-esthetics impact, health and safety, procedural fairness, and transparency. → Recommendations to increase social acceptance and subsequent implementation of RBSW projects include the collaboration of government agencies, industry and community members, during RBSW implementation processes, and the provision of consistent, long-term, supportive policies and incentive programs for project owners.

  2. Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder

    KAUST Repository

    Leslie, G. A.

    2013-01-29

    The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study \\'full-ring\\' solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder. © 2013

  3. Three-dimensional coating and rimming flow: a ring of fluid on a rotating horizontal cylinder

    KAUST Repository

    Leslie, G. A.; Wilson, S. K.; Duffy, B. R.

    2013-01-01

    The steady three-dimensional flow of a thin, slowly varying ring of Newtonian fluid on either the outside or the inside of a uniformly rotating large horizontal cylinder is investigated. Specifically, we study 'full-ring' solutions, corresponding to a ring of continuous, finite and non-zero thickness that extends all of the way around the cylinder. In particular, it is found that there is a critical solution corresponding to either a critical load above which no full-ring solution exists (if the rotation speed is prescribed) or a critical rotation speed below which no full-ring solution exists (if the load is prescribed). We describe the behaviour of the critical solution and, in particular, show that the critical flux, the critical load, the critical semi-width and the critical ring profile are all increasing functions of the rotation speed. In the limit of small rotation speed, the critical flux is small and the critical ring is narrow and thin, leading to a small critical load. In the limit of large rotation speed, the critical flux is large and the critical ring is wide on the upper half of the cylinder and thick on the lower half of the cylinder, leading to a large critical load. We also describe the behaviour of the non-critical full-ring solution and, in particular, show that the semi-width and the ring profile are increasing functions of the load but, in general, non-monotonic functions of the rotation speed. In the limit of large rotation speed, the ring approaches a limiting non-uniform shape, whereas in the limit of small load, the ring is narrow and thin with a uniform parabolic profile. Finally, we show that, while for most values of the rotation speed and the load the azimuthal velocity is in the same direction as the rotation of the cylinder, there is a region of parameter space close to the critical solution for sufficiently small rotation speed in which backflow occurs in a small region on the upward-moving side of the cylinder. © 2013 Cambridge

  4. Exceptional H 2 sorption characteristics in a Mg 2+ -based metal–organic framework with small pores: insights from experimental and theoretical studies

    KAUST Repository

    Pham, Tony; Forrest, Katherine A.; Falcã o, Eduardo H. L.; Eckert, Juergen; Space, Brian

    2016-01-01

    © 2016 the Owner Societies. Experimental sorption measurements, inelastic neutron scattering (INS), and theoretical studies of H2 sorption were performed in α-[Mg3(O2CH)6], a metal-organic framework (MOF) that consists of a network of Mg2+ ions coordinated to formate ligands. The experimental H2 uptake at 77 K and 1.0 atm was observed to be 0.96 wt%, which is quite impressive for a Mg2+-based MOF that has a BET surface area of only 150 m2 g-1. Due to the presence of small pore sizes in the MOF, the isosteric heat of adsorption (Qst) value was observed to be reasonably high for a material with no open-metal sites (ca. 7.0 kJ mol-1). The INS spectra for H2 in α-[Mg3(O2CH)6] is very unusual for a porous material, as there exist several different peaks that occur below 10 meV. Simulations of H2 sorption in α-[Mg3(O2CH)6] revealed that the H2 molecules sorbed at three principal locations within the small pores of the framework. It was discovered through the simulations and two-dimensional quantum rotation calculations that different groups of peaks correspond to particular sorption sites in the material. However, for H2 sorbed at a specific site, it was observed that differences in the positions and angular orientations led to distinctions in the rotational tunnelling transitions; this led to a total of eight identified sites. An extremely high rotational barrier was calculated for H2 sorbed at the most favorable site in α-[Mg3(O2CH)6] (81.59 meV); this value is in close agreement to that determined using an empirical phenomenological model (75.71 meV). This rotational barrier for H2 exceeds those for various MOFs that contain open-metal sites and is currently the highest yet for a neutral MOF. This study highlights the synergy between experiment and theory to extract useful and important atomic level details on the remarkable sorption mechanism for H2 in a MOF with small pore sizes.

  5. Nuclear elasticity applied to giant resonances of fast rotating nuclei

    International Nuclear Information System (INIS)

    Jang, S.; Bouyssy, A.

    1987-06-01

    Isoscalar giant resonances in fast rotating nuclei are investigated within the framework of nuclear elasticity by solving the equation of motion of elastic nuclear medium in a rotating frame of reference. Both Coriolis and centrifugal forces are taken into account. The nuclear rotation removes completely the azimuthal degeneracy of the giant resonance energies. Realistic large values of the angular velocity, which are still small as compared to the giant resonance frequencies, are briefly reviewed in relation to allowed high angular momenta. It is shown that for the A=150 region, the Coriolis force is dominating for small values (< ∼ 0.05) of the ratio of angular velocity to resonance frequency, whereas the centrifugal force plays a prominent part in the shift of the split resonance energies for larger values of the ratio. Typical examples of the resonance energies and their fragmentation due to both rotation and deformation are given

  6. Solar rotation measurements at Mount Wilson. Pt. 2

    International Nuclear Information System (INIS)

    Labonte, B.J.; Howard, R.; Carnegie Institution of Washington, Pasadena

    1981-01-01

    Possible sources of systematic error in solar Doppler rotational velocities are examined. Scattered light is shown to affect the Mount Wilson solar rotation results, but this effect is not enough to bring the spectroscopic results in coincidence with the sunspot rotation. Interference fringes at the spectrograph focus at Mount Wilson have in two intervals affected the rotation results. It has been possible to correlate this error with temperature and thus correct for it. A misalignment between the entrance and exit slits is a possible source of error, but for the Mount Wilson slit configuration the amplitude of this effect is negligibly small. Rapid scanning of the solar image also produces no measurable effect. (orig.)

  7. Synthesis of optical holograms of rotating objects

    International Nuclear Information System (INIS)

    Bogdanova, T.V.; Titar', V.P.; Tomchuk, E.Ya.

    1998-01-01

    A method of synthesis of rotating objects is analyzed and its advantages over the previously known methods and restrictions caused by the nonlinear character of motion of objects being studied are determined. Numerical simulation is used to study properties of synthesized holograms and the images reconstructed with their help. The resolving power of synthesized holograms is determined. The pulsed response of the system used for the synthesis of rotating objects is studied and its isoplanar sections are determined. It is shown that in the optical range, in contrast to the radio-frequency range, one can synthesize holograms and reconstruct visual images not only of rotating objects, but of vibrating objects as well. For small angles of object rotation (0.0025 rad), an image with a high resolution power (0.0004 m) can be obtained

  8. NONLINEAR DYNAMO IN A ROTATING ELECTRICALLY CONDUCTING FLUID

    Directory of Open Access Journals (Sweden)

    M. I. Kopp

    2017-05-01

    Full Text Available We found a new large-scale instability, which arises in the rotating conductive fluid with small-scale turbulence. Turbulence is generated by small-scale external force with a low Reynolds number. The theory is built simply by the method of multiscale asymptotic expansions. Nonlinear equations for vortex and magnetic perturbations obtained in the third order for small Reynolds number. It is shown that the combined effects of the Coriolis force and the small external forces in a rotating conducting fluid possible large-scale instability. The large-scale increments of the instability, correspond to generation as the vortex and magnetic disturbances. This type of instability is classified as hydrodynamic and MHD alpha-effect. We studied the stationary regimes of nonlinear equations of magneto-vortex dynamo. In the limit of weakly conducting fluid found stationary solutions in the form of helical kinks. In the limit of high conductivity fluid was obtained stationary solutions in the form of nonlinear periodic waves and kinks.

  9. Using NDVI to estimate carbon fluxes from small rotationally grazed pastures

    Science.gov (United States)

    Satellite-based Normalized Difference Vegetation Index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. However, the usefulness of satellite-based images for monitoring rotationally-grazed pastures in the northea...

  10. A Numerical-Analytical Approach to Modeling the Axial Rotation of the Earth

    Science.gov (United States)

    Markov, Yu. G.; Perepelkin, V. V.; Rykhlova, L. V.; Filippova, A. S.

    2018-04-01

    A model for the non-uniform axial rotation of the Earth is studied using a celestial-mechanical approach and numerical simulations. The application of an approximate model containing a small number of parameters to predict variations of the axial rotation velocity of the Earth over short time intervals is justified. This approximate model is obtained by averaging variable parameters that are subject to small variations due to non-stationarity of the perturbing factors. The model is verified and compared with predictions over a long time interval published by the International Earth Rotation and Reference Systems Service (IERS).

  11. Nuclear dynamics around the barrier: from fusion to evaporation

    International Nuclear Information System (INIS)

    Simenel, Cedric

    2003-01-01

    This work is devoted to aspects of nuclear dynamics around the barrier. It is shown that for fusion reactions, the Coulomb field couples relative motion of nuclei to rotation of a deformed projectile independently of the energy and the charge of the nuclei. An experimental study of the reaction 6 He + 190 Os via gamma spectroscopy of product nuclei has shown that the break up of the 6 He is coupled to the relative motion too, a strong hindrance resulting in the fusion around and above the fusion barrier. The path to fusion after overcoming the barrier, especially the charge equilibration, have been studied in the framework of the TDHF theory via the preequilibrium GDR excited in N/Z asymmetric reactions. An application to formation of the super-heavy elements has been proposed. Finally, couplings between protons and neutrons have been shown up in mean field calculations. Their main expected effect is an emission of protons under the Coulomb barrier. (author)

  12. Neoclassical poloidal and toroidal rotation in tokamaks

    International Nuclear Information System (INIS)

    Kim, Y.B.; Diamond, P.H.; Groebner, R.J.

    1991-01-01

    Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite to that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation

  13. An investigation of the structure of rotational discontinuities

    International Nuclear Information System (INIS)

    Goodrich, C.C.; Cargill, P.J.

    1991-01-01

    The structure of rotational discontinuities (RDs) has been studied through hybrid simulations for a range of propagation angle Θ bn between the discontinuity normal and the upstream magnetic field and plasma β. For sufficiently narrow initial states, the simulations produce quasi-steady reverse rotation magnetic field structures for 30 degree ≤ Θ bn ≤ 60 degree and 0 i -1 . This structure is characterized by a right handed field rotation upstream joined smoothly to a left handed field rotation downstream; its width decreases from 60-70 c/ω pi at Θ bn = 30 degree to less than 25 c/ω pi at Θ bn = 60 degree. The magnetic field hodograms of the RD results have a distinctive S-shape which is most pronounced in simulations with small Θ bn and initially right handed rotations. The reverse rotation structure is the net result of the expansion of the initial current layer via the fast and intermediate wave modes

  14. l-dependent potential barriers and superdeformed states

    International Nuclear Information System (INIS)

    Gherghescu, R.A.; Royer, G.

    1999-01-01

    The macroscopic-microscopic energy of rotating nuclei moving in the fusion-like deformation valley has been determined within a generalized liquid drop model including the nuclear proximity energy, the two-center shell model and the Strutinsky method. The l-dependent potential barriers of the 84 Zr, 132 Ce, 152 Dy and 192 Hg nuclei have been determined. A first minimum having a pure microscopic origin and lodging the normally deformed states, progressively disappears with increasing angular momenta. The microscopic and macroscopic energies contribute to generate a second minimum where superdeformed states may survive. It becomes progressively the lowest one at intermediate spins. At still higher angular momenta, the minimum moves towards the foot of the external fission barrier leading to macroscopic hyper-deformed quasi-molecular states. (authors)

  15. Recovery of Muscle Strength After Intact Arthroscopic Rotator Cuff Repair According to Preoperative Rotator Cuff Tear Size.

    Science.gov (United States)

    Shin, Sang-Jin; Chung, Jaeyoon; Lee, Juyeob; Ko, Young-Won

    2016-04-01

    The recovery of muscle strength after arthroscopic rotator cuff repair based on the preoperative tear size has not yet been well described. The purpose of this study was to evaluate the recovery period of muscle strength by a serial assessment of isometric strength after arthroscopic rotator cuff repair based on the preoperative tear size. The hypothesis was that muscle strength in patients with small and medium tears would recover faster than that in those with large-to-massive tears. Cohort study; Level of evidence, 3. A total of 164 patients who underwent arthroscopic rotator cuff repair were included. Isometric strength in forward flexion (FF), internal rotation (IR), and external rotation (ER) was evaluated preoperatively and at 6, 12, 18, and 24 months after surgery. Preoperative magnetic resonance imaging scans were assessed to evaluate the quality of the rotator cuff muscle, including fatty infiltration, occupation ratio, and tangent sign. Patient satisfaction as well as visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons (ASES), and Constant scores were assessed at every follow-up. Muscle strength demonstrated the slowest recovery in pain relief and the restoration of shoulder function. To reach the strength of the uninjured contralateral shoulder in all 3 planes of motion, recovery took 6 months in patients with small tears and 18 months in patients with medium tears. Patients with large-to-massive tears showed continuous improvement in strength up to 18 months; however, they did not reach the strength of the contralateral shoulder at final follow-up. At final follow-up, mean strength in FF, IR, and ER was 113.0%, 118.0%, and 112.6% of the contralateral shoulder in patients with small tears, respectively; 105.0%, 112.1%, and 102.6% in patients with medium tears, respectively; and 87.6%, 89.5%, and 85.2% in patients with large-to-massive tears, respectively. Muscle strength in any direction did not significantly correlate with

  16. Rotatable seal assembly

    International Nuclear Information System (INIS)

    Garibaldi, J.L.; Logan, C.M.

    1982-01-01

    An assembly is provided for rotatably supporting a rotor on a stator so that vacuum chambers in the rotor and stator remain in communication while the chambers are sealed from ambient air, which enables the use of a ball bearing or the like to support most of the weight of the rotor. The apparatus includes a seal device mounted on the rotor to rotate therewith, but shiftable in position on the rotor while being sealed to the rotor as by an oring. The seal device has a flat face that is biased towards a flat face on the stator, and pressurized air is pumped between the faces to prevent contact between them while spacing them a small distance apart to avoid the inflow of large amounts of air between the faces and into the vacuum chambers

  17. Pattern formation in rotating Bénard convection

    Science.gov (United States)

    Fantz, M.; Friedrich, R.; Bestehorn, M.; Haken, H.

    1992-12-01

    Using an extension of the Swift-Hohenberg equation we study pattern formation in the Bénard experiment close to the onset of convection in the case of rotating cylindrical fluid containers. For small Taylor numbers we emphasize the existence of slowly rotating patterns and describe behaviour exhibiting defect motion. Finally, we study pattern formation close to the Küppers-Lortz instability. The instability is nucleated at defects and proceeds through front propagation into the bulk patterns.

  18. 13 CFR 120.175 - Coastal barrier islands.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Coastal barrier islands. 120.175 Section 120.175 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Policies Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.175 Coastal barrier...

  19. Measurement of small light absorption in microparticles by means of optically induced rotation

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.

    2015-01-01

    The absorption parameters of micro-particles have been associated with the induced spin exerted upon the particle, when embedded in a circularly polarized coherent field. The induced rotational speed is theoretically analyzed, showing the influence of the beam parameters, the parameters of the pa......The absorption parameters of micro-particles have been associated with the induced spin exerted upon the particle, when embedded in a circularly polarized coherent field. The induced rotational speed is theoretically analyzed, showing the influence of the beam parameters, the parameters...

  20. Environmental Barrier Coatings for Turbine Engines: A Design and Performance Perspective

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis; Smialek, James L.; Miller, Robert A.

    2009-01-01

    Ceramic thermal and environmental barrier coatings (TEBC) for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating long-term durability remains a major concern with the ever-increasing temperature, strength and stability requirements in engine high heat-flux combustion environments, especially for highly-loaded rotating turbine components. Advanced TEBC systems, including nano-composite based HfO2-aluminosilicate and rare earth silicate coatings are being developed and tested for higher temperature capable SiC/SiC ceramic matrix composite (CMC) turbine blade applications. This paper will emphasize coating composite and multilayer design approach and the resulting performance and durability in simulated engine high heat-flux, high stress and high pressure combustion environments. The advances in the environmental barrier coating development showed promise for future rotating CMC blade applications.

  1. Intestinal mal-rotation in adults. CT findings

    International Nuclear Information System (INIS)

    Vazquez Munoz, Enrique; Ramiro Ramiro, Esther; Perez Villacastin, Benjamin; Learra Martinez, Maria C.; Franco Lopez, Maria A.

    2004-01-01

    We review 7 adult cases of intestinal mal-rotation who were studied with CT. All patients had a small bowel located in the right hemi abdomen, abnormal location of superior mesenteric vein relative to superior mesenteric artery. Superior mesenteric vein was located anteriorly and to the left of superior mesenteric artery. In patients who suffered intestinal volvulus a 'whirlpool' sign was observed, due to the helicoidal torsion of the intestine and mesentery surrounding superior mesenteric artery. In 3 cases CT demonstrated absence or poor development of the pancreas uncinate process. In 2 patients CT revealed polysplenia. CT played a major role in 3 patients with volvulus as a complication of intestinal mal-rotation. CT also demonstrated unsuspected mal-rotation in one asymptomatic patient. In 3 cases with classic symptoms CT confirmed the intestinal mal-rotation diagnosed by barium studies. (author)

  2. Use by small mammals of short-rotation plantations in relation to their structure and isolation

    Directory of Open Access Journals (Sweden)

    Marta Giordano

    2010-06-01

    Full Text Available Abstract Over the last decades, dramatic changes in agricultural practices have led to important modifications of land-use, as well as landscape structure, and to a general biodiversity loss in agro-ecosystems. During 2008 we investigated the small mammal communities of Short Rotation Forestry (SRF stands in Northern Italy. We live-trapped small mammals, during summer and autumn, in different types of SRF stands and surrounding habitats and compared capture rates. We evaluated the influence on small mammals abundance of the distance between the stands and other habitats offering woody or bushy cover. Our results showed that SRF plantations are widely exploited by small mammals, especially in autumn and that capture rate is the highest in “double-row” stands. The distance from woods or other arboriculture stands was negatively correlated to small mammals abundance. We conclude that SRF plantations can be considered a suitable habitat for small mammals and may work as a “corridor habitat” between fragmented patches of suitable habitats.
    Riassunto Uso degli impianti a turno breve da parte dei micrommamiferi, in relazione alla loro struttura e isolamento Negli ultimi decenni profondi cambiamenti nelle pratiche agricole hanno causato modifiche nella tipologia di uso dei terreni, così come nella struttura del paesaggio, che hanno portato a una generale perdita di biodiversità negli agroecosistemi. Nel corso del 2008 abbiamo studiato le comunità di micromammiferi nelle piantagioni di pioppo per la produzione di biomassa (SRF nel Nord Italia. Con l’uso di live-traps abbiamo effettuato due sessioni di cattura, una estiva e una autunnale, nei diversi tipi di impianto delle SRF e negli ambienti circostanti, per comparare le frequenze di cattura. Abbiamo quindi analizzato l’influenza che la distanza tra i diversi ambienti con copertura arborea ha sull’abbondanza dei micromammiferi

  3. Effects of alanyl-glutamine supplementation on the small intestinal mucosa barrier in weaned piglets

    Directory of Open Access Journals (Sweden)

    Shen Xing

    2017-02-01

    Full Text Available Objective The study was to investigate the effects of alanyl-glutamine (Ala-Gln and glutamine (Gln supplementation on the intestinal mucosa barrier in piglets. Methods A total of 180 barrows with initial weight 10.01±0.03 kg were randomly allocated to three treatments, and each treatment consisted of three pens and twenty pigs per pen. The piglets of three groups were fed with control diet [0.62% alanine (Ala], Ala-Gln diet (0.5% Ala-Gln, Gln diet (0.34% Gln and 0.21% Ala, respectively. Results The results showed that in comparison with control diet, dietary Ala-Gln supplementation increased the height of villi in duodenum and jejunum (p<0.05, Gln supplementation increased the villi height of jejunum (p<0.05, Ala-Gln supplementation up-regulated the mRNA expressions of epidermal growth factor receptor and insulin-like growth factor 1 receptor in jejunal mucosa (p<0.05, raised the mRNA expressions of Claudin-1, Occludin, zonula occludens protein-1 (ZO-1 and the protein levels of Occludin, ZO-1 in jejunal mucosa (p<0.05, Ala-Gln supplementation enlarged the number of goblet cells in duodenal and ileal epithelium (p<0.05, Gln increased the number of goblet cells in duodenal epithelium (p<0.05 and Ala-Gln supplementation improved the concentrations of secretory immunoglobulin A and immunoglobulin G in the jejunal mucosa (p<0.05. Conclusion These results demonstrated that dietary Ala-Gln supplementation could maintain the integrity of small intestine and promote the functions of intestinal mucosa barriers in piglets.

  4. Adolescents' Self-Efficacy to Overcome Barriers to Physical Activity Scale

    Science.gov (United States)

    Dwyer, John J. M.; Chulak, Tala; Maitland, Scott; Allison, Kenneth R.; Lysy, Daria C.; Faulkner, Guy E. J.; Sheeshka, Judy

    2012-01-01

    This paper describes a revised measure of self-efficacy to overcome barriers to moderate and vigorous physical activity in a sample of 484 high school students in Toronto, Ontario. The students had a mean age of 15.3 years. Principal axis factoring with oblique rotation yielded five factors: self-efficacy to overcome internal, harassment, physical…

  5. On the physical interpretation of torsion-rotation parameters in methanol and acetaldehyde: Comparison of global fit and ab initio results

    International Nuclear Information System (INIS)

    Xu, L.; Lees, R.M.; Hougen, J.T.

    1999-01-01

    Equilibrium structural constants and certain torsion endash rotation interaction parameters have been determined for methanol and acetaldehyde from ab initio calculations using GAUSSIAN 94. The substantial molecular flexing which occurs in going from the bottom to the top of the torsional potential barrier can be quantitatively related to coefficients of torsion endash rotation terms having a (1-cos ampersand hthinsp;3γ) dependence on torsional angle γ. The barrier height, six equilibrium structural constants characterizing the bottom of the potential well, and six torsion endash rotation constants are all compared to experimental parameters obtained from global fits to large microwave and far-infrared data sets for methanol and acetaldehyde. The rather encouraging agreement between the Gaussian and global fit results for methanol seems both to validate the accuracy of ab initio calculations of these parameters, and to demonstrate that the physical origin of these torsion endash rotation interaction terms in methanol lies primarily in structural relaxation with torsion. The less satisfactory agreement between theory and experiment for acetaldehyde requires further study. copyright 1999 American Institute of Physics

  6. Towards the automatic detection and analysis of sunspot rotation

    Science.gov (United States)

    Brown, Daniel S.; Walker, Andrew P.

    2016-10-01

    Torsional rotation of sunspots have been noted by many authors over the past century. Sunspots have been observed to rotate up to the order of 200 degrees over 8-10 days, and these have often been linked with eruptive behaviour such as solar flares and coronal mass ejections. However, most studies in the literature are case studies or small-number studies which suffer from selection bias. In order to better understand sunspot rotation and its impact on the corona, unbiased large-sample statistical studies are required (including both rotating and non-rotating sunspots). While this can be done manually, a better approach is to automate the detection and analysis of rotating sunspots using robust methods with well characterised uncertainties. The SDO/HMI instrument provide long-duration, high-resolution and high-cadence continuum observations suitable for extracting a large number of examples of rotating sunspots. This presentation will outline the analysis of SDI/HMI data to determine the rotation (and non-rotation) profiles of sunspots for the complete duration of their transit across the solar disk, along with how this can be extended to automatically identify sunspots and initiate their analysis.

  7. Counter-rotational effects on stability of 2 + 1-dimensional thin-shell wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Mazharimousavi, S.H.; Halilsoy, M. [Eastern Mediterranean University, Department of Physics, Gazimagusa (Turkey)

    2014-09-15

    The role of angular momentum in a 2 + 1-dimensional rotating thin-shell wormhole (TSW) is considered. Particular emphasis is given to stability when the shells (rings) are counter-rotating. We find that counter-rotating halves make the TSW supported by the equation of state of a linear gas more stable. Under a small velocity dependent perturbation, however, it becomes unstable. (orig.)

  8. Near-Barrier Fusion of Heavy Nuclei. Coupling of the Channels

    CERN Document Server

    Zagrebaev, V I

    2003-01-01

    The problem of quantum description of near-barrier fusion of heavy nuclei taking place under strong coupling of relative motion with rotation of deformed nuclei and with dynamic deformations of their surfaces is studied in the paper. A new effective method is proposed for numerical solution of a set of coupled Schrodinger equations with boundary conditions corresponding to a full absorption of the flux penetrated through the multi-dimensional Coulomb barrier. The method has no limitation on the number of coupled channels and allows one to calculate fusion cross-sections of very heavy nuclei used for synthesis of super-heavy elements. A combined analysis of the multi-dimensional potential energy surface relief and the multi-channel wave function in the vicinity of the Coulomb barrier gives a clear interpretation of near-barrier fusion dynamics. Comparison with experimental data and with semi-empirical model calculations is performed. The computing codes are allocated at the web-server http://nrv.jinr.ru/nrv/ w...

  9. Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises

    International Nuclear Information System (INIS)

    Trianni, Andrea; Cagno, Enrico; Farné, Stefano

    2016-01-01

    Highlights: • Barriers and drivers vary along the decision-making process of EEM adoption. • Economic barriers, awareness and behavioural are most critical. • Beside economic drivers, major relevance of regulatory and vocational training. • Importance of stakeholders providing technical support. • Barriers and drivers are different according to several firm characteristics. - Abstract: Energy efficiency has been recognized as a primary means to increase the competitiveness of the industrial sector, and in particular for small and medium-sized enterprises (SMEs), in which energy efficiency measures (EEMs) are scarcely implemented. For this reason, future policies should carefully address such issue. Hence, it is really crucial to have a precise and punctual knowledge of the barriers to be tackled in the decision-making process of adopting an EEM and the drivers to be promoted. This study discussed the findings from a broad investigation within 222 manufacturing SMEs located in a Northern Italy region. Beside economic issues particularly affecting SMEs, awareness and behavioural issues emerge as critical, affecting the very first steps of the decision-making process, related to the punctual identification and evaluation of plausible EEMs. The support from manufacturers, technology suppliers, installers and ESCOs supporting SMEs through vocational training drivers (e.g. technical support) is really important to tackle such issues. More generally, beside financial institutions, the supply chain of technologies is recognized as particularly useful for supporting enterprises in the adoption of EEMs. Additionally, having previously conducted energy audit and implemented EEMs are critical factors able to highlight non-economic barriers and drivers. Therefore, the promotion of EEMs will necessarily imply a further effort in pointing out the so-called non-energy benefits (NEBs) from the implementation of EEMs. Finally, our study reveals that smaller and non

  10. B polarization of the CMB from Faraday rotation

    International Nuclear Information System (INIS)

    Scoccola, Claudia; Harari, Diego; Mollerach, Silvia

    2004-01-01

    We study the effect of Faraday rotation due to a uniform magnetic field on the polarization of the cosmic microwave background. Scalar fluctuations give rise only to parity-even E-type polarization of the cosmic microwave background. However in the presence of a magnetic field, a nonvanishing parity-odd B-type polarization component is produced through Faraday rotation. We derive the exact solution for the E and B modes generated by scalar perturbations including the Faraday rotation effect of a uniform magnetic field, and evaluate their cross correlations with temperature anisotropies. We compute the angular autocorrelation function of the B-modes in the limit that the Faraday rotation is small. We find that uniform primordial magnetic fields of present strength around B 0 =10 -9 G rotate E-modes into B-modes with amplitude comparable to those due to the weak gravitational lensing effect at frequencies around ν=30 GHz. The strength of B-modes produced by Faraday rotation scales as B 0 /ν 2 . We evaluate also the depolarizing effect of Faraday rotation upon the cross correlation between temperature anisotropy and E-type polarization

  11. Intestinal Rotation Abnormalities and Midgut Volvulus.

    Science.gov (United States)

    Langer, Jacob C

    2017-02-01

    Rotation abnormalities may be asymptomatic or may be associated with obstruction caused by bands, midgut volvulus, or associated atresia or web. The most important goal of clinicians is to determine whether the patient has midgut volvulus with intestinal ischemia, in which case an emergency laparotomy should be done. If the patient is not acutely ill, the next goal is to determine whether the patient has a narrow-based small bowel mesentery. In general, the outcomes for children with a rotation abnormality are excellent, unless there has been midgut volvulus with significant intestinal ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting

    Science.gov (United States)

    Zhang, Yunshun; Zheng, Rencheng; Nakano, Kimihiko; Cartmell, Matthew P.

    2018-04-01

    Nonlinear energy harvesters are frequently considered in preference to linear devices because they can potentially overcome the narrow frequency bandwidth limitations inherent to linear variants; however, the possibility of variable harvesting efficiency is raised for the nonlinear case. This paper proposes a rotational energy harvester which may be fitted into an automobile tyre, with the advantage that it may broaden the rotating frequency bandwidth and simultaneously stabilise high-energy orbit oscillations. By consideration of the centrifugal effects due to rotation, the overall restoring force will potentially be increased for a cantilever implemented within the harvester, and this manifests as an increase in its equivalent elastic stiffness. In addition, this study reveals that the initial potential well barriers become as shallow as those for a bistable system. When the rotational frequency increases beyond an identifiable boundary frequency, the system transforms into one with a potential barrier of a typical monostable system. On this basis, the inter-well motion of the bistable system can provide sufficient kinetic energy so that the cantilever maintains its high-energy orbit oscillation for monostable hardening behaviour. Furthermore, in a vehicle drive experiment, it has been shown that the effective rotating frequency bandwidth can be widened from 15 km/h-25 km/h to 10 km/h-40 km/h. In addition, it is confirmed that the centrifugal effects can improve the harvester performance, producing a mean power of 61 μW at a driving speed of 40 km/h, and this is achieved by stabilising the high-energy orbit oscillations of the rotational harvester.

  13. The Role of the Away Rotation in Otolaryngology Residency.

    Science.gov (United States)

    Villwock, Jennifer A; Hamill, Chelsea S; Ryan, Jesse T; Nicholas, Brian D

    2017-06-01

    Objective To determine the availability and purpose of away rotations during otolaryngology residency. Study Design Cross-sectional survey. Setting Otolaryngology residency programs. Subjects and Methods An anonymous web-based survey was sent to 98 allopathic otolaryngology training program directors, of which 38 programs responded. Fisher exact tests and nonparametric correlations were used to determine statistically significant differences among various strata of programs. A P value of 151 miles from the home institution and typically used to address deficiencies in clinical exposure (67%) or case volume (50%). Participants of mandatory away rotations were universally provided housing, with other consideration such as stipend (33%), relocation allowance (33%), or food allowance (16%) sometimes offered. In contrast to mandatory rotations, half of elective rotations were to obtain a unique international mission trip experience. Nearly one-third of surveyed program directors (29%) would consider adding an away rotation to their curriculum in the next 3 years. Conclusions Mandatory and elective away rotations play a role in a small, but not insignificant, number of training programs. The rationale for these rotations is variable. Given that nearly one-third of program directors would consider adding an away rotation in the near future, further research into components of a meaningful away rotation and how to optimize the away rotation experience is warranted.

  14. Barrier effects of roads on movements of small mammals

    Czech Academy of Sciences Publication Activity Database

    Rico, Adriana; Kindlmann, Pavel; Sedláček, František

    2007-01-01

    Roč. 56, č. 1 (2007), s. 1-12 ISSN 0139-7893 R&D Projects: GA ČR(CZ) GA206/04/0254; GA ČR(CZ) GD206/03/H034; GA MŠk LC06073 Keywords : Apodemus flavicollis * Clethrionomys glareolus * habitat fragmentation * linear clearings * road barriers * road crossing rates * Sorex araneus Subject RIV: EH - Ecology, Behaviour Impact factor: 0.376, year: 2007

  15. Faraday Rotation Measure Study of Cluster Magnetic Fields

    Science.gov (United States)

    Frankel, M. M.; Clarke, T. E.

    2001-12-01

    Magnetic fields are thought to play an important role in galaxy cluster evolution. To this end in this study, we looked at polarized radio sources viewed at small impact parameters to the cores of non-cooling flow clusters. By looking at non-cooling flow clusters we hoped to establish what magnetic fields of clusters look like in the absence of the compressed central magnetic fields of the cooling-flow cores. Clarke, Kronberg and Boehringer (2001) examined Faraday rotation measures of radio probes at relatively large impact parameters to the cores of galaxy clusters. The current study is an extension of the Clarke et al. analysis to probe the magnetic fields in the cores of galaxy clusters. We looked at the Faraday rotation of electromagnetic waves from background or imbedded radio galaxies, which were observed with the VLA in A&B arrays. Our results are consistent with previous findings and exhibit a trend towards higher rotation measures and in turn higher magnetic fields at small impact parameters to cluster cores. This research was made possible through funding from the National Science Foundation.

  16. Nuclear reorganization barriers to electron transfer

    International Nuclear Information System (INIS)

    Sutin, N.; Brunschwig, B.S.; Creutz, C.; Winkler, J.R.

    1988-01-01

    The nuclear barrier to electron transfer arises from the need for reorganization of intramolecular and solvent internuclear distances prior to electron transfer. For reactions with relatively small driving force (''normal'' free-energy region) the nuclear factors and rates increase as intrinsic inner-shell and outer-shell barriers decrease; this is illustrated by data for transition metal complexes in their ground electronic states. By contrast, in the inverted free-energy region, rates and nuclear factors decrease with decreasing ''intrinsic'' barriers; this is illustrated by data for the decay of charge-transfer excited states. Several approaches to the evaluation of the outer-shell barrier are explored in an investigation of the distance dependence of the nuclear factor in intramolecular electron-transfer processes. 39 refs., 14 figs., 3 tabs

  17. Dynamics of Tidally Locked, Ultrafast Rotating Atmospheres

    Science.gov (United States)

    Tan, Xianyu; Showman, Adam P.

    2017-10-01

    Tidally locked gas giants, which exhibit a novel regime of day-night thermal forcing and extreme stellar irradiation, are typically in several-day orbits, implying slow rotation and a modest role for rotation in the atmospheric circulation. Nevertheless, there exist a class of gas-giant, highly irradiated objects - brown dwarfs orbiting white dwarfs in extremely tight orbits - whose orbital and hence rotation periods are as short as 1-2 hours. Spitzer phase curves and other observations have already been obtained for this fascinating class of objects, which raise fundamental questions about the role of rotation in controlling the circulation. So far, most modeling studies have investigated rotation periods exceeding a day, as appropriate for typical hot Jupiters. In this work we investigate the dynamics of tidally locked atmospheres in shorter rotation periods down to about two hours. With increasing rotation rate (decreasing rotation period), we show that the width of the equatorial eastward jet decreases, consistent with the narrowing of wave-mean-flow interacting region due to decrease of the equatorial deformation radius. The eastward-shifted equatorial hot spot offset decreases accordingly, and the westward-shifted hot regions poleward of the equatorial jet associated with Rossby gyres become increasingly distinctive. At high latitudes, winds becomes weaker and more geostrophic. The day-night temperature contrast becomes larger due to the stronger influence of rotation. Our simulated atmospheres exhibit small-scale variability, presumably caused by shear instability. Unlike typical hot Jupiters, phase curves of fast-rotating models show an alignment of peak flux to secondary eclipse. Our results have important implications for phase curve observations of brown dwarfs orbiting white dwarfs in ultra tight orbits.

  18. Specific fission J-window and angular momentum dependence of the fission barrier

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Hiroshi; Saito, Tadashi; Takahashi, Naruto; Yokoyama, Akihiko [Osaka Univ., Suita (Japan); Shinohara, Atsushi

    1997-04-01

    A method to determine a unique J-window in the fission process was devised and the fissioning nuclide associated with thus extracted J-window was identified for each of the heavy-ion reaction systems. Obtained fission barriers at the resulting J-window were compared with the calculated values by the rotating finite range model (RFRM). The deduced barriers for individual nuclides were compared with the RFRM barriers to reproduce more or less the angular momentum dependence the RFRM prediction. The deduced systematic behavior of the fission barrier indicates no even-odd and shell corrections are necessary. The nuclear dissipation effect based on Kramer`s model revealed substantial reduction of the statistically deduced barrier heights and brought a fairly large scattering from the RFRM J-dependence. However, introduction of the temperature-dependent friction coefficient ({gamma} = 2 for T {>=} 1.0 MeV and 0.5 for T < 1.0 MeV) was found to bring about satisfactory agreement with both RFRM fission barriers and the pre-fission neutron multiplicity systematics. (author). 81 refs.

  19. Rotational spectrum and conformational composition of cyanoacetaldehyde, a compound of potential prebiotic and astrochemical interest.

    Science.gov (United States)

    Møllendal, Harald; Margulès, Laurent; Motiyenko, Roman A; Larsen, Niels Wessel; Guillemin, Jean-Claude

    2012-04-26

    The rotational spectrum of cyanoacetaldehyde (NCCH(2)CHO) has been investigated in the 19.5-80.5 and 150-500 GHz spectral regions. It is found that cyanoacetaldehyde is strongly preferred over its tautomer cyanovinylalcohol (NCCH═CHOH) in the gas phase. The spectra of two rotameric forms of cyanoacetaldehyde produced by rotation about the central C-C bond have been assigned. The C-C-C-O dihedral angle has an unusual value of 151(3)° from the synperiplanar (0°) position in one of the conformers denoted I, while this dihedral angle is exactly synperiplanar in the second rotamer called II, which therefore has C(s) symmetry. Conformer I is found to be preferred over II by 2.9(8) kJ/mol from relative intensity measurements. A double minimum potential for rotation about the central C-C bond with a small barrier maximum at the exact antiperiplanar (180°) position leads to Coriolis perturbations in the rotational spectrum of conformer I. Selected transitions of I were fitted to a Hamiltonian allowing for this sort of interaction, and the separation between the two lowest vibrational states was determined to be 58794(14) MHz [1.96112(5) cm(-1)]. Attempts to include additional transitions in the fits using this Hamiltonian failed, and it is concluded that it lacks interaction terms to account satisfactorily for all the observed transitions. The situation was different for II. More than 2000 transitions were assigned and fitted to the usual Watson Hamiltonian, which allowed very accurate values to be determined not only for the rotational constants, but for many centrifugal distortion constants as well. Two vibrationally excited states were also assigned for this form. Theoretical calculations were performed at the B3LYP, MP2, and CCSD levels of theory using large basis sets to augment the experimental work. The predictions of these calculations turned out to be in good agreement with most experimental results.

  20. Barriers to Technology Use in Large and Small School Districts

    Science.gov (United States)

    Francom, Gregory M.

    2016-01-01

    Barriers to effective technology integration come in several different categories, including access to technology tools and resources, technology training and support, administrative support, time to plan and prepare for technology integration, and beliefs about the importance and usefulness of technology tools and resources. This study used…

  1. Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak.

    Science.gov (United States)

    Garofalo, A M; Burrell, K H; DeBoo, J C; deGrassie, J S; Jackson, G L; Lanctot, M; Reimerdes, H; Schaffer, M J; Solomon, W M; Strait, E J

    2008-11-07

    We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions.

  2. Fission barriers in the quasi-molecular shape path

    International Nuclear Information System (INIS)

    Royer, G.; Bonilla, C.; Zbiri, K.; Gherghescu, R.A.

    2003-01-01

    New observed phenomena like asymmetric fission of intermediate mass nuclei, nuclear molecules in light nuclei, super and hyperdeformations, cluster radioactivity, fast-fission of heavy systems and fragmentation have renewed interest in investigating the fusion-like fission valley which leads rapidly to two touching spherical fragments and quasi-molecular shapes. Furthermore, rotating super and hyperdeformed nuclear states and superheavy nuclei can be formed only in heavy-ion collisions for which the initial configuration is two close quasi-spherical nuclei. For these shapes the balance between the Coulomb forces and surface tension forces does not allow to link the sheets of the potential energy surface corresponding to one-body shapes and to two separated fragments, respectively. It is necessary to add another term called proximity energy reproducing the finite-range effects of the nuclear force in the neck or the gap between the nascent fission fragments. A generalized liquid drop model has been developed to take into account this nuclear proximity energy, the mass and charge asymmetry, an accurate nuclear radius and the temperature effects. The initial value of the surface energy coefficient has been kept. Microscopic corrections have been determined within the asymmetric two center shell model or simpler algebraic approximations. With this model and deformation valley first studies had led to the following results: (i) good agreement between the potential barrier heights and the experimental fission barrier heights in the whole mass range; (ii) saddle-point corresponding to two separated fragments maintained in unstable equilibrium by the balance between the repulsive Coulomb forces and the attractive proximity forces; (iii) strong enhancement of the maximal angular momentum against fission; (iv) reasonable agreement with experimental data on the double-humped barriers of actinides. Within this same approach we have recently shown that the calculated potential

  3. On Stationary Navier-Stokes Flows Around a Rotating Obstacle in Two-Dimensions

    Science.gov (United States)

    Higaki, Mitsuo; Maekawa, Yasunori; Nakahara, Yuu

    2018-05-01

    We study the two-dimensional stationary Navier-Stokes equations describing the flows around a rotating obstacle. The unique existence of solutions and their asymptotic behavior at spatial infinity are established when the rotation speed of the obstacle and the given exterior force are sufficiently small.

  4. Turbulent convection in liquid metal with and without rotation.

    Science.gov (United States)

    King, Eric M; Aurnou, Jonathan M

    2013-04-23

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, Pr rotating Rayleigh-Bénard convection experiments in the liquid metal gallium (Pr = 0.025) over a range of nondimensional buoyancy forcing (Ra) and rotation periods (E). Our primary diagnostic is the efficiency of convective heat transfer (Nu). In general, we find that the convective behavior of liquid metal differs substantially from that of moderate Pr fluids, such as water. In particular, a transition between rotationally constrained and weakly rotating turbulent states is identified, and this transition differs substantially from that observed in moderate Pr fluids. This difference, we hypothesize, may explain the different classes of magnetic fields observed on the Gas and Ice Giant planets, whose dynamo regions consist of Pr 1 fluids, respectively.

  5. Rotating thermal flows in natural and industrial processes

    CERN Document Server

    Lappa, Marcello

    2012-01-01

    Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework.  This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou

  6. Rotator cuff tendon connections with the rotator cable.

    Science.gov (United States)

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  7. Origin of Small Barriers in Jahn–Teller Systems

    DEFF Research Database (Denmark)

    Barriuso, M. T.; Ortiz-Sevilla, B.; Aramburu, J. A.

    2013-01-01

    . It is quantitatively proven that the elongated geometry observed for NaCl:Ni+ is due to the 3d–4s vibronic admixture, which is slightly larger than the anharmonicity in the eg JT mode that favors a compressed geometry. The existence of these two competing mechanisms explains the low value of B for the model system......Despite its relevance, the microscopic origin of the energy barrier, B, between the compressed and elongated geometries of Jahn–Teller (JT) systems is not well understood yet because of a lack of quantitative data about its various contributions. Seeking to clear up this matter, we have carried out...

  8. Long term performance of the Waterloo denitrification barrier

    International Nuclear Information System (INIS)

    Robertson, W.D.; Cherry, J.A.

    1997-01-01

    Beginning in 1991 a series of laboratory tests and small scale field trials were initiated to test the performance of an innovative permeable reactive barrier for treatment of nitrate from septic systems. The barrier promotes denitrification by providing an energy source in the form of solid organic carbon mixed into the porous media material. Advantages of the system for nitrate treatment are that the reaction is passive and in situ and it is possible to incorporate sufficient carbon mass in conveniently sized barriers to potentially provide treatment for long periods (decades) without the necessity for maintenance. However, longevity can only be demonstrated by careful long term monitoring of field installations. This paper documents four years of operating history at three small scale field trials; two where the denitrification barrier is installed as a horizontal layer positioned in the unsaturated zone below conventional septic system infiltration beds and one where the barrier is installed as a vertical wall intercepting a septic system plume at a downgradient location. The barriers have successfully attenuated 50-100% of NO - 3 -N levels of up to 170 mg/L and treatment has remained consistent over the four year period in each case, thus considerable longevity is indicated. Other field trials have demonstrated this technology to be equally effective in treating nitrogen contamination from other sources such as landfill leachate and farm field runoff

  9. Rotation of dust plasma crystals in an axial magnetic field

    International Nuclear Information System (INIS)

    Cheung, F.; Prior, N.; Mitchell, L.

    2000-01-01

    Full text: Micron-sized melamine formaldehyde particles were introduced into argon plasma. As a result, the particles were negatively charged due to collision with the electrons within the plasma. With the right conditions, these particles formed a stable macroscopic crystal lattice, known as dust plasma crystal. In our experiment we conduct at Flinders University, we apply an external axial magnetic field to various configurations of dust plasma crystal. These configurations include small crystal lattices consisting of one to several particles, and large crystal lattices with many hundreds of particles. The magnetic field strength ranged from 0-32G and was uniform over the extent of the crystal. The crystals were observed to be rotating collectively in the left-handed direction under the influence of the axial magnetic field. In the case of the large crystals, the angular velocity was about 2 complete rotations per minute and was proportional to the applied magnetic field. The angular velocity changes only slightly depending on the plasma conditions. Neither radial variance in the angular velocity nor shear velocity in the vertical direction was observed in the crystal's rotational motion. In the case of the small crystals, we managed to rotate 2-6 particles (whether they are planar, 2 layers or tetrahedral). We discovered that the ease and the uniformity of the rotation of the different crystals increase as its rotational symmetry increases. Also an increase in the magnetic field strength will correspond to an increase in the angular velocity. Crystals in the shape of an annulus were also tested for theoretical reasons. The poster presentation will contain the experimental procedures, a detailed analysis and an explanation for such dust plasma crystal rotational motion

  10. Multidirectional Image Sensing for Microscopy Based on a Rotatable Robot

    Directory of Open Access Journals (Sweden)

    Yajing Shen

    2015-12-01

    Full Text Available Image sensing at a small scale is essentially important in many fields, including microsample observation, defect inspection, material characterization and so on. However, nowadays, multi-directional micro object imaging is still very challenging due to the limited field of view (FOV of microscopes. This paper reports a novel approach for multi-directional image sensing in microscopes by developing a rotatable robot. First, a robot with endless rotation ability is designed and integrated with the microscope. Then, the micro object is aligned to the rotation axis of the robot automatically based on the proposed forward-backward alignment strategy. After that, multi-directional images of the sample can be obtained by rotating the robot within one revolution under the microscope. To demonstrate the versatility of this approach, we view various types of micro samples from multiple directions in both optical microscopy and scanning electron microscopy, and panoramic images of the samples are processed as well. The proposed method paves a new way for the microscopy image sensing, and we believe it could have significant impact in many fields, especially for sample detection, manipulation and characterization at a small scale.

  11. Study of internal rotation in molecules using molecular orbital method in the CNDO/BW approximation

    International Nuclear Information System (INIS)

    Pedrosa, M.S.

    1987-10-01

    It is presented a LCAO-MO-SCF study of Internal Rotation for the molecules C 2 H 6 , CH 3 NH 2 , H 2 O 2 , and N 2 H 4 by ysing the CNDO/BW approximation and an M-center energy partition. Our results are compared with those obtained with the CNDO/2 approximation. It is shown that there are differences in the analysis of the process involved in the internal rotation barriers mechanism. Thus the interpretation of the results is strongly dependent on the parametrization used. (author) [pt

  12. Turbulent convection in liquid metal with and without rotation

    OpenAIRE

    King, Eric M.; Aurnou, Jonathan M.

    2013-01-01

    The magnetic fields of Earth and other planets are generated by turbulent, rotating convection in liquid metal. Liquid metals are peculiar in that they diffuse heat more readily than momentum, quantified by their small Prandtl numbers, . Most analog models of planetary dynamos, however, use moderate fluids, and the systematic influence of reducing is not well understood. We perform rotating Rayleigh–Bénard convection experiments in the liquid metal gallium over a range of nondimensional bu...

  13. Vertical barriers with increased sorption capacities

    International Nuclear Information System (INIS)

    Bradl, H.B.

    1997-01-01

    Vertical barriers are commonly used for the containment of contaminated areas. Due to the very small permeability of the barrier material which is usually in the order of magnitude of 10-10 m/s or less the advective contaminant transport can be more or less neglected. Nevertheless, there will always be a diffusive contaminant transport through the barrier which is caused by the concentration gradient. Investigations have been made to increase the sorption capacity of the barrier material by adding substances such as organoclays, zeolites, inorganic oxides and fly ashes. The contaminants taken into account where heavy metals (Pb) and for organic contaminants Toluole and Phenantrene. The paper presents results of model calculations and experiments. As a result, barrier materials can be designed 'tailor-made' depending on the individual contaminant range of each site (e.g. landfills, gasworks etc.). The parameters relevant for construction such as rheological properties, compressive strength and permeability are not affected by the addition of the sorbents

  14. Remapping HELENA to incompressible plasma rotation parallel to the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Poulipoulis, G.; Throumoulopoulos, G. N. [Physics Department, University of Ioannina, Ioannina 451 10 (Greece); Konz, C. [Max-Planck Institut für Plasma Physics, 85748 Garching bei München (Germany)

    2016-07-15

    Plasma rotation in connection to both zonal and mean (equilibrium) flows can play a role in the transitions to the advanced confinement regimes in tokamaks, as the L-H transition and the formation of internal transport barriers (ITBs). For incompressible rotation, the equilibrium is governed by a generalised Grad-Shafranov (GGS) equation and a decoupled Bernoulli-type equation for the pressure. For parallel flow, the GGS equation can be transformed to one identical in form with the usual Grad-Shafranov equation. In the present study on the basis of the latter equation, we have extended HELENA, an equilibrium fixed boundary solver. The extended code solves the GGS equation for a variety of the two free-surface-function terms involved for arbitrary Alfvén Mach number and density functions. We have constructed diverted-boundary equilibria pertinent to ITER and examined their characteristics, in particular, as concerns the impact of rotation on certain equilibrium quantities. It turns out that the rotation and its shear affect noticeably the pressure and toroidal current density with the impact on the current density being stronger in the parallel direction than in the toroidal one.

  15. Neoclassical rotation velocities in multispecies plasmas

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Hirshman, S.P.; Shaing, K.C.

    1996-01-01

    We examine the relationships between the poloidal, toroidal and parallel rotation velocities for typical plasma conditions in existing tokamak experiments. The radial force balance, neoclassical solution to the poloidal flow from the parallel force balance, and anomalous toroidal rotation axe included. A full multispecies formulation of the neoclassical transport theory is implemented in the NCLASS code (which includes arbitrary axisymmetric geometries and plasma collisionalities) to determine the poloidal rotation velocities. Comparisons are made with analytic relationships derived from a single impurity formulation of the problem. The roles of the radial electric field and species density and pressure gradients are evaluated. The determination of the radial electric field using the NCLASS solution for poloidal rotation and a local measurement of the toroidal rotation in conjunction with measured plasma profiles is discussed; it has been used in analysis of TFTR enhanced reverse shear plasmas. The ordering of banana orbit size small relative to local minor radius and gradients (as incorporated into initial versions of NCLASS) are examined for typical negative shear plasmas. We show the degree to which these constraints axe violated and demonstrate that finite orbit corrections axe required for better determination of the bootstrap current, particle fluxes and ion heat fluxes, i.e., the conditions r much-lt Δ b much-lt r n , r T , r E are significantly violated. Progress in relaxing these constraints is discussed

  16. Compensations for increased rotational inertia during human cutting turns.

    Science.gov (United States)

    Qiao, Mu; Brown, Brian; Jindrich, Devin L

    2014-02-01

    Locomotion in a complex environment is often not steady state, but unsteady locomotion (stability and maneuverability) is not well understood. We investigated the strategies used by humans to perform sidestep cutting turns when running. Previous studies have argued that because humans have small yaw rotational moments of inertia relative to body mass, deceleratory forces in the initial velocity direction that occur during the turning step, or 'braking' forces, could function to prevent body over-rotation during turns. We tested this hypothesis by increasing body rotational inertia and testing whether braking forces during stance decreased. We recorded ground reaction force and body kinematics from seven participants performing 45 deg sidestep cutting turns and straight running at five levels of body rotational inertia, with increases up to fourfold. Contrary to our prediction, braking forces remained consistent at different rotational inertias, facilitated by anticipatory changes to body rotational speed. Increasing inertia revealed that the opposing effects of several turning parameters, including rotation due to symmetrical anterior-posterior forces, result in a system that can compensate for fourfold changes in rotational inertia with less than 50% changes to rotational velocity. These results suggest that in submaximal effort turning, legged systems may be robust to changes in morphological parameters, and that compensations can involve relatively minor adjustments between steps to change initial stance conditions.

  17. The structure of rotational discontinuities. [in solar wind

    Science.gov (United States)

    Neugebauer, M.

    1989-01-01

    This study examines the structures of a set of rotational discontinuities detected in the solar wind by the ISEE-3 spacecraft. It is found that the complexity of the structure increases as the angle theta between the propagation vector k and the magnetic field decreases. For rotational discontinuities that propagate at a large angle to the field with an ion (left-hand) sense of rotation, the magnetic hodograms tend to be flattened, in agreement with prior numerical simulations. When theta is large, angular 'overshoots' are often observed at one or both ends of the discontinuity. When the propagation is nearly parallel to the field (when theta is small), many different types of structure are seen, ranging from straight lines, to S-shaped curves, to complex, disorganized shapes.

  18. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  19. Wave-driven Rotation in Supersonically Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, A.; Fisch, N.J.

    2010-01-01

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  20. Density distortion within a rotating body

    International Nuclear Information System (INIS)

    Lanzano, P.

    1975-01-01

    This paper ascertains the distortion of the density distribution within a self-gravitating body in hydrostatic equilibrium under the influence of rotation. For this purpose, the Poisson equation has been solved by using the undistorted density profile within the Laplacian to obtain the distorted density. The Laplacian has been expressed in terms of a system of curvilinear coordinates for which the equipotential surfaces constitute a family of fundamental surfaces. In performing the requisite algebraic manipulations, the Clairaut and Radau equations developed in a previous paper (Lanzano,1974) were utilized to eliminate the derivatives of the elements pertaining to the equipotential surfaces. The density distortion has been obtained up to third-order terms in a small rotational parameter. (Auth.)

  1. The possible role of Reynolds stress in the creation of a transport barrier in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Vergote, M.; Van Schoor, M.; Xu, Y.; Jachmich, S.; Weynants, R.; Hron, M.; Stoeckel, J.

    2005-01-01

    To obtain a good confinement, mandatory in a fusion reactor, the understanding of the formation of transport barriers in the edge plasma of a tokamak is essential. Turbulence, the major candidate to explain anomalous transport, can be quenched by sheared flows in the edge which rip the convective cells apart, thus forming a barrier. Experimental evidence from the Chinese HT-6M tokamak [Y.H. Xu et al.: Phys. Rev. Lett. 84 (2000) 3867], points to the fact that momentum transfer from the turbulence can create these sheared flows via the Reynolds stresses. A new 1-d fluid model for the generation of the poloidal flow, has been developed taking into account the driving force of the Reynolds stress and the friction forces due to neutrals and parallel viscosity. Special attention has been dedicated to the computation of the flux-surface-averaging for the various terms. This model has been confronted with the experimental results obtained in the HT-6M tokamak, where Reynolds stresses were generated by application of a turbulent heating pulse. If the model is applied in cylindrical geometry, the calculated Reynolds stress-induced flow agrees well with the measured poloidal velocity in the plasma edge. However, when the full toroidal geometry is taken into account, it seems that the Reynolds stresses are too small to explain the observed rotation. This indicates that the role of the Reynolds stresses in inducing macroscopic flow in the torus is weakened. A combined system of probes allowing to measure the Reynolds stress and the rotation velocity simultaneously, has been developed and installed on the CASTOR tokamak. We report here on the first results obtained. (author)

  2. Understanding barriers to the introduction of precision medicines in non-small cell lung cancer: A qualitative interview protocol [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Stuart Wright

    2018-03-01

    Full Text Available Background: While precision medicines targeting genetic mutations and alterations in non-small cell lung cancer (NSCLC have been available since 2010, their adoption into clinical practice has been slow. Evidence suggests that a number of barriers, such as insufficient clinician knowledge, a need for training of test providers, or a lack of specific clinical guidelines, may slow the implementation of precision in general. However, little attention has been given to the barriers to providing precision medicines in NSCLC. The purpose of this protocol is to outline the design for a qualitative interview study to identify the barriers and facilitators to the provision of precision medicines for NSCLC.   Methods: This study will use semi-structured interviews with clinicians (n=10, test providers (n=10, and service commissioners (n=10 to identify the perceived barriers and facilitators to providing historical, current, and future precision medicines in NSCLC. Participants will be identified through mailing list advertisements and snowball sampling. Recruitment will continue until data saturation, indicated by no new themes arising from the data. Interviews will be conducted by telephone to facilitate geographical diversity. The qualitative data will be analysed using a framework analysis with themes anticipated to relate to; relevant barriers to providing precision medicines, the impact of different barriers on medicine provision, changes in the ability to provide precision medicines over time, and strategies to facilitate the provision of precision medicines.   Ethics: This study has been approved by the University of Manchester Proportionate Review Research Ethics Committee (Reference number: 2017-1885-3619. Written consent will be obtained from all participants.   Conclusion: This study is the first to explore the barriers and facilitators to providing precision medicines for NSCLC in the English NHS. The findings will inform strategies to

  3. Rotational effects on impingement cooling

    Science.gov (United States)

    Epstein, A. H.; Kerrebrock, J. L.; Koo, J. J.; Preiser, U. Z.

    1987-01-01

    The present consideration of rotation effects on heat transfer in a radially exhausted, impingement-cooled turbine blade model gives attention to experimental results for Reynolds and Rossby numbers and blade/coolant temperature ratio values that are representative of small gas turbine engines. On the basis of a model that encompasses the effects of Coriolis force and buoyancy on heat transfer, bouyancy is identified as the cause of an average Nusselt number that is 20-30 percent lower than expected from previous nonrotating data. A heuristic model is proposed which predicts that the impingement jets nearest the blade roots should deflect inward, due to a centripetal force generated by their tangential velocity counter to the blade motion. Potentially serious thermal stresses must be anticipated from rotation effects in the course of blade design.

  4. Electronic structure of the rotation twin stacking fault in β-ZnS

    International Nuclear Information System (INIS)

    Northrup, J.E.; Cohen, M.L.

    1981-01-01

    The electronic structure of the rotation twin stacking fault in β-ZnS is calculated with the self-consistent pseudopotential method. The stacking fault creates a potential barrier of approx.0.07 eV and induces the localization of stacking-fault resonances near the top of the valence band. Stacking-fault states are also predicted to exist in the various gaps in the projected valence-band structure

  5. Barriers to Distance Education in Rural Schools

    Science.gov (United States)

    Irvin, Matthew J.; Hannum, Wallace H.; Varre, Claire de la; Farmer, Thomas W.

    2010-01-01

    The primary purpose of the current study was to examine barriers to the use of distance education and explore related factors in small and low-income rural schools. Data were collected via a telephone survey with administrators or other qualified personnel. The sample involved 417 randomly selected small and low-income rural school districts…

  6. Barriers to e-marketing adoption among small and medium enterprises (SMEs in the Vaal Triangle

    Directory of Open Access Journals (Sweden)

    N. Dlodlo

    2010-12-01

    Full Text Available Purpose: The purpose of the study is to complement existing literature by examining the relevant barriers contributing to the non-adoption of electronic marketing practices by SMEs in the Vaal Triangle. Methodology: Primary data was collected using a quantitative research technique with the use of a structured questionnaire as the survey instrument. A total of 168 businesses were selected randomly and visited within the various municipal areas in the Vaal Triangle. These businesses were visited between August and November 2008. Thirty-two small, medium and medium enterprises SMEs refused to participate resulting in 123 usable questionnaires for the purposes of the analysis. Factor analysis was used to examine the robustness of the factor structure using principal component analysis. Findings: A five-dimensional structure was established comprising a 16 item-scale. The major impediments towards the non-adoption of e-marketing include technology incompatibility with target markets, lack of knowledge, stakeholder unreadiness, technology disorientation and technology perception. The reliability analysis, reflected coefficient values ranging from 0.70 to 0.88 indicating satisfactory internal consistency amongst variables within each dimension. Implications: By analysing the barriers that inhibit the adoption of e-marketing strategies among SMEs, marketers are presented with recommended strategies and implications on how to approach the challenges presented by Internet technological advancements. Internet capacities of SMEs may be strengthened through nurturing e-marketing awareness and providing adequate information tools through diverse Internet Marketing training programmes. Originality/Value: SMEs can prove to be a major source of economic growth for many African countries if sufficient guidance and support on how best to overcome the challenges of adopting advanced marketing practices is available.

  7. Macroscopic-microscopic energy of rotating nuclei in the fusion-like deformation valley

    International Nuclear Information System (INIS)

    Gherghescu, R.A.; Royer, Guy

    2000-01-01

    The energy of rotating nuclei in the fusion-like deformation valley has been determined within a liquid drop model including the proximity energy, the two-center shell model and the Strutinsky method. The potential barriers of the 84 Zr, 132 Ce, 152 Dy and 192 Hg nuclei have been determined. A first minimum having a microscopic origin and lodging the normally deformed states disappears with increasing angular momenta. The microscopic and macroscopic energies contribute to generate a second minimum where superdeformed states may survive. It becomes progressively the lowest one at intermediate spins. At higher angular momenta, the minimum moves towards the foot of the external fission barrier leading to hyperdeformed quasi-molecular states. (author)

  8. Theoretical study of the relativistic molecular rotational g-tensor

    International Nuclear Information System (INIS)

    Aucar, I. Agustín; Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-01-01

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH + (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH + systems. Only for the sixth-row Rn atom a significant deviation of this relation is found

  9. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  10. The rotation of Titan and Ganymede

    Science.gov (United States)

    Van Hoolst, Tim; Coyette, Alexis; Baland, Rose-Marie; Trinh, Antony

    2016-10-01

    The rotation rates of Titan and Ganymede, the largest satellites of Saturn and Jupiter, are on average equal to their orbital mean motion. Here we discuss small deviations from the average rotation for both satellites and evaluate the polar motion of Titan induced by its surface fluid layers. We examine different causes at various time scales and assess possible consequences and the potential of using librations and polar motion as probes of the interior structure of the satellites.The rotation rate of Titan and Ganymede cannot be constant on the orbital time scale as a result of the gravitational torque of the central planet acting on the satellites. Titan is moreover expected to show significant polar motion and additional variations in the rotation rate due to angular momentum exchange with the atmosphere, mainly at seasonal periods. Observational evidence for deviations from the synchronous state has been reported several times for Titan but is unfortunately inconclusive. The measurements of the rotation variations are based on determinations of the shift in position of Cassini radar images taken during different flybys. The ESA JUICE (JUpiter ICy moons Explorer) mission will measure the rotation variations of Ganymede during its orbital phase around the satellite starting in 2032.We report on different theoretical aspects of the librations and polar motion. We consider the influence of the rheology of the ice shell and take into account Cassini measurements of the external gravitational field and of the topography of Titan and similar Galileo data about Ganymede. We also evaluate the librations and polar motion induced by Titan's hydrocarbon seas and use the most recent results of Titan's atmosphere dynamics. We finally evaluate the potential of rotation variations to constrain the satellite's interior structure, in particular its ice shell and ocean.

  11. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  12. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  13. Transport, dissociation and rotation of small self-interstitial atom clusters in tungsten

    International Nuclear Information System (INIS)

    Zhou, W.H.; Zhang, C.G.; Li, Y.G.; Zeng, Z.

    2014-01-01

    Numerical calculations have been performed to study the thermal motion of self-interstitial atom (SIA) clusters in tungsten (W). Molecular dynamics simulations show that SIA clusters exhibit a fast one-dimensional (1D) motion along the close packed 〈1 1 1〉 direction accompanied by a significant mass transport in this direction. A low frequency vibration mode is identified and considered to assist the motion of SIAs. The migration energy of SIA clusters are weakly dependent on their size in the average value of 0.019 eV, which is due to the strong interaction between SIAs revealed by calculating the potential energy curve of artificially moving the SIAs along 〈1 1 1〉 direction as well as nudged elastic band (NEB) method. The rotation process of SIA cluster is studied by activation–relaxation technique and the results show that SIA cluster presents complex rotation process. Our results on the motion SIA cluster may provide updated understanding on the performance decay of materials related to SIA defects

  14. Gyrokinetic analyses of core heat transport in JT-60U plasmas with different toroidal rotation direction

    International Nuclear Information System (INIS)

    Narita, Emi; Fukuda, Takeshi; Honda, Mitsuru; Hayashi, Nobuhiko; Urano, Hajime; Ide, Shunsuke

    2015-01-01

    Tokamak plasmas with an internal transport barrier (ITB) are capable of maintaining improved confinement performance. The ITBs formed in plasmas with the weak magnetic shear and the weak radial electric field shear are often observed to be modest. In these ITB plasmas, it has been found that the electron temperature ITB is steeper when toroidal rotation is in a co-direction with respect to the plasma current than when toroidal rotation is in a counter-direction. To clarify the relationship between the direction of toroidal rotation and heat transport in the ITB region, we examine dominant instabilities using the flux-tube gyrokinetic code GS2. The linear calculations show a difference in the real frequencies; the counter-rotation case has a more trapped electron mode than the co-rotation case. In addition, the nonlinear calculations show that with this difference, the ratio of the electron heat diffusivity χ_e to the ion's χ_i is higher for the counter-rotation case than for the co-rotation case. The difference in χ_e /χ_i agrees with the experiment. We also find that the effect of the difference in the flow shear between the two cases due to the toroidal rotation direction on the linear growth rate is not significant. (author)

  15. Effect of slow, small movement on the vibration-evoked kinesthetic illusion.

    Science.gov (United States)

    Cordo, P J; Gurfinkel, V S; Brumagne, S; Flores-Vieira, C

    2005-12-01

    The study reported in this paper investigated how vibration-evoked illusions of joint rotation are influenced by slow (0.3 degrees /s), small (2-4 degrees ) passive rotation of the joint. Normal human adults (n=15) matched the perceived position of the left ("reference") arm with the right ("matching") arm while vibration (50 pps, 0.5 mm) was applied for 30 s to the relaxed triceps brachii of the reference arm. Both arms were constrained to rotate horizontally at the elbow. Three experimental conditions were investigated: (1) vibration of the stationary reference arm, (2) slow, small passive extension or flexion of the reference arm during vibration, and (3) slow, small passive extension or flexion of the reference arm without vibration. Triceps brachii vibration at 50 pps induced an illusion of elbow flexion. The movement illusion began after several seconds, relatively fast to begin with and gradually slowing down to a stop. On average, triceps vibration produced illusory motion at an average latency of 6.3 s, amplitude of 9.7 degrees , velocity of 0.6 degrees /s, and duration of 16.4 s. During vibration, slow, small ( approximately 0.3 degrees /s, 1.3 degrees ) passive rotations of the joint dramatically enhanced, stopped, or reversed the direction of illusory movement, depending on the direction of the passive joint rotation. However, the subjects' perceptions of these passive elbow rotations were exaggerated: 2-3 times the size of the actual movement. In the absence of vibration, the subjects accurately reproduced these passive joint rotations. We discuss whether the exaggerated perception of slow, small movement during vibration is better explained by contributions of non muscle spindle Ia afferents or by changes in the mechanical transmission of vibration to the receptor.

  16. Identity physics experiment on internal transport barriers in JT-60U and JET

    Energy Technology Data Exchange (ETDEWEB)

    De Vries, P C; Beurskens, M N A; Brix, M; Giroud, C; Hawkes, N C; Parail, V [EURATOM/UKAEA Association, Culham Science Centre, OX14 3DB, Abingdon (United Kingdom); Sakamoto, Y; Fujita, T; Hayashi, N; Matsunaga, G; Oyama, N; Shinohara, K; Suzuki, T; Takechi, M [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan); Litaudon, X; Joffrin, E [CEA, IRFM, F-13108 St-Paul-Lez-Durance (France); Crombe, K [Department of Applied Physics, Ghent University, Rozier 44, 9000 Gent (Belgium); Mantica, P [Istituto di Fisica del Plasma, EURATOM/ENEA-CNR Association, Milano (Italy); Salmi, A [Association Euratom-Tekes, Helsinki University of Technology, PO Box 4100 (Finland); Strintzi, D, E-mail: Peter.de.Vries@jet.u [National Technical University of Athens, EURATOM Association, GR-15773, Athens (Greece)

    2009-12-15

    A series of experiments have been carried out in 2008 at JT-60U and JET to find common characteristics and explain differences between internal transport barriers (ITBs). The identity experiments succeeded in matching the profiles of most dimensionless parameters at the time ITBs were triggered. Thereafter the q-profile development deviated due to differences in non-inductive current density profile, affecting the ITB. Furthermore, the ITBs in JET were more strongly influenced by the H-mode pedestal or edge localized modes. It was found to be difficult to match the plasma rotation characteristics in both devices. However, the wide range of Mach numbers obtained in these experiments shows that the rotation has little effect on the triggering of ITBs in plasmas with reversed magnetic shear. On the other hand the toroidal rotation and more specifically the rotational shear had an impact on the subsequent growth and allowed the formation of strong ITBs.

  17. Fusion barrier distributions in 28,30Si + 124Sn reactions

    International Nuclear Information System (INIS)

    Danu, L.S.; Nayak, B.K.; Biswas, D.C.; Saxena, A.; Thomas, R.G.; Mirgule, E.T.; Choudhury, R.K.

    2009-01-01

    The coupling of various degrees of freedom such as static deformation, inelastic excitation and nucleon transfer with the relative motion gives rise to a distribution of barrier in heavy ion induced fusion reactions. The barrier distribution is a fingerprint of the reaction characterizing the important channel couplings. The relative importance of various couplings in fusion reaction is of topical interest. In an earlier study with deformed projectiles 28,30 Si on 115 In target, it was observed that the barrier distributions get affected due to coulomb reorientation of the deformed projectile nuclei in the field of target nucleus thus giving rise to fusion hindrance at sub-barrier energies. In that study, we considered deformed projectile rotational and positive Q-value transfer channel couplings to relative motion in fusion for investigation of Coulomb reorientation and no inelastic coupling of the 115 In target was considered. In the present work, we have extended the measurements with 124 Sn target and inelastic coupling of target has been considered in the coupled channel calculations. The fusion barrier distributions for 28,30 Si + 124 Sn systems have been obtained by quasi-elastic scattering measurements at backward angles and the results compared with the predictions of coupled channel calculations

  18. Three-dimensional evaluation of cyclic displacement in single-row and double-row rotator cuff reconstructions under static external rotation.

    Science.gov (United States)

    Lorbach, Olaf; Kieb, Matthias; Raber, Florian; Busch, Lüder C; Kohn, Dieter M; Pape, Dietrich

    2013-01-01

    The double-row suture bridge repair was recently introduced and has demonstrated superior biomechanical results and higher yield load compared with the traditional double-row technique. It therefore seemed reasonable to compare this second generation of double-row constructs to the modified single-row double mattress reconstruction. The repair technique, initial tear size, and tendon subregion will have a significant effect on 3-dimensional (3D) cyclic displacement under additional static external rotation of a modified single-row compared with a double-row rotator cuff repair. Controlled laboratory study. Rotator cuff tears (small to medium: 25 mm; medium to large: 35 mm) were created in 24 human cadaveric shoulders. Rotator cuff repairs were performed as modified single-row or double-row repairs, and cyclic loading (10-60 N, 10-100 N) was applied under 20° of external rotation. Radiostereometric analysis was used to calculate cyclic displacement in the anteroposterior (x), craniocaudal (y), and mediolateral (z) planes with a focus on the repair constructs and the initial tear size. Moreover, differences in cyclic displacement of the anterior compared with the posterior tendon subregions were calculated. Significantly lower cyclic displacement was seen in small to medium tears for the single-row compared with double-row repair at 60 and 100 N in the x plane (P = .001) and y plane (P = .001). The results were similar in medium to large tears at 100 N in the x plane (P = .004). Comparison of 25-mm versus 35-mm tears did not show any statistically significant differences for the single-row repairs. In the double-row repairs, lower gap formation was found for the 35-mm tears (P ≤ .05). Comparison of the anterior versus posterior tendon subregions revealed a trend toward higher anterior gap formation, although this was statistically not significant. The tested single-row reconstruction achieved superior results in 3D cyclic displacement to the tested double

  19. Subsurface barrier verification technologies, informal report

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier's integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification

  20. Rotational stability of a long field-reversed configuration

    International Nuclear Information System (INIS)

    Barnes, D. C.; Steinhauer, L. C.

    2014-01-01

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone

  1. Rotational stability of a long field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, D. C., E-mail: coronadocon@msn.com; Steinhauer, L. C. [Tri Alpha Energy, Rancho Santa Margarita, California 92688 (United States)

    2014-02-15

    Rotationally driven modes of long systems with dominantly axial magnetic field are considered. We apply the incompressible model and order axial wavenumber small. A recently developed gyro-viscous model is incorporated. A one-dimensional equilibrium is assumed, but radial profiles are arbitrary. The dominant toroidal (azimuthal) mode numbers ℓ=1 and ℓ=2 modes are examined for a variety of non-reversed (B) and reversed profiles. Previous results for both systems with rigid rotor equilibria are reproduced. New results are obtained by incorporation of finite axial wavenumber and by relaxing the assumption of rigid electron and ion rotation. It is shown that the frequently troublesome ℓ=2 field reversed configuration (FRC) mode is not strongly affected by ion kinetic effects (in contrast to non-reversed cases) and is likely stabilized experimentally only by finite length effects. It is also shown that the ℓ=1 wobble mode has a complicated behavior and is affected by a variety of configuration and profile effects. The rotationally driven ℓ=1 wobble is completely stabilized by strong rotational shear, which is anticipated to be active in high performance FRC experiments. Thus, observed wobble modes in these systems are likely not driven by rotation alone.

  2. Bubble Pinch-Off in a Rotating Flow

    DEFF Research Database (Denmark)

    Bergmann, Raymond; Andersen, Anders Peter; van der Meer, Devaraj

    2009-01-01

    We create air bubbles at the tip of a "bathtub vortex" which reaches to a finite depth. The bathtub vortex is formed by letting water drain through a small hole at the bottom of a rotating cylindrical container. The tip of the needlelike surface dip is unstable at high rotation rates and releases...... bubbles which are carried down by the flow. Using high-speed imaging we find that the minimal neck radius of the unstable tip decreases in time as a power law with an exponent close to 1/3. This exponent was found by Gordillo et al. [Phys. Rev. Lett. 95, 194501 (2005)] to govern gas flow driven pinch...

  3. Non-energy markets for small roundwood, forest residues and short rotation coppice

    Energy Technology Data Exchange (ETDEWEB)

    Watt, G.

    1995-06-01

    Competition for roundwood is intense at the present time with prices ranging from approximately Pound 20 to Pound 51 per green tonne delivered at mill. The sawmilling industry produces nearly 2 million green tonnes of residues annually from converting British roundwood and about 85% of this is used by the panelboard and paperboard mills. The remaining 15%, comprising mostly bark, and some of the unpeeled chips are used as material for mulching, landscaping and horticultural use, play areas, paths and horse gallops, soil composting and soil conditioning. Wood shavings and sawdust is produced by joinery and milling firms from imported sawn timber and amounts to about 300,000 tonnes/annum. Approximately 70% of this is used for higher priced markets, bedding for horses, chicken and turkeys, cattle and other uses. The remaining 30% is used in the wood processing industry. An increasing volume of solid wood waste which previously went for landfill sites is now being recycled and this trend is expected to continue. Only a very small proportion of the forest residues (tree tops and branches) produced each year is utilised and most of this material is used as mulch for horticultural and landscape uses. Markets for material from traditional short rotation coppice are limited relative to potential production but work is underway to develop new markets. There are no established markets for recently planted non-traditional coppice of willow and poplar with potential for energy production. Trials organised by ETSU and the DTI have indicated the suitability of the material for chipboard production provided the bark percentage is not too high. (author)

  4. Non-energy markets for small roundwood, forest residues and short rotation coppice

    International Nuclear Information System (INIS)

    Watt, G.

    1995-01-01

    Competition for roundwood is intense at the present time with prices ranging from approximately Pound 20 to Pound 51 per green tonne delivered at mill. The sawmilling industry produces nearly 2 million green tonnes of residues annually from converting British roundwood and about 85% of this is used by the panelboard and paperboard mills. The remaining 15%, comprising mostly bark, and some of the unpeeled chips are used as material for mulching, landscaping and horticultural use, play areas, paths and horse gallops, soil composting and soil conditioning. Wood shavings and sawdust is produced by joinery and milling firms from imported sawn timber and amounts to about 300,000 tonnes/annum. Approximately 70% of this is used for higher priced markets, bedding for horses, chicken and turkeys, cattle and other uses. The remaining 30% is used in the wood processing industry. An increasing volume of solid wood waste which previously went for landfill sites is now being recycled and this trend is expected to continue. Only a very small proportion of the forest residues (tree tops and branches) produced each year is utilised and most of this material is used as mulch for horticultural and landscape uses. Markets for material from traditional short rotation coppice are limited relative to potential production but work is underway to develop new markets. There are no established markets for recently planted non-traditional coppice of willow and poplar with potential for energy production. Trials organised by ETSU and the DTI have indicated the suitability of the material for chipboard production provided the bark percentage is not too high. (author)

  5. Regenerative Medicine in Rotator Cuff Injuries

    Science.gov (United States)

    Randelli, Pietro; Ragone, Vincenza; Menon, Alessandra; Cabitza, Paolo; Banfi, Giuseppe

    2014-01-01

    Rotator cuff injuries are a common source of shoulder pathology and result in an important decrease in quality of patient life. Given the frequency of these injuries, as well as the relatively poor result of surgical intervention, it is not surprising that new and innovative strategies like tissue engineering have become more appealing. Tissue-engineering strategies involve the use of cells and/or bioactive factors to promote tendon regeneration via natural processes. The ability of numerous growth factors to affect tendon healing has been extensively analyzed in vitro and in animal models, showing promising results. Platelet-rich plasma (PRP) is a whole blood fraction which contains several growth factors. Controlled clinical studies using different autologous PRP formulations have provided controversial results. However, favourable structural healing rates have been observed for surgical repair of small and medium rotator cuff tears. Cell-based approaches have also been suggested to enhance tendon healing. Bone marrow is a well known source of mesenchymal stem cells (MSCs). Recently, ex vivo human studies have isolated and cultured distinct populations of MSCs from rotator cuff tendons, long head of the biceps tendon, subacromial bursa, and glenohumeral synovia. Stem cells therapies represent a novel frontier in the management of rotator cuff disease that required further basic and clinical research. PMID:25184132

  6. Regenerative Medicine in Rotator Cuff Injuries

    Directory of Open Access Journals (Sweden)

    Pietro Randelli

    2014-01-01

    Full Text Available Rotator cuff injuries are a common source of shoulder pathology and result in an important decrease in quality of patient life. Given the frequency of these injuries, as well as the relatively poor result of surgical intervention, it is not surprising that new and innovative strategies like tissue engineering have become more appealing. Tissue-engineering strategies involve the use of cells and/or bioactive factors to promote tendon regeneration via natural processes. The ability of numerous growth factors to affect tendon healing has been extensively analyzed in vitro and in animal models, showing promising results. Platelet-rich plasma (PRP is a whole blood fraction which contains several growth factors. Controlled clinical studies using different autologous PRP formulations have provided controversial results. However, favourable structural healing rates have been observed for surgical repair of small and medium rotator cuff tears. Cell-based approaches have also been suggested to enhance tendon healing. Bone marrow is a well known source of mesenchymal stem cells (MSCs. Recently, ex vivo human studies have isolated and cultured distinct populations of MSCs from rotator cuff tendons, long head of the biceps tendon, subacromial bursa, and glenohumeral synovia. Stem cells therapies represent a novel frontier in the management of rotator cuff disease that required further basic and clinical research.

  7. Reciprocally-Rotating Velocity Obstacles

    KAUST Repository

    Giese, Andrew

    2014-05-01

    © 2014 IEEE. Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

  8. Power and momentum relations in rotating magnetic field current drive

    Energy Technology Data Exchange (ETDEWEB)

    Hugrass, W N [Flinders Univ. of South Australia, Bedford Park. School of Physical Sciences

    1984-01-01

    The use of rotating magnetic fields (RMF) to drive steady currents in plasmas involves a transfer of energy and angular momentum from the radio frequency source feeding the rotating field coils to the plasma. The power-torque relationships in RMF systems are discussed and the analogy between RMF current drive and the polyphase induction motor is explained. The general relationship between the energy and angular momentum transfer is utilized to calculate the efficiency of the RMF plasma current drive. It is found that relatively high efficiencies can be achieved in RMF current drive because of the low phase velocity and small slip between the rotating field and the electron fluid.

  9. Successful Expansion of an Underexpanded Stent by Rotational Atherectomy

    Science.gov (United States)

    Vales, Lori; Coppola, John; Kwan, Tak

    2013-01-01

    The current routine use of intracoronary stents in percutaneous coronary intervention (PCI) has significantly reduced rates of restenosis, compared with balloon angioplasty alone. On the contrary, small post-stenting luminal dimensions due to undilatable, heavily calcified plaques have repeatedly been shown to significantly increase the rates of in-stent restenosis. Rotational atherectomy of lesions is an alternative method to facilitate PCI and prevent underexpansion of stents, when balloon angioplasty fails to successfully dilate a lesion. Stentablation, using rotational atherectomy to expand underexpanded stents deployed in heavily calcified plaques, has also been reported. We report a case via the transradial approach of rotational-atherectomy–facilitated PCI of in-stent restenosis of a severely underexpanded stent due to a heavily calcified plaque. We review the literature and suggest rotational atherectomy may have a role in treating a refractory, severely underexpanded stent caused by a heavily calcified plaque through various proposed mechanisms. PMID:24436587

  10. Distribution of rotational velocities for low-mass stars in the Pleiades

    International Nuclear Information System (INIS)

    Stauffer, J.R.; Hartmann, L.W.; Dominion Astrophysical Observatory, Victoria, Canada; Smithsonian Astrophysical Observatory, Cambridge, MA)

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula. 79 references

  11. On sharp vorticity gradients in elongating baroclinic eddies and their stabilization with a solid-body rotation

    Science.gov (United States)

    Sutyrin, Georgi G.

    2016-06-01

    Wide compensated vortices are not able to remain circular in idealized two-layer models unless the ocean depth is assumed to be unrealistically large. Small perturbations on both cyclonic and anticyclonic eddies grow slower if a middle layer with uniform potential vorticity (PV) is added, owing to a weakening of the vertical coupling between the upper and lower layers and a reduction of the PV gradient in the deep layer. Numerical simulations show that the nonlinear development of the most unstable elliptical mode causes self-elongation of the upper vortex core and splitting of the deep PV anomaly into two corotating parts. The emerging tripolar flow pattern in the lower layer results in self-intensification of the fluid rotation in the water column around the vortex center. Further vortex evolution depends on the model parameters and initial conditions, which limits predictability owing to multiple equilibrium attractors existing in the dynamical system. The vortex core strips thin filaments, which roll up into submesoscale vortices to result in substantial mixing at the vortex periphery. Stirring and damping of vorticity by bottom friction are found to be essential for subsequent vortex stabilization. The development of sharp PV gradients leads to nearly solid-body rotation inside the vortex core and formation of transport barriers at the vortex periphery. These processes have important implications for understanding the longevity of real-ocean eddies.

  12. Allosteric small-molecule kinase inhibitors

    DEFF Research Database (Denmark)

    Wu, Peng; Clausen, Mads Hartvig; Nielsen, Thomas E.

    2015-01-01

    current barriers of kinase inhibitors, including poor selectivity and emergence of drug resistance. In spite of the small number of identified allosteric inhibitors in comparison with that of inhibitors targeting the ATP pocket, encouraging results, such as the FDA-approval of the first small...

  13. Small Group Multitasking in Literature Classes

    Science.gov (United States)

    Baurain, Bradley

    2007-01-01

    Faced with the challenge of teaching American literature to large, multilevel classes in Vietnam, the writer developed a flexible small group framework called "multitasking". "Multitasking" sets up stable task categories which rotate among small groups from lesson to lesson. This framework enabled students to work cooperatively…

  14. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Sen; Li, Guangjun; Wang, Maojie; Jiang, Qinfeng; Zhang, Yingjie [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Wei, Yuquan, E-mail: yuquawei@vip.sina.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China)

    2013-07-01

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors were 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.

  15. ROTATION AND MAGNETIC ACTIVITY IN A SAMPLE OF M-DWARFS

    International Nuclear Information System (INIS)

    Browning, Matthew K.; Basri, Gibor; Marcy, Geoffrey W.; Zhang Jiahao; West, Andrew A.

    2010-01-01

    We have analyzed the rotational broadening and chromospheric activity in a sample of 123 M-dwarfs, using spectra taken at the W.M. Keck Observatory as part of the California Planet Search program. We find that only seven of these stars are rotating more rapidly than our detection threshold of v sin i ∼ 2.5 km s -1 . Rotation appears to be more common in stars later than M3 than in the M0-M2.5 mass range: we estimate that less than 10% of early-M stars are detectably rotating, whereas roughly a third of those later than M4 show signs of rotation. These findings lend support to the view that rotational braking becomes less effective in fully convective stars. By measuring the equivalent widths of the Ca II H and K lines for the stars in our sample, and converting these to approximate L Ca /L bol measurements, we also provide constraints on the connection between rotation and magnetic activity. Measurable rotation is a sufficient, but not necessary condition for activity in our sample: all the detectable rotators show strong Ca II emission, but so too do a small number of non-rotating stars, which we presume may lie at high inclination angles relative to our line of sight. Our data are consistent with a 'saturation-type' rotation-activity relationship, with activity roughly independent of rotation above a threshold velocity of less than 6 km s -1 . We also find weak evidence for a 'gap' in L Ca /L bol between a highly active population of stars, which typically are detected as rotators, and another much less active group.

  16. Anticrab cavities for the removal of spurious vertical bunch rotations caused by crab cavities

    Directory of Open Access Journals (Sweden)

    G. Burt

    2008-09-01

    Full Text Available Many particle accelerators are proposing the use of crab cavities to correct for accelerator crossing angles or for the production of short bunches in light sources. These cavities produce a rotation to the bunch in a well-defined polarization plane. If the plane of the rotation does not align with the horizontal axis of the accelerator, the bunch will receive a small amount of spurious vertical bunch rotation. For accelerators with small vertical beam sizes and large beam-beam effects, this can cause significant unwanted effects. In this paper we propose the use of a 2nd smaller crab cavity in the vertical plane in order to cancel this effect and investigate its use in numerical simulations.

  17. Global rotation

    International Nuclear Information System (INIS)

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  18. The distribution of rotational velocities for low-mass stars in the Pleiades

    Science.gov (United States)

    Stauffer, John R.; Hartmann, Lee W.

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula.

  19. Survey of Small Business Barriers to Department of Defense Contracts

    Science.gov (United States)

    2017-01-01

    the Better Buying Power initiatives is to increase small business participation in Department of Defense contracting. The department has had mixed...create and maintain world-class weapon systems. Department leadership has pushed for increased small business roles and opportunities through the Better...meet. One way to increase small business participation in defense contracts is to focus reform efforts in areas that small businesses perceive as

  20. Field study plan for alternate barriers

    International Nuclear Information System (INIS)

    Freeman, H.D.; Gee, G.W.; Relyea, J.F.

    1989-05-01

    Pacific Northwest Laboratory (PNL) is providing technical assistance in selecting, designing, evaluating, and demonstrating protective barriers. As part of this technical assistance effort, asphalt, clay, and chemical grout will be evaluated for use as alternate barriers. The purpose of the subsurface layer is to reduce the likelihood that extreme events (i.e., 100-year maximum storms, etc.) will cause significant drainage through the barrier. The tests on alternate barriers will include laboratory and field analysis of the subsurface layer performance. This field test plan outlines the activities required to test and design subsurface moisture barriers. The test plan covers activities completed in FY 1988 and planned through FY 1992 and includes a field-scale test of one or more of the alternate barriers to demonstrate full-scale application techniques and to provide performance data on a larger scale. Tests on asphalt, clay, and chemical grout were initiated in FY 1988 in small (30.5 cm diameter) tube-layer lysimeters. The parameters used for testing the materials were different for each one. The tests had to take into account the differences in material characteristics and response to change in conditions, as well as information provided by previous studies. 33 refs., 8 figs., 1 tab

  1. Liquid-phase separation with the rotational particle separator

    NARCIS (Netherlands)

    Kemenade, van H.P.; Mondt, E.; Hendriks, A.J.A.M.; Verbeek, P.H.J.

    2003-01-01

    Recently, the rotational particle separator (RPS) was introduced as a new technique for separating solid and/or liquid particles of 0.1 m and larger from gases. In this patented technique the principles of centrifugation are exploited to enhance separation of small-sized phases and particulate

  2. Faraday rotation in the M87 radio/X-ray halo

    Science.gov (United States)

    Dennison, B.

    1980-01-01

    Comparison of polarization maps at various wavelengths demonstrates the existence of a large Faraday rotation uniform over the radio core of M87. Much of this rotation must be external to the core, lest it appear completely depolarized when the rotation is about 90 degrees. The Faraday rotation is shown to occur primarily in the surrounding radio/X-ray halo. Using the electron density inferred from X-ray observations, the magnetic field in the halo is found to be 2.5 microgauss. The deduced magnetic field strength permits an evaluation of the importance of Compton scattering of 3 K background photons by relativistic electrons in the radio halo. The emergent Compton-scattered spectrum is calculated, and its contribution to the observed X-ray flux is small, probably about a percent or so, while the rest is due to thermal bremsstrahlung.

  3. FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS

    International Nuclear Information System (INIS)

    Melrose, D. B.

    2010-01-01

    The standard formula for the rotation measure (RM), which determines the position angle, ψ = RMλ 2 , due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution Δψ needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, Δψ is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.

  4. FARADAY ROTATION: EFFECT OF MAGNETIC FIELD REVERSALS

    Energy Technology Data Exchange (ETDEWEB)

    Melrose, D B [SIfA, School of Physics, University of Sydney, NSW 2006 (Australia)

    2010-12-20

    The standard formula for the rotation measure (RM), which determines the position angle, {psi} = RM{lambda}{sup 2}, due to Faraday rotation, includes contributions only from the portions of the ray path where the natural modes of the plasma are circularly polarized. In small regions of the ray path where the projection of the magnetic field on the ray path reverses sign (called QT regions) the modes are nearly linearly polarized. The neglect of QT regions in estimating RM is not well justified at frequencies below a transition frequency where mode coupling changes from strong to weak. By integrating the polarization transfer equation across a QT region in the latter limit, I estimate the additional contribution {Delta}{psi} needed to correct this omission. In contrast with a result proposed by Broderick and Blandford, {Delta}{psi} is small and probably unobservable. I identify a new source of circular polarization, due to mode coupling in an asymmetric QT region. I also identify a new circular-polarization-dependent correction to the dispersion measure at low frequencies.

  5. On the kinetic barriers of graphene homo-epitaxy

    International Nuclear Information System (INIS)

    Zhang, Wei; Yu, Xinke; Xie, Ya-Hong; Cahyadi, Erica; Ratsch, Christian

    2014-01-01

    The diffusion processes and kinetic barriers of individual carbon adatoms and clusters on graphene surfaces are investigated to provide fundamental understanding of the physics governing epitaxial growth of multilayer graphene. It is found that individual carbon adatoms form bonds with the underlying graphene whereas the interaction between graphene and carbon clusters, consisting of 6 atoms or more, is very weak being van der Waals in nature. Therefore, small carbon clusters are quite mobile on the graphene surfaces and the diffusion barrier is negligibly small (∼6 meV). This suggests the feasibility of high-quality graphene epitaxial growth at very low growth temperatures with small carbon clusters (e.g., hexagons) as carbon source. We propose that the growth mode is totally different from 3-dimensional bulk materials with the surface mobility of carbon hexagons being the highest over graphene surfaces that gradually decreases with further increase in cluster size

  6. A molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions

    DEFF Research Database (Denmark)

    De Luca, Sergio; Todd, Billy; Hansen, Jesper Schmidt

    2014-01-01

    by an external spatially uniform rotating electric field and confined between two planar surfaces exposing different degrees of hydrophobicity. The permanent dipole moment of water follows the rotating field, thus inducing the molecules to spin, and the torque exerted by the field is continuously injected...... into the fluid, enabling a steady conversion of spin angular momentum into linear momentum. The translational–rotational coupling is a sensitive function of the rotating electric field parameters. In this work, we have found that there exists a small energy dissipation region attainable when the frequency...... of the rotating electric field matches the inverse of the dielectric relaxation time of water and when its amplitude lies in a range just before dielectric saturation effects take place. In this region, that is, when the frequency lies in a small window of the microwave region around ∼20 GHz and amplitude ∼0.03 V...

  7. Arthroscintigraphy in suspected rotator cuff rupture

    International Nuclear Information System (INIS)

    Gratz, S.; Behr, T.; Becker, W.; Koester, G.; Vosshenrich, R.; Grabbe, E.

    1998-01-01

    Aim: In order to evaluate the diagnostic efficiency of arthroscintigraphy in suspected rotator cuff ruptures this new imaging procedure was performed 20 times in 17 patients with clinical signs of a rotator cuff lesion. The scintigraphic results were compared with sonography (n=20), contrast arthrography (n=20) and arthroscopy (n=10) of the shoulder joint. Methods: After performing a standard bone scintigraphy with intravenous application of 300 MBq 99m-Tc-methylene diphosphonate (MDP) for landmarking of the shoulder region arthroscintigraphy was performed after an intraarticular injection of 99m-Tc microcolloid (ALBU-RES 400 μCi/5 ml). The application was performed either in direct combination with contrast arthrography (n=10) or ultrasound conducted mixed with a local anesthetic (n=10). Findings at arthroscopical surgery (n=10) were used as the gold standard. Results: In case of complete rotator cuff rupture (n=5), arthroscintigraphy and radiographic arthrography were identical in 5/5. In one patient with advanced degenerative alterations of the shoulder joint radiographic arthrography incorrectly showed a complete rupture which was not seen by arthroscintigraphy and endoscopy. In 3 patients with incomplete rupture, 2/3 results were consistant. A difference was seen in one patient with a rotator cuff, that has been already revised in the past and that suffered of capsulitis and calcification. Conclusion: Arthroscinitgraphy is a sensitive technique for detection of rotator cuff ruptures. Because of the lower viscosity of the active compound, small ruptures can be easily detected, offering additional value over radiographic arthrography and ultrasound, especially for evaluation of incomplete cuff ruptures. (orig.) [de

  8. Solid state {sup 1}H spin-lattice relaxation and isolated-molecule and cluster electronic structure calculations in organic molecular solids: The relationship between structure and methyl group and t-butyl group rotation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianlong, E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, 4 North Jianshe Rd., 2nd Section, Chengdu 610054 (China); Mallory, Frank B. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Mallory, Clelia W. [Department of Chemistry, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States); Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Odhner, Hosanna R.; Beckmann, Peter A., E-mail: WangXianlong@uestc.edu.cn, E-mail: pbeckman@brynmawr.edu [Department of Physics, Bryn Mawr College, 101 North Merion Ave., Bryn Mawr, Pennsylvania 19010-2899 (United States)

    2014-05-21

    We report ab initio density functional theory electronic structure calculations of rotational barriers for t-butyl groups and their constituent methyl groups both in the isolated molecules and in central molecules in clusters built from the X-ray structure in four t-butyl aromatic compounds. The X-ray structures have been reported previously. We also report and interpret the temperature dependence of the solid state {sup 1}H nuclear magnetic resonance spin-lattice relaxation rate at 8.50, 22.5, and 53.0 MHz in one of the four compounds. Such experiments for the other three have been reported previously. We compare the computed barriers for methyl group and t-butyl group rotation in a central target molecule in the cluster with the activation energies determined from fitting the {sup 1}H NMR spin-lattice relaxation data. We formulate a dynamical model for the superposition of t-butyl group rotation and the rotation of the t-butyl group's constituent methyl groups. The four compounds are 2,7-di-t-butylpyrene, 1,4-di-t-butylbenzene, 2,6-di-t-butylnaphthalene, and 3-t-butylchrysene. We comment on the unusual ground state orientation of the t-butyl groups in the crystal of the pyrene and we comment on the unusually high rotational barrier of these t-butyl groups.

  9. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier.

    Science.gov (United States)

    Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I

    2013-06-18

    Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS

  10. Physicians’ experience adopting the electronic transfer of care communication tool: barriers and opportunities

    Directory of Open Access Journals (Sweden)

    de Grood C

    2015-01-01

    Full Text Available Chloe de Grood, Katherine Eso, Maria Jose Santana Department of Community Health Sciences, W21C Research and Innovation Centre, Institute of Public Health, University of Calgary, Calgary, AB, Canada Purpose: The purpose of this study was to assess physicians' perceptions on a newly developed electronic transfer of care (e-TOC communication tool and identify barriers and opportunities toward its adoption. Participants and methods: The study was conducted in a tertiary care teaching center as part of a randomized controlled trial assessing the efficacy of an e-TOC communication tool. The e-TOC technology was developed through iterative consultation with stakeholders. This e-TOC summary was populated by acute care physicians (AcPs and communicated electronically to community care physicians (CcPs. The AcPs consisted of attending physicians, resident trainees, and medical students rotating through the Medical Teaching Unit. The CcPs were health care providers caring for patients discharged from hospital to the community. AcPs and CcPs completed validated surveys assessing their experience with the newly developed e-TOC tool. Free text questions were added to gather general comments from both groups of physicians. Units of analysis were individual physicians. Data from the surveys were analyzed using mixed methods. Results: AcPs completed 138 linked pre- and post-rotation surveys. At post-rotation, each AcP completed an average of six e-TOC summaries, taking an average of 37 minutes per e-TOC summary. Over 100 CcPs assessed the quality of the TOC summaries, with an overall rating of 8.3 (standard deviation: 1.48; on a scale of 1–10. Thematic analyses revealed barriers and opportunities encountered by physicians toward the adoption of the e-TOC tool. While the AcPs highlighted issues with timeliness, usability, and presentation, the CcPs identified barriers accessing the web-based TOC summaries, emphasizing that the summaries were timely and the

  11. Behavior of electron and ion transport in discharges with an internal transport barrier in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Staebler, G.M.; Rettig, C.L.

    1999-01-01

    We report results of experiments to further determine the underlying physics behind the formation and development of internal transport barriers (ITB) in the DIII-D tokamak. The initial ITB formation occurs when the neutral beam heating power exceeds a threshold value during the early stages of the current ramp in low-density discharges. This region of reduced transport, made accessible by suppression of long-wavelength turbulence by sheared flows, is most evident in the ion temperature and impurity rotation profiles. In some cases, reduced transport is also observed in the electron temperature and density profiles. If the power is near the threshold, the barrier remains stationary and encloses only a small fraction of the plasma volume. If, however, the power is increased, the transport barrier expands to encompass a larger fraction of the plasma volume. The dynamic behavior of the transport barrier during the growth phase exhibits rapid transport events that are associated with both broadening of the profiles and reductions in turbulence and associated transport. In some, but not all, cases, these events are correlated with the safety factor q passing through integer values. The final state following this evolution is a plasma exhibiting ion thermal transport at or below neoclassical levels. Typically, the electron thermal transport remains anomalously high. Recent experimental results are reported in which rf electron heating was applied to plasmas with an ion ITB, thereby increasing both the electron and ion transport. Although the results are partially in agreement with the usual E-vector x B-vector shear suppression hypothesis, the results still leave questions that must be addressed in future experiments. (author)

  12. Behavior of electron and ion transport in discharges with an internal transport barrier in the DIII-D tokamak

    International Nuclear Information System (INIS)

    Greenfield, C.M.; Staebler, G.M.; Rettig, C.L.

    1998-12-01

    The authors report results of experiments to further determine the underlying physics behind the formation and development of internal transport barriers (ITB) in the DIII-D tokamak. The initial ITB formation occurs when the neutral beam heating power exceeds a threshold value during the early stages of the current ramp in low-density discharges. This region of reduced transport, made accessible by suppression of long-wavelength turbulence by sheared flows, is most evident in the ion temperature and impurity rotation profiles. In some cases, reduced transport is also observed in the electron temperature and density profiles. If the power is near the threshold, the barrier remains stationary and enclosed only a small fraction of the plasma volume. If, however, the power is increased, the transport barrier expands to encompass a larger fraction of the plasma volume. The dynamic behavior of the transport barrier during the growth phase exhibits rapid transport events that are associated with both broadening of the profiles and reductions in turbulence and associated transport. In some, but not all, cases, these events are correlated with the safety factor q passing through integer values. The final state following this evolution is a plasma exhibiting ion thermal transport at or below neoclassical levels. Typically, the electron thermal transport remains anomalously high. Recent experimental results are reported in which rf electron heating was applied to plasmas with an ion ITB, thereby increasing both the electron and ion transport. Although the results are partially in agreement with the usual rvec E x rvec B shear suppression hypothesis, the results still leave questions that must be addressed in future experiments

  13. Giant resonances in hot rotating nuclei

    International Nuclear Information System (INIS)

    Ring, P.

    1992-01-01

    Present theoretical descriptions of the giant resonances in hot rotating nuclei are reviewed. Mean field theory is used as a basis for the description of the hot compound states. Starting from the static solution at finite temperature and with fixed angular momentum small amplitude collective vibrations are calculated in the frame work of finite temperature random phase approximation for quasi-particles. The effect of pairing at low temperatures as well as the effect of rotations on the position of the resonance maxima are investigated. Microscopic and phenomenological descriptions of the damping mechanisms are reviewed. In particular it turns out that fluctuations play an important role in understanding of the behaviour of the width as a function of the temperature. Motional narrowing is critically discussed. (author). 99 refs., 5 figs

  14. Shakeoff Ionization near the Coulomb Barrier Energy

    Science.gov (United States)

    Sharma, Prashant; Nandi, T.

    2017-11-01

    We measure the projectile K x-ray spectra as a function of the beam energies around the Coulomb barrier in different collision systems. The energy is scanned in small steps around the barrier aiming to explore the nuclear effects on the elastically scattered projectile ions. The variation of the projectile x-ray energy with the ion-beam energies exhibits an unusual increase in between the interaction barrier and fusion barrier energies. This additional contribution to the projectile ionization can be attributed to the shakeoff of outer-shell electrons of the projectile ions due to the sudden nuclear recoil (˜10-21 sec ) caused by the attractive nuclear potential, which gets switched on near the interaction barrier energy. In the sudden approximation limit, the theoretical shakeoff probability calculation due to the nuclear recoil explains the observed data well. In addition to its fundamental interest, such processes can play a significant role in dark matter detection through the possible mechanism of x-ray emissions, where the weakly interacting massive particle-nucleus elastic scattering can lead to the nuclear-recoil-induced inner-shell vacancy creations. Furthermore, the present work may provide new prospects for atomic physics research at barrier energies as well as provide a novel technique to perform barrier distribution studies for two-body systems.

  15. The Role of Plasma Rotation in C-Mod Internal Transport Barriers

    Science.gov (United States)

    Fiore, C. L.; Ernst, D. R.; Rice, J. E.; Podpaly, Y.; Reinke, M. L.; Greenwald, M. J.; Hughes, J. W.; Ma, Y.; Bespamyatnov, I. O.; Rowan, W. L.

    2010-11-01

    ITBs in Alcator C-Mod featuring highly peaked density and pressure profiles are induced by injecting ICRF power with the second harmonic of the resonant frequency for minority hydrogen off-axis at the plasma half radius. These ITBs are formed in the absence of particle or momentum injection, and with monotonic q profiles with qmin ITB forms, this rotation decreases in the center of the plasma and forms a well, and often reverses direction in the core. This indicates that there is a strong EXB shearing rate in the region where the foot in the ITB density profile is observed. Preliminary gyrokinetic analyses indicate that this shearing rate is comparable to the ion temperature gradient mode (ITG) growth rate at this location and may be responsible for stabilizing the turbulence. Gyrokinetic analyses of recent experimental data obtained from a complete scan of the ICRF resonance position across the entire C-Mod plasma will be presented.

  16. Epidemiology, natural history, and indications for treatment of rotator cuff tears.

    Science.gov (United States)

    Tashjian, Robert Z

    2012-10-01

    The etiology of rotator cuff disease is likely multifactorial, including age-related degeneration and microtrauma and macrotrauma. The incidence of rotator cuff tears increases with aging with more than half of individuals in their 80s having a rotator cuff tear. Smoking, hypercholesterolemia, and genetics have all been shown to influence the development of rotator cuff tearing. Substantial full-thickness rotator cuff tears, in general, progress and enlarge with time. Pain, or worsening pain, usually signals tear progression in both asymptomatic and symptomatic tears and should warrant further investigation if the tear is treated conservatively. Larger (>1-1.5 cm) symptomatic full-thickness cuff tears have a high rate of tear progression and, therefore, should be considered for earlier surgical repair in younger patients if the tear is reparable and there is limited muscle degeneration to avoid irreversible changes to the cuff, including tear enlargement and degenerative muscle changes. Smaller symptomatic full-thickness tears have been shown to have a slower rate of progression, similar to partial-thickness tears, and can be considered for initial nonoperative treatment due to the limited risk for rapid tear progression. In both small full-thickness tears and partial-thickness tears, increasing pain should alert physicians to obtain further imaging as it can signal tear progression. Natural history data, along with information on factors affecting healing after rotator cuff repair, can help guide surgeons in making appropriate decisions regarding the treatment of rotator cuff tears. The management of rotator cuff tears should be considered in the context of the risks and benefits of operative versus nonoperative treatment. Tear size and acuity, the presence of irreparable changes to the rotator cuff or glenohumeral joint, and patient age should all be considered in making this decision. Initial nonoperative care can be safely undertaken in older patients (>70

  17. Evaluation of rotational set-up errors in patients with thoracic neoplasms

    International Nuclear Information System (INIS)

    Wang Yanyang; Fu Xiaolong; Xia Bing; Fan Min; Yang Huanjun; Ren Jun; Xu Zhiyong; Jiang Guoliang

    2010-01-01

    Objective: To assess the rotational set-up errors in patients with thoracic neoplasms. Methods: 224 kilovoltage cone-beam computed tomography (KVCBCT) scans from 20 thoracic tumor patients were evaluated retrospectively. All these patients were involved in the research of 'Evaluation of the residual set-up error for online kilovoltage cone-beam CT guided thoracic tumor radiation'. Rotational set-up errors, including pitch, roll and yaw, were calculated by 'aligning the KVCBCT with the planning CT, using the semi-automatic alignment method. Results: The average rotational set-up errors were -0.28 degree ±1.52 degree, 0.21 degree ± 0.91 degree and 0.27 degree ± 0.78 degree in the left-fight, superior-inferior and anterior-posterior axis, respectively. The maximal rotational errors of pitch, roll and yaw were 3.5 degree, 2.7 degree and 2.2 degree, respectively. After correction for translational set-up errors, no statistically significant changes in rotational error were observed. Conclusions: The rotational set-up errors in patients with thoracic neoplasms were all small in magnitude. Rotational errors may not change after the correction for translational set-up errors alone, which should be evaluated in a larger sample future. (authors)

  18. Rotator Cuff Repair in Adolescent Athletes.

    Science.gov (United States)

    Azzam, Michael G; Dugas, Jeffrey R; Andrews, James R; Goldstein, Samuel R; Emblom, Benton A; Cain, E Lyle

    2018-04-01

    Rotator cuff tears are rare injuries in adolescents but cause significant morbidity if unrecognized. Previous literature on rotator cuff repairs in adolescents is limited to small case series, with few data to guide treatment. Adolescent patients would have excellent functional outcome scores and return to the same level of sports participation after rotator cuff repair but would have some difficulty with returning to overhead sports. Case series; Level of evidence 4. A retrospective search of the practice's billing records identified all patients participating in at least 1 sport who underwent rotator cuff repair between 2006 and 2014 with an age Rotator Cuff Index. Thirty-two consecutive adolescent athletes (28 boys and 4 girls) with a mean age of 16.1 years (range, 13.2-17.9 years) met inclusion criteria. Twenty-nine patients (91%) had a traumatic event, and 27 of these patients (93%) had no symptoms before the trauma. The most common single tendon injury was to the supraspinatus (21 patients, 66%), of which 2 were complete tendon tears, 1 was a bony avulsion of the tendon, and 18 were high-grade partial tears. Fourteen patients (56%) underwent single-row repair of their rotator cuff tear, and 11 (44%) underwent double-row repair. All subscapularis injuries were repaired in open fashion, while all other tears were repaired arthroscopically. Twenty-seven patients (84%) completed the outcome questionnaires at a mean 6.2 years after surgery (range, 2-10 years). The mean ASES score was 93 (range, 65-100; SD = 9); mean Western Ontario Rotator Cuff Index, 89% (range, 60%-100%; SD = 13%); and mean numeric pain rating, 0.3 (range, 0-3; SD = 0.8). Overall, 25 patients (93%) returned to the same level of play or higher. Among overhead athletes, 13 (93%) were able to return to the same level of play, but 8 (57%) were forced to change positions. There were no surgical complications, but 2 patients did undergo a subsequent operation. Surgical repair of high-grade partial

  19. VMAT optimization with dynamic collimator rotation.

    Science.gov (United States)

    Lyu, Qihui; O'Connor, Daniel; Ruan, Dan; Yu, Victoria; Nguyen, Dan; Sheng, Ke

    2018-04-16

    Although collimator rotation is an optimization variable that can be exploited for dosimetric advantages, existing Volumetric Modulated Arc Therapy (VMAT) optimization uses a fixed collimator angle in each arc and only rotates the collimator between arcs. In this study, we develop a novel integrated optimization method for VMAT, accounting for dynamic collimator angles during the arc motion. Direct Aperture Optimization (DAO) for Dynamic Collimator in VMAT (DC-VMAT) was achieved by adding to the existing dose fidelity objective an anisotropic total variation term for regulating the fluence smoothness, a binary variable for forming simple apertures, and a group sparsity term for controlling collimator rotation. The optimal collimator angle for each beam angle was selected using the Dijkstra's algorithm, where the node costs depend on the estimated fluence map at the current iteration and the edge costs account for the mechanical constraints of multi-leaf collimator (MLC). An alternating optimization strategy was implemented to solve the DAO and collimator angle selection (CAS). Feasibility of DC-VMAT using one full-arc with dynamic collimator rotation was tested on a phantom with two small spherical targets, a brain, a lung and a prostate cancer patient. The plan was compared against a static collimator VMAT (SC-VMAT) plan using three full arcs with 60 degrees of collimator angle separation in patient studies. With the same target coverage, DC-VMAT achieved 20.3% reduction of R50 in the phantom study, and reduced the average max and mean OAR dose by 4.49% and 2.53% of the prescription dose in patient studies, as compared with SC-VMAT. The collimator rotation co-ordinated with the gantry rotation in DC-VMAT plans for deliverability. There were 13 beam angles in the single-arc DC-VMAT plan in patient studies that requires slower gantry rotation to accommodate multiple collimator angles. The novel DC-VMAT approach utilizes the dynamic collimator rotation during arc

  20. Adhesion barriers at cesarean delivery: advertising compared with the evidence.

    Science.gov (United States)

    Albright, Catherine M; Rouse, Dwight J

    2011-07-01

    Cesarean delivery, the most common surgery performed in the United States, is complicated by adhesion formation in 24-73% of cases. Because adhesions have potential sequelae, different synthetic adhesion barriers are currently heavily marketed as a means of reducing adhesion formation resultant from cesarean delivery. However, their use for this purpose has been studied in only two small, nonblinded and nonrandomized trials, both of which were underpowered and subject to bias. Neither demonstrated improvement in meaningful clinical outcomes. In the only cost-effectiveness analysis of adhesion barriers to date, the use of synthetic adhesion barriers was cost-effective only when the subsequent rate of small bowel obstruction was at least 2.4%, a rate far higher than that associated with cesarean delivery. In fact, intra-abdominal adhesions from prior cesarean delivery rarely cause maternal harm and have not been demonstrated to adversely affect perinatal outcome. Based on our review of the available literature, we think the use of adhesion barriers at the time of cesarean delivery would be ill-advised at the present time.

  1. Effect of disposable infection control barriers on light output from dental curing lights.

    Science.gov (United States)

    Scott, Barbara A; Felix, Corey A; Price, Richard B T

    2004-02-01

    To prevent contamination of the light guide on a dental curing light, barriers such as disposable plastic wrap or covers may be used. This study compared the effect of 3 disposable barriers on the spectral output and power density from a curing light. The hypothesis was that none of the barriers would have a significant clinical effect on the spectral output or the power density from the curing light. Three disposable barriers were tested against a control (no barrier). The spectra and power from the curing light were measured with a spectrometer attached to an integrating sphere. The measurements were repeated on 10 separate occasions in a random sequence for each barrier. Analysis of variance (ANOVA) followed by Fisher's protected least significant difference test showed that the power density was significantly less than control (by 2.4% to 6.1%) when 2 commercially available disposable barriers were used (p 0.05). The effect of each of the barriers on the power output was small and probably clinically insignificant. ANOVA comparisons of mean peak wavelength values indicated that none of the barriers produced a significant shift in the spectral output relative to the control ( p > 0.05). Two of the 3 disposable barriers produced a significant reduction in power density from the curing light. This drop in power was small and would probably not adversely affect the curing of composite resin. None of the barriers acted as light filters.

  2. Rotational loss of a ring-shaped flywheel supported by high Tc superconducting levitation

    International Nuclear Information System (INIS)

    Teshima, Hidekazu; Tawara, Taichi; Shimada, Ryuichi.

    1997-01-01

    This paper describes the experimental results for the rotational loss of a ring-shaped flywheel supported by high T c superconducting levitation. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub because it is a non-contact and automatically stable levitation without any control systems. The rotational loss has been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The rotational loss decreased as the levitation gap height increased. In low-speed rotational regions, the rotational loss was in proportion to the rotation speed and depended more on the levitation gap. In high-speed rotational regions, the rotational loss was in proportion to the third power of the rotation speed and depended less on the levitation gap. The cubic rotational loss in He was reduced to one-fifth of that in air. The magnetic field pinned in bulk superconductors induces a loss in the materials composing the ring-shaped flywheel. The rotational loss of a ring-shaped flywheel supported by superconducting levitation can be reduced by improving the uniformity of the magnetic fields along the ring, enlargement of the bulk superconductor(s), and densely arranging the bulk superconductors. (author)

  3. Comparison of Theory with Rotation Measurements in JET ICRH Plasmas

    International Nuclear Information System (INIS)

    R.V. Budny; C.S. Chang; C. Giroud; R.J. Goldston; D. McCune; J. Ongena; F.W. Perkins; R.B. White; K.-D. Zastrow; and contributors to the EFDA-JET work programme

    2001-01-01

    Plasma rotation appears to improve plasma performance by increasing the E x B flow shearing rate, thus decreasing radial correlations in the microturbulence. Also, plasma rotation can increase the stability to resistive MHD modes. In the Joint European Torus (JET), toroidal rotation rates omega (subscript ''tor'') with high Mach numbers are generally measured in NBI-heated plasmas (since the neutral beams aim in the co-plasma current direction). They are considerably lower with only ICRH (and Ohmic) heating, but still surprisingly large considering that ICRH appears to inject relatively small amounts of angular momentum. Either the applied torques are larger than naively expected, or the anomalous transport of angular momentum is smaller than expected. Since ICRH is one of the main candidates for heating next-step tokamaks, and for creating burning plasmas in future tokamak reactors, this paper attempts to understand ICRH-induced plasma rotation

  4. Intrinsic rotation with gyrokinetic models

    International Nuclear Information System (INIS)

    Parra, Felix I.; Barnes, Michael; Catto, Peter J.; Calvo, Iván

    2012-01-01

    The generation of intrinsic rotation by turbulence and neoclassical effects in tokamaks is considered. To obtain the complex dependences observed in experiments, it is necessary to have a model of the radial flux of momentum that redistributes the momentum within the tokamak in the absence of a preexisting velocity. When the lowest order gyrokinetic formulation is used, a symmetry of the model precludes this possibility, making small effects in the gyroradius over scale length expansion necessary. These effects that are usually small become important for momentum transport because the symmetry of the lowest order gyrokinetic formulation leads to the cancellation of the lowest order momentum flux. The accuracy to which the gyrokinetic equation needs to be obtained to retain all the physically relevant effects is discussed.

  5. Fluctuation analysis of rotational spectra

    International Nuclear Information System (INIS)

    Doessing, T.; Bracco, A.; Broglia, R.A.; Matsuo, M.

    1996-01-01

    The compound state rotational degree of freedom is ''damped'' in the sense that the electric quadrupole decay of a single quantum state with angular momentum I exhibits a spectrum of final states all having spin I-2. In actual experiments, the cascade of γ-rays associated with each of the members of the ensemble of compound nuclei uses each of the ''discrete'' transitions many more times than the ''continuum'' transitions. Relatively large and small fluctuations in the recorded coincidence spectrum ensue, respectively. The analysis of the fluctuations will be shown to be instrumental to gain insight into the phenomenon of rotational damping. For this purpose, two- and higher-fold coincidence spectra emitted from rotating nuclei are analyzed with respect to the count fluctuations. The coincidences from consecutive γ-rays emitted from discrete rotational bands generate ridges in the E γ1 .E γ2 spectrum, and the fluctuation analysis of the ridges is based upon the ansatz of a random selection of transition energies from band to band. This ansatz is supported by a cranked mean-field calculation for the nucleus 168 Yb, as well as by analyzing resolved bands in 168 Yb and its neighbors. The fluctuation analysis of the central valley (E γ1 =E γ2 ) is based upon the ansatz of fluctuations in the intensity of the transitions of Porter-Thomas type superposed on a smooth spectrum of transition energies. This ansatz is again supported by a mixed-band calculation. The mathematical treatment of count fluctuations is formulated in general (orig.)

  6. Nonlinear travelling waves in rotating Hagen–Poiseuille flow

    Science.gov (United States)

    Pier, Benoît; Govindarajan, Rama

    2018-03-01

    The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.

  7. Addressing Youth Employment Through Micro- and Small ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... Employment Through Micro- and Small-Enterprise Development in Ethiopia. Youth unemployment has emerged as a key challenge facing developing and ... to youth to start small businesses and to youth-led micro- and small-enterprises. ... the barriers and challenges young Ethiopian men and women face in the labour ...

  8. Perception of barriers to physical exercise in women population over 60

    Directory of Open Access Journals (Sweden)

    Jéssica Bianca Aily

    2017-06-01

    Full Text Available Abstract Aims This study evaluated the possible barriers to the permanence of physical exercise (PE of old women. Methods The study population comprised 61 old women participants for at least one year of a supervised PE program, who underwent anamnesis, and applied the Barriers Questionnaire to Physical Activity Practice in the Elderly (QBPAFI. Exploratory factorial analysis was used to evaluate QBPAFI data. The analysis of principal component was applied to the 22 questions through orthogonal rotation to analyze the correlation between the questions. The Kaiser-Meyer-Olkin test was applied to evaluate the suitability of the sample size, and the Bartlett's test to assess whether the original matrix correlation is an identity matrix. Eigenvalues greater than 1 were considered for analysis. Results The motivational factor was the major determinant of perceived barriers (43.3%, followed by psychosocial (12.29%, facilities and appearance (8.75%, and exercise conditions (8.10% factors. Conclusion Knowing the benefits of physical activity, and the main barriers that prevent the permanence of active old people to physical exercise programs, new strategies must be taken to increase the rate of adherence of this group.

  9. Reducing Transaction Costs for Energy Efficiency Investments and Analysis of Economic Risk Associated With Building Performance Uncertainties: Small Buildings and Small Portfolios Program

    Energy Technology Data Exchange (ETDEWEB)

    Langner, R.; Hendron, B.; Bonnema, E.

    2014-08-01

    The small buildings and small portfolios (SBSP) sector face a number of barriers that inhibit SBSP owners from adopting energy efficiency solutions. This pilot project focused on overcoming two of the largest barriers to financing energy efficiency in small buildings: disproportionately high transaction costs and unknown or unacceptable risk. Solutions to these barriers can often be at odds, because inexpensive turnkey solutions are often not sufficiently tailored to the unique circumstances of each building, reducing confidence that the expected energy savings will be achieved. To address these barriers, NREL worked with two innovative, forward-thinking lead partners, Michigan Saves and Energi, to develop technical solutions that provide a quick and easy process to encourage energy efficiency investments while managing risk. The pilot project was broken into two stages: the first stage focused on reducing transaction costs, and the second stage focused on reducing performance risk. In the first stage, NREL worked with the non-profit organization, Michigan Saves, to analyze the effects of 8 energy efficiency measures (EEMs) on 81 different baseline small office building models in Holland, Michigan (climate zone 5A). The results of this analysis (totaling over 30,000 cases) are summarized in a simple spreadsheet tool that enables users to easily sort through the results and find appropriate small office EEM packages that meet a particular energy savings threshold and are likely to be cost-effective.

  10. New Approach to Enhance an Effect of Condition Monitoring of Mid/Small Size Rotating Equipment in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shin You Soo; Chang, Hee Seung [KHNP, Daejeon (Korea, Republic of)

    2016-05-15

    Condition monitoring for small and medium-size rotating equipment is mainly done by a patrol inspection and a vibration measurement. These methods are useful to recognize a significant change in a sound, temperature and vibration amplitude on the bearing housing. However, such a significant change shows an abnormal condition just before failure so that there is not much time to take a right action to recover. In other words, there is a severe damage when someone detects the phenomenon. These methods are good way to detect a flaw but too late to fix. It can't detect early recognition of defect To enhance the effect of condition monitoring and recognize a defect earlier, an integrated measurement including high band frequency analysis is required. It will be implemented at one of nuclear power plants in Korea as a pilot to verify an effect and applicability at nuclear power plants.

  11. X-ray tube rotating anode

    International Nuclear Information System (INIS)

    Friedel, R.

    1979-01-01

    The anode disk of the X-ray rotating anode is blackened on the surface outside the focal spot tracks in order to improve the heat radiation. In particular the side opposite the focal spot tracks is provided with many small holes, the ratio of depth to cross-section ('pit ratio') being as large as possible: ranging from 2:1 to 10:1. They are arranged so densely that the radiating surface will nearly have the effect of a black body. (RW) [de

  12. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  13. Facilitators and barriers of implementing enhanced recovery in colorectal surgery at a safety net hospital: A provider and patient perspective.

    Science.gov (United States)

    Alawadi, Zeinab M; Leal, Isabel; Phatak, Uma R; Flores-Gonzalez, Juan R; Holihan, Julie L; Karanjawala, Burzeen E; Millas, Stefanos G; Kao, Lillian S

    2016-03-01

    Enhanced Recovery After Surgery (ERAS) pathways are known to decrease complications and duration of stay in colorectal surgery patients. However, it is unclear whether an ERAS pathway would be feasible and effective at a safety-net hospital. The aim of this study was to identify local barriers and facilitators before the adoption of an ERAS pathway for patients undergoing colorectal operations at a safety-net hospital. Semistructured interviews were conducted to assess the perceived barriers and facilitators before ERAS adoption. Stratified purposive sampling was used. Interviews were audiotaped, transcribed verbatim, and analyzed using content analysis. Analytic and investigator triangulation were used to establish credibility. Interviewees included 8 anesthesiologists, 5 surgeons, 6 nurses, and 18 patients. Facilitators identified across the different medical professions were (1) feasibility and alignment with current practice, (2) standardization of care, (3) smallness of community, (4) good teamwork and communication, and (5) caring for patients. The barriers were (1) difficulty in adapting to change, (2) lack of coordination between different departments, (3) special needs of a highly comorbid and socioeconomically disadvantaged patient population, (4) limited resources, and (5) rotating residents. Facilitators identified by the patients were (1) welcoming a speedy recovery, (2) being well-cared for and satisfied with treatment, (3) adequate social support, (4) welcoming early mobilization, and (5) effective pain management. The barriers were (1) lack of quiet and private space, (2) need for more patient education and counseling, and (3) unforeseen complications. Although limited hospital resources are perceived as a barrier to ERAS implementation at a safety-net hospital, there is strong support for such pathways and multiple factors were identified that may facilitate change. Inclusion of patient perspectives is critical to identifying challenges and

  14. Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate

    Science.gov (United States)

    Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe

    2014-05-01

    Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small

  15. A device for transferring, in particular, small particles

    International Nuclear Information System (INIS)

    1974-01-01

    The invention relates to a transfer device, in particular for transferring small particles, comprising a helical channel made in the tube inner surface, a device for causing the tube to rotate about its longitudinal axis, a rotating joint adapted to close one of the tube extremities, a device for inserting a substance in the form of granules or of fluid particles into said tube through said joint, and a device for collecting and discharging said substance at the tube opposite end. This can applied to the transfer of small spherical particles e.g. of fuel [fr

  16. TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE

    International Nuclear Information System (INIS)

    Cébron, D.; Hollerbach, R.

    2014-01-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere

  17. Effects of rotation on the stability of nuclei under fission and the possibility of fusion in heavy-ion reactions

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Kumar, K.

    1975-06-01

    The two-center shell model for fission is extended to include the effects of nuclear rotation or angular momentum J. The principle of minimization of total nuclear energy with respect to a constraint on J leads to an effective potential energy which depends on J as well as moment of inertia. This effective potential energy is minimized with respect to nuclear shape variables, neutron pairing energy gap, and proton pairing energy gap for each J value. The resulting potential minima, fission barriers, and moments of inertia are quite sensitive to J. Results are given for 208 82 Pb, 240 94 Pu, and for a super-heavy nucleus, 298 114 X. Microscopic calculations of the critical angular momentum (at which the fission barrier vanishes) are compared with the rotating liquid drop calculations of Cohen, Plasil, and Swiatecki. The influence of these results on the possibility of fusion in heavy-ion reactions is discussed. (5 figures, 6 tables) (U.S.)

  18. Free energy barriers to evaporation of water in hydrophobic confinement.

    Science.gov (United States)

    Sharma, Sumit; Debenedetti, Pablo G

    2012-11-08

    We use umbrella sampling Monte Carlo and forward and reverse forward flux sampling (FFS) simulation techniques to compute the free energy barriers to evaporation of water confined between two hydrophobic surfaces separated by nanoscopic gaps, as a function of the gap width, at 1 bar and 298 K. The evaporation mechanism for small (1 × 1 nm(2)) surfaces is found to be fundamentally different from that for large (3 × 3 nm(2)) surfaces. In the latter case, the evaporation proceeds via the formation of a gap-spanning tubular cavity. The 1 × 1 nm(2) surfaces, in contrast, are too small to accommodate a stable vapor cavity. Accordingly, the associated free energy barriers correspond to the formation of a critical-sized cavity for sufficiently large confining surfaces, and to complete emptying of the gap region for small confining surfaces. The free energy barriers to evaporation were found to be of O(20kT) for 14 Å gaps, and to increase by approximately ~5kT with every 1 Å increase in the gap width. The entropy contribution to the free energy of evaporation was found to be independent of the gap width.

  19. Coupled tearing modes in plasmas with differential rotation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Persson, M.

    1993-08-01

    The global asymptotic matching equations for multiple coupled resistive modes of arbitrary parity in a cylindrical plasma are derived. Three different variational principles are given for the outer region matching data, while the inner-region analysis features a careful treatment of the symmetry-breaking effect of a gradient in the equilibrium current for a zero-β slab model. It is concluded that the usual constant-ψ result remains valid and constrains the matrix matching formalism. The dispersion relation is compared with initial value calculations of a double tearing mode when there are small relative rotation velocities between the rational surfaces. In treating differential rotation within the asymptotic matching formalism, flow is ignored in the outer region and is assumed to affect the inner response solely through a Doppler shift. It is shown that the relative rotation can have a strong stabilizing effect by making all but one rational surface effectively ideal. 40 refs., 6 figs

  20. Formation and collapse of internal transport barrier

    International Nuclear Information System (INIS)

    Fukuyama, A.; Itoh, K.; Itoh, S.I.; Yagi, M.

    1999-01-01

    A theoretical model of internal transport barrier (ITB) is developed. The transport model based on the self-sustained turbulence theory of the current-diffusive ballooning mode is extended to include the effects of ExB rotation shear. Delayed formation of ITB is observed in transport simulations. The influence of finite gyroradius is also discussed. Simulation of the current ramp-up experiment successfully described the radial profile of density, temperature and safety factor. A model of ITB collapse due to magnetic braiding is proposed. Sudden enhancement of transport triggered by overlapping of magnetic islands terminates ITB. The possibility of destabilizing global low-n modes is also discussed. (author)

  1. Formation and collapse of internal transport barrier

    International Nuclear Information System (INIS)

    Fukuyama, A.; Itoh, K.; Itoh, S.-I.; Yagi, M.

    2001-01-01

    A theoretical model of internal transport barrier (ITB) is developed. The transport model based on the self-sustained turbulence theory of the current-diffusive ballooning mode is extended to include the effects of ExB rotation shear. Delayed formation of ITB is observed in transport simulations. The influence of finite gyroradius is also discussed. Simulation of the current ramp-up experiment successfully described the radial profile of density, temperature and safety factor. A model of ITB collapse due to magnetic braiding is proposed. Sudden enhancement of transport triggered by overlaping of magnetic islands terminates ITB. The possibility of destabilizing global low-n modes is also discussed. (author)

  2. Core barrier formation near integer q surfaces in DIII-D

    International Nuclear Information System (INIS)

    Austin, M. E.; Gentle, K. W.; Burrell, K. H.; Waltz, R. E.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Petty, C. C.; Prater, R.; Heidbrink, W. W.; Luo, Y.; Kinsey, J. E.; Makowski, M. A.; McKee, G. R.; Shafer, M. W.; Nazikian, R.; Rhodes, T. L.; Van Zeeland, M. A.

    2006-01-01

    Recent DIII-D experiments have significantly improved the understanding of internal transport barriers (ITBs) that are triggered close to the time when an integer value of the minimum in q is crossed. While this phenomenon has been observed on many tokamaks, the extensive transport and fluctuation diagnostics on DIII-D have permitted a detailed study of the generation mechanisms of q-triggered ITBs as pertaining to turbulence suppression dynamics, shear flows, and energetic particle modes. In these discharges, the evolution of the q profile is measured using motional Stark effect polarimetry and the integer q min crossings are further pinpointed in time by the observation of Alfven cascades. High time resolution measurements of the ion and electron temperatures and the toroidal rotation show that the start of improved confinement is simultaneous in all three channels, and that this event precedes the traversal of integer q min by 5-20 ms. There is no significant low-frequency magnetohydrodynamic activity prior to or just after the crossing of the integer q min and hence magnetic reconnection is determined not to be the precipitant of the confinement change. Instead, results from the GYRO code point to the effects of zonal flows near low order rational q values as playing a role in ITB triggering. A reduction in local turbulent fluctuations is observed at the start of the temperature rise and, concurrently, an increase in turbulence poloidal flow velocity and flow shear is measured with the beam emission spectroscopy diagnostic. For the case of a transition to an enduring internal barrier the fluctuation level remains at a reduced amplitude. The timing and nature of the temperature, rotation, and fluctuation changes leading to internal barriers suggests transport improvement due to increased shear flow arising from the zonal flow structures

  3. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y., E-mail: kycheng@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsu, C.-H. [Division of Scientific Research, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  4. The influence of molecular rotation on vibration--translation energy transfer

    International Nuclear Information System (INIS)

    McKenzie, R.L.

    1977-01-01

    The role of molecular rotations in the exchange of vibrational and translational energy is investigated for collisions between anharmonic diatomic molecules and structureless atoms. A three-dimensional, semiclassical, impact parameter description is applied with emphasis directed towards the influence of rotational coupling on the net rate of vibrational energy transfer summed over all final rotational states. These results are then related to the predictions of an equivalent collinear collision model, and their comparison allows an evaluation of the collinear approximation. The mechanisms of vibrational energy transfer including rotational transitions are shown to be separable into three classes, with the molecules belonging to each class identified first and foremost by their ratio of fundamental vibrational and rotational frequencies, ω/sub e//B/sub e/, and second by the proximity of their initial state to a near-resonant vibration--rotation transition with a small change in angular momentum. While the dynamics of molecules with ω/sub e//B/sub e/ ratios that are comparable to the range of angular momentum transitions having strong coupling are found to require a complete three-dimensional description, the rates of vibrational energy transfer in molecules with large ω/sub e//B/sub e/ ratios appear to be well approximated by a collinear collision model

  5. The Blood-Brain Barrier: An Engineering Perspective

    Directory of Open Access Journals (Sweden)

    Andrew eWong

    2013-08-01

    Full Text Available It has been more than 100 years since Paul Ehrlich reported that various water-soluble dyes injected into the circulation did not enter the brain. Since Ehrlich’s first experiments, only a small number of molecules, such as alcohol and caffeine have been found to cross the blood-brain barrier, and it remains the major roadblock to treatment of many central nervous system diseases. At the same time, many central nervous system diseases are associated with disruption of the blood-brain barrier that can lead to changes in permeability, modulation of immune cell transport, and trafficking of pathogens into the brain. Therefore advances in our understanding of the structure and function of the blood-brain barrier are key to advances in treatment of a wide range of central nervous system diseases. Over the past 10 years it has become recognized that the blood-brain barrier is a complex dynamic system that involves biomechanical and biochemical signaling between the vascular system and the brain. Here we reconstruct the structure, function, and transport properties of the blood-brain barrier from an engineering perspective. New insight into the physics of the blood-brain barrier could ultimately lead to clinical advances in the treatment of central nervous system diseases.

  6. Probing Vitamine C, Aspirin and Paracetamol in the Gas Phase: High Resolution Rotational Studies

    Science.gov (United States)

    Mata, S.; Cabezas, C.; Varela, M.; Pena, I.; Nino, A.; López, J. C.; Alonso, J. L.; Grabow, J.-U.

    2011-06-01

    A solid sample of Vitamin C (m.p. 190°C) vaporized by laser ablation has been investigated in gas phase and characterized through their rotational spectra. Two spectroscopy techniques has been used to obtain the spectra: a new design of broadband chirped pulse Fourier transform microwave spectroscopy with in-phase/quadrature-phase-modulation passage-acquired-coherence technique (IMPACT) and conventional laser ablation molecular beam Fourier transform microwave spectroscopy (LA-MB-FTMW). Up to now, two low-energy conformer have been observed and their rotational constants determined. Ab initio calculations at the MP2/6-311++G (d,p) level of theory predicted rotational constants which helped us to identify these conformers unequivocally. Among the molecules to benefit from the LA-MB-FTMW technique there are common important drugs never observed in the gas phase through rotational spectroscopy. We present here the results on acetyl salicylic acid and acetaminophen (m.p. 136°C), commonly known as aspirin and paracetamol respectively. We have observed two stable conformers of aspirin and two for paracetamol. The internal rotation barrier of the methyl group in aspirin has been determined for both conformers from the analysis of the A-E splittings due to the coupling of internal and overall rotation. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11,617-627 (2009)and references therein

  7. Beyond RPA in nuclear rotation and wobbling motion at high spin

    International Nuclear Information System (INIS)

    Kaneko, Kazunari

    1991-01-01

    A quantum mechanical method of the nuclear rotation and the wobbling motion at high spin beyond the small-oscillation approximation is represented within the framework of time-dependent mean-field theory with some constraints. The constraints which determine the choice of the rotating reference frame are considered in the spin-orientation frame and the principal-axis frame. The quantization under such constraints is performed by making use of the Dirac bracket. Then the commutation relations of the angular momentum are derived. (orig.)

  8. Experimental Approach of Fault Movement on an Engineered Barrier System

    International Nuclear Information System (INIS)

    Lee, Minsoo; Choi, Heuijoo; Kim, Heuna

    2012-01-01

    Safety evaluation of an engineered barrier system against fault movement at underground disposal region for high level waste (HLW) is tried using a miniature bore-shear apparatus. For the purpose, a miniature bore-shear apparatus simulating an EBS (engineered barrier system) was manufactured in 1/30 scale. And using the developed apparatus, bore-shear tests were performed twice. During the tests, pressure variations were checked at 6 points around buffer zone, and then a rotational angle of the test vessel was checked. The achieved pressure data were compared with those from analytical modeling, which is based on Drucker-Prager model. At initial shearing step, high pressure was recorded at some point but it decreased rapidly. For the better understanding of fault movement, the modification of an analytical model and the accumulation of experimental experience were required

  9. Experimental Approach of Fault Movement on an Engineered Barrier System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minsoo; Choi, Heuijoo; Kim, Heuna [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-03-15

    Safety evaluation of an engineered barrier system against fault movement at underground disposal region for high level waste (HLW) is tried using a miniature bore-shear apparatus. For the purpose, a miniature bore-shear apparatus simulating an EBS (engineered barrier system) was manufactured in 1/30 scale. And using the developed apparatus, bore-shear tests were performed twice. During the tests, pressure variations were checked at 6 points around buffer zone, and then a rotational angle of the test vessel was checked. The achieved pressure data were compared with those from analytical modeling, which is based on Drucker-Prager model. At initial shearing step, high pressure was recorded at some point but it decreased rapidly. For the better understanding of fault movement, the modification of an analytical model and the accumulation of experimental experience were required.

  10. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    1999-01-01

    In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belo...... approximations to the Riemannian metric, and that the subsequent corrections are inherient in the least squares estimation. Keywords: averaging rotations, Riemannian metric, matrix, quaternion......In this article two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very offten the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  11. Autoradiographic study of the permeability characteristics of the small intestine

    Energy Technology Data Exchange (ETDEWEB)

    Kingham, J G.C.; Baker, J H; Loehry, C A [Royal Victoria Hospital, Bournemouth (UK)

    1978-02-01

    This autoradiographic study demonstrates the distribution of a range of small solutes and macromolecules in the mucosa of the guinea-pig small intestine after intracardiac injection. The substances investigated were: /sup 14/C-urea, /sup 3/H-mannose, /sup 3/H-inulin, and /sup 125/I polyvinylpyrrolidone (PVP). Small bowel biopsies were taken at intervals from one to 60 minutes after injection and the tissues processed for autoradiography. Light microscopic examination of the autoradiographs showed that the compartmental distribution depended on the molecular size of the substances being studied. Urea and mannose, as small solutes, were uniformly distributed throughout the intravascular, extravascular, and epithelial compartments. Inulin was evenly distributed in the vessel lumen and extravascular space but there was a considerable drop in concentration in the epithelium. PVP exhibited the most marked gradients, the concentration being greatest in the vascular lumina, lower in the extravascular space, least in the epithelium. Thus there appear to be two barriers to macromolecular passage which are freely permeable to small solutes: the capillary wall and the epithelium. At a light microscopical level it was not possible to observe whether the limiting membrane of each of these barriers is the cell plasmalemmal membrane or the basement membrane. The selectivity of the epithelial barrier was greater than that of the capillary barrier.

  12. Interaction enablers, drivers and barriers of collaborative innovation projects between small firms and academia

    DEFF Research Database (Denmark)

    Filip, Diane; Hansen, Bettina Dencker; Frølunde, Thea Thorsgaard

    2016-01-01

    drivers, and main barriers. Our three major findings relate to the phases of a structured program, elements of collaborative innovation projects, and the facilitation of interaction at two levels, i.e. meta-level and micro-level, by two types of brokers. The operator of the regional program facilitates...... types of brokers acting at two different levels have proven to be useful in overcoming some of the classical barriers firms face when interacting with academia. Essentially, the gap between the world of business and the world of academia has been mitigated by the structured and formalized interactions...

  13. Verapamil-induced breakdown of the blood-brain barrier presenting as a transient right middle cerebral artery syndrome.

    Science.gov (United States)

    Pace, Jonathan; Nelson, Jeffrey; Ray, Abhishek; Hu, Yin

    2017-12-01

    A middle-aged patient presented for elective embolization of an incidentally found right internal carotid aneurysm. An angiogram was performed, during which the left internal carotid artery was visualized to evaluate a second, small aneurysm. During the embolization of the right internal carotid artery aneurysm, a catheter-induced vasospasm was identified that prompted treatment with intra-arterial verapamil. The procedure was uncomplicated; a postoperative rotational flat-panel computed tomography scan was performed on the angiography table that demonstrated right hemisphere contrast staining. The patient developed a right middle cerebral artery (MCA) syndrome after extubation with repeat cerebral angiography negative for occlusion and magnetic resonance imaging negative for stroke. The patient was observed for 48 hours, during which time the patient had slowly improved. At a six-week follow up visit, the patient had fully recovered. We present an interesting case of a verapamil-induced breakdown of the blood-brain barrier and self-limited right MCA syndrome.

  14. Agricultural Trade Barriers 10 years later Uruguay Round Trade Agreement Signature

    OpenAIRE

    Mahia, R.; Arce, Rafael de; Escribano, Gonzalo

    2005-01-01

    In this paper, an analysis of current state of agricultural trade barriers is carried out alter ten years of Uruguay Round Agricultural Trade Agreement Signature The descriptive analysis showed that small advances in trade barriers removing have been taken out. About the heterogeneity in tariff applications, tariff progresivity and peak tariffs, the same situation is pointed out.

  15. Rotational temperature determinations in molecular gas lasers

    International Nuclear Information System (INIS)

    Weaver, L.A.; Taylor, L.H.; Denes, L.J.

    1975-01-01

    The small-signal gain expressions for vibrational-rotational transitions are examined in detail to determine possible methods of extracting the rotational temperature from experimental gain measurements in molecular gas lasers. Approximate values of T/subr/ can be deduced from the rotational quantum numbers for which the P- and R-branch gains are maximum. Quite accurate values of T/subr/ and the population inversion density (n/subv//sub prime/-n/subv//sub double-prime/) can be determined by fitting data to suitably linearized gain relationships, or by performing least-squares fits of the P- and R-branch experimental data to the full gain expressions. Experimental gain measurements for 15 P-branch and 12 R-branch transitions in the 10.4-μm CO 2 band have been performed for pulsed uv-preionized laser discharges in CO 2 : N 2 : He=1 : 2 : 3 mixtures at 600 Torr. These data are subjected to the several gain analyses described herein, yielding a rotational temperature of 401plus-or-minus10 degreeK and an inversion density of (3.77plus-or-minus0.07) times10 17 cm -3 for conditions of maximum gain. These techniques provide accurate values of the gas temperature in molecular gas lasers with excellent temporal and spatial resolution, and should be useful in extending the conversion efficiency and arcing limits of high-energy electrically exc []ted lasers

  16. Nuclear rotational population patterns in heavy-ion scattering and transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J O; Stoyer, M A [Lawrence Berkeley Lab., CA (USA); Canto, L F; Donangelo, R [Universidade Federal do Rio de Janeiro, RJ (Brazil); Ring, P [Technische Univ. Muenchen, Garching (Germany, F.R.). Fakultaet fuer Physik

    1991-05-01

    A model of {sup 239}Pu with decoupled neutron is used for theoretical calculations of rotational population patterns in heavy ion inelastic scattering and one-neutron transfer reactions. The system treated in {sup 90}Zr on {sup 239}Pu at the near-barrier energy of 500 MeV and backscattering angles of 180deg and 140deg. The influence of the complex nuclear optical potential is seen to be very strong, and the Nilsson wave function of the odd neutron produces a distinctive pattern in the transfer reaction. (orig.).

  17. Dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.; Yoo, David S.; Yin, Fang-Fang; Cai, Jing, E-mail: jing.cai@duke.edu

    2014-04-01

    To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V{sub 100%}), max PTV dose (PTV D{sub max}), percentage prescription dose to 0.35 cc of cord (cord D{sub 0.35} {sub cc}), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D{sub 0.35} {sub cc} and D{sub 5} {sub cc}), and volume of the lungs receiving at least 20 Gy (lung V{sub 20}). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were < 1% or < 1 Gy. Of all rotational offsets, largest change in PTV V{sub 100%}, PTV D{sub max}, cord D{sub 0.35} {sub cc}, esophagus D{sub 0.35} {sub cc}, esophagus D{sub 5} {sub cc}, and lung V{sub 20} was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R{sup 2} range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets.

  18. Chaotic cold accretion on to black holes in rotating atmospheres

    Science.gov (United States)

    Gaspari, M.; Brighenti, F.; Temi, P.

    2015-07-01

    The fueling of black holes is one key problem in the evolution of baryons in the universe. Chaotic cold accretion (CCA) profoundly differs from classic accretion models, as Bondi and thin disc theories. Using 3D high-resolution hydrodynamic simulations, we now probe the impact of rotation on the hot and cold accretion flow in a typical massive galaxy. In the hot mode, with or without turbulence, the pressure-dominated flow forms a geometrically thick rotational barrier, suppressing the black hole accretion rate to ~1/3 of the spherical case value. When radiative cooling is dominant, the gas loses pressure support and quickly circularizes in a cold thin disk; the accretion rate is decoupled from the cooling rate, although it is higher than that of the hot mode. In the more common state of a turbulent and heated atmosphere, CCA drives the dynamics if the gas velocity dispersion exceeds the rotational velocity, i.e., turbulent Taylor number Tat 1), the broadening of the distribution and the efficiency of collisions diminish, damping the accretion rate ∝ Tat-1, until the cold disk drives the dynamics. This is exacerbated by the increased difficulty to grow TI in a rotating halo. The simulated sub-Eddington accretion rates cover the range inferred from AGN cavity observations. CCA predicts inner flat X-ray temperature and r-1 density profiles, as recently discovered in M 87 and NGC 3115. The synthetic Hα images reproduce the main features of cold gas observations in massive ellipticals, as the line fluxes and the filaments versus disk morphology. Such dichotomy is key for the long-term AGN feedback cycle. As gas cools, filamentary CCA develops and boosts AGN heating; the cold mode is thus reduced and the rotating disk remains the sole cold structure. Its consumption leaves the atmosphere in hot mode with suppressed accretion and feedback, reloading the cycle.

  19. Rotating flux compressor for energy conversion

    International Nuclear Information System (INIS)

    Chowdhuri, P.; Linton, T.W.; Phillips, J.A.

    1983-01-01

    The rotating flux compressor (RFC) converts rotational kinetic energy into an electrical output pulse which would have higher energy than the electrical energy initially stored in the compressor. An RFC has been designed in which wedge-shaped rotor blades pass through the air gaps between successive turns of a solenoid, the stator. Magnetic flux is generated by pulsing the stator solenoids when the inductance is a maximum, i.e., when the flux fills the stator-solenoid volume. Connecting the solenoid across a load conserves the flux which is compressed within the small volume surrounding the stator periphery when the rotor blades cut into the free space between the stator plates, creating a minimum-inductance condition. The unique features of this design are: (1) no electrical connections (brushes) to the rotor; (2) no conventional windings; and (3) no maintenance. The device has been tested up to 5000 rpm of rotor speed

  20. The rotationally improved Skyrmion, or RISKY

    International Nuclear Information System (INIS)

    Dorey, N.

    1995-01-01

    The perceived inability of the Skyrme model to reproduce pseudovector pion-baryon coupling has come to be known as the ''Yukawa problem.'' In this talk, we review the complete solution to this problem. The solution involves a new configuration known as the rotationally improved Skyrmion, or ''RISKY,'' in which the hedgehog structure is modified by a small quadrupole distortion. We illustrate our ideas both in the Skyrme model and in a simpler model with a global U(l) symmetry

  1. Analysis of interactions among barriers in project risk management

    Science.gov (United States)

    Dandage, Rahul V.; Mantha, Shankar S.; Rane, Santosh B.; Bhoola, Vanita

    2018-03-01

    In the context of the scope, time, cost, and quality constraints, failure is not uncommon in project management. While small projects have 70% chances of success, large projects virtually have no chance of meeting the quadruple constraints. While there is no dearth of research on project risk management, the manifestation of barriers to project risk management is a less dwelt topic. The success of project management is oftentimes based on the understanding of barriers to effective risk management, application of appropriate risk management methodology, proactive leadership to avoid barriers, workers' attitude, adequate resources, organizational culture, and involvement of top management. This paper represents various risk categories and barriers to risk management in domestic and international projects through literature survey and feedback from project professionals. After analysing the various modelling methods used in project risk management literature, interpretive structural modelling (ISM) and MICMAC analysis have been used to analyse interactions among the barriers and prioritize them. The analysis indicates that lack of top management support, lack of formal training, and lack of addressing cultural differences are the high priority barriers, among many others.

  2. [The blood-brain barrier in ageing persons].

    Science.gov (United States)

    Haaning, Nina; Damsgaard, Else Marie; Moos, Torben

    2018-03-26

    Brain capillary endothelial cells (BECs) form the ultra-tight blood-brain barrier (BBB). The permeability of the BBB increases with increasing age and neurovascular and neurodegenerative diseases. Major defects of the BBB can be initiated by increased permeability to plasma proteins in small arteriosclerotic arteries and release of proteins from degenerating neurons into the brain extracellular space. These proteins deposit in perivascular spaces, and subsequently negatively influence the BECs leading to decreased expression of barrier proteins. Detection of BBB defects by the use of non-invasive techniques is relevant for clinical use in settings with advanced age and severe brain disorders.

  3. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Roy, Titob [Department of Mathematics, Vikarunnesa Nun School and College, Boshundhara, Dhaka (Bangladesh); Yanase, Shinichiro, E-mail: yanase@okayama-u.ac.jp [Department of Mechanical and Systems Engineering, Okayama University, Okayama 700-8530 (Japan)

    2016-07-12

    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

  4. Core and edge toroidal rotation study in JT-60U

    International Nuclear Information System (INIS)

    Yoshida, M.; Sakamoto, Y.; Honda, M.; Kamada, Y.; Takenaga, H.; Oyama, N.; Urano, H.

    2012-01-01

    The relation between toroidal rotation velocities (V t ) in the core and edge regions is investigated in H-mode plasmas with a small external torque input from the viewpoint of momentum transport. The toroidal rotation velocity in the core region (core-V t ) gradually varies on a timescale of ∼20 ms after a rapid change in the toroidal rotation velocity in the edge region (edge-V t ) at the L–H transition. This timescale of ∼20 ms is consistent with a transport timescale using the momentum diffusivity (χ φ ) and convection velocity (V conv ). In steady state, a linear correlation between the core- and edge-V t is observed in H-mode plasmas when the ion pressure gradient (∇P i ) is small. This relation between core- and edge-V t is also explained by momentum transport. The V t profiles with a large ∇P i are reproduced in the core region of r/a ∼ 0.2–0.7 by adopting a residual stress term 'Π res = α k χ φ ∇P i ' proposed in this paper. Here r/a is the normalized plasma radius and α k1 is a radial constant. Using this formula, V t profiles are reproduced over a wide range of plasma conditions. Parameter dependences of the edge-V t are investigated at a constant ripple loss power, ripple amplitude and plasma current. A reduction in the CTR-rotation is observed with decreasing ion temperature gradient (∇T i ). Here CTR refers to the counter-I P direction.

  5. Interchange rotation factors and player characteristics influence physical and technical performance in professional Australian Rules football.

    Science.gov (United States)

    Dillon, Patrick A; Kempton, Thomas; Ryan, Samuel; Hocking, Joel; Coutts, Aaron J

    2018-03-01

    To examine the effects of match-related and individual player characteristics on activity profile and technical performance during rotations in professional Australian football. Longitudinal observational study. Global positioning system data and player rating scores were collected from 33 professional Australian football players during 15 Australian football League matches. Player rating scores were time aligned with their relative total and high-speed running (HSR) distance (>20kmh -1 ) for each on ground rotation. Individual players' maximal aerobic running speed (MAS) was determined from a two-kilometre trial. A multilevel linear mixed model was used to examine the influence of rotations on physical activity profiles and skill execution during match play. Rotation duration and accumulated distance resulted in a trivial-to-moderate reduction in relative total and HSR distances as well as relative rating points. The number of disposals in a rotation had a small positive effect on relative total and HSR distances and a large positive effect on relative rating points. MAS was associated with a moderate-to-large increase in relative total distance, but had a large negative effect on relative rating points. Previous rotation time, stoppages and the number of rotations in the quarter had a trivial-to-small negative effect on relative total and HSR distances. A greater speed (mmin -1 ) was associated with a trivial increase in rating points during a rotation, while there was a trivial decrease in relative total distance as rating points increased. The complex relationship between factors that influence activity profile and technical performance during rotations in Australian football needs to be considered when interpreting match performance. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Barriers to Business Model Innovation in Swedish Agriculture

    OpenAIRE

    Sivertsson, Olof; Tell, Joakim

    2015-01-01

    Swedish agricultural companies, especially small farms, are struggling to be profitable in difficult economic times. It is a challenge for Swedish farmers to compete with imported products on prices. The agricultural industry, however, supports the view that through business model innovation, farms can increase their competitive advantage. This paper identifies and describes some of the barriers Swedish small farms encounter when they consider business model innovation. A qualitative approach...

  7. Consequences of high effective Prandtl number on solar differential rotation and convective velocity

    Science.gov (United States)

    Karak, Bidya Binay; Miesch, Mark; Bekki, Yuto

    2018-04-01

    Observations suggest that the large-scale convective velocities obtained by solar convection simulations might be over-estimated (convective conundrum). One plausible solution to this could be the small-scale dynamo which cannot be fully resolved by global simulations. The small-scale Lorentz force suppresses the convective motions and also the turbulent mixing of entropy between upflows and downflows, leading to a large effective Prandtl number (Pr). We explore this idea in three-dimensional global rotating convection simulations at different thermal conductivity (κ), i.e., at different Pr. In agreement with previous non-rotating simulations, the convective velocity is reduced with the increase of Pr as long as the thermal conductive flux is negligible. A subadiabatic layer is formed near the base of the convection zone due to continuous deposition of low entropy plumes in low-κ simulations. The most interesting result of our low-κ simulations is that the convective motions are accompanied by a change in the convection structure that is increasingly influenced by small-scale plumes. These plumes tend to transport angular momentum radially inward and thus establish an anti-solar differential rotation, in striking contrast to the solar rotation profile. If such low diffusive plumes, driven by the radiative-surface cooling, are present in the Sun, then our results cast doubt on the idea that a high effective Pr may be a viable solution to the solar convective conundrum. Our study also emphasizes that any resolution of the conundrum that relies on the downward plumes must take into account the angular momentum transport and heat transport.

  8. Asteroseismology of Red-Giant Stars: Mixed Modes, Differential Rotation, and Eccentric Binaries

    Science.gov (United States)

    Beck, Paul G.

    2013-12-01

    Astronomers are aware of rotation in stars since Galileo Galilei attributed the movement of sunspots to rotation of the Sun in 1613. In contrast to the Sun, whose surface can be resolved by small telescopes or even the (protected) eye, we detect stars as point sources with no spatial information. Numerous techniques have been developed to derive information about stellar rotation. Unfortunately, most observational data allow only for the surface rotational rate to be inferred. The internal rotational profile, which has a great effect on the stellar structure and evolution, remains hidden below the top layers of the star - the essential is hidden to the eyes. Asteroseismology allows us to "sense" indirectly deep below the stellar surface. Oscillations that propagate through the star provide information about the deep stellar interiors while they also distort the stellar surface in characteristic patterns leading to detectable brightness or velocity variations. Also, certain oscillation modes are sensitive to internal rotation and carry information on how the star is spinning deep inside. Thanks to the unprecedented quality of NASA's space telescope Kepler, numerous detailed observations of stars in various evolutionary stages are available. Such high quality data allow that for many stars, rotation can not only be constrained from surface rotation, but also investigated through seismic studies. The work presented in this thesis focuses on the oscillations and internal rotational gradient of evolved single and binary stars. It is shown that the seismic analysis can reach the cores of oscillating red-giant stars and that these cores are rapidly rotating, while nested in a slowly rotating convective envelope.

  9. Dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer

    International Nuclear Information System (INIS)

    Yang, Yun; Catalano, Suzanne; Kelsey, Chris R.; Yoo, David S.; Yin, Fang-Fang; Cai, Jing

    2014-01-01

    To quantitatively evaluate dosimetric effects of rotational offsets in stereotactic body radiation therapy (SBRT) for lung cancer. Overall, 11 lung SBRT patients (8 female and 3 male; mean age: 75.0 years) with medially located tumors were included. Treatment plans with simulated rotational offsets of 1°, 3°, and 5° in roll, yaw, and pitch were generated and compared with the original plans. Both clockwise and counterclockwise rotations were investigated. The following dosimetric metrics were quantitatively evaluated: planning target volume coverage (PTV V 100% ), max PTV dose (PTV D max ), percentage prescription dose to 0.35 cc of cord (cord D 0.35 cc ), percentage prescription dose to 0.35 cc and 5 cc of esophagus (esophagus D 0.35 cc and D 5 cc ), and volume of the lungs receiving at least 20 Gy (lung V 20 ). Statistical significance was tested using Wilcoxon signed rank test at the significance level of 0.05. Overall, small differences were found in all dosimetric matrices at all rotational offsets: 95.6% of differences were 100% , PTV D max , cord D 0.35 cc , esophagus D 0.35 cc , esophagus D 5 cc , and lung V 20 was − 8.36%, − 6.06%, 11.96%, 8.66%, 6.02%, and − 0.69%, respectively. No significant correlation was found between any dosimetric change and tumor-to-cord/esophagus distances (R 2 range: 0 to 0.44). Larger dosimetric changes and intersubject variations were observed at larger rotational offsets. Small dosimetric differences were found owing to rotational offsets up to 5° in lung SBRT for medially located tumors. Larger intersubject variations were observed at larger rotational offsets

  10. Plasma rotation measurement in small tokamaks using an optical spectrometer and a single photomultiplier as detector.

    Science.gov (United States)

    Severo, J H F; Nascimento, I C; Kuznetov, Yu K; Tsypin, V S; Galvão, R M O; Tendler, M

    2007-04-01

    The method for plasma rotation measurement in the tokamak TCABR is reported in this article. During a discharge, an optical spectrometer is used to scan sequentially spectral lines of plasma impurities and spectral lines of a calibration lamp. Knowing the scanning velocity of the diffraction grating of the spectrometer with adequate precision, the Doppler shifts of impurity lines are determined. The photomultiplier output voltage signals are recorded with adequate sampling rate. With this method the residual poloidal and toroidal plasma rotation velocities were determined, assuming that they are the same as those of the impurity ions. The results show reasonable agreement with the neoclassical theory and with results from similar tokamaks.

  11. The tumbling rotational state of 1I/`Oumuamua

    Science.gov (United States)

    Fraser, Wesley C.; Pravec, Petr; Fitzsimmons, Alan; Lacerda, Pedro; Bannister, Michele T.; Snodgrass, Colin; Smolić, Igor

    2018-05-01

    The discovery1 of 1I/2017 U1 (1I/`Oumuamua) has provided the first glimpse of a planetesimal born in another planetary system. This interloper exhibits a variable colour within a range that is broadly consistent with local small bodies, such as the P- and D-type asteroids, Jupiter Trojans and dynamically excited Kuiper belt objects2-7. 1I/`Oumuamua appears unusually elongated in shape, with an axial ratio exceeding 5:1 (refs 1,4,5,8). Rotation period estimates are inconsistent and varied, with reported values between 6.9 and 8.3 h (refs 4-6,9). Here, we analyse all the available optical photometry data reported to date. No single rotation period can explain the exhibited brightness variations. Rather, 1I/`Oumuamua appears to be in an excited rotational state undergoing non-principal axis rotation, or tumbling. A satisfactory solution has apparent lightcurve frequencies of 0.135 and 0.126 h-1 and implies a longest-to-shortest axis ratio of ≳5:1, although the available data are insufficient to uniquely constrain the true frequencies and shape. Assuming a body that responds to non-principal axis rotation in a similar manner to Solar System asteroids and comets, the timescale to damp 1I/`Oumuamua's tumbling is at least one billion years. 1I/`Oumuamua was probably set tumbling within its parent planetary system and will remain tumbling well after it has left ours.

  12. On the relative rotational motion between rigid fibers and fluid in turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Marchioli, C. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Zhao, L., E-mail: lihao.zhao@ntnu.no [Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway); Andersson, H. I. [Department of Electrical, Management and Mechanical Engineering, University of Udine, 33100 Udine (Italy); Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim (Norway)

    2016-01-15

    In this study, the rotation of small rigid fibers relative to the surrounding fluid in wall-bounded turbulence is examined by means of direct numerical simulations coupled with Lagrangian tracking. Statistics of the relative (fiber-to-fluid) angular velocity, referred to as slip spin in the present study, are evaluated by modelling fibers as prolate spheroidal particles with Stokes number, St, ranging from 1 to 100 and aspect ratio, λ, ranging from 3 to 50. Results are compared one-to-one with those obtained for spherical particles (λ = 1) to highlight effects due to fiber length. The statistical moments of the slip spin show that differences in the rotation rate of fibers and fluid are influenced by inertia, but depend strongly also on fiber length: Departures from the spherical shape, even when small, are associated with an increase of rotational inertia and prevent fibers from passively following the surrounding fluid. An increase of fiber length, in addition, decouples the rotational dynamics of a fiber from its translational dynamics suggesting that the two motions can be modelled independently only for long enough fibers (e.g., for aspect ratios of order ten or higher in the present simulations)

  13. Kinetic theory of interaction of high frequency waves with a rotating plasma

    International Nuclear Information System (INIS)

    Chiu, S. C.; Chan, V. S.; Chu, M. S.; Lin-Liu, Y. R.

    2000-01-01

    The equations of motion of charged particles of a strongly magnetized flowing plasma under the influence of high frequency waves are derived in the guiding center approximation. A quasilinear theory of the interactions of waves with rotating plasmas is formulated. This is applied to investigate the effect of radio frequency waves on a rotating tokamak plasma with a heated minority species. The angular momentum drive is mainly due to the rf-induced radial minority current. The return current by the bulk plasma gives an equal and opposite rotation drive on the bulk. Using moment equations and a small banana width approximation, the JxB drive was evaluated for the bulk plasma. Quite remarkably, although collisions are included, the net rotation drive is due to a term which can be obtained by neglecting collisions. (c) 2000 American Institute of Physics

  14. Feedback Control of Resistive Wall Modes in Slowly Rotating DIII-D Plasmas

    Science.gov (United States)

    Okabayashi, M.; Chance, M. S.; Takahashi, H.; Garofalo, A. M.; Reimerdes, H.; in, Y.; Chu, M. S.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.

    2006-10-01

    In slowly rotating plasmas on DIII-D, the requirement of RWM control feedback have been identified, using a MHD code along with measured power supply characteristics. It was found that a small time delay is essential for achieving high beta if no rotation stabilization exists. The overall system delay or the band pass time constant should be in the range of 0.4 of the RWM growth time. Recently the control system was upgraded using twelve linear audio amplifiers and a faster digital control system, reducing the time-delay from 600 to 100 μs. The advantage has been clearly observed when the RWMs excited by ELMs were effectively controlled by feedback even if the rotation transiently slowed nearly to zero. This study provides insight on stability in the low- rotation plasmasw with balanced NBI in DIII-D and also in ITER.

  15. The capital barrier to innovation in the small and medium-sized enterprises

    OpenAIRE

    Lewandowska, Lucyna

    2009-01-01

    The article discusses SMEs' situation with reference to the process of creating an innovative economy. The presented discussion covers both non-material and financial barriers impeding the development of innovations. The examined range of new solutions designed to finance innovation includes types of capital support such as leasing, franchising, venture capital, Business Angels, NewConnect.

  16. Asteroid rotation rates

    International Nuclear Information System (INIS)

    Binzel, R.P.; Farinella, P.

    1989-01-01

    Within the last decade the data base of asteroid rotation parameters (rotation rates and lightcurve amplitudes) has become sufficiently large to identify some definite rends and properties which can help us to interpret asteroid collisional evolution. Many significant correlations are found between rotation parameters and diameter, with distinct changes occurring near 125 km. The size range, which is also the diameter above which self-gravity may become important, perhaps represents a division between surviving primordial asteroids and collisional fragments. A Maxwellian is able to fit the observed rotation rate distributions of asteroids with D>125 km, implying that their rotation rates may be determined by collisional evolution. Asteroids with D<125 km show an excess of slow rotators and their non-Maxwellian distributions suggests that their rotation rates are more strongly influenced by other processes, such as the distribution resulting from their formation in catastrophic disruption events. Other correlations observed in the data set include different mean rotation rates for C, S and M type asteroids implying that their surface spectra are indicative of bulk properties

  17. Transport barriers with and without shear flows in a magnetized plasma

    International Nuclear Information System (INIS)

    Martinell, Julio J.

    2014-01-01

    Different ways of producing a transport barrier in a toroidal magnetized plasma are discussed and the properties of the barriers are analyzed. The first mechanism is associated with the presence of a sheared plasma flow that is present in a limited region of the plasma, which creates a zonal flow. In contrast to the usual paradigm stating that the sheared flow reduces the turbulence correlation length and leads to suppression of the fluctuation driven transport in the region of highest shear, it is shown that from the perspective of chaotic transport of plasma particles in the fluctuation fields, the transport barrier is formed in the region of zero shear and it can be destroyed when the fluctuation level is high enough. It is also shown that finite gyroradius effects modify the dynamics and introduces new conditions for barrier formation. The second mechanism considers a method in which radio-frequency waves injected into the plasma can stabilize the drift waves and therefore the anomalous transport is reduced, creating a barrier. This process does not involve the presence of sheared flows and depends only on the effect of the RF wave field on the drift waves. The stabilizing effect in this case is due to the nonlinear ponderomotive force which acts in a way that offsets the pressure gradient destabilization. Finally, a mechanism based on the ponderomotive force of RF waves is described which produces poloidal plasma rotation around the resonant surface due to the asymmetry of induced transport; it creates a transport barrier by shear flow stabilization of turbulence

  18. On Averaging Rotations

    DEFF Research Database (Denmark)

    Gramkow, Claus

    2001-01-01

    In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong ...... approximations to the Riemannian metric, and that the subsequent corrections are inherent in the least squares estimation.......In this paper two common approaches to averaging rotations are compared to a more advanced approach based on a Riemannian metric. Very often the barycenter of the quaternions or matrices that represent the rotations are used as an estimate of the mean. These methods neglect that rotations belong...

  19. The Fastest Rotating Pulsar: a Strange Star?

    Institute of Scientific and Technical Information of China (English)

    徐仁新; 徐轩彬; 吴鑫基

    2001-01-01

    According to the observational limits on the radius and mass, the fastest rotating pulsar (PSR 1937+21) is probably a strange star, or at least some neutron star equations of state should be ruled out, if we suggest that a dipole magnetic field is relevant to its radio emission. We presume that the millisecond pulsar is a strange star with much low mass, small radius and weak magnetic moment.

  20. Operational range and transport barrier of the H-mode in the stellarator W7-AS

    International Nuclear Information System (INIS)

    Hirsch, M.; Amadeo, P.; Anton, M.; Baldzuhn, J.; Brakel, R.; Bleuel, J.; Fiedler, S.; Geist, T.; Grigull, P.; Hartfuss, H.J.; Jaenicke, R.; Kick, M.; Kisslinger, J.; Koponen, J.; Wagner, F.; Weller, A.; Wobig, H.; Zoletnik, S.; Holzhauer, E.

    1998-01-01

    In W7-AS the H-mode is characterized by an edge transport barrier localized in the first 3-4 cm inside the separatrix. In the ELMy H-mode preceding the quiescent state ELMs appear as a sudden breakdown of the edge transport barrier in coincidence with bursts of fluctuations. Between ELMs fluctuations are identical to those of the quiescent H-mode. The operational range of the quiescent H-mode is determined by narrow windows of the edge rotational transform and a threshold edge electron density. In contrast, ELM-like events are observed for a variety of plasma conditions by far exceeding the narrow operational windows for the quiescent state. (author)

  1. Stabilization of external kink modes in a tokamak with rotating plasma

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Kuvshinov, B.N.

    1995-01-01

    An analytical theory of stabilization of external kink modes in a tokamak with rotating plasma is developed, which is of interest in connection with experiments on the DIII-D tokamak demonstrating such a stabilization. It is assumed that, in addition to the main poloidal harmonic, the mode includes one or more side-band poloidal harmonics with singular points lying inside the plasma. Near these singular points, plasma inertia and related toroidal effects, the compressible part of plasma pressure and longitudinal viscosity, are allowed for. These effects are described kinetically taking into account the toroidal trapping of the resonant ions, which is essential if the toroidal velocity is small compared to the ion thermal velocity. Thereby, the theory presented includes both ion Landau damping and its weakening due to toroidal trapping. Near the singular points high-beta effects, which result in the finiteness of the Mercier index s, are allowed for. It is shown that the influence of plasma rotation on the external kink modes is most significant in the case of s<0, i.e., when the development of the instability in a non-rotating plasma is most highly favored. In this case, the plasma rotation plays a stabilizing role, even when the ion Landau damping is neglected. The analysis presented also confirms the hypothesis of Bondeson and Ward on the stabilizing effect of ion Landau damping if this damping is not too small

  2. On the porosity of barrier layers

    Directory of Open Access Journals (Sweden)

    J. Mignot

    2009-09-01

    Full Text Available Barrier layers are defined as the layer between the pycnocline and the thermocline when the latter are different as a result of salinity stratification. We present a revisited 2-degree resolution global climatology of monthly mean oceanic Barrier Layer (BL thickness first proposed by de Boyer Montégut et al. (2007. In addition to using an extended data set, we present a modified computation method that addresses the observed porosity of BLs. We name porosity the fact that barrier layers distribution can, in some areas, be very uneven regarding the space and time scales that are considered. This implies an intermittent alteration of air-sea exchanges by the BL. Therefore, it may have important consequences for the climatic impact of BLs. Differences between the two computation methods are small for robust BLs that are formed by large-scale processes. However, the former approach can significantly underestimate the thickness of short and/or localized barrier layers. This is especially the case for barrier layers formed by mesoscale mechanisms (under the intertropical convergence zone for example and along western boundary currents and equatorward of the sea surface salinity subtropical maxima. Complete characterisation of regional BL dynamics therefore requires a description of the robustness of BL distribution to assess the overall impact of BLs on the process of heat exchange between the ocean interior and the atmosphere.

  3. Small-bowel permeability in collagenous colitis

    DEFF Research Database (Denmark)

    Wildt, Signe; Madsen, Jan L; Rumessen, Jüri J

    2006-01-01

    Collagenous colitis (CC) is a chronic inflammatory bowel disease that affects the colon. However, some patients with CC present with accompanying pathologic small-bowel manifestations such as coeliac disease, defects in bile acid absorption and histopathologic changes in small-intestinal biopsies......, indicating that CC is a pan-intestinal disease. In small-intestinal disease, the intestinal barrier function may be impaired, and the permeability of the small intestine altered. The purpose of this research was to study small-bowel function in patients with CC as expressed by intestinal permeability....

  4. Magnetization reversal processes of single nanomagnets and their energy barrier

    International Nuclear Information System (INIS)

    Krone, P.; Makarov, D.; Albrecht, M.; Schrefl, T.; Suess, D.

    2010-01-01

    Micromagnetic simulations were performed to investigate the influence of geometry and magnetic anisotropy constant on energy barrier and magnetization reversal mechanism of individual bits important for the bit patterned media concept in magnetic data storage. It is shown that dependency of the energy barrier on magnetic and geometric properties of bits can be described by an analytical approach in the case of quasi-coherent magnetization rotation process. However, when the bit size exceeds a critical size, for which an incoherent magnetization reversal is preferred, the analytical approach becomes invalid and no self-consistent theory is available. By systematically investigating the influence of bit size on the magnetization reversal mode, it was found that the transition from quasi-coherent to incoherent magnetization reversal mode can still be described analytically if an activation volume is considered instead of the bit volume. In this case, the nucleation volume is an important parameter determining thermal stability of the bit. If the volume of the bit is larger than twice the activation volume, the energy barrier stays nearly constant; with further increase in bit size, no gain in thermal stability can be achieved.

  5. Effects of external rotation on anteroposterior translations in the shoulder: a pilot study.

    Science.gov (United States)

    Brown, Andrew J; Debski, Richard E; Voycheck, Carrie A; McMahon, Patrick J

    2014-08-01

    Using physical examination to make the diagnosis of shoulder instability can be difficult, because typical examination maneuvers are qualitative, difficult to standardize, and not reproducible. Measuring shoulder translation is especially difficult, which is a particular problem, because measuring it inaccurately may result in improper treatment of instability. The objective of this study was to use a magnetic motion tracking system to quantify the effects of external rotation of the abducted shoulder on a simulated simple translation test in healthy subjects. Specifically, we hypothesized that (1) increasing external rotation of the abducted shoulder would result in decreasing translation; (2) intraobserver repeatability would be less than 2 mm at all external rotation positions; and (3) mean side-to-side differences would be less than 2 mm at all external rotation positions. The intraobserver repeatability and side-to-side differences of AP translation were quantified with a noninvasive magnetic motion tracking system and automated data analysis routine in nine healthy subjects at four positions of external rotation with the arm abducted. A shoulder positioning apparatus was used to maintain the desired arm position. No differences in translations between the positions of external rotation were found (p = 0.48). Intraobserver repeatability was 1.1 mm (SD, 0.8 mm) and mean side-to-side differences were small: 2.7 mm (SD, 2.8 mm), 2.8 mm (SD, 1.8 mm), 2.5 mm (SD, 1.8 mm), and 4.0 mm (SD, 2.6 mm) at 0°, 20°, 40°, and 60° of external rotation, respectively. The intraobserver repeatability was strong and the side-to-side differences in translation were small with the magnetic motion tracking system, which is encouraging for development of an improved quantitative test to assess shoulder translation for fast and low-cost diagnosis of shoulder instability. Clinicians may not have to position the contralateral, normal, abducted shoulder in precisely the same position

  6. Rotational loss of a ring-shaped flywheel supported by high T{sub c} superconducting levitation

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, Hidekazu [Nippon Steel Corp., Kawasaki, Kanagawa (Japan). Advanced Materials and Technology Research Labs.; Tawara, Taichi; Shimada, Ryuichi

    1997-08-01

    This paper describes the experimental results for the rotational loss of a ring-shaped flywheel supported by high T{sub c} superconducting levitation. Superconducting levitation is appropriate for rotating a ring-shaped flywheel which has neither shaft nor hub because it is a non-contact and automatically stable levitation without any control systems. The rotational loss has been investigated using a small-scaled experimental machine consisting of 16 bulk superconductors 46 mm in diameter and a ring-shaped flywheel about 300 mm in diameter. The rotational loss decreased as the levitation gap height increased. In low-speed rotational regions, the rotational loss was in proportion to the rotation speed and depended more on the levitation gap. In high-speed rotational regions, the rotational loss was in proportion to the third power of the rotation speed and depended less on the levitation gap. The cubic rotational loss in He was reduced to one-fifth of that in air. The magnetic field pinned in bulk superconductors induces a loss in the materials composing the ring-shaped flywheel. The rotational loss of a ring-shaped flywheel supported by superconducting levitation can be reduced by improving the uniformity of the magnetic fields along the ring, enlargement of the bulk superconductor(s), and densely arranging the bulk superconductors. (author)

  7. Deep inelastic scattering near the Coulomb barrier

    International Nuclear Information System (INIS)

    Gehring, J.; Back, B.; Chan, K.

    1995-01-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems 124,112 Sn + 58,64 Ni by Wolfs et al. We previously extended these measurements to the system 136 Xe + 64 Ni and currently measured the system 124 Xe + 58 Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring

  8. Understanding transport barriers through modelling

    International Nuclear Information System (INIS)

    Rozhansky, V

    2004-01-01

    Models of radial electric field formation are discussed and compared with the results of numerical simulations from fluid transport codes and Monte Carlo codes. A comparison of the fluid and Monte Carlo codes is presented. A conclusion is arrived at that all the simulations do not predict any bifurcation of the electric field, i.e. no bifurcation of poloidal rotation from low to high Mach number values is obtained. In most of the simulations, the radial electric field is close to the neoclassical electric field. The deviation from neoclassical electric field at the separatrix due to the existence of a transitional viscous layer is discussed. Scalings for the shear of the poloidal rotation are checked versus simulation results. It is demonstrated that assuming the critical shear to be of the order of 10 5 s -1 , it is possible to obtain a L-H transition power scaling close to that observed in the experiment. The dependence of the threshold on the magnetic field direction, pellet injection, aspect ratio and other factors are discussed on the basis of existing simulations. Transport codes where transport coefficients depend on the turbulence level and scenario simulations of L-H transition are analysed. However, the details of gyrofluid and gyrokinetic modelling should be discussed elsewhere. Simulations of internal transport barrier (ITB) formation are discussed as well as factors responsible for ITB formation

  9. Differential Rotation in Sun-like Stars from Surface Variability and Asteroseismology

    Science.gov (United States)

    Nielsen, Martin Bo

    2017-03-01

    The Sun and other stars are known to oscillate. Through the study of small perturbations to the frequencies of these oscillations the rotation of the deep interior can be inferred. However, thus far the internal rotation of other Sun-like stars is unknown. The NASA Kepler mission has observed a multitude of Sun-like stars over a period of four years. This has provided high-quality photometric data that can be used to study the rotation of stars with two different techniques: asteroseismology and surface activity. Asteroseismology provides a means of measuring rotation in the stellar interior, while photometric variability from magnetically active regions are sensitive to rotation at the stellar surface. The combination of these two methods can be used to constrain the radial differential rotation in Sun-like stars. First, we developed an automated method for measuring the rotation of stars using surface variability. This method was initially applied to the entire Kepler catalog, out of which we detected signatures of rotation in 12,000 stars across the main sequence, providing robust estimates of the surface rotation rates and the associated errors. Second, we performed an asteroseismic analysis of six Sun-like stars, where we were able to measure the rotational splitting as a function of frequency in the p-mode envelope. This was done by dividing the oscillation spectrum into individual segments, and fitting a model independently to each segment. We found that the measured splittings were all consistent with a constant value, indicating little differential rotation. Third, we compared the asteroseismic rotation rates of five Sun-like stars to their surface rotation rates. We found that the values were in good agreement, again indicating little differential rotation between the regions where the two methods are most sensitive. Finally, we discuss how the surface rotation rates may be used as a prior on the seismic envelope rotation rate in a double-zone model

  10. Transverse plane pelvic rotation increase (TPPRI following rotationally corrective instrumentation of adolescent idiopathic scoliosis double curves

    Directory of Open Access Journals (Sweden)

    Asher Marc A

    2010-08-01

    Full Text Available Abstract Background We have occasionally observed clinically noticeable postoperative transverse plane pelvic rotation increase (TPPRI in the direction of direct thoracolumbar/lumbar rotational corrective load applied during posterior instrumentation and arthrodesis for double (Lenke 3 and 6 adolescent idiopathic scoliosis (AIS curves. Our purposes were to document this occurrence; identify its frequency, associated variables, and natural history; and determine its effect upon patient outcome. Methods Transverse plane pelvic rotation (TPPR can be quantified using the left/right hemipelvis width ratio as measured on standing posterior-anterior scoliosis radiographs. Descriptive statistics were done to determine means and standard deviations. Non-parametric statistical tests were used due to the small sample size and non-normally distributed data. Significance was set at P Results Seventeen of 21 (81% consecutive patients with double curves (7 with Lenke 3 curves and 10 with Lenke 6 instrumented with lumbar pedicle screw anchors to achieve direct rotation had a complete sequence of measurable radiographs. While 10 of these 17 had no postoperative TPPRI, 7 did all in the direction of the rotationally corrective thoracolumbar instrumentation load. Two preoperative variables were associated with postoperative TPPRI: more tilt of the vertebra below the lower instrumented vertebra (-23° ± 3.1° vs. -29° ± 4.6°, P = 0.014 and concurrent anterior thoracolumbar discectomy and arthrodesis (5 of 10 vs. 7 of 7, P = 0.044. Patients with a larger thoracolumbar/lumbar angle of trunk inclination or larger lower instrumented vertebra plus one to sacrum fractional/hemicurve were more likely to have received additional anterior thoracolumbar discectomy and arthrodesis (c = 0.90 and c = 0.833, respectively. Postoperative TPPRI resolved in 5 of the 7 by intermediate follow-up at 12 months. Patient outcome was not adversely affected by postoperative TPPRI

  11. Self-Interacting Dark Matter Can Explain Diverse Galactic Rotation Curves.

    Science.gov (United States)

    Kamada, Ayuki; Kaplinghat, Manoj; Pace, Andrew B; Yu, Hai-Bo

    2017-09-15

    The rotation curves of spiral galaxies exhibit a diversity that has been difficult to understand in the cold dark matter (CDM) paradigm. We show that the self-interacting dark matter (SIDM) model provides excellent fits to the rotation curves of a sample of galaxies with asymptotic velocities in the 25-300  km/s range that exemplify the full range of diversity. We assume only the halo concentration-mass relation predicted by the CDM model and a fixed value of the self-interaction cross section. In dark-matter-dominated galaxies, thermalization due to self-interactions creates large cores and reduces dark matter densities. In contrast, thermalization leads to denser and smaller cores in more luminous galaxies and naturally explains the flatness of rotation curves of the highly luminous galaxies at small radii. Our results demonstrate that the impact of the baryons on the SIDM halo profile and the scatter from the assembly history of halos as encoded in the concentration-mass relation can explain the diverse rotation curves of spiral galaxies.

  12. Hydrogen rotational and translational diffusion in calcium borohydride from quasielastic neutron scattering and DFT

    DEFF Research Database (Denmark)

    Blanchard, Didier; Riktor, M.D.; Maronsson, Jon Bergmann

    2010-01-01

    Hydrogen dynamics in crystalline calcium borohydride can be initiated by long-range diffusion or localized motion such as rotations, librations, and vibrations. Herein, the rotational and translational diffusion were studied by quasielastic neutron scattering (QENS) by using two instruments...... with different time scales in combination with density functional theory (DFT) calculations. Two thermally activated reorientational motions were observed, around the 2-fold (C2) and 3-fold (C3) axes of the BH4− units, at temperature from 95 to 280K. The experimental energy barriers (EaC2 = 0.14 eV and EaC3 = 0...... of the interstitial H2 might come from the synthesis of the compound or a side reaction with trapped synthesis residue leading to the partial oxidation of the compound and hydrogen release....

  13. Display of rotational levels near the fission threshold in 232Th(n,f) reaction

    International Nuclear Information System (INIS)

    Blons, J.; Mazur, C.; Paya, D.

    1975-01-01

    The 232 Th(n,f) cross section has been measured relative to that of 235 U up to 5MeV, with a neutron energy resolution of 3keV at 1.6MeV. The angular anisotropy of fission fragments has also been measured in the same energy range with an energy resolution of 6keV at 1,6MeV. The broad vibrational levels located above 1MeV are resolved into sharp structures which are interpreted as rotational states. The rotational constants h 2 /2J of highly deformed 233 Th are found to be 2.45 and 2.65keV at 1.5 and 1.6MeV respectively. These results are interpreted by the possibility of a third minimum in the fission barrier [fr

  14. Numerical investigation of the onset of centrifugal buoyancy in a rotating cavity

    Science.gov (United States)

    Pitz, Diogo B.; Marxen, Olaf; Chew, John

    2016-11-01

    Buoyancy-induced flows in a differentially heated rotating annulus present a multitude of dynamics when control parameters such as rotation rate, temperature difference and Prandtl number are varied. Whilst most of the work in this area has been motivated by applications involving geophysics, the problem of buoyancy-induced convection in rotating systems is also relevant in industrial applications such as the flow between rotating disks of turbomachinery internal air systems, in which buoyancy plays a major role and poses a challenge to accurately predict temperature distributions and heat transfer rates. In such applications the rotational speeds involved are very large, so that the centrifugal accelerations induced are much higher than gravity. In this work we perform direct numerical simulations and linear stability analysis of flow induced by centrifugal buoyancy in a sealed rotating annulus of finite gap with flat end-walls, using a canonical setup representative of an internal air system rotating cavity. The analysis focuses on the behaviour of small-amplitude disturbances added to the base flow, and how those affect the onset of Rossby waves and, ultimately, the transition to a fully turbulent state where convection columns no longer have a well-defined structure. Diogo B. Pitz acknowledges the financial support from the Capes foundation through the Science without Borders program.

  15. Small Schools, Real Gains.

    Science.gov (United States)

    Wasley, Patricia A.; Lear, Richard J.

    2001-01-01

    Small school size (fewer than 400 students) makes possible success-enhancing structures and practices: strong, ongoing student/adult and home/school relationships; flat organizational structure; concentration on a few goals; ongoing, site-specific professional development; a respectful culture; and community engagement. Implementation barriers are…

  16. Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis

    International Nuclear Information System (INIS)

    Hochman, Gal; Timilsina, Govinda R.

    2017-01-01

    Improvement in energy efficiency is one of the main options to reduce energy demand and greenhouse gas emissions. However, large-scale deployment of energy-efficient technologies is constrained by several factors. Employing a survey of 509 industrial and commercial firms throughout Ukraine and a generalized ordered logit model, we quantified the economic, behavioral, and institutional barriers that may impede the deployment of energy-efficient technologies. Our analysis shows that behavioral barriers resulted from lack of information, knowledge, and awareness are major impediments to the adoption of energy-efficient technologies in Ukraine, and that financial barriers may further impede investments in these technologies especially for small firms. This suggests that carefully targeted information provisions and energy audits will enhance Ukrainian firms' investments in energy-efficient technologies to save energy consumption, improve productivity, and reduce carbon emissions from the productive sectors. - Highlights: • Employing a survey of 509 industrial and commercial firms throughout Ukraine • A generalized ordered logit model is used in the analysis. • The paper quantifies the economic, behavioral, and institutional barriers to energy-efficient technologies. • Behavioral barriers are major impediments to the adoption of energy-efficient technologies. • Financial barriers may further impede investments in these technologies especially for small firms.

  17. Breakthrough revisited: investigating the requirements for growth of dust beyond the bouncing barrier

    Science.gov (United States)

    Booth, Richard A.; Meru, Farzana; Lee, Man Hoi; Clarke, Cathie J.

    2018-03-01

    For grain growth to proceed effectively and lead to planet formation, a number of barriers to growth must be overcome. One such barrier, relevant for compact grains in the inner regions of the disc, is the `bouncing barrier' in which large grains (˜mm size) tend to bounce off each other rather than sticking. However, by maintaining a population of small grains, it has been suggested that cm-size particles may grow rapidly by sweeping up these small grains. We present the first numerically resolved investigation into the conditions under which grains may be lucky enough to grow beyond the bouncing barrier by a series of rare collisions leading to growth (so-called `breakthrough'). Our models support previous results, and show that in simple models breakthrough requires the mass ratio at which high-velocity collisions transition to growth instead of causing fragmentation to be low, ϕ ≲ 50. However, in models that take into account the dependence of the fragmentation threshold on mass ratio, we find that breakthrough occurs more readily, even if mass transfer is relatively inefficient. This suggests that bouncing may only slow down growth, rather than preventing growth beyond a threshold barrier. However, even when growth beyond the bouncing barrier is possible, radial drift will usually prevent growth to arbitrarily large sizes.

  18. Tertiary block rotations in the Fars Arc (Zagros, Iran)

    Science.gov (United States)

    Aubourg, C.; Smith, B.; Bakhtari, H. R.; Guya, N.; Eshraghi, A.

    2008-05-01

    The Fars arc accommodates the oblique convergence between the Arabic plate and the Iran block. Many geological observations suggest block rotations from regional to local scales. We present palaeomagnetic investigations in the Fars arc and its eastern termination, the Zagros-Makran syntaxis. Sixty-four sites have been sampled covering the Palaeocene Pabdeh Fm. to Mio-Pliocene Agha-Jhari Fm., the latest being the most sampled formation. We document pre-tilting components in all formations. However, coarse fractions of Agha-Jhari clastics formation retain a post-tilting remagnetization. As a whole, block rotations rarely exceed 20°. In the western Fars arc, clockwise and counter-clockwise rotations of small amplitudes are consistent with the torsions observed near the strike slip Kazerun and Mangarak faults. In the Zagros Makran syntaxis, counter-clockwise and clockwise rotations are observed, respectively, in the western and eastern part. This pattern is consistent with an amplification of the shape of the syntaxis. Between Zagros and Makran, palaeomagnetic data support that the present-day arcuate shape of the arc is secondary. We assume that most of the block rotations took place during the Plio-Pleistocene, during a blocking stage of the Zagros-Makran syntaxis. We emphasize the role of Oman Peninsula which plays as an indenter for the propagation of the Fars thrust belt.

  19. Increasing age and tear size reduce rotator cuff repair healing rate at 1 year.

    Science.gov (United States)

    Rashid, Mustafa S; Cooper, Cushla; Cook, Jonathan; Cooper, David; Dakin, Stephanie G; Snelling, Sarah; Carr, Andrew J

    2017-12-01

    Background and purpose - There is a need to understand the reasons why a high proportion of rotator cuff repairs fail to heal. Using data from a large randomized clinical trial, we evaluated age and tear size as risk factors for failure of rotator cuff repair. Patients and methods - Between 2007 and 2014, 65 surgeons from 47 hospitals in the National Health Service (NHS) recruited 447 patients with atraumatic rotator cuff tendon tears to the United Kingdom Rotator Cuff Trial (UKUFF) and 256 underwent rotator cuff repair. Cuff integrity was assessed by imaging in 217 patients, at 12 months post-operation. Logistic regression analysis was used to determine the influence of age and intra-operative tear size on healing. Hand dominance, sex, and previous steroid injections were controlled for. Results - The overall healing rate was 122/217 (56%) at 12 months. Healing rate decreased with increasing tear size (small tears 66%, medium tears 68%, large tears 47%, and massive tears 27% healed). The mean age of patients with a healed repair was 61 years compared with 64 years for those with a non-healed repair. Mean age increased with larger tear sizes (small tears 59 years, medium tears 62 years, large tears 64 years, and massive tears 66 years). Increasing age was an independent factor that negatively influenced healing, even after controlling for tear size. Only massive tears were an independent predictor of non-healing, after controlling for age. Interpretation - Although increasing age and larger tear size are both risks for failure of rotator cuff repair healing, age is the dominant risk factor.

  20. Rotator cuff exercises

    Science.gov (United States)

    ... 25560729 . Read More Frozen shoulder Rotator cuff problems Rotator cuff repair Shoulder arthroscopy Shoulder CT scan Shoulder MRI scan Shoulder pain Patient Instructions Rotator cuff - self-care Shoulder surgery - discharge Using your ...

  1. Inception mechanism and suppression of rotating stall in an axial-flow fan

    International Nuclear Information System (INIS)

    Nishioka, T

    2013-01-01

    Inception patterns of rotating stall at two stagger-angle settings for the highly loaded rotor blades were experimentally investigated in a low-speed axial-flow fan. Rotor-tip flow fields were also numerically investigated to clarify the mechanism behind the rotating stall inception. The stall inception patterns depended on the rotor stagger-angle settings. The stall inception from a rotating instability was confirmed at the design stagger-angle settings. The stall inception from a short length-scale stall cell (spike) was also confirmed at the small stagger-angle setting. The spillage of tip-leakage flow and the tip-leakage vortex breakdown influence the rotating stall inception. An air-separator has been developed based on the clarified inception mechanism of rotating stall. The rotating stall was suppressed by the developed air-separator, and the operating range of fan was extended towards low flow rate. The effect of developed air-separator was also confirmed by application to a primary air fan used in a coal fired power plant. It is concluded from these results that the developed air-separator can provide a wide operating range for an axial-flow fan

  2. Some environmental impacts of short rotation willow coppice

    International Nuclear Information System (INIS)

    Slater, F.M.; Hodson, R.W.; Randrson, P.F.; Lynn, S.F.

    1997-01-01

    Short rotation willow coppice is a relatively new crop in upland Britain, and particularly in Environmentally Sensitive Areas the conservation and environmental effect of biomass crops needs to be evaluated. Investigations of sewage-sludge-treated plots in mid-Wales show that, because weed control was inadequate, recovery of the flora to its semi-natural precultivated state was rapid within and between experimental plots. Soil invertebrates responded to temporal stimuli before all else. Foliar-feeding invertebrates were greater in plots which had added fertilizer. Following cultivation voles were generally lost from the ploughed areas but field mice remained. Birds were studied in more extensive areas of short rotation coppice in central England and the assemblage of species was found to be similar to those found in conventional coppice but with a foreshortened successional sequence. The conservation value of short rotation willow coppice lies mainly in the abundant foliar invertebrates that provide a rich source of food for small passerine birds, particularly summer migrants. It also provides good cover for game birds - and their predators. (author)

  3. Normalized Rotational Multiple Yield Surface Framework (NRMYSF) stress-strain curve prediction method based on small strain triaxial test data on undisturbed Auckland residual clay soils

    Science.gov (United States)

    Noor, M. J. Md; Ibrahim, A.; Rahman, A. S. A.

    2018-04-01

    Small strain triaxial test measurement is considered to be significantly accurate compared to the external strain measurement using conventional method due to systematic errors normally associated with the test. Three submersible miniature linear variable differential transducer (LVDT) mounted on yokes which clamped directly onto the soil sample at equally 120° from the others. The device setup using 0.4 N resolution load cell and 16 bit AD converter was capable of consistently resolving displacement of less than 1µm and measuring axial strains ranging from less than 0.001% to 2.5%. Further analysis of small strain local measurement data was performed using new Normalized Multiple Yield Surface Framework (NRMYSF) method and compared with existing Rotational Multiple Yield Surface Framework (RMYSF) prediction method. The prediction of shear strength based on combined intrinsic curvilinear shear strength envelope using small strain triaxial test data confirmed the significant improvement and reliability of the measurement and analysis methods. Moreover, the NRMYSF method shows an excellent data prediction and significant improvement toward more reliable prediction of soil strength that can reduce the cost and time of experimental laboratory test.

  4. Dragging of inertial frames inside the rotating neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Chandrachur; Modak, Kamakshya Prasad; Bandyopadhyay, Debades, E-mail: chandrachur.chakraborty@saha.ac.in, E-mail: kamakshya.modak@saha.ac.in [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2014-07-20

    We derive the exact frame-dragging rate inside rotating neutron stars. This formula is applied to show that the frame-dragging rate monotonically decreases from the center to the surface of the neutron star along the pole. In the case of the frame-dragging rate along the equatorial distance, it decreases initially away from the center, becomes negligibly small well before the surface of the neutron star, rises again, and finally approaches to a small value at the surface. The appearance of a local maximum and minimum in this case is the result of the dependence of frame-dragging frequency on the distance and angle. Moving from the equator to the pole, it is observed that this local maximum and minimum in the frame-dragging rate along the equator disappear after crossing a critical angle. It is also noted that the positions of the local maximum and minimum of the frame-dragging rate along the equator depend on the rotation frequency and central energy density of a particular pulsar.

  5. A dissipative model of solar system and stability of stationary rotations

    Science.gov (United States)

    Vilke, V. G.

    2009-04-01

    In classical model of Solar system the planets are represented by the material points cooperating under the law of universal gravitation. This model remains fair if planet to consider as absolutely rigid spheres with spherical distribution of density. The gravitational potential of such body coincides with potential of a material point, and rotation of each sphere concerning his centre of mass occurs to constant angular velocity. The motion of the centers of mass of spherical planets identically to motion in the appropriate problem of points. Let's notice, that forms of planets of Solar system are close to spherical as dominant forces at formation of planets are gravitational forces to which forces of molecular interaction in substance of a planet counteract. The model of the isolated Solar system submitted in a not indignant condition by homogeneous viscoelastic spheres is considered. Under action of own rotation and tidal gravitational forces the spherical planet changes the shape: there is "flattening" of a planet in a direction of a vector of its angular velocity and formation of tidal bulgs on the lines connecting the centre of a planet with the centers of other planets. From a variational principle of Hamilton the full system of the equations describing movements of the centers of mass of planets, rotations of systems of coordinates, by integrated image connected with planets, and deformations of planets be relative these of systems of coordinates has been obtained. It is supposed, that tidal gravitational, centrifugal and elastic forces result in small change of the spherical form of a planet. In system there are small parameters - inversely proportional of the Young modules of materials of the planets, providing small deformations of planets at influence on them of the centrifugal forces produced by own rotation of planets, and the small tidal deformations arising under influence of gradients of gravitational forces. The method of division of movements

  6. Secondary flows and particle centrifugation in slightly tilted rotating pipes

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    1995-01-01

    A theoretical analysis is presented of viscous incompressible laminar flow in a pipe which rotates around an axis held at small angle with respect to its symmetry-axis. Analogous to the results of Barua and Benton [1, 2], solutions in closed-form are given for circulatory flows in the

  7. Decay of the diocotron rotation and transport in a new low-density asymmetry-dominated regime

    International Nuclear Information System (INIS)

    Sarid, Eli; Gilson, Erik; Fajans, Joel

    2002-01-01

    The decay of the diocotron rotation was studied in a new regime in which trap asymmetries dominate. The decay does not conserve angular momentum, and is strongest for small, low-density columns. For such columns decay of the diocotron mode within few diocotron periods was observed, orders of magnitude faster than the rotational pumping prediction. However, transition to decay dominated by rotational pumping was observed for larger and denser columns. The new regime is characterized by 'magnetron-like' rotation in the trap, dominated by the end confinement fields. The asymmetry-dominated transport was also studied, and found to depend linearly on the line density (and not the density) over nearly 4 orders of magnitude

  8. [A new kinematics method of determing elbow rotation axis and evaluation of its feasibility].

    Science.gov (United States)

    Han, W; Song, J; Wang, G Z; Ding, H; Li, G S; Gong, M Q; Jiang, X Y; Wang, M Y

    2016-04-18

    To study a new positioning method of elbow external fixation rotation axis, and to evaluate its feasibility. Four normal adult volunteers and six Sawbone elbow models were brought into this experiment. The kinematic data of five elbow flexion were collected respectively by optical positioning system. The rotation axes of the elbow joints were fitted by the least square method. The kinematic data and fitting results were visually displayed. According to the fitting results, the average moving planes and rotation axes were calculated. Thus, the rotation axes of new kinematic methods were obtained. By using standard clinical methods, the entrance and exit points of rotation axes of six Sawbone elbow models were located under X-ray. And The kirschner wires were placed as the representatives of rotation axes using traditional positioning methods. Then, the entrance point deviation, the exit point deviation and the angle deviation of two kinds of located rotation axes were compared. As to the four volunteers, the indicators represented circular degree and coplanarity of elbow flexion movement trajectory of each volunteer were both about 1 mm. All the distance deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 3 mm. All the angle deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 5°. As to the six Sawbone models, the average entrance point deviations, the average exit point deviations and the average angle deviations of two different rotation axes determined by two kinds of located methods were respectively 1.697 2 mm, 1.838 3 mm and 1.321 7°. All the deviations were very small. They were all in an acceptable range of clinical practice. The values that represent circular degree and coplanarity of volunteer's elbow single curvature movement trajectory are very small. The result shows that the elbow single curvature movement can be regarded as the approximate fixed

  9. Erosion and foreign object damage of thermal barrier coatings

    International Nuclear Information System (INIS)

    Nicholls, J.R.; Jaslier, Y.; Rickerby, D.S.

    1997-01-01

    Thermal barrier coating technology is used in the hot sections of gas turbines to extend component life. To maximise these benefits, the thermal barrier coating has to remain intact throughout the life of the turbine. High velocity ballistic damage can lead to total thermal barrier removal, while erosion may lead to progressive loss of thickness during operation. This paper particularly addresses the erosion resistance and resistance to foreign object damage of thermal barrier coatings. It was found that EB-PVD thermal barriers are significantly more erosion resistant when impacted with alumina or silica, than the equivalent plasma spray coating, both at room temperature and 910 C. Examination of tested hardware, reveals that cracking occurs within the near surface region of the columns for EB-PVD ceramic and that erosion occurs by removal of these small blocks of material. In stark contrast, removal of material for plasma sprayed ceramic occurs through poorly bonded splat boundaries. Large particle impact results in severe damage to the EB-PVD thermal barrier, with cracks penetrating through the ceramic coating to the ceramic/bond coat interface. Material removal, per particle impact, increases with increased particle size. (orig.)

  10. Spectroscopic and electrooptical manifestations of internal rotation of the outer-sphere cation in Li(PO3) molecule

    International Nuclear Information System (INIS)

    Romanets, A.V.; Sukhanov, L.P.

    1997-01-01

    Spectroscopic and electrooptical manifestations of internal molecular rotations in LiPO 3 have been studied on the basis of ab initio calculated surface of potential energy and dipole momentum function using the finite element method. It has been ascertained that tunnel splitting of energy levels with number n, available for vibrational spectroscopy of high resolution, apper in the molecule studied only at n≥13. It is shown that internal rotations in the molecule are able to decrease sharply its polarity on vibration-excited levels, sufficiently far from the vertex of potential barrier of intramolecular regroupings. Difficulties of experimental confirmation of predicted electrooptical effect of structural non-rigidity in the molecule studied are discussed

  11. Fission excitation function for 19F + 194,196,198Pt at near and above barrier energies

    Directory of Open Access Journals (Sweden)

    Singh Varinderjit

    2015-01-01

    Full Text Available Fission excitation functions for 19F + 194,196,198Pt reactions populating 213,215,217Fr compound nuclei are reported. Out of these three compound nuclei, 213Fr is a shell closed (N=126 compound nucleus and the other two are away from the shell closure. From a comparison of the experimental fission cross-sections with the statistical model predictions, it is observed that the fission cross-sections are underestimated by the statistical model predictions using shell corrected finite range rotating liquid drop model (FRLDM fission barriers. Further the FRLDM fission barriers are reduced to fit the fission cross-sections over the entire measured energy range.

  12. Precessing rotating flows with additional shear: stability analysis.

    Science.gov (United States)

    Salhi, A; Cambon, C

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally

  13. Bounds on heat transport in rapidly rotating Rayleigh–Bénard convection

    International Nuclear Information System (INIS)

    Grooms, Ian; Whitehead, Jared P

    2015-01-01

    The heat transport in rotating Rayleigh–Bénard convection is considered in the limit of rapid rotation (small Ekman number E) and strong thermal forcing (large Rayleigh number Ra). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is Ra ≲ E −8/5 . A rigorous bound on heat transport of Nu ⩽ 20.56Ra 3 E 4 is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. Nu ≲ Ra 3 is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer. The derived upper bound is consistent with, although significantly higher than the observed behaviour in simulations of the reduced equations, which find at most Nu ∼ Ra 2 E 8/3 . (paper)

  14. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  15. Noble magnetic barriers in the ASDEX UG tokamak

    Science.gov (United States)

    Ali, Halima; Punjabi, Alkesh; Vazquez, Justin

    2010-02-01

    The second-order perturbation method of creating invariant tori inside chaos in Hamiltonian systems (Ali, H.; Punjabi, A. Plasma Phys. Contr. F. 2007, 49, 1565-1582) is applied to the axially symmetric divertor experiment upgrade (ASDEX UG) tokamak to build noble irrational magnetic barriers inside chaos created by resonant magnetic perturbations (m, n)=(3, 2)+(4, 3), with m and n the poloidal and toroidal mode numbers of the Fourier expansion of the magnetic perturbation. The radial dependence of the Fourier modes is ignored. The modes are considered to be locked and have the same amplitude δ. A symplectic mathematical mapping in magnetic coordinates is used to integrate magnetic field line trajectories in the ASDEX UG. Tori with noble irrational rotational transform are the last ones to be destroyed by perturbation in Hamiltonian systems. For this reason, noble irrational magnetic barriers are built inside chaos, and the strongest noble irrational barrier is identified. Three candidate locations for the strongest noble barrier in ASDEX UG are selected. All three candidate locations are chosen to be roughly midway between the resonant rational surfaces ψ32 and ψ43. ψ is the magnetic coordinate of the flux surface. The three candidate surfaces are the noble irrational surfaces close to the surface with q value that is a mediant of q=3/2 and 4/3, q value of the physical midpoint of the two resonant surfaces, and the q value of the surface where the islands of the two perturbing modes just overlap. These q values of the candidate surfaces are denoted by q MED, q MID, and q OVERLAP. The strongest noble barrier close to q MED has the continued fraction representation (CFR) [1;2,2,1∞] and exists for δ≤2.6599×10-4; the strongest noble barrier close to q MID has CFR [1;2,2,2,1∞] and exists for δ≤4.6311×10-4; and the strongest noble barrier close to q OVERLAP has CFR [1;2,2,6,2,1∞] and exists for δ≤1.367770×10-4. From these results, the strongest

  16. Study of internal transport barriers in the initial phase of Ohmic discharges in TUMAN-3M

    International Nuclear Information System (INIS)

    Askinazi, L G; Bulanin, V V; Vildjunas, M I; Golant, V E; Gorokhov, M V; Kornev, V A; Krikunov, S V; Lebedev, S V; Petrov, A V; Rozhdestvensky, V V; Tukachinsky, A S; Zhubr, N A

    2004-01-01

    A regime with electron heat confinement improvement was recently found in the initial phase of discharges in the TUMAN-3M tokamak. An internal transport barrier (ITB) formation in this regime was confirmed by Thomson scattering measurements and by transport modelling. Two possible reasons for the ITB formation are discussed in the paper: by reduction of turbulent transport in the presence of low magnetic shear or by plasma sheared rotation. It is demonstrated that low magnetic shear formation is possible in the current ramp-up phase of the Ohmic discharge. The low magnetic shear does not seem to be the only reason for the transport reduction. Results of Doppler reflectometry measurements of poloidal rotation of density fluctuations are presented. It is found that core confinement improvement correlates with the appearance of sheared rotation of the density fluctuations and with a burst of the MHD activity. The ITB formation in the regime seems to be a result of a combined action of reduced magnetic shear and plasma sheared rotation

  17. Rotator cuff tears: assessment with MR arthrography in 275 patients with arthroscopic correlation

    International Nuclear Information System (INIS)

    Waldt, S.; Bruegel, M.; Mueller, D.; Holzapfel, K.; Rummeny, E.J.; Woertler, K.; Imhoff, A.B.

    2007-01-01

    We assessed the diagnostic performance of magnetic resonance (MR) arthrography in the diagnosis of articular-sided partial-thickness and full-thickness rotator cuff tears in a large symptomatic population. MR arthrograms obtained in 275 patients including a study group of 139 patients with rotator cuff tears proved by arthroscopy and a control group of 136 patients with arthroscopically intact rotator cuff tendons were reviewed in random order. MR imaging was performed on a 1.0 T system (Magnetom Expert, Siemens). MR arthrograms were analyzed by two radiologists in consensus for articular-sided partial-thickness and full-thickness tears of the supraspinatus, infraspinatus, and subscapularis tendons. At arthroscopy, 197 rotator cuff tears were diagnosed, including 105 partial-thickness (93 supraspinatus, nine infraspinatus, three subscapularis) and 92 full-thickness (43 supraspinatus, 20 infraspinatus, 29 subscapularis) tendon tears. For full-thickness tears, sensitivity, specificity, and accuracy were 96%, 99%, and 98%, respectively, and for partial tears 80%, 97%, and 95%, respectively. False negative and positive assessments in the diagnosis of articular-sided partial-thickness tears were predominantly [78% (35/45)] observed with small articular-sided (Ellman grade1) tendon tears. MR arthrography is highly accurate in the diagnosis of full-thickness rotator cuff tears and is accurate in the diagnosis of articular-sided partial-thickness tears. Limitations in the diagnosis of partial-thickness tears are mainly restricted to small articular-sided tears (Ellman grade 1) due to difficulties in differentiation between fiber tearing, tendinitis, synovitic changes, and superficial fraying at tendon margins. (orig.)

  18. Rotator cuff tears: assessment with MR arthrography in 275 patients with arthroscopic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Waldt, S.; Bruegel, M.; Mueller, D.; Holzapfel, K.; Rummeny, E.J.; Woertler, K. [Technische Universitaet Muenchen, Department of Radiology, Munich (Germany); Imhoff, A.B. [Technische Universitaet Muenchen, Department of Sports Orthopedics, Munich (Germany)

    2007-02-15

    We assessed the diagnostic performance of magnetic resonance (MR) arthrography in the diagnosis of articular-sided partial-thickness and full-thickness rotator cuff tears in a large symptomatic population. MR arthrograms obtained in 275 patients including a study group of 139 patients with rotator cuff tears proved by arthroscopy and a control group of 136 patients with arthroscopically intact rotator cuff tendons were reviewed in random order. MR imaging was performed on a 1.0 T system (Magnetom Expert, Siemens). MR arthrograms were analyzed by two radiologists in consensus for articular-sided partial-thickness and full-thickness tears of the supraspinatus, infraspinatus, and subscapularis tendons. At arthroscopy, 197 rotator cuff tears were diagnosed, including 105 partial-thickness (93 supraspinatus, nine infraspinatus, three subscapularis) and 92 full-thickness (43 supraspinatus, 20 infraspinatus, 29 subscapularis) tendon tears. For full-thickness tears, sensitivity, specificity, and accuracy were 96%, 99%, and 98%, respectively, and for partial tears 80%, 97%, and 95%, respectively. False negative and positive assessments in the diagnosis of articular-sided partial-thickness tears were predominantly [78% (35/45)] observed with small articular-sided (Ellman grade1) tendon tears. MR arthrography is highly accurate in the diagnosis of full-thickness rotator cuff tears and is accurate in the diagnosis of articular-sided partial-thickness tears. Limitations in the diagnosis of partial-thickness tears are mainly restricted to small articular-sided tears (Ellman grade 1) due to difficulties in differentiation between fiber tearing, tendinitis, synovitic changes, and superficial fraying at tendon margins. (orig.)

  19. Contribution of Legume Rotations to the Nitrogen Requirements of a ...

    African Journals Online (AJOL)

    Industrial fertilizers are expensive for small-scale farmers who, as alternative, rely on legume crops for providing N for a subsequent maize crop. A legume-maize rotational experiment was carried out on a Rhodic Ferralsol at Mlingano Agricultural Research Institute in Muheza, Tanga, Tanzania, to evaluate the effects of ...

  20. Coriolis Effects in the Dynamics of a Rotating Elastic Structure

    DEFF Research Database (Denmark)

    Brøns, Morten; Hjorth, Poul G.; Kliem, Wolfhard

    1996-01-01

    Small oscillations of a rotating elasticum with a mass at the free end are investigated with Poincare-Lindstedt series. It is shown that the mass moves on a figure-eight shaped curve in a direction determined by the sign of the angular velocity and hence that the Coriolis force influences...

  1. Nanoparticle (MPG)-mediated delivery of small RNAs into human ...

    African Journals Online (AJOL)

    The cellular membrane constitutes an effective barrier that protects the complex, yet highly ordered, intracellular compartment of the cell. Passage of molecules across this barrier is highly regulated and highly restricted. Cell penetrating peptides (CPPs) are a class of small cationic peptides that are able to defy the rules of ...

  2. Loadings in thermal barrier coatings of jet engine turbine blades an experimental research and numerical modeling

    CERN Document Server

    Sadowski, Tomasz

    2016-01-01

    This book discusses complex loadings of turbine blades and protective layer Thermal Barrier Coating (TBC), under real working airplane jet conditions. They obey both multi-axial mechanical loading and sudden temperature variation during starting and landing of the airplanes. In particular, two types of blades are analyzed: stationary and rotating, which are widely applied in turbine engines produced by airplane factories.

  3. Numerical comparisons of the performance of a hydraulic coupling with different pump rotational speeds

    International Nuclear Information System (INIS)

    Luo, Y; Feng, L H; Liu, S H; Chen, T J; Fan, H G

    2013-01-01

    A hydraulic coupling is a hydrodynamic device for transmitting rotating mechanical power. It is widely used in the machinery industry because of its advantages of high energy transmission efficiency, shock absorption and good adaptability, etc. In this paper, SIMPLEC algorithm and SST k-ω turbulence model were employed to simulate the steady state flows at operating conditions of two different rotational speeds (3000r/min and 7500 r/min) of the pump of a specified hydraulic coupling model. The results indicate the existence of similarity in the distributions of the flow fields between the two speeds, but the efficiency at the optimum condition is larger with higher rotational speed. It is concluded that the similarity principle of the efficiency of the hydraulic couplings does not apply in this case due to the relatively high rotating speed and small geometric specifications. It is also shown that the radially stratified pressure distribution on the torus section becomes more obvious with larger speed ratios, since the centrifugal movement plays more dominant roles over the circulating movement in these situations. When the speed ratio is small, with the completion of the circulating flow, the pressure distribution presents in a more circular pattern around the neutral zone of the torus section

  4. Improvement of barrier properties of rotomolded PE containers with nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidi, Shadi; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca [Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4 (Canada)

    2015-05-22

    Polyethylene (PE) is widely used to make bulk containers in rotational molding process. The challenge in this study is to improve permeation resistance of PE to hydrocarbon solvents and gases. Adding organomodified clay improves the thermal, barrier and mechanical properties of PE. In fact, clay layers create a tortuous path against the permeant, yielding better barrier properties. Due to the non-polar hydrophobic nature of PE and polar hydrophilic structure of clay minerals, the compatibilizer plays a crucial role to enhance the dispersion level of clay in the matrix. In this study High Density Polyethylene (HDPE) and Linear Low Density Polyethylene (LLDPE) layered silicate nanocomposite were melt-compounded with two concentrations of organomodified clay (2 and 4 wt. %). The interaction between nanoclay, compatibilizer and rotomolding grade of PE were examined by using X-ray diffraction, transmission electron microscopy (TEM) and rheology test. Rheology was used to determine the performance of our material at low shear processing condition.

  5. The methyl rotational potentials of Ga(CH sub 3) sub 3 derived by neutron spectroscopy

    CERN Document Server

    Prager, M; Parker, S F; Desmedt, A; Lechner, R E

    2002-01-01

    High resolution neutron spectra of Ga(CH sub 3) sub 3 show tunnelling transitions between 4.5 and 19 mu eV. The spectrum can be explained within the single-particle model on the basis of the monoclinic C2/c (Z = 16) low temperature crystal structure of Ga(CH sub 3) sub 3 with six inequivalent methyl groups in the unit cell. The overlapping tunnelling lines prevent the extraction of temperature dependent linewidths which would allow us to assign the librational energies measured in the phonon density of states. Classical rotational motion is studied by quasielastic neutron scattering. Three activation energies could be extracted. Methyl librations, tunnelling energies and barrier heights are combined with consistent intensities into rotational potentials. Only the concerted application of all spectroscopic techniques yields a conclusive description.

  6. Two-color studies of autoionizing states of small molecules

    International Nuclear Information System (INIS)

    Pratt, S.T.; Dehmer, P.M.; Dehmer, J.L.; Tomkins, F.S.; O'Halloran, M.A.

    1989-01-01

    Two-color, resonantly enhanced multiphoton ionization is proving to be a valuable technique for the study of autoionizing states of small molecules. In this talk, results obtained by combining REMPI, photoelectron spectroscopy, and mass spectrometry will be discussed and will be illustrated by examples from our recent studies of rotational and vibrational autoionization in molecular hydrogen and rotational autoionization in nitric oxide. 2 refs., 1 fig

  7. Workplace Lactation Programs in Small WIC Service Sites: A Potential Model.

    Science.gov (United States)

    Angeletti, Michelle A; Llossas, Jose R

    2018-03-01

    The Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) has an opportunity to protect, promote, and support breastfeeding by implementing and modeling workplace lactation programs in small WIC agencies that may have barriers regarding the lack of both human and financial resources. The goal of this article was to describe effective strategies for agency administrators in small WIC service sites so that they can reduce barriers, successfully implement workplace lactation policies and programs, and model successful strategies for other small employers. Copyright © 2017 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  8. Surface dimpling on rotating work piece using rotation cutting tool

    Science.gov (United States)

    Bhapkar, Rohit Arun; Larsen, Eric Richard

    2015-03-31

    A combined method of machining and applying a surface texture to a work piece and a tool assembly that is capable of machining and applying a surface texture to a work piece are disclosed. The disclosed method includes machining portions of an outer or inner surface of a work piece. The method also includes rotating the work piece in front of a rotating cutting tool and engaging the outer surface of the work piece with the rotating cutting tool to cut dimples in the outer surface of the work piece. The disclosed tool assembly includes a rotating cutting tool coupled to an end of a rotational machining device, such as a lathe. The same tool assembly can be used to both machine the work piece and apply a surface texture to the work piece without unloading the work piece from the tool assembly.

  9. Evolution of Binary Supermassive Black Holes in Rotating Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rasskazov, Alexander; Merritt, David [School of Physics and Astronomy and Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623 (United States)

    2017-03-10

    The interaction of a binary supermassive black hole with stars in a galactic nucleus can result in changes to all the elements of the binary’s orbit, including the angles that define its orientation. If the nucleus is rotating, the orientation changes can be large, causing large changes in the binary’s orbital eccentricity as well. We present a general treatment of this problem based on the Fokker–Planck equation for f , defined as the probability distribution for the binary’s orbital elements. First- and second-order diffusion coefficients are derived for the orbital elements of the binary using numerical scattering experiments, and analytic approximations are presented for some of these coefficients. Solutions of the Fokker–Planck equation are then derived under various assumptions about the initial rotational state of the nucleus and the binary hardening rate. We find that the evolution of the orbital elements can become qualitatively different when we introduce nuclear rotation: (1) the orientation of the binary’s orbit evolves toward alignment with the plane of rotation of the nucleus and (2) binary orbital eccentricity decreases for aligned binaries and increases for counteraligned ones. We find that the diffusive (random-walk) component of a binary’s evolution is small in nuclei with non-negligible rotation, and we derive the time-evolution equations for the semimajor axis, eccentricity, and inclination in that approximation. The aforementioned effects could influence gravitational wave production as well as the relative orientation of host galaxies and radio jets.

  10. RADII OF RAPIDLY ROTATING STARS, WITH APPLICATION TO TRANSITING-PLANET HOSTS

    International Nuclear Information System (INIS)

    Brown, Timothy M.

    2010-01-01

    The currently favored method for estimating radii and other parameters of transiting-planet host stars is to match theoretical models to observations of the stellar mean density ρ * , the effective temperature T eff , and the composition parameter [Z]. This explicitly model-dependent approach is based on readily available observations, and results in small formal errors. Its performance will be central to the reliability of results from ground-based transit surveys such as TrES, HAT, and SuperWASP, as well as to the space-borne missions MOST, CoRoT, and Kepler. Here, I use two calibration samples of stars (eclipsing binaries (EBs) and stars for which asteroseismic analyses are available) having well-determined masses and radii to estimate the accuracy and systematic errors inherent in the ρ * method. When matching to the Yonsei-Yale stellar evolution models, I find the most important systematic error results from selection bias favoring rapidly rotating (hence probably magnetically active) stars among the EB sample. If unaccounted for, this bias leads to a mass-dependent underestimate of stellar radii by as much as 4% for stars of 0.4 M sun , decreasing to zero for masses above about 1.4 M sun . Relative errors in estimated stellar masses are three times larger than those in radii. The asteroseismic sample suggests (albeit with significant uncertainty) that systematic errors are small for slowly rotating, inactive stars. Systematic errors arising from failings of the Yonsei-Yale models of inactive stars probably exist, but are difficult to assess because of the small number of well-characterized comparison stars having low mass and slow rotation. Poor information about [Z] is an important source of random error, and may be a minor source of systematic error as well. With suitable corrections for rotation, it is likely that systematic errors in the ρ * method can be comparable to or smaller than the random errors, yielding radii that are accurate to about 2% for

  11. [Barriers for the implementation of cognitive services in Spanish community pharmacies].

    Science.gov (United States)

    Gastelurrutia, Miguel Angel; Fernández-Llimos, Fernando; Benrimoj, Shalom I; Castrillon, Carla Cristina; Faus, María José

    2007-09-01

    To identify and assess barriers for dissemination, implementation, and sustainability of different cognitive services in Spanish community pharmacies. Qualitative study through semi-structured interviews followed by a descriptive analysis. Two groups of experts related to Spanish community pharmacy were chosen. One with 15 community pharmacists with a relevant professional activity, while the other group (n=18) was related to pharmacy strategists. The lack of university clinical oriented learning, lack of pharmacists' attitude towards change and some uncertainty over their professional future were identified as barriers at the pharmacists' level. In relation to pharmacy as an organization the lack of clear messages by their leaders and the small volume of Spanish pharmacies were identified as barriers. In the category of pharmacy profession, the current reimbursement system, the lack of university clinical education, and the lack of leadership by current representative organizations were the barriers found. The lack of real involvement by health authorities, the lack of knowledge about the objectives of pharmacy cognitive services, and the lack of demand of these services by patients where also identified as barriers. Finally, 12 barriers were identified and grouped into 6 categories. These barriers fit in with the barriers identified in other countries.

  12. Angular momentum transfer in primordial discs and the rotation of the first stars

    Science.gov (United States)

    Hirano, Shingo; Bromm, Volker

    2018-05-01

    We investigate the rotation velocity of the first stars by modelling the angular momentum transfer in the primordial accretion disc. Assessing the impact of magnetic braking, we consider the transition in angular momentum transport mode at the Alfvén radius, from the dynamically dominated free-fall accretion to the magnetically dominated solid-body one. The accreting protostar at the centre of the primordial star-forming cloud rotates with close to breakup speed in the case without magnetic fields. Considering a physically motivated model for small-scale turbulent dynamo amplification, we find that stellar rotation speed quickly declines if a large fraction of the initial turbulent energy is converted to magnetic energy (≳ 0.14). Alternatively, if the dynamo process were inefficient, for amplification due to flux freezing, stars would become slow rotators if the pre-galactic magnetic field strength is above a critical value, ≃10-8.2 G, evaluated at a scale of nH = 1 cm-3, which is significantly higher than plausible cosmological seed values (˜10-15 G). Because of the rapid decline of the stellar rotational speed over a narrow range in model parameters, the first stars encounter a bimodal fate: rapid rotation at almost the breakup level, or the near absence of any rotation.

  13. Efficacy of platelet-rich plasma in arthroscopic repair of full-thickness rotator cuff tears: a meta-analysis.

    Science.gov (United States)

    Cai, You-zhi; Zhang, Chi; Lin, Xiang-jin

    2015-12-01

    The use of platelet-rich plasma (PRP) is an innovative clinical therapy, especially in arthroscopic rotator cuff repair. The purpose of this study was to compare the clinical improvement and tendon-to-bone healing with and without PRP therapy in arthroscopic rotator cuff repair. A systematic search was done in the major medical databases to evaluate the studies using PRP therapy (PRP+) or with no PRP (PRP-) for the treatment of patients with rotator cuff tears. We reviewed clinical scores such as the Constant score, the American Shoulder and Elbow Surgeons score, the University of California at Los Angeles (UCLA) Shoulder Rating Scale, the Simple Shoulder Test, and the failure-to-heal rate by magnetic resonance imaging between PRP+ and PRP- groups. Five studies included in this review were used for a meta-analysis based on data availability. There were no statistically significant differences between PRP+ and PRP- groups for overall outcome scores (P > .05). However, the PRP+ group exhibited better healing rates postoperatively than the PRP- group (P = .03) in small/moderate full-thickness tears. The use of PRP therapy in full-thickness rotator cuff repairs showed no statistically significant difference compared with no PRP therapy in clinical outcome scores, but the failure-to-heal rate was significantly decreased when PRP was used for treatment of small-to-moderately sized tears. PRP therapy may improve tendon-to-bone healing in patients with small or moderate rotator cuff tears. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  14. Deep inelastic scattering near the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, J.; Back, B.; Chan, K. [and others

    1995-08-01

    Deep inelastic scattering was recently observed in heavy ion reactions at incident energies near and below the Coulomb barrier. Traditional models of this process are based on frictional forces and are designed to predict the features of deep inelastic processes at energies above the barrier. They cannot be applied at energies below the barrier where the nuclear overlap is small and friction is negligible. The presence of deep inelastic scattering at these energies requires a different explanation. The first observation of deep inelastic scattering near the barrier was in the systems {sup 124,112}Sn + {sup 58,64}Ni by Wolfs et al. We previously extended these measurements to the system {sup 136}Xe + {sup 64}Ni and currently measured the system {sup 124}Xe + {sup 58}Ni. We obtained better statistics, better mass and energy resolution, and more complete angular coverage in the Xe + Ni measurements. The cross sections and angular distributions are similar in all of the Sn + Ni and Xe + Ni systems. The data are currently being analyzed and compared with new theoretical calculations. They will be part of the thesis of J. Gehring.

  15. [Transit-slowing anastomosis by 180 degree axial rotation of the upper intestinal segment after massive resection of the small intestine. Preliminary note on an experimental study in the adult dog].

    Science.gov (United States)

    Salomao, J; Bosgiraud, F; Vayre, P

    1976-01-01

    After massive resection of 85 p. cent of the small intestine in the dog, there occurs diarrhoea and malabsorption. These consequences may be palliated by an oblique end-to-end anastomosis with 180 rotation on the intestinal axis of the jejunal sugment above in relation to the ileal segment below. The authors noted slowing of the transit in the 10 operated dogs. The experimental conditions and the results obtained suggest that the technic may be applicable in man.

  16. Sprache als Barriere (Language as a Barrier)

    Science.gov (United States)

    Mattheier, Klaus

    1974-01-01

    The concept of language barrier has its derivations in the fields of dialectology, sociology and psychology. In contemporary usage however, the concept has two meanings i.e. regional-cultural barrier and socio-cultural barrier. (Text is in German.) (DS)

  17. The rotating universe

    International Nuclear Information System (INIS)

    Ruben, G.; Treder, H.J.

    1987-01-01

    For a long time the question whether the universe rotates or not is discussed. Aspects of Huygens, Newton, Mach and other important historical scientists in this field are reported. The investigations of the mathematician Kurt Groedel in order to prove the rotation of the universe are illustrated. Kurt Groedel has shown that Einstein's gravitational equations of general relativity theory and the cosmological postulate of global homogeneity of cosmic matter (that is the Copernical principle) are not contradictionary to a rotating universe. Abberation measurements, position determination by means of radiointerferometry and methods for the determination of the rotation of the universe from the isotropy of the background radiation are presented. From these experiments it can be concluded that the universe seems not to rotate as already Einstein expected

  18. Rotation sensor switch

    International Nuclear Information System (INIS)

    Sevec, J.B.

    1978-01-01

    A protective device to provide a warning if a piece of rotating machinery slows or stops is comprised of a pair of hinged weights disposed to rotate on a rotating shaft of the equipment. When the equipment is rotating, the weights remain in a plane essentially perpendicular to the shaft and constitute part of an electrical circuit that is open. When the shaft slows or stops, the weights are attracted to a pair of concentric electrically conducting disks disposed in a plane perpendicular to the shaft and parallel to the plane of the weights when rotating. A disk magnet attracts the weights to the electrically conducting plates and maintains the electrical contact at the plates to complete an electrical circuit that can then provide an alarm signal

  19. Shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingzhi; Chen, Songbai; Jing, Jiliang, E-mail: wmz9085@126.com, E-mail: csb3752@hunnu.edu.cn, E-mail: jljing@hunnu.edu.cn [Institute of Physics and Department of Physics, Hunan Normal University, Changsha, Hunan 410081 (China)

    2017-10-01

    We have investigated the shadow of a Konoplya-Zhidenko rotating non-Kerr black hole with an extra deformation parameter. The spacetime structure arising from the deformed parameter affects sharply the black hole shadow. With the increase of the deformation parameter, the size of the shadow of black hole increase and its shape becomes more rounded for arbitrary rotation parameter. The D-shape shadow of black hole emerges only in the case a <2√3/3\\, M with the proper deformation parameter. Especially, the black hole shadow possesses a cusp shape with small eye lashes in the cases with a >M, and the shadow becomes less cuspidal with the increase of the deformation parameter. Our result show that the presence of the deformation parameter yields a series of significant patterns for the shadow casted by a Konoplya-Zhidenko rotating non-Kerr black hole.

  20. Atmospheric acceleration and Earth-expansion deceleration of the Earth rotation

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2017-11-01

    Full Text Available Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD (length of day is −0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy.

  1. Effects of Rotation on the Differentiation of a terrestrial Magma Ocean

    Science.gov (United States)

    Maas, C.; Hansen, U.

    2014-12-01

    It is widely accepted that the Earth experienced several large impacts during its early evolution which led to the formation of one or more magma oceans. Differentiation processes in such a magma ocean are of great importance for the initial conditions of mantle convection and for the subsequent mantle structure. Convection in a magma ocean is most likely very vigorous. Further, rotation of the early Earth is supposed to be very fast. Therefore, and due to the small viscosity, it can be assumed that differentiation is strongly affected by rotation.To study the influence of rotation on the crystallization of a magma ocean, we employed a 3D Cartesian numerical model with low Prandtl number and used a discrete element method to describe silicate crystals.Our results show a crucial dependence on crystal density, rotation rate and latitude. Low rotation at the pole leads to a large fraction of suspended particles. With increasing rotation the particles settle at the bottom and form a stable stratified layer. In contrast to that at the equator at low rotation all particles settle at the bottom, at higher rotation they form a layer of significant thickness and at the highest rotation rate the particles accumulate in the middle of the magma ocean. In addition to that, we observe that due to the Coriolis force silicate crystals with different densities separate from each other. While lighter particles are at the bottom, denser particles accumulate at mid-depth at the same rotation rate. This could result in an unstable stratified mantle in the equatorial region after magma ocean solidification.All in all, rotation could lead to an asymmetrical crystallization of the magma ocean, with a contrary layering at the pole and the equator. This affects the composition of the early mantle and could explain the development of a localized magma ocean at the core-mantle boundary and the development of phase transitions observed in seismology, like the mantle transition zone.

  2. Empirical investigation of energy efficiency barriers in Italian manufacturing SMEs

    International Nuclear Information System (INIS)

    Trianni, Andrea; Cagno, Enrico; Worrell, Ernst; Pugliese, Giacomo

    2013-01-01

    The paper identifies and evaluates barriers to industrial energy efficiency through the investigation of 48 manufacturing Small and Medium-sized Enterprises (SMEs) in Northern Italy. The research provides interesting suggestions both for enterprises and energy policy-makers. Firstly, economic and information barriers are perceived as the major obstacles to the adoption of energy-efficient technologies, whilst behavioural barriers do not seem to affect enterprises very much. Nonetheless, despite what declared, the most relevant barriers are the lack of interest in energy efficiency and the existence of other priorities, thus showing that decision-makers tend to downgrade energy efficiency to a marginal issue. Furthermore, perceived barriers do not take place exclusively in implementing energy-efficient technologies, but, with comparable importance, also in generating the interest and knowledge of the opportunities. Moreover, the study highlights that relevant differences can be appreciated for both perceived and real barriers even among SMEs, that thus should not be bundled together. In addition to that, other factors affect barriers, stimulating future research: indeed, lower real barriers can be observed with higher complexity of the production, high variability of the demand and strong competitors. -- Highlights: ► Evidence of existing misalignments between perceived and real barriers to the adoption of energy-efficient technologies. ► Relevance of barriers to the generation of interest towards energy efficiency. ► Evidence of firm's size (within SMEs) and energy expenditures on barriers to energy efficiency. ► Importance, for energy efficiency barriers, of avoid bundling SMEs as a whole. ► Preliminary evidence of factors related to supply chain complexity affecting barriers to energy efficiency.

  3. Strategies to improve drug delivery across the blood-brain barrier.

    Science.gov (United States)

    de Boer, Albertus G; Gaillard, Pieter J

    2007-01-01

    The blood-brain barrier (BBB), together with the blood-cerebrospinal-fluid barrier, protects and regulates the homeostasis of the brain. However, these barriers also limit the transport of small-molecule and, particularly, biopharmaceutical drugs such as proteins, genes and interference RNA to the brain, thereby limiting the treatment of many brain diseases. As a result, various drug delivery and targeting strategies are currently being developed to enhance the transport and distribution of drugs into the brain. In this review, we discuss briefly the biology and physiology of the BBB as the most important barrier for drug transport to the brain and, in more detail, the possibilities for delivering large-molecule drugs, particularly genes, by receptor-mediated nonviral drug delivery to the (human) brain. In addition, the systemic and intracellular pharmacokinetics of nonviral gene delivery, together with targeted brain imaging, are reviewed briefly.

  4. Errors of car wheels rotation rate measurement using roller follower on test benches

    Science.gov (United States)

    Potapov, A. S.; Svirbutovich, O. A.; Krivtsov, S. N.

    2018-03-01

    The article deals with rotation rate measurement errors, which depend on the motor vehicle rate, on the roller, test benches. Monitoring of the vehicle performance under operating conditions is performed on roller test benches. Roller test benches are not flawless. They have some drawbacks affecting the accuracy of vehicle performance monitoring. Increase in basic velocity of the vehicle requires increase in accuracy of wheel rotation rate monitoring. It determines the degree of accuracy of mode identification for a wheel of the tested vehicle. To ensure measurement accuracy for rotation velocity of rollers is not an issue. The problem arises when measuring rotation velocity of a car wheel. The higher the rotation velocity of the wheel is, the lower the accuracy of measurement is. At present, wheel rotation frequency monitoring on roller test benches is carried out by following-up systems. Their sensors are rollers following wheel rotation. The rollers of the system are not kinematically linked to supporting rollers of the test bench. The roller follower is forced against the wheels of the tested vehicle by means of a spring-lever mechanism. Experience of the test bench equipment operation has shown that measurement accuracy is satisfactory at small rates of vehicles diagnosed on roller test benches. With a rising diagnostics rate, rotation velocity measurement errors occur in both braking and pulling modes because a roller spins about a tire tread. The paper shows oscillograms of changes in wheel rotation velocity and rotation velocity measurement system’s signals when testing a vehicle on roller test benches at specified rates.

  5. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Alicia M. Barnett

    2016-05-01

    Full Text Available Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs. This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells and mucus-secreting goblet cells (HT29-MTX cells, that more closely simulate the cell proportions found in the small (90:10 and large intestine (75:25. Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER, in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  6. Effect of a Semi-Purified Oligosaccharide-Enriched Fraction from Caprine Milk on Barrier Integrity and Mucin Production of Co-Culture Models of the Small and Large Intestinal Epithelium.

    Science.gov (United States)

    Barnett, Alicia M; Roy, Nicole C; McNabb, Warren C; Cookson, Adrian L

    2016-05-06

    Caprine milk contains the highest amount of oligosaccharides among domestic animals, which are structurally similar to human milk oligosaccharides (HMOs). This suggests caprine milk oligosaccharides may offer similar protective and developmental effects to that of HMOs. However, to date, studies using oligosaccharides from caprine milk have been limited. Thus, this study aimed to examine the impact of a caprine milk oligosaccharide-enriched fraction (CMOF) on barrier function of epithelial cell co-cultures of absorptive enterocytes (Caco-2 cells) and mucus-secreting goblet cells (HT29-MTX cells), that more closely simulate the cell proportions found in the small (90:10) and large intestine (75:25). Treatment of epithelial co-cultures with 0.4, 1.0, 2.0 and 4.0 mg/mL of CMOF was shown to have no effect on metabolic activity but did enhance cell epithelial barrier integrity as measured by trans-epithelial electrical resistance (TEER), in a dose-dependent manner. The CMOF at the maximum concentration tested (4.0 mg/mL) enhanced TEER, mucin gene expression and mucin protein abundance of epithelial co-cultures, all of which are essential components of intestinal barrier function.

  7. Numerical studies of Siberian snakes and spin rotators for RHIC

    International Nuclear Information System (INIS)

    Luccio, A.

    1995-01-01

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180 degrees apart and with their axis of spin precession at 90 degrees to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis

  8. Exploring phase space using smartphone acceleration and rotation sensors simultaneously

    International Nuclear Information System (INIS)

    Monteiro, Martín; Cabeza, Cecilia; Martí, Arturo C

    2014-01-01

    A paradigmatic physical system as the physical pendulum is experimentally studied using the acceleration and rotation (gyroscope) sensors available on smartphones and other devices such as iPads and tablets. A smartphone is fixed to the outside of a bicycle wheel whose axis is kept horizontal and fixed. The compound system, wheel plus smartphone, defines a physical pendulum which can rotate, giving full turns in one direction, or oscillate about the equilibrium position (performing either small or large oscillations). Measurements of the radial and tangential acceleration and the angular velocity obtained with smartphone sensors allow a deep insight into the dynamics of the system to be gained. In addition, thanks to the simultaneous use of the acceleration and rotation sensors, trajectories in the phase space are directly obtained. The coherence of the measures obtained with the different sensors and by traditional methods is remarkable. Indeed, due to their low cost and increasing availability, smartphone sensors are valuable tools that can be used in most undergraduate laboratories. (paper)

  9. Exploring phase space using smartphone acceleration and rotation sensors simultaneously

    Science.gov (United States)

    Monteiro, Martín; Cabeza, Cecilia; Martí, Arturo C.

    2014-07-01

    A paradigmatic physical system as the physical pendulum is experimentally studied using the acceleration and rotation (gyroscope) sensors available on smartphones and other devices such as iPads and tablets. A smartphone is fixed to the outside of a bicycle wheel whose axis is kept horizontal and fixed. The compound system, wheel plus smartphone, defines a physical pendulum which can rotate, giving full turns in one direction, or oscillate about the equilibrium position (performing either small or large oscillations). Measurements of the radial and tangential acceleration and the angular velocity obtained with smartphone sensors allow a deep insight into the dynamics of the system to be gained. In addition, thanks to the simultaneous use of the acceleration and rotation sensors, trajectories in the phase space are directly obtained. The coherence of the measures obtained with the different sensors and by traditional methods is remarkable. Indeed, due to their low cost and increasing availability, smartphone sensors are valuable tools that can be used in most undergraduate laboratories.

  10. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  11. Modelling water vapour permeability through atomic layer deposition coated photovoltaic barrier defects

    Energy Technology Data Exchange (ETDEWEB)

    Elrawemi, Mohamed, E-mail: Mohamed.elrawemi@hud.ac.uk [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Blunt, Liam; Fleming, Leigh [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Bird, David, E-mail: David.Bird@uk-cpi.com [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Robbins, David [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Sweeney, Francis [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom)

    2014-11-03

    Transparent barrier films such as Al{sub 2}O{sub 3} used for prevention of oxygen and/or water vapour permeation are the subject of increasing research interest when used for the encapsulation of flexible photovoltaic modules. However, the existence of micro-scale defects in the barrier surface topography has been shown to have the potential to facilitate water vapour ingress, thereby reducing cell efficiency and causing internal electrical shorts. Previous work has shown that small defects (≤ 3 μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥ 3 μm lateral dimension) seem to be more detrimental to the barrier functionality. Experimental results based on surface topography segmentation analysis and a model presented in this paper will be used to test the hypothesis that the major contributing defects to water vapour transmission rate are small numbers of large defects. The model highlighted in this study has the potential to be used for gaining a better understanding of photovoltaic module efficiency and performance. - Highlights: • A model of water vapour permeation through barrier defects is presented. • The effect of the defects on the water vapour permeability is investigated. • Defect density correlates with water vapour permeability. • Large defects may dominate the permeation properties of the barrier film.

  12. Internal Transport Barrier Driven by Redistribution of Energetic Ions

    International Nuclear Information System (INIS)

    Wong, K.L.; Heidbrink, W.W.; Ruskov, E.; Petty, C.C.; Greenfield, C.M.; Nazikian, R.; Budny, R.

    2004-01-01

    Alfven instabilities excited by energetic ions are used as a means to reduce the central magnetic shear in a tokamak via redistribution of energetic ions. When the central magnetic shear is low enough, ballooning modes become stable for any plasma pressure gradient and an internal transport barrier (ITB) with a steep pressure gradient can exist. This mechanism can sustain a steady-state ITB as demonstrated by experimental data from the DIII-D tokamak. It can also produce a shear in toroidal and poloidal plasma rotation. Possible application of this technique to use the energetic alpha particles for improvement of burning plasma performance is discussed

  13. Modes of uncontrolled rotational motion of the Progress M-29M spacecraft

    Science.gov (United States)

    Belyaev, M. Yu.; Matveeva, T. V.; Monakhov, M. I.; Rulev, D. N.; Sazonov, V. V.

    2018-01-01

    We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3-7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft's angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft's motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth-Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1-0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.

  14. Combining rotating-coil measurements of large-aperture accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2089510

    2016-10-05

    The rotating coil is a widely used tool to measure the magnetic field and the field errors in accelerator magnets. The coil has a length that exceeds the entire magnetic field along the longitudinal dimension of the magnet and gives therefore a two-dimensional representation of the integrated field. Having a very good precision, the rotating coil lacks in versatility. The fixed dimensions make it impractical and inapplicable in situations, when the radial coil dimension is much smaller than the aperture or when the aperture is only little covered by the coil. That being the case for rectangular apertures with large aspect ratio, where a basic measurement by the rotating coil describes the field only in a small area of the magnet. A combination of several measurements at different positions is the topic of this work. Very important for a combination is the error distribution on the measured field harmonics. To preserve the good precision of the higher-order harmonics, the combination must not rely on the main ...

  15. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  16. Disability Management in Small Firms.

    Science.gov (United States)

    Drury, David

    1991-01-01

    Notes that American research has paid relatively little attention to prospects for adapting disability management practices to financial and management environment of smaller employers. Compares large and small firms in terms of employer disability practices and characteristics of disabled workers; discusses barriers to rehabilitation and…

  17. Barrier mechanisms in the Drosophila blood-brain barrier

    Directory of Open Access Journals (Sweden)

    Samantha Jane Hindle

    2014-12-01

    Full Text Available The invertebrate blood-brain barrier field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through GPCR signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate blood-brain barrier has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many blood-brain barrier mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the blood-brain barrier can govern whole animal physiologies. This includes novel functions of blood-brain barrier gap junctions in orchestrating synchronized neuroblast proliferation, and of blood-brain barrier secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate blood-brain barrier anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

  18. Microstructural development in physical vapour-deposited partially stabilized zirconia thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Y. H. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States)); Biederman, R.R. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States)); Sisson, R.D. Jr. (Center for Intelligent Processing of Materials, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609-2280 (United States))

    1994-10-01

    The effects of processing parameters of physical vapour deposition on the microstructure of partially stabilized zirconia (PSZ) thermal barrier coatings have been experimentally investigated. Emphasis has been placed on the crystallographic texture of the PSZ coatings and the microstructure of the top surface of the PSZ coatings as well as the metal-ceramic interface. The variations in the deposition chamber temperature, substrate thickness, substrate rotation and vapour incidence angle resulted in the observation of significant differences in the crystallographic texture and microstructure of the PSZ coatings. ((orig.))

  19. Evolution of thermal ion transport barriers in reversed shear/ optimised shear plasmas

    International Nuclear Information System (INIS)

    Voitsekhovitch, I.; Garbet, X.; Moreau, D.; Bush, C.E.; Budny, R.V.; Gohil, P.; Kinsey, J.E.; Talyor, T.S.; Litaudon, X.

    2001-01-01

    The effects of the magnetic and ExB rotation shears on the thermal ion transport in advanced tokamak scenarios are analyzed through the predictive modelling of the evolution of internal transport barriers. Such a modelling is performed with an experimentally validated L-mode thermal diffusivity completed with a semi-empirical shear correction which is based on simple theoretical arguments from turbulence studies. A multi-machine test of the model on relevant discharges from the ITER Data Base (TFTR, DIII-D and JET) is presented. (author)

  20. Gas analysis by computer-controlled microwave rotational spectrometry

    International Nuclear Information System (INIS)

    Hrubesh, L.W.

    1978-01-01

    Microwave rotational spectrometry has inherently high resolution and is thus nearly ideal for qualitative gas mixture analysis. Quantitative gas analysis is also possible by a simplified method which utilizes the ease with which molecular rotational transitions can be saturated at low microwave power densities. This article describes a computer-controlled microwave spectrometer which is used to demonstrate for the first time a totally automated analysis of a complex gas mixture. Examples are shown for a complete qualitative and quantitative analysis, in which a search of over 100 different compounds is made in less than 7 min, with sensitivity for most compounds in the 10 to 100 ppm range. This technique is expected to find increased use in view of the reduced complexity and increased reliabiity of microwave spectrometers and because of new energy-related applications for analysis of mixtures of small molecules

  1. Low-Cost Small Satellite Atmospheric Rotating Solar Occultation Imager (ROI)

    Data.gov (United States)

    National Aeronautics and Space Administration — Utilizing a unique, new occultation technique involving imaging, the ROI concept will meet or exceed the quality of SAGE measurements at a small fraction of the...

  2. Nondestructive testing bench without rotation

    International Nuclear Information System (INIS)

    Perdijon, J.

    1976-01-01

    On-line testing by ultrasonics in combination with eddy currents represents a large saving in time and equipment since the tube to be checked only needs to pass once quickly and without rotation. The answer to this problem is to use encircling transducers, which means that the mirror interposed to detect transverse defects must be conical while that used to detect longitudinal defects is helically shaped. A cell combining these two mirrors with an eddy current coil to test thin small-diameter tubes is described. The first trial year shows that defects are detected independently of their position, with a sensitivity at least equal to that of conventional systems [fr

  3. Linguistic barriers at a Malawian referral hospital | Kamwendo ...

    African Journals Online (AJOL)

    The paper discusses a small segment of the findings of a sociolinguistic study that was conducted at a Republic of China-funded referral hospital located in the predominantly Chitumbuka-speaking Northern Malawi. The main objective of the study was to identify linguistic barriers to communication that existed at the hospital ...

  4. Tunnel barrier and noncollinear magnetization effects on shot noise in ferromagnetic/semiconductor/ferromagnetic heterojunctions

    International Nuclear Information System (INIS)

    An Xingtao; Liu Jianjun

    2008-01-01

    Based on the scattering approach, we investigate transport properties of electrons in a one-dimensional waveguide that contains a ferromagnetic/semiconductor/ferromagnetic heterojunction and tunnel barriers in the presence of Rashba and Dresselhaus spin-orbit interactions. We simultaneously consider significant quantum size effects, quantum coherence, Rashba and Dresselhaus spin-orbit interactions and noncollinear magnetizations. It is found that the tunnel barrier plays a decisive role in the transmission coefficient and shot noise of the ballistic spin electron transport through the heterojunction. When the small tunnel barriers are considered, the transport properties of electrons are quite different from those without tunnel barriers

  5. Study on a magnetic spiral-type wireless capsule endoscope controlled by rotational external permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Bo, E-mail: yebo@hubu.edu.cn [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); School of Computer Science and Information Engineering, HuBei University, Wuhan 430062 (China); Zhang, Wei [Department of Mechanical Engineering, Hubei University of Automotive Technology, Shiyan 442002 (China); Sun, Zhen-jun [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Guo, Lin [School of Computer Science and Information Engineering, HuBei University, Wuhan 430062 (China); Deng, Chao [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Chen, Ya-qi [Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Zhang, Hong-hai [School of Mechanical Science & Engineering, Huazhong University of Science & Technology, Wuhan 430074 (China); Liu, Sheng [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China)

    2015-12-01

    In this paper, the authors propose rotating an external permanent magnet (EPM) to manipulate the synchronous rotation of a magnetic spiral-type wireless capsule endoscope (WCE), and the synchronous rotation of the WCE is converted to its translational motion in intestinal tract. In order to preliminarily verify the feasibility of this method, a handheld actuator (HA) controlled by micro controller unit, a magnetic spiral-type WCE and a bracket were fabricated, theoretical analysis and simulations about the control distance of this method were performed, and in ex-vivo tests were examined in porcine small intestine to verify the control distance and control performances of this method. It was demonstrated that this method showed good performances in controlling the translational motion of the magnetic spiral-type WCE, and this method has great potential to be used in clinical application. - Highlights: • A new magnetic control method for spiral-type wireless capsule endoscope is proposed. • Wireless capsule endoscope rotates synchronously with external permanent magnet. • The method controls the wireless capsule endoscope well in porcine small intestine. • Long control distance makes the method may be used in future medical application. • Experimental setup has great advantages: high cost performance and easy operation.

  6. NH3 quantum rotators in Hofmann clathrates: intensity and width of rotational transition lines

    International Nuclear Information System (INIS)

    Vorderwisch, Peter; Sobolev, Oleg; Desmedt, Arnaud

    2004-01-01

    Inelastic structure factors for rotational transitions of uniaxial NH 3 quantum rotators, measured in a Hofmann clathrate with biphenyl as guest molecule, agree with those calculated for free rotators. A finite intrinsic line width, found for rotational transitions involving the rotational level j=3 at low temperature, supports a recently suggested model based on resonant rotor-rotor coupling

  7. Impact of diffusion barriers to small cytotoxic molecules on the efficacy of immunotherapy in breast cancer.

    Directory of Open Access Journals (Sweden)

    Hiranmoy Das

    Full Text Available Molecular-focused cancer therapies, e.g., molecularly targeted therapy and immunotherapy, so far demonstrate only limited efficacy in cancer patients. We hypothesize that underestimating the role of biophysical factors that impact the delivery of drugs or cytotoxic cells to the target sites (for associated preferential cytotoxicity or cell signaling modulation may be responsible for the poor clinical outcome. Therefore, instead of focusing exclusively on the investigation of molecular mechanisms in cancer cells, convection-diffusion of cytotoxic molecules and migration of cancer-killing cells within tumor tissue should be taken into account to improve therapeutic effectiveness. To test this hypothesis, we have developed a mathematical model of the interstitial diffusion and uptake of small cytotoxic molecules secreted by T-cells, which is capable of predicting breast cancer growth inhibition as measured both in vitro and in vivo. Our analysis shows that diffusion barriers of cytotoxic molecules conspire with γδ T-cell scarcity in tissue to limit the inhibitory effects of γδ T-cells on cancer cells. This may increase the necessary ratios of γδ T-cells to cancer cells within tissue to unrealistic values for having an intended therapeutic effect, and decrease the effectiveness of the immunotherapeutic treatment.

  8. Barriers to global health development: An international quantitative survey.

    Directory of Open Access Journals (Sweden)

    Bahr Weiss

    Full Text Available Global health's goal of reducing low-and-middle-income country versus high-income country health disparities faces complex challenges. Although there have been discussions of barriers, there has not been a broad-based, quantitative survey of such barriers.432 global health professionals were invited via email to participate in an online survey, with 268 (62% participating. The survey assessed participants' (A demographic and global health background, (B perceptions regarding 66 barriers' seriousness, (C detailed ratings of barriers designated most serious, (D potential solutions.Thirty-four (of 66 barriers were seen as moderately or more serious, highlighting the widespread, significant challenges global health development faces. Perceived barrier seriousness differed significantly across domains: Resource Limitations mean = 2.47 (0-4 Likert scale, Priority Selection mean = 2.20, Corruption, Lack of Competence mean = 1.87, Social and Cultural Barriers mean = 1.68. Some system-level predictors showed significant but relatively limited relations. For instance, for Global Health Domain, HIV and Mental Health had higher levels of perceived Social and Cultural Barriers than other GH Domains. Individual-level global health experience predictors had small but significant effects, with seriousness of (a Corruption, Lack of Competence, and (b Priority Selection barriers positively correlated with respondents' level of LMIC-oriented (e.g., weeks/year spent in LMIC but Academic Global Health Achievement (e.g., number of global health publications negatively correlated with overall barrier seriousness.That comparatively few system-level predictors (e.g., Organization Type were significant suggests these barriers may be relatively fundamental at the system-level. Individual-level and system-level effects do have policy implications; e.g., Priority Selection barriers were among the most serious, yet effects on seriousness of how LMIC-oriented a professional

  9. Patients with rotator cuff tendinopathy can successfully self-manage, but with certain caveats: a qualitative study.

    Science.gov (United States)

    Littlewood, Chris; Malliaras, Peter; Mawson, Sue; May, Stephen; Walters, Stephen

    2014-03-01

    Evidence has emerged supporting the value of loaded exercises for rotator cuff tendinopathy but there are barriers that might prevent implementation of this intervention in the real-world. The purpose of this study was to explore these potential barriers with participants involved in a pilot randomised controlled trial (RCT) investigating a self-managed loaded exercise intervention. A qualitative study within the framework of a mixed methods design. Data were collected using individual interviews and analysed using the framework method. One private physiotherapy clinic in northern England. Six patients and two physiotherapists were purposively sampled from those allocated to the self-managed exercise group within the RCT. Three themes were generated: (1) Expectations and preferences, (2) characteristics of an unsuccessful outcome, (3) characteristics of a successful outcome. Most patients expressed expectations contrary to the philosophy of a self-managed approach. But this did not serve as a barrier when the intervention was offered within a positive and supporting environment where patients understood the reasons for undertaking the exercise, effectively self-monitored and engaged with pro-active follow-up. An early and appreciable response to therapy was also a key factor influencing continuing engagement with the exercise programme. With certain caveats including the need to recognise and respond to individual characteristics, implement effective knowledge translation strategies and the need to engage with appropriately timed pro-active follow-up, the potential to implement programmes of self-managed loaded exercise for patients with rotator cuff tendinopathy in the real-world and in further research studies appears feasible but challenging. Copyright © 2013 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  10. Fabry-Perot interferometry using an image-intensified rotating-mirror streak camera

    International Nuclear Information System (INIS)

    Seitz, W.L.; Stacy, H.L.

    1983-01-01

    A Fabry-Perot velocity interferometer system is described that uses a modified rotating mirror streak camera to recrod the dynamic fringe positions. A Los Alamos Model 72B rotating-mirror streak camera, equipped with a beryllium mirror, was modified to include a high aperture (f/2.5) relay lens and a 40-mm image-intensifier tube such that the image normally formed at the film plane of the streak camera is projected onto the intensifier tube. Fringe records for thin (0.13 mm) flyers driven by a small bridgewire detonator obtained with a Model C1155-01 Hamamatsu and Model 790 Imacon electronic streak cameras are compared with those obtained with the image-intensified rotating-mirror streak camera (I 2 RMC). Resolution comparisons indicate that the I 2 RMC gives better time resolution than either the Hamamatsu or the Imacon for total writing times of a few microseconds or longer

  11. Translational and rotational diffusion of dilute solid amorphous spherical nanocolloids by molecular dynamics simulation

    Science.gov (United States)

    Heyes, D. M.; Nuevo, M. J.; Morales, J. J.

    Following on from our previous study (Heyes, D. M., Nuevo, M. J, and Morales, J. J., 1996, Molec. Phys., 88, 1503), molecular dynamics simulations have been carried out of translational and rotational diffusion of atomistically rough near-spherical solid Lennard-Jones (LJ) clusters immersed in a Weeks-Chandler-Andersen liquid solvent. A single cluster consisting of up to about 100LJ particles as part of an 8000 atom fluid system was considered in each case. The translational and rotational diffusion coefficients decrease with increasing cluster size and solvent density (roughly in proportion to the molar volume of the solvent). The simulations reveal that for clusters in excess of about 30LJ atoms there is a clear separation of timescales between angular velocity and orientation relaxation which adhere well to the small-step diffusion model encapsulated in Hubbard's relationship. For 100 atom clusters both the StokesEinstein (translation) and Stokes-Einstein-Debye (rotation) equations apply approximately. The small departures from these reference solutions indicate that the translational relaxation experiences a local viscosity in excess of the bulk value (typically by ~ 30%), whereas rotational relaxation experiences a smaller viscosity than the bulk (typically by ~ 30%) reasonably in accord with the Gierer-Wirtz model. Both of these observations are consistent with an observed layering of the liquid molecules next to the cluster observed in our previous study.

  12. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  13. Rotations with Rodrigues' vector

    International Nuclear Information System (INIS)

    Pina, E

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears to be a fundamental matrix that is used to express the components of the angular velocity, the rotation matrix and the angular momentum vector. The Hamiltonian formalism of rotational dynamics in terms of this vector uses the same matrix. The quantization of the rotational dynamics is performed with simple rules if one uses Rodrigues' vector and similar formal expressions for the quantum operators that mimic the Hamiltonian classical dynamics.

  14. Stability and control of resistive wall modes in high beta, low rotation DIII-D plasmas

    International Nuclear Information System (INIS)

    Garofalo, A.M.; Jackson, G.L.; Haye, R.J. La; Okabayashi, M.; Reimerdes, H.; Strait, E.J.; Ferron, J.R.; Groebner, R.J.; In, Y.; Lanctot, M.J.; Matsunaga, G.; Navratil, G.A.; Solomon, W.M.; Takahashi, H.; Takechi, M.; Turnbull, A.D.

    2007-01-01

    Recent high-β DIII-D (Luxon J.L. 2002 Nucl. Fusion 42 64) experiments with the new capability of balanced neutral beam injection show that the resistive wall mode (RWM) remains stable when the plasma rotation is lowered to a fraction of a per cent of the Alfven frequency by reducing the injection of angular momentum in discharges with minimized magnetic field errors. Previous DIII-D experiments yielded a high plasma rotation threshold (of order a few per cent of the Alfven frequency) for RWM stabilization when resonant magnetic braking was applied to lower the plasma rotation. We propose that the previously observed rotation threshold can be explained as the entrance into a forbidden band of rotation that results from torque balance including the resonant field amplification by the stable RWM. Resonant braking can also occur naturally in a plasma subject to magnetic instabilities with a zero frequency component, such as edge localized modes. In DIII-D, robust RWM stabilization can be achieved using simultaneous feedback control of the two sets of non-axisymmetric coils. Slow feedback control of the external coils is used for dynamic error field correction; fast feedback control of the internal non-axisymmetric coils provides RWM stabilization during transient periods of low rotation. This method of active control of the n = 1 RWM has opened access to new regimes of high performance in DIII-D. Very high plasma pressure combined with elevated q min for high bootstrap current fraction, and internal transport barriers for high energy confinement, are sustained for almost 2 s, or 10 energy confinement times, suggesting a possible path to high fusion performance, steady-state tokamak scenarios

  15. Effect of rotation on convective mass transfer in rotating channels

    International Nuclear Information System (INIS)

    Pharoah, J.G.; Djilali, N.

    2002-01-01

    Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)

  16. Application of Texture Analysis to Study Small Vessel Disease and Blood–Brain Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Maria del C. Valdés Hernández

    2017-07-01

    Full Text Available ObjectivesWe evaluate the alternative use of texture analysis for evaluating the role of blood–brain barrier (BBB in small vessel disease (SVD.MethodsWe used brain magnetic resonance imaging from 204 stroke patients, acquired before and 20 min after intravenous gadolinium administration. We segmented tissues, white matter hyperintensities (WMH and applied validated visual scores. We measured textural features in all tissues pre- and post-contrast and used ANCOVA to evaluate the effect of SVD indicators on the pre-/post-contrast change, Kruskal–Wallis for significance between patient groups and linear mixed models for pre-/post-contrast variations in cerebrospinal fluid (CSF with Fazekas scores.ResultsTextural “homogeneity” increase in normal tissues with higher presence of SVD indicators was consistently more overt than in abnormal tissues. Textural “homogeneity” increased with age, basal ganglia perivascular spaces scores (p < 0.01 and SVD scores (p < 0.05 and was significantly higher in hypertensive patients (p < 0.002 and lacunar stroke (p = 0.04. Hypertension (74% patients, WMH load (median = 1.5 ± 1.6% of intracranial volume, and age (mean = 65.6 years, SD = 11.3 predicted the pre/post-contrast change in normal white matter, WMH, and index stroke lesion. CSF signal increased with increasing SVD post-contrast.ConclusionA consistent general pattern of increasing textural “homogeneity” with increasing SVD and post-contrast change in CSF with increasing WMH suggest that texture analysis may be useful for the study of BBB integrity.

  17. Role of rotational energy and deformations in the dynamics of {sup 6}Li+{sup 90}Zr reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Gurvinder; Grover, Neha; Sandhu, Kirandeep; Sharma, Manoj K., E-mail: msharma@thapar.edu

    2014-07-15

    In reference to recent experimental data, the dynamical cluster-decay model (DCM) has been applied to study the neutron evaporation residue (ER) cross sections of intermediate mass nucleus {sup 96}Tc{sup ⁎} spread over a wide range of incident energy across the Coulomb barrier. In order to analyze the effect of rotational energy in the dynamics of {sup 6}Li+{sup 90}Zr reaction, the cross sections have been calculated using the sticking (I{sub S}) and the non-sticking (I{sub NS}) limits of moment of inertia with inclusion of quadrupole (β{sub 2}) deformation within optimum orientation approach. The effect of either of the two approaches on the angular momentum, and hence the rotational energy associated with it, is assessed through the fragment mass distribution, preformation factor and the barrier penetrability. Also, the role of deformations is studied through a comparative analysis of decay path for spherical and β{sub 2} deformed fragmentation. The calculated evaporation residue cross sections show excellent agreement with the reported data at all incident energies for both spherical and β{sub 2}-deformed approach. Finally, the incomplete fusion (ICF) process observed due to loosely bound projectile {sup 6}Li is addressed within the framework of DCM.

  18. Low frequency noise in asymmetric double barrier magnetic tunnel junctions with a top thin MgO layer

    International Nuclear Information System (INIS)

    Guo Hui-Qiang; Tang Wei-Yue; Liu Liang; Wei Jian; Li Da-Lai; Feng Jia-Feng; Han Xiu-Feng

    2015-01-01

    Low frequency noise has been investigated at room temperature for asymmetric double barrier magnetic tunnel junctions (DBMTJs), where the coupling between the top and middle CoFeB layers is antiferromagnetic with a 0.8-nm thin top MgO barrier of the CoFeB/MgO/CoFe/CoFeB/MgO/CoFeB DBMTJ. At enough large bias, 1/f noise dominates the voltage noise power spectra in the low frequency region, and is conventionally characterized by the Hooge parameter α mag . With increasing external field, the top and bottom ferromagnetic layers are aligned by the field, and then the middle free layer rotates from antiparallel state (antiferromagnetic coupling between top and middle ferromagnetic layers) to parallel state. In this rotation process α mag and magnetoresistance-sensitivity-product show a linear dependence, consistent with the fluctuation dissipation relation. With the magnetic field applied at different angles (θ) to the easy axis of the free layer, the linear dependence persists while the intercept of the linear fit satisfies a cos(θ) dependence, similar to that for the magnetoresistance, suggesting intrinsic relation between magnetic losses and magnetoresistance. (rapid communication)

  19. The strongest magnetic barrier in the DIII-D tokamak and comparison with the ASDEX UG

    Science.gov (United States)

    Ali, Halima; Punjabi, Alkesh

    2013-05-01

    Magnetic perturbations in tokamaks lead to the formation of magnetic islands, chaotic field lines, and the destruction of flux surfaces. Controlling or reducing transport along chaotic field lines is a key challenge in magnetically confined fusion plasmas. A local control method was proposed by Chandre et al. [Nucl. Fusion 46, 33-45 (2006)] to build barriers to magnetic field line diffusion by addition of a small second-order control term localized in the phase space to the field line Hamiltonian. Formation and existence of such magnetic barriers in Ohmically heated tokamaks (OHT), ASDEX UG and piecewise analytic DIII-D [Luxon, J.L.; Davis, L.E., Fusion Technol. 8, 441 (1985)] plasma equilibria was predicted by the authors [Ali, H.; Punjabi, A., Plasma Phys. Control. Fusion 49, 1565-1582 (2007)]. Very recently, this prediction for the DIII-D has been corroborated [Volpe, F.A., et al., Nucl. Fusion 52, 054017 (2012)] by field-line tracing calculations, using experimentally constrained Equilibrium Fit (EFIT) [Lao, et al., Nucl. Fusion 25, 1611 (1985)] DIII-D equilibria perturbed to include the vacuum field from the internal coils utilized in the experiments. This second-order approach is applied to the DIII-D tokamak to build noble irrational magnetic barriers inside the chaos created by the locked resonant magnetic perturbations (RMPs) (m, n)=(3, 1)+(4, 1), with m and n the poloidal and toroidal mode numbers of the Fourier expansion of the magnetic perturbation with amplitude δ. A piecewise, analytic, accurate, axisymmetric generating function for the trajectories of magnetic field lines in the DIII-D is constructed in magnetic coordinates from the experimental EFIT Grad-Shafranov solver [Lao, L, et al., Fusion Sci. Technol. 48, 968 (2005)] for the shot 115,467 at 3000 ms in the DIII-D. A symplectic mathematical map is used to integrate field lines in the DIII-D. A numerical algorithm [Ali, H., et al., Radiat. Eff. Def. Solids Inc. Plasma Sc. Plasma Tech. 165, 83

  20. A numerical strategy for modelling rotating stall in core compressors

    Science.gov (United States)

    Vahdati, M.

    2007-03-01

    The paper will focus on one specific core-compressor instability, rotating stall, because of the pressing industrial need to improve current design methods. The determination of the blade response during rotating stall is a difficult problem for which there is no reliable procedure. During rotating stall, the blades encounter the stall cells and the excitation depends on the number, size, exact shape and rotational speed of these cells. The long-term aim is to minimize the forced response due to rotating stall excitation by avoiding potential matches between the vibration modes and the rotating stall pattern characteristics. Accurate numerical simulations of core-compressor rotating stall phenomena require the modelling of a large number of bladerows using grids containing several tens of millions of points. The time-accurate unsteady-flow computations may need to be run for several engine revolutions for rotating stall to get initiated and many more before it is fully developed. The difficulty in rotating stall initiation arises from a lack of representation of the triggering disturbances which are inherently present in aeroengines. Since the numerical model represents a symmetric assembly, the only random mechanism for rotating stall initiation is provided by numerical round-off errors. In this work, rotating stall is initiated by introducing a small amount of geometric mistuning to the rotor blades. Another major obstacle in modelling flows near stall is the specification of appropriate upstream and downstream boundary conditions. Obtaining reliable boundary conditions for such flows can be very difficult. In the present study, the low-pressure compression (LPC) domain is placed upstream of the core compressor. With such an approach, only far field atmospheric boundary conditions are specified which are obtained from aircraft speed and altitude. A chocked variable-area nozzle, placed after the last compressor bladerow in the model, is used to impose boundary

  1. Computed structure of small benzene clusters

    NARCIS (Netherlands)

    van de Waal, B.W.

    1986-01-01

    The structures of small benzene clusters (C6H6)n, n = 2–7, have been calculated employing potential-energy minimization with respect to molecular translational and rotational coordinates, using exp-6-1 non-bonded atom-atom potential functions. The influence of the adopted point-charge model is

  2. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  3. Quantum mechanical study of elastic scattering and rotational excitation of CO by electrons

    Science.gov (United States)

    Onda, K.; Truhlar, D. G.

    1980-01-01

    Coupling calculations of differential, integral, and momentum transfer cross sections for pure elastic scattering and rotational excitation of CO by electron impact are reported. The calculations are based on a static charge distribution that has correct dipole and quadrupole moments, has cusps at the nuclei, and is augmented by an SCF treatment of charge polarization and a local approximation for exchange. The rotationally summed cross sections, with no adjustable parameters in the scattering calculation, are in reasonably good agreement with the experimental cross sections but are somewhat larger at small scattering angles.

  4. Nonlinear vibrations analysis of rotating drum-disk coupling structure

    Science.gov (United States)

    Chaofeng, Li; Boqing, Miao; Qiansheng, Tang; Chenyang, Xi; Bangchun, Wen

    2018-04-01

    A dynamic model of a coupled rotating drum-disk system with elastic support is developed in this paper. By considering the effects of centrifugal and Coriolis forces as well as rotation-induced hoop stress, the governing differential equation of the drum-disk is derived by Donnell's shell theory. The nonlinear amplitude-frequency characteristics of coupled structure are studied. The results indicate that the natural characteristics of the coupling structure are sensitive to the supporting stiffness of the disk, and the sensitive range is affected by rotating speeds. The circumferential wave numbers can affect the characteristics of the drum-disk structure. If the circumferential wave number n = 1 , the vibration response of the drum keeps a stable value under an unbalanced load of the disk, there is no coupling effect if n ≠ 1 . Under the excitation, the nonlinear hardening characteristics of the forward traveling wave are more evident than that of the backward traveling wave. Moreover, because of the coupling effect of the drum and the disk, the supporting stiffness of the disk has certain effect on the nonlinear characteristics of the forward and backward traveling waves. In addition, small length-radius and thickness-radius ratios have a significant effect on the nonlinear characteristics of the coupled structure, which means nonlinear shell theory should be adopted to design rotating drum's parameter for its specific structural parameters.

  5. Dissociating object-based from egocentric transformations in mental body rotation: effect of stimuli size.

    Science.gov (United States)

    Habacha, Hamdi; Moreau, David; Jarraya, Mohamed; Lejeune-Poutrain, Laure; Molinaro, Corinne

    2018-01-01

    The effect of stimuli size on the mental rotation of abstract objects has been extensively investigated, yet its effect on the mental rotation of bodily stimuli remains largely unexplored. Depending on the experimental design, mentally rotating bodily stimuli can elicit object-based transformations, relying mainly on visual processes, or egocentric transformations, which typically involve embodied motor processes. The present study included two mental body rotation tasks requiring either a same-different or a laterality judgment, designed to elicit object-based or egocentric transformations, respectively. Our findings revealed shorter response times for large-sized stimuli than for small-sized stimuli only for greater angular disparities, suggesting that the more unfamiliar the orientations of the bodily stimuli, the more stimuli size affected mental processing. Importantly, when comparing size transformation times, results revealed different patterns of size transformation times as a function of angular disparity between object-based and egocentric transformations. This indicates that mental size transformation and mental rotation proceed differently depending on the mental rotation strategy used. These findings are discussed with respect to the different spatial manipulations involved during object-based and egocentric transformations.

  6. Oscillatory-rotational processes in the Earth motion about the center of mass: Interpolation and forecast

    Science.gov (United States)

    Akulenko, L. D.; Klimov, D. M.; Markov, Yu. G.; Perepelkin, V. V.

    2012-11-01

    The celestial-mechanics approach (the spatial version of the problem for the Earth-Moon system in the field of gravity of the Sun) is used to construct a mathematical model of the Earth's rotational-oscillatory motions. The fundamental aspects of the processes of tidal inhomogeneity in the Earth rotation and the Earth's pole oscillations are studied. It is shown that the presence of the perturbing component of gravitational-tidal forces, which is orthogonal to the Moon's orbit plane, also allows one to distinguish short-period perturbations in the Moon's motion. The obtained model of rotational-oscillatory motions of the nonrigid Earth takes into account both the basic perturbations of large amplitudes and the more complicated small-scale properties of the motion due to the Moon short-period perturbations with combination frequencies. The astrometric data of the International Earth Rotation and Reference Systems Service (IERS) are used to perform numerical simulation (interpolation and forecast) of the Earth rotation parameters (ERP) on various time intervals.

  7. Thermocyclic behaviour of microstructurally modified EB-PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Schulz, U.; Fritscher, K.; Raetzer-Scheibe, H.-J.; Kaysser, W.A.; Peters, M.

    1997-01-01

    This paper focuses on the combined effects of substrate temperature and rotation during electron-beam physical vapor deposition (EB-PVD) on the columnar microstructure of yttria partially stabilized zirconia (YPSZ) thermal barrier coatings. Diameter and degree of ordering of the columns and the density of the coatings are sensitive to the processing parameters. Results are discussed in the frame of common structural zone models for PVD processes. The models are extended to consider the rotational effect. EB-PVD YPSZ TBCs of different column diameters were deposited on top of an EB-PVD NiCoCrAlY bondcoat on IN 100 superalloy test bars. The performance of the TBCs was investigated in a cyclic oxidation furnace test rig between 1100 C and 130 C and in a burner rig under hot gas corrosion conditions at a maximum temperature of 900 C. Results showed a correlation between cyclic lifetime and the various microstructures of the TBCs. Samples having a non-regular arrangement of columns performed best in both tests. (orig.)

  8. Rotated alphanumeric characters do not automatically activate frontoparietal areas subserving mental rotation

    DEFF Research Database (Denmark)

    Weiss, Michael M; Wolbers, Thomas; Peller, Martin

    2008-01-01

    Functional neuroimaging studies have identified a set of areas in the intraparietal sulcus and dorsal precentral cortex which show a linear increase in activity with the angle of rotation across a variety of mental rotation tasks. This linear increase in activity with angular disparity suggests t...... modulated by angular disparity during the stimulus categorization task. These results suggest that at least for alphanumerical characters, areas implicated in mental rotation will only be called into action if the task requires a rotational transformation....

  9. IMS IN SMES - REASONS, ADVANTAGES AND BARRIERS ON IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Dragan Rajković

    2008-09-01

    Full Text Available Appearance of a number of management systems with various and sometimes divergent demands, demands for revise of optimal strategy on implementation of these standards in small and medium-sized enterprises (SMEs and the attempt on their integration into integrated management system are suggested even more. Firstly question on choice and reasons for implementation of standards is raised. Management and employees expect benefits on the implementation and they pass and minimize the implementation barriers. Basic concept on integrated management system (IMS into SMEs and analyse on reasons, advantages and barriers at IMS implementation are presented in this paper.

  10. Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory

    Science.gov (United States)

    Zhang, C.; Yuan, H.; Tang, Z.; Quan, W.; Fang, J. C.

    2016-12-01

    Rotation measurement in an inertial frame is an important technology for modern advanced navigation systems and fundamental physics research. Inertial rotation measurement with atomic spin has demonstrated potential in both high-precision applications and small-volume low-cost devices. After rapid development in the last few decades, atomic spin gyroscopes are considered a promising competitor to current conventional gyroscopes—from rate-grade to strategic-grade applications. Although it has been more than a century since the discovery of the relationship between atomic spin and mechanical rotation by Einstein [Naturwissenschaften, 3(19) (1915)], research on the coupling between spin and rotation is still a focus point. The semi-classical Larmor precession model is usually adopted to describe atomic spin gyroscope measurement principles. More recently, the geometric phase theory has provided a different view of the rotation measurement mechanism via atomic spin. The theory has been used to describe a gyroscope based on the nuclear spin ensembles in diamond. A comprehensive understanding of inertial rotation measurement principles based on atomic spin would be helpful for future applications. This work reviews different atomic spin gyroscopes and their rotation measurement principles with a historical overlook. In addition, the spin-rotation coupling mechanism in the context of the quantum phase theory is presented. The geometric phase is assumed to be the origin of the measurable rotation signal from atomic spins. In conclusion, with a complete understanding of inertial rotation measurements using atomic spin and advances in techniques, wide application of high-performance atomic spin gyroscopes is expected in the near future.

  11. Rotating dryer

    International Nuclear Information System (INIS)

    Noe, C.

    1984-01-01

    Products to dry are introduced inside a rotating tube placed in an oven, the cross section of the tube is an arc of spiral. During clockwise rotation of the tube products are maintained inside and mixed, during anticlockwise products are removed. Application is made to drying of radioactive wastes [fr

  12. Rotating Wavepackets

    Science.gov (United States)

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  13. Thermocapillary instabilities in a laterally heated liquid bridge with end wall rotation

    Science.gov (United States)

    Kahouadji, L.; Houchens, B. C.; Witkowski, L. Martin

    2011-10-01

    The effect of rotation on the stability of thermocapillary driven flow in a laterally heated liquid bridge is studied numerically using the full-zone model of the floating-zone crystal growth technique. A small Prandtl number (0.02) fluid, relevant for semiconductor melts, is studied with an aspect ratio (height to diameter of the melt) equal to one. Buoyancy is neglected. A linear stability analysis of three-dimensional perturbations is performed and shows that for any ratio of angular velocities, a weak rotation rate has the surprising effect of destabilizing the base flow. By systematically varying the rotation rate and ratio of angular velocities, the critical threshold and azimuthal wave number of the most unstable mode is found over a wide range of this two parameter space. Depending on these parameters, the leading eigenmode is a wave propagating either in the positive or negative azimuthal direction, with kinetic energy typically localized close to one of the end walls. These results are of practical interest for industrial crystal growth applications, where rotation is often used to obtain higher quality crystals.

  14. Rotator cuff - self-care

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000358.htm Rotator cuff - self-care To use the sharing features on ... and shoulder exercises may help ease your symptoms. Rotator Cuff Problems Common rotator cuff problems include: Tendinitis , which ...

  15. Stellar dynamism. Activity and rotation of solar stars observed from the Kepler satellite

    International Nuclear Information System (INIS)

    Ceillier, Tugdual

    2015-01-01

    This thesis concerns the study of seismic solar-like stars' rotation and magnetic activity. We use data from the Kepler satellite to study the rotational history of these stars throughout their evolution. This allows to have a more complete picture of stellar rotation and magnetism. In the first part, we present the context of this PhD: astro-seismology, the seismic study of stars. We continue by describing the tool we developed to measure surface rotation of stars using photometric data from Kepler. We compare it to other methodologies used by the community and show that its efficiency is very high. In the second part, we apply this tool to around 500 main-sequence and sub-giant solar-like stars. We measure surface rotation periods and activity levels for 300 of them. We show that the measured periods and the ages from astro-seismology do not agree well with the standard period-age relationships and propose to modify these relationships for stars older than the Sun. We also use the surface rotation as a constraint to estimate the internal rotation of a small number of seismic targets. We demonstrate that these stars have, like the Sun, a very low differential rotation ratio. In the third part, we apply our surface rotation-measuring tool to the most extensive sample of red giants observed by Kepler, comprising more than 17,000 stars. We identify more than 360 fast rotating red giants and compare our detection rates with the ones predicted by theory to better understand the reasons for this rapid rotation. We also use stellar modelling to reproduce the internal rotation profile of a particular red giant. This allows us to emphasize how important implementing new angular momentum transport mechanisms in stellar evolution codes is. This work offers new results that are useful to a very wide community of stellar physicists. It also puts strong constraints on the evolution of solar-like stars' rotation and magnetic activity. (author) [fr

  16. Understanding small business engagement in workplace violence prevention programs.

    Science.gov (United States)

    Bruening, Rebecca A; Strazza, Karen; Nocera, Maryalice; Peek-Asa, Corinne; Casteel, Carri

    2015-01-01

    Worksite wellness, safety, and violence prevention programs have low penetration among small, independent businesses. This study examined barriers and strategies influencing small business participation in workplace violence prevention programs (WVPPs). A semistructured interview guide was used in 32 telephone interviews. The study took place at the University of North Carolina Injury Prevention Research Center. Participating were a purposive sample of 32 representatives of small business-serving organizations (e.g., business membership organizations, regulatory agencies, and economic development organizations) selected for their experience with small businesses. This study was designed to inform improved dissemination of Crime Free Business (CFB), a WVPP for small, independent retail businesses. Thematic qualitative data analysis was used to identify key barriers and strategies for promoting programs and services to small businesses. Three key factors that influence small business engagement emerged from the analysis: (1) small businesses' limited time and resources, (2) low salience of workplace violence, (3) influence of informal networks and source credibility. Identified strategies include designing low-cost and convenient programs, crafting effective messages, partnering with influential organizations and individuals, and conducting outreach through informal networks. Workplace violence prevention and public health practitioners may increase small business participation in programs by reducing time and resource demands, addressing small business concerns, enlisting support from influential individuals and groups, and emphasizing business benefits of participating in the program.

  17. Chronic Open Infective Lateral Malleolus Bursitis Management Using Local Rotational Flap

    Directory of Open Access Journals (Sweden)

    Yong-Beom Lee

    2017-01-01

    Full Text Available Background. Using a sinus tarsi rotational flap is an uncommon approach to treating chronic open infective lateral malleolus bursitis. Methods. We treated eight patients, including six males, using this approach. First, we debrided all the infected tissues and used a negative pressure wound closure system where needed. After acute infection had been controlled, the local rotational flap was used for cases where the wound could not be closed by a simple suture or bone exposure. The rotational flap was detached with a curved skin incision at the sinus tarsi next to the open wound and sutured to the defect, paying careful attention to the superficial peroneal nerve. The donor site was managed with a split-thickness skin graft. Results. The patients’ mean age was 74.1 years. Six patients had a wound after suppurative infection, but two patients had ulcer-type bursitis. Six patients demonstrated full flap healing, but two patients had venous congestion necrosis. Conclusion. A sinus tarsi rotational flap is a useful method to ensure healing and coverage of chronic open lateral malleolus bursitis, especially for small to medium wounds with cavity and bone exposure.

  18. Examining cotton in rotation with rice and cotton in rotation with other crops using natural experiment

    Science.gov (United States)

    Sun, Ling; Zhu, Zesheng

    2017-08-01

    This paper is to show the ability of remote sensing image analysis combined with statistical analysis to characterize the environmental risk assessment of cotton in rotation with rice and cotton in rotation with other crops in two ways: (1) description of rotation period of cotton in rotation with rice and cotton in rotation with other crops by the observational study or natural experiment; (2) analysis of rotation period calculation of cotton in rotation with rice and cotton in rotation with other crops. Natural experimental results show that this new method is very promising for determining crop rotation period for estimating regional averages of environmental risk. When it is applied to determining crop rotation period, two requested remote sensing images of regional crop are required at least.

  19. Jet Engine Bird Ingestion Simulations: Comparison of Rotating to Non-Rotating Fan Blades

    Science.gov (United States)

    Howard, Samuel A.; Hammer, Jeremiah T.; Carney, Kelly S.; Pereira, J. Michael

    2013-01-01

    Bird strike events in commercial airliners are a fairly common occurrence. According to data collected by the US Department of Agriculture, over 80,000 bird strikes were reported in the period 1990 to 2007 in the US alone (Ref. 1). As a result, bird ingestion is an important factor in aero engine design and FAA certification. When it comes to bird impacts on engine fan blades, the FAA requires full-scale bird ingestion tests on an engine running at full speed to pass certification requirements. These rotating tests are complex and very expensive. To reduce development costs associated with new materials for fan blades, it is desirable to develop more cost effective testing procedures than full-scale rotating engine tests for material evaluation. An impact test on a nonrotating single blade that captures most of the salient physics of the rotating test would go a long way towards enabling large numbers of evaluative material screening tests. NASA Glenn Research Center has been working to identify a static blade test procedure that would be effective at reproducing similar results as seen in rotating tests. The current effort compares analytical simulations of a bird strike on various non-rotating blades to a bird strike simulation on a rotating blade as a baseline case. Several different concepts for simulating the rotating loads on a non-rotating blade were analyzed with little success in duplicating the deformation results seen in the rotating case. The rotating blade behaves as if it were stiffer than the non-rotating blade resulting in less plastic deformation from a given bird impact. The key factor limiting the success of the non-rotating blade simulations is thought to be the effect of gyroscopics. Prior to this effort, it was anticipated the difficulty would be in matching the prestress in the blade due to centrifugal forces Additional work is needed to verify this assertion, and to determine if a static test procedure can simulate the gyroscopic effects in

  20. Rotating Stars in Relativity

    Directory of Open Access Journals (Sweden)

    Stergioulas Nikolaos

    2003-01-01

    Full Text Available Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on the equilibrium properties and on the nonaxisymmetric instabilities in f-modes and r-modes have been updated and several new sections have been added on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity.

  1. Quantal and thermal zero point motion formulae of barrier transmission probability

    International Nuclear Information System (INIS)

    Takigawa, N.; Alhassid, Y.; Balantekin, A.B.

    1992-01-01

    A Green's function method is developed to derive quantal zero point motion formulae for the barrier transmission probability in heavy ion fusion reactions corresponding to various nuclear intrinsic degrees of freedom. In order to apply to the decay of a hot nucleus, the formulae are then generalized to the case where the intrinsic degrees of freedom are in thermal equilibrium with a heat bath. A thermal zero point motion formula for vibrational coupling previously obtained through the use of influence functional methods naturally follows, and the effects of rotational coupling are found to be independent of temperature if the deformation is rigid

  2. Precession of a rapidly rotating cylinder flow: traverse through resonance

    Science.gov (United States)

    Lopez, Juan; Marques, Francisco

    2014-11-01

    The flow in a rapidly rotating cylinder that is titled and also rotating around another axis can undergo sudden transitions to turbulence. Experimental observations of this have been associated with triadic resonances. The experimental and theoretical results are well-established in the literature, but there remains a lack of understanding of the physical mechanisms at play in the sudden transition from laminar to turbulent flow with very small variations in the governing parameters. Here, we present direct numerical simulations of a traverse in parameter space through an isolated resonance, and describe in detail the bifurcations involved in the sudden transition. U.S. National Science Foundation Grant CBET-1336410 and Spanish Ministry of Education and Science Grant (with FEDER funds) FIS2013-40880.

  3. Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data

    Science.gov (United States)

    Gibbons, T. J.; Öztürk, E.; Sims, N. D.

    2018-01-01

    Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.

  4. Efficient Analysis of Structures with Rotatable Elements Using Model Order Reduction

    Directory of Open Access Journals (Sweden)

    G. Fotyga

    2016-04-01

    Full Text Available This paper presents a novel full-wave technique which allows for a fast 3D finite element analysis of waveguide structures containing rotatable tuning elements of arbitrary shapes. Rotation of these elements changes the resonant frequencies of the structure, which can be used in the tuning process to obtain the S-characteristics desired for the device. For fast commutations of the response as the tuning elements are rotated, the 3D finite element method is supported by multilevel model-order reduction, orthogonal projection at the boundaries of macromodels and the operation called macromodels cloning. All the time-consuming steps are performed only once in the preparatory stage. In the tuning stage, only small parts of the domain are updated, by means of a special meshing technique. In effect, the tuning process is performed extremely rapidly. The results of the numerical experiments confirm the efficiency and validity of the proposed method.

  5. Validity of the lowest-Landau-level approximation for rotating Bose gases

    International Nuclear Information System (INIS)

    Morris, Alexis G.; Feder, David L.

    2006-01-01

    The energy spectrum for an ultracold rotating Bose gas in a harmonic trap is calculated exactly for small systems, allowing the atoms to occupy several Landau levels. Two vortexlike states and two strongly correlated states (the Pfaffian and Laughlin) are considered in detail. In particular, their critical rotation frequencies and energy gaps are determined as a function of particle number, interaction strength, and the number of Landau levels occupied (up to three). For the vortexlike states, the lowest-Landau-level (LLL) approximation is justified only if the interaction strength decreases with the number of particles; nevertheless, the constant of proportionality increases rapidly with the angular momentum per particle. For the strongly correlated states, however, the interaction strength can increase with particle number without violating the LLL condition. The results suggest that, in large systems, the Pfaffian and Laughlin states might be stabilized at rotation frequencies below the centrifugal limit for sufficiently large interaction strengths, with energy gaps a significant fraction of the trap energy

  6. Current-induced changes of migration energy barriers in graphene and carbon nanotubes

    Science.gov (United States)

    Obodo, J. T.; Rungger, I.; Sanvito, S.; Schwingenschlögl, U.

    2016-05-01

    An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative.An electron current can move atoms in a nanoscale device with important consequences for the device operation and breakdown. We perform first principles calculations aimed at evaluating the possibility of changing the energy barriers for atom migration in carbon-based systems. In particular, we consider the migration of adatoms and defects in graphene and carbon nanotubes. Although the current-induced forces are large for both the systems, in graphene the force component along the migration path is small and therefore the barrier height is little affected by the current flow. In contrast, the same barrier is significantly reduced in carbon nanotubes as the current increases. Our work also provides a real-system numerical demonstration that current-induced forces within density functional theory are non-conservative. Electronic supplementary information (ESI) available. See DOI: 10.1039/C6NR00534A

  7. Fast MR arthrography using VIBE sequences to evaluate the rotator cuff

    Energy Technology Data Exchange (ETDEWEB)

    Vandevenne, Jan E. [Ziekenhuizen Oost-Limburg, Department of Radiology, Genk (Belgium); Universitair Ziekenhuis Antwerpen, University of Antwerp, Department of Radiology, Edegem (Belgium); Vanhoenacker, Filip; Parizel, Paul M. [Universitair Ziekenhuis Antwerpen, University of Antwerp, Department of Radiology, Edegem (Belgium); Mahachie John, Jestinah M. [University of Hasselt, Centre for Statistics, Diepenbeek (Belgium); Gelin, Geert [Ziekenhuizen Oost-Limburg, Department of Radiology, Genk (Belgium)

    2009-07-15

    The purpose of this paper was to evaluate if short volumetric interpolated breath-hold examination (VIBE) sequences can be used as a substitute for T1-weighted with fat saturation (T1-FS) sequences when performing magnetic resonance (MR) arthrography to diagnose rotator cuff tears. Eighty-two patients underwent direct MR arthrography of the shoulder joint using VIBE (acquisition time of 13 s) and T1-FS (acquisition time of 5 min) sequences in the axial and paracoronal plane on a 1.0-T MR unit. Two radiologists scored rotator cuff tendons on VIBE and T1-FS images separately as normal, small/large partial thickness and full thickness tears with or without geyser sign. T1-FS sequences were considered the gold standard. Surgical correlation was available in a small sample. Sensitivity, specificity, and positive and negative predictive values of VIBE were greater than 92% for large articular-sided partial thickness and full thickness tears. For detecting fraying and articular-sided small partial thickness tears, these parameters were 55%, 94%, 94%, and 57%, respectively. The simple kappa value was 0.76, and the weighted kappa value was 0.86 for agreement between T1-FS and VIBE scores. All large partial and full thickness tears at surgery were correctly diagnosed using VIBE or T1-FS MR images. Fast MR arthrography of the shoulder joint using VIBE sequences showed good concordance with the classically used T1-FS sequences for the appearance of the rotator cuff, in particular for large articular-sided partial thickness tears and for full thickness tears. Due to its very short acquisition time, VIBE may be especially useful when performing MR arthrography in claustrophobic patients or patients with a painful shoulder. (orig.)

  8. Magnetostrictive patch sensor system for battery-less real-time measurement of torsional vibrations of rotating shafts

    Science.gov (United States)

    Lee, Jun Kyu; Seung, Hong Min; Park, Chung Il; Lee, Joo Kyung; Lim, Do Hyeong; Kim, Yoon Young

    2018-02-01

    Real-time uninterrupted measurement for torsional vibrations of rotating shafts is crucial for permanent health monitoring. So far, strain gauge systems with telemetry units have been used for real-time monitoring. However, they have a critical disadvantage in that shaft operations must be stopped intermittently to replace telemetry unit batteries. To find an alternative method to carry out battery-less real-time measurement for torsional vibrations of rotating shafts, a magnetostrictive patch sensor system was proposed in the present study. Since the proposed sensor does not use any powered telemetry system, no battery is needed and thus there is no need to stop rotating shafts for battery replacement. The proposed sensor consists of magnetostrictive patches and small magnets tightly bonded onto a shaft. A solenoid coil is placed around the shaft to convert magnetostrictive patch deformation by shaft torsional vibration into electric voltage output. For sensor design and characterization, investigations were performed in a laboratory on relatively small-sized stationary solid shaft. A magnetostrictive patch sensor system was then designed and installed on a large rotating propulsion shaft of an LPG carrier ship in operation. Vibration signals were measured using the proposed sensor system and compared to those measured with a telemetry unit-equipped strain gauge system.

  9. Faraday rotation measurements on JET, and the change in the safety factor profile during a sawtooth collapse

    International Nuclear Information System (INIS)

    O'Rourke, J.; Lazzaro, E.

    1990-01-01

    Abel-inversion of Faraday rotation measurements on JET has shown that in the current flat-top of sawtoothing discharges the axial safety factor, q o , remains significantly below unity (0.75±0.15) throughout the sawtooth period. In this paper we address two limitations of the Abel-inversion technique, namely the dependence of the results on the assumed flux surface geometry (especially the elongation of the flux surfaces near the magnetic axis, κ o ) and their lack of sensitivity to small changes in the poloidal magnetic field. Assumptions about the flux surface geometry have been verified by comparing Faraday rotation measurements along nearly orthogonal chords, and by a self-consistent identification of the plasma equilibirum. The sensitivity to small changes in the poloidal field, such as those which occur during sawtooth instabilities, has been increased by Abel-inverting the changes in the Faraday rotation signals rather than the signals themselves. (author) 2 refs., 3 figs

  10. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples

    DEFF Research Database (Denmark)

    Chiper, Alina Silvia; Chen, Weifeng; Mejlholm, Ole

    2011-01-01

    The generation and evaluation of a dielectric barrier discharge produced inside a closed package made of a commercially available packaging film and filled with gas mixtures of Ar/CO2 at atmospheric pressure is reported. The discharge parameters were analysed by electrical measurements and optical...... emission spectroscopy in two modes of operation: trapped gas atmosphere and flowing gas atmosphere. Gas temperature was estimated using the OH(A–X) emission spectrum and the rotational temperature reached a saturation level after a few minutes of plasma running. The rotational temperature was almost three...

  11. Generation of large-scale vorticity in rotating stratified turbulence with inhomogeneous helicity: mean-field theory

    Science.gov (United States)

    Kleeorin, N.

    2018-06-01

    We discuss a mean-field theory of the generation of large-scale vorticity in a rotating density stratified developed turbulence with inhomogeneous kinetic helicity. We show that the large-scale non-uniform flow is produced due to either a combined action of a density stratified rotating turbulence and uniform kinetic helicity or a combined effect of a rotating incompressible turbulence and inhomogeneous kinetic helicity. These effects result in the formation of a large-scale shear, and in turn its interaction with the small-scale turbulence causes an excitation of the large-scale instability (known as a vorticity dynamo) due to a combined effect of the large-scale shear and Reynolds stress-induced generation of the mean vorticity. The latter is due to the effect of large-scale shear on the Reynolds stress. A fast rotation suppresses this large-scale instability.

  12. Deformation energy of a toroidal nucleus and plane fragmentation barriers

    International Nuclear Information System (INIS)

    Fauchard, C.; Royer, G.

    1996-01-01

    The path leading to pumpkin-like configurations and toroidal shapes is investigated using a one-parameter shape sequence. The deformation energy is determined within the analytical expressions obtained for the various shape-dependent functions and the generalized rotating liquid drop model taking into account the proximity energy and the temperature. With increasing mass and angular momentum, a potential well appears in the toroidal shape path. For the heaviest systems, the pocket is large and locally favourable with respect to the plane fragmentation barriers which might allow the formation of evanescent toroidal systems which would rapidly decay in several fragments to minimize the surface tension. (orig.)

  13. Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII-D high performance discharges

    International Nuclear Information System (INIS)

    Lao, L.L.; Burrell, K.H.; Casper, T.S.

    1996-08-01

    The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-η i mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the η i mode suggests that the large core E x B flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low Β N < 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity

  14. MaRGEE: Move and Rotate Google Earth Elements

    Science.gov (United States)

    Dordevic, Mladen M.; Whitmeyer, Steven J.

    2015-12-01

    Google Earth is recognized as a highly effective visualization tool for geospatial information. However, there remain serious limitations that have hindered its acceptance as a tool for research and education in the geosciences. One significant limitation is the inability to translate or rotate geometrical elements on the Google Earth virtual globe. Here we present a new JavaScript web application to "Move and Rotate Google Earth Elements" (MaRGEE). MaRGEE includes tools to simplify, translate, and rotate elements, add intermediate steps to a transposition, and batch process multiple transpositions. The transposition algorithm uses spherical geometry calculations, such as the haversine formula, to accurately reposition groups of points, paths, and polygons on the Google Earth globe without distortion. Due to the imminent deprecation of the Google Earth API and browser plugin, MaRGEE uses a Google Maps interface to facilitate and illustrate the transpositions. However, the inherent spatial distortions that result from the Google Maps Web Mercator projection are not apparent once the transposed elements are saved as a KML file and opened in Google Earth. Potential applications of the MaRGEE toolkit include tectonic reconstructions, the movements of glaciers or thrust sheets, and time-based animations of other large- and small-scale geologic processes.

  15. Nitrogen excess in slowly-rotating beta Cephei stars: deep mixing or diffusion?

    NARCIS (Netherlands)

    Morel, T.; Butler, K.; Aerts, C.C.; Neiner, C.; Briquet, M.

    2007-01-01

    We present the results of an NLTE abundance study of a small sample of beta Cephei stars, which point to the existence of a population of slowly-rotating B-type pulsators exhibiting a significant amount of nitrogen-enriched material at their surface. Although the origin of this nitrogen excess

  16. Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Chrystal, C. [University of California San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Burrell, K. H.; Staebler, G. M.; Kinsey, J. E.; Lao, L. L.; Grassie, J. S. de [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Grierson, B. A.; Solomon, W. M.; Wang, W. X. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Rhodes, T. L.; Schmitz, L. [University of California Los Angeles, P.O. Box 957099, Los Angeles, California 90095-7099 (United States); Mordijck, S. [College of William and Mary, P.O. Box 8795, Williamsburg, Virginia 23187-8795 (United States); Meneghini, O. [Oak Ridge Associated Universities, 1299 Bethel Valley Rd, Bldg SC-200, Oak Ridge, Tennessee 37830 (United States)

    2014-07-15

    Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of the E{sup →}×B{sup →} shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain.

  17. Testing neoclassical and turbulent effects on poloidal rotation in the core of DIII-D

    International Nuclear Information System (INIS)

    Chrystal, C.; Burrell, K. H.; Staebler, G. M.; Kinsey, J. E.; Lao, L. L.; Grassie, J. S. de; Grierson, B. A.; Solomon, W. M.; Wang, W. X.; Rhodes, T. L.; Schmitz, L.; Mordijck, S.; Meneghini, O.

    2014-01-01

    Experimental tests of ion poloidal rotation theories have been performed on DIII-D using a novel impurity poloidal rotation diagnostic. These tests show significant disagreements with theoretical predictions in various conditions, including L-mode plasmas with internal transport barriers (ITB), H-mode plasmas, and QH-mode plasmas. The theories tested include standard neoclassical theory, turbulence driven Reynolds stress, and fast-ion friction on the thermal ions. Poloidal rotation is observed to spin up at the formation of an ITB and makes a significant contribution to the measurement of the E → ×B → shear that forms the ITB. In ITB cases, neoclassical theory agrees quantitatively with the experimental measurements only in the steep gradient region. Significant quantitative disagreement with neoclassical predictions is seen in the cores of ITB, QH-, and H-mode plasmas, demonstrating that neoclassical theory is an incomplete description of poloidal rotation. The addition of turbulence driven Reynolds stress does not remedy this disagreement; linear stability calculations and Doppler backscattering measurements show that disagreement increases as turbulence levels decline. Furthermore, the effect of fast-ion friction, by itself, does not lead to improved agreement; in QH-mode plasmas, neoclassical predictions are closest to experimental results in plasmas with the largest fast ion friction. Predictions from a new model that combines all three effects show somewhat better agreement in the H-mode case, but discrepancies well outside the experimental error bars remain

  18. Parameterization of rotational spectra

    International Nuclear Information System (INIS)

    Zhou Chunmei; Liu Tong

    1992-01-01

    The rotational spectra of the strongly deformed nuclei with low rotational frequencies and weak band mixture are analyzed. The strongly deformed nuclei are commonly encountered in the rare-earth region (e. g., 150 220). A lot of rotational band knowledge are presented

  19. Effect of joint mechanism on vehicle redirectional capability of water-filled road safety barrier systems.

    Science.gov (United States)

    Thiyahuddin, M I; Thambiratnam, D P; Gu, Y T

    2014-10-01

    Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular "wall" representative of a 30m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier "wall" and the vehicle was obtained and the results show that a rotational stiffness of 3000kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Units of rotational information

    Science.gov (United States)

    Yang, Yuxiang; Chiribella, Giulio; Hu, Qinheping

    2017-12-01

    Entanglement in angular momentum degrees of freedom is a precious resource for quantum metrology and control. Here we study the conversions of this resource, focusing on Bell pairs of spin-J particles, where one particle is used to probe unknown rotations and the other particle is used as reference. When a large number of pairs are given, we show that every rotated spin-J Bell state can be reversibly converted into an equivalent number of rotated spin one-half Bell states, at a rate determined by the quantum Fisher information. This result provides the foundation for the definition of an elementary unit of information about rotations in space, which we call the Cartesian refbit. In the finite copy scenario, we design machines that approximately break down Bell states of higher spins into Cartesian refbits, as well as machines that approximately implement the inverse process. In addition, we establish a quantitative link between the conversion of Bell states and the simulation of unitary gates, showing that the fidelity of probabilistic state conversion provides upper and lower bounds on the fidelity of deterministic gate simulation. The result holds not only for rotation gates, but also to all sets of gates that form finite-dimensional representations of compact groups. For rotation gates, we show how rotations on a system of given spin can simulate rotations on a system of different spin.

  1. 1: Mass asymmetric fission barriers for 98Mo; 2: Synthesis and characterization of actinide-specific chelating

    International Nuclear Information System (INIS)

    Veeck, A.C.; Lawrence Livermore National Lab., CA; Lawrence Berkeley National Lab., CA

    1996-08-01

    Excitation functions have been measured for complex fragment emission from the compound nucleus 98 Mo, produced by the reaction of 86 Kr with 12 C. Mass asymmetric fission barriers have been obtained by fitting the excitation functions with a transition state formalism. The extracted barriers are ∼ 5.7 MeV higher, on average, than the calculations of the Rotating Finite Range Model (RFRM). These data clearly show an isospin dependence of the conditional barriers when compared with the extracted barriers from 90 Mo and 94 Mo. Eleven different liquid/liquid extractants were synthesized based upon the chelating moieties 3,2-HOPO and 3,4-HOPO; additionally, two liquid/liquid extractants based upon the 1,2-HOPO chelating moiety were obtained for extraction studies. The Pu(IV) extractions, quite surprisingly, yielded results that were very different from the Fe(III) extractions. The first trend remained the same: the 1,2-HOPOs were the best extractants, followed closely by the 3,2-HOPOs, followed by the 3,4-HOPOs; but in these Pu(IV) extractions the 3,4-HOPOs performed much better than in the Fe(III) extractions. 129 refs

  2. Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height

    International Nuclear Information System (INIS)

    Leal, F F; Ferreira, S C; Ferreira, S O

    2011-01-01

    The formation of mounded surfaces in epitaxial growth is attributed to the presence of barriers against interlayer diffusion in the terrace edges, known as Ehrlich-Schwoebel (ES) barriers. We investigate a model for epitaxial growth using an ES barrier explicitly dependent on the step height. Our model has an intrinsic topological step barrier even in the absence of an explicit ES barrier. We show that mounded morphologies can be obtained even for a small barrier while a self-affine growth, consistent with the Villain-Lai-Das Sarma equation, is observed in the absence of an explicit step barrier. The mounded surfaces are described by a super-roughness dynamical scaling characterized by locally smooth (facetted) surfaces and a global roughness exponent α > 1. The thin film limit is featured by surfaces with self-assembled three-dimensional structures having an aspect ratio (height/width) that may increase or decrease with temperature depending on the strength of the step barrier. (fast track communication)

  3. Rotating reactors : a review

    NARCIS (Netherlands)

    Visscher, F.; Schaaf, van der J.; Nijhuis, T.A.; Schouten, J.C.

    2013-01-01

    This review-perspective paper describes the current state-of-the-art in the field of rotating reactors. The paper has a focus on rotating reactor technology with applications at lab scale, pilot scale and industrial scale. Rotating reactors are classified and discussed according to their geometry:

  4. The link between the baryonic mass distribution and the rotation curve shape

    Science.gov (United States)

    Swaters, R. A.; Sancisi, R.; van der Hulst, J. M.; van Albada, T. S.

    2012-09-01

    The observed rotation curves of disc galaxies, ranging from late-type dwarf galaxies to early-type spirals, can be fitted remarkably well simply by scaling up the contributions of the stellar and H I discs. This 'baryonic scaling model' can explain the full breadth of observed rotation curves with only two free parameters. For a small fraction of galaxies, in particular early-type spiral galaxies, H I scaling appears to fail in the outer parts, possibly due to observational effects or ionization of H I. The overall success of the baryonic scaling model suggests that the well-known global coupling between the baryonic mass of a galaxy and its rotation velocity (known as the baryonic Tully-Fisher relation) applies at a more local level as well, and it seems to imply a link between the baryonic mass distribution and the distribution of total mass (including dark matter).

  5. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    Science.gov (United States)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  6. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Bahre, H; Böke, M; Winter, J; Bahroun, K; Behm, H; Hopmann, Ch; Steves, S; Awakowicz, P

    2013-01-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered. (paper)

  7. Rotational Spectrum of 1,1-Difluoroethane: Internal Rotation Analysis and Structure

    Science.gov (United States)

    Villamanan, R. M.; Chen, W. D.; Wlodarczak, G.; Demaison, J.; Lesarri, A. G.; Lopez, J. C.; Alonso, J. L.

    1995-05-01

    The rotational spectrum of CH3CHF2 in its ground state was measured up to 653 GHz. Accurate rotational and centrifugal distortion constants were determined. The internal rotation splittings were analyzed using the internal axis method. An ab initio structure has been calculated and a near-equilibrium structure has been estimated using offsets derived empirically. This structure was compared to an experimental r0 structure. The four lowest excited states (including the methyl torsion) have also been assigned.

  8. Virtual couch shift (VCS): accounting for patient translation and rotation by online IMRT re-optimization

    International Nuclear Information System (INIS)

    Bol, G H; Lagendijk, J J W; Raaymakers, B W

    2013-01-01

    When delivering conventional intensity modulated radiotherapy (IMRT), discrepancies between the pre-treatment CT/MRI/PET based patient geometry and the daily patient geometry are minimized by performing couch translations and/or small rotations. However, full compensation of, in particular, rotations is usually not possible. In this paper, we introduce an online ‘virtual couch shift (VCS)’: we translate and/or rotate the pre-treatment dose distribution to compensate for the changes in patient anatomy and generate a new plan which delivers the transformed dose distribution automatically. We show for a phantom and a cervical cancer patient case that VCS accounts for both translations and large rotations equally well in terms of DVH results and 2%/2 mm γ analyses and when the various aspects of the clinical workflow can be implemented successfully, VCS can potentially outperform physical couch translations and/or rotations. This work is performed in the context of our hybrid 1.5 T MRI linear accelerator, which can provide translations and rotations but also deformations of the anatomy. The VCS is the first step toward compensating all of these anatomical changes by online re-optimization of the IMRT dose distribution. (paper)

  9. Using rotating liquid bridges as accelerometers

    Energy Technology Data Exchange (ETDEWEB)

    Montanero, J.M. [Universidad de Extremadura, Badajoz (Spain). Dept. de Electronica e Ingenieria Electromecanica; Cabezas, G.; Acero, J.; Zayas, F.

    1999-07-01

    Liquid bridges have recently been proposed as fluid accelerometers that could be used to measure very small inertial forces under microgravity conditions [Meseguer et al., microgravity sci. technol. IX/2 (1996)]. The essential idea is to infer the values of such inertial forces from the liquid bridge interface contour, whose shape obviously depends on the values of such forces (apart from the bridge volume and the geometry of the supporting disks). Following a similar procedure, in this paper we explore the use of rotating axisymmetric liquid bridges to measure the residual axial gravity and the rotation rate of the liquid bridge regarded as a solid body. In light off the difficulties involved in performing experiments on Earth, the role of empirical data is played by an accurate numerical solution of the Young-Laplace equation. The values of both the axial gravity and angular speed are obtained by fitting the approximate analytical expressions derived in this paper to the numerical solution of the Young-Laplace equation. The comparison between the predicted and actual values of the variables of interest shows a satisfactory agreement, supporting the suitability of the procedure. (orig.)

  10. Rotational dynamics of C60 in Na2RbC60

    International Nuclear Information System (INIS)

    Christides, C.; Prassides, K.; Neumann, D.A.; Copley, J.R.D.; Mizuki, J.; Tanigaki, K.; Hirosawa, I.; Ebbesen, T.W.

    1993-01-01

    We have measured the low-energy neutron inelastic-scattering (NIS) spectra of superconducting Na 2 RbC 60 in the temperature range 50-350 K. Well-defined librational peaks are observed at 50 K at 2.83(17) meV (FWHM = 1.7(5) meV). They soften and broaden with increasing temperature. Their behaviour mimics that found in solid C 60 and differs markedly from K 3 C 60 . The rotational barrier for C 60 reorientations in Na 2 RbC 60 is somewhat higher than in pristine C 60 and approximately half as large as in K 3 C 60 . An order-disorder transition is anticipated at a temperature higher than that found in C 60 . (orig.)

  11. New microbleed after blood-brain barrier leakage in intracerebral haemorrhage

    NARCIS (Netherlands)

    Nieuwenhuizen, K.M. van; Hendrikse, J.; Klijn, C.J.M.

    2017-01-01

    Cerebral microbleeds are increasingly recognised as biomarkers of small vessel disease. Several preclinical and clinical studies have suggested that chronic disruption of the blood-brain barrier is one of the mechanisms for the development of cerebral microbleeds.A 51-year-old man experienced two

  12. New microbleed after blood-brain barrier leakage in intracerebral haemorrhage

    NARCIS (Netherlands)

    van Nieuwenhuizen, Koen M; Hendrikse, Jeroen; Klijn, Catharina J M

    Cerebral microbleeds are increasingly recognised as biomarkers of small vessel disease. Several preclinical and clinical studies have suggested that chronic disruption of the blood-brain barrier is one of the mechanisms for the development of cerebral microbleeds.A 51-year-old man experienced two

  13. Analysis of Rotation and Transport Data in C-Mod ITB Plasmas

    Science.gov (United States)

    Fiore, C. L.; Rice, J. E.; Reinke, M. L.; Podpaly, Y.; Bespamyatnov, I. O.; Rowan, W. L.

    2009-11-01

    Internal transport barriers (ITBs) spontaneously form near the half radius of Alcator C-Mod plasmas when the EDA H-mode is sustained for several energy confinement times in either off-axis ICRF heated discharges or in purely ohmic heated plasmas. These plasmas exhibit strongly peaked density and pressure profiles, static or peaking temperature profiles, peaking impurity density profiles, and thermal transport coefficients that approach neoclassical values in the core. It has long been observed that the intrinsic central plasma rotation that is strongly co-current following the H-mode transition slows and often reverses as the density peaks as the ITB forms. Recent spatial measurements demonstrate that the rotation profile develops a well in the core region that decreases continuously as central density rises while the value outside of the core remains strongly co-current. This results in the formation of a steep potential gradient/strong electric field at the location of the foot of the ITB density profile. The resulting E X B shearing rate is also quite significant at the foot. These analyses and the implications for plasma transport and stability will be presented.

  14. Smart parking barrier

    KAUST Repository

    Alharbi, Abdulrazaq M.

    2016-05-06

    Various methods and systems are provided for smart parking barriers. In one example, among others, a smart parking barrier system includes a movable parking barrier located at one end of a parking space, a barrier drive configured to control positioning of the movable parking barrier, and a parking controller configured to initiate movement of the parking barrier, via the barrier drive. The movable parking barrier can be positioned between a first position that restricts access to the parking space and a second position that allows access to the parking space. The parking controller can initiate movement of the movable parking barrier in response to a positive identification of an individual allowed to use the parking space. The parking controller can identify the individual through, e.g., a RFID tag, a mobile device (e.g., a remote control, smartphone, tablet, etc.), an access card, biometric information, or other appropriate identifier.

  15. Review of the Usefulness of Various Rotational Seismometers with Laboratory Results of Fibre-Optic Ones Tested for Engineering Applications

    Directory of Open Access Journals (Sweden)

    Leszek R. Jaroszewicz

    2016-12-01

    Full Text Available Starting with descriptions of rotational seismology, areas of interest and historical field measurements, the fundamental requirements for rotational seismometers for seismological and engineering application are formulated. On the above basis, a review of all existing rotational seismometers is presented with a description of the principles of their operation as well as possibilities to fulfill formulated requirements. This review includes mechanical, acoustical, electrochemical and optical devices and shows that the last of these types are the most promising. It is shown that optical rotational seismometer based on the ring-laser gyroscope concept is the best for seismological applications, whereas systems based on fiber-optic gyroscopes demonstrate parameters which are also required for engineering applications. Laboratory results of the Fibre-Optic System for Rotational Events & Phenomena Monitoring using a small 1-D shaking table modified to generate rotational excitations are presented. The harmonic and time-history tests demonstrate its usefulness for recording rotational motions with rates up to 0.25 rad/s.

  16. Surface barrier research at the Hanford Site

    International Nuclear Information System (INIS)

    Gee, G.W.; Ward, A.L.; Fayer, M.J.

    1997-01-01

    At the DOE Hanford Site, a field-scale prototype surface barrier was constructed in 1994 over an existing waste site as a part of a CERCLA treatability test. The above-grade barrier consists of a fine-soil layer overlying coarse layers of sands, gravels, basalt rock (riprap), and a low permeability asphalt layer. Two sideslope configurations, clean-fill gravel on a 10:1 slope and basalt riprap on a 2:1 slope, were built and are being tested. Design considerations included: constructability; drainage and water balance monitoring, wind and water erosion control and monitoring; surface revegetation and biotic intrusion; subsidence and sideslope stability, and durability of the asphalt layer. The barrier is currently in the final year of a three-year test designed to answer specific questions related to stability and long-term performance. One half of the barrier is irrigated such that the total water applied, including precipitation, is 480 mm/yr (three times the long-term annual average). Each year for the past two years, an extreme precipitation event (71 mm in 8 hr) representing a 1,000-yr return storm was applied in late March, when soil water storage was at a maximum. While the protective sideslopes have drained significant amounts of water, the soil cover (2-m of silt-loam soil overlying coarse sand and rock) has never drained. During the past year there was no measurable surface runoff or wind erosion. This is attributed to extensive revegetation of the surface. In addition, the barrier elevation has shown a small increase of 2 to 3 cm that is attributed to a combination of root proliferation and freeze/thaw activity. Testing will continue through September 1997. Performance data from the prototype barrier will be used by DOE in site-closure decisions at Hanford

  17. Barriers to Electronic Commerce A doption in Small and M edium E nterprises: A C ritical L iterature R eview

    OpenAIRE

    Chitura T; Mupemhi S; Dube T; Bolongkikit J

    2008-01-01

    This study is attempting to determine if the barriers reported in early e-commerce researches differ from those found in recent e-commerce studies as well as exploring if the resultant barrier groupings created from e - commerce barriers are dissimilar. To achieve our research’s aim, an extensive literature review was conducted based on what we believe to be representative sample of some o f the most cited pieces of research on this topic. The study concludes that though ...

  18. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  19. NMR studies on 15N-labeled creatine (CR), creatinine (CRN), phosphocreatine (PCR), and phosphocreatinine (PCRN), and on barriers to rotation in creatine kinase-bound creatine in the enzymatic reaction

    International Nuclear Information System (INIS)

    Kenyon, G.L.; Reddick, R.E.

    1986-01-01

    Recently, the authors have synthesized 15 N-2-Cr, 15 N-3-Crn, 15 N-2-Crn, 15 N-3-PCrn, 15 N-3-PCr, and 15 N-2-PCr. 1 H, 15 N, 31 P NMR data show that Crn protonates exclusively at the non-methylated ring nitrogen, confirm that PCrn is phosphorylated at the exocyclic nitrogen, and demonstrate that the 31 P- 15 N one-bond coupling constant in 15 N-3-PCr is 18 Hz, not 3 Hz as previously reported by Brindle, K.M., Porteous, R. and Radda, G.K.. The authors have found that creatine kinase is capable of catalyzing the 14 N/ 15 N positional isotope exchange of 3- 15 N-PCr in the presence of MgADP, but not in its absence. Further, the exchange does not take place when labeled PCr is resynthesized exclusively from the ternary complex E X Cr X MgATP as opposed to either E X Cr or free Cr. This suggests that the enzyme both imparts an additional rotational barrier to creatine in the complex and catalyzes the transfer of phosphoryl group with essentially complete regiospecificity

  20. Na+/K+-ATPase α1 identified as an abundant protein in the blood-labyrinth barrier that plays an essential role in the barrier integrity.

    Directory of Open Access Journals (Sweden)

    Yue Yang

    2011-01-01

    Full Text Available The endothelial-blood/tissue barrier is critical for maintaining tissue homeostasis. The ear harbors a unique endothelial-blood/tissue barrier which we term "blood-labyrinth-barrier". This barrier is critical for maintaining inner ear homeostasis. Disruption of the blood-labyrinth-barrier is closely associated with a number of hearing disorders. Many proteins of the blood-brain-barrier and blood-retinal-barrier have been identified, leading to significant advances in understanding their tissue specific functions. In contrast, capillaries in the ear are small in volume and anatomically complex. This presents a challenge for protein analysis studies, which has resulted in limited knowledge of the molecular and functional components of the blood-labyrinth-barrier. In this study, we developed a novel method for isolation of the stria vascularis capillary from CBA/CaJ mouse cochlea and provided the first database of protein components in the blood-labyrinth barrier as well as evidence that the interaction of Na(+/K(+-ATPase α1 (ATP1A1 with protein kinase C eta (PKCη and occludin is one of the mechanisms of loud sound-induced vascular permeability increase.Using a mass-spectrometry, shotgun-proteomics approach combined with a novel "sandwich-dissociation" method, more than 600 proteins from isolated stria vascularis capillaries were identified from adult CBA/CaJ mouse cochlea. The ion transporter ATP1A1 was the most abundant protein in the blood-labyrinth barrier. Pharmacological inhibition of ATP1A1 activity resulted in hyperphosphorylation of tight junction proteins such as occludin which increased the blood-labyrinth-barrier permeability. PKCη directly interacted with ATP1A1 and was an essential mediator of ATP1A1-initiated occludin phosphorylation. Moreover, this identified signaling pathway was involved in the breakdown of the blood-labyrinth-barrier resulting from loud sound trauma.The results presented here provide a novel method for

  1. On Job Rotation

    OpenAIRE

    Metin M. Cosgel; Thomas J. Miceli

    1998-01-01

    A fundamental principle of economics with which Adam Smith begins The Wealth of Nations is the division of labor. Some firms, however, have been pursuing a practice called job rotation, which assigns each worker not to a single and specific task but to a set of several tasks among which he or she rotates with some frequency. We examine the practice of job rotation as a serious alternative to specialization, with three objectives. The first is to consider current and historical examples of job...

  2. Role of rotational energy component in the dynamics of 16O+198Pt reaction

    Directory of Open Access Journals (Sweden)

    Sharma Manoj K.

    2017-01-01

    Full Text Available The role of rotational energy is investigated in reference to the dynamics of 16O+198Pt →214Rn∗ reaction using the sticking (IS and the non-sticking (INS limits of moment of inertia within the framework of dynamical cluster decay model. The decay barrier height and barrier position get significantly modified for the use of sticking or non-sticking choice, which in turn reproduce the evaporation residue and the fusion-fission cross-sections nicely by the IS approach, while the INS approach provides feasible addressal of data only for evaporation residue channel. Moreover, the fragmentation path of decaying fragments of 214Rn∗ compound nucleus gets influenced for different choices of moment of inertia. Beside this, the role of nuclear deformations i.e. static, dynamic quadurpole (β2 and higher order static deformation up to β4 are duly investigated for both choices of the moment of inertia.

  3. Role of low-order rational surfaces in transport barrier formation on the Large Helical Device

    International Nuclear Information System (INIS)

    Toi, K.; Tanaka, K.; Watanabe, F.

    2010-11-01

    In the Large Helical Device, edge transport barrier (ETB) was formed by H-mode transition near the low-order rational surfaces, that is, at the ι/2π=1 resonant layer (ι/2π: the rotational transform) in outward-shifted plasmas of R ax =3.9m (R ax : the magnetic axis position in the vacuum field), and the ι/2π=2 resonant layer in inward-shifted plasmas of R ax =3.6m. The ι/2π=1 and 2 resonant layers reside in the stochastic field region existing just outside the last closed magnetic surface (LCFS). In the outward-shifted plasmas, H-modes without edge localized modes (ELM-free H-modes) followed by giant ELMs were obtained, while H-modes with high frequency and low amplitude ELMs were obtained in the inward-shifted plasmas. A new type of barrier formation induced by TAE bursts was observed in the plasmas of R ax =3.6m, where the transport barrier is formed near the ι/2π=1 surface locates inside LCFS. (author)

  4. Chaotic correlations in barrier billiards with arbitrary barriers

    International Nuclear Information System (INIS)

    Osbaldestin, A H; Adamson, L N C

    2013-01-01

    We study autocorrelation functions in symmetric barrier billiards for golden mean trajectories with arbitrary barriers. Renormalization analysis reveals the presence of a chaotic invariant set and thus that, for a typical barrier, there are chaotic correlations. The chaotic renormalization set is the analogue of the so-called orchid that arises in a generalized Harper equation. (paper)

  5. 77 FR 25042 - Small Business Investment Companies-Early Stage SBICs

    Science.gov (United States)

    2012-04-27

    ... entrepreneurs' access to capital and encourage innovation as part of President Obama's Start-Up America... startups and small firms, accelerate research, and address barriers to success for entrepreneurs and small... and limit the initiative's impact on leverage fees, although fee increases will still be necessary. On...

  6. Role of intestinal mucosal barrier in the development and progression of nonalcoholic fatty liver disease

    Directory of Open Access Journals (Sweden)

    ZHANG Yuanyuan

    2016-12-01

    Full Text Available The incidence of non-alcoholic fatty liver disease (NAFLD has been increasing year by year in China. Intestinal mucosa is the largest organ for bacterial storage, and intestinal mucosal barrier includes biological barrier, mechanical barrier, immunological barrier, and chemical barrier. This article investigates the important role of intestinal mucosal barrier function in the pathogenesis of NAFLD. As for the intestinal biological barrier, abnormalities in gut microbiota occur earlier than obesity and other metabolic disorders; small intestinal bacterial overgrowth may affect energy metabolism, promote insulin resistance, and get involved in the pathogenesis of NAFLD; regulation of gut microbiota has a certain clinical effect in the treatment of NAFLD. Intestinal mechanical barrier impairment increases the mucosal permeability and is associated with intestinal dysbacteriosis. The changes in intestinal immunological barrier may be associated with obesity, metabolic disorders, and liver inflammation. The changes in intestinal chemical barrier can inhibit the synthesis and secretion of very low-density lipoprotein and low-density lipoprotein in hepatocytes and may result in triglyceride deposition in the liver. It is pointed out that the research on intestinal mucosal barrier function provides promising prospects for the prevention and treatment of NAFLD.

  7. On the determination of heliographic positions and rotation velocities of sunspots. Pt. 2

    International Nuclear Information System (INIS)

    Balthasar, H.

    1983-01-01

    Using sunspot positions of small sunspots observed at Debrecen and Locarno as well as positions of recurrent sunspots taken from the Greenwich Photoheliographic Results (1940-1976) the influence of the Wilson depression on the rotation velocities was investigated. It was found that the Wilson depression can be determined by minimizing errors of the rotation velocities or minimizing the differences of rotation velocities determined from disk passages and central meridian passages. The Wilson depressions found were between 765 km and 2500 km for the first sample while they were between 0 km and several 1000 km for the second sample. The averaged Wilson depression for the second sample is between 500 km and 965 km depending on the reduction method. A dependence of the Wilson depression on the age of the spots investigated seems not to exist. (orig.)

  8. Internal barrier discharges in JET and their sensitivity to edge conditions

    International Nuclear Information System (INIS)

    Sips, A.C.C.

    2001-01-01

    Experiments in JET have concentrated on steady state discharges with internal transport barriers. The internal transport barriers are formed during the current rise phase of the discharge with low magnetic shear in the centre and with high additional heating power. In order to achieve stability against disruptions at high pressure peaking, typical for ITB discharges, the pressure profile can be broadened with a H-mode transport barrier at the edge of the plasma. However, the strong increase in edge pressure during an ELM free H-mode weakens the internal transport barrier due to a reduction of the rotational shear and pressure gradient at the ITB location. In addition, type I ELM activity, associated with a high edge pedestal pressure, leads to a collapse of the ITB with the input powers available in JET. The best ITB discharges are obtained with input power control to reduce to core pressure, and with the edge of the plasma controlled by argon gas dosing. These discharges achieve steady conditions for several energy confinement times with H97 confinement enhancement factors of 1.2-1.6 at line average densities around 30%-40% of the Greenwald density. This is at much lower density (typically factor 2 to 3) compared to standard H-mode discharges in JET. Increasing the density, using additional deuterium gas dosing or shallow pellet fueling has not been successful so far. A possible route to higher densities should maintain the type III ELM's towards high edge density, giving scope for future experiments in JET. (author)

  9. Small intestine epithelial barrier function is compromised in pigs with low feed intake at weaning.

    NARCIS (Netherlands)

    Spreeuwenberg, M.A.; Verdonk, J.M.; Gaskins, H.R.; Verstegen, M.W.A.

    2001-01-01

    Compromising alterations in gastrointestinal architecture are common during the weaning transition of pigs. The relation between villous atrophy and epithelial barrier function at weaning is not well understood. This study evaluated in vitro transepithelial transport by Ussing metabolic chambers,

  10. Magnetospheric structure of rotation powered pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Arons, J. (California Univ., Berkeley, CA (USA) California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics)

    1991-01-07

    I survey recent theoretical work on the structure of the magnetospheres of rotation powered pulsars, within the observational constraints set by their observed spindown, their ability to power synchrotron nebulae and their ability to produce beamed collective radio emission, while putting only a small fraction of their energy into incoherent X- and gamma radiation. I find no single theory has yet given a consistent description of the magnetosphere, but I conclude that models based on a dense outflow of pairs from the polar caps, permeated by a lower density flow of heavy ions, are the most promising avenue for future research. 106 refs., 4 figs., 2 tabs.

  11. Translation and rotation of a porous spheroid in a spheroidal container

    International Nuclear Information System (INIS)

    Saad, E.I.

    2010-01-01

    The flow problem of an incompressible axisymmetrical quasisteady translation and steady rotation of a porous spheroid in a concentric spheroidal container are studied analytically. The same small departure from a sphere is considered for each spheroidal surface. In the limit of small Reynolds number, the Brinkman equation for the flow inside the porous region and the Stokes equation for the outside region in their stream functions formulations and velocity components, which are proportional to the translational and angular velocities, respectively, are used. Explicit expressions are obtained for both inside and outside flow fields to the first order in a small parameter characterizing the deformation of the spheroidal surface from the spherical shape. The hydrodynamic drag force and couple exerted on the porous spheroid are obtained for the special cases of prolate and oblate spheroids in closed forms. The dependence of the normalized wall-corrected translational and rotational mobilities on permeability for a porous spheroid in an unbounded medium and for a solid spheroid in a cell on the particle volume fraction is discussed numerically and graphically for various values of the deformation parameter. In the limiting cases, the analytical solutions describing the drag force and torque or mobilities for a porous spheroid in the spheroidal vessel reduce to those for a solid sphere and for a porous sphere in a spherical cell. (author)

  12. Rotating stars in relativity.

    Science.gov (United States)

    Paschalidis, Vasileios; Stergioulas, Nikolaos

    2017-01-01

    Rotating relativistic stars have been studied extensively in recent years, both theoretically and observationally, because of the information they might yield about the equation of state of matter at extremely high densities and because they are considered to be promising sources of gravitational waves. The latest theoretical understanding of rotating stars in relativity is reviewed in this updated article. The sections on equilibrium properties and on nonaxisymmetric oscillations and instabilities in f -modes and r -modes have been updated. Several new sections have been added on equilibria in modified theories of gravity, approximate universal relationships, the one-arm spiral instability, on analytic solutions for the exterior spacetime, rotating stars in LMXBs, rotating strange stars, and on rotating stars in numerical relativity including both hydrodynamic and magnetohydrodynamic studies of these objects.

  13. Barriers to Electronic Health Record Adoption: a Systematic Literature Review.

    Science.gov (United States)

    Kruse, Clemens Scott; Kristof, Caitlin; Jones, Beau; Mitchell, Erica; Martinez, Angelica

    2016-12-01

    Federal efforts and local initiatives to increase adoption and use of electronic health records (EHRs) continue, particularly since the enactment of the Health Information Technology for Economic and Clinical Health (HITECH) Act. Roughly one in four hospitals not adopted even a basic EHR system. A review of the barriers may help in understanding the factors deterring certain healthcare organizations from implementation. We wanted to assemble an updated and comprehensive list of adoption barriers of EHR systems in the United States. Authors searched CINAHL, MEDLINE, and Google Scholar, and accepted only articles relevant to our primary objective. Reviewers independently assessed the works highlighted by our search and selected several for review. Through multiple consensus meetings, authors tapered articles to a final selection most germane to the topic (n = 27). Each article was thoroughly examined by multiple authors in order to achieve greater validity. Authors identified 39 barriers to EHR adoption within the literature selected for the review. These barriers appeared 125 times in the literature; the most frequently mentioned barriers were regarding cost, technical concerns, technical support, and resistance to change. Despite federal and local incentives, the initial cost of adopting an EHR is a common existing barrier. The other most commonly mentioned barriers include technical support, technical concerns, and maintenance/ongoing costs. Policy makers should consider incentives that continue to reduce implementation cost, possibly aimed more directly at organizations that are known to have lower adoption rates, such as small hospitals in rural areas.

  14. Spherical Pendulum Small Oscillations for Slewing Crane Motion

    Directory of Open Access Journals (Sweden)

    Alexander V. Perig

    2014-01-01

    Full Text Available The present paper focuses on the Lagrange mechanics-based description of small oscillations of a spherical pendulum with a uniformly rotating suspension center. The analytical solution of the natural frequencies’ problem has been derived for the case of uniform rotation of a crane boom. The payload paths have been found in the inertial reference frame fixed on earth and in the noninertial reference frame, which is connected with the rotating crane boom. The numerical amplitude-frequency characteristics of the relative payload motion have been found. The mechanical interpretation of the terms in Lagrange equations has been outlined. The analytical expression and numerical estimation for cable tension force have been proposed. The numerical computational results, which correlate very accurately with the experimental observations, have been shown.

  15. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collect through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an ''encoded'' form which does not resemble the object, and then filtered (or ''decoded'') to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  16. Imaging with rotating slit apertures and rotating collimators

    International Nuclear Information System (INIS)

    Gindi, G.R.; Arendt, J.; Barrett, H.H.; Chiu, M.Y.; Ervin, A.; Giles, C.L.; Kujoory, M.A.; Miller, E.L.; Simpson, R.G.

    1982-01-01

    The statistical quality of conventional nuclear medical imagery is limited by the small signal collected through low-efficiency conventional apertures. Coded-aperture imaging overcomes this by employing a two-step process in which the object is first efficiently detected as an encoded form which does not resemble the object, and then filtered (or decoded) to form an image. We present here the imaging properties of a class of time-modulated coded apertures which, unlike most coded apertures, encode projections of the object rather than the object itself. These coded apertures can reconstruct a volume object nontomographically, tomographically (one plane focused), or three-dimensionally. We describe a new decoding algorithm that reconstructs the object from its planar projections. Results of noise calculations are given, and the noise performance of these coded-aperture systems is compared to that of conventional counterparts. A hybrid slit-pinhole system which combines the imaging advantages of a rotating slit and a pinhole is described. A new scintillation detector which accurately measures the position of an event in one dimension only is presented, and its use in our coded-aperture system is outlined. Finally, results of imaging test objects and animals are given

  17. Analyzing the effect of large rotations on the seismic response of structures subjected to foundation local uplift

    Directory of Open Access Journals (Sweden)

    El Abbas N.

    2016-01-01

    Full Text Available This work deals with seismic analysis of structures by taking into account soil-structure interaction where the structure is modeled by an equivalent flexible beam mounted on a rigid foundation that is supported by a Winkler like soil. The foundation is assumed to undergo local uplift and the rotations are considered to be large. The coupling of the system is represented by a series of springs and damping elements that are distributed over the entire width of the foundation. The non-linear equations of motion of the system were derived by taking into account the equilibrium of the coupled foundation-structure system where the structure was idealized as a single-degree-of-freedom. The seismic response of the structure was calculated under the occurrence of foundation uplift for both large and small rotations. The non-linear differential system of equations was integrated by using the Matlab command ode15s. The maximum response has been determined as function of the intensity of the earthquake, the slenderness of the structure and the damping ratio. It was found that considering local uplift with small rotations of foundation under seismic loading leads to unfavorable structural response in comparison with the case of large rotations.

  18. Rotating preventers

    International Nuclear Information System (INIS)

    Tangedahl, M.J.; Stone, C.R.

    1992-01-01

    This paper reports that recent changes in the oil and gas industry and ongoing developments in horizontal and underbalanced drilling necessitated development of a better rotating head. A new device called the rotating blowout preventer (RBOP) was developed by Seal-Tech. It is designed to replace the conventional rotating control head on top of BOP stacks and allows drilling operations to continue even on live (underbalanced) wells. Its low wear characteristics and high working pressure (1,500 psi) allow drilling rig crews to drill safely in slightly underbalanced conditions or handle severe well control problems during the time required to actuate other BOPs in the stack. Drilling with a RBOP allows wellbores to be completely closed in tat the drill floor rather than open as with conventional BOPs

  19. Rotated balance in humans due to repetitive rotational movement

    Science.gov (United States)

    Zakynthinaki, M. S.; Madera Milla, J.; López Diaz De Durana, A.; Cordente Martínez, C. A.; Rodríguez Romo, G.; Sillero Quintana, M.; Sampedro Molinuevo, J.

    2010-03-01

    We show how asymmetries in the movement patterns during the process of regaining balance after perturbation from quiet stance can be modeled by a set of coupled vector fields for the derivative with respect to time of the angles between the resultant ground reaction forces and the vertical in the anteroposterior and mediolateral directions. In our model, which is an adaption of the model of Stirling and Zakynthinaki (2004), the critical curve, defining the set of maximum angles one can lean to and still correct to regain balance, can be rotated and skewed so as to model the effects of a repetitive training of a rotational movement pattern. For the purposes of our study a rotation and a skew matrix is applied to the critical curve of the model. We present here a linear stability analysis of the modified model, as well as a fit of the model to experimental data of two characteristic "asymmetric" elite athletes and to a "symmetric" elite athlete for comparison. The new adapted model has many uses not just in sport but also in rehabilitation, as many work place injuries are caused by excessive repetition of unaligned and rotational movement patterns.

  20. Rural and small-town attitudes about alcohol use during pregnancy: a community and provider sample.

    Science.gov (United States)

    Logan, T K; Walker, Robert; Nagle, Laura; Lewis, Jimmie; Wiesenhahn, Donna

    2003-01-01

    While there has been considerable research on prenatal alcohol use, there have been limited studies focused on women in rural and small-town environments. This 2-part study examines gender differences in attitudes and perceived barriers to intervention in large community sample of persons living in rural and small-town environments in Kentucky (n = 3,346). The study also examines rural/small-town prenatal service providers' perceptions of barriers to assessment and intervention with pregnant substance abusers (n = 138). Surveys were administered to a convenience sample of employees and customers from 16 rural and small-town community outlets. There were 1503 males (45%) and 1843 females (55%) ranging in age from under 18 years old to over 66 years old. Surveys also were mailed to prenatal providers in county health departments of the 13-county study area, with 138 of 149 responding. Overall results of the community sample suggest that neither males nor females were knowledgeable about the harmful effects of alcohol use during pregnancy. Results also indicate substantial gender differences in alcohol attitudes, knowledge, and perceived barriers. Further, prenatal care providers identified several barriers in assessment and treatment of pregnant women with alcohol use problems in rural and small-town communities, including lack of knowledge and comfort with assessment as well as a lack of available and accessible treatment for referrals.