WorldWideScience

Sample records for small particles progress

  1. Electron beam driven disordering in small particles

    International Nuclear Information System (INIS)

    Vanfleet, R.R.; Mochel, J.

    1997-01-01

    Small metal particles in the range of a few nanometers in diameter are seen to progressively disorder when the 100 keV electron beam of a Scanning Transmission Electron Microscope (STEM) is held stationary on the particle. The diffraction pattern of the individual particle is seen to progress from an initial array of indexable diffraction spots to a mixture of diffraction spots and amorphous-like rings and finally to rings with no persistent diffraction spots. After the electron beam is removed, the particles will recrystallize after minutes or hours. Only particles below a critical size are seen to fully disorder. The authors have observed this in platinum, palladium, rhodium, and iridium and based on the model of disordering process believe it is a universal effect. It has also been observed with a platinum ruthenium alloy. They discuss the mechanism of this disordering and the structure of the resulting disordering particle for the case of platinum clusters

  2. Turbulent diffusion of small particles

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, L.G.

    1977-11-01

    The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley.

  3. Turbulent diffusion of small particles

    International Nuclear Information System (INIS)

    Margolin, L.G.

    1977-11-01

    The diffusion of small, spherical, rigid particles suspended in an incompressible turbulent fluid, but not interacting with each other, was studied. As a stochastic process, the turbulent fluid velocity field is assumed to be homogeneous, isotropic and stationary. Assuming the Stokes regime, a particle of equation of motion is used which includes only the effects of Stokes drag and a virtual mass force and an exact solution is found for the particle velocity correlation function, for all times and initial conditions, in terms of a fluid velocity correlation function measured along the motion of the particle. This shows that for times larger than a certain time scale, the particle velocity correlation becomes stationary. The effect of small shears in the fluid velocity was considered, under the additional restrictions of a certain high frequency regime for the turbulence. The shears convected past the particle much faster than the growth of the boundary layer. New force terms due to the presence of such shears are calculated and incorporated into the equation of motion. A perturbation solution to this equation is constructed, and the resultant particle velocity correlation function and diffusion coefficient are calculated. To lowest order, the particle diffusivity is found to be unaltered by the presence of small mean flow shears. The last model treated is one in which particles traverse a turbulent fluid with a large mean velocity. Among other restrictions, linearized form drag is assumed. The diffusion coefficient for such particles was calculated, and found to be much smaller than the passive scalar diffusion coefficient. This agrees within 5 percent with the experimental results of Snyder and Lumley

  4. Particle Physics: a Progress Report

    OpenAIRE

    Altarelli, Guido

    2006-01-01

    We present a concise review of where we stand in particle physics today. First we discuss QCD, then the electroweak sector and finally the motivations and the avenues for new physics beyond the Standard Model.

  5. Recent progress in particle accelerators

    International Nuclear Information System (INIS)

    Cole, F.T.; Mills, F.E.

    1988-01-01

    Many accelerators have also been built for medical radiography and therapy. Electron accelerators for this application are available commercially, using the electrons directly or bremsstrahlung photons. Neutrons produced by accelerator beams have also been used for therapy with considerable success, and several proton accelerators built for physics research have been adapted for direct therapy with protons. The first proton accelerator specifically for therapy is now being built. Separate from what might be called conventional accelerator technology, an entirely new field utilizing very highly pulsed power has been developed, and beams of short pulses of thousands or millions of amperes peak current in the MeV energy range are now available. These beams have important applications in high-energy particle acceleration, controlled fusion, industrial treatment of materials, and possibly in food preservation. All of these accelerators make use of external fields of acceleration. There is also vigorous research into new methods of acceleration, in many schemes making use of the intense accelerating fields, generated by laser beams or by plasma states of matter. This research has not as yet made traditional kinds of accelerators outmoded, but many workers hope that early in the next century there will be practical new acceleration methods making use of these very high fields. These developments are discussed in detail

  6. Structural peculiarities in magnetic small particles

    International Nuclear Information System (INIS)

    Haneda, K.; Morrish, A.H.

    1993-01-01

    Nanostructured magnetic materials, consisting of nanometer-sized crystallites, are currently a developing subject. Evidence has been accumulating that they possess properties that can differ substantially from those of bulk materials. This paper illustrates how Moessbauer spectroscopy can yield useful information on the structural peculiarities associated with these small particles. As illustrations, metallic iron and iron-oxide systems are considered in detail. The subjects discussed include: (1) Phase stabilities in small particles, (2) deformed or nonsymmetric atomic arrangements in small particles, and (3) peculiar magnetic structures or non-collinear spin arrangements in small magnetic oxide particles that are correlated with lower specific magnetizations as compared to the bulk values. (orig.)

  7. Light scattering by small particles

    CERN Document Server

    Hulst, H C van de

    1981-01-01

    ""A must for researchers using the techniques of light scattering."" ? S. C. Snowdon, Journal of the Franklin InstituteThe measurement of light scattering of independent, homogeneous particles has many useful applications in physical chemistry, meteorology and astronomy. There is, however, a sizeable gap between the abstract formulae related to electromagnetic-wave-scattering phenomena, and the computation of reliable figures and curves. Dr. van de Hulst's book enables researchers to bridge that gap. The product of twelve years of work, it is an exhaustive study of light-scattering properties

  8. Thermal expansion in small metallic particles

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1985-01-01

    An anomalously low thermal expansion observable in small particles is attributed to extending effect of the shell. It is shown that the coefficient of thermal expansion of the oxide-film-coated aluminium particles calculated using elastic constants and coefficients of thermal expansion of massive materials agres well with those measured experimentally. The linear dilatation of the shell, its stress to rupture and the values of the structural tension are estimated vs the temperature

  9. Research program in elementary-particle theory, 1981. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1981-01-01

    Progress is reported for research in the physics of ultra high energies and cosmology, the phenomenology of particle physics, composite models of particles and quantum field theory, quantum mechanics, geometric formulations, fiber bundles, and other algebraic models

  10. Particle beam fusion progress report for 1989

    Energy Technology Data Exchange (ETDEWEB)

    Sweeney, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States). Pulsed Power Sciences Center

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm{sup 2} on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall.

  11. Particle beam fusion progress report for 1989

    International Nuclear Information System (INIS)

    Sweeney, M.A.

    1994-08-01

    This report summarizes the progress on the pulsed power approach to inertial confinement fusion. In 1989, the authors achieved a proton focal intensity of 5 TW/cm 2 on PBFA-II in a 15-cm-radius applied magnetic-field (applied-B) ion diode. This is an improvement by a factor of 4 compared to previous PBFA-II experiments. They completed development of the three-dimensional (3-D), electromagnetic, particle-in-cell code QUICKSILVER and obtained the first 3-D simulations of an applied-B ion diode. The simulations, together with analytic theory, suggest that control of electromagnetic instabilities could reduce ion divergence. In experiments using a lithium fluoride source, they delivered 26 kJ of lithium energy to the diode axis. Rutherford-scattered ion diagnostics have been developed and tested using a conical foil located inside the diode. They can now obtain energy density profiles by using range filters and recording ion images on nuclear track recording film. Timing uncertainties in power flow experiments on PBFA-II have been reduced by a factor of 5. They are investigating three plasma opening switches that use magnetic fields to control and confine the injected plasma. These new switches provide better power flow than the standard plasma erosion switch. Advanced pulsed-power fusion drivers will require extraction-geometry applied-B ion diodes. During this reporting period, progress was made in evaluating the generation, transport, and focus of multiple ion beams in an extraction geometry and in assessing the probable damage to a target chamber first wall

  12. Research program in elementary particle theory. Progress report, 1984

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1984-04-01

    Research progress is reported on the following topics: gauge theory and monopole physics; supersymmetry and proton decay; strong interactions and model of particles; quantum rotator and spectrum generating group models of particles; geometric foundations of particle physics and optics; and application of particle physics to astrophysics. The titles of DOE reports are listed, and research histories of the scientific staff of the Center for Particle Theory are included

  13. Scattering by ensembles of small particles

    International Nuclear Information System (INIS)

    Gustafson, B. Aa. S.

    1980-11-01

    With the advent of high altitude rockets and of space probes, evidence has accumulated that several particle types coexiste in the interplanetary medium. It also became apparent that the zodiacal light is not produced by particles with previously known scattering characteristics. However, the scattering is here shown to be consistent with the hypothesis that presolar interstellar grains accumulate into comets which through fragmentation provide a major component of the interplanetary dust complex. Cometary debris - zodiscal light particles - are therefore modeled as conglomerates of elongated core-mantle particles. Light scattering characteristics of the conglomerates are investigated using a micro-wave analogue method. Approximate theoretical methods for prediction and interpretation of the electro-magnetic scattering patterns are developed and are found to compare favorably with the experimental results and with observations of the zodiacal light. The model is also found to be consistent with comet- and impactdata. Dynamical considerations predicts a small particle component rapidly receding from the Sun, an identification with the B-meteoroids is tentatively suggested. (author)

  14. The dynamics of small inertial particles in weakly stratified turbulence

    NARCIS (Netherlands)

    van Aartrijk, M.; Clercx, H.J.H.

    We present an overview of a numerical study on the small-scale dynamics and the large-scale dispersion of small inertial particles in stably stratified turbulence. Three types of particles are examined: fluid particles, light inertial particles (with particle-to-fluid density ratio 1Ͽp/Ͽf25) and

  15. Chemisorption and Reactions of Small Molecules on Small Gold Particles

    Directory of Open Access Journals (Sweden)

    Geoffrey C. Bond

    2012-02-01

    Full Text Available The activity of supported gold particles for a number of oxidations and hydrogenations starts to increase dramatically as the size falls below ~3 nm. This is accompanied by an increased propensity to chemisorption, especially of oxygen and hydrogen. The explanation for these phenomena has to be sought in kinetic analysis that connects catalytic activity with the strength and extent of chemisorption of the reactants, the latter depending on the electronic structure of the gold atoms constituting the active centre. Examination of the changes to the utilisation of electrons as particle size is decreased points to loss of metallic character at about 3 nm, as energy bands are replaced by levels, and a band gap appears. Detailed consideration of the Arrhenius parameters (E and ln A for CO oxidation points clearly to a step-change in activity at the point where metallic character is lost, as opposed to there being a monotonic dependence of rate on a physical property such as the fraction of atoms at corners or edges of particles. The deplorable scarcity of kinetic information on other reactions makes extension of this analysis difficult, but non-metallic behaviour is an unavoidable property of very small gold particles, and therefore cannot be ignored when seeking to explain their exceptional activity.

  16. Particle beam fusion progress report, January-June 1980

    International Nuclear Information System (INIS)

    1981-05-01

    An overview and technical summaries are given for research progress in each of the following general areas: (1) fusion target studies; (2) target experiments; (3) particle beam source theory; (4) diagnostics development; (5) particle beam experiments; (6) pulsed power research and development; (7) pulse power application; and (8) Electron Beam Fusion Accelerator project

  17. Research program in elementary-particle theory, 1983. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1983-08-01

    Progress is reviewed on the following topics: physics of ultra high energies and cosmology; phenomenology of particle physics; quantum field theory, supersymmetry and models of particles; and geometric formulations and algebraic models. Recent DOE reports resulting from the contract are listed

  18. Research program in elementary-particle theory, 1983. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E C.G.; Ne& #x27; eman, Y

    1983-08-01

    Progress is reviewed on the following topics: physics of ultra high energies and cosmology; phenomenology of particle physics; quantum field theory, supersymmetry and models of particles; and geometric formulations and algebraic models. Recent DOE reports resulting from the contract are listed. (WHK)

  19. Liquid scintillation alpha particle spectrometry. Progress report

    International Nuclear Information System (INIS)

    Bell, L.L.; Hakooz, S.A.; Johnson, L.O.; Nieschmidt, E.B.; Meikrantz, D.H.

    1979-12-01

    Objective to develop a technique whereby Pu may be put into solution, extracted by solvent extraction into a suitable extractive scintillant and subsequently counted. Presented here are results of attempts to separate beta and alpha activities through pulse shape discrimination. A qualitative discussion is given which yields alpha particle peak widths, resolution and response. The detection efficiency for alpha particles in a liquid scintillant is 100%. Present detection sensitivities of the equipment being used are: 4.5 x 10 -6 μCi (100 s), 1.2 x 10 -6 μCi (1000 s), and 4.0 x 10 -7 μCi (10,000 s) at the 3 sigma level. The detectability of a particular alpha-emitting species is strongly dependent upon the population of other species. The ability to discriminate depends upon the system resolution. 14 figures, 2 tables

  20. Particle physics---Experimental. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

    1991-08-21

    We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density {approximately} 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams.

  1. Progress on the three-particle quantization condition

    Energy Technology Data Exchange (ETDEWEB)

    Briceno, Raul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hansen, Mawell T. [Univ. of Washington, Seattle, WA (United States); Sharpe, Stephen R. [Univ. of Washington, Seattle, WA (United States)

    2016-10-01

    We report progress on extending the relativistic model-independent quantization condition for three particles, derived previously by two of us, to a broader class of theories, as well as progress on checking the formalism. In particular, we discuss the extension to include the possibility of 2->3 and 3->2 transitions and the calculation of the finite-volume energy shift of an Efimov-like three-particle bound state. The latter agrees with the results obtained previously using non-relativistic quantum mechanics.

  2. Turbulent resuspension of small nondeformable particles

    International Nuclear Information System (INIS)

    Lazaridis, M.; Drossinos, Y.

    1998-01-01

    An energy-balance resuspension model is modified and applied to the resuspension of a monolayer of nondeformable spherical particles. The particle-surface adhesive force is calculated from a microscopic model based on the Lennard-Jones intermolecular potential. Pairwise additivity of intermolecular interactions is assumed and elastic flattening of the particles is neglected. From the resulting particle-surface interaction potential the natural frequency of vibration of a particle on a surface and the depth of the potential well are calculated. The particle resuspension rate is calculated using the results of a previously developed energy-balance model, where the influence of fluid flow on the bound particle motion is recognized. The effect of surface roughness is included by introducing an effective particle radius that results in log-normally distributed adhesive forces. The predictions of the model are compared with experimental results for the resuspension of Al 2 O 3 particles from stainless steel surfaces. Particle resuspension due to turbulent fluid flow is important in the interaction of the atmosphere with various surfaces and in numerous industrial processes. For example, in the nuclear industry, fission-product aerosols released during a postulated severe accident in a Light Water Reactor may deposit and resuspend repeatedly in the vessel circuit and containment

  3. Recent progress of particle migration in viscoelastic fluids.

    Science.gov (United States)

    Yuan, Dan; Zhao, Qianbin; Yan, Sheng; Tang, Shi-Yang; Alici, Gursel; Zhang, Jun; Li, Weihua

    2018-02-13

    Recently, research on particle migration in non-Newtonian viscoelastic fluids has gained considerable attention. In a viscoelastic fluid, three dimensional (3D) particle focusing can be easily realized in simple channels without the need for any external force fields or complex microchannel structures compared with that in a Newtonian fluid. Due to its promising properties for particle precise focusing and manipulation, this field has been developed rapidly, and research on the field has been shifted from fundamentals to applications. This review will elaborate the recent progress of particle migration in viscoelastic fluids, especially on the aspect of applications. The hydrodynamic forces on the micro/nano particles in viscoelastic fluids are discussed. Next, we elaborate the basic particle migration in viscoelasticity-dominant fluids and elasto-inertial fluids in straight channels. After that, a comprehensive review on the applications of viscoelasticity-induced particle migration (particle separation, cell deformability measurement and alignment, particle solution exchange, rheometry-on-a-chip and others) is presented; finally, we thrash out some perspectives on the future directions of particle migration in viscoelastic fluids.

  4. Uptake of small particles by tree canopies

    International Nuclear Information System (INIS)

    Belot, Y.; Camus, H.; Gauthier, D.; Caput, C.

    1992-01-01

    Most of the deposition data that are available to assess the radiological consequences of an accident have been acquired for low-growing vegetation and are inadapted to forest areas. Consequently, a programme was undertaken to study the deposition of particles on components of different trees and extrapolate the experimental data so obtained to large-scale canopies. The experiments were performed in a wind tunnel allowing canopy components to be exposed to a flow of suspended fluorescent particles of reasonably uniform size. Emphasis was put on particles in the 0.3-1.2 μm subrange, because most of the radioactive particles sampled at long distance from sources are comprised in this size interval. The uptake rates were determined for bare and leaf bearing twigs of several evergreen species (Picea abies, Pinus sylvestris and Quercus ilex), as a function of wind speed and particle size. The deposition rates obtained for the tree components were then used as input to a model that describes the uptake of particles by a large-scale canopy under specified conditions of weather and canopy structure. The model accounts for the diffusion of particles between different strata of the canopy, as well as deposition of particles on the canopy components. It calculates the rates of particle deposition to the horizontal surface of the canopy, and the repartition of the deposited particles within the canopy. Increases in wind speed cause increased deposition, but the effect is less important that it would have been for larger particles. The deposition is relatively insensitive to the size of particles within the subrange considered in this study. 13 refs., 2 figs., 1 tab

  5. Progress in elementary particle theory, 1950-1964

    International Nuclear Information System (INIS)

    Gell-Mann, M.

    1989-01-01

    This final chapter of the book lists advances in elementary particle theory from 1950 to 1964 in an order of progressive understanding of ideas rather than chronologically. Starting with quantum field theory and the important discoveries within it, the author explains the connections and items missing in this decade, but understood later. The second part of the chapter takes the same pattern, but deals with basic interactions (strong, electromagnetic, weak and gravitational) and elementary particles, including quarks. By 1985, theory had developed to such a degree that it was hoped that the long-sought-after unified field theory of all elementary particles and interactions of nature might be close at hand. (UK)

  6. Research program in elementary-particle theory. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1982-08-01

    This progress report of the Center for Particle Theory of the University of Texas at Austin reviews the work done over the past year and is part of the renewal proposal for the period from January 1, 1983 to December 31, 1983

  7. Charged particle-induced nuclear fission reactions – Progress and ...

    Indian Academy of Sciences (India)

    progress made in recent years and the prospects in the area of nuclear fission research will be the focus of this review. Keywords. Nuclear fission; charged particle-induced fission; heavy ions; fission angular distribu- tions; mass distributions; fission barrier; moment of inertia; shell effect in fission. PACS Nos 25.70.Jj; 25.85.

  8. Accelerators: the large slings of small particles

    International Nuclear Information System (INIS)

    Crozon, M.

    1987-01-01

    This paper reviews the different types of accelerators, of particles or heavy ions, which have been developed or are in project, their performance, their limits, which noting briefly the technologies used [fr

  9. Thinking Small: Progress on Microscale Neurostimulation Technology.

    Science.gov (United States)

    Pancrazio, Joseph J; Deku, Felix; Ghazavi, Atefeh; Stiller, Allison M; Rihani, Rashed; Frewin, Christopher L; Varner, Victor D; Gardner, Timothy J; Cogan, Stuart F

    2017-12-01

    Neural stimulation is well-accepted as an effective therapy for a wide range of neurological disorders. While the scale of clinical devices is relatively large, translational, and pilot clinical applications are underway for microelectrode-based systems. Microelectrodes have the advantage of stimulating a relatively small tissue volume which may improve selectivity of therapeutic stimuli. Current microelectrode technology is associated with chronic tissue response which limits utility of these devices for neural recording and stimulation. One approach for addressing the tissue response problem may be to reduce physical dimensions of the device. "Thinking small" is a trend for the electronics industry, and for implantable neural interfaces, the result may be a device that can evade the foreign body response. This review paper surveys our current understanding pertaining to the relationship between implant size and tissue response and the state-of-the-art in ultrasmall microelectrodes. A comprehensive literature search was performed using PubMed, Web of Science (Clarivate Analytics), and Google Scholar. The literature review shows recent efforts to create microelectrodes that are extremely thin appear to reduce or even eliminate the chronic tissue response. With high charge capacity coatings, ultramicroelectrodes fabricated from emerging polymers, and amorphous silicon carbide appear promising for neurostimulation applications. We envision the emergence of robust and manufacturable ultramicroelectrodes that leverage advanced materials where the small cross-sectional geometry enables compliance within tissue. Nevertheless, future testing under in vivo conditions is particularly important for assessing the stability of thin film devices under chronic stimulation. © 2017 International Neuromodulation Society.

  10. Absorption and scattering of light by small particles

    CERN Document Server

    Bohren, Craig F

    1983-01-01

    Absorption and Scattering of Light by Small Particles. Treating absorption and scattering in equal measure, this self-contained, interdisciplinary study examines and illustrates how small particles absorb and scatter light. The authors emphasize that any discussion of the optical behavior of small particles is inseparable from a full understanding of the optical behavior of the parent material-bulk matter. To divorce one concept from the other is to render any study on scattering theory seriously incomplete. Special features and important topics covered in this book include:. * Classical theor

  11. Progress in three-particle scattering from LQCD

    Directory of Open Access Journals (Sweden)

    Briceño Raúl A.

    2017-01-01

    Full Text Available We present the status of our formalism for extracting three-particle scattering observables from lattice QCD (LQCD. The method relies on relating the discrete finitevolume energy spectrum of a quantum field theory with its scattering amplitudes. As the finite-volume spectrum can be directly determined in LQCD, this provides a method for determining scattering observables, and associated resonance properties, from the underlying theory. In a pair of papers published over the last two years, two of us have extended this approach to apply to relativistic three-particle scattering states. In this talk we summarize recent progress in checking and further extending this result. We describe an extension of the formalism to include systems in which two-to-three transitions can occur. We then present a check of the previously published formalism, in which we reproduce the known finite-volume energy shift of a three-particle bound state.

  12. Two particle correlations in small systems

    CERN Document Server

    Palmeiro Pazos, Brais

    2015-01-01

    The present report summarizes the work on the Summer Student project within the ALICE Collaboration. The aim of the project is to study the two-particle correlations in peripheral Pb-Pb collisions with the ALICE detector. The first part of this project is the development of a Toy Monte Carlo (MC) generator to reproduce and understand the Physics behind and probe the analysis in a controlled data set. Then, once the Toy MC is fully understood, it is possible to move to real data where some unexpected effects might appear and should be comprehended in order to have the whole physical picture of the peripheral Pb-Pb collisions.

  13. Fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    1982-01-01

    Studies are reported in these areas: double resonance in fluorescent and Raman scattering; surface enhanced Raman scattering; fluorescence by molecules embedded in small particles; fluorescence by a liquid droplet; and fluorescence by conical pits in surfaces

  14. Theoretical studies in elementary particle physics: [Progress report for the period June 1986 to February 1987

    International Nuclear Information System (INIS)

    Collins, J.C.

    1987-01-01

    Theoretical research on elementary particles is reported, with progress discussed in these areas: heavy quark production, the cosmic rays observed from Cygnus X-3, hadron-hadron collisions at small values of x, Monte Carlo event generators for hadron-hadron collisions, review of perturbative QCD theorems, direct computation of helicity amplitudes for tree diagrams, and application of the factorization of helicity amplitudes to the effective W approximation

  15. Progress in the treatment of small fiber peripheral neuropathy.

    Science.gov (United States)

    Chiang, Ming-Chang; Tseng, Ming-Tsung; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang

    2015-03-01

    Small fiber neuropathy is a syndrome of diverse disease etiology because of multiple pathophysiologic mechanisms with major presentations of neuropathic pain and autonomic symptoms. Over the past decade, there has been substantial progress in the treatments for neuropathic pain, dysautonomia and disease-modifying strategy. In particular, anticonvulsants and antidepressants alleviate neuropathic pain based on randomized clinical trials.

  16. Particle and particle systems characterization small-angle scattering (sas) applications

    CERN Document Server

    Gille, Wilfried

    2016-01-01

    Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.

  17. Particle and particle systems characterization small-angle scattering (SAS) applications

    CERN Document Server

    Gille, Wilfried

    2016-01-01

    Small-angle scattering (SAS) is the premier technique for the characterization of disordered nanoscale particle ensembles. SAS is produced by the particle as a whole and does not depend in any way on the internal crystal structure of the particle. Since the first applications of X-ray scattering in the 1930s, SAS has developed into a standard method in the field of materials science. SAS is a non-destructive method and can be directly applied for solid and liquid samples. Particle and Particle Systems Characterization: Small-Angle Scattering (SAS) Applications is geared to any scientist who might want to apply SAS to study tightly packed particle ensembles using elements of stochastic geometry. After completing the book, the reader should be able to demonstrate detailed knowledge of the application of SAS for the characterization of physical and chemical materials.

  18. Behavior of small ferromagnetic particles in traveling magnetic field

    Science.gov (United States)

    Deych, V. G.; Terekhov, V. P.

    1985-03-01

    Forces and moments acting on a magnetizable body in a traveling magnetic field are calculated for a body with dimensions much smaller than the wavelength of the magnetic field. It is assumed that a particle of given linear dimension does not have a constant magnetic moment. The material of a particle is characterized by its magnetic permeability and electrical conductivity. The hypothesis that rotation plays a major role in the behavior of small particles is confirmed and the fact that a small particle rolls on a plane, without sliding, when the surface is perfectly rough, in the opposite direction from which the magnetic field travels is explained. Calculations are based on the magnetohydrodynamic equations for a quasi steady magnetic field, and the induced Foucault eddy currents are considered. The results are applicable to transport of ferrofluids and to such metallurgical devices as separators.

  19. Improved Small-Particle Powders for Plasma Spraying

    Science.gov (United States)

    Nguyen, QuynhGiao, N.; Miller, Robert A.; Leissler, George W.

    2005-01-01

    Improved small-particle powders and powder-processing conditions have been developed for use in plasma spray deposition of thermal-barrier and environmental barrier coatings. Heretofore, plasma-sprayed coatings have typically ranged in thickness from 125 to 1,800 micrometers. As explained below, the improved powders make it possible to ensure complete coverage of substrates at unprecedently small thicknesses of the order of 25 micrometers. Plasma spraying involves feeding a powder into a hot, high-velocity plasma jet. The individual powder particles melt in the plasma jet as they are propelled towards a substrate, upon which they splat to build up a coating. In some cases, multiple coating layers are required. The size range of the powder particles necessarily dictates the minimum thickness of a coating layer needed to obtain uniform or complete coverage. Heretofore, powder particle sizes have typically ranged from 40 to 70 micrometers; as a result, the minimum thickness of a coating layer for complete coverage has been about 75 micrometers. In some applications, thinner coatings or thinner coating layers are desirable. In principle, one can reduce the minimum complete-coverage thickness of a layer by using smaller powder particles. However, until now, when powder particle sizes have been reduced, the powders have exhibited a tendency to cake, clogging powder feeder mechanisms and feed lines. Hence, the main problem is one of synthesizing smaller-particle powders having desirable flow properties. The problem is solved by use of a process that begins with a spray-drying subprocess to produce spherical powder particles having diameters of less than 30 micrometers. (Spherical-particle powders have the best flow properties.) The powder is then passed several times through a commercial sifter with a mesh to separate particles having diameters less than 15 micrometers. The resulting fine, flowable powder is passed through a commercial fluidized bed powder feeder into a

  20. Progress of our knowledge towards the infinitely small

    Energy Technology Data Exchange (ETDEWEB)

    Teillac, J.

    1985-10-01

    The lecture given the 16th of October 1984 at ENSTA by Mr Teillac is reproduced here. He leads us in the infinitely small realm, through these queer families of particles and help us to catch a glimpse to the complexity of the interactions existing there. Underlining the always growing power of our investigation means, he gives an outline of the new orientations of physics.

  1. Small metal particles and the ideal Fermi gas

    International Nuclear Information System (INIS)

    Barma, Mustanpir

    1991-01-01

    Kubo's theoretical model of a small metal particle consists of a number of noninteraction electrons (an ideal Fermi gas) confined to a finite volume. By 'small' it meant that the size of the particle is intermediate between that of a few atoms cluster and the bulk solid, the radius of the particle being 5 to 50 Angstroms. The model is discussed and size dependence of various energy scales is studied. For a fermi gas confined in a sphere or a cube, two size-dependent energy scales are important. The inner scale δ is the mean spacing between successive energy levels. It governs the very low temperature behaviour. The outer scale Δ is associated with the shell structure when δ ≤T<Δ, thermodynamic properties show an oscillatory fluctuations around a smooth background as the size or energy is varied. (M.G.B.) 23 refs

  2. Raman and fluorescent scattering by molecules embedded in small particles

    International Nuclear Information System (INIS)

    Chew, H.W.; McNulty, P.J.

    1983-01-01

    We have formulated a model for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions) cylindrical and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incohorently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescent under excitation by evanescent waves

  3. Research in elementary particle physics. Technical progress report, June 1, 1985-May 31, 1986

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Bensinger, J.R.; Abbott, L.F.; Blocker, C.A.

    1986-01-01

    Progress is reported in both experimental and theoretical elementary particle research. Experimental activities include: construction of the Forward Electromagnetic Shower Counters for the Collider Detector at Fermilab (CDF); a test run in the CDF, involving observation of a small number of proton-antiproton collisions; design of a self-contained single wire proportional chamber with pressure and temperature sensing for monitoring the gain of gases used by various components of the CDF; data acquisition, and calibration. Also included are a search for a dibaryon of strangeness=-1; hyperon weak radiative decay. Theoretical research is reported in the areas of quantum field theory, string theory, elementary particle phenomenology, cosmology, field theory in curved spacetimes, and cosmology. 34 refs

  4. Kinetics of small particle activation in supersaturated vapors

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, R.; Wang, J.

    2010-08-29

    We examine the nucleated (with barrier) activation of perfectly wetting (zero contact angle) particles ranging from bulk size down to one nanometer. Thermodynamic properties of the particles, coated with liquid layers of varying thickness and surrounded by vapor, are analyzed. Nano-size particles are predicted to activate at relative humidity below the Kelvin curve on crossing a nucleation barrier, located at a critical liquid layer thickness such that the total particle size (core + liquid layer) equals the Kelvin radius (Fig. 1). This barrier vanishes precisely as the critical layer thickness approaches the thin layer limit and the Kelvin radius equals the radius of the particle itself. These considerations are similar to those included in Fletcher's theory (Fletcher, 1958) however the present analysis differs in several important respects. Firstly, where Fletcher used the classical prefactor-exponent form for the nucleation rate, requiring separate estimation of the kinetic prefactor, we solve a diffusion-drift equation that is equivalent to including the full Becker-Doering (BD) multi-state kinetics of condensation/evaporation along the growth coordinate. We also determine the mean first passage time (MFPT) for barrier crossing (Wedekind et al., 2007), which is shown to provide a generalization of BD nucleation kinetics especially useful for barrier heights that are considerably lower than those typically encountered in homogeneous vapor-liquid nucleation, and make explicit comparisons between the MFPT and BD kinetic models. Barrier heights for heterogeneous nucleation are computed by a thermo-dynamic area construction introduced recently to model deliquescence and efflorescence of small particles (McGraw and Lewis, 2009). In addition to providing a graphical representation of the activation process that offers new insights, the area construction provides a molecular approach that avoids explicit use of the interfacial tension. Typical barrier profiles for

  5. Probing the oxidation kinetics of small permalloy particles

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xiaolei; Song, Xiao; Yin, Shiliu; Shirolkar, Mandar M.; Li, Ming; Wang, Haiqian, E-mail: hqwang@ustc.edu.cn

    2017-02-15

    The oxidation of permalloys is important to apply in a wide range. The oxidation and diffusion mechanisms of small permalloy particles with different Fe content are studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. Fe{sub 2}O{sub 3}/(Ni, Fe){sub 3}O{sub 4} plays a key role in the morphology evolution and diffusion mechanisms of small NiFe particles upon oxidation. The activation energies of grain boundary diffusion for the NiFe alloys increase from 141 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to ~50 wt%. We have developed a diffusion process resolved temperature programed oxidation (PR-TPO) analysis method. Three diffusion mechanisms have been recognized by using this method: In addition to the grain boundary diffusion and lattice diffusion, our TGA analysis suggests that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} induces diffusion change and affects the diffusion process at the intermediate temperature. Relevant oxidation kinetics and diffusion mechanisms are discussed. - Graphical abstract: The oxidation mechanisms of small Permalloy particles with different Fe content is studied by using thermal gravimetric analysis (TGA) and microstructure characterizations. The activation energies of grain boundary diffusion for the NiFe alloys increases from 140 kJ/mol to 208 kJ/mol as the Fe content increases from 0 to 50 wt% as determined by TGA. We have developed a diffusion process resolved temperature programed oxidation (DPR-TPO) analysis method, and three diffusion mechanisms have been recognized by using this method: In addition to the well-known grain boundary diffusion and lattice diffusion, we found that the phase conversion from Fe{sub 2}O{sub 3} to (Ni, Fe){sub 3}O{sub 4} will induce diffusion changes and affect the diffusion process at the intermediate temperature. The diffusion processes can be characterized by the corresponding characteristic peak temperatures in temperature

  6. Particle beam fusion progress report January 1979 through June 1979

    International Nuclear Information System (INIS)

    1980-10-01

    The following chapters are included: (1) fusion target studies, (2) target experiments, (3) particle beam source development, (4) particle beam experiments, (5) pulsed power research and development, (6) pulsed fusion applications, and (7) electron beam fusion accelerator project

  7. SQUID sensor application for small metallic particle detection

    International Nuclear Information System (INIS)

    Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi

    2009-01-01

    High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods

  8. Progress in Immunotherapy for Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yan XU

    2014-01-01

    Full Text Available In recent years, the five-year survival rate of patients with advanced stage non-small cell lung cancer (NSCLC remains low despite recent advances in surgery, irradiation, chemotherapy, and targeted therapy. Immunotherapy which utilizes the immune system to control and eradicate cancer is a viable treatment approach for malignancy. Immunotherapy in patients with lung cancer has made breakthrough progress recently. Novel immunotherapeutic agents, such as antigen-specific tumour vaccines, checkpoint inhibitors, etc, have all been evaluated in lung cancer, and some have shown prolonged survival time in phase II trials and III trails. The immune-related response criteria for the evaluation of antitumor responses with immunotherapeutic agents have been made. Now, immunotherapy will likely be a fundamentally new concept for the treatment of NSCLC.

  9. Management of Small Cell Lung Cancer: Progress and Updates.

    Science.gov (United States)

    Altan, Mehmet; Chiang, Anne C

    2015-01-01

    Small cell lung cancer (SCLC) remains a major public health problem and accounts for 10% to 15% of all lung cancers. It has unique clinical features such as rapid growth, early metastatic spread, and widespread dissemination. A platinum-etoposide combination is the backbone treatment of SCLC; addition of thoracic and prophylactic cranial irradiation has been shown to improve outcome in limited-stage SCLC and in subgroups of extensive-stage SCLC. Over the last decade, significant progress has been made in characterizing the SCLC tumor biology and its developmental pathways. Most recently, efforts have focused not only on molecular targets, but also on the development of novel drugs targeting tumor evolution and immune escape mechanisms; these approaches are promising and offer opportunities that may finally improve the outcomes of SCLC.

  10. Progress in Small Molecule Therapeutics for the Treatment of Retinoblastoma

    Science.gov (United States)

    Pritchard, Eleanor M.; Dyer, Michael A.; Guy, R. Kiplin

    2017-01-01

    While mortality is low for intraocular retinoblastoma patients in the developed world who receive aggressive multimodal therapy, partial or full loss of vision occurs in approximately 50% of patients with advanced bilateral retinoblastoma. Therapies that preserve vision and reduce late effects are needed. Because clinical trials for retinoblastoma are difficult due to the young age of the patient population and relative rarity of the disease, robust preclinical testing of new therapies is critical. The last decade has seen advances towards identifying new therapies including the development of animal models of retinoblastoma for preclinical testing, progress in local drug delivery to reach intraocular targets, and improved understanding of the underlying biological mechanisms that give rise to retinoblastoma. This review discusses advances in these areas, with a focus on discovery and development of small molecules for the treatment of retinoblastoma, including novel targeted therapeutics such as inhibitors of the MDMX-p53 interaction (nutlin-3a), histone deacetylase (HDAC) inhibitors, and spleen tyrosine kinase (SYK) inhibitors. PMID:26202204

  11. Research program in elementary particle theory: Progress report, January 1, 1988-December 1988

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1988-08-01

    This report discusses progress in the following areas: Mathematical Physics, Strings and Gauge Theories; Quantum Optics; High Energy Phenomenology; Angular Momentum, QCD Sum Rules; and Application of Particle Physics to Astrophysics

  12. Research program in elementary particle theory, 1980. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification

  13. Research program in elementary particle theory, 1980. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E. C.G.; Ne' eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification. (GHT)

  14. Charged particle-induced nuclear fission reactions–Progress and ...

    Indian Academy of Sciences (India)

    The theoretical developments to describe the fission phenomenon have kept pace with the progress in the corresponding experimental measurements. ... Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; University of Mumbai-Department of Atomic Energy Centre for Excellence in Basic ...

  15. Progress towards a Drag-free SmallSat

    Science.gov (United States)

    Saraf, Shailendhar

    The net force acting on a drag-free satellite is purely gravitational as all other forces, mainly atmospheric drag and solar radiation pressure, are canceled out. In order to achieve this, a free floating reference (test mass) inside the satellite is shielded against all forces but gravity and a system of thrusters is commanded by a control algorithm such that the relative displacement between the reference and the satellite stays constant. The main input to that control algorithm is the output of a sensor which measures the relative displacement between the satellite and the test mass. Internal disturbance forces such as electrostatic or magnetic forces cannot be canceled out his way and have to be minimized by a careful design of the satellite. A drag-free technology package is under development at Stanford since 2004. It includes an optical displacement sensor to measure the relative position of the test mass inside the satellite, a caging mechanism to lock the test mass during launch, a UV LED based charge management system to minimize the effect of electrostatic forces, a thermal enclosure, and the drag-free control algorithms. Possible applications of drag-free satellites in fundamental physics (Gravity Probe B, LISA), geodesy (GOCE), and navigation (TRIAD I). In this presentation we will highlight the progress of the technology development towards a drag-free mission. The planned mission on a SaudiSat bus will demonstrate drag-free technology on a small spacecraft at a fraction of the cost of previous drag-free missions. The target acceleration noise is 10-12 m/sec2. With multiple such satellites a GRACE-like mission with improved sensitivity and potentially improved spatial and temporal resolution can be achieved.

  16. Research in elementary particle physics at the University of Florida: Annual progress report

    International Nuclear Information System (INIS)

    1988-01-01

    This is a progress report on the Elementary Particle Physics program at the University of Florida. The program has five tasks covering a broad range of topics in theoretical and experimental high energy physics: Theoretical Elementary Particle Physics, Experimental High Energy Physics, Axion Search, Detector Development, and Computer Requisition

  17. Particle-beam-fusion progress report, July 1979 through December 1979

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The following chapters are included in this semi-annual progress report: (1) fusion target studies, (2) target experiments, (3) particle-beam source developments, (4) particle beam experiments, (5) pulsed power, (6) pulsed power applications, and (7) electron beam fusion accelerator project. (MOW)

  18. Particle-beam-fusion progress report, July 1979 through December 1979

    International Nuclear Information System (INIS)

    1981-01-01

    The following chapters are included in this semi-annual progress report: (1) fusion target studies, (2) target experiments, (3) particle-beam source developments, (4) particle beam experiments, (5) pulsed power, (6) pulsed power applications, and (7) electron beam fusion accelerator project

  19. Research program in elementary particle theory: Progress report, January 1, 1987-December 1987

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1987-08-01

    Progress is reported in the areas of: strings and gauge theories, mathematical physics and quantum optics, high energy physics phenomenology, quantum chromodynamic sum rules, and application of particle physics to astrophysics. Titles of DOE reports resulting from this research are listed, and the research histories of the scientific staff of the Center for Particle Theory are given

  20. [Research in elementary particles and interactions]. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Adair, R.; Sandweiss, J.; Schmidt, M.

    1992-05-01

    Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.

  1. UCLA Particle Physics Research Group annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.

    1983-11-01

    The objectives, basic research programs, recent results, and continuing activities of the UCLA Particle Physics Research Group are presented. The objectives of the research are to discover, to formulate, and to elucidate the physics laws that govern the elementary constituents of matter and to determine basic properties of particles. The research carried out by the Group last year may be divided into three separate programs: (1) baryon spectroscopy, (2) investigations of charge symmetry and isospin invariance, and (3) tests of time reversal invariance. The main body of this report is the account of the techniques used in our investigations, the results obtained, and the plans for continuing and new research. An update of the group bibliography is given at the end.

  2. CERN, World's largest particle physics lab, selects Progress SonicMQ

    CERN Multimedia

    2007-01-01

    "Progress Software Corporation (NADAQ: PRGS), a global supplier of application insfrastructure software used to develop, deploy, integrate and manage business applications, today announced that CERN the world's largest physis laboratory and particle accelerator, has chosen Progress® SonicMQ® for mission-critical message delivery." (1 page)

  3. UCLA Particle and Nuclear Physics Research Group, 1993 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nefkens, B.M.K.; Clajus, M.; Price, J.W.; Tippens, W.B.; White, D.B.

    1993-09-01

    The research programs of the UCLA Particle and Nuclear Physics Research Group, the research objectives, results of experiments, the continuing activities and new initiatives are presented. The primary goal of the research is to test the symmetries and invariances of particle/nuclear physics with special emphasis on investigating charge symmetry, isospin invariance, charge conjugation, and CP. Another important part of our work is baryon spectroscopy, which is the determination of the properties (mass, width, decay modes, etc.) of particles and resonances. We also measure some basic properties of light nuclei, for example the hadronic radii of {sup 3}H and {sup 3}He. Special attention is given to the eta meson, its production using photons, electrons, {pi}{sup {plus_minus}}, and protons, and its rare and not-so-rare decays. In Section 1, the physics motivation of our research is outlined. Section 2 provides a summary of the research projects. The status of each program is given in Section 3. We discuss the various experimental techniques used, the results obtained, and we outline the plans for the continuing and the new research. Details are presented of new research that is made possible by the use of the Crystal Ball Detector, a highly segmented NaI calorimeter and spectrometer with nearly 4{pi} acceptance (it was built and used at SLAC and is to be moved to BNL). The appendix contains an update of the bibliography, conference participation, and group memos; it also indicates our share in the organization of conferences, and gives a listing of the colloquia and seminars presented by us.

  4. Elementary particles and high energy phenomena: Progress report

    International Nuclear Information System (INIS)

    Cumalat, J.P.

    1988-01-01

    This paper reviews the research being done at the University of Colorado in High Energy Physics. Topics discussed in this paper are: Charmed Photoproduction; Hadronic Production of Charm Particles; Photoproduction of States Containing Heavy Quarks; Electron-Positron Physics with the MAC Detector at PEP; Electron-Positron Physics with the Upgraded Mark II Detector at SLC; The SLD Detector at SLC; Nonperturbative Studies of QCD; Hadron Phenomenology - Application to Experiment; Perturbative QCD and Weak Matrix Elements; Quarkonium Physics; Supersymmetry, Supergravity, and Superstrings; and Experimental Gravity. 50 refs., 13 figs

  5. Particle dynamics in a wave with variable amplitude: Progress report

    International Nuclear Information System (INIS)

    Cary, J.R.

    1989-01-01

    In the last year progress in studies of transport through accelerator phase space due to separatrix crossing, use of Hamilton-Jacobi methods to obtain invariant surfaces of accelerators, and analysis of accelerators via closed orbits has been made. The diffusion due to separatrix crossing has been shown to be within a factor of two of the random phase prediction. A two-dimensional Hamilton-Jacobi solver developed in the last year will be improved by including the Broyden update method for calculating the Jacobian. Optimization of accelerator systems using the residue minimization technique has begun. 29 refs., 6 figs

  6. Particle beam fusion. Progress report, April 1978-December 1978

    International Nuclear Information System (INIS)

    1979-12-01

    During this period substantial improvements in the theoretical basis for particle beam fusion as well as the execution of critical experiments were instrumental in further definition of the optimum route to our goals of demonstrating scientific and practical feasibility. The major emphasis in the program continues to be focused primarily on issues of power concentration and energy deposition of intense particle beams in solid targets. This utilization of program resources is directed toward conducting significant target implosion and thermonuclear burn experiments using EBFA-I (1 MJ) in the 1981-1983 time period. This step, using EBFA-I, will then set the stage for net energy gain experiments to follow on EBFA-II (> 2 MJ) after 1985. Current program emphasis and activities differ substantially from those stressed in the laser approaches to inertial confinement fusion. Here the critical issues relate to delivering the needed power densities and energies to appropriate targets and to insure that the coupling of energy is efficient and matches target requirements

  7. Experimental elementary particle physics research. Technical progress report

    International Nuclear Information System (INIS)

    Arenton, M.W.

    1986-04-01

    The major current activity reported, experiment E-705 at Fermilab, is discussed. This experiment was originally designed with two main physics objectives, the high-statistics study of charmonium production, and the study of high transverse momentum direct photons. Other work is reported that used the Fermilab Multiparticle Spectometer (MPS) to study final states containing multiple strange particles. One experiment, E-580, triggered on the materialization of two neutral Vee's plus up to 5 charged particles produced in 200 GeV/c pion minus-nucleon interactions. Another, E-623, triggered on 4 charged K's, with the addition of a trigger processor designed to enhance those events where the K's originated from phi decay, produced in 400 GeV/c pN interactions. Experiment E-609 was a study of the production of jets in 200 GeV/c pion-proton and 400 GeV/c proton-proton interactions using a large full-azimuth calorimeter detector. Analysis of single-jet and di-jet cross sections at 400 GeV/c are completed

  8. Particle beam fusion. Progress report, April 1978-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    During this period substantial improvements in the theoretical basis for particle beam fusion as well as the execution of critical experiments were instrumental in further definition of the optimum route to our goals of demonstrating scientific and practical feasibility. The major emphasis in the program continues to be focused primarily on issues of power concentration and energy deposition of intense particle beams in solid targets. This utilization of program resources is directed toward conducting significant target implosion and thermonuclear burn experiments using EBFA-I (1 MJ) in the 1981-1983 time period. This step, using EBFA-I, will then set the stage for net energy gain experiments to follow on EBFA-II (> 2 MJ) after 1985. Current program emphasis and activities differ substantially from those stressed in the laser approaches to inertial confinement fusion. Here the critical issues relate to delivering the needed power densities and energies to appropriate targets and to insure that the coupling of energy is efficient and matches target requirements.

  9. Progress in Developing Virus-like Particle Influenza Vaccines

    Science.gov (United States)

    Quan, Fu-Shi; Lee, Young-Tae; Kim, Ki-Hye; Kim, Min-Chul; Kang, Sang-Moo

    2016-01-01

    Summary Recombinant vaccines based on virus-like particles (VLPs) or nanoparticles have been successful in their safety and efficacy in preclinical and clinical studies. The technology of expressing enveloped VLP vaccines has combined with molecular engineering of proteins in membrane-anchor and immunogenic forms mimicking the native conformation of surface proteins on the enveloped viruses. This review summarizes recent developments in influenza VLP vaccines against seasonal, pandemic, and avian influenza viruses from the perspective of use in humans. The immunogenicity and efficacies of influenza VLP vaccine in the homologous and cross-protection were reviewed. Discussions include limitations of current influenza vaccination strategies and future directions to confer broadly cross protective new influenza vaccines as well as vaccination. PMID:27058302

  10. Small Particle Impact Damage on Different Glass Substrates

    Science.gov (United States)

    Waxman, R.; Guven, I.; Gray, P.

    2017-01-01

    Impact experiments using sand particles were performed on four distinct glass substrates. The sand particles were characterized using the X-Ray micro-CT technique; 3-D reconstruction of the particles was followed by further size and shape analyses. High-speed video footage from impact tests was used to calculate the incoming and rebound velocities of the individual sand impact events, as well as particle volume. Further, video analysis was used in conjunction with optical and scanning electron microscopy to relate the incoming velocity and shape of the particles to subsequent fractures, including both radial and lateral cracks. Analysis was performed using peridynamic simulations.

  11. Effect of particle irradiation on cell cycle progression

    Energy Technology Data Exchange (ETDEWEB)

    Eguchi, Kiyomi [National Inst. of Radiological Sciences, Chiba (Japan); Ohara, Hiroshi

    1997-02-01

    We studied effects of fractionated exposure of heavy ion beams with high linear energy transfer (LET). Asynchronous V79 cells were irradiated by He-3 or C ion beam at cyclotron at NIRS (12 MeV/u, LET{approx_equal} 20-250 keV/{mu}m). Extent of recovery of sublethal damage (SLDR) decreased with increasing LET. At the highest LET tested, the enhancement of cell killing (potentiation) was observed. Flow cytometry data showed the more efficient accumulation of cells at a G2/M phase at 4 h after irradiation by high LET particle beams than by X-rays. This potentiation might be caused by partial synchronization at a cell cycle position (s) where cells are sensitive to heavy ion exposure. When carbon ion beam with spread-out Bragg peak (SBP) at the RIKEN Ring Cyclotron (initial energy=135 MeV/u) were split into 2 equal exposure at 12-hr-interval, SLDR was observed at the entrance of the beam. In contrast, little recovery was observed at middle or distal peak positions. These results showed the benefits of carbon ion beam for cancer therapy, because we can expect some recovery in normal tissue at entrance of the beam, whereas no recovery in tumor at SBP. (author)

  12. Final state multiplicity and particle correlation in small systems

    CERN Document Server

    Mariani, Valentina

    2017-01-01

    Final state variables and particle correlation will be discussed under a Multiple Parton Interaction (MPI) interpretation. The state of the art about the latest results on such variables will be provided. Furthermore the role played by event multiplicity in the deep understanding of particle correlation, in particular concerning the new results on the Long-Range Near Side two particle correlations by the CMS Collaboration, will bediscussed.

  13. Research Progress on Dark Matter Model Based on Weakly Interacting Massive Particles

    Science.gov (United States)

    He, Yu; Lin, Wen-bin

    2017-04-01

    The cosmological model of cold dark matter (CDM) with the dark energy and a scale-invariant adiabatic primordial power spectrum has been considered as the standard cosmological model, i.e. the ΛCDM model. Weakly interacting massive particles (WIMPs) become a prominent candidate for the CDM. Many models extended from the standard model can provide the WIMPs naturally. The standard calculations of relic abundance of dark matter show that the WIMPs are well in agreement with the astronomical observation of ΩDM h2 ≈0.11. The WIMPs have a relatively large mass, and a relatively slow velocity, so they are easy to aggregate into clusters, and the results of numerical simulations based on the WIMPs agree well with the observational results of cosmic large-scale structures. In the aspect of experiments, the present accelerator or non-accelerator direct/indirect detections are mostly designed for the WIMPs. Thus, a wide attention has been paid to the CDM model based on the WIMPs. However, the ΛCDM model has a serious problem for explaining the small-scale structures under one Mpc. Different dark matter models have been proposed to alleviate the small-scale problem. However, so far there is no strong evidence enough to exclude the CDM model. We plan to introduce the research progress of the dark matter model based on the WIMPs, such as the WIMPs miracle, numerical simulation, small-scale problem, and the direct/indirect detection, to analyze the criterion for discriminating the ;cold;, ;hot;, and ;warm; dark matter, and present the future prospects for the study in this field.

  14. Effects of solar radiation on the orbits of small particles

    Science.gov (United States)

    Lyttleton, R. A.

    1976-01-01

    A modification of the Robertson (1937) equations of particle motion in the presence of solar radiation is developed which allows for partial reflection of sunlight as a result of rapid and varying particle rotations caused by interaction with the solar wind. The coefficients and forces in earlier forms of the equations are compared with those in the present equations, and secular rates of change of particle orbital elements are determined. Orbital dimensions are calculated in terms of time, probable sizes and densities of meteoric and cometary particles are estimated, and times of infall to the sun are computed for a particle moving in an almost circular orbit and a particle moving in an elliptical orbit of high eccentricity. Changes in orbital elements are also determined for particles from a long-period sun-grazing comet. The results show that the time of infall to the sun from a highly eccentric orbit is substantially shorter than from a circular orbit with a radius equal to the mean distance in the eccentric orbit. The possibility is considered that the free orbital kinetic energy of particles drawn into the sun may be the energy source for the solar corona.

  15. U.C. Davis high energy particle physics research: Technical progress report -- 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-12-31

    Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.

  16. Gravitational sedimentation of cloud of solid spherical particles at small Reynolds numbers

    Directory of Open Access Journals (Sweden)

    Arkhipov Vladimir

    2015-01-01

    Full Text Available The experimental results of study of gravitational sedimentation of highly-concentrated systems of solid spherical particles at small Reynolds numbers Re<1 are presented. Empirical equation for drag coefficient of the particle assembly has been obtained. The influence of initial particle concentration in the cloud on its dynamics and velocity has been analysed.

  17. Small Particle Driven Chain Disentanglements in Polymer Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Senses, Erkan; Ansar, Siyam M.; Kitchens, Christopher L.; Mao, Yimin; Narayanan, Suresh; Natarajan, Bharath; Faraone, Antonio

    2017-04-01

    Using neutron spin-echo spectroscopy, X-ray photon correlation spectroscopy and bulk rheology, we studied the effect of particle size on the single chain dynamics, particle mobility, and bulk viscosity in athermal polyethylene oxide-gold nanoparticle composites. The results reveal an ≈ 25 % increase in the reptation tube diameter with addition of nanoparticles smaller than the entanglement mesh size (≈ 5 nm), at a volume fraction of 20 %. The tube diameter remains unchanged in the composite with larger (20 nm) nanoparticles at the same loading. In both cases, the Rouse dynamics is insensitive to particle size. These results provide a direct experimental observation of particle size driven disentanglements that can cause non-Einstein-like viscosity trends often observed in polymer nanocomposites.

  18. Is there a contraction of the interatomic distance in small metal particles?

    DEFF Research Database (Denmark)

    Hansen, Lars Bruno; Stoltze, Per; Nørskov, Jens Kehlet

    1990-01-01

    A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very s...... small changes in bond length with particle size, but the motion in the small particles is very anharmonic. We use this observation to resolve the current experimental controversy about the existence of bond contraction for small metal particles.......A theoretical analysis is made of the bond lengths of small (100–1000 atoms) Cu particles at various temperatures. The interatomic interactions are calculated using the effective-medium theory and the finite-temperature properties obtained from a molecular-dynamics simulation. We find only very...

  19. The research progress of acute small bowel perforation

    Directory of Open Access Journals (Sweden)

    Rudolf Schiessel

    2015-08-01

    Full Text Available This article reviews the various aetiologies of small bowel perforations and their management. In addition to the well-known aetiologies such as trauma, inflammation and circulatory disorders, several new causes of small bowel perforation have been described in recent years. The spectrum reaches from iatrogenic perforations during laparoscopic surgery or enteroscopies to drug-induced perforations with new anticancer agents. The management of small bowel perforations requires a concept consisting of the safe revision of the leaking bowel and the treatment of the peritonitis. Depending on the local situation and the condition of the patient, several treatment options are available. The surgical management of the bowel leak can range from a simple primary closure to a delayed restoration of bowel continuity. When the condition of the bowel or patient is frail, the risk of a failure of a closure or anastomosis is too high, and the exteriorization of the bowel defect as a primary measure is a safe option. The treatment of the peritonitis is also dependent on the condition of the patient and the local situation. Early stages of peritonitis can be treated by a simple peritoneal lavage, either performed by laparoscopy or laparotomy. Severe forms of peritonitis with multi-organ failure and an abdominal compartment syndrome need repeated peritoneal revisions. In such cases, the abdomen can only be closed temporarily. Different technical options are available in order to overcome the difficult care of these patients.

  20. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Reed F. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Hammoud, Dima A. [Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Lackemeyer, Matthew G.; Yellayi, Srikanth [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Solomon, Jeffrey [Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892 (United States); Bohannon, Jordan K.; Janosko, Krisztina B.; Jett, Catherine; Cooper, Kurt [Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Blaney, Joseph E. [Office of the Scientific Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Jahrling, Peter B. [Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States); Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702 (United States)

    2015-07-15

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log{sub 10} PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. - Highlights: • Small particle aerosol exposure of rhesus results in a severe respiratory disease. • CT findings correlated with peripheral oxygen saturation and monocyte increases. • Virus dissemination was limited and mainly confined to the respiratory tract. • CT provides insight into pathogenesis to aid development of animal models of disease.

  1. Small particle aerosol inoculation of cowpox Brighton Red in rhesus monkeys results in a severe respiratory disease

    International Nuclear Information System (INIS)

    Johnson, Reed F.; Hammoud, Dima A.; Lackemeyer, Matthew G.; Yellayi, Srikanth; Solomon, Jeffrey; Bohannon, Jordan K.; Janosko, Krisztina B.; Jett, Catherine; Cooper, Kurt; Blaney, Joseph E.; Jahrling, Peter B.

    2015-01-01

    Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log 10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases. - Highlights: • Small particle aerosol exposure of rhesus results in a severe respiratory disease. • CT findings correlated with peripheral oxygen saturation and monocyte increases. • Virus dissemination was limited and mainly confined to the respiratory tract. • CT provides insight into pathogenesis to aid development of animal models of disease

  2. Small particle bed reactors: Sensitivity to Brayton cycle parameters

    Science.gov (United States)

    Coiner, John R.; Short, Barry J.

    Relatively simple particle bed reactor (PBR) algorithms were developed for optimizing low power closed Brayton cycle (CBC) systems. These algorithms allow the system designer to understand the relationship among key system parameters as well as the sensitivity of the PBR size and mass (a major system component) to variations in these parameters. Thus, system optimization can be achieved.

  3. Coil planet centrifugation as a means for small particle separation

    Science.gov (United States)

    Herrmann, F. T.

    1983-01-01

    The coil planet centrifuge uses a centrifugal force field to provide separation of particles based on differences in sedimentation rates by flow through a rotating coiled tube. Three main separations are considered: (1) single phase fresh sheep and human erythrocytes, (2) single phase fixed heep and human erythrocytes, and (3) electrophoretically enhanced single phase fresh sheep and human erythrocytes.

  4. Particles with small violations of Fermi or Bose statistics

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1991-01-01

    I discuss the statistics of ''quons'' (pronounced to rhyme with muons), particles whose annihilation and creation operators obey the q-deformed commutation relation (the quon algebra or q-mutator) which interpolates between fermions and bosons. Topics discussed include representations of the quon algebra, proof of the TCP theorem, violation of the usual locality properties, and experimental constraints on violations of the Pauli exclusion principle (i.e., Fermi statistics) and of Bose statistics

  5. Down-regulation of small rubber particle protein expression affects integrity of rubber particles and rubber content in Taraxacum brevicorniculatum.

    Directory of Open Access Journals (Sweden)

    Andrea Hillebrand

    Full Text Available The biosynthesis of rubber is thought to take place on the surface of rubber particles in laticifers, highly specialized cells that are present in more than 40 plant families. The small rubber particle protein (SRPP has been supposed to be involved in rubber biosynthesis, and recently five SRPPs (TbSRPP1-5 were identified in the rubber-producing dandelion species Taraxacum brevicorniculatum. Here, we demonstrate by immunogold labeling that TbSRPPs are localized to rubber particles, and that rubber particles mainly consist of TbSRPP3, 4 and 5 as shown by high-resolution two-dimensional gel electrophoresis and mass spectrometric analysis. We also carried out an RNA-interference approach in transgenic plants to address the function of TbSRPPs in rubber biosynthesis as well as rubber particle morphology and stability. TbSRPP-RNAi transgenic T. brevicorniculatum plants showed a 40-50% reduction in the dry rubber content, but neither the rubber weight average molecular mass nor the polydispersity of the rubber were affected. Although no phenotypical differences to wild-type particles could be observed in vivo, rubber particles from the TbSRPP-RNAi transgenic lines were less stable and tend to rapidly aggregate in expelling latex after wounding of laticifers. Our results prove that TbSRPPs are very crucial for rubber production in T. brevicorniculatum, probably by contributing to a most favourable and stable rubber particle architecture for efficient rubber biosynthesis and eventually storage.

  6. Exhaled particles as markers of small airway inflammation in subjects with asthma.

    Science.gov (United States)

    Larsson, Per; Lärstad, Mona; Bake, Björn; Hammar, Oscar; Bredberg, Anna; Almstrand, Ann-Charlotte; Mirgorodskaya, Ekaterina; Olin, Anna-Carin

    2017-09-01

    Exhaled breath contains suspended particles of respiratory tract lining fluid from the small airways. The particles are formed when closed airways open during inhalation. We have developed a method called Particles in Exhaled air (PExA ® ) to measure and sample these particles in the exhaled aerosol. Here, we use the PExA ® method to study the effects of birch pollen exposure on the small airways of individuals with asthma and birch pollen allergy. We hypothesized that birch pollen-induced inflammation could change the concentrations of surfactant protein A and albumin in the respiratory tract lining fluid of the small airways and influence the amount of exhaled particles. The amount of exhaled particles was reduced after birch pollen exposure in subjects with asthma and birch pollen allergy, but no significant effect on the concentrations of surfactant protein A and albumin in exhaled particles was found. The reduction in the number of exhaled particles may be due to inflammation in the small airways, which would reduce their diameter and potentially reduce the number of small airways that open and close during inhalation and exhalation. © 2015 The Authors. Clinical Physiology and Functional Imaging published by John Wiley & Sons Ltd.

  7. Scattering by ensembles of small particles experiment, theory and application

    International Nuclear Information System (INIS)

    Gustafson, B.Aa.S.

    1980-01-01

    A hypothetical selfconsistent picture of evolution of prestellar interstellar dust through a comet phase leades to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of β-meteoroids is also predicted. (author)

  8. Scattering by ensembles of small particles experiment, theory and application

    Science.gov (United States)

    Gustafson, B. A. S.

    1980-01-01

    A hypothetical self consistent picture of evolution of prestellar intertellar dust through a comet phase leads to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of (ALPHA)-meteoroids is also predicted.

  9. Forces acting on a small particle in an acoustical field in a thermoviscous fluid

    DEFF Research Database (Denmark)

    Karlsen, Jonas Tobias; Bruus, Henrik

    2015-01-01

    We present a theoretical analysis of the acoustic radiation force on a single small spherical particle, either a thermoviscous fluid droplet or a thermoelastic solid particle, suspended in a viscous and heat-conducting fluid medium. Within the perturbation assumptions, our analysis places...... no restrictions on the length scales of the viscous and thermal boundary-layer thicknesses δs and δt relative to the particle radius a, but it assumes the particle to be small in comparison to the acoustic wavelength λ. This is the limit relevant to scattering of ultrasound waves from nanometer- and micrometer......-sized particles. For particles of size comparable to or smaller than the boundary layers, the thermoviscous theory leads to profound consequences for the acoustic radiation force. Not only do we predict forces orders of magnitude larger than expected from ideal-fluid theory, but for certain relevant choices...

  10. The Formation of Small Particles and Aggregates in the Rhine Estuary

    NARCIS (Netherlands)

    Eisma, D.; Kalf, J.; Veenhuis, M.

    1980-01-01

    Particulate matter in suspension in the Southern Bight of the North Sea consists mainly of more or less round, often loose aggregates (particles glued together with organic matter) and further of single mineral grains, some small (

  11. Deep Mapping of Small Solar System Bodies with Galactic Cosmic Ray Secondary Particle Showers

    Data.gov (United States)

    National Aeronautics and Space Administration — We will investigate the use of galactic cosmic ray (GCR) secondary particles to probe the deep interiors of small solar system bodies (SSBs), including comets,...

  12. Light particle and gamma ray emission measurements in heavy ion reactions. Progress report

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1983-01-01

    Studies of neutron and charged particle emission in heavy ion reactions using the facilities at the HHIRF and the new computer facilities at Georgia State are briefly described. A progress report for 1982 to 1983 is combined with a proposal for work to be performed during 1983 to 1984. Present activities and immediate plans for a run already approved by the Program Advisory Committee of the HHIRF are discussed

  13. Small particles big effect? - Investigating ice nucleation abilities of soot particles

    Science.gov (United States)

    Mahrt, Fabian; David, Robert O.; Lohmann, Ulrike; Stopford, Chris; Wu, Zhijun; Kanji, Zamin A.

    2017-04-01

    Atmospheric soot particles are primary particles produced by incomplete combustion of biomass and/or fossil fuels. Thus soot mainly originates from anthropogenic emissions, stemming from combustion related processes in transport vehicles, industrial and residential uses. Such soot particles are generally complex mixtures of black carbon (BC) and organic matter (OM) (Bond et al., 2013; Petzold et al., 2013), depending on the sources and the interaction of the primary particles with other atmospheric matter and/or gases BC absorbs solar radiation having a warming effect on global climate. It can also act as a heterogeneous ice nucleating particle (INP) and thus impact cloud-radiation interactions, potentially cooling the climate (Lohmann, 2002). Previous studies, however, have shown conflicting results concerning the ice nucleation ability of soot, limiting the ability to predict its effects on Earth's radiation budget. Here we present a laboratory study where we systematically investigate the ice nucleation behavior of different soot particles. Commercial soot samples are used, including an amorphous, industrial carbon frequently used in coatings and coloring (FW 200, Orion Engineered Carbons) and a fullerene soot (572497 ALDRICH), e.g. used as catalyst. In addition, we use soot generated from a propane flame Combustion Aerosol Standard Generator (miniCAST, JING AG), as a proxy for atmospheric soot particles. The ice nucleation ability of these soot types is tested on size-selected particles for a wide temperature range from 253 K to 218 K, using the Horizontal Ice Nucleation Chamber (HINC), a Continuous Flow Diffusion Chamber (CFDC) (Kanji and Abbatt, 2009). Ice nucleation results from these soot surrogates will be compared to chemically more complex real world samples, collected on filters. Filters will be collected during the 2016/2017 winter haze periods in Beijing, China and represent atmospheric soot particles with sources from both industrial and residential

  14. Small propulsion reactor design based on particle bed reactor concept

    International Nuclear Information System (INIS)

    Ludewig, H.; Lazareth, O.; Mughabghab, S.; Perkins, K.; Powell, J.R.

    1989-01-01

    In this paper Particle Bed Reactor (PBR) designs are discussed which use 233 U and /sup 242m/Am as fissile materials. A constant total power of 100MW is assumed for all reactors in this study. Three broad aspects of these reactors is discussed. First, possible reactor designs are developed, second physics calculations are outlined and discussed and third mass estimates of the various candidates reactors are made. It is concluded that reactors with a specific mass of 1 kg/MW can be envisioned of 233 U is used and approximately a quarter of this value can be achieved if /sup 242m/Am is used. If this power level is increased by increasing the power density lower specific mass values are achievable. The limit will be determined by uncertainties in the thermal-hydraulic analysis. 5 refs., 5 figs., 6 tabs

  15. Disease progression and regression in sporadic small vessel disease-insights from neuroimaging.

    Science.gov (United States)

    van Leijsen, Esther M C; de Leeuw, Frank-Erik; Tuladhar, Anil M

    2017-06-01

    Cerebral small vessel disease (SVD) is considered the most important vascular contributor to the development of dementia. Comprehensive characterization of the time course of disease progression will result in better understanding of aetiology and clinical consequences of SVD. SVD progression has been studied extensively over the years, usually describing change in SVD markers over time using neuroimaging at two time points. As a consequence, SVD is usually seen as a rather linear, continuously progressive process. This assumption of continuous progression of SVD markers was recently challenged by several studies that showed regression of SVD markers. Here, we provide a review on disease progression in sporadic SVD, thereby taking into account both progression and regression of SVD markers with emphasis on white matter hyperintensities (WMH), lacunes and microbleeds. We will elaborate on temporal dynamics of SVD progression and discuss the view of SVD progression as a dynamic process, rather than the traditional view of SVD as a continuous progressive process, that might better fit evidence from longitudinal neuroimaging studies. We will discuss possible mechanisms and clinical implications of a dynamic time course of SVD, with both progression and regression of SVD markers. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  16. Small particle reagent (SPR method for detection of latent fingermarks: A review

    Directory of Open Access Journals (Sweden)

    Gurvinder Singh Bumbrah

    2016-12-01

    Full Text Available Small particle reagent technique is a means to develop latent fingermarks on wet, non-porous surfaces including glass, plastic, metals and adhesive sides of tape. The method is based on the adherence of fine particles of treating solution to the oily or fatty components of latent fingermark residues. The effectiveness of technique can be improved by adding fluorescent dye in treating solution. Fluorescent small particle reagent composition not only detects faint and weak prints but it also develops latent fingermarks on multi-colored surfaces. Small particle reagent technique is convenient, efficient and cost-effective method to develop latent fingermarks on wide range of substrates of forensic importance. Standardized testing of SPR formulation is also suggested.

  17. Influence of small particles inclusion on selective laser melting of Ti-6Al-4V powder

    Science.gov (United States)

    Gong, Haijun; Dilip, J. J. S.; Yang, Li; Teng, Chong; Stucker, Brent

    2017-12-01

    The particle size distribution and powder morphology of metallic powders have an important effect on powder bed fusion based additive manufacturing processes, such as selective laser melting (SLM). The process development and parameter optimization require a fundamental understanding of the influence of powder on SLM. This study introduces a pre-alloyed titanium alloy Ti-6Al-4V powder, which has a certain amount of small particles, for SLM. The influence of small particle inclusion is investigated through microscopy of surface topography, elemental and microstructural analysis, and mechanical testing, compared to the Ti-6Al-4V powder provided by SLM machine vendor. It is found that the small particles inclusion in Ti-6Al-4V powder has a noticeable effect on extra laser energy absorption, which may develop imperfections and deteriorate the SLM fatigue performance.

  18. The Diffusion Process in Small Particles and Brownian Motion

    Science.gov (United States)

    Khoshnevisan, M.

    Albert Einstein in 1926 published his book entitled ''INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT''. He investigated the process of diffusion in an undissociated dilute solution. The diffusion process is subject to Brownian motion. Furthermore, he elucidated the fact that the heat content of a substance will change the position of the single molecules in an irregular fashion. In this paper, I have shown that in order for the displacement of the single molecules to be proportional to the square root of the time, and for v/2 - v 1 Δ =dv/dx , (where v1 and v2 are the concentrations in two cross sections that are separated by a very small distance), ∫ - ∞ ∞ Φ (Δ) dΔ = I and I/τ ∫ - ∞ ∞Δ2/2 Φ (Δ) dΔ = D conditions to hold, then equation (7a) D =√{ 2 D }√{ τ} must be changed to Δ =√{ 2 D }√{ τ} . I have concluded that D =√{ 2 D }√{ τ} is an unintended error, and it has not been amended for almost 90 years in INVESTIGATIONS ON THE THEORY OF THE BROWNIAN MOVEMENT, 1926 publication.

  19. Localization in small fcc-particles with surface irregularities and disorder

    International Nuclear Information System (INIS)

    Bucher, J.P.; Bloomfield, L.A.

    1991-01-01

    A numerical eigenvector analysis is used to investigate Anderson localization in small fcc-particles of N = 309 and N = 147 atoms. Special attention is given to the way size and surface roughness of the particles influence the localization behavior. States begin to localize in a non-exponential regime several lattice spacings from the center of localization and finally converge to a fully exponentially-localized regime for strong disorder. For smooth surface particles, it is found that the states localize first at the band bottom and a mobility edge can clearly be defined for increasing disorder. This doesn't seem to be the case for the rougher particles, where the band middle and the band bottom show similar behavior towards localization. Although particles with surface irregularities show an onset of localization for smaller values of the disorder than smooth particles, the localization length is greater. (orig.)

  20. Progress report on irradiation experiment on small size specimens in high temperature flux module

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, M.; Jacquet, P.; Chaouadi, R.

    2011-02-15

    This report describes the progress made in IFREC/DEMO Research and Development Program during the year 2010 at SCK/CEN. This task is part of demonstrating the possibility to irradiate small specimens in the HFTM modules that will be used in DEMO. Different small specimens of three candidate materials of DEMO fusion reactor will be irradiated with the objective of validating the specimen geometry and size to reliably characterize the mechanical properties of unirradiated and in future of irradiated materials.

  1. Research program in elementary particle theory. Progress report for the period ending June 30, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The Syracuse High-Energy Theory group has contributed significantly to many of the current areas of active research in particle physics. Multigenerational grand unified theories have been explored in depth and the predictions of grand unified theories for proton decay have been critically examined. The properties of magnetic monopoles predicted by such theories have been studied. Topological solutions predicted by chiral and other phenomenologically interesting models have been studied. Various properties of glueballs have been explored using the effective Lagrangian approach. Now results of neutrinoless double beta decay in lepton-number-violating gauge theories were found. Aspects of galaxy formation, the nature of phase transitions in general field theories, and properties of supersymmetric theories have been explored. Progress has also been made in the formulation of relativistic particle dynamics. Publications are listed

  2. Task A: Research in theoretical elementary particle physics at the University of Florida; Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1993-11-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DoE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie) and three Assistant Professors (Qiu, Woodard, Kennedy). Dallas Kennedy recently joined our group increasing the Particle Theory faculty to seven. In addition, we have three postdoctoral research associates, an SSC fellow, and eight graduate students. The research of our group covers a broad range of topics in theoretical high energy physics with balance between theory and phenomenology. Included in this report is a summary of the last several years of operation of the group and an outline of our current research program.

  3. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1994-12-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program.

  4. Research in theoretical elementary particle physics at the University of Florida: Task A. Annual progress report

    International Nuclear Information System (INIS)

    Field, R.D.; Ramond, P.M.; Sikivie, P.; Thorn, C.B.

    1994-01-01

    This is the Annual Progress Report of the theoretical particle theory group at the University of Florida under DOE Grant DE-FG05-86ER40272. At present our group consists of four Full Professors (Field, Ramond, Thorn, Sikivie), one Associate Professor (Woodard), and two Assistant Professors (Qiu, Kennedy). In addition, we have four postdoctoral research associates and seven graduate students. The research of our group covers a broad range of topics in theoretical high energy physics including both theory and phenomenology. Included in this report is a summary of the last several years, an outline of our current research program

  5. Comparison of particle emissions from small heavy fuel oil and wood-fired boilers

    Science.gov (United States)

    Sippula, Olli; Hokkinen, Jouni; Puustinen, Harri; Yli-Pirilä, Pasi; Jokiniemi, Jorma

    Flue gas emissions of wood and heavy fuel oil (HFO) fired district heating units of size range 4-15 MW were studied. The emission measurements included analyses of particle mass, number and size distributions, particle chemical compositions and gaseous emissions. Thermodynamic equilibrium calculations were carried out to interpret the experimental findings. In wood combustion, PM1 (fine particle emission) was mainly formed of K, S and Cl, released from the fuel. In addition PM1 contained small amounts of organic material, CO 3, Na and different metals of which Zn was the most abundant. The fine particles from HFO combustion contained varying transient metals and Na that originate from the fuel, sulphuric acid, elemental carbon (soot) and organic material. The majority of particles were formed at high temperature (>800 °C) from V, Ni, Fe and Na. At the flue gas dew point (125 °C in undiluted flue gas) sulphuric acid condensed forming a liquid layer on the particles. This increases the PM1 substantially and may lead to partial dissolution of the metallic cores. Wood-fired grate boilers had 6-21-fold PM1 and 2-23-fold total suspended particle (TSP) concentrations upstream of the particle filters when compared to those of HFO-fired boilers. However, the use of single field electrostatic precipitators (ESP) in wood-fired grate boilers decreased particle emissions to same level or even lower as in HFO combustion. On the other hand, particles released from the HFO boilers were clearly smaller and higher in number concentration than those of wood boilers with ESPs. In addition, in contrast to wood combustion, HFO boilers produce notable SO 2 emissions that contribute to secondary particle formation in the atmosphere. Due to vast differences in concentrations of gaseous and particle emissions and in the physical and chemical properties of the particles, HFO and wood fuel based energy production units are likely to have very different effects on health and climate.

  6. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa

    2011-02-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  7. Technical Note: New methodology for measuring viscosities in small volumes characteristic of environmental chamber particle samples

    Directory of Open Access Journals (Sweden)

    L. Renbaum-Wolff

    2013-01-01

    Full Text Available Herein, a method for the determination of viscosities of small sample volumes is introduced, with important implications for the viscosity determination of particle samples from environmental chambers (used to simulate atmospheric conditions. The amount of sample needed is < 1 μl, and the technique is capable of determining viscosities (η ranging between 10−3 and 103 Pascal seconds (Pa s in samples that cover a range of chemical properties and with real-time relative humidity and temperature control; hence, the technique should be well-suited for determining the viscosities, under atmospherically relevant conditions, of particles collected from environmental chambers. In this technique, supermicron particles are first deposited on an inert hydrophobic substrate. Then, insoluble beads (~1 μm in diameter are embedded in the particles. Next, a flow of gas is introduced over the particles, which generates a shear stress on the particle surfaces. The sample responds to this shear stress by generating internal circulations, which are quantified with an optical microscope by monitoring the movement of the beads. The rate of internal circulation is shown to be a function of particle viscosity but independent of the particle material for a wide range of organic and organic-water samples. A calibration curve is constructed from the experimental data that relates the rate of internal circulation to particle viscosity, and this calibration curve is successfully used to predict viscosities in multicomponent organic mixtures.

  8. Indoor particle levels in small- and medium-sized commercial buildings in California.

    Science.gov (United States)

    Wu, Xiangmei May; Apte, Michael G; Bennett, Deborah H

    2012-11-20

    This study monitored indoor and outdoor particle concentrations in 37 small and medium commercial buildings (SMCBs) in California with three buildings sampled on two occasions, resulting in 40 sampling days. Sampled buildings included offices, retail establishments, restaurants, dental offices, and hair salons, among others. Continuous measurements were made for both ultrafine and fine particulate matter as well as black carbon inside and outside of the building. Integrated PM(2.5), PM(2.5-10), and PM(10) samples were also collected inside and outside the building. The majority of the buildings had indoor/outdoor (I/O) particle concentration ratios less than 1.0, indicating that contributions from indoor sources are less than removal of outdoor particles. However, some of the buildings had I/O ratios greater than 1, indicating significant indoor particle sources. This was particularly true of restaurants, hair salons, and dental offices. The infiltration factor was estimated from a regression analysis of indoor and outdoor concentrations for each particle size fraction, finding lower values for ultrafine and coarse particles than for submicrometer particles, as expected. The I/O ratio of black carbon was used as a relative measure of the infiltration factor of particles among buildings, with a geometric mean of 0.62. The contribution of indoor sources to indoor particle levels was estimated for each building.

  9. Reconstruction of particle size distributions and anisometry in polydisperse systems by the small-angle scattering method

    International Nuclear Information System (INIS)

    Plavnik, G.M.

    1986-01-01

    A technique to obtain particle size distributions from small-angle scattering data is suggested. It is applicable to systems of particles of arbitrary but identical shape, roughly equiaxial particles of various shapes, and particles of unknown shape. The procedure involved in the determination of the micropore sizes in Pt+Al 2 O 3 catalysts is demonstrated. (author)

  10. Progress report on a fast, particle-identifying trigger based on ring-imaging Cherenkov techniques

    International Nuclear Information System (INIS)

    Carroll, J.; Igo, G.; Jacobs, P.; Matis, H.; Naudet, C.; Schroeder, L.S.; Seidl, P.A.; Hallman, T.J.

    1990-01-01

    Experiments which require a large sample of relatively rare events need an efficient (low dead time) trigger that does more than select central collisions. The authors propose to develop a trigger that will permit sophisticated multi-particle identification on a time scale appropriate for the interaction rates expected at RHIC. The visible component of the ring-image produced by an appropriate Cherenkov-radiator-mirror combination is focused onto an array of fast photo-detectors. The output of the photo-array is coupled to a fast pattern recognition system that will identify events containing particles of specified types and angular configurations. As a parallel effort, they propose to develop a spectrum-splitting mirror that will permit the ring-image from a single radiator to be used both in this trigger (the visible component of the image) and in a TMAE containing gas detector (the UV component). The gas detector will provide higher resolution information on particle ID and direction with a delay of a few microseconds. This technique will enable nearly optimal use of the information contained in the Cherenkov spectrum. The authors report progress on the three goals set forth in the proposal: 1. the development of a fast photo-array; 2. the development of a spectrum splitting mirror; and 3. the development and simulation of fast parallel algorithms for ring finding

  11. In-situ Balloon Measurements of Small Ice Particles in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, T.; Heymsfield, A.

    2015-12-01

    Thin cirrus clouds at high latitudes are often composed of small ice particles not larger than 100 μm. Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time these clouds absorb the infrared radiation from Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions (PSD) and particle shapes. Knowledge of these cloud properties is also needed for calibrating/validating passive and active remote sensors. We report on a series of balloon-borne in-situ measurements that is carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The measurements target upper tropospheric, cold cirrus clouds. The measurements are ongoing, and the method and first results are presented here. Ice particles in these clouds are predominantly very small, with a median size of measured particles of around 50 μm. Ice particles at these sizes are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. These probes also suffer from problems with shattering of larger ice particles at the typically high aircraft speeds. The method used here avoids these issues. Furthermore, with a balloon-borne instrument data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always un-used section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 μm together with a pixel resolution of 1.65 μm allows particle detection at sizes of 10 μm and larger. For particles that are 20 μm (12

  12. Infrared small target tracking based on sample constrained particle filtering and sparse representation

    Science.gov (United States)

    Zhang, Xiaomin; Ren, Kan; Wan, Minjie; Gu, Guohua; Chen, Qian

    2017-12-01

    Infrared search and track technology for small target plays an important role in infrared warning and guidance. In view of the tacking randomness and uncertainty caused by background clutter and noise interference, a robust tracking method for infrared small target based on sample constrained particle filtering and sparse representation is proposed in this paper. Firstly, to distinguish the normal region and interference region in target sub-blocks, we introduce a binary support vector, and combine it with the target sparse representation model, after which a particle filtering observation model based on sparse reconstruction error differences between sample targets is developed. Secondly, we utilize saliency extraction to obtain the high frequency area in infrared image, and make it as a priori knowledge of the transition probability model to limit the particle filtering sampling process. Lastly, the tracking result is brought about via target state estimation and the Bayesian posteriori probability calculation. Theoretical analyses and experimental results show that our method can enhance the state estimation ability of stochastic particles, improve the sparse representation adaptabilities for infrared small targets, and optimize the tracking accuracy for infrared small moving targets.

  13. [Fluorescent and Raman scattering by molecules embedded in small particles]: Annual report, 1983

    International Nuclear Information System (INIS)

    Chew, H.; McNulty, P.J.

    1983-01-01

    An overview is given of the model formulated for fluorescent and Raman scattering by molecules embedded in or in the vicinity of small particles. The model takes into account the size, shape, refractive index, and morphology of the host particles. Analytic and numerical results have been obtained for spherical (one and more layers, including magnetic dipole transitions), cylindrical, and spheroidal particles. Particular attention has been given to the spherical case with fluorescent/Raman scatterers uniformly distributed in the particles radiating both coherently and incoherently. Depolarization effects have been studied with suitable averaging process, and good agreement with experiment has been obtained. Analytic and numerical results have been obtained for the elastic scattering of evanescent waves; these results are useful for the study of fluorescence under excitation by evanescent waves

  14. Particle size distribution models of small angle neutron scattering pattern on ferro fluids

    International Nuclear Information System (INIS)

    Sistin Asri Ani; Darminto; Edy Giri Rachman Putra

    2009-01-01

    The Fe 3 O 4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)

  15. Radiation and biophysical studies on cells and viruses. Progress report, April 1, 1976--June 30, 1977. [Gamma radiation, alpha particles

    Energy Technology Data Exchange (ETDEWEB)

    Cole, A.

    1977-01-01

    Progress is reported on the following research projects: genetic structure of DNA, chromosomes, and nucleoproteins; particle beam studies of radiosensitive sites; division delay in CHO cells induced by partly penetrating alpha particles; location of cellular sites for mutation induction; sites for radioinduced cell transformation using partly penetrating particle beams; gamma-ray and particle irradiation of nucleoproteins and other model systems; quantitation of surface antigens on normal and neoplastic cells by x-ray fluorescence; hyperthermic effects on cell survival and DNA repair mechanisms; and studies on radioinduced cell transformation. (HLW)

  16. Synthesis of ultra-small Si/Ge semiconductor nano-particles using electrochemistry

    International Nuclear Information System (INIS)

    Alkis, Sabri; Ghaffari, Mohammad; Okyay, Ali Kemal

    2012-01-01

    In this paper, we describe the formation of colloidal Si/Ge semiconductor nano-particles by electrochemical etching of Ge quantum dots (GEDOT), Silicon–Germanium graded layers (GRADE) and Silicon–Germanium multi-quantum well (MQW) structures which are prepared on Silicon wafers using low pressure chemical vapor deposition (LPCVD) technique. The formation of Si/Ge nano-particles is verified by transmission electron microscope (TEM) images and photoluminescence (PL) measurements. The Si/Ge nano-particles obtained from GEDOT and GRADE structures, gave blue emissions, upon 250 nm, and 300 nm UV excitations. However, the nano-particles obtained from the MQW structure did exhibit various color emissions (orange, blue, green and red) upon excitation with 250 nm, 360 nm, 380 nm and 400 nm wavelength light. Highlights: ► Ultra-small Si/Ge nano-particles are obtained through electrochemical anodization. ► The sizes of the Si/Ge nano-particles are 1–3 nm, obtained from TEM images. ► Blue, green, yellow/orange and red emissions are observed upon UV excitation. ► Nano-particles could be used in multi-band opto-electronic device applications.

  17. Sensitive Detection of Small Particles in Fluids Using Optical Fiber Tip with Dielectrophoresis

    Directory of Open Access Journals (Sweden)

    Yi-Hsin Tai

    2016-02-01

    Full Text Available This work presents using a tapered fiber tip coated with thin metallic film to detect small particles in water with high sensitivity. When an AC voltage applied to the Ti/Al coated fiber tip and indium tin oxide (ITO substrate, a gradient electric field at the fiber tip induced attractive/repulsive force to suspended small particles due to the frequency-dependent dielectrophoresis (DEP effect. Such DEP force greatly enhanced the concentration of the small particles near the tip. The increase of the local concentration also increased the scattering of surface plasmon wave near the fiber tip. Combined both DEP effect and scattering optical near-field, we show the detection limit of the concentration for 1.36 μm polystyrene beads can be down to 1 particle/mL. The detection limit of the Escherichia coli (E. coli bacteria was 20 CFU/mL. The fiber tip sensor takes advantages of ultrasmall volume, label-free and simple detection system.

  18. Rapid Disease Progression With Delay in Treatment of Non-Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Mohammed, Nasiruddin; Kestin, Larry Llyn; Grills, Inga Siiner; Battu, Madhu; Fitch, Dwight Lamar; Wong, Ching-yee Oliver; Margolis, Jeffrey Harold; Chmielewski, Gary William; Welsh, Robert James

    2011-01-01

    Purpose: To assess rate of disease progression from diagnosis to initiation of treatment for Stage I-IIIB non-small-cell lung cancer (NSCLC). Methods and Materials: Forty patients with NSCLC underwent at least two sets of computed tomography (CT) and 18-fluorodeoxyglucose positron emission tomography (PET) scans at various time intervals before treatment. Progression was defined as development of any new lymph node involvement, site of disease, or stage change. Results: Median time interval between first and second CT scans was 13.4 weeks, and between first and second PET scans was 9.0 weeks. Median initial primary maximum tumor dimension (MTD) was 3.5 cm (0.6-8.5 cm) with a median standardized uptake value (SUV) of 13.0 (1.7-38.5). The median MTD increased by a median of 1.0 cm (mean, 1.6 cm) between scans for a median relative MTD increase of 35% (mean, 59%). Nineteen patients (48%) progressed between scans. Rate of any progression was 13%, 31%, and 46% at 4, 8, and 16 weeks, respectively. Upstaging occurred in 3%, 13%, and 21% at these intervals. Distant metastasis became evident in 3%, 13%, and 13% after 4, 8, and 16 weeks, respectively. T and N stage were associated with progression, whereas histology, grade, sex, age, and maximum SUV were not. At 3 years, overall survival for Stage III patients with vs. without progression was 18% vs. 67%, p = 0.05. Conclusions: With NSCLC, treatment delay can lead to disease progression. Diagnosis, staging, and treatment initiation should be expedited. After 4-8 weeks of delay, complete restaging should be strongly considered.

  19. Small Renal Masses Progressing to Metastases under Active Surveillance: A Systematic Review and Pooled Analysis

    Science.gov (United States)

    Smaldone, Marc C.; Kutikov, Alexander; Egleston, Brian L.; Canter, Daniel J.; Viterbo, Rosalia; Chen, David Y.T.; Jewett, Michael A.; Greenberg, Richard E.; Uzzo, Robert G.

    2012-01-01

    Purpose We conducted a systematic review and pooled analysis of small renal masses under active surveillance to identify progression risk and characteristics associated with metastases. Materials and Methods A MEDLINE search was performed to identify all clinical series reporting surveillance of localized renal masses. For studies reporting individual level data, clinical and radiographic characteristics of tumors without progression were compared to those progressing to metastases. Results 18 series (880 patients, 936 masses) met screening criteria from which 18 patients progressing to metastasis were identified (mean 40.2 months). Six studies (259 patients, 284 masses) provided individual level data for pooled analysis. With a mean follow up of 33.5±22.6 months, mean initial tumor diameter was 2.3±1.3 cm and mean linear growth rate was 0.31±0.38 cm/year. 65 masses (23%) exhibited zero net growth under surveillance; of which none progressed to metastasis. Pooled analysis revealed increased age (75.1±9.1 vs. 66.6±12.3 years, p=0.03), initial tumor diameter (4.1±2.1 vs. 2.3±1.3 cm, p<0.0001), initial estimated tumor volume (66.3±100.0 vs. 15.1±60.3 cm3, p<0.0001), linear growth rate (0.8±0.65 vs. 0.3±0.4 cm/yr, p=0.0001), and volumetric growth rate (27.1±24.9 vs. 6.2±27.5 cm3/yr, p<0.0001) in the progression cohort. Conclusions A substantial proportion of small renal masses remain radiographically static following an initial period of active surveillance. Progression to metastases occurs in a small percentage of patients and is generally a late event. These results indicate that in patients with competing health risks, radiographic surveillance may be an acceptable initial approach with delayed intervention reserved for those exhibiting significant linear or volumetric growth. PMID:21766302

  20. Research in elementary particle physics. Progress report, May 1, 1983-February 29, 1984

    International Nuclear Information System (INIS)

    Chan, L.H.; Haymaker, R.; Imlay, R.; Metcalf, W.

    1984-01-01

    Theoretical work on an effective low energy theory of hadrons, dynamical symmetry breaking, supersymmetry and the phenomenology of Higgs Particles is described. Also, the high energy experimental group at Louisiana State University is collaborating with Columbia, Stony Brook, and the Max Planck Institute on an experiment in progress at the North Area of CESR. This experiment is the study of electron-positron annihilations in the region of the new upsilon family of particles with an apparatus optimized for detecting leptons and photons. The UPSILON''' has been observed with properties consistent with its being above threshold for B meson production and several decay modes have been studied in detail. The ππ decays of the UPSILON' and UPSILON'' have also been measured as well as electronmagnetic transition among the b anti b bound states. LSU has contributed the muon detector for the experiment. We expect to conclude our participation in this experiment by May 1984. The LSU group has joined a collaboration to measure neutrino oscillations at Los Alamos. We are now building the equipment for this experiment and should be taking data by the end of 1984. Publications are listed

  1. Progresses in the measurement and evaluation of small-angle x-ray scattering data

    International Nuclear Information System (INIS)

    Bergmann, A.

    2000-08-01

    Scattering methods are a widely used technique for determining size and shape of particles in the mesoscopic size range. This work deals on the one hand with the development of instruments in the field of Small Angle x-ray Scattering (SAXS) and on the other hand with methodical contributions concerning the interpretation of small angle scattering data. After a short introduction about Small Angle Scattering (SAS) and its application in chapter one, follows in chapter two a derivation of the theory of Small Angle x-ray scattering. Thereafter indirect transformations (Generalized Indirect Fourier Transformation [GIFT], Indirect Fourier Transformation [IFT]) are discussed and in this connection the optimization of multidimensional hyper surfaces is described. There are different possibilities for optimizing such multidimensional surfaces. The pros and contras of the different optimization methods with respect to the evaluation of small angle scattering data from interacting systems are discussed in detail. Global optimization methods are mainly used, if the hypersurface, which has to be optimized, shows many local minima. The goal of the optimization is it to find the global minimum. It is essential, that the parameters of the hyper surface are independent of each other, as it is the case in the GIFT. If someone deals with problems in only few dimensions or with many boundary conditions, mostly local optimization routines are sufficient. Therefore a number of starting parameters for the optimization is chosen, which can be obtained systematically or randomly. The best solution obtained represents the result of the optimization procedure. Chapter 3 deals with the description of instruments used in the field of Small Angle x-ray Scattering. After a description of the components (x-ray sources, monochromators, detectors) of these instruments, the different beam geometries are discussed. In chapter 4 improvements of SAXS measurements on Kratky slit systems by Goebel

  2. Recent progress in the microscopic description of small and large amplitude collective motion

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D., E-mail: lacroix@ipno.in2p3.fr; Tanimura, Y. [Institut de Physique Nucléaire, IN2P3-CNRS, Université Paris-Sud, F-91406 Orsay Cedex (France); Ayik, S. [Physics Department, Tennessee Technological University, Cookeville, Tennessee 38505 (United States); Scamps, G. [Department of Physics, Tohoku University, Sendai 980-8578 (Japan); Simenel, C. [Department of Nuclear Physics, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 2601 (Australia); Yilmaz, B. [Physics Department, Faculty of Sciences, Ankara University, 06100, Ankara (Turkey)

    2015-10-15

    Dynamical mean-field theory has recently attracted much interests to provide a unified framework for the description of many aspects of nuclear dynamics [1, 2, 3, 4, 5] (for recent reviews see [6, 7]). In particular, the inclusion of pairing correlation has opened new perspectives [8, 9, 10, 11, 12]. A summary of recent applications including giant resonances and transfer reactions will be made in this talk [13, 14, 15, 16]. While new progresses have been made with the use of sophisticated effective interactions and the development of symmetry unrestricted applications, mean-field dynamics suffer from the poor treatment of quantum fluctuations in collective space. As a consequence, these theories are successful in describing average properties of many different experimental observations but generally fail to account realistically for the width of experimental distribution. The increase of predictive power of dynamical mean-field theory is facing the difficulty of going beyond the independent particle or quasi-particle picture. Nevertheless, in the last decade, novel methods have been proposed to prepare the next generation of microscopic mean-field codes able to account for both average properties and fluctuations around the average. A review of recent progresses in this direction as well as recent applications to heavy-ion collisions will be given [17, 18].

  3. Drag force, diffusion coefficient, and electric mobility of small particles. II. Application.

    Science.gov (United States)

    Li, Zhigang; Wang, Hai

    2003-12-01

    We propose a generalized treatment of the drag force of a spherical particle due to its motion in a laminar fluid media. The theory is equally applicable to analysis of particle diffusion and electric mobility. The focus of the current analysis is on the motion of spherical particles in low-density gases with Knudsen number Kn>1. The treatment is based on the gas-kinetic theory analysis of drag force in the specular and diffuse scattering limits obtained in a preceding paper [Z. Li and H. Wang, Phys. Rev. E., 68, 061206 (2003)]. Our analysis considers the influence of van der Waals interactions on the momentum transfer upon collision of a gas molecule with the particle and expresses this influence in terms of an effective, reduced collision integral. This influence is shown to be significant for nanosized particles. In the present paper, the reduced collision integral values are obtained for specular and diffuse scattering, using a Lennard-Jones-type potential energy function suitable for the interactions of a gas molecule with a particle. An empirical formula for the momentum accommodation function, used to determine the effective, reduced collision integral, is obtained from available experimental data. The resulting treatment is shown to be accurate for interpreting the mobility experiments for particles as small as approximately 1 nm in radius. The treatment is subsequently extended to the entire range of the Knudsen number, following a semiempirical, gas-kinetic theory analysis. We demonstrate that the proposed formula predicts very well Millikan's oil-droplet experiments [R. A. Millikan, Philos. Mag. 34, 1 (1917); Phys. Rev. 22, 1 (1923)]. The rigorous theoretical foundation of the proposed formula in the Kn>1 limit makes the current theory far more general than the semiempirical Stokes-Cunningham formula in terms of the particle size and condition of the fluid and, therefore, more attractive than the Stokes-Cunningham formula.

  4. On Efficient Multigrid Methods for Materials Processing Flows with Small Particles

    Science.gov (United States)

    Thomas, James (Technical Monitor); Diskin, Boris; Harik, VasylMichael

    2004-01-01

    Multiscale modeling of materials requires simulations of multiple levels of structural hierarchy. The computational efficiency of numerical methods becomes a critical factor for simulating large physical systems with highly desperate length scales. Multigrid methods are known for their superior efficiency in representing/resolving different levels of physical details. The efficiency is achieved by employing interactively different discretizations on different scales (grids). To assist optimization of manufacturing conditions for materials processing with numerous particles (e.g., dispersion of particles, controlling flow viscosity and clusters), a new multigrid algorithm has been developed for a case of multiscale modeling of flows with small particles that have various length scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the effect of processing conditions (e.g., pressure and velocity gradients) on the local flow fields that control the formation of various microstructures or clusters.

  5. Modification of Pawlow's thermodynamical model for the melting of small single-component particles

    Science.gov (United States)

    Barybin, Anatoly; Shapovalov, Victor

    2011-02-01

    A new approach to the melting of small particles is proposed to modify the known Pawlow's model by taking into account the transfer of material from solid spherical particles to liquid ones through a gas phase. Thermodynamical analysis gives rise to a differential equation for the melting point Tm involving such size-dependent and temperature-dependent parameters of a material as the surface tensions σs(l ), molar heat of fusion ΔHm and molar volumes vs(l ). Solution of this equation has shown that all the limiting cases for size-independent situations coincide with results known in the literature and our analysis of size-dependent situations gives results close to the experimental data previously obtained by other authors for some metallic particles.

  6. DAILY SCHEDULING OF SMALL HYDRO POWER PLANTS DISPATCH WITH MODIFIED PARTICLES SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    Sinvaldo Rodrigues Moreno

    2015-04-01

    Full Text Available This paper presents a new approach for short-term hydro power scheduling of reservoirs using an algorithm-based Particle Swarm Optimization (PSO. PSO is a population-based algorithm designed to find good solutions to optimization problems, its characteristics have encouraged its adoption to tackle a variety of problems in different fields. In this paper the authors consider an optimization problem related to a daily scheduling of small hydro power dispatch. The goal is construct a feasible solution that maximize the cascade electricity production, following the environmental constraints and water balance. The paper proposes an improved Particle Swarm Optimization (PSO algorithm, which takes advantage of simplicity and facility of implementation. The algorithm was successfully applied to the optimization of the daily schedule strategies of small hydro power plants, considering maximum water utilization and all constraints related to simultaneous water uses. Extensive computational tests and comparisons with other heuristics methods showed the effectiveness of the proposed approach.

  7. EGFR mutation positive stage IV non-small-cell lung cancer : Treatment beyond progression

    Directory of Open Access Journals (Sweden)

    Katrijn eVan Assche

    2014-12-01

    Full Text Available Non-small-cell lung cancer (NSCLC is the leading cause of death from cancer for both men en women. Chemotherapy is the mainstay of treatment in advanced disease, but is only marginally effective. In about 30% of patients with advanced NSCLC in East Asia and in 10-15% in Western countries, EGFR mutations are found. In this population, first-line treatment with the tyrosine kinase inhibitors (TKI erlotinib, gefitinib or afatinib is recommended. The treatment beyond progression is less well-defined. In this paper we present 3 patients, EGFR mutation positive, with local progression after an initial treatment with TKI. These patients were treated with local radiotherapy. TKI was temporarily stopped and restarted after radiotherapy. We give an overview of the literature and discuss the different treatment options in case of progression after TKI: TKI continuation with or without chemotherapy, TKI continuation with local therapy, alternative dosing or switch to next-generation TKI or combination therapy. There are different options for treatment beyond progression in EGFR mutation positive metastatic NSCLC, but the optimal strategy is still to be defined. Further research on this topic is ongoing.

  8. Neutron scattering as a probe of small-particle dynamics in hydroxylated amorphous silica

    International Nuclear Information System (INIS)

    Richter, D.; Passell, L.

    1980-01-01

    Incoherent, inelastic scattering of neutrons by hydrogen in surface hydroxyl groups has been used to probe the dynamics of 60--70-A-diameter spheres of amorphous silica. The high-temperature spectra indicate a pronounced ''small-particle'' enhancement of low-frequency vibrational modes as predicted by theory. At low temperatures, the scattering changes in character and shows evidence of hindered rotational transitons

  9. Elementary particle physics at the University of Florida. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    This report discusses research in the following areas: theoretical elementary particle physics; experimental elementary particle physics; axion project; SSC detector development; and computer acquisition. (LSP).

  10. Light scattering at small angles by atmospheric irregular particles: modelling and laboratory measurements

    Science.gov (United States)

    Lurton, T.; Renard, J.-B.; Vignelles, D.; Jeannot, M.; Akiki, R.; Mineau, J.-L.; Tonnelier, T.

    2014-04-01

    We have investigated the behaviour of light scattering by particulates of various sizes (0.1 μm to 100 μm) at a small scattering angle (below 20°). It has been previously shown that, for a small angle, the scattered intensities are weakly dependent upon the particulates' composition (Renard et al., 2010). Particles found in the atmosphere exhibit roughness that leads to large discrepancies with the classical Mie solution in terms of scattered intensities in the low angular set-up. This article focuses on building an effective theoretical tool to predict the behaviour of light scattering by real particulates at a small scattering angle. We present both the classical Mie theory and its adaptation to the case of rough particulates with a fairly simple roughness parameterisation. An experimental device was built, corresponding to the angular set-up of interest (low scattering angle and therefore low angular aperture). Measurements are presented that confirm the theoretical results with good agreement. It was found that differences between the classical Mie solution and actual measurements - especially for large particulates - can be attributed to the particulate roughness. It was also found that, in this low angular set-up, saturation of the scattered intensities occurs for relatively small values of the roughness parameter. This confirms the low variability in the scattered intensities observed for atmospheric particulates of different kinds. A direct interest of this study is a broadening of the dynamic range of optical counters: using a small angle of aperture for measurements allows greater dynamics in terms of particle size. Thus it allows a single device to observe a broad range of particle sizes whilst utilising the same electronics.

  11. Structure, transport, and magnetic properties of thin films and small particle composites

    Science.gov (United States)

    Yun-Fei, Li

    Two classes of magnetic materials with limited dimensions have been studied; spin valve type magnetic multilayers and small magnetic particles embedded in polymer matrix. For the magnetic multilayers, NiO bottom spin valves and FeMn top spin valves were investigated. Exchange biased GMR behavior is demonstrated after field annealing. Novel cooling procedures were applied to separate the contribution from various AFM grains. It is found that a "memory effect" exists in all the samples, which can be ascribed to the existence of grain size distribution inside the AFM layer. Larger AFM grains show better temperature stability, while smaller ones show a larger exchange bias. This exchange bias not only depends on the FM-AFM exchange interaction, but also the interaction among different AFM grains. The nature of this latter interaction can be either FM or AFM type. To eliminate such temperature instability, Co/Ru/Co synthetic antiferromagnet was inserted. At Ru thickness about 7 to 9A, the effective exchange bias is larger than 1000Oe. The memory effect is essentially eliminated, and the temperature stability was dramatically improved. Another subject is the small magnetic particles embedded in polymer matrix. Under an applied inductive field, it demonstrates a Curie temperature controlled heating behavior, which is used for polymer and composite bonding. Two representative materials systems were selected, metallic Ni particles and oxide (Co 1-xZnx)2Ba2Fe12O 22 with different Zn substitution. Curie temperature controlled heating behavior is demonstrated, varying from 100°C to 350°C. It is found the heating of the particle/polymer composite strongly depends on the dispersion of the magnetic particles inside the polymer matrix. SEM study demonstrated that the high temperature extrusion method is an appropriate dispersion technique. For the heat generation, a 2nd order field dependence is evident for initial low field and high field near saturation, reflecting the

  12. [Progress of methodology for identifying target protein of natural active small molecules].

    Science.gov (United States)

    Tu, Peng-Fei; Zeng, Ke-Wu; Liao, Li-Xi; Song, Xiao-Min

    2016-01-01

    Drug targets are special molecules that can interact with drugs and exert pharmacological functions in human body. The natural active small molecules are the bioactive basis of traditional Chinese medicine, and the mechanism study is a hot topic now, especially for the identification of their target proteins. However, little progress has been made in this field until now. Here, we summarized the recent technologies and methods for the identification of target proteins of natural bioactive small molecules, and introduced the main research methods, principles and successful cases in this field. We also explored the applicability and discussed the advantages and disadvantages among different methods. We hope this review can be used as a reference for the researchers who engaged in natural pharmaceutical chemistry, pharmacology and chemical biology. Copyright© by the Chinese Pharmaceutical Association.

  13. Longitudinal parameter identification of a small unmanned aerial vehicle based on modified particle swarm optimization

    Directory of Open Access Journals (Sweden)

    Jiang Tieying

    2015-06-01

    Full Text Available This paper describes a longitudinal parameter identification procedure for a small unmanned aerial vehicle (UAV through modified particle swam optimization (PSO. The procedure is demonstrated using a small UAV equipped with only an micro-electro-mechanical systems (MEMS inertial measuring element and a global positioning system (GPS receiver to provide test information. A small UAV longitudinal parameter mathematical model is derived and the modified method is proposed based on PSO with selective particle regeneration (SRPSO. Once modified PSO is applied to the mathematical model, the simulation results show that the mathematical model is correct, and aerodynamic parameters and coefficients of the propeller can be identified accurately. Results are compared with those of PSO and SRPSO and the comparison shows that the proposed method is more robust and faster than the other methods for the longitudinal parameter identification of the small UAV. Some parameter identification results are affected slightly by noise, but the identification results are very good overall. Eventually, experimental validation is employed to test the proposed method, which demonstrates the usefulness of this method.

  14. [Research in elementary particle physics]: Progress report covering the period from August 1, 1986 to July 31, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    In this document the High Energy Physics Group reviews its accomplishments and progress during the past year and presents plans for continuing research during the next several years. Reviewed are the experimental programs such as the collider experiments, the particle theory programs such as vector boson production in supersymmetric QCD and miscellaneous program projects

  15. Research program in elementary particle theory. Progress report for period ending June 30, 1980

    International Nuclear Information System (INIS)

    1980-01-01

    The High Energy Theory Group at Syracuse conducted basic research in several areas of current interest. A great deal of progress was made in the understanding of systems with unusual topological properties. A variational formulation of the equations that govern spinning particles in general relativity was accomplished. Perturbative as well as nonperturbative properties (incorporated in an effective Lagrangian) of quantum chromodynamics aspects were investigated. The question concerning gauge fixing in non-Abelian gauge theories was studied. Several new phenomenological aspects of unified electroweak interactions were explored with the object of finding experimental tests for models other than the currently accepted Salam-Weinberg theory. A unified electroweak model based on the group [SU(2) x U(1)] x U'(1) was investigated to account for the repeated fermionic generations and to incorporate CP violations and explain the CP violation as well as the Cabibbo-like angles in terms of the quark masses. A unified theory for all interactions (with the exception of gravitational interactions) based on the group SU(5) x SU(5) was proposed. Finally, axially symmetric multi-instanton solutions were shown to be generated from a set of conformal mappings. The work performed is described briefly; references are given

  16. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jerfiz D. Constanzo

    2016-05-01

    Full Text Available The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.

  17. In-situ TEM investigations of graphic-epitaxy and small particles

    Science.gov (United States)

    Heinemann, K.

    1983-01-01

    Palladium was deposited inside a controlled-vacuum specimen chamber of a transmission electron microscope (TEM) onto MgO and alpha-alumina substrate surfaces. Annealing and various effects of gas exposure of the particulate Pd deposits were studied in-situ by high resolution TEM and electron diffraction. Whereas substrate temperatures of 500 C or annealing of room temperature (RT) deposits to 500 C were needed to obtain epitaxy on sapphire, RT deposits on MgO were perfectly epitaxial. For Pd/MgO a lattice expansion of 2 to 4% was noted; the highest values of expansion were found for the smallest particles. The lattice expansion of small Pd particles on alumina substrates was less than 1%. Long-time RT exposure of Pd/MgO in a vacuum yielded some moblity and coalescence events, but notably fewer than for Pd on sapphire. Exposure to air or oxygen greatly enhanced the particle mobility and coalescence and also resulted in the flattening of Pd particles on MgO substrates. Electron-beam irradiation further enhanced this effect. Exposure to air for several tens of hours of Pd/MgO led to strong coalescence.

  18. Radial heat transfer in fixed-bed packing with small tube/particle diameter ratios

    Science.gov (United States)

    Grah, A.; Nowak, U.; Schreier, M.; Adler, R.

    2009-02-01

    This paper presents an integrating approach to the description of radial heat transfer in catalyst packing with a flow without chemical reactions. The derived model combines the conventional αW model with the more recent λr( r) model. Particular attention is paid to small tube/particle diameter ratios. Experimental data including different tube diameters and particle shapes are used for adjustment. Spheres were used to represent a type of ordered single-size packing, and hollow cylinders to represent a type of chaotic random packing. A gradual quasi-steady experimental concept allows measurement of temperature gradients even at low flow velocities. Adjusted radial temperature profiles are compared with known approaches from literature, and correlation equations for heat transfer parameters are specified.

  19. Small Airway Absorption and Microdosimetry of Inhaled Corticosteroid Particles after Deposition.

    Science.gov (United States)

    Longest, P Worth; Hindle, Michael

    2017-10-01

    To predict the cellular-level epithelial absorbed dose from deposited inhaled corticosteroid (ICS) particles in a model of an expanding and contracting small airway segment for different particle forms. A computational fluid dynamics (CFD)-based model of drug dissolution, absorption and clearance occurring in the surface liquid of a representative small airway generation (G13) was developed and used to evaluate epithelial dose for the same deposited drug mass of conventional microparticles, nanoaggregates and a true nanoaerosol. The ICS medications considered were budesonide (BD) and fluticasone propionate (FP). Within G13, total epithelial absorption efficiency (AE) and dose uniformity (microdosimetry) were evaluated. Conventional microparticles resulted in very poor AE of FP (0.37%) and highly nonuniform epithelial absorption, such that <5% of cells received drug. Nanoaggregates improved AE of FP by a factor of 57-fold and improved dose delivery to reach approximately 40% of epithelial cells. True nanoaerosol resulted in near 100% AE for both drugs and more uniform drug delivery to all cells. Current ICS therapies are absorbed by respiratory epithelial cells in a highly nonuniform manner that may partially explain poor clinical performance in the small airways. Both nanoaggregates and nanoaerosols can significantly improve ICS absorption efficiency and uniformity.

  20. Aggregation of amphiphilic polymers in the presence of adhesive small colloidal particles.

    Science.gov (United States)

    Baulin, Vladimir A; Johner, Albert; Avalos, Josep Bonet

    2010-11-07

    The interaction of amphiphilic polymers with small colloids, capable to reversibly stick onto the chains, is studied. Adhesive small colloids in solution are able to dynamically bind two polymer segments. This association leads to topological changes in the polymer network configurations, such as looping and cross-linking, although the reversible adhesion permits the colloid to slide along the chain backbone. Previous analyses only consider static topologies in the chain network. We show that the sliding degree of freedom ensures the dominance of small loops, over other structures, giving rise to a new perspective in the analysis of the problem. The results are applied to the analysis of the equilibrium between colloidal particles and star polymers, as well as to block copolymer micelles. The results are relevant for the reversible adsorption of silica particles onto hydrophilic polymers, used in the process of formation of mesoporous materials of the type SBA or MCM, cross-linked cyclodextrin molecules threading on the polymers and forming the structures known as polyrotaxanes. Adhesion of colloids on the corona of the latter induce micellization and growth of larger micelles as the number of colloids increase, in agreement with experimental data.

  1. Experimental particle physics at the University of Pittsburgh: Progress report, April 1, 1988--March 31, 1989

    International Nuclear Information System (INIS)

    Cleland, W.E.; Coon, D.D.; Engels, E. Jr.; Shepard, P.F.; Thompson, J.A.

    1988-12-01

    This report discusses the experimental work in particle physics at the University of Pittsburgh. Topics discussed are: lepton production at the CERN SPS; direct photon production at the Tevatron; and search for fractional charge particles in semiconductors

  2. Research in particles and fields and their interactions: Technical progress report, November 1986--December 30, 1988

    International Nuclear Information System (INIS)

    Yildiz, A.

    1988-01-01

    This paper contains information on the following topics: Weak interactions; Field theories; Particle phenomenology; and Cosmology and particle physics. In particular, vector mesons, superstring cosmology, quarkonia systems, and CP-violation are some specific topics discussed. (FL)

  3. Cross section calculations of randomly oriented bispheres in the small particle regime

    CERN Document Server

    Quirantes, A

    2003-01-01

    The T-matrix is used to calculate the extinction cross section of bispherical particle systems in random orientation for a monospherical size parameter x=0.01. Differences between bispherical and monospherical (Mie) results are shown for a range of values of the refractive index. It is found that the size of the T-matrix that needs to be calculated can be large, thus preventing simple dipole approximations from being used. Once the T-matrix is computed, however, only a small number of terms is needed to obtain cross section values.

  4. The present role of small particle accelerators for the study of Cultural Heritage

    Science.gov (United States)

    Mandò, P. A.; Fedi, M. E.; Grassi, N.

    2011-04-01

    The role that small particle accelerators play in the field of applications to Cultural Heritage (for material analysis and dating) is critically discussed also in comparison to other techniques, pointing out pros and cons. As to material analysis, some peculiarities of ion beam techniques may be now less unique than they were perhaps ten years ago, but these techniques can still reach unrivalled results thanks to a smart use of their potential: for instance, they can provide elemental maps and resolve layer structures. Concerning Accelerator Mass Spectrometry, its unique performance for radiocarbon dating -- as to sensitivity, precision and quasi non-destructivity -- is described, and perspectives for further improvements are presented.

  5. Optimal radiotherapy for non-small-cell lung cancer. Current progress and future challenges

    International Nuclear Information System (INIS)

    Ishikura, Satoshi

    2012-01-01

    Radiotherapy has a key role in treating lung cancer. Advances in physics and computer technology have improved radiation delivery systems. With innovations in the radiation therapy of non-small-cell lung cancer (NSCLC), new strategies have emerged, such as intensity-modulated radiation therapy, stereotactic body radiation therapy, and particle therapy. Compared with previous methods, these newer technologies can deliver even higher doses precisely to the tumor while minimizing doses to normal tissues, which should lead to better tumor control with less toxicity. In patients with stage I NSCLC, stereotactic body radiation therapy is highly effective and may achieve local control and survival equivalent to that achieved with surgery. In patients with stage III NSCLC, dose escalation has been investigated using three-dimensional conformal radiation therapy, intensity-modulated radiation therapy, and particle therapy. The results from ongoing randomized trials on both patient populations are awaited. It is important to generate new hypotheses and to explore newer radiotherapy approaches to overcome NSCLC. (author)

  6. Plasma Aβ (Amyloid-β) Levels and Severity and Progression of Small Vessel Disease.

    Science.gov (United States)

    van Leijsen, Esther M C; Kuiperij, H Bea; Kersten, Iris; Bergkamp, Mayra I; van Uden, Ingeborg W M; Vanderstichele, Hugo; Stoops, Erik; Claassen, Jurgen A H R; van Dijk, Ewoud J; de Leeuw, Frank-Erik; Verbeek, Marcel M

    2018-04-01

    Cerebral small vessel disease (SVD) is a frequent pathology in aging and contributor to the development of dementia. Plasma Aβ (amyloid β) levels may be useful as early biomarker, but the role of plasma Aβ in SVD remains to be elucidated. We investigated the association of plasma Aβ levels with severity and progression of SVD markers. We studied 487 participants from the RUN DMC study (Radboud University Nijmegen Diffusion Tensor and Magnetic Resonance Imaging Cohort) of whom 258 participants underwent 3 MRI assessments during 9 years. We determined baseline plasma Aβ38, Aβ40, and Aβ42 levels using ELISAs. We longitudinally assessed volume of white matter hyperintensities semiautomatically and manually rated lacunes and microbleeds. We analyzed associations between plasma Aβ and SVD markers by ANCOVA adjusted for age, sex, and hypertension. Cross-sectionally, plasma Aβ40 levels were elevated in participants with microbleeds (mean, 205.4 versus 186.4 pg/mL; P <0.01) and lacunes (mean, 194.8 versus 181.2 pg/mL; P <0.05). Both Aβ38 and Aβ40 were elevated in participants with severe white matter hyperintensities (Aβ38, 25.3 versus 22.7 pg/mL; P <0.01; Aβ40, 201.8 versus 183.3 pg/mL; P <0.05). Longitudinally, plasma Aβ40 levels were elevated in participants with white matter hyperintensity progression (mean, 194.6 versus 182.9 pg/mL; P <0.05). Both Aβ38 and Aβ40 were elevated in participants with incident lacunes (Aβ38, 24.5 versus 22.5 pg/mL; P <0.05; Aβ40, 194.9 versus 181.2 pg/mL; P <0.01) and Aβ42 in participants with incident microbleeds (62.8 versus 60.4 pg/mL; P <0.05). Plasma Aβ levels are associated with both presence and progression of SVD markers, suggesting that Aβ pathology might contribute to the development and progression of SVD. Plasma Aβ levels might thereby serve as inexpensive and noninvasive measure for identifying individuals with increased risk for progression of SVD. © 2018 American Heart Association, Inc.

  7. Bmi-1 expression modulates non-small cell lung cancer progression

    Science.gov (United States)

    Xiong, Dan; Ye, Yunlin; Fu, Yujie; Wang, Jinglong; Kuang, Bohua; Wang, Hongbo; Wang, Xiumin; Zu, Lidong; Xiao, Gang; Hao, Mingang; Wang, Jianhua

    2015-01-01

    Previous studies indicate that the role of B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1) is responsible for multiple cancer progression. However, Bmi-1 in controlling gene expression in non-small cell lung cancer (NSCLC) development is not well explored. Here we report that the Bmi-1 level is highly increased in primary NSCLC tissues compared to matched adjacent non-cancerous tissues and required for lung tumor growth in xenograft model. Furthermore, we also demonstrate that Bmi-1 level is lower in matched involved lymph node cancerous tissues than the respective primary NSCLC tissues. We find that Bmi-1 does not affect cell cycle and apoptosis in lung cancer cell lines as it does not affect the expression of p16/p19, Pten, AKT and P-AKT. Mechanistic analyses note that reduction of Bmi-1 expression inversely regulates invasion and metastasis of NSCLC cells in vitro and in vivo, followed by induction of epithelial-mesenchymal transition (EMT). Using genome microarray assays, we find that RNAi-mediated silence of Bmi-1 modulates some important molecular genetics or signaling pathways, potentially associated with NSCLC development. Taken together, our findings disclose for the first time that Bmi-1 level accumulates strongly in early stage and then declines in late stage, which is potentially important for NSCLC cell invasion and metastasis during progression. PMID:25880371

  8. Effectiveness of small daily amounts of progressive resistance training for frequent neck/shoulder pain

    DEFF Research Database (Denmark)

    Andersen, Lars L; Saervoll, Charlotte A; Mortensen, Ole S

    2011-01-01

    symptoms; 174 women and 24 men working at least 30 h per week and with frequent neck/shoulder pain were randomly assigned to resistance training with elastic tubing for 2 or 12 minutes per day 5 times per week, or weekly information on general health (control group). Primary outcomes were changes......UNLABELLED: Regular physical exercise is a cornerstone in rehabilitation programs, but adherence to comprehensive exercise remains low. This study determined the effectiveness of small daily amounts of progressive resistance training for relieving neck/shoulder pain in healthy adults with frequent......, muscle strength increased 2.0 Nm (95% confidence interval 0.5 to 3.5Nm, p=0.01) in the 2-minute group and 1.7Nm (95% confidence interval 0.2 to 3.3 Nm, p=0.02) in the 12-minute group. In conclusion, as little as 2 minutes of daily progressive resistance training for 10 weeks results in clinically...

  9. Carbon Reduction Strategies Based on an NW Small-World Network with a Progressive Carbon Tax

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2017-09-01

    Full Text Available There is an increasingly urgent need to reduce carbon emissions. Devising effective carbon tax policies has become an important research topic. It is necessary to explore carbon reduction strategies based on the design of carbon tax elements. In this study, we explore the effect of a progressive carbon tax policy on carbon emission reductions using the logical deduction method. We apply experience-weighted attraction learning theory to construct an evolutionary game model for enterprises with different levels of energy consumption in an NW small-world network, and study their strategy choices when faced with a progressive carbon tax policy. The findings suggest that enterprises that adopt other energy consumption strategies gradually transform to a low energy consumption strategy, and that this trend eventually spreads to the entire system. With other conditions unchanged, the rate at which enterprises change to a low energy consumption strategy becomes faster as the discount coefficient, the network externality, and the expected adjustment factor increase. Conversely, the rate of change slows as the cost of converting to a low energy consumption strategy increases.

  10. Statin and rottlerin small-molecule inhibitors restrict colon cancer progression and metastasis via MACC1.

    Science.gov (United States)

    Juneja, Manisha; Kobelt, Dennis; Walther, Wolfgang; Voss, Cynthia; Smith, Janice; Specker, Edgar; Neuenschwander, Martin; Gohlke, Björn-Oliver; Dahlmann, Mathias; Radetzki, Silke; Preissner, Robert; von Kries, Jens Peter; Schlag, Peter Michael; Stein, Ulrike

    2017-06-01

    MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.

  11. Atom land guided tour through the strange (and impossibly small) world of particle physics

    CERN Document Server

    Butterworth, Jon

    2018-01-01

    For fans of Seven Brief Lessons on Physics and Astrophysics for People in a Hurry: a richly conjured world, in map and metaphor, of particle physics. Atom Land brings the impossibly small world of particle physics to life, taking readers on a guided journey through the subatomic world. Readers will sail the subatomic seas in search of electron ports, boson continents, and hadron islands. The sea itself is the quantum field, complete with quantum waves. Beware dark energy and extra dimensions, embodied by fantastical sea creatures prowling the far edges of the known world. Your tour guide through this whimsical—and highly instructive— world is Jon Butterworth, leading physicist at CERN (the epicenter of today’s greatest findings in physics). Over a series of journeys, he shows how everything fits together, and how a grasp of particle physics is key to unlocking a deeper understanding of many of the most profound mysteries—and science’s possible answers—in the known universe.

  12. Overexpression of SAMD9 suppresses tumorigenesis and progression during non small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qing; Yu, Tao; Ren, Yao-Yao; Gong, Ting; Zhong, Dian-Sheng, E-mail: zhongdsyx@126.com

    2014-11-07

    Highlights: • SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). • Knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro. • Overexpression of SAMD9 suppressed proliferation and invasion in A549 cells in vitro. • Depletion of SAMD9 increases tumor formation in vivo. - Abstract: The Sterile Alpha Motif Domain-containing 9 (SAMD9) gene has been recently emphasized during the discovery that it is expressed at a lower level in aggressive fibromatosis and some cases of breast and colon cancer, however, the underlying mechanisms are poorly understood. Here, we found that SAMD9 is down-regulated in human non-small cell lung cancer (NSCLC). Furthermore, knockdown of SAMD9 expression is increased the invasion, migration and proliferation in H1299 cells in vitro and overexpression of SAMD9 suppressed proliferation and invasion in A549 cells. Finally, depletion of SAMD9 increases tumor formation in vivo. Our results may provide a strategy for blocking NSCLC tumorigenesis and progression.

  13. A Small Modular Reactor Core Design using FCM Fuel and BISO BP particles

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jae Yeon; Hwang, Dae Hee; Yoo, Ho Seong; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    The objective of this work is to design a PWR small modular reactor which employs the advanced fuel technology of FCM particle fuels including BISO burnable poisons and advanced cladding of SiC in order to improve the fuel economy and safety by increasing fuel burnup and temperature, and by reducing hydrogen generation under accidents. Recently, many countries including USA have launched projects to develop the accident tolerant fuels (ATF) which can cope with the accidents such as LOCA (Loss of Coolant Accident). In general, the ATF fuels are required to meet the PWR operational, safety, and fuel cycle constraints which include enhanced burnup, lower or no generation of hydrogen, lower operating temperatures, and enhanced retention of fission products. Another stream of research and development in nuclear society is to develop advanced small modular reactors in order to improve inherent passive safety and to reduce the risk of large capital investment. In this work, a small PWR modular reactor core was neutronically designed and analyzed. The SMR core employs new 13x13 fuel assemblies which are loaded with thick FCM fuel rods in which TRISO fuel particles AO and also the first cycle has the AOs which are within the typical design limit. Also, this figure shows that the evolutions of AO for the cycles 6 and 7 are nearly the same. we considered the SiC cladding for reduction of hydrogen generation under accidents. From the results of core design and analysis, it is shown that the core has long cycle length of 732 -1191 EFPDs, high discharge burnup of 101-105 MWD/kg, low power peaking factors, low axial offsets, negative MTCs, and large shutdown margins except for BOC of the first cycle. So, it can be concluded that the new SMR core is neutronically feasible.

  14. Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale

    Science.gov (United States)

    Gorokhovski, Mikhael; Zamansky, Rémi

    2018-03-01

    Consistently with observations from recent experiments and DNS, we focus on the effects of strong velocity increments at small spatial scales for the simulation of the drag force on particles in high Reynolds number flows. In this paper, we decompose the instantaneous particle acceleration in its systematic and residual parts. The first part is given by the steady-drag force obtained from the large-scale energy-containing motions, explicitly resolved by the simulation, while the second denotes the random contribution due to small unresolved turbulent scales. This is in contrast with standard drag models in which the turbulent microstructures advected by the large-scale eddies are deemed to be filtered by the particle inertia. In our paper, the residual term is introduced as the particle acceleration conditionally averaged on the instantaneous dissipation rate along the particle path. The latter is modeled from a log-normal stochastic process with locally defined parameters obtained from the resolved field. The residual term is supplemented by an orientation model which is given by a random walk on the unit sphere. We propose specific models for particles with diameter smaller and larger size than the Kolmogorov scale. In the case of the small particles, the model is assessed by comparison with direct numerical simulation (DNS). Results showed that by introducing this modeling, the particle acceleration statistics from DNS is predicted fairly well, in contrast with the standard LES approach. For the particles bigger than the Kolmogorov scale, we propose a fluctuating particle response time, based on an eddy viscosity estimated at the particle scale. This model gives stretched tails of the particle acceleration distribution and dependence of its variance consistent with experiments.

  15. Elementary particle physics at the University of Florida. Annual progress report

    International Nuclear Information System (INIS)

    1996-01-01

    This report discusses the following topics: Task A: theoretical elementary particle physics; Task B: experimental elementary particle physics; Task C: axion project; Task G: experimental research in collider physics; and Task S: computer acquisition. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  16. Light particle emission measurements in heavy ion reactions: Progress report, June 1, 1987-May 31, 1988

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1988-01-01

    This paper discusses work on heavy ion reactions done at Georgia State University. Topics and experiments discussed are: energy division in damped reactions between 58 Ni projectiles and 165 Ho and 58 Ni targets using time-of-flight methods; particle-particle correlations; and development works on the Hili detector system. 10 refs., 9 figs

  17. Coolability modelling for the layer of small corium particles in one of the severe NPP accident scenario

    International Nuclear Information System (INIS)

    Kazachkov, I.V.; Konovalikhin, M.I.

    2005-01-01

    This paper is devoted to a study of the conception of coolability of a small particle layer by water supplied both from the top, as well as from the bottom. Such conception has got the highest mark as an intensive coolability method for the layer of small particles (0,5 mm and less). For the modeling of thermal hydraulic processes by steam filtration in a layer of small particles accounting for the local heat transfer between particles and steam and real nonlinear properties of media, the method, computer code and experimental facility have been developed. The results of numerical simulation and experimental investigation for the one of the NPP severe accident scenario are given in this paper

  18. Breathhold MRI of the small bowel in Crohn's disease after enteroklysis with oral magnetic particles

    International Nuclear Information System (INIS)

    Holzknecht, N.; Helmberger, T.; Gauger, J.; Faber, S.; Reiser, M.; Ritter, C. von

    1998-01-01

    Purpose: To evaluate the efficacy of breathhold MRI following enteroclysis with addition of oral magnetic particles to study the extension, detection of stenoses and extraluminal manifestations in Crohn's disease. Results: Typical findings were marked bowel wall thickening with strong contrast enhancement. 95.8% of affected small bowel segments and 94.7% of stenoses were correctly detected by MRI. All four fistulas were detected and important extraluminal findings were seen in 6/18 patients. Additionally, one ileoileal and two ileosigmoidal adhesions, two extraluminal abscesses and affection of the right ureter were delineated. Conclusion: MRI in Crohn's disease offers the potential to avoid radiation exposure in this relatively young patient group. Important additional findings relevant to indication of surgery are seen in approximately one third of cases. The replacement of transduodenal intubation by oral contrast application remains to be further studied. (orig./AJ) [de

  19. A Methodology to Monitor Airborne PM10Dust Particles Using a Small Unmanned Aerial Vehicle.

    Science.gov (United States)

    Alvarado, Miguel; Gonzalez, Felipe; Erskine, Peter; Cliff, David; Heuff, Darlene

    2017-02-14

    Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM 10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs). A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK) was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA) and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module) obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities.

  20. A Methodology to Monitor Airborne PM10 Dust Particles Using a Small Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Miguel Alvarado

    2017-02-01

    Full Text Available Throughout the process of coal extraction from surface mines, gases and particles are emitted in the form of fugitive emissions by activities such as hauling, blasting and transportation. As these emissions are diffuse in nature, estimations based upon emission factors and dispersion/advection equations need to be measured directly from the atmosphere. This paper expands upon previous research undertaken to develop a relative methodology to monitor PM10 dust particles produced by mining activities making use of small unmanned aerial vehicles (UAVs. A module sensor using a laser particle counter (OPC-N2 from Alphasense, Great Notley, Essex, UK was tested. An aerodynamic flow experiment was undertaken to determine the position and length of a sampling probe of the sensing module. Flight tests were conducted in order to demonstrate that the sensor provided data which could be used to calculate the emission rate of a source. Emission rates are a critical variable for further predictive dispersion estimates. First, data collected by the airborne module was verified using a 5.0 m tower in which a TSI DRX 8533 (reference dust monitoring device, TSI, Shoreview, MN, USA and a duplicate of the module sensor were installed. Second, concentration values collected by the monitoring module attached to the UAV (airborne module obtaining a percentage error of 1.1%. Finally, emission rates from the source were calculated, with airborne data, obtaining errors as low as 1.2%. These errors are low and indicate that the readings collected with the airborne module are comparable to the TSI DRX and could be used to obtain specific emission factors from fugitive emissions for industrial activities.

  1. The design of a small flow optical sensor of particle counter

    Science.gov (United States)

    Zhan, Yongbo; zhang, Jianwei; Zeng, Jianxiong; Li, Bin; Chen, Lu

    2018-01-01

    Based on the principle of Mie scattering, we design a small flow optical sensor of particle counter. Firstly, laser illumination system was simulated and designed by ZEMAX optical design software, and the uniform light intensity of photosensitive area was obtained. The gas circuit structure was also designed according to the related theory of fluid mechanics. Then, the method of combining with MIST scattering calculation software and geometric modeling was firstly used to design spherical reflection system, on the basis of the formula of object-image distance. Finally, the test was conducted after the optical sensor placed in self-designed pre-amplification and high-speed processing circuit. The test results show that the counting efficiency of 0.3 μm gear is above 70%, 0.5 μm gear and 1.0 μm gear are both reached more than 90%, and the dispersion coefficient of each gear is very nearly the same, compared with the standard machine of Kanomax 3886 under the particle spraying flow of 2.5SCFH, 3.0SCFH, 3.5SCFH.

  2. Lip Injection Techniques Using Small-Particle Hyaluronic Acid Dermal Filler.

    Science.gov (United States)

    Chiu, Annie; Fabi, Sabrina; Dayan, Steven; Nogueira, Alessandra

    2016-09-01

    The shape and fullness of the lips have a significant role in facial aesthetics and outward appearance. The corrective needs of a patient can range from a subtle enhancement to a complete recontouring including correction of perioral rhytides. A comprehensive understanding of the lower face anatomical features and injection site techniques are foundational information for injectors. Likewise, the choice of filler material contributes to the success of the injection techniques used, and facilitates a safe, effective, and natural appearing outcome. The small-particle HA 20 mg/mL with lidocaine 0.3% (SP-HAL, Restylane® Silk; Galderma Laboratories, Fort Worth, Texas) is indicated for submucosal implantation for lip augmentation and dermal implantation for correction of perioral rhytides. Due to its rheological properties and smaller particle size, SP-HAL is a well-suited filler for the enhancement and correction of lip shape and volume, as well as for the correction of very fine perioral rhytides. This work is a combined overview of techniques found in the current literature and recommendations provided by contributing authors. J Drugs Dermatol. 2016;15(9):1076-1082.

  3. Rapid separation of lanthanides and actinides on small particle based reverse phase supports

    Energy Technology Data Exchange (ETDEWEB)

    Datta, A.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R. [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    This paper presents the results on the use of short columns (3-5 cm long) with small particle size (1.8 {mu}m) for high performance liquid chromatographic separation of individual lanthanides and uranium from plutonium as well as uranium from thorium to achieve rapid separations i.e. separation time as short as 3.6 min for individual lanthanides, 1 min for thorium-uranium and 4.2 min for uranium from plutonium. These advantages can be exploited to significantly reduce analysis time, liquid waste generation as well as dose to operator when radioactive samples are analysed e.g. burn-up determination. In the present work, a dynamic ion-exchange chromatographic separation technique was employed using camphor-10-sulfonic acid (CSA) as the ion-pairing reagent and {alpha}-hydroxy isobutyric acid ({alpha}-HIBA) as the complexing reagent for the isolation of individual lanthanides as well as the separation of uranium from thorium. Uranium was separated from Pu(III) as well as Pu(IV) by reverse phase HPLC technique. The reverse phase HPLC was also investigated for the isolation and quantitative determination of uranium from thorium as well as lanthanide group from uranium. The dynamic ion-exchange technique using small particle support was demonstrated for measuring the concentrations of lanthanide fission products such as La, Ce, Pr, Nd and Sm in the dissolver solution of fast reactor fuel. Similarly, the assay of uranium in the dissolver solution of fast reactor was carried out using reverse phase HPLC technique. The rapid separation technique using reverse phase HPLC was also demonstrated for separation of lanthanides as a group from uranium matrix; samples of LiCl-KCl eutectic salt containing chlorides of lanthanides in uranium matrix (typically 1: 2000) were analysed. (orig.)

  4. Research program in elementary particle theory. Progress report, 1975--1976. [Summaries of research activities

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.; Ne' eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included. (JFP)

  5. Research program in elementary particle theory. Progress report, 1975--1976

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included

  6. Research in elementary particle physics. Progress report, March 1, 1994--February 28, 1995

    International Nuclear Information System (INIS)

    Chan, Lai-Him; Haymaker, R.; Imlay, R.; McNeil, R.; Metcalf, W.; Svoboda, R.

    1994-01-01

    This report discusses the following topics: Low-energy particle dynamics; QCD dynamics on the lattice; lattice QCD Vacuum; phenomenology ampersand cosmology; the ZEUS Experiment at HERA; neutrino physics at LAMPF; non-accelerator physics; and SSC activity

  7. Elementary particle interactions. Progress report, October 1, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Ward, B.F.L.

    1992-10-01

    Work continues on strange particle production in weak interactions using data from a high-energy neutrino exposure in a freon bubble chamber. Meson photoproduction has also consumed considerable effort. Detector research and development activities have been carried out.

  8. FEN1 promotes tumor progression and confers cisplatin resistance in non-small-cell lung cancer.

    Science.gov (United States)

    He, Lingfeng; Luo, Libo; Zhu, Hong; Yang, Huan; Zhang, Yilan; Wu, Huan; Sun, Hongfang; Jiang, Feng; Kathera, Chandra S; Liu, Lingjie; Zhuang, Ziheng; Chen, Haoyan; Pan, Feiyan; Hu, Zhigang; Zhang, Jing; Guo, Zhigang

    2017-06-01

    Lung cancer is one of the leading causes of cancer mortality worldwide. The therapeutic effect of chemotherapy is limited due to the resistance of cancer cells, which remains a challenge in cancer therapeutics. In this work, we found that flap endonuclease 1 (FEN1) is overexpressed in lung cancer cells. FEN1 is a major component of the base excision repair pathway for DNA repair systems and plays important roles in maintaining genomic stability through DNA replication and repair. We showed that FEN1 is critical for the rapid proliferation of lung cancer cells. Suppression of FEN1 resulted in decreased DNA replication and accumulation of DNA damage, which subsequently induced apoptosis. Manipulating the amount of FEN1 altered the response of lung cancer cells to chemotherapeutic drugs. A small-molecule inhibitor (C20) was used to target FEN1 and this enhanced the therapeutic effect of cisplatin. The FEN1 inhibitor significantly suppressed cell proliferation and induced DNA damage in lung cancer cells. In mouse models, the FEN1 inhibitor sensitized lung cancer cells to a DNA damage-inducing agent and efficiently suppressed cancer progression in combination with cisplatin treatment. Our study suggests that targeting FEN1 may be a novel and efficient strategy for a tumor-targeting therapy for lung cancer. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  9. Progression of MRI markers in cerebral small vessel disease: Sample size considerations for clinical trials

    Science.gov (United States)

    Zeestraten, Eva; Lambert, Christian; Chis Ster, Irina; Williams, Owen A; Lawrence, Andrew J; Patel, Bhavini; MacKinnon, Andrew D; Barrick, Thomas R; Markus, Hugh S

    2016-01-01

    Detecting treatment efficacy using cognitive change in trials of cerebral small vessel disease (SVD) has been challenging, making the use of surrogate markers such as magnetic resonance imaging (MRI) attractive. We determined the sensitivity of MRI to change in SVD and used this information to calculate sample size estimates for a clinical trial. Data from the prospective SCANS (St George’s Cognition and Neuroimaging in Stroke) study of patients with symptomatic lacunar stroke and confluent leukoaraiosis was used (n = 121). Ninety-nine subjects returned at one or more time points. Multimodal MRI and neuropsychologic testing was performed annually over 3 years. We evaluated the change in brain volume, T2 white matter hyperintensity (WMH) volume, lacunes, and white matter damage on diffusion tensor imaging (DTI). Over 3 years, change was detectable in all MRI markers but not in cognitive measures. WMH volume and DTI parameters were most sensitive to change and therefore had the smallest sample size estimates. MRI markers, particularly WMH volume and DTI parameters, are more sensitive to SVD progression over short time periods than cognition. These markers could significantly reduce the size of trials to screen treatments for efficacy in SVD, although further validation from longitudinal and intervention studies is required. PMID:26036939

  10. Research in elementary particle physics: Technical progress report, June 1, 1987-May 31, 1988

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Abbott, L.F.; Bensinger, J.R.; Blocker, C.A.

    1988-01-01

    The main topics discussed in the progress report: electron/photon algorithm groups; W and Z analysis; heavy quark analysis; gas gain monitoring; database upgrade; CDF test beam studies; string theory; cosmology; and neutral networks

  11. Ultra-small particles of iron oxide as peroxidase for immunohistochemical detection

    International Nuclear Information System (INIS)

    Wu Yihang; Song Mengjie; Zhang Xiaoqing; Zhang Yu; Wang Chunyu; Gu Ning; Xin Zhuang; Li Suyi

    2011-01-01

    Dimercaptosuccinic acid (DMSA) modified ultra-small particles of iron oxide (USPIO) were synthesized through a two-step process. The first step: oleic acid (OA) capped Fe 3 O 4 (OA-USPIO) were synthesized by a novel oxidation coprecipitation method in H 2 O/DMSO mixing system, where DMSO acts as an oxidant simultaneously. The second step: OA was replaced by DMSA to obtain water-soluble nanoparticles. The as-synthesized nanoparticles were characterized by TEM, FTIR, TGA, VSM, DLS, EDS and UV-vis. Hydrodynamic sizes and Peroxidase-like catalytic activity of the nanoparticles were investigated. The hydrodynamic sizes of the nanoparticles (around 24.4 nm) were well suited to developing stable nanoprobes for bio-detection. The kinetic studies were performed to quantitatively evaluate the catalytic ability of the peroxidase-like nanoparticles. The calculated kinetic parameters indicated that the DMSA-USPIO possesses high catalytic activity. Based on the high activity, immunohistochemical experiments were established: using low-cost nanoparticles as the enzyme instead of expensive HRP, Nimotuzumab was conjugated onto the surface of the nanoparticles to construct a kind of ultra-small nanoprobe which was employed to detect epidermal growth factor receptor (EGFR) over-expressed on the membrane of esophageal cancer cell. The proper sizes of the probes and the result of membranous immunohistochemical staining suggest that the probes can be served as a useful diagnostic reagent for bio-detection.

  12. A Study of the Effects of Relative Humidity on Small Particle Adhesion to Surfaces

    Science.gov (United States)

    Whitfield, W. J.; David, T.

    1971-01-01

    Ambient dust ranging in size from less than one micron up to 140 microns was used as test particles. Relative humidities of 33% to 100% were used to condition test surfaces after loading with the test particles. A 20 psi nitrogen blowoff was used as the removal mechanism to test for particle adhesion. Particles were counted before and after blowoff to determine retention characteristics. Particle adhesion increased drastically as relative humidity increased above 50%. The greatest adhesion changes occurred within the first hour of conditioning time. Data are presented for total particle adhesion, for particles 10 microns and larger, and 50 microns and larger.

  13. submitter Phase transition observations and discrimination of small cloud particles by light polarization in expansion chamber experiments

    CERN Document Server

    Nichman, Leonid; Järvinen, Emma; Ignatius, Karoliina; Höppel, Niko Florian; Dias, Antonio; Heinritzi, Martin; Simon, Mario; Tröstl, Jasmin; Wagner, Andrea Christine; Wagner, Robert; Williamson, Christina; Yan, Chao; Connolly, Paul James; Dorsey, James Robert; Duplissy, Jonathan; Ehrhart, Sebastian; Frege, Carla; Gordon, Hamish; Hoyle, Christopher Robert; Kristensen, Thomas Bjerring; Steiner, Gerhard; McPherson Donahue, Neil; Flagan, Richard; Gallagher, Martin William; Kirkby, Jasper; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Stratmann, Frank; Tomé, António

    2016-01-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather, and general circulation models. The detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud particle-size range below 50 μm, remains challenging in mixed phase, often unstable environments. The Cloud Aerosol Spectrometer with Polarization (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure the variability in polarization state of their backscattered light. Here we operate the versatile Cosmics Leaving OUtdoor Droplets (CLOUD) chamber facility at the European Organization for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water, and ice particles. In this paper, optical property measurements of mixed-phase clouds and viscous secondary ...

  14. Qualitative analysis of barium particles coated in small intestinal mucosa of rabbit by using scanning electron microscopy

    International Nuclear Information System (INIS)

    Lee, Yong Suk; Ha, Hyun Kwon; Lee, Yang Seob; Kim, Jae Kyun; Yoon, Seong Eon; Kim, Jung Hoon; Chung, Dong Jin; Auh, Yong Ho

    1998-01-01

    To qualitatively analysed barium coating status in the intestinal mucosa, we used scanning electron microscopy to observe barium particles coated in the small intestinal mucosa of rabbit, and we attempted to assess the relationship between electron microscopic findings and radiographic densities. Six different combination of barium and methylcellulose suspensions were infused into the resected small intestines of 15 rabbits. Barium powders were mixed with water to make 40% and 70% w/v barium solutions, and also mixed with 0.5% methylcellulose solutions were used as a double contrast agent. After the infusion of barium suspensions, a mammography unit was used to obtain radiographs of the small intestine, and their optical densities were measured by a densitometer. Thereafter, photographs of barium-coated small intestinal mucosa were obtained using a scanning electron microscope (x 8,000), and the number of barium particles in the unit area were measured. To compare the relationship between the electron microscopic findings and optical densities, statistical analysis using Spearman correlation was performed. This study shows that by using scanning electron microscopy, barium particles coated on the small intestinal mucosa can be qualitatively analysed. It also shows that the number of small barium particles measured by scanning electron microscopy is related to optical densities. (author). 14 refs., 2 figs

  15. Progress and applications of MCAM. Monte Carlo automatic modeling program for particle transport simulation

    International Nuclear Information System (INIS)

    Wang Guozhong; Zhang Junjun; Xiong Jian

    2010-01-01

    MCAM (Monte Carlo Automatic Modeling program for particle transport simulation) was developed by FDS Team as a CAD based bi-directional interface program between general CAD systems and Monte Carlo particle transport simulation codes. The physics and material modeling and void space modeling functions were improved and the free form surfaces processing function was developed recently. The applications to the ITER (International Thermonuclear Experimental Reactor) building model and FFHR (Force Free Helical Reactor) model have demonstrated the feasibility, effectiveness and maturity of MCAM latest version for nuclear applications with complex geometry. (author)

  16. Study of Chemical Changes in Uranium Oxyfluoride Particles Progress Report June 2008 - February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Kips, R S; Kristo, M J; Hutcheon, I D

    2009-02-25

    The present study aims to demonstrate how knowledge of time-dependent changes in uranium oxyfluoride particles can benefit particle analyses for environmental sampling. Environmental sampling depends upon laboratory analysis of nuclear material that has often been exposed to the environment after it was produced. It is therefore important to understand how those environmental conditions might have changed the chemical composition of the material over time. To investigate this, we prepared a set of uranium oxyfluoride particles at the Institute for Reference Materials and Measurements (IRMM-DG Joint Research Centre of the European Commission, Belgium). These UO{sub 2}F{sub 2} particles were prepared from the release and subsequent hydrolysis of UF{sub 6} gas, and were stored at LLNL in environmental chambers, set to different humidity, temperature and lighting conditions. An experimental plan was drafted to assess the number of analyses required to track the changes in particle composition, morphology, and structure. Due to its high spatial resolution and excellent transmission, the NanoSIMS secondary ion mass spectrometer at LLNL was found to be the optimal tool to measure individual oxyfluoride particles. This was confirmed by our participation in the inter-laboratory measurement campaign for particle analysis (NUSIMEP-6), organized by the IRMM in June last year. The reported uranium isotope ratios demonstrated the precision and accuracy of the NanoSIMS and ims 3f SIMS measurements at LLNL, and provided a high degree of confidence that the new measurements on the UO{sub 2}F{sub 2} samples will be of comparable high quality. As fluorine is known to be a chemically-sensitive compound, we measured the intensity of the fluorine secondary ions relative to the ions generated by the matrix to evaluate the rate of particle degradation under different environmental conditions. A relative sensitivity factor was empirically determined to convert these measurements to

  17. Mixing large and small particles in a pilot scale rotary kiln

    DEFF Research Database (Denmark)

    Nielsen, Anders Rooma; Aniol, Rasmus Wochnik; Larsen, Morten Boberg

    2011-01-01

    The mixing of solid alternative fuel particles in cement raw materials was studied experimentally by visual observation in a pilot scale rotary kiln. Fuel particles were placed on top of the raw material bed prior to the experiment. The percentage of particles visible above the bed as a function...... of time was evaluated with the bed predominantly in the rolling bed mode. Experiments were conducted to investigate the effects of fuel particle size and shape, fuel particle density, rotary kiln fill degree and rotational speed. Large fuel particles and low-density fuel particles appeared more on top.......Results can be up-scaled to industrial conditions in cement rotary kilns and show that even relatively large fuel particles will predominantly be covered by raw material after less than 30s in the rotary kiln. This affects the heating and combustion mechanisms for the fuel particles....

  18. Small scale density variations of electrons and charged particles in the vicinity of polar mesosphere summer echoes

    Directory of Open Access Journals (Sweden)

    M. Rapp

    2003-01-01

    Full Text Available We present small scale variations of electron number densities and particle charge number densities measured in situ in the presence of polar mesosphere summer echoes. It turns out that the small scale fluctuations of electrons and negatively charged particles show a strong anticorrelation down to the smallest scales observed. Comparing these small scale structures with the simultaneously measured radar signal to noise profile, we find that the radar profile is well described by the power spectral density of both electrons and charged particles at the radar half wavelength (=the Bragg scale. Finally, we consider the shape of the power spectra of the observed plasma fluctuations and find that both charged particles and electrons show spectra that can be explained in terms of either neutral air turbulence acting on the distribution of a low diffusivity tracer or the fossil remnants of a formerly active turbulent region. All these results are consistent with the theoretical ideas by Rapp and Lübken (2003 suggesting that PMSE can be explained by a combination of active and fossil neutral air turbulence acting on the large and heavy charged aerosol particles which are subsequently mirrored in the electron number density distribution that becomes visible to a VHF radar when small scale fluctuations are present.

  19. Inhibition of full length Hepatitis C Virus particles of 1a genotype through small interference RNA

    Directory of Open Access Journals (Sweden)

    Rehman Sidra

    2011-05-01

    Full Text Available Abstract Background Hepatitis C virus (HCV, a member of the Flaviviridae family of viruses, is a major cause of chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. Currently, the only treatment available consists of a combination of Pegylated interferon alpha (INF-α and ribavirin, but only half of the patients treated show a sufficient antiviral response. Thus there is a great need for the development of new treatments for HCV infections. RNA interference (RNAi represents a new promising approach to develop effective antiviral drugs and has been extremely effective against HCV infection. Results This study was design to assess or explore the silencing effect of small interference RNAs (siRNAs against full length HCV particles of genotype 1a. In the present study six 21-bp siRNAs were designed against different regions of HCV structural genes (Core, E1 and E2. Selected siRNAs were labeled as Csi 301, Csi 29, E1si 52, E1si 192, E2si 86 and E2si 493. Our results demonstrated that siRNAs directed against HCV core gene showed 70% reduction in viral titer in HCV infected liver cells. Moreover, siRNAs against E1 and E2 envelop genes showed a dramatic reduction in HCV viral RNA, E2si 86 exhibited 93% inhibition, while E1si 192, E2si 493 and E1si 52 showed 87%, 80%, and 66% inhibition respectively. No significant inhibition was detected in cells transfected with the negative control siRNA. Conclusion Our results suggested that siRNAs targeted against HCV structural genes efficiently silence full length HCV particles and provide an effective therapeutic option against HCV infection.

  20. Problems in particle theory: Progress report, April 30, 1988--April 30, 1989

    International Nuclear Information System (INIS)

    Wilczek, F.; Adler, S.L.

    1989-01-01

    Funds are requested for the support of members of The Institute for Advanced Study working on problems in high energy theory. The specific problems to be investigated, which will depend strongly on the particular individuals supported, are expected to cover a variety of topics in particle theory and quantum field theory

  1. Progress report on research program in elementary particle theory, 1979-1980

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    A qualitative description is given of research in the following areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics and quark-parton physics; quantum mechanics, quantum field theory, and fundamental problems; and groups, gauges, and grand unified theories. Reports on this work have already been published, or will be, when it is completed

  2. Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: What is new?

    Energy Technology Data Exchange (ETDEWEB)

    Isabella Van Rooyen

    2014-10-01

    The TRISO particle for HTRs has been developed to an advanced state where the coating withstands internal gas pressures and retains fission products during irradiation and under postulated accidents. However, one exception is Ag that has been found to be released from high quality TRISO coated particles when irradiated and can also during high temperature accident heating tests. Although out- of- pile laboratory tests have never hither to been able to demonstrate a diffusion process of Ag in SiC, effective diffusion coefficients have been derived to successfully reproduce measured Ag-110m releases from irradiated HTR fuel elements, compacts and TRISO particles It was found that silver transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as Pd, are being investigated. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission kukuchi diffraction (TKD) patterns and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No silver was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium was also found in some of the very same triple junctions, but this could be related to silver behavior as Ag-110m decays to Cd-110. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries and in most SiC grain boundaries and the potential role of Pd in the transport of Ag will be discussed.

  3. Heavy particle clinical radiotherapy trial at Lawrence Berkeley Laboratory. Progress report, July 1975-July 1979

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.R.

    1979-01-01

    The primary objectives of the clinical radiotherapy program are: to evaluate the potential of improved dose localization particularly as exemplified by helium ion irradiation; and to evaluate the combined potential of improved dose localization and increased biologic effect available with heavier ions such as carbon, neon, and argon. It was possible to make modifications rapidly to provide for large field, fractionated, Bragg peak irradiation at the 184-inch cyclotron with the helium ion beam. This allowed the opportunity to gain experience with charged particle irradiation treatment techniques, patient immobilization techniques, treatment planning and dosimetry studies including the utilization of CT scanning for tumor localization and charged particle dose distributions as well as beginning studies in compensating for tissue inhomogeneities in the beam path. These treatment techniques have been directly transferable to the Bevalac facility where a similar patient positioner has been installed for human irradiation with heavier particles. For the studies both with helium and now with heavier particles, patients with multiple skin and subcutaneous metastatic nodules for evaluation of skin RBE data and patients with locally advanced and/or unresectable tumors unlikely to be effectively treated by any conventional modality were sought. In order to facilitate intercomparison with megavoltage irradiation techniques, a conventional dose fractionation scheme has been adopted. A few exceptions to this dose specification scheme have been patients in which pulmonary, subcutaneous or skin nodules have been irradiated with larger fraction sizes ranging up to 400 rads per fraction in order to obtain clinical RBE studies in 8 to 10 fractions of heavy particles.

  4. Heavy particle clinical radiotherapy trial at Lawrence Berkeley Laboratory. Progress report, July 1975-July 1979

    International Nuclear Information System (INIS)

    Castro, J.R.

    1979-01-01

    The primary objectives of the clinical radiotherapy program are: to evaluate the potential of improved dose localization particularly as exemplified by helium ion irradiation; and to evaluate the combined potential of improved dose localization and increased biologic effect available with heavier ions such as carbon, neon, and argon. It was possible to make modifications rapidly to provide for large field, fractionated, Bragg peak irradiation at the 184-inch cyclotron with the helium ion beam. This allowed the opportunity to gain experience with charged particle irradiation treatment techniques, patient immobilization techniques, treatment planning and dosimetry studies including the utilization of CT scanning for tumor localization and charged particle dose distributions as well as beginning studies in compensating for tissue inhomogeneities in the beam path. These treatment techniques have been directly transferable to the Bevalac facility where a similar patient positioner has been installed for human irradiation with heavier particles. For the studies both with helium and now with heavier particles, patients with multiple skin and subcutaneous metastatic nodules for evaluation of skin RBE data and patients with locally advanced and/or unresectable tumors unlikely to be effectively treated by any conventional modality were sought. In order to facilitate intercomparison with megavoltage irradiation techniques, a conventional dose fractionation scheme has been adopted. A few exceptions to this dose specification scheme have been patients in which pulmonary, subcutaneous or skin nodules have been irradiated with larger fraction sizes ranging up to 400 rads per fraction in order to obtain clinical RBE studies in 8 to 10 fractions of heavy particles

  5. Exploitation of very small particles to enhance the probative value of carpet fibers.

    Science.gov (United States)

    Stoney, David A; Neumann, Cedric; Mooney, Kim E; Wyatt, J Matney; Stoney, Paul L

    2015-07-01

    Environmentally acquired very small particles (VSP), present on the surfaces of carpet fibers, have shown potential for the association of fibers with their carpet source. To unlock this potential, research is required addressing a number of areas, including the application of methods under realistic casework conditions and the utilization of computational methods for the refinement and testing of the approach. In this work field collections of carpet fibers were conducted by crime scene practitioners under realistic casework conditions. VSP were isolated using previously developed methods, and analyses were conducted using SEM/EDS analytical protocols in an operational crime laboratory setting. Computational methods were designed, allowing sets of hundreds to thousands of VSP to be characterized. Classifiers were designed to associate and discriminate among specimens. These classifiers were applied to the VSP data for specimens collected by crime scene practitioners, as well as to a previously collected research dataset. Quantitative measures of correspondence and probative value were designed based on the classification measures and successfully applied to both sets of VSP data. Particle sets larger than 500 showed strong promise for quantitative associations with their sources. The use of larger numbers of target particle types (TPTs) showed strong promise to improve the performance of classification and association. Overall, the usefulness of VSP to provide objective, quantitative associations has been established. Because VSP are acquired post-manufacture, these methods can address fundamental limitations to probative value that arise when class characteristics, determined by manufacture, are shared among mass produced commodities. These findings are of broad significance for the future of trace evidence analysis. The results of this research are likely extendable, with minor modifications, to other trace evidence types (such as glass, tape and human hair

  6. Emission from small dust particles in diffuse and molecular cloud medium

    International Nuclear Information System (INIS)

    Bernard, J.P.; Desert, X.

    1990-01-01

    Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances

  7. Experimental light scattering by positionally-controlled small particles — Implications for Planetary Science

    Science.gov (United States)

    Gritsevich, M.; Penttilä, A.; Maconi, G.; Kassamakov, I.; Martikainen, J.; Markkanen, J.; Vaisanen, T.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Electromagnetic scattering is a fundamental physical process that allows inferring characteristics of an object studied remotely. This possibility is enhanced by obtaining the light-scattering response at multiple wavelengths and viewing geometries, i.e., by considering a wider range of the phase angle (the angle between the incident light and the light reflected from the object) in the experiment. Within the ERC Advanced Grant project SAEMPL (http://cordis.europa.eu/project/rcn/107666_en.html) we have assembled an interdisciplinary group of scientists to develop a fully automated, 3D scatterometer that can measure scattered light at different wavelengths from small particulate samples. The setup comprises: (a) the PXI Express platform to synchronously record data from several photomultiplier tubes (PMTs); (b) a motorized rotation stage to precisely control the azimuthal angle of the PMTs around 360°; and (c) a versatile light source, whose wavelength, polarization, intensity, and beam shape can be precisely controlled. An acoustic levitator is used to hold the sample without touching it. The device is the first of its kind, since it measures controlled spectral angular scattering including all polarization effects, for an arbitrary object in the µm-cm size scale. It permits a nondestructive, disturbance-free measurement with control of the orientation and location of the scattering object. To demonstrate our approach we performed detailed measurements of light scattered by a Chelyabinsk LL5 chondrite particle, derived from the light-colored lithology sample of the meteorite. These measurements are cross-validated against the modeled light-scattering characteristics of the sample, i.e., the intensity and the degree of linear polarization of the reflected light, calculated with state-of-the-art electromagnetic techniques (see Muinonen et al., this meeting). We demonstrate a unique non-destructive approach to derive the optical properties of small grain samples

  8. Bubbling bed catalytic hydropyrolysis process utilizinig larger catalyst particles and small biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2016-12-06

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  9. Structural characterizaiton and gas reactions of small metal particles by high-resolution, in-situ TEM and TED

    Science.gov (United States)

    1984-01-01

    The existing in-situ transmission electron microscopy (TEM) facility was improved by adding a separately pumped mini-specimen chamber. The chamber contains wire-evaporation sources for three metals and a specimen heater for moderate substrate temperatures. A sample introduction device was constructed, installed, and tested, facilitating rapid introduction of a specimen into the mini-chamber while maintaining the background pressure in that chamber in the 10(-9) millibar range. Small particles and clusters of Pd, grown by deposition from the vapor phase in an in-situ TEM facility on amorphous and crystalline support films of alumina and on ultra-thin carbon films, were analyzed by conventional high-resolution TEM and image analysis in terms of detectability, number density, and size distribution. The smallest particles that could be detected and counted contained no more than 6 atoms; size determinations could be made for particles 1 nm in diameter. The influence of various oxygen plasma treatments, annealing treatments, and of increasing the substrate temperature during deposition was investigated. The TEM technique was employed to demonstrate that under otherwise identica l conditions the lattice parameter of Pd particles in the 1 to 2 nm size range and supported in random orientation on ex-situ prepared mica films is expanded by some 3% when compared to 5 nm size particles. It is believed that this expansion is neither a small-particle diffraction effect nor due to pseudomorphism, but that it is due to a annealing-induced transformation of the small as-deposited particles with predominantly composite crystal structures into larger particles with true f.c.c. structure and thus inherently smaller lattice parameter.

  10. Progression-free survival, post-progression survival, and tumor response as surrogate markers for overall survival in patients with extensive small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Hisao Imai

    2015-01-01

    Full Text Available Objectives: The effects of first-line chemotherapy on overall survival (OS might be confounded by subsequent therapies in patients with small cell lung cancer (SCLC. We examined whether progression-free survival (PFS, post-progression survival (PPS, and tumor response could be valid surrogate endpoints for OS after first-line chemotherapies for patients with extensive SCLC using individual-level data. Methods: Between September 2002 and November 2012, we analyzed 49 cases of patients with extensive SCLC who were treated with cisplatin and irinotecan as first-line chemotherapy. The relationships of PFS, PPS, and tumor response with OS were analyzed at the individual level. Results: Spearman rank correlation analysis and linear regression analysis showed that PPS was strongly correlated with OS (r = 0.97, p < 0.05, R 2 = 0.94, PFS was moderately correlated with OS (r = 0.58, p < 0.05, R 2 = 0.24, and tumor shrinkage was weakly correlated with OS (r = 0.37, p < 0.05, R 2 = 0.13. The best response to second-line treatment, and the number of regimens employed after progression beyond first-line chemotherapy were both significantly associated with PPS ( p ≤ 0.05. Conclusion: PPS is a potential surrogate for OS in patients with extensive SCLC. Our findings also suggest that subsequent treatment after disease progression following first-line chemotherapy may greatly influence OS.

  11. Research in elementary particle physics: Technical progress report, June 1, 1986-May 31, 1987

    International Nuclear Information System (INIS)

    Kirsch, L.E.; Schnitzer, H.J.; Abbott, L.F.; Bensinger, J.R.; Blocker, C.A.

    1987-01-01

    Work is reported in the areas of: design, construction, and testing of components of the CDF, including shower counters, electronics, and electron identification algorithms; contributions to the design and construction of the Brookhaven MultiParticle Spectrometer; search for charm and K*'s and baryonium; measurement of differential cross section and polarization in the Lambda-antiLambda channel; a study of Xi states which measured the Xi asymmetry parameter; and dibaryon searches using the Brookhaven Hypernuclear Spectrometer. Theoretical efforts are reported in the areas of string theory, the Skyrme model applied to elementary particle phenomenology, quantum field theory, cosmology, galaxy formation, supernova 187A, field theory in curved space-times, and spin-glasses

  12. A research program in neutrino physics, cosmic rays and elementary particles. Progress report for Task A

    Energy Technology Data Exchange (ETDEWEB)

    Reines, F.; Sobel, H.W.

    1991-08-01

    Physics interests of the group are focused primarily on tests of conservation laws and studies of fundamental interactions between particles. There is also a significant interest in astrophysics and cosmic rays. Task A consists of three experimental programs; a Double-Beta Decay study (currently at the Hoover Dam), a Reactor Neutrino program (until this year at Savannah River), and the IMB Proton Decay experiment in a Cleveland salt mine. Discussion of the research in each area is given.

  13. [Research Progress in Analytical Technology for Heavy Metals in Atmospheric Particles].

    Science.gov (United States)

    Wang, Yu-jie; Tu, Zhen-quan; Zhou, Li; Chi, Yong-jie; Luo, Qin

    2015-04-01

    Atmospheric particles have become the primary atmospheric pollutions, of which the heavy metals, owing to non-degradability and hysteresis, a serious threat to human life and natural environment, have become a hot research issue currently. The analytical methods of heavy metals in atmospheric particles are summarized in the present review, including atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry, inductively coupled plasma mass spectrometry, neutron activation analysis, fluorescence spectrometry, glow discharge atomic emission spectrometry, microwave plasma atomic emission spectrometry, and laser induced breakdown spectroscopy, and some proposals are tried to make for improving the shortcomings of these technologies: continuum source Atomic absorption spectrometry for simultaneously measuring multi-elements, atomic emission spectrometry for direct determination of particulates, high resolution laser ablation inductively coupled plasma mass spectrometry for determination of solid samples, low scattering synchrotron fluorescence spectrum for determination of atmospheric particulate matter and k0 neutron activation analysis for determination of radioactive elements in the troposphere Analysis techniques of heavy metals in atmospheric particulate matter are promoted to develop toward being real-time, fast, low- detection-limit, direct-measurement and simple-operation due to the spatial and temporal distribution difference of the heavy metals in atmospheric particles and human requirement for improvement of ambient air quality as well as rapid development of modern instrument science and technology.

  14. High export via small particles before the onset of the North Atlantic spring bloom

    DEFF Research Database (Denmark)

    Giering, S. L. C.; Sanders, R.; Martin, A. P.

    2016-01-01

    , leading to deep mixing of particles as deep as 600 m. Subsequent restratification could trap these particles at depth and lead to high particle fluxes at depth without the need for aggregation ("mixed-layer pump"). Overall, we suggest that prebloom fluxes to the mesopelagic are significant, and the role...

  15. Small particles containing phthalic esters in the indoor environment - a pilot study

    DEFF Research Database (Denmark)

    Lundgren, B.; Bornehag, Carl-Gustaf; Cedhaim, L.

    2002-01-01

    Many chemicals in polymeric materials have low vapour pressure. Hypothetically such chemicals are emitted and may stay as particles or be adsorbed onto dust particles and become airborne. The aim of this pilot study has been to validate the methods for measuring phthalates on particles in indoor...

  16. Elementary particle interactions. Progress report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Siopsis, G.; Ward, B.F.L.

    1995-10-01

    This year has been a busy and demanding one with completion of a long SLD run, much progress on light quark states from E-687 resulting in strong evidence for two new states, observation in E-144 of non-linear Compton scattering (multiphoton absorption by electrons) up to N-4 and initial evidence for e + e - pair production in Compton process. The authors have also made considerable progress toward preparation for a n-bar n oscillation experiment and have carried out experimental studies of quartz fiber calorimetry for SLD polarimeter and forward calorimeter for CMS and LHC including a thorough set of gamma ray and neutron radiation damage studies on quartz fiber. Two graduate students received their Ph.D.s this year, Kathy Danyo Blackett on data from Fermilab E-687 and Sharon White on SLD radiative Bhabha scattering

  17. High energy particle physics at Purdue. Annual technical progress report, March 1982-March 1983

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Koltick, D.S.; Loeffler, F.J.

    1983-01-01

    Progress is reported in these areas: a study of electron-positron annihilation using the High Resolution Spectrometer at SLAC; proton decay; extensive muon showers; gamma ray astronomy; the DUMAND project; theoretical work on fundamental problems in electromagnetic, weak, strong, and gravitational interactions; chi production by hadrons; p-nucleus interactions; development of the Collider Detector at Fermilab; and study of the observed hadrons as the relativistic bound states of baryons and antibaryons

  18. Processes of energy deposition by heavy-particle and electron impact. Final progress report

    International Nuclear Information System (INIS)

    Salop, A.; Smith, F.T.

    1978-01-01

    Progress is reported in three areas of reasearch during the present period: K-shell ionization in high energy collisions of heavy ions with light target atoms using the sudden (Magnus) approximation, K-L level matching phenomena associated with K-shell vacancy production in heavy-ion collisions, and studies of low energy collisions of electrons with molecules using semi-classical perturbation theory. A brief discussion of each of these activities is given

  19. Research in elementary particle physics. Progress report, August 1, 1979-July 31, 1984

    International Nuclear Information System (INIS)

    1984-01-01

    In this document the High Energy Physics Group reviews its accomplishments and progress over the past five years. Also, as requested by DOE, the proposal for continuing research covers the next five years. Of course, we have been much more specific for the next few years since factors beyond our control will have a strong influence in our choice of research during the latter part of the five-year period

  20. Porosity of silica Stöber particles determined by spin-echo small angle neutron scattering.

    Science.gov (United States)

    Parnell, S R; Washington, A L; Parnell, A J; Walsh, A; Dalgliesh, R M; Li, F; Hamilton, W A; Prevost, S; Fairclough, J P A; Pynn, R

    2016-05-25

    Stöber silica particles are used in a diverse range of applications. Despite their widespread industrial and scientific uses, information on the internal structure of the particles is non-trivial to obtain and is not often reported. In this work we have used spin-echo small angle neutron scattering (SESANS) in conjunction with ultra small angle X-ray scattering (USAXS) and pycnometry to study an aqueous dispersion of Stöber particles. Our results are in agreement with models which propose that Stöber particles have a porous core, with a significant fraction of the pores inaccessible to solvent. For samples prepared from the same master sample in a range of H2O : D2O ratio solutions we were able to model the SESANS results for the solution series assuming monodisperse, smooth surfaced spheres of radius 83 nm with an internal open pore volume fraction of 32% and a closed pore fraction of 10%. Our results are consistent with USAXS measurements. The protocol developed and discussed here shows that the SESANS technique is a powerful way to investigate particles much larger than those studied using conventional small angle scattering methods.

  1. Near-Earth-object survey progress and population of small near-Earth asteroids

    Science.gov (United States)

    Harris, A.

    2014-07-01

    Estimating the total population vs. size of NEAs and the completion of surveys is the same thing since the total population is just the number discovered divided by the estimated completion. I review the method of completion estimation based on ratio of re-detected objects to total detections (known plus new discoveries). The method is quite general and can be used for population estimations of all sorts, from wildlife to various classes of solar system bodies. Since 2001, I have been making estimates of population and survey progress approximately every two years. Plotted below, left, is my latest estimate, including NEA discoveries up to August, 2012. I plan to present an update at the meeting. All asteroids of a given size are not equally easy to detect because of specific orbital geometries. Thus a model of the orbital distribution is necessary, and computer simulations using those orbits need to establish the relation between the raw re-detection ratio and the actual completion fraction. This can be done for any sub-group population, allowing to estimate the population of a subgroup and the expected current completion. Once a reliable survey computer model has been developed and ''calibrated'' with respect to actual survey re-detections versus size, it can be extrapolated to smaller sizes to estimate completion even at very small size where re-detections are rare or even zero. I have recently investigated the subgroup of extremely low encounter velocity NEAs, the class of interest for the Asteroid Redirect Mission (ARM), recently proposed by NASA. I found that asteroids of diameter ˜ 10 m with encounter velocity with the Earth lower than 2.5 km/sec are detected by current surveys nearly 1,000 times more efficiently than the general background of NEAs of that size. Thus the current completion of these slow relative velocity objects may be around 1%, compared to 10^{-6} for that size objects of the general velocity distribution. Current surveys are nowhere near

  2. Laboratory measurements of single light scattering by ensembles of randomly oriented small irregular particles in air. A review

    NARCIS (Netherlands)

    Muñoz, O.; Hovenier, J.W.

    2011-01-01

    In this paper we present an overview of light scattering experiments devoted to measure one or more elements of the scattering matrix as functions of the scattering angle of ensembles of randomly oriented small irregular particles in air. A summary of the most important findings in light scattering

  3. Power-law correlations and finite-size effects in silica particle aggregates studied by small-angle neutron scattering

    DEFF Research Database (Denmark)

    Freltoft, T.; Kjems, Jørgen; Sinha, S. K.

    1986-01-01

    Small-angle neutron scattering from normal, compressed, and water-suspended powders of aggregates of fine silica particles has been studied. The samples possessed average densities ranging from 0.008 to 0.45 g/cm3. Assuming power-law correlations between particles and a finite correlation length ξ......, the authors derive the scattering function S(q) from specific models for particle-particle correlation in these systems. S(q) was found to provide a satisfactory fit to the data for all samples studied. The fractal dimension df corresponding to the power-law correlation was 2.61±0.1 for all dry samples, and 2...

  4. High energy particle physics at Purdue. Annual technical progress report, March 1983-March 1984

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Koltick, D.S.; Loeffler, F.J.

    1984-01-01

    Progress is reported in these areas: a study of electron-positron annihilation using the High Resolution Spectrometer; experimental study of proton decay; gamma ray astrophysics; the DUMAND project; fundamental problems in the theory of gravitational, electromagnetic, weak, and strong interactions; chi production by hadrons; study of collective phenomena; search for the onset of collective phenonmena; work on the Collider Detector at Fermilab; search for a deconfined quark-gluon phase of strongly interacting matter at the FNAL proton-antiproton collider; and development of an electrodeless drift chamber

  5. High energy particle physics at Purdue. Annual progress report, March 1981-1982

    International Nuclear Information System (INIS)

    Gaidos, J.A.; Koltick, D.S.; Loeffler, F.J.; McIlwain, R.L.; Miller, D.H.; Palfrey, T.R.; Shibata, E.I.; Willmann, R.B.

    1982-01-01

    Progress is reported in these areas: study of electron positron annihilation using the High Resolution Spectrometer at PEP; experimental study of proton decay; a study of rare processes in meson spectroscopy utilizing the SLAC Hybrid Bubble Chamber System; theory of fundamental problems of gravitational, electromagnetic, weak, and strong interactions; experimental study of chi production by hadrons; p-nucleus interactions; development of the Collider Detector at Fermilab; anitneutrino physics and low energy neutrino physics; and the study of the observed hadrons as the relativistic bound states of baryons and antibaryons

  6. Particle trajectory computer program for icing analysis of axisymmetric bodies - A progress report

    Science.gov (United States)

    Maltezos, Dimitrios G.; Osonitsch, Charles; Shaw, Robert J.; Kaercher, Arthur

    1987-01-01

    Aircraft exposed to an atmospheric icing environment can accumulate ice, resulting in a sharp increase in drag, a reduction in lift, control surface fouling, and engine damage all of which result in a hazardous flight situation. NASA Lewis Research Center (LeRC) has conducted a program to examine, with the aid of high-speed computer codes, how the trajectories of particles contribute to the ice accumulation on airfoils and engine inlets. For this effort, a computer code was developed to calculate icing particle trajectories and impingement limits for axisymmetric inlets. The original research-oriented NASA code was upgraded and modified to meet the requirements of the design engineer. The improved code is capable of performing trajectory calculations for any atmospheric conditions and droplet sizes. It can handle single droplets or a distribution of various droplet sizes. The four programs that comprise the code are described and the results of a test case using flight conditions for a Fokker F100 icing tunnel test are presented.

  7. Research in elementary particle physics. Progress report, March 1, 1984-February 29, 1985

    International Nuclear Information System (INIS)

    Chan, L.H.; Haymaker, R.; Imlay, R.; Metcalf, W.

    1984-01-01

    We describe theoretical work on an effective low energy theory of hadrons, dynamical symmetry breaking, anomalies, supersymmetry and the phenomenology of Higgs particles. The high energy experimental group at Louisiana State University has collaborated with Columbia, Stony Brook, and the Max Planck Institute on an experiment at the North Area of CESR. This experiment studied electron-positron annihilations in the region of the new upsilon family of particles with an apparatus optimized for detecting leptons and photons. The T''' has been observed with properties consistent with its being above threshold for B meson production and several decay modes have been studied in detail. The ππ decays of the T' and T'' have also been measured as well as electromagnetic transition among the bb bound states. LSU contributed the muon detector for the experiment. We have concluded our participation in this experiment. The LSU group has joined a collaboration to measure neutrino oscillations at Los Alamos. We are now building the equipment for this experiment and should be taking data in 1985. We have also started to work on an e + e - experiment AMY which will run at TRISTAN in Japan

  8. Experimental particle physics at the University of Pittsburgh. Progress report, November 1, 1992--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, W.E.; Engels, E. Jr.; Humanic, T.J.; Perera, U.; Shepard, P.F.; Thompson, J.A.

    1993-04-01

    During the past year on Task A, the HELIOS work drew to a close with first results from the electron-muon pair studies (no anomalous sources are seen, and the final results and uncertainties are being set). First data from CMD2 will allow improvement of some phi branching ratios, including some improved limits on forbidden decays. The engineering run for E865 is scheduled for June and July of 1993. The principal efforts of Task B, the Fermilab program, have been the completion of the analysis of the 1987--88 data with resulting publications, completion of the 1990--91 data run, and the beginning of the analysis of the 1990--91 data. In addition, the Task B group is taking a leadership role in developing a proposal to Fermilab for the upgrade of the CDF silicon vertex detector in preparation for the 1995 data run. Task C has recently submitted results of its fractionally charged particle searches, placing new upper limits on the abundance of naturally-occurring fractionally-charged particles in various materials. This group has recently been approved by the Brookhaven management for an exposure of their p-i-n diodes in a high intensity proton beam. This measurement, along with its subsequent analysis, will complete the program. Task D concerned itself with silicon drift chamber studies for the SSC. Task E was devoted to studies of electronics for the GEM Level 1 liquid Ar calorimeter trigger.

  9. Research accomplishments in particle physics: Research progress report, July 16, 1986 to July 15, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    This document reports the activities of Boston University researchers in five projects in high energy physics research during the period July 16, 1986 to July 15, 1987. These include: search for proton decay and neutrinos from point astrophysical sources, as well as the study of cosmic ray muons and neutrinos in the IMB detector; study of high energy electron-positron annihilation, using the ASP and SLD detectors at SLAC; development of a new underground detector facility in the Gran Sasso Laboratory in Italy for magnetic monopoles and to study astrophysical muons and neutrinos; measurement of the anomalous magnetic moment of the muon in a new superconducting storage ring and detector system at BNL, with a major portion of design and construction of accelerator components at Boston University; and study of theoretical particle physics, including lattice gauge theories, string theories, phenomenology of the Standard Model and its extensions, and application of particle physics concepts to the early universe, cosmology and astrophysics, as well as the extension of these techniques into computational physics

  10. Particle shape reconstruction from the asymptotic small-angle scattering intensity

    International Nuclear Information System (INIS)

    Ciccariello, S.

    2002-01-01

    For two-phase samples, made up of equally shaped and oriented particles with a different size, the particle shape can be reconstructed from the relevant asymptotic iso-intensity surfaces if these are smooth revolution surfaces. This result, applied to a two-dimensional diffraction pattern with a C 2 -symmetry, determines the shape of the particle sections with the detector plane. The procedure is applied to an alloy sample and to a polymer solution under shear. (author)

  11. Particle shape reconstruction from the asymptotic small-angle scattering intensity

    CERN Document Server

    Ciccariello, S

    2002-01-01

    For two-phase samples, made up of equally shaped and oriented particles with a different size, the particle shape can be reconstructed from the relevant asymptotic iso-intensity surfaces if these are smooth revolution surfaces. This result, applied to a two-dimensional diffraction pattern with a C sub 2 -symmetry, determines the shape of the particle sections with the detector plane. The procedure is applied to an alloy sample and to a polymer solution under shear. (author)

  12. Theoretical studies in elementary particle physics. Technical progress report, September 1, 1985-May 31, 1986

    International Nuclear Information System (INIS)

    Collins, J.C.

    1986-01-01

    Since July 1985, most of the work has continued to be on problems in perturbative QCD that are relevant to physics at hadron collider - both for the Sp anti p S and the Tevatron, and for the proposed SSC. Some interesting problems have turned out to involve the relation between perturbative QCD and Regge theory - in diffractive hard scattering and in understanding the small-x behavior of parton distributions. 13 refs

  13. Light particle emission measurements in heavy ion reactions: Progress report, June 1, 1986-May 31, 1987

    International Nuclear Information System (INIS)

    Petitt, G.A.

    1987-01-01

    During the past year we have completed our work on neutron emission in coincidence with fission fragments from the 158 Er system. In addition to this we have completed preliminary analysis of our results on neutron emission from products of damped reactions between 58 Ni and 165 Ho at 930 MeV. Two experiments were planned for the present contract period as discussed in our proposal for 1986-87. One of these, to measure the mass and charge distributions from projectile-like fragments (PLF) in the reactions 58 Ni + 165 Ho and 58 Ni + 58 Ni using the time-of-flight facility at the HHIRF has been successfully completed. The other, to measure momentum correlations between neutrons and charged particles produced in central collisions between 32 S + 197 Au is scheduled to be run in mid-February. 14 refs., 4 figs

  14. Research in particle physics. Progress report, June 1, 1992--January 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Research accomplishments and current activities of Boston University researchers in high energy physics are presented. Principal areas of activity include the following: detectors for studies of electron{endash}positron annihilation in colliding beams; advanced accelerator component design, including the superconducting beam inflector, electrostatic quadrupoles, and the ``electrostatic muon kicker``; the detector for the MACRO (Monopole, Astrophysics, and Cosmic Ray Observatory) experiment; neutrino astrophysics and the search for proton decay; theoretical particle physics (electroweak and flavor symmetry breaking, hadron collider phenomenology, cosmology and astrophysics, new field-theoretic models, nonperturbative investigations of quantum field theories, electroweak interactions); measurement of the anomalous magnetic moment of the muon; calorimetry for the GEM experiment; and muon detectors for the GEM experiment at the Superconducting Super Collider.

  15. Progresses in the studies of adiabatic splitting of charged particle beams by crossing nonlinear resonances

    Directory of Open Access Journals (Sweden)

    A. Franchi

    2009-01-01

    Full Text Available The multiturn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by nonlinear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.

  16. Elementary particles and high energy phenomena. Progress report, May 1974--April 1975

    International Nuclear Information System (INIS)

    Nauenberg, U.; Bartlett, D.F.

    1975-05-01

    The study of K 0 /sub L/(π 3 ) has now been published in final form. When compared with the matrix elements for the K + (π 3 ) evidence was found for parallel I = 1/2 parallel violation in the linear terms, but not in the quadratic. The data-taking phase of a measurement of K 0 /sub L/ → K 0 /sub S/ p and related reactions at SLAC were completed. The presence of neutrons in the beam permits one to study several new reactions. The apparatus for detecting tachyon monopoles was installed above the Fermilab 15' bubble chamber, and data-taking begun. No evidence yet found for these particles. The theoretical effort was devoted to supporting the kaon experiments and to the study of dynamical symmetry breaking and Higg's symmetry. One has also written two proposals for experiments at Fermilab. A list of publications is included. (U.S.)

  17. Smallest LDL particles are most strongly related to coronarydisease progression in men

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Paul T.; Superko, H. Robert; Haskell, William L.; Alderman, Edwin L.; Blanche, Patricia J.; Holl, Laura Glines; Krauss,Ronald M.

    2002-12-03

    Objective-LDLs include particle subclasses that havedifferent mobilities on polyacrylamide gradient gels: LDL-I (27.2to 28.5nm), LDL-IIa (26.5 to 27.2 nm), LDL-IIb (25.6 to 26.5 nm), LDL-IIIa (24.7to 25.6 nm), LDL-IIIb (24.2 to 24.7nm), LDL-IVa (23.3 to 24.2 nm), andLDL-IVb (22.0 to 23.3 nm in diameter). We hypothesized that theassociationbetween smaller LDL particles and coronary artery disease(CAD) risk might involve specific LDL subclasses.Methods andResults-Average 4-year onstudy lipoprotein measurements were comparedwith annualized rates of stenosischange from baseline to 4 years in 117men with CAD. The percentages of total LDL and HDL occurringwithinindividual subclasses were measured by gradient gelelectrophoresis. Annual rate of stenosis change was relatedconcordantlyto onstudy averages of total cholesterol (P 0.04), triglycerides (P0.05), VLDL mass (P 0.03),total/HDL cholesterol ratio (P 0.04), LDL-IVb(P 0.01), and HDL3a (P 0.02) and inversely to HDL2-mass (P 0.02)and HDL2b(P 0.03). The average annual rate in stenosis change was 6-fold morerapid in the fourth quartile ofLDL-IVb (5.2 percent) than in the firstquartile ( 2.5 percent, P 0.03). Stepwise multiple regression analysisshowed thatLDL-IVb was the single best predictor of stenosischange.Conclusions-LDL-IVb was the single best lipoprotein predictor ofincreased stenosis, an unexpected result, given thatLDL-IVb representsonly a minor fraction of total LDL. (Arterioscler Thromb Vasc Biol.2003;23:314-321.)

  18. Evolution in Progress: PME Development in a Small Liberal Arts College

    Science.gov (United States)

    Evancoe, Donna Clark

    1980-01-01

    The experience of a small liberal arts college in trying to develop a usable and understandable planning, management, and evaluation (PME) system is described. PME tasks in small colleges center upon selecting starting points, demonstrating how different procedures can facilitate operations and decision making, and educating people. (Author/MLW)

  19. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken

  20. Risks of nuclear waste disposal in space. III - Long-term orbital evolution of small particle distribution

    Science.gov (United States)

    Friedlander, A. L.; Wells, W. C.

    1980-01-01

    A study of long term risks is presented that treats an additional pathway that could result in earth reentry, namely, small radioactive particles released in solar orbit due to payload fragmentation by accidental explosion or meteoroid impact. A characterization of such an event and of the initial mass size distribution of particles is given for two extremes of waste form strength. Attention is given to numerical results showing the mass-time distribution of material and the fraction of initial mass intercepted by earth. It is concluded that it appears that program planners need not be to concerned about the risks of this particular failure mechanism and return pathway.

  1. A review of progress in single particle tracking: from methods to biophysical insights

    Science.gov (United States)

    Manzo, Carlo; Garcia-Parajo, Maria F.

    2015-12-01

    Optical microscopy has for centuries been a key tool to study living cells with minimum invasiveness. The advent of single molecule techniques over the past two decades has revolutionized the field of cell biology by providing a more quantitative picture of the complex and highly dynamic organization of living systems. Amongst these techniques, single particle tracking (SPT) has emerged as a powerful approach to study a variety of dynamic processes in life sciences. SPT provides access to single molecule behavior in the natural context of living cells, thereby allowing a complete statistical characterization of the system under study. In this review we describe the foundations of SPT together with novel optical implementations that nowadays allow the investigation of single molecule dynamic events with increasingly high spatiotemporal resolution using molecular densities closer to physiological expression levels. We outline some of the algorithms for the faithful reconstruction of SPT trajectories as well as data analysis, and highlight biological examples where the technique has provided novel insights into the role of diffusion regulating cellular function. The last part of the review concentrates on different theoretical models that describe anomalous transport behavior and ergodicity breaking observed from SPT studies in living cells.

  2. Heat transfer from a horizontal finned tube bundle in bubbling fluidized beds of small and large particles

    Energy Technology Data Exchange (ETDEWEB)

    Devaru, C.B. [Jayachamaraja College of Engineering, Mysore (India). Dept. of Mechanical Engineering; Kolar, A.K. [Indian Inst. of Technology, Madras (India). Dept. of Mechanical Engineering

    1995-12-31

    Steady state average heat transfer coefficient measurements were made by the local thermal simulation technique in a cold, square, bubbling air-fluidized bed (0.305 m x 0.305 m) with immersed horizontal finned tube bundles (in-line and staggered) with integral 60{degree} V-thread. Studies were conducted using beds of small (average particle diameter less than 1 mm) sand particles and of large (average particle diameter greater thin 1 mm) particles (raagi, mustard, millet and coriander). The fin pitch varied from 0.8 to 5.0 mm and the fin height varied from 0.69 to 4.4 mm. The tube pitch ratios used were 1.75 and 3.5. The influence of bed particle diameter, fluidizing velocity, fin pitch, and tube pitch ratio on average heat transfer coefficient was studied. Fin pitch and bed particle diameter are the most significant parameters affecting heat transfer coefficient within the range of experimental conditions. Bed pressure drop depends only on static bed height. New direct correlations, incorporating easily measurable quantities, for average heat transfer coefficient for finned tube bundles (in-line and staggered) are proposed.

  3. Relationships between activators and inhibitors of plasminogen, and the progression of small abdominal aortic aneurysms

    DEFF Research Database (Denmark)

    Lindholt, Jes Sanddal; Jørgensen, B; Shi, G-P

    2003-01-01

    plasmin is a common activator of the known proteolytic systems involved in the aneurysmal degradation, and is reported to be associated with the expansion of abdominal aortic aneurysms (AAA). The aim of this study was to study the activating pathways of plasminogen as predictors of the progression...

  4. [Progress in sample preparation and analytical methods for trace polar small molecules in complex samples].

    Science.gov (United States)

    Zhang, Qianchun; Luo, Xialin; Li, Gongke; Xiao, Xiaohua

    2015-09-01

    Small polar molecules such as nucleosides, amines, amino acids are important analytes in biological, food, environmental, and other fields. It is necessary to develop efficient sample preparation and sensitive analytical methods for rapid analysis of these polar small molecules in complex matrices. Some typical materials in sample preparation, including silica, polymer, carbon, boric acid and so on, are introduced in this paper. Meanwhile, the applications and developments of analytical methods of polar small molecules, such as reversed-phase liquid chromatography, hydrophilic interaction chromatography, etc., are also reviewed.

  5. Experimental particle physics at the University of Pittsburgh. Progress report, November 1, 1995--October 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Boudreau, J.F.; Engels, E. Jr.; Shepard, P.F.; Thompson, J.A.

    1996-05-01

    This report covers the progress on two different tasks, Task A and Task B. Task A focuses on rare and semi-rare decays of {phi} and of the short-lived kaon with emphasis on those aspects needed in preparation for the proposed {Phi}-Factory measurements of CPT violation and {epsilon}{prime}/{epsilon} from the CP-violating decays of the K{sub L}K{sub S} final state. The second aspect of the kaon decay work is participation in the so-called rare kaon decay experiments, E865, at BNL. The major goals of Task B, Fermilab program, are as follows: (1) participation in the analysis of the E706 data taken during the 1990--1991 fixed target run at Fermilab and (2) the continuation of the work with the CDF collaboration particularly the SVX II upgrade. The E706 part of the program involves the completion of publications reporting the results of the 1990--91 data run. The analysis of these data is now mature and physics results are emerging. The CDF program involves a dedicated effort to the design of a silicon vertex detector upgrade, SVX II, to be accomplished by the time Fermilab run II collider run (1999). In addition they are participating in the 1993--1995 collide run Ib and actively analyzing the data from both runs Ia and Ib.

  6. The effect of shape and roughness on the maximum induction charge for small particles

    International Nuclear Information System (INIS)

    Yu Deying; Adamiak, K; Castle, G S P

    2008-01-01

    Considerable analytical and numerical work has already been done on the charging characteristics of spherical and cylindrical particles. However, the majority of industrial processes involve irregular particles with rough surfaces. In this paper, the relationships between the magnitude of the induction charge and electric field on conductive particles in a uniform electric field as a function of the particle shape and roughness have been investigated. The COMSOL program based on the Finite Element Method was used in the numerical modelling. The results show that in evaluating the value of induction charge for a fixed applied electric field, as particle shape changes care must be taken to ensure that surface fields do not exceed breakdown. With this limitation it is shown that, for a given volume, a smooth sphere will gain more induction charge than either a fibrous or flake shaped particle. However for particles with rough surfaces for some levels of roughness it is possible to obtain a higher charge than an equivalent smooth sphere. These results suggest that the degree of surface roughness may be important in certain coating applications.

  7. Blue-Emitting Small Silica Particles Incorporating ZnSe-Based Nanocrystals Prepared by Reverse Micelle Method

    Directory of Open Access Journals (Sweden)

    Masanori Ando

    2007-01-01

    Full Text Available ZnSe-based nanocrystals (ca. 4-5 nm in diameter emitting in blue region (ca. 445 nm were incorporated in spherical small silica particles (20–40 nm in diameter by a reverse micelle method. During the preparation, alkaline solution was used to deposit the hydrolyzed alkoxide on the surface of nanocrystals. It was crucially important for this solution to include Zn2+ ions and surfactant molecules (thioglycolic acid to preserve the spectral properties of the final silica particles. This is because these substances in the solution prevent the surface of nanocrystals from deterioration by dissolution during processing. The resultant silica particles have an emission efficiency of 16% with maintaining the photoluminescent spectral width and peak wavelength of the initial colloidal solution.

  8. Numerical Study of High-Speed Droplet Impact on Wet Surfaces and its Potential for Removing Small Particles from the Surfaces

    Science.gov (United States)

    Kondo, Tomoki; Ando, Keita

    2016-11-01

    In liquid jet cleaning, high-speed droplet impact on wet surfaces is an important phenomenon to remove small-sized contaminant particles from the surfaces. Here, we consider high-speed droplet impact on a rigid wall covered with a liquid film in order to investigate shear flow created at the wall after the impact and its role of removing small particles. We solve compressible Navier-Stokes equations with a finite volume method that is designed to capture both shocks and material interfaces in accurate and robust manners. The attached particles are assumed to be so small that the base liquid flow is undisturbed and flow around the particles is creeping; Stokes' hydrodynamic force on the particles under the shear flow is evaluated in a one-way-coupling way. The particle removal is judged by a balance between the hydrodynamic force and particle adhesion of van der Waals type, with varying impact speed and film thickness.

  9. Elevated-temperature ultrahigh-pressure liquid chromatography using very small polybutadiene-coated nonporous zirconia particles.

    Science.gov (United States)

    Xiang, Yanqiao; Yan, Bingwen; Yue, Bingfang; McNeff, Clayton V; Carr, Peter W; Lee, Milton L

    2003-01-03

    Capillary columns packed with small diameter particles typically lead to low permeability and long separation times in high-performance liquid chromatography. Ultrahigh pressures (>10,000 p.s.i.; 1 p.s.i. is identical with 6,894.76 Pa) can be used to overcome the limitations that small particles impose. Ultrahigh-pressure liquid chromatography (UHPLC) has demonstrated great potential for high-speed and high-efficiency separations. Decreasing the viscosity of the mobile phase by elevating the temperature could additionally reduce the pressure drop and facilitate the use of longer columns or smaller particles to achieve even higher total plate numbers. For this reason, we investigated the use of elevated temperatures in UHPLC. Water-resistant, flexible heater tape covered with insulation was used to provide the desired heat to the column. Polybutadiene-coated 1 microm nonporous zirconia particles were used because of their chemical stability at elevated temperature. A column efficiency as high as 420,000 plates m(-1) was obtained. The effects of temperature and pressure on the separation of parabens were investigated. Separation of five herbicides was completed in 60 s using 26,000 p.s.i. and 90 degrees C.

  10. Recent progress in the development of small-molecule glucagon receptor antagonists.

    Science.gov (United States)

    Sammons, Matthew F; Lee, Esther C Y

    2015-10-01

    The endocrine hormone glucagon stimulates hepatic glucose output via its action at the glucagon receptor (GCGr) in the liver. In the diabetic state, dysregulation of glucagon secretion contributes to abnormally elevated hepatic glucose output. The inhibition of glucagon-induced hepatic glucose output via antagonism of the GCGr using small-molecule ligands is a promising mechanism for improving glycemic control in the diabetic state. Clinical data evaluating the therapeutic potential of small-molecule GCGr antagonists is currently emerging. Recently disclosed clinical data demonstrates the potential efficacy and possible therapeutic limitations of small-molecule GCGr antagonists. Recent pre-clinical work on the development of GCGr antagonists is also summarized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).

    Science.gov (United States)

    Qian, Ming; Niu, Lili; Wang, Yanping; Jiang, Bo; Jin, Qiaofeng; Jiang, Chunxiang; Zheng, Hairong

    2010-10-21

    Determining a multidimensional velocity field within microscale opaque fluid flows is needed in areas such as microfluidic devices, biofluid mechanics and hemodynamics research in animal studies. The ultrasonic particle image velocimetry (EchoPIV) technique is appropriate for measuring opaque flows by taking advantage of PIV and B-mode ultrasound contrast imaging. However, the use of clinical ultrasound systems for imaging flows in small structures or animals has limitations associated with spatial resolution. This paper reports on the development of a high-resolution EchoPIV technique (termed as micro-EPIV) and its application in measuring flows in small vessel-mimic phantoms and vessels of small animals. Phantom experiments demonstrate the validity of the technique, providing velocity estimates within 4.1% of the analytically derived values with regard to the flows in a small straight vessel-mimic phantom, and velocity estimates within 5.9% of the computationally simulated values with regard to the flows in a small stenotic vessel-mimic phantom. Animal studies concerning arterial and venous flows of living rats and rabbits show that the micro-EPIV-measured peak velocities within several cardiac cycles are about 25% below the values measured by the ultrasonic spectral Doppler technique. The micro-EPIV technique is able to effectively measure the flow fields within microscale opaque fluid flows.

  12. Progress in model development for eddy current response in the presence of small conductivity changes

    Science.gov (United States)

    Cherry, Matt; Sathish, Shamachary; Mooers, Ryan; Pilchak, Adam

    2016-02-01

    In this paper, an approximation technique for predicting the response of an eddy current coil in the presence of small changes in conductivity is discussed. The small changes in conductivity that are considered in this work are changes in the orientation of single crystals in polycrystalline, anisotropic materials. Data from electron backscatter imaging techniques is presented and used for the analysis. The models were run for the microstructure data and an approximation to the eddy current response is shown. This image is compared with images from actual eddy current probes and the approximations are shown to be relatively accurate compared with a previously presented model.

  13. Measurement of α-particle quenching in LAB based scintillator in independent small-scale experiments

    Energy Technology Data Exchange (ETDEWEB)

    Krosigk, B. von [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); University of British Columbia, Department of Physics and Astronomy, Vancouver, BC (Canada); Chen, M.; Liu, X.; Wright, A. [Queen' s University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON (Canada); Hans, S. [Brookhaven National Laboratory, Upton, NY (United States); Bronx Community College, Bronx, NY (United States); Junghans, A.R. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Koegler, T. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Kraus, C. [Queen' s University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON (Canada); Laurentian University, Sudbury, ON (Canada); Kuckert, L. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany); Karlsruher Institut fuer Technologie, Institut fuer Experimentelle Kernphysik, Karlsruhe (Germany); Nolte, R. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); O' Keeffe, H.M. [Queen' s University, Department of Physics, Engineering Physics and Astronomy, Kingston, ON (Canada); Lancaster University, Physics Department, Lancaster (United Kingdom); Tseung, H.W.C. [University of Washington, Department of Physics, Center for Experimental Nuclear Physics and Astrophysics, Seattle, WA (United States); Mayo Clinic, Department of Radiation Oncology, Rochester, MN (United States); Wilson, J.R. [Queen Mary, University of London, School of Physics and Astronomy, London (United Kingdom); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States); Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany)

    2016-03-15

    The α-particle light response of liquid scintillators based on linear alkylbenzene (LAB) has been measured with three different experimental approaches. In the first approach, α-particles were produced in the scintillator via {sup 12}C(n,α){sup 9}Be reactions. In the second approach, the scintillator was loaded with 2 % of {sup nat}Sm providing an α-emitter, {sup 147}Sm, as an internal source. In the third approach, a scintillator flask was deployed into the water-filled SNO+ detector and the radioactive contaminants {sup 222}Rn, {sup 218}Po and {sup 214}Po provided the α-particle signal. The behavior of the observed α-particle light outputs are in agreement with each case successfully described by Birks' law. The resulting Birks parameter kB ranges from (0.0066 ± 0.0016) to (0.0076 ± 0.0003) cm/MeV. In the first approach, the α-particle light response was measured simultaneously with the light response of recoil protons produced via neutron- proton elastic scattering. This enabled a first time a direct comparison of kB describing the proton and the α-particle response of LAB based scintillator. The observed kB values describing the two light response functions deviate by more than 5σ. The presented results are valuable for all current and future detectors, using LAB based scintillator as target, since they depend on an accurate knowledge of the scintillator response to different particles. (orig.)

  14. Facilitating model reconstruction for single-particle scattering using small-angle X-ray scattering methods.

    Science.gov (United States)

    Ma, Shufen; Liu, Haiguang

    2016-04-01

    X-ray free-electron lasers generate intense femtosecond X-ray pulses, so that high-resolution structure determination becomes feasible from noncrystalline samples, such as single particles or single molecules. At the moment, the orientation of sample particles cannot be precisely controlled, and consequently the unknown orientation needs to be recovered using computational algorithms. This delays the model reconstruction until all the scattering patterns have been re-oriented, which often entails a long elapse of time and until the completion of the experiment. The scattering patterns from single particles or multiple particles can be summed to form a virtual powder diffraction pattern, and the low-resolution region, corresponding to the small-angle X-ray scattering (SAXS) regime, can be analysed using existing SAXS methods. This work presents a pipeline that converts single-particle data sets into SAXS data, from which real-time model reconstruction is achieved using the model retrieval approach implemented in the software package SASTBX [Liu, Hexemer & Zwart (2012). J. Appl. Cryst. 45 , 587-593]. To illustrate the applications, two case studies are presented with real experimental data sets collected at the Linac Coherent Light Source.

  15. Poly(NIPAM) micro gel particle de-swelling: a light scattering and small-angle neutron scattering study

    International Nuclear Information System (INIS)

    Daly, E.; Saunders, B.

    1999-01-01

    Full text: Small-angle neutron scattering (SANS) has been used to investigate structural changes during the de-swelling of poly(N-isopropylacrylamide) [poly(NIPAM)] micro gel particles induced by temperature variation and the addition of free polymer [poly(ethylene oxide)]. The extent of particle de-swelling was characterized by photon correlation spectroscopy (PCS). Thermally-induced de-swelling of poly(NIPAM) / deuterated water dispersions occurred on increasing the temperature in the region of the lower critical solution temperature (LCST). The latter was found to be 34 deg C, which is 2 deg C higher than the value reported for poly(NIPAM) particles dispersed in water. The SANS data exhibit a Porod form (Q -4 ) of scattering in regard to the size of the colloidal particles. However, in the swollen state, the scattering measured at temperatures less than the LCST, also has a contribution from poly(NIPAM) chains in a solution-like environment (Ornstein-Zernicke scattering). The SANS data confirm earlier PCS measurements showing that addition of free polymer induces particle de-swelling. The SANS data obtained using added free polymer are the first examples of their type to be reported

  16. Two- and multi-particle azimuthal correlations in small collision systems with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00256459; The ATLAS collaboration

    2017-01-01

    The recent ATLAS results on two- and multi-particle azimuthal correlations of charged particles are presented for $\\sqrt{s}$=~5.02 TeV and 13 TeV $pp$, $\\sqrt{s_\\mathrm{NN}}$= 5.02 TeV $p$+Pb and $\\sqrt{s_\\mathrm{NN}}$= 2.76 TeV low-multiplicity Pb+Pb collisions. To remove the "non-flow" contribution from the correlations, that arises predominantly from hard-scattering processes, a template fitting procedure is used in the two-particle correlations (2PC) measurements, while for multi-particle correlations the cumulant method is applied. The correlations are expressed in the form of Fourier harmonics $\\mathrm{v}_n (n=2,3,4)$ measuring the global azimuthal anisotropy. The measurements presented hereafter confirm the evidence for collective phenomena in $p$+Pb and low-multiplicity Pb+Pb collisions. For $pp$ collisions the results on four-particle cumulants do not demonstrate a similar collective behaviour.

  17. Biological effects of high strength electric fields on small laboratory animals. Interim progress report, March 9, 1976--September 8, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.D.; Kaune, W.T.; Decker, J.R.; Hjeresen, D.L.

    1976-09-01

    Progress is reported on a broad and comprehensive series of biological experiments made under strictly controlled laboratory conditions to screen for possible effects of exposure to 60-Hz electric fields on small laboratory animals. Electric field strengths comparable to and exceeding those under existing and anticipated transmission line designs will be used. Dosimetry studies will complement the animal studies to establish the relationship between tissue dose and any observed biological effects. Information derived from this project will provide a better basis for evaluating potential hazards of exposure to 60-Hz electric fields and help define parameters to be studied in clinical evaluations on humans.

  18. Forces acting on a small particle in an acoustical field in a viscous fluid

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Bruus, Henrik

    2012-01-01

    We calculate the acoustic radiation force from an ultrasound wave on a compressible, spherical particle suspended in a viscous fluid. Using Prandtl-Schlichting boundary-layer theory, we include the kinematic viscosity of the solvent and derive an analytical expression for the resulting radiation...

  19. Studies on silica sol-clay particle interactions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Moini, A.; Pinnavaia, T.J.; Michigan State Univ., East Lansing; Thiyagarajan, P.; White, J.W.

    1988-01-01

    SANS data were collected on a series of hydrolyzed silica and silica-clay complexes prepared from a 40 A silica sol and aqueous suspensions of Na + montmorillonite. The hydrolyzed silica product showed a peak centered at Q=0.0856 A -1 corresponding to a distance of 73 A between the sol particles. For such an evaporated gel in which the particles are in close contact, this distance is expected to be very close to the particle diameter indicating partial aggregation of the original spheres. A similar feature was observed in the SANS data for silica-clay products indicating the presence of some unintercalated silica. The intensity of this scattering was found to be dependent on the silica:clay ratio and the reaction time. The SANS data in the region from Q=0.006 to 0.025 A -1 were characteristic of clay scattering and exhibited a power-law behavior. The change in the slope of this curve upon reaction of the clay with the silica sol was interpreted in terms of a separation of clay platelets caused by a binding interaction with the sol particles. (orig.)

  20. Light scattering by small feldspar particles simulated using the Gaussian random sphere geometry

    NARCIS (Netherlands)

    Veihelmann, B.; Nousiainen, T.; Kahnert, M.; Zande, W.J. van der

    2006-01-01

    The single-scattering properties of Gaussian random spheres are calculated using the discrete dipole approximation. The ensemble of model particles is assumed to be representative for a feldspar dust sample that is characteristic for weakly absorbing irregularly shaped mineral aerosol. The

  1. Manipulation of small particles at solid liquid interface: light driven diffusioosmosis

    Science.gov (United States)

    Feldmann, David; Maduar, Salim R.; Santer, Mark; Lomadze, Nino; Vinogradova, Olga I.; Santer, Svetlana

    2016-11-01

    The strong adhesion of sub-micron sized particles to surfaces is a nuisance, both for removing contaminating colloids from surfaces and for conscious manipulation of particles to create and test novel micro/nano-scale assemblies. The obvious idea of using detergents to ease these processes suffers from a lack of control: the action of any conventional surface-modifying agent is immediate and global. With photosensitive azobenzene containing surfactants we overcome these limitations. Such photo-soaps contain optical switches (azobenzene molecules), which upon illumination with light of appropriate wavelength undergo reversible trans-cis photo-isomerization resulting in a subsequent change of the physico-chemical molecular properties. In this work we show that when a spatial gradient in the composition of trans- and cis- isomers is created near a solid-liquid interface, a substantial hydrodynamic flow can be initiated, the spatial extent of which can be set, e.g., by the shape of a laser spot. We propose the concept of light induced diffusioosmosis driving the flow, which can remove, gather or pattern a particle assembly at a solid-liquid interface. In other words, in addition to providing a soap we implement selectivity: particles are mobilized and moved at the time of illumination, and only across the illuminated area.

  2. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F.L.; Van Vliet, L.J.; Hartman Kok, P.J.A.; Vromans, H.; Frijlink, H.W.; Van der Voort Maarschalk, K.

    2008-01-01

    Purpose This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. Methods The method applies the MATLAB image processing toolbox to images of coated

  3. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    Science.gov (United States)

    Kameya, Yuki; Lee, Kyeong O.

    2013-10-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed.

  4. Ultra-small-angle X-ray scattering characterization of diesel/gasoline soot: sizes and particle-packing conditions

    International Nuclear Information System (INIS)

    Kameya, Yuki; Lee, Kyeong O.

    2013-01-01

    Regulations on particulate emissions from internal combustion engines tend to become more stringent, accordingly the importance of particulate filters in the after-treatment system has been increasing. In this work, the applicability of ultra-small-angle X-ray scattering (USAXS) to diesel soot cake and gasoline soot was investigated. Gasoline-direct-injection engine soot was collected at different fuel injection timings. The unified fits method was applied to analyze the resultant scattering curves. The validity of analysis was supported by comparing with carbon black and taking the sample images using a transmission electron microscope, which revealed that the primary particle size ranged from 20 to 55 nm. In addition, the effects of particle-packing conditions on the USAXS measurement were demonstrated by using samples suspended in acetone. Then, the investigation was extended to characterization of diesel soot cake deposited on a diesel particulate filter (DPF). Diesel soot was trapped on a small piece of DPF at different deposition conditions which were specified using the Peclet number. The dependence of scattering curve on soot-deposition conditions was demonstrated. To support the interpretation of the USAXS results, soot cake samples were observed using a scanning electron microscope and the influence of particle-packing conditions on scattering curve was discussed

  5. v-Ha-ras oncogene insertion: A model for tumor progression of human small cell lung cancer

    International Nuclear Information System (INIS)

    Mabry, M.; Nakagawa, Toshitaro; Nelkin, B.D.; McDowell, E.; Gesell, M.; Eggleston, J.C.; Casero, R.A. Jr.; Baylin, S.B.

    1988-01-01

    Small cell lung cancer (SCLC) manifests a range of phenotypes in culture that may be important in understanding its relationship to non-SCLCs and to tumor progression events in patients. Most SCLC-derived cell lines, termed classic SCLC lines, have properties similar to SCLC tumors in patients. To delineate further the relationships between these phenotypes and the molecular events involved, the authors inserted the v-Ha-ras gene in SCLC cell lines with (biochemical variant) and without (classic) an amplified c-myc gene. These two SCLC subtypes had markedly different phenotypic responses to similar levels of expression of v-Ha-ras RNA. No biochemical or morphologic changes were observed in classic SCLC cells. In contrast, in biochemical variant SCLC cells, v-Ha-ras expression induced features typical of large cell undifferentiated lung carcinoma. Expression of v-Ha-ras in biochemical variant SCLC cells directly demonstrates that important transitions can occur between phenotypes of human lung cancer cells and that these may play a critical role in tumor progression events in patients. The finding provide a model system to study molecular events involved in tumor progression steps within a series of related tumor types

  6. In-situ TEM investigations of graphic-epitaxy and small particles. Final Report, 1 January-31 December 1982

    International Nuclear Information System (INIS)

    Heinemann, K.

    1983-01-01

    Palladium was deposited inside a controlled-vacuum specimen chamber of a transmission electron microscope (TEM) onto MgO and alpha-alumina substrate surfaces. Annealing and various effects of gas exposure of the particulate Pd deposits were studied in-situ by high resolution TEM and electron diffraction. Whereas substrate temperatures of 500 C or annealing of room temperature (RT) deposits to 500 C were needed to obtain epitaxy on sapphire, RT deposits on MgO were perfectly epitaxial. For Pd/MgO a lattice expansion of 2 to 4% was noted the highest values of expansion were found for the smallest particles. The lattice expansion of small Pd particles on alumina substrates was less than 1%. Long-time RT exposure of Pd/MgO in a vacuum yielded some moblity and coalescence events, but notably fewer than for Pd on sapphire. Exposure to air or oxygen greatly enhanced the particle mobility and coalescence and also resulted in the flattening of Pd particles on MgO substrates. Electron-beam irradiation further enhanced this effect. Exposure to air for several tens of hours of Pd/MgO led to strong coalescence

  7. Analytical approximations for the orientation distribution of small dipolar particles in steady shear flows

    DEFF Research Database (Denmark)

    Bees, Martin Alan; Hill, N.A.; Pedley, T.J.

    1998-01-01

    Analytical approximations are obtained to solutions of the steady Fokker-Planck equation describing the probability density function for the orientation of dipolar particles in a steady, low-Reynolds-number shear flow and a uniform external field. Exact computer algebra is used to solve the equat......Analytical approximations are obtained to solutions of the steady Fokker-Planck equation describing the probability density function for the orientation of dipolar particles in a steady, low-Reynolds-number shear flow and a uniform external field. Exact computer algebra is used to solve...... the equation in terms of a truncated spherical harmonic expansion. It is demonstrated that very low orders of approximation are required for spheres but that spheriods introduce resolution problems in certain flow regimes. Moments of orientation probability density function are derived and applications...

  8. Small PWR 'PFPWR50' using cermet fuel of Th-Pu particles

    International Nuclear Information System (INIS)

    Hirayama, Takashi; Shimazu, Yoichiro

    2009-01-01

    An innovative concept of PFPWR50 has been studied. The main feature of PFPWR50 has been to adopt TRISO coated fuel particles in a conventional PWR cladding. Coated fuel particle provides good confining ability of fission products. But it is pointed out that swelling of SiC layer at low temperature by irradiation has possibilities of degrading the integrity of coated fuel particle in the LWR environment. Thus, we examined the use of Cermet fuel replacing SiC layer to Zr metal or Zr compound. And the nuclear fuel has been used as fuel compact, which is configured to fix coated fuel particles in the matrix material to the shape of fuel pellet. In the previous study, graphite matrix is adopted as the matrix material. According to the burnup calculations of the several fuel concepts with those covering layers, we decide to use Zr layer embedded in Zr metal base or ZrC layer with graphite matrix. But carbon has the problem at low temperature by irradiation as well as SiC. Therefore, Zr covering layer and Zr metal base are finally selected. The other feature of PFPWR50 concept has been that the excess reactivity is suppressed during a cycle by initially loading burnable poison (gadolinia) in the fuels. In this study, a new loading pattern is determined by combining 7 types of assemblies in which the gadolinia concentration and the number of the fuel rods with gadolinia are different. This new core gives 6.7 equivalent full power years (EFPY) as the core life of a cycle. And the excess reactivity is suppressed to less than 2.0%Δk/k during the cycle. (author)

  9. Collision of a Small Rising Bubble with a Large Falling Particle

    Czech Academy of Sciences Publication Activity Database

    Hubička, M.; Basařová, P.; Vejražka, Jiří

    2013-01-01

    Roč. 121, JUN 10 (2013), s. 21-30 ISSN 0301-7516 R&D Projects: GA ČR GAP101/11/0806 Grant - others:GA MŠk(CZ) 21/2011 Institutional support: RVO:67985858 Keywords : bubble-particle interaction * collision process * collision efficiency Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.461, year: 2013

  10. Quantitative image analysis for evaluating the coating thickness and pore distribution in coated small particles.

    Science.gov (United States)

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    2009-04-01

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken with Confocal Laser Scanning Microscopy (CSLM). The coating thicknesses have been determined along the particle perimeter, from which a statistical analysis could be performed to obtain relevant thickness properties, e.g. the minimum coating thickness and the span of the thickness distribution. The characterization of the pore structure involved a proper segmentation of pores from the coating and a granulometry operation. The presented method facilitates the quantification of porosity, thickness and pore size distribution of a coating. These parameters are considered the important coating properties, which are critical to coating functionality. Additionally, the effect of the coating process variations on coating quality can straight-forwardly be assessed. Enabling a good characterization of the coating qualities, the presented method can be used as a fast and effective tool to predict coating functionality. This approach also enables the influence of different process conditions on coating properties to be effectively monitored, which latterly leads to process tailoring.

  11. [Research Progress of Novel Small Molecule Drugs in the Treatment of Chronic Lymphocytic Leukemia -Review].

    Science.gov (United States)

    Qiao, Jing-Qiao; He, Miao; Zhang, Shu-Ting; Bai, Hai

    2017-02-01

    Chronic lymphocytic leukemia (CLL), the most frequent adult leukemia in Western population, is characterized by accumulation of mature-looking CD5 + /19 + /23 + B cells in peripheral blood, bone marrow, and lymphatic organs. Over the last 20 years, there has been a dramatic change in therapy for CLL, the complete response rate increased from the initial explosion of new active agents that provide a very effective solution for patients with recurrent/refractory disease as well as those who harbor poor cytogenetic abnormalities. This review focuses on some of the novel small molecule drugs that have either been approved or are at the forefront of clinical development in the treatment of patients with CLL, including tyrosine kinase inhibitior ibrutinib, PI3K inhibitor idelalisib, Syk inhibitor, BCL-2 inhibitor and so on.

  12. Progress of Neoadjuvant Therapy Combined with Surgery in Non-small Cell
Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yaqi WANG

    2017-05-01

    Full Text Available Background and objective Lung cancer is the leading form of cancer in terms of both incidence and cancer-related deaths. For patients with resectable IIIa/N2 non-small cell lung cancer (NSCLC, guidelines in and abroad recommend multidisciplinary team treatment, including surgery and chemotherapy, radiotherapy or other comprehensive treatment. Newly published evidences prove that neoadjuvant therapy can improve outcomes of NSCLC patients significantly, with advangtages in tolerability and compliance medication. Neoadjuvant therapy has been adopted mainly in locally advanced NSCLC, especially in stages IIIa/N2 patients, and chemotherapy of 2-4 cycles has become the basic pattern. Neoadjuvant therapy does not increase the concomitant complications of chemotherapy and surgery. However, challenges still exist in determining subsequent surgical timing, approach and extent of resection.

  13. Combined particle emission reduction and heat recovery from combustion exhaust-A novel approach for small wood-fired appliances

    International Nuclear Information System (INIS)

    Messerer, A.; Schmatloch, V.; Poeschl, U.; Niessner, R.

    2007-01-01

    Replacing fossil fuels by renewable sources of energy is one approach to address the problem of global warming due to anthropogenic emissions of greenhouse gases. Wood combustion can help to replace fuel oil or gas. It is advisable, however, to use modern technology for combustion and exhaust gas after-treatment in order to achieve best efficiency and avoid air quality problems due to high emission levels often related to small scale wood combustion. In this study, simultaneous combustion particle deposition and heat recovery from the exhaust of two commercially available wood-fired appliances has been investigated. The experiments were performed with a miniature pipe bundle heat exchanger operating in the exhaust gas lines of a fully automated pellet burner or a closed fireplace. The system has been characterised for a wide range of aerosol inlet temperatures (135-295 deg. C) and flow velocities (0.13-1.0ms -1 ), and particle deposition efficiencies up to 95% have been achieved. Deposition was dominated by thermophoresis and diffusion and increased with the average temperature difference and retention time in the heat exchanger. The aerosols from the two different appliances exhibited different deposition characteristics, which can be attributed to enhanced deposition of the nucleation mode particles generated in the closed fire place. The measured deposition efficiencies can be described by simple linear parameterisations derived from laboratory studies. The results of this study demonstrate the feasibility of thermophoretic particle removal from biomass burning flue gas and support the development of modified heat exchanger systems with enhanced capability for simultaneous heat recovery and particle deposition

  14. Small particles of fusinite and carbohydrate chars coated with aqueous soluble polymers: preparation and applications for in vivo EPR oximetry.

    Science.gov (United States)

    Gallez, B; Debuyst, R; Dejehet, F; Liu, K J; Walczak, T; Goda, F; Demeure, R; Taper, H; Swartz, H M

    1998-07-01

    The development of oxygen-sensitive paramagnetic materials is being pursued actively because of their potential applications in in vivo EPR oximetry. Among these materials, several charcoals and carbohydrate chars are of special interest because of their desirable EPR properties: high sensitivity of the EPR linewidth to the partial pressure of oxygen, simple EPR spectra, and high spin density. Their potential use in humans, however, is limited by the need to demonstrate that they will not lead to deleterious effects. A strategy was used to optimize the biocompatibility of the oxygen-sensitive materials by decreasing the size of the particles and coating them with suspending or surfactive agents such as arabic gum, poloxamer (Pluriol 6800), and polyvinylpyrrolidone. The coated particles of a carbohydrate char and fusinite were characterized in vitro for their size, stability, and pO2 sensitivity. The feasibility of performing pO2 measurement was examined in vivo by inducing ischemia in the gastrocnemius muscle of mice. The use of arabic gum for coating the fusinite particles preserved the pO2 sensitivity in vivo, whereas the other surfactive agents led to a loss of the pO2 sensitivity in vivo. Small particles of fusinite coated by arabic gum and intravenously administered to mice accumulated in the liver, whereas the uncoated fusinite was toxic when injected intravenously due to the large size and aggregation of the particles. Histological studies performed up to 6 months after the injection in muscles of mice did not indicate any toxicity from the materials used in the present study.

  15. Small Particles in Cirrus (SPartICus) and Storm Peak Lab Validation Experiment (StormVEx) Science Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Mace, Gerald [Univ. of Utah, Salt Lake City, UT (United States)

    2016-10-28

    The Small Particles in Cirrus (SPartICus) campaign took place from January through June, 2011 and the Storm Peak Lab Cloud Property Validation Experiment (StormVEx) took place from November, 2011 through April, 2012. The PI of this project, Dr. Gerald Mace, had the privilege to be the lead on both of these campaigns. The essence of the project that we report on here was to conduct preliminary work that was necessary to bring the field data sets to a point where they could be used for their intended science purposes

  16. Progress towards a small-scale, automated optical thin-film production capability

    International Nuclear Information System (INIS)

    Drage, D.J.; Netterfield, R.P.; Dligatch, S.; Blenman, N.; Fairman, P.S.; Katsaros, A.; Preston, E.W.

    2000-01-01

    Full text: The Optical Thin-film group at CSIRO Telecommunications and Industrial Physics (CTIP) has, working over a number of years, built up considerable expertise in producing complex dielectric, multilayer thin-film designs to meet unusual and demanding optical performance specifications. At the same time the process of vacuum deposition of dielectric materials has been advanced, particularly by the development and use of ion-assisted deposition (IAD). Proposed modifications to our existing chamber (DB600) and the addition of a new, larger diameter chamber (DD750), presently under construction, will increase output and reliability while improving quality. We will describe the changes already made to the DB600 such as: the gridless ion source, in-situ ellipsometric monitoring along with spectrophotometric monitoring, full e-beam scan on the material source, complete source shuttering and reactive deposition of SiO 2 from thermally evaporated SiO. The effects of making these beneficial changes will be described. Further changes to be made to the DB600 include, replacing its diffusion pump with a cryo-pump and automatic control of the deposition process. All the changes described for the DB600 along with a positive drive system for rotation of the substrate holder, rod feed e-gun hearths, and multiple crystal monitor heads, will be included in the DD750 design which will also be described. We believe that these improvements will give us the capability of small-scale production of reproducible, high quality filters

  17. AtSRP1, SMALL RUBBER PARTICLE PROTEIN HOMOLOG, functions in pollen growth and development in Arabidopsis.

    Science.gov (United States)

    Chi, Yong Hun; Kim, Sun Young; Lee, Eun Seon; Jung, Young Jun; Park, Joung Hun; Paeng, Seol Ki; Oh, Hun Taek; Melencion, Sarah Mae Boyles; Alinapon, Cresilda Vergara; Lee, Sang Yeol

    2016-06-24

    To identify novel roles of SMALL RUBBER PARTICLE PROTEIN Homolog in the non-rubber-producing plant Arabidopsis (AtSRP1), we isolated a T-DNA-insertion knock-out mutant (FLAG_543A05) and investigated its functional characteristics. AtSRP1 is predominantly expressed in reproductive organs and is localized to lipid droplets and ER. Compared to wild-type (WT) Arabidopsis, atsrp1 plants contain small siliques with a reduced number of heterogeneously shaped seeds. The size of anther and pollen grains in atsrp1 is highly irregular, with a lower grain number than WT. Therefore, AtSRP1 plays a novel role related to pollen growth and development in a non-rubber-producing plant. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Two- and Multi-particle Azimuthal Correlations in Small Collision Systems with the ATLAS Detector

    CERN Document Server

    Trzupek, Adam; The ATLAS collaboration

    2017-01-01

    ATLAS measurements of two-particle correlations in $\\Delta\\phi$ and $\\Delta\\eta$ are presented for $pp$ collisions at 2.76, 5.02 and 13~TeV, and for $p$+Pb collisions at 5.02 TeV. A template fitting procedure is used to subtract the dijet contribution and to extract the genuine long-range ridge correlations. This template procedure was previously used for 2.76 TeV and 13 TeV pp collisions, but is now extended to pp and $p$+Pb collisions at 5.02 TeV. In all collision systems, the ridge correlations are shown to be present even in events with a low multiplicity of produced particles, implying that the long-range correlations are not unique to rare high-multiplicity events. The properties of the correlation are shown to exhibit only a weak energy dependence and are remarkably similar to that observed in $p$+Pb collisions. Another new aspect of this talk is a detailed study of ridge properties in collisions containing hard processes, characterized by large four-momentum transfer. This may help answering the quest...

  19. Structural characterization and gas reactions of small metal particles by high resolution in-situ TEM (Transmission Electron Microscopy) and TED (Transmission Electron Diffraction)

    Science.gov (United States)

    Heinemann, K.

    1987-01-01

    The detection and size analysis of small metal particles supported on amorphous substrates becomes increasingly difficult when the particle size approaches that of the phase contrast background structures of the support. An approach of digital image analysis, involving Fourier transformation of the original image, filtering, and image reconstruction was studied with respect to the likelihood of unambiguously detecting particles of less than 1 nm diameter on amorphous substrates from a single electron micrograph.

  20. Particle evolution of Composition B-3 studied by time-resolved small angle x-ray scattering

    Science.gov (United States)

    Huber, R.; Podlesak, D.; Dattelbaum, D.; Firestone, M.; Gustavsen, R.; Jensen, B.; Ringstrand, B.; Watkins, E.; Bagge-Hansen, M.; Hodgin, R.; Lauderbach, L.; Willey, T.; van Buuren, T.; Graber, T.; Rigg, P.; Sinclair, N.; Seifert, S.

    Accessing various pressures and temperatures of the carbon phase diagram through high explosive (HE) detonations, as a means of synthesis, provides an exciting opportunity to study new carbon allotropes. Carbon allotropes in HE detonations are thought to form through collision of free carbon within the detonation cloud; however direct confirmation of real-time product formation is limited due to experimental restraints. Time-resolved small angle x-ray scattering (TRSAXS) of in-line detonations provides information about particle formation behind the detonation front on the 100's of nanoseconds timescale. The only set-up of its kind in the United States is at Argonne National Laboratory at the Advanced Photon Source in the Dynamic Compression Sector (DCS). Through empirical and analytical analysis of the TRSAXS data, parameters such as particle size and morphology can be deduced with respect to time. In the case of Composition B-3 (40% TNT/60% RDX) particle formation morphs from spherical core-shell structure to an elongated structure at long times ( 2 us) under vacuum. To complete the timeline of carbon formation, the post detonation soot is also analyzed to confirm this elongated structure as the majority carbon product. LA-UR-16-28691

  1. Transcription Factor NFIB Is a Driver of Small Cell Lung Cancer Progression in Mice and Marks Metastatic Disease in Patients

    Directory of Open Access Journals (Sweden)

    Ekaterina A. Semenova

    2016-07-01

    Full Text Available Small cell lung cancer (SCLC is an aggressive neuroendocrine tumor, and no effective treatment is available to date. Mouse models of SCLC based on the inactivation of Rb1 and Trp53 show frequent amplifications of the Nfib and Mycl genes. Here, we report that, although overexpression of either transcription factor accelerates tumor growth, NFIB specifically promotes metastatic spread. High NFIB levels are associated with expansive growth of a poorly differentiated and almost exclusively E-cadherin (CDH1-negative invasive tumor cell population. Consistent with the mouse data, we find that NFIB is overexpressed in almost all tested human metastatic high-grade neuroendocrine lung tumors, warranting further assessment of NFIB as a tumor progression marker in a clinical setting.

  2. A theoretical analysis of small Pt particles on rutile TiO$_2$(110) surfaces

    OpenAIRE

    Celik, Veysel; Unal, Hatice; Mete, Ersen; Ellialtioglu, Sinasi

    2010-01-01

    The adsorption profiles and electronic structures of Pt$_n$ (n = 1--4) clusters on stoichiometric, reduced and reconstructed rutile TiO$_2$(110) surfaces were systematically studied using on site d-d Coulomb interaction corrected hybrid density functional theory calculations. The atomic structure of small Pt cluster adsorbates mainly depend on the stoichiometry of the corresponding titania support. The cluster shapes on the bulk terminated ideal surface look like their gas phase low energy st...

  3. A small particle size diet reduces upper gastrointestinal symptoms in patients with diabetic gastroparesis: a randomized controlled trial.

    Science.gov (United States)

    Olausson, Eva A; Störsrud, Stine; Grundin, Håkan; Isaksson, Mats; Attvall, Stig; Simrén, Magnus

    2014-03-01

    Gastroparesis is a well-known complication to diabetes mellitus (DM). Dietary advice is considered to be of importance to reduce gastrointestinal (GI) symptoms in patients with diabetic gastroparesis, but no randomized controlled trials exist. Our aim was to compare GI symptoms in insulin treated DM subjects with gastroparesis eating a diet with small particle size ("intervention diet") with the recommended diet for DM ("control diet"). 56 subjects with insulin treated DM and gastroparesis were randomized to the intervention diet or the control diet. The patients received dietary advice by a dietitian at 7 occasions during 20 weeks. GI symptom severity, nutrient intake and glycemic control were measured before and after the intervention. A significantly greater reduction of the severity of the key gastroparetic symptoms-nausea/vomiting (P=0.01), postprandial fullness (P=0.02) and bloating (P=0.006)-were seen in patients who received the intervention diet compared with the control diet, and this was also true for regurgitation/heartburn (P=0.02), but not for abdominal pain. Anxiety was reduced after the intervention diet, but not after the control diet, whereas no effect on depression or quality of life was noted in any of the groups. A higher fat intake in the intervention group was noted, but otherwise no differences in body weight, HbA1c or nutrient intake were seen. A small particle diet improves the key symptoms of gastroparesis in patients with diabetes mellitus. (ClinicalTrials.gov NCT01557296).

  4. Magnetic dynamics of small alpha-Fe2O3 and NiO particles

    DEFF Research Database (Denmark)

    Lefmann, K.; Bødker, Franz; Hansen, Mikkel Fougt

    1999-01-01

    We have studied the magnetic dynamics in nanocrystalline samples of alpha-Fe2O3 (hematite) and NiO by inelastic neutron scattering. By measuring around the structural and the antiferromagnetic reflections, we have probed uniform and staggered magnetic oscillations, respectively. In the hematite...... particles, we observed a clear double peak in the energy distribution of the antiferromagnetic signal, in addition to a quasi-elastic peak. We interpret the double peak to respresent collective magnetic excitations. Broadening of the central quasi-elastic peak with increasing temprature is interpreted...... magnetic oscillations very similar to the antiferromagnetic signal, as is expected for a simple antiferromagnet. The hematite sample did not show any signs of uniform oscillations, although these have been predicted theoretically....

  5. Early Prediction of Disease Progression in Small Cell Lung Cancer: Toward Model-Based Personalized Medicine in Oncology.

    Science.gov (United States)

    Buil-Bruna, Núria; Sahota, Tarjinder; López-Picazo, José-María; Moreno-Jiménez, Marta; Martín-Algarra, Salvador; Ribba, Benjamin; Trocóniz, Iñaki F

    2015-06-15

    Predictive biomarkers can play a key role in individualized disease monitoring. Unfortunately, the use of biomarkers in clinical settings has thus far been limited. We have previously shown that mechanism-based pharmacokinetic/pharmacodynamic modeling enables integration of nonvalidated biomarker data to provide predictive model-based biomarkers for response classification. The biomarker model we developed incorporates an underlying latent variable (disease) representing (unobserved) tumor size dynamics, which is assumed to drive biomarker production and to be influenced by exposure to treatment. Here, we show that by integrating CT scan data, the population model can be expanded to include patient outcome. Moreover, we show that in conjunction with routine medical monitoring data, the population model can support accurate individual predictions of outcome. Our combined model predicts that a change in disease of 29.2% (relative standard error 20%) between two consecutive CT scans (i.e., 6-8 weeks) gives a probability of disease progression of 50%. We apply this framework to an external dataset containing biomarker data from 22 small cell lung cancer patients (four patients progressing during follow-up). Using only data up until the end of treatment (a total of 137 lactate dehydrogenase and 77 neuron-specific enolase observations), the statistical framework prospectively identified 75% of the individuals as having a predictable outcome in follow-up visits. This included two of the four patients who eventually progressed. In all identified individuals, the model-predicted outcomes matched the observed outcomes. This framework allows at risk patients to be identified early and therapeutic intervention/monitoring to be adjusted individually, which may improve overall patient survival. ©2015 American Association for Cancer Research.

  6. Gain-of-function mutant p53 activates small GTPase Rac1 through SUMOylation to promote tumor progression.

    Science.gov (United States)

    Yue, Xuetian; Zhang, Cen; Zhao, Yuhan; Liu, Juan; Lin, Alan W; Tan, Victor M; Drake, Justin M; Liu, Lianxin; Boateng, Michael N; Li, Jun; Feng, Zhaohui; Hu, Wenwei

    2017-08-15

    Tumor suppressor p53 is frequently mutated in human cancer. Mutant p53 often promotes tumor progression through gain-of-function (GOF) mechanisms. However, the mechanisms underlying mutant p53 GOF are not well understood. In this study, we found that mutant p53 activates small GTPase Rac1 as a critical mechanism for mutant p53 GOF to promote tumor progression. Mechanistically, mutant p53 interacts with Rac1 and inhibits its interaction with SUMO-specific protease 1 (SENP1), which in turn inhibits SENP1-mediated de-SUMOylation of Rac1 to activate Rac1. Targeting Rac1 signaling by RNAi, expression of the dominant-negative Rac1 (Rac1 DN), or the specific Rac1 inhibitor NSC23766 greatly inhibits mutant p53 GOF in promoting tumor growth and metastasis. Furthermore, mutant p53 expression is associated with enhanced Rac1 activity in clinical tumor samples. These results uncover a new mechanism for Rac1 activation in tumors and, most importantly, reveal that activation of Rac1 is an unidentified and critical mechanism for mutant p53 GOF in tumorigenesis, which could be targeted for therapy in tumors containing mutant p53. © 2017 Yue et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Modeling the progressive axial crushing of foam-filled aluminum tubes using smooth particle hydrodynamics and coupled finite element model/smooth particle hydrodynamics

    OpenAIRE

    Aktay, Levent; Johnson, Alastair F.; Toksoy, Ahmet Kaan; Kröplin, Bernd Helmut; Güden, Mustafa

    2008-01-01

    As alternatives to the classical finite element model (FEM), a meshless smooth particle hydrodynamics (SPH) method, in which the discrete particles represent a solid domain, and a coupled FEM/SPH modeling technique were investigated for the numerical simulation of the quasi-static axial crushing of polystyrene foam-filled aluminum thin-walled aluminum tubes. The results of numerical simulations, load-deformation histories, fold lengths and specific absorbed energies, were found to show satisf...

  8. Study of particles in solution by small angle x-ray scattering

    International Nuclear Information System (INIS)

    Itri, R.

    1986-01-01

    The implantation of SAXS technique is presented, and mycellas in solution of the dodecyl sodium sulfate SLS/water system are studied. A synthesis of SAXS theory to study parameters such as, volume, radii of gyration and specific surface and distribution function of the distance of homogenous and inhomogeneous particles is also presented. The technique was implanted by the study of a vitreous coal sample with voids in amorphous matrix. Computer programs were used for data treatment. It was concluded that the void configuration must be an oblate ellipsoid with rippled external surface and radii of gyration of ∼20A . The study of mycellas in solution of the SLL/H 2 O binary system showed spherical mycellas with paraffinic radii of 16A and total radii of 25.5 A. Interaction effects start to appear in 15% SLS concentrations. The change in the scattering curve occurs due to the interactions between mycellas. The isotropic-nematic transition in the ternary system by decanol addition was also investigated. (M.C.K.) [pt

  9. Particle-bound metal transport after removal of a small dam in ...

    Science.gov (United States)

    The Pawtuxet River in Rhode Island, USA, has a long history of industrial activity and pollutant discharges. Metal contamination of the river sediments is well documented and historically exceeded toxicity thresholds for a variety of organisms. The Pawtuxet River dam, a low-head dam at the mouth of the river, was removed in August 2011. The removal of the dam was part of an effort to restore the riverine ecosystem after centuries of anthropogenic impact. Sediment traps were deployed below the dam to assess changes in metal concentrations and fluxes (Ag, Cd, Cr, Cu, Ni, Pb, and Zn) from the river system into Pawtuxet Cove. Sediment traps were deployed for an average duration of 24 days each, and deployments continued for 15 months after the dam was removed. Metal concentrations in the trapped suspended particulate matter dropped after dam removal (e.g., 460 to 276 mg/kg for Zn) and remained below preremoval levels for most of the study. However, particle-bound metal fluxes increased immediately after dam removal (e.g., 1206 to 4248 g/day for Zn). Changes in flux rates during the study period indicated that river volumetric flow rates acted as the primary mechanism controlling the flux of metals into Pawtuxet Cove and ultimately upper Narragansett Bay. Even though suspended particulate matter metal concentrations initially dropped after removal of the dam, no discernable effect on the concentration or flux of the study metals exiting the river could be associa

  10. Light scattering by ultrasonically-controlled small particles: system design, calibration, and measurement results

    Science.gov (United States)

    Kassamakov, Ivan; Maconi, Göran; Penttilä, Antti; Helander, Petteri; Gritsevich, Maria; Puranen, Tuomas; Salmi, Ari; Hæggström, Edward; Muinonen, Karri

    2018-02-01

    We present the design of a novel scatterometer for precise measurement of the angular Mueller matrix profile of a mm- to µm-sized sample held in place by sound. The scatterometer comprises a tunable multimode Argon-krypton laser (with possibility to set 1 of the 12 wavelengths in visible range), linear polarizers, a reference photomultiplier tube (PMT) for monitoring the beam intensity, and a micro-PMT module mounted radially towards the sample at an adjustable radius. The measurement angle is controlled by a motor-driven rotation stage with an accuracy of 15'. The system is fully automated using LabVIEW, including the FPGA-based data acquisition and the instrument's user interface. The calibration protocol ensures accurate measurements by using a control sphere sample (diameter 3 mm, refractive index of 1.5) fixed first on a static holder followed by accurate multi-wavelength measurements of the same sample levitated ultrasonically. To demonstrate performance of the scatterometer, we conducted detailed measurements of light scattered by a particle derived from the Chelyabinsk meteorite, as well as planetary analogue materials. The measurements are the first of this kind, since they are obtained using controlled spectral angular scattering including linear polarization effects, for arbitrary shaped objects. Thus, our novel approach permits a non-destructive, disturbance-free measurement with control of the orientation and location of the scattering object.

  11. Particle-in-Cell Modeling of Magnetized Argon Plasma Flow Through Small Mechanical Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Adam B. Sefkow and Samuel A. Cohen

    2009-04-09

    Motivated by observations of supersonic argon-ion flow generated by linear helicon-heated plasma devices, a three-dimensional particle-in-cell (PIC) code is used to study whether stationary electrostatic layers form near mechanical apertures intersecting the flow of magnetized plasma. By self-consistently evaluating the temporal evolution of the plasma in the vicinity of the aperture, the PIC simulations characterize the roles of the imposed aperture and applied magnetic field on ion acceleration. The PIC model includes ionization of a background neutral-argon population by thermal and superthermal electrons, the latter found upstream of the aperture. Near the aperture, a transition from a collisional to a collisionless regime occurs. Perturbations of density and potential, with mm wavelengths and consistent with ion acoustic waves, propagate axially. An ion acceleration region of length ~ 200-300 λD,e forms at the location of the aperture and is found to be an electrostatic double layer, with axially-separated regions of net positive and negative charge. Reducing the aperture diameter or increasing its length increases the double layer strength.

  12. Pattern of shedding of small, round-structured virus particles in stools of patients of outbreaks of food-poisoning from raw oysters.

    Science.gov (United States)

    Haruki, K; Seto, Y; Murakami, T; Kimura, T

    1991-01-01

    The pattern of shedding of the small, round-structured virus (SRSV) particles in the stools of patients who suffered from food-poisoning due to raw oysters was investigated. The duration and concentration of fecal shedding of the SRSV particles were studied by electron microscopic examinations of stool specimens obtained during the course of illness to see a relation of viral shedding to day of illness. It was found that the fecal shedding of the SRSV particles occurred within five days of illness; thereafter, the concentration of the SRSV particles in feces rapidly decreased within a few days during the course of illness.

  13. Hybrid Particle-based Full-band Analysis of Ultra-small MOS

    Directory of Open Access Journals (Sweden)

    S. J. Wigger

    2001-01-01

    Full Text Available We report on the 2D and 3D modeling of ultra-small MOS structures using a newly developed full-band device simulator. The simulation tool is based on a novel approach, featuring a hybrid Ensemble Monte Carlo (EMC-Cellular Automata (CA simulation engine. In this hybrid approach charge transport is simulated using the CA in regions of momentum space where most scattering events occur and the EMC elsewhere, thus optimizing the trade-off between the fast, but memory consuming CA method and the slower EMC method. To account for the spatial distribution of the electric field and charge concentration, the hybrid EMC/CA simulator is self-consistently coupled with a 2D and 3D multi-grid Poisson solver. The solver is then used to simulate the performance of a 40 nm gate length n-MOSFET structure.

  14. Theoretical analysis of small Pt particles on rutile TiO2(110) surfaces

    Science.gov (United States)

    Çelik, Veysel; Ünal, Hatice; Mete, Ersen; Ellialtıoǧlu, Şinasi

    2010-11-01

    The adsorption profiles and electronic structures of Ptn(n=1-4) clusters on stoichiometric, reduced and reconstructed rutile TiO2(110) surfaces were systematically studied using on site d-d Coulomb interaction corrected hybrid density-functional-theory (DFT) calculations. The atomic structure of small Pt cluster adsorbates mainly depends on the stoichiometry of the corresponding titania support. The cluster shapes on the bulk terminated ideal surface look like their gas phase low-energy structures. However, for instance, they get significantly distorted on the reduced surfaces with increasing oxygen vacancies. On nonstoichiometric surfaces, Pt-Ti coordination becomes dominant in the determination of the adsorption geometries. The electronic structure of Ptn/TiO2(110) systems cannot be correctly described by pure DFT methods, particularly for nonstoichiometric cases due to the inappropriate treatment of the correlation for d electrons. We performed DFT+U calculations to give a reasonable description of the reconstructed rutile (110) surface. Pt clusters induce local surface relaxations that influence band edges of titania support and bring a number of band-gap states depending on the cluster size. Significant band gap narrowing occurs upon Ptn -surface interaction due to adsorbate driven states on the bulk terminated and reduced surfaces. On the other hand, they give rise to a band-gap widening associated to partial reoxidation of the reconstructed surface. No metallization arises even for Pt4 on rutile.

  15. Experimental elementary particle physics at the University of Pittsburgh: Progress report, April 1, 1987-March 31, 1988

    International Nuclear Information System (INIS)

    Cleland, W.E.; Coon, D.D.; Engels, E. Jr.; Shepard, P.F.; Thompson, J.A.

    1987-12-01

    This paper discusses research activity at the University of Pittsburgh in experimental elementary particle physics. The three main tasks included are: Study of lepton production at the SPS and study of large P/sub T/ direct photon production at the ISR; Direct photon production at the Fermi Tevatron; and Search for fractional charge particles in semiconductors

  16. Small particle reagent based on crystal violet dye for developing latent fingerprints on non-porous wet surfaces

    Directory of Open Access Journals (Sweden)

    Richa Rohatgi

    2015-12-01

    Full Text Available Small particle reagent (SPR is a widely used method for developing latent fingerprints on non-porous wet surfaces. SPR based on zinc carbonate hydroxide monohydrate, ZnCo3·2Zn(OH2·H2O – also called basic zinc carbonate – has been formulated. The other ingredients of the formulation are crystal violet dye and a commercial liquid detergent. The composition develops clear, sharp and detailed fingerprints on non-porous items, after these were immersed separately in clean and dirty water for variable periods of time. The ability of the present formulation to detect weak and faint chance prints not only enhances its utility, but also its potentiality in forensic case work investigations. The raw materials used to prepare the SPR are cost-effective and non-hazardous.

  17. Corrosion test on coating systems in the presence of sea-salt fine particles using small specimens

    International Nuclear Information System (INIS)

    Tozawa, Seiichi; Ouchi, Koki; Ito, Akihiko.

    1982-01-01

    A large number of industrial plants and facilities of Japan is often constructed on the seaside area, and so steel materials of these plants and facilities are mostly located under the corrosive environment by sea-salt fine particles. These steel materials are, of course, protected by means of paints, platings or other galvanic protection methods, but some problems to investigate seem still to remain for gaining the better corrosion prevention in such a corrosive environment. In this paper, the results of outdoor atmospheric exposure test by using the small painted specimens are described. The exposure test was practised on the seashore at Tokai Research Establishment of Japan Atomic Energy Research Institute for fourteen months. In this test, it was proved that blasting and control of film thickness could somewhat improve the grade of rust prevention of the exposed specimens, but that melamine-alkyd resin painting systems (total film thickness; 12 -- 36 μm) were generally insufficient for a long time rust prevention system in the presence of sea-salt fine particles. On the other hand, the specimens using zinc rich paint primer or hot dip galvanizing as undercoatings (total film thickness; 173 -- 495 μm) showed the perfect corrosion resistant properties against the corrosive environment of the test site under the influence of sea-salt fine particles. Moreover, even the specimens of the paint films which were artificially scratched in the shape of cross cut got hardly rust on the bare steel area and no deterioration was found on the paint films. (author)

  18. Association between body shape index and small dense LDL particles in a cohort of mediterranean women: findings from Progetto ATENA

    Science.gov (United States)

    Gentile, Marco; Iannuzzo, Gabriella; Mattiello, Amalia; Rubba, Fabiana; Panico, Salvatore; Rubba, Paolo

    2017-01-01

    Small dense LDL particles (sd-LDL) and body shape index (ABSI), were evaluated in 228 women, living in Naples, Italy (Progetto ATENA). Serum cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, insulin, HOMA, Apo B, hs-CPR and sd-LDL were measured. LDL particle separation was performed by Lipoprint System: seven LDL subfractions were obtained and LDL score (% of sd-LDL particles) calculated. ABSI was calculated according to Krakauer’s formula: ABSI (m11/6 kg−2/3). The association between sd-LDL and ABSI was evaluated taking into account different adjustment models. Women with elevated levels of ABSI show the following OR of having high LDL score: 2.39, p = 0.002; unadjusted; 2.47, p = 0.002; adjusted for age; 2.13, p = 0.011; adjusted for age and Apo B; 1.93, p = 0.026; adjusted for age and Apo B and triglycerides. ABSI was associated with elevated LDL score independently of age, Systolic pressure, Apo B and triglycerides. Median of LDL diameter decreased among ABSI quartiles: quartile I: 271.5 nm, quartile II: 270.7 nm, quartile III 270.5 nm, quartile IV 269.4 nm; Kruskall Wallis Test: p = 0.016. These results are in line with the hypothesis that ABSI could be a marker of visceral abdominal associated to adverse metabolic changes including presence of elevated sd-LDL, a risk factor for premature cardiovascular disease. PMID:28955130

  19. Silencing the lettuce homologs of small rubber particle protein does not influence natural rubber biosynthesis in lettuce (Lactuca sativa).

    Science.gov (United States)

    Chakrabarty, Romit; Qu, Yang; Ro, Dae-Kyun

    2015-05-01

    Natural rubber, cis-1,4-polyisoprene, is an important raw material in chemical industries, but its biosynthetic mechanism remains elusive. Natural rubber is known to be synthesized in rubber particles suspended in laticifer cells in the Brazilian rubber tree (Hevea brasiliensis). In the rubber tree, rubber elongation factor (REF) and its homolog, small rubber particle protein (SRPP), were found to be the most abundant proteins in rubber particles, and they have been implicated in natural rubber biosynthesis. As lettuce (Lactuca sativa) can synthesize natural rubber, we utilized this annual, transformable plant to examine in planta roles of the lettuce REF/SRPP homologs by RNA interference. Among eight lettuce REF/SRPP homologs identified, transcripts of two genes (LsSRPP4 and LsSRPP8) accounted for more than 90% of total transcripts of REF/SRPP homologs in lettuce latex. LsSRPP4 displays a typical primary protein sequence as other REF/SRPP, while LsSRPP8 is twice as long as LsSRPP4. These two major LsSRPP transcripts were individually and simultaneously silenced by RNA interference, and relative abundance, polymer molecular weight, and polydispersity of natural rubber were analyzed from the LsSRPP4- and LsSRPP8-silenced transgenic lettuce. Despite previous data suggesting the implications of REF/SRPP in natural rubber biosynthesis, qualitative and quantitative alterations of natural rubber could not be observed in transgenic lettuce lines. It is concluded that lettuce REF/SRPP homologs are not critically important proteins in natural rubber biosynthesis in lettuce. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. HIV-1-Induced Small T Cell Syncytia Can Transfer Virus Particles to Target Cells through Transient Contacts.

    Science.gov (United States)

    Symeonides, Menelaos; Murooka, Thomas T; Bellfy, Lauren N; Roy, Nathan H; Mempel, Thorsten R; Thali, Markus

    2015-12-12

    HIV-1 Env mediates fusion of viral and target cell membranes, but it can also mediate fusion of infected (producer) and target cells, thus triggering the formation of multinucleated cells, so-called syncytia. Large, round, immobile syncytia are readily observable in cultures of HIV-1-infected T cells, but these fast growing "fusion sinks" are largely regarded as cell culture artifacts. In contrast, small HIV-1-induced syncytia were seen in the paracortex of peripheral lymph nodes and other secondary lymphoid tissue of HIV-1-positive individuals. Further, recent intravital imaging of lymph nodes in humanized mice early after their infection with HIV-1 demonstrated that a significant fraction of infected cells were highly mobile, small syncytia, suggesting that these entities contribute to virus dissemination. Here, we report that the formation of small, migratory syncytia, for which we provide further quantification in humanized mice, can be recapitulated in vitro if HIV-1-infected T cells are placed into 3D extracellular matrix (ECM) hydrogels rather than being kept in traditional suspension culture systems. Intriguingly, live-cell imaging in hydrogels revealed that these syncytia, similar to individual infected cells, can transiently interact with uninfected cells, leading to rapid virus transfer without cell-cell fusion. Infected cells were also observed to deposit large amounts of viral particles into the extracellular space. Altogether, these observations suggest the need to further evaluate the biological significance of small, T cell-based syncytia and to consider the possibility that these entities do indeed contribute to virus spread and pathogenesis.

  1. New Small LWR Core Designs using Particle Burnable Poisons for Low Boron Concentration

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ho Seong; Hwang, Dae Hee; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of)

    2015-05-15

    The soluble boron has two major important roles in commercial PWR operations : 1) the control of the long-term reactivity to maintain criticality under normal operation, and 2) the shutdown of the reactor under accidents. However, the removal of the soluble boron gives several advantages in SMRs (Small Modular Reactor). These advantages resulted from the elimination of soluble boron include the significant simplification of nuclear power plant through the removal of pipes, pumps, and purification systems. Also, the use of soluble boron mitigates corrosion problems on the primary coolant loop. Furthermore, the soluble boron-free operation can remove an inadvertent boron dilution accident (BDA) which can lead to a significant insertion of positive reactivity. From the viewpoint of core physics, the removal of soluble boron or reduction of soluble boron concentration makes the moderator temperature coefficient (MTC) more negative. From the core design studies using new fuel assemblies, it is shown that the cores have very low critical soluble boron concentrations less than 500ppm, low peaking factors within the design targets, strong negative MTCs over cycles, and large enough shutdown margins both at BOC and EOC. However, the present cores have relatively low average discharge burnups of ∼ 30MWD/kg leading to low fuel economy because the cores use lots of non-fuel burnable poison rods to achieve very low critical boron concentrations. So, in the future, we will perform the trade-off study between the fuel discharge burnup and the boron concentrations by changing fuel assembly design and the core loading pattern.

  2. Progress of clinical research on targeted therapy combined with thoracic radiotherapy for non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhuang HQ

    2014-05-01

    Full Text Available Hongqing Zhuang,1,* Xianzhi Zhao,1,* Lujun Zhao,1 Joe Y Chang,2 Ping Wang1 1Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, and Tianjin Lung Cancer Center, Tianjin, People's Republic of China; 2Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA *These authors contributed equally to this paper Abstract: The combination of radiotherapy and targeted therapy is an important approach in the application of targeted therapy in clinical practice, and represents an important opportunity for the development of radiotherapy itself. Numerous agents, including epidermal growth factor receptor, monoclonal antibodies, tyrosine kinase inhibitors, and antiangiogenic therapies, have been used for targeted therapy. A number of studies of radiotherapy combined with targeted therapy in non-small-cell lung carcinoma have been completed or are ongoing. This paper briefly summarizes the drugs involved and the important related clinical research, and indicates that considerable progress has been made with the joint efforts of the two disciplines. Many issues, including drug selection, identification of populations most likely to benefit, timing of administration of medication, and side effects of treatment require further investigation. However, further fundamental research and accumulation of clinical data will provide a more comprehensive understanding of these therapies. Targeted therapy in combination with radiotherapy has a bright future. Keywords: non-small-cell lung carcinoma, radiotherapy, epidermal growth factor receptor, monoclonal antibody, tyrosine kinase inhibitors, antiangiogenic therapies

  3. Electrically charged small soot particles in the exhaust of an aircraft gas-turbine engine combustor: comparison of model and experiment

    Science.gov (United States)

    Sorokin, A.; Arnold, F.

    The emission of electrically charged soot particles by an aircraft gas-turbine combustor is investigated using a theoretical model. Particular emphasis is placed on the influence of the fuel sulfur content (FSC). The model considers the production of primary "combustion" electrons and ions in the flame zone and their following interaction with molecular oxygen, sulfur-bearing molecules (e.g. O 2, SO 2, SO 3, etc.) and soot particles. The soot particle size distribution is approximated by two different populations of mono-dispersed large and small soot particles with diameters of 20-30 and 5-7 nm, respectively. The effect of thermal ionization of soot and its interaction with electrons and positive and negative ions is included in the model. The computed positive and negative chemiion (CI) concentrations at the combustor exit and relative fractions of small neutral and charged soot particles were found to be in satisfactory agreement with experimental data. The results show that the FSC indeed may influence the concentration of negative CI at low fuel flow into combustor. Importantly the simulation indicates a very efficient mutual interaction of electrons and ions with soot particles with a large effect on both ion and charged soot particle concentrations. This result may be interpreted as a possible indirect effect of FSC on the growth and size distribution of soot particles.

  4. New long-cycle small modular PWR cores using particle type burnable poisons for low boron operation

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hoseong; Hwang, Dae Hee [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Hong, Ser Gi, E-mail: sergihong@khu.ac.kr [Department of Nuclear Engineering, Kyung Hee University, Deogyeong-daero, GiHeung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Shin, Ho Choel [Core and Fuel Analysis Group, Korea Hydro & Nuclear Power Central Research Institute (KHNP-CRI), Daejon 305-343 (Korea, Republic of)

    2017-04-01

    Highlights: • New advanced burnable poison rods (BPR) are suggested for low boron operation in PWR. • The new SMR cores have long cycle length of ∼4.5 EFPYs with low boron concentration. • The SMR core satisfies all the design targets and constraints. - Abstract: In this paper, new small long-cycle PWR (Pressurized Water Reactor) cores for low boron concentration operation are designed by employing advanced burnable poison rods (BPRs) in which the BISO (Bi-Isotropic) particles of burnable poison are distributed in a SiC matrix. The BPRs are designed by adjusting the kernel diameter, the kernel material and the packing fraction to effectively reduce the excess reactivity in order to reduce the boron concentration in the coolant and achieve a flat change in excess reactivity over a long operational cycle. In addition, axial zoning of the BPRs was suggested to improve the core performances, and it was shown that the suggested axial zoning of BPRs considerably extends the cycle length compared to a core with no BPR axial zoning. The results of the core physics analyses showed that the cores using BPRs with a B{sub 4}C kernel have long cycle lengths of ∼4.5 EFPYs (Effective Full Power Years), small maximum CBCs (Critical Boron Concentration) lower than 370 ppm, low power peaking factors, and large shutdown margins of control element assemblies.

  5. 3-D turbulent particle dispersion submodel development. Quarterly progress report No. 1, 5 April--5 July 1991

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.

    1991-12-31

    The lack of a mathematical description of the interactions of fluid turbulence with other physics-chemical processes is a major obstacle in modeling many industrial program. Turbulent two-phase flow is a phenomenon that is of significant practical importance to coal combustion as well as other disciplines. The interactions of fluid turbulence with the particulate phase has yet to be accurately and efficiently modeled for these industrial applications. On 15 May 1991 work was initiated to cover four major tasks toward the development of a computational submodel for turbulent particle dispersion that would be applicable to coal combustion simulations. Those four tasks are: 1. A critical evaluation of the 2-D Lagrangian particle dispersion submodel, 2. Development of a 3-D submodel for turbulent particle dispersion, 3. Evaluation of the 3-D submodel for turbulent particle dispersion, 4.Exploration of extensions of the Lagrangian dispersion theory to other applications including chemistry-turbulence interactions.

  6. Are small-scale field-aligned currents and magneto sheath-like particle precipitation signatures of the same low-altitude cusp?

    DEFF Research Database (Denmark)

    Watermann, J.; Stauning, P.; Luhr, H.

    2009-01-01

    We examined some 75 observations from the low-altitude Earth orbiting DMSP, Orsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation...... ("particle cusp") and intense small-scale magnetic field variations ("current cusp"), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms ("statistical cusp"). The geocentric coordinates...... of the satellites were converted into AACGM coordinates, and the geomagnetic latitude of the cusp boundaries (as indicated by precipitating particles and small-scale field-aligned currents) set in relation to the IMF-B-z dependent latitude of the equatorward boundary of the statistical cusp. We find...

  7. Adaptive Particle Swarm Optimizer with Varying Acceleration Coefficients for Finding the Most Stable Conformer of Small Molecules.

    Science.gov (United States)

    Agrawal, Shikha; Silakari, Sanjay; Agrawal, Jitendra

    2015-11-01

    A novel parameter automation strategy for Particle Swarm Optimization called APSO (Adaptive PSO) is proposed. The algorithm is designed to efficiently control the local search and convergence to the global optimum solution. Parameters c1 controls the impact of the cognitive component on the particle trajectory and c2 controls the impact of the social component. Instead of fixing the value of c1 and c2 , this paper updates the value of these acceleration coefficients by considering time variation of evaluation function along with varying inertia weight factor in PSO. Here the maximum and minimum value of evaluation function is use to gradually decrease and increase the value of c1 and c2 respectively. Molecular energy minimization is one of the most challenging unsolved problems and it can be formulated as a global optimization problem. The aim of the present paper is to investigate the effect of newly developed APSO on the highly complex molecular potential energy function and to check the efficiency of the proposed algorithm to find the global minimum of the function under consideration. The proposed algorithm APSO is therefore applied in two cases: Firstly, for the minimization of a potential energy of small molecules with up to 100 degrees of freedom and finally for finding the global minimum energy conformation of 1,2,3-trichloro-1-flouro-propane molecule based on a realistic potential energy function. The computational results of all the cases show that the proposed method performs significantly better than the other algorithms. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development of small-bore, high-current-density railgun as testbed for study of plasma-materials interaction. Progress report for October 16, 2000 - May 13, 2003

    International Nuclear Information System (INIS)

    Kyekyoon, Kim-Kevin

    2003-01-01

    The present document is a final technical report summarizing the progress made during 10/16/2000 - 05/13/2003 toward the development of a small-bore railgun with transaugmentation as a testbed for investigating plasma-materials interaction

  9. Progress report on research program in elementary particle theory, 1979-1980. [Univ. of Texas at Austin

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.; Ne' eman, Y.

    1980-01-01

    A qualitative description is given of research in the following areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics and quark-parton physics; quantum mechanics, quantum field theory, and fundamental problems; and groups, gauges, and grand unified theories. Reports on this work have already been published, or will be, when it is completed. (RWR)

  10. Progress in Solving the Elusive Ag Transport Mechanism in TRISO Coated Particles: “What is new?”

    International Nuclear Information System (INIS)

    Rooyen, I.J. van; Petti, D.A.; Nabielek, H.; Neethling, J.H; Kania, M.J.

    2014-01-01

    The tristructural isotropic (TRISO) particle for a high temperature reactor (HTR) has been developed to an advanced state where the coating withstands internal gas pressures and retains nearly all fission products during irradiation and under postulated accidents. However, one exception is silver (Ag) that has been found to be released from high quality TRISO coated particles during irradiation and high temperature accident heating tests. Although out-of-pile laboratory tests have yet to elucidate the mechanism of transport of Ag through silicon carbide (SiC), effective diffusion coefficients have been derived to successfully reproduce measured 110m Ag- releases from irradiated HTR fuel elements, compacts and TRISO particles. It was found that Ag transport through SiC does not proceed via bulk volume diffusion. Presently grain boundary diffusion that may be irradiation enhanced either by neutron bombardment or by the presence of fission products such as palladium (Pd), are the two hypotheses that have been proposed. Recent studies of irradiated AGR-1 TRISO fuel using scanning transmission electron microscopy (STEM), transmission Kikuchi diffraction (TKD) patterns, and high resolution transmission electron microscopy (HRTEM) have been used to further the understanding of Ag transport through TRISO particles. No Ag was observed in SiC grains, but Ag was identified at triple-points and grain boundaries of the SiC layer in the TRISO particle. Cadmium (Cd) was also found in some of the very same triple junctions, but this could be related to silver behavior as 110m Ag decays to 110 Cd or true Cd release as a fission product. Palladium was identified as the main constituent of micron-sized precipitates present at the SiC grain boundaries. The potential role of Pd in the transport of Ag will be discussed further. (author)

  11. Macrophage Uptake of Ultra-Small Iron Oxide Particles for Magnetic Resonance Imaging in Experimental Acute Cardiac Transplant Rejection

    Energy Technology Data Exchange (ETDEWEB)

    Penno, E.; Johnsson, C.; Johansson, L.; Ahlstroem, H. [Uppsala Univ. Hospital (Sweden). Depts. of Diagnostic Radiology and of Transplantation Surgery

    2006-04-15

    Purpose: To discriminate between acutely rejecting and non-rejecting transplanted hearts using a blood pool contrast agent and T2 magnetic resonance imaging (MRI) in a clinical 1.5T scanner. Material and Methods: Allogeneic and syngeneic heterotopic heart transplantations were performed in rats. One allogeneic and one syngeneic group each received either the ultra-small iron oxide particle (USPIO), at two different doses, or no contrast agent at all. MRI was performed on postoperative day 6. Immediately after the MR scanning, contrast agent was injected and a further MRI was done 24 h later. Change in T2 was calculated. Results: No significant difference in change in T2 could be seen between rejecting and non-rejecting grafts in either of the doses, or in the control groups. There was a difference between the allogeneic group that received the higher contrast agent dose and the allogeneic group that did not receive any contrast agent at all. Conclusion: In our rat model, measurements of T2 after myocardial macrophage uptake of AMI-227 in a clinical 1.5T scanner were not useful for the diagnosis of acute rejection.

  12. Measurement of the specific heat of small vanadium particles in the normal- and superconducting state in the temperature range of 1.5-12 K

    International Nuclear Information System (INIS)

    Vergara Garcia, O.

    1982-01-01

    The specific heat of small crystalline vanadium particles in form of polyeders with diameters between 2.9 and 13.2 mm was measured in the temperature range of 1.5-12 K. Quantum effects are interpreted in the frame of theoretical models. (BEF)

  13. Progress in development of silica aerogel for particle- and nuclear-physics experiments at J-PARC

    OpenAIRE

    Tabata, Makoto; Kawai, Hideyuki

    2014-01-01

    This study presents the advancement in hydrophobic silica aerogel development for use as Cherenkov radiators and muonium production targets. These devices are scheduled for use in several particle- and nuclear-physics experiments that are planned in the near future at the Japan Proton Accelerator Research Complex. Our conventional method to produce aerogel tiles with an intermediate index of refraction of approximately 1.05 is extended so that we can now produce aerogel tiles with lower indic...

  14. Single particle tracking-based reaction progress kinetic analysis reveals a series of molecular mechanisms of cetuximab-induced EGFR processes in a single living cell.

    Science.gov (United States)

    Kim, Do-Hyeon; Kim, Dong-Kyun; Zhou, Kai; Park, Soyeon; Kwon, Yonghoon; Jeong, Min Gyu; Lee, Nam Ki; Ryu, Sung Ho

    2017-07-01

    Cellular processes occur through the orchestration of multi-step molecular reactions. Reaction progress kinetic analysis (RPKA) can provide the mechanistic details to elucidate the multi-step molecular reactions. However, current tools have limited ability to simultaneously monitor dynamic variations in multiple complex states at the single molecule level to apply RPKA in living cells. In this research, a single particle tracking-based reaction progress kinetic analysis (sptRPKA) was developed to simultaneously determine the kinetics of multiple states of protein complexes in the membrane of a single living cell. The subpopulation ratios of different states were quantitatively (and statistically) reliably extracted from the diffusion coefficient distribution rapidly acquired by single particle tracking at constant and high density over a long period of time using super-resolution microscopy. Using sptRPKA, a series of molecular mechanisms of epidermal growth factor receptor (EGFR) cellular processing induced by cetuximab were investigated. By comprehensively measuring the rate constants and cooperativity of the molecular reactions involving four EGFR complex states, a previously unknown intermediate state was identified that represents the rate limiting step responsible for the selectivity of cetuximab-induced EGFR endocytosis to cancer cells.

  15. Combined in situ small and wide angle X-ray scattering studies of TiO2 nano-particle annealing to 1023 K

    DEFF Research Database (Denmark)

    Kehres, Jan; Andreasen, Jens Wenzel; Krebs, Frederik C

    2010-01-01

    Combined in situ small- and wide-angle X-ray scattering (SAXS/WAXS) studies were performed in a recently developed laboratory setup to investigate the dynamical properties of dry oleic acid-capped titanium dioxide nanorods during annealing in an inert gas stream in a temperature interval of 298......-1023 K. Aggregates formed by the titanium dioxide particles exhibit a continuous growth as a function of temperature. The particle size determined with SAXS and the crystallite size refined from WAXS show a correlated growth at temperatures above 673 K, where the decomposition of the surfactant...... microscopy studies of the sample. Transmission electron microscopy shows a transformation from a rod to a spherical particle shape; the WAXS data indicate that the shape change occurs in a temperature interval of 773-923 K. The highly crystalline titanium dioxide particles remain in the metastable anatase...

  16. Production of leading charged particles and leading charged-particle jets at small transverse momenta in pp collisions at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma

    2015-12-01

    The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given $p_{\\mathrm{T}}^{\\mathrm{min}}$ threshold starting at $p_{\\mathrm{T}}^{\\mathrm{min}} = $ 0.8 and 1 GeV, respectively, is studied in PbPb collisions at $\\sqrt{s} =$ 8 TeV. The particles and the jets are measured for absolute pseudorapidities lower than 2.4 and 1.9, respectively. The data are sensitive to the momentum scale at which parton densities saturate in the proton, to multiple partonic interactions, and other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

  17. [High energy particle physics]: Progress report covering the period from August 1, 1987 to July 31, 1988

    International Nuclear Information System (INIS)

    1988-01-01

    In this document the High Energy Physics Group reviews its accomplishments and progress during the past year and presents plans for continuing research during the next several years. Some of the topics discussed in this report are: completed fixed target experiments; applications of QCD to hard hadronic processes; top quark signatures at the Tevatron collider; searching for supersymmetry at e + e/sup /minus// colliders; Monte Carlo simulations; and quantrum field theories

  18. Nuclear and particle physics research at the University of Richmond. Progress report, November 1, 1995 - October 31, 1996

    International Nuclear Information System (INIS)

    Vineyard, M.F.; Gilfoyle, G.P.; Major, R.W.

    1996-01-01

    Summarized in this report is the progress achieved during the period from November 1, 1995 to October 31, 1996. The experimental work described in this report is in preparation for the electromagnetic nuclear physics research program in Hall B at Thomas Jefferson National Accelerator Facility (TJNAF). Much progress has been made this year toward the realization of the physics program in Hall B. The Program Advisory Committee (PAC) reviewed all of the Hall B physics proposals and assigned scientific ratings to those not previously rated. Updates on these proposals were submitted to the PAC for this review and can be found in this report. Also included in this report is a summary of the progress achieved on an experiment that the authors are collaborating on to measure rare radiative decays of the φ meson. This experiment received the PAC's highest rating and will use the Hall B photon tagger and a lead glass calorimeter housed in the alcove upstream of the beam dump. After nearly a decade of planning and construction, the CEBAF Large Acceptance Spectrometer (CLAS) will be commissioned next year. The authors have been members of the CLAS Collaboration since its inception and their contributions to the construction of the CLAS include the development of the drift-chamber gas system, drift-chamber software, and controls software. Major has been leading the effort in the construction of the gas system. In the last year, the gas system components built at the University of Richmond have been installed in the Hall B gas shed and the initial operation of the system has begun. Gilfoyle is coordinating the software development for the CLAS drift chambers. Considerable progress has been made this year in developing software for the analysis of the drift-chamber data. Vineyard served as coordinator of the γ3 Running Period for the CLAS Collaboration and he is also responsible for the development of the drift-chamber gas system controls

  19. A Kinetic-MHD Theory for the Self-Consistent Energy Exchange Between Energetic Particles and Active Small-scale Flux Ropes

    Science.gov (United States)

    le Roux, J. A.

    2017-12-01

    We developed previously a focused transport kinetic theory formalism with Fokker-plank coefficients (and its Parker transport limit) to model large-scale energetic particle transport and acceleration in solar wind regions with multiple contracting and merging small-scale flux ropes on MHD (inertial) scales (Zank et al. 2014; le Roux et al. 2015). The theory unifies the main acceleration mechanisms identified in particle simulations for particles temporarily trapped in such active flux rope structures, such as acceleration by the parallel electric field in reconnection regions between merging flux ropes, curvature drift acceleration in incompressible/compressible contracting and merging flux ropes, and betatron acceleration (e.g., Dahlin et al 2016). Initial analytical solutions of the Parker transport equation in the test particle limit showed that the energetic particle pressure from efficient flux-rope energization can potentially be high in turbulent solar wind regions containing active flux-rope structures. This requires taking into account the back reaction of energetic particles on flux ropes to more accurately determine the efficiency of energetic particles acceleration by small-scale flux ropes. To accomplish this goal we developed recently an extension of the kinetic theory to a kinetic-MHD level. We will present the extended theory showing the focused transport equation to be coupled to a solar wind MHD transport equation for small-scale flux-rope energy density extracted from a recently published nearly incompressible theory for solar wind MHD turbulence with a plasma beta of 1 (Zank et al. 2017). In the flux-rope transport equation appears new expressions for the damping/growth rates of flux-rope energy derived from assuming energy conservation in the interaction between energetic particles and small-scale flux ropes for all the main flux-rope acceleration mechanisms, whereas previous expressions for average particle acceleration rates have been

  20. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    International Nuclear Information System (INIS)

    Feng Jianghua; Liu Huili; Zhang Limin; Bhakoo, Kishore; Lu Lehui

    2010-01-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  1. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Department of Physics, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005 (China); Liu Huili; Zhang Limin [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Bhakoo, Kishore [Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A-STAR) 138667 (Singapore); Lu Lehui, E-mail: jianghua.feng@hotmail.com, E-mail: jianghua.feng@wipm.ac.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary {alpha}-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary {alpha}-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies ({beta}-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of

  2. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids.

    Science.gov (United States)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary alpha-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary alpha-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (beta-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  3. Radiation and biophysical studies on cells and viruses. Progress report 1 July 1977--30 June 1978. [Particle beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Arthur; Ansevin, Allen T.; Corry, Peter M.

    1978-08-01

    Studies on genetic structure included arrangement of interphase and mitotic chromosomes, nucleoproteins, and DNA. Studies on analysis of sensitive sites by particle beam irradiation included location of cellular sites for mutation induction and cell transformation. Studies on radiation damage and repair and radiation as an investigative tool included damage to nuclear proteins and other model systems; detection and quantitation of cell surface antigens; interaction of hyperthermia and irradiation; radioinduced cell transformation alkaline elution studies of damage and repair; and low dose, low LET lethality. (HLW)

  4. U.C. Davis particle physics research. Final technical progress report, May 1, 1970--February 28, 1989

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-12-31

    During the period of this contract, the participants carried out theoretical and experimental researches in high energy particle physics. The experiment group has been working with both bubble chamber and electronic detectors. The bubble chamber work made use of bubble chambers and particle beams at Lawrence Berkeley Laboratory, Brookhaven National Laboratory, Fermilab, and the Stanford Linear Accelerator Center. The different electronic detectors were the TPC/Two Gamma facility situated at the PEP electron-positron collider at SLAC, the AMY detector at TRISTAN, the electron-positron collider at KEK in Japan, fixed target detectors at Fermilab, and a hybrid bubble chamber/electronic detector at SLAC. Negotiations were also started with the H1 collaboration for a UCD participation at the upcoming Hera electron-proton collider. The theoretical groups have been engaged in a wide variety of studies. Phenomenological studies of high energy interactions have constituted a major fraction of the effort, particularly those associated with the higgs field, various aspects of supersymmetry, and searches for new physics. Work on reactions associated with ee, ep, and hadron colliders has been extensive and includes many analyses providing tests of QCD. Lattice gauge theory has been a major area of work, and electroweak physics and mathematical physics have also been topics of study. Work has been published on heavy flavor decays and CP noninvariance, super symmetry, Yang-Mills theory and electroweak symmetry breaking as well as string theory.

  5. A new device to measure the settling properties of suspended particles : instrumental development and first applications during runoff events in small watersheds

    Science.gov (United States)

    Legoût, Cédric; Wendling, Valentin; Gratiot, Nicolas; Mercier, Bernard; Coulaud, Catherine; Nord, Guillaume; Droppo, Ian; Ribolzi, Olivier

    2016-04-01

    Most equations describing suspended particle transport balances the settling flux of particles against the turbulent flux of the flow. Although in-situ techniques have been developed to measure settling velocities of suspended particles in coastal areas, floodplain rivers and estuaries, they are not easily transferable to small and meso-scale watersheds. The main limitation lies in the range of concentrations frequently reaching several tens of grams per liter during runoff events. To overcome this instrumental limitation we developed an original System for the Characterization of Aggregates and Flocs (SCAF). An optical settling column, equipped with a vertical array of 16 optical sensors, was used to provide light transmission through a suspension during quiescent settling. It was specifically designed to be inserted in plastic bottles contained in classical sequential samplers, in order to obtain automatic measurements of the suspension immediately after its collection in the river. From the SCAF measurements, we calculate both the particle settling velocity distributions and the propensity of particles to flocculate. The prototypes were tested in laboratory conditions for a wide range of concentrations and material types, leading to consistent measurements with flocculation indices comprised between 0 and 80, respectively for non-cohesive and cohesive materials. First measurements in the field were achieved during runoff events at the outlet of small nested catchments in Lao PDR (MSEC network of environmental observatories) in order to explore the non-conservative behavior of the settling properties of eroded soil aggregates during their transfer.

  6. Large ice particles associated with small ice water content observed by AIM CIPS imagery of polar mesospheric clouds: Evidence for microphysical coupling with small-scale dynamics

    Science.gov (United States)

    Rusch, D.; Thomas, G.; Merkel, A.; Olivero, J.; Chandran, A.; Lumpe, J.; Carstans, J.; Randall, C.; Bailey, S.; Russell, J.

    2017-09-01

    Observations by the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) satellite have demonstrated the existence of Polar Mesospheric Cloud (PMC) regions populated by particles whose mean sizes range between 60 and 100 nm (radii of equivalent volume spheres). It is known from numerous satellite experiments that typical mean PMC particle sizes are of the order of 40-50 nm. Determination of particle size by CIPS is accomplished by measuring the scattering of solar radiation at various scattering angles at a spatial resolution of 25 km2. In this size range we find a robust anti-correlation between mean particle size and albedo. These very-large particle-low-ice (VLP-LI) clouds occur over spatially coherent areas. The surprising result is that VLP-LI are frequently present either in the troughs of gravity wave-like features or at the edges of PMC voids. We postulate that an association with gravity waves exists in the low-temperature summertime mesopause region, and illustrate the mechanism by a gravity wave simulation through use of the 2D Community Aerosol and Radiation Model for Atmospheres (CARMA). The model results are consistent with a VLP-LI population in the cold troughs of monochromatic gravity waves. In addition, we find such events in Whole Earth Community Climate Model/CARMA simulations, suggesting the possible importance of sporadic downward winds in heating the upper cloud regions. This newly-discovered association enhances our understanding of the interaction of ice microphysics with dynamical processes in the upper mesosphere.

  7. Effect of stenting on progressive occlusion of small unruptured saccular intracranial aneurysms with residual sac immediately after coil embolization: a propensity score analysis.

    Science.gov (United States)

    Jeon, Jin Pyeong; Cho, Young Dae; Rhim, Jong Kook; Park, Jeong Jin; Cho, Won-Sang; Kang, Hyun-Seung; Kim, Jeong Eun; Han, Moon Hee

    2016-10-01

    To examine the effect of stenting on progressive occlusion of small and incompletely occluded unruptured intracranial aneurysms (UIAs) ≤10 mm in size using a propensity score matched case controlled analysis. 715 small UIAs consecutively treated by coiling between 2008 and 2010 were eligible for study. Time of flight MR angiography and/or catheter angiography were used to estimate extent of occlusion after coiling. Complete occlusion at 6 months post embolization of a sac filled with contrast immediately after coiling constituted progressive occlusion. A propensity score matched analysis was conducted, based on the probability of stent deployment. 206 (28.8%) small UIAs showed residual sac filling directly after coiling. Of these, 182 (88.3%) displayed progressive occlusion at 6 months. Aneurysm size (p<0.01), neck size (p<0.01), and embolization attempt (p<0.01) differed significantly for stented and non-stented lesions, but the incidence of progressive occlusion did not differ (p=0.78) between the groups. After 1:1 propensity score matching, however, the rate of complete occlusion in stented subjects (97.5%) surpassed that of the non-stented counterparts (OR=9.75, p=0.01). Small UIAs with residual sac filling after coiling showed a complete occlusion rate of 88.3% at 6 months post embolization. Stent deployment seems to promote complete occlusion in such lesions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. REBOUND-ing Off Asteroids: An N-body Particle Model for Ejecta Dynamics on Small Bodies

    Science.gov (United States)

    Larson, Jennifer; Sarid, Gal

    2017-10-01

    Here we describe our numerical approach to model the evolution of ejecta clouds. Modeling with an N-body particle method enables us to study the micro-dynamics while varying the particle size distribution. A hydrodynamic approach loses many of the fine particle-particle interactions included in the N-body particle approach (Artemieva 2008).We use REBOUND, an N-body integration package (Rein et al. 2012) developed to model various dynamical systems (planetary orbits, ring systems, etc.) with high resolution calculations at a lower performance cost than other N-body integrators (Rein & Tamayo 2017). It offers both symplectic (WHFast) and non-symplectic (IAS15) methods (Rein & Spiegel 2014, Rein & Tamayo 2015). We primarily use the IAS15 integrator due to its robustness and accuracy with short interaction distances and non-conservative forces. We implemented a wrapper (developed in Python) to handle changes in time step and integrator at different stages of ejecta particle evolution.To set up the system, each particle is given a velocity away from the target body’s surface at a given angle within a defined ejecta cone. We study the ejecta cloud evolution beginning immediately after an impact rather than the actual impact itself. This model considers effects such as varying particle size distribution, radiation pressure, perturbations from a binary component, particle-particle collisions and non-axisymmetric gravity of the target body. Restrictions on the boundaries of the target body’s surface define the physical shape and help count the number of particles that land on the target body. Later, we will build the central body from individual particles to allow for a wider variety of target body shapes and topographies.With our particle modeling approach, individual particle trajectories are tracked and predicted on short, medium and long timescales. Our approach will be applied to modeling of the ejecta cloud produced during the Double Asteroid Redirection Test

  9. Small, dense LDL particles predict changes in intima media thickness and insulin resistance in men with type 2 diabetes and prediabetes--a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Philipp A Gerber

    Full Text Available The association of small, dense low-density lipoprotein (sdLDL particles with an increased cardiovascular risk is well established. However, its predictive value with regard to glucose metabolism and arterial disease in patients with type 2 diabetes has not been thoroughly investigated. We conducted a prospective longitudinal cohort study in patients with (prediabetes who were seen at baseline and after two years. sdLDL particles were determined by gradient gel electrophoresis. Insulin resistance was estimated by using the homeostatic model assessment 2 (HOMA2. Intima media thickness (IMT and flow-mediated dilation (FMD were assessed by ultrasound measurements. Fifty-nine patients (mean age 63.0 ± 12.2 years were enrolled and 39 were seen at follow-up. IMT increased in the whole cohort during follow-up. The change in IMT was predicted by the proportion of sdLDL particles at baseline (p=0.03, and the change in FMD was predicted by LDL-cholesterol levels at baseline (p=0.049. HOMA2 and changes in HOMA2 correlated with the proportion of sdLDL particles and changes in this proportion, respectively (p<0.05 for both. Serum resistin levels increased in parallel with the increasing sdLDL particle number, while serum adiponectin increased only in patients with unaltered sdLDL particle number at follow-up (p<0.01 for both. In conclusion, the proportion of small, dense LDL particles and changes in this proportion are predictive of changes in intima media thickness and insulin resistance, and are closely associated with other determinants of an adverse metabolic status. Thus, this parameter extends the individual risk assessment beyond the limitations of traditional risk markers in patients with dysglycemia.

  10. U.C. Davis particle physics research. Final technical progress report, March 1, 1989--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    During the period of this contract, the participants carried out theoretical and experimental researches in high energy particle physics. The experimental group has been working at Fermilab studying the collisions of high energy hadrons on fixed targets; at the KEK laboratory in Japan participating in the AMY collaboration at the high energy electron-positron collider, Tristan; at the DESY laboratory in Germany participating in the H1 collaboration at the newly commissioned electron-proton collider, Hera; and in collaboration with LBL on pixel detector design for the SSC, while waiting for high luminosity running to start at PEP. The theoretical group has been engaged in phenomenological studies of high energy interactions, particularly those associated with the higgs field and various aspects of symmetry breaking, heavy flavor decays and CP noninvariance, super symmetry, Yang-Mills theory and electroweak symmetry breaking. Lattice gauge calculations on finite temperature phase transitions have also been under study, as well as work on string theory.

  11. Progressive Depletion of Rough Endoplasmic Reticulum in Epithelial Cells of the Small Intestine in Monosodium Glutamate Mice Model of Obesity

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nakadate

    2016-01-01

    Full Text Available Chronic obesity is a known risk factor for metabolic syndrome. However, little is known about pathological changes in the small intestine associated with chronic obesity. This study investigated cellular and subcellular level changes in the small intestine of obese mice. In this study, a mouse model of obesity was established by early postnatal administration of monosodium glutamate. Changes in body weight were monitored, and pathological changes in the small intestine were evaluated using hematoxylin-eosin and Nissl staining and light and electron microscopy. Consequently, obese mice were significantly heavier compared with controls from 9 weeks of age. Villi in the small intestine of obese mice were elongated and thinned. There was reduced hematoxylin staining in the epithelium of the small intestine of obese mice. Electron microscopy revealed a significant decrease in and shortening of rough endoplasmic reticulum in epithelial cells of the small intestine of obese mice compared with normal mice. The decrease in rough endoplasmic reticulum in the small intestine epithelial cells of obese mice indicates that obesity starting in childhood influences various functions of the small intestine, such as protein synthesis, and could impair both the defense mechanism against invasion of pathogenic microbes and nutritional absorption.

  12. In vitro immunotoxic and genotoxic activities of particles emitted from two different small-scale wood combustion appliances

    Science.gov (United States)

    Tapanainen, Maija; Jalava, Pasi I.; Mäki-Paakkanen, Jorma; Hakulinen, Pasi; Happo, Mikko S.; Lamberg, Heikki; Ruusunen, Jarno; Tissari, Jarkko; Nuutinen, Kati; Yli-Pirilä, Pasi; Hillamo, Risto; Salonen, Raimo O.; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2011-12-01

    Residential wood combustion appliances emit large quantities of fine particles which are suspected to cause a substantial health burden worldwide. Wood combustion particles contain several potential health-damaging metals and carbon compounds such as polycyclic aromatic hydrocarbons (PAH), which may determine the toxic properties of the emitted particles. The aim of the present study was to characterize in vitro immunotoxicological and chemical properties of PM 1 ( Dp ≤ 1 μm) emitted from a pellet boiler and a conventional masonry heater. Mouse RAW264.7 macrophages were exposed for 24 h to different doses of the emission particles. Cytotoxicity, production of the proinflammatory cytokine TNF-α and the chemokine MIP-2, apoptosis and phases of the cell cycle as well as genotoxic activity were measured after the exposure. The type of wood combustion appliance had a significant effect on emissions and chemical composition of the particles. All the studied PM 1 samples induced cytotoxic, genotoxic and inflammatory responses in a dose-dependent manner. The particles emitted from the conventional masonry heater were 3-fold more potent inducers of programmed cell death and DNA damage than those emitted from the pellet boiler. Furthermore, the particulate samples that induced extensive DNA damage contained also large amounts of PAH compounds. Instead, significant differences between the studied appliances were not detected in measurements of inflammatory mediators, although the chemical composition of the combustion particles differed considerably from each other. In conclusion, the present results show that appliances representing different combustion technology have remarkable effects on physicochemical and associated toxicological and properties of wood combustion particles. The present data indicate that the particles emitted from incomplete combustion are toxicologically more potent than those emitted from more complete combustion processes.

  13. Advanced methods for the computation of particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Progress report, July 1993--August 1994

    International Nuclear Information System (INIS)

    Dragt, A.J.; Gluckstern, R.L.

    1994-08-01

    The University of Maryland Dynamical Systems and Accelerator Theory Group has been carrying out long-term research work in the general area of Dynamical Systems with a particular emphasis on applications to Accelerator Physics. This work is broadly divided into two tasks: the computation of charged particle beam transport and the computation of electromagnetic fields and beam-cavity interactions. Each of these tasks is described briefly. Work is devoted both to the development of new methods and the application of these methods to problems of current interest in accelerator physics including the theoretical performance of present and proposed high energy machines. In addition to its research effort, the Dynamical Systems and Accelerator Theory Group is actively engaged in the education of students and postdoctoral research associates. Substantial progress in research has been made during the past year. These achievements are summarized in the following report

  14. Reconstructing the small river basin sediment budget and associated particle-bound contaminants redistribution (Chern River, European Russia)

    Science.gov (United States)

    Belyaev, Vladimir; Aseeva, Elena; Golosov, Valentin

    2015-04-01

    Reconstruction of the basin-scale sediment budget and associated particle-bound pollutants redistribution was carried out within the upper part of the Chern River basin (133 km2). It involved application of integrated approach based on use of several independent techniques. The study river basin is located on the border between the Orel and Kursk Regions of the Central European Russia nearby the Mikhailovskiy opencast iron ore mine and processing plant, which are believed to be the main local sources of air-borne pollutants. In addition, the basin was contaminated by radionuclide fallout after the Chernobyl accident in 1986. Combination of geomorphic, geochemical, soil survey and geodetic methods has allowed authors to evaluate dynamics of sediment and contaminants redistribution for the last 50 years (since the beginning of a mining activity) within the upper part of the basin upstream from the reservoir, located in the middle reach of the main valley. Main techniques applied were field description of soil or sediment sections, the 137Cs radioactive tracer (for estimation average soil loss rates from eroding cultivated hillslopes and for reconstruction of accumulation rates and sediment microstratigraphy for deposition locations such as main river floodplain and bottoms of small dry valleys), chemical analysis (content of selected heavy metals and As - both in mobile forms by atomic absorption spectroscopy and total by X-ray fluorescence spectrometry, organic C content, pH), geomorphic and detailed geodetic survey of selected key sections of the Chern River floodplain, calculation of average soil erosion rates for cultivated area of the studied part of the basin by the empirical model. In addition, two detailed bottom sediment cores were taken from the reservoir bottom which intercepts practically all the sediment delivered from the upper part of the basin. Integrating the obtained data, it has been found out that substantial changes of the sediment budget took

  15. Progress in Tissue Specimens Alternative for the Driver Genes Testing of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yan SUN

    2015-06-01

    Full Text Available Target treatment based on driver genes in advanced non-small cell lung cancer is very important currently. Tumor tissues is the gold standard for driver genes testing. However, most of patients could not get the gene information for lack of enough tissues. To explore the tissue specimens alternatives is a hot spot in clinical work. This report reviews the tissue specimen alternatives of driver gene testing in non-small cell lung cancer.

  16. [Progress in Tissue Specimens Alternative for the Driver Genes Testing of Non-small Cell Lung Cancer].

    Science.gov (United States)

    Sun, Yan; Song, Zhengbo

    2015-06-01

    Target treatment based on driver genes in advanced non-small cell lung cancer is very important currently. Tumor tissues is the gold standard for driver genes testing. However, most of patients could not get the gene information for lack of enough tissues. To explore the tissue specimens alternatives is a hot spot in clinical work. This report reviews the tissue specimen alternatives of driver gene testing in non-small cell lung cancer.

  17. Small Sub-micron-Particle Position-Resolving Laser-Doppler Velocimeter for High-Speed Flows, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objectives of this proposed work are to develop and prove the use of LDV and CompLDV for particle-position-resolving and flow velocity profile...

  18. Amping it up on a small budget: Transforming inexpensive, commercial audio and video components into a useful charged particle spectrometer

    Science.gov (United States)

    Pallone, Arthur

    Necessity often leads to inspiration. Such was the case when a traditional amplifier quit working during the collection of an alpha particle spectrum. I had a 15 battery-powered audio amplifier in my box of project electronics so I connected it between the preamplifier and the multichannel analyzer. The alpha particle spectrum that appeared on the computer screen matched expectations even without correcting for impedance mismatches. Encouraged by this outcome, I have begun to systematically replace each of the parts in a traditional charged particle spectrometer with audio and video components available through consumer electronics stores with the goal of producing an inexpensive charged particle spectrometer for use in education and research. Hopefully my successes, setbacks, and results to date described in this presentation will inform and inspire others.

  19. Small-signal analysis and particle-in-cell simulations of planar dielectric Cherenkov masers for use as high-frequency, moderate-power broadband amplifiers

    International Nuclear Information System (INIS)

    Carlsten, Bruce E.

    2002-01-01

    A small-signal gain analysis of the planar dielectric Cherenkov maser is presented. The analysis results in a Pierce gain solution, with three traveling-wave modes. The analysis shows that the dielectric Cherenkov maser has a remarkable broadband tuning ability near cutoff, while maintaining reasonable gain rates. Numerical simulations verifying the small-signal gain results are presented, using a particle-in-cell code adapted specifically for planar traveling-wave tubes. An instantaneous bandwidth is numerically shown to be very large, and saturated efficiency for a nominal high-power design is shown to be in the range of standard untapered traveling-wave tubes

  20. Global electric-field determination in the Earth's outer magnetosphere using charged particles. Progress Report No. 1, 1991

    International Nuclear Information System (INIS)

    Eastman, T.; Sheldon, R.; Hamilton, D.; Mcilwain, C.

    1992-03-01

    Although many properties of the Earth's magnetosphere have been measured and quantified in the past 30 years since it was discovered, one fundamental (for a zeroeth order magnetohydrodynamic (MHD) equilibrium) measurement was made infrequently and with poor spatial coverage: the global electric field. This oversight is in part due to the difficulty of measuring a plasma electric field, and in part due to the difficulty of measuring a plasma electric field, and in part due to the neglect of theorists. However, there is renewed interest in the convection electric field, since it has been realized that it is vital for understanding many aspects of the magnetosphere: the global MHD equilibrium, reconnection rates, Region 2 Birkeland currents, magnetosphere-ionosphere coupling, ring current and radiation belt transport, substorm injections, acceleration mechanisms, etc. Unfortunately the standard experimental methods have not been able to synthesize a global field (excepting the pioneering work of McIlwain's geostationary models), and we are left with an overly simplistic theoretical field, the Volland-Stern electric field mode. Again, single point measurements of the plasma pause were used to infer the appropriate amplitudes of the model, parameterized by Kp (Maynard and Chen, JGR 1975). Although this result was never intended to be the definitive electric field model, it has gone nearly unchanged for 15 years. However, the data sets being taken today require a great deal more accuracy than can be provided by the Volland-Stern model. Nor has the variability of the electric field shielding been properly addressed, although effects of penetrating magnetospheric electric fields has been seen in mid- and low-latitude ionospheric data sets. The growing interests in substorm dynamics also requires a much better assessment of the electric fields responsible for particle injections

  1. Small dense LDL particles - a predictor of coronary artery disease evaluated by invasive and CT-based techniques: a case-control study

    Directory of Open Access Journals (Sweden)

    Andreasen Annette

    2011-01-01

    Full Text Available Abstract Background Coronary angiography is the current standard method to evaluate coronary atherosclerosis in patients with suspected angina pectoris, but non-invasive CT scanning of the coronaries are increasingly used for the same purpose. Low-density lipoprotein (LDL cholesterol and other lipid and lipoprotein variables are major risk factors for coronary artery disease. Small dense LDL particles may be of particular importance, but clinical studies evaluating their predictive value for coronary atherosclerosis are few. Methods We performed a study of 194 consecutive patients with chest pain, a priori considered of low to intermediate risk for significant coronary stenosis (>50% lumen obstruction who were referred for elective coronary angiography. Plasma lipids and lipoproteins were measured including the subtype pattern of LDL particles, and all patients were examined by coronary CT scanning before coronary angiography. Results The proportion of small dense LDL was a strong univariate predictor of significant coronary artery stenosis evaluated by both methods. After adjustment for age, gender, smoking, and waist circumference only results obtained by traditional coronary angiography remained statistically significant. Conclusion Small dense LDL particles may add to risk stratification of patients with suspected angina pectoris.

  2. Use of small diameter column particles to enhance HPLC determination of histamine and other biogenic amines in seafood

    DEFF Research Database (Denmark)

    Simat, Vida; Dalgaard, Paw

    2011-01-01

    Pre-column and post-column HPLC derivatization methods were modified and evaluated for the identification and quantification of nine biogenic amines in seafood Two HPLC methods with column particles of 1 8 mu m or 3 mu m in diameter were modified and compared to classical methods using 5 mu m...... column particles Both pre-column derivatization with dansyl chloride and post-column derivatization with O-phthalaldehyde were studied The HPLC methods were compared with respect to the time of elution eluent consumption backpressure as well as separation sensitivity recovery and repeatability...... for determination of biogenic amines in lean canned tuna and fatty frozen herring The modified methods using smaller column particles of 1 8 mu m or 3 mu m allowed biogenic amines to be separated and quantified faster (23-59%) and with less eluent consumption (59-62%) than classical HPLC methods Backpressures were...

  3. Impact of surface coating and particle size on the uptake of small and ultrasmall superparamagnetic iron oxide nanoparticles by macrophages.

    Science.gov (United States)

    Saito, Shigeyoshi; Tsugeno, Mana; Koto, Daichi; Mori, Yuki; Yoshioka, Yoshichika; Nohara, Satoshi; Murase, Kenya

    2012-01-01

    Magnetic resonance imaging (MRI) using contrast agents like superparamagnetic iron oxide (SPIO) is an extremely versatile technique to diagnose diseases and to monitor treatment. This study tested the relative importance of particle size and surface coating for the optimization of MRI contrast and labeling efficiency of macrophages migrating to remote inflammation sites. We tested four SPIO and ultrasmall superparamagnetic iron oxide (USPIO), alkali-treated dextran magnetite (ATDM) with particle sizes of 28 and 74 nm, and carboxymethyl dextran magnetite (CMDM) with particle sizes of 28 and 72 nm. Mouse macrophage RAW264 cells were incubated with SPIOs and USPIOs, and the labeling efficiency of the cells was determined by the percentage of Berlin blue-stained cells and by measuring T(2) relaxation times with 11.7-T MRI. We used trypan blue staining to measure cell viability. Analysis of the properties of the nanoparticles revealed that ATDM-coated 74 nm particles have a lower T(2) relaxation time than the others, translating into a higher ability of MRI negative contrast agent. Among the other three candidates, CMDM-coated particles showed the highest T(2) relaxation time once internalized by macrophages. Regarding labeling efficiency, ATDM coating resulted in a cellular uptake higher than CMDM coating, independent of nanoparticle size. None of these particle formulations affected macrophage viability. This study suggests that coating is more critical than size to optimize the SPIO labeling of macrophages. Among the formulations tested in this study, the best MRI contrast and labeling efficiency are expected with ATDM-coated 74 nm nanoparticles.

  4. Application of image-based particle size and shape characterization systems in the development of small molecule pharmaceuticals.

    Science.gov (United States)

    Gamble, John F; Tobyn, Mike; Hamey, Rhye

    2015-05-01

    With the introduction of Quality by Design (QbD) to the pharmaceutical industry, there has been an increased focus on understanding the nature of particles and composites, with the aim of understanding and modeling how they interact in complex systems, leading to robust dosage forms. Particle characterization tools have evolved and now enable a greater level of understanding of powder systems and blends. Tools that can elucidate the size and shape of particulate systems can provide significantly more information about the nature of the particles being analyzed, than a conventional particle size measurement. Although accurate size and shape analysis has always been regarded as the "gold standard" in understanding the nature of particulate systems, neither imaging systems nor IT infrastructure was sufficiently developed to allow this to be performed with sufficient accuracy in a timely manner. The aim of this review is to provide an insight into developments in the field of size and shape analysis of pharmaceutical systems, and how these can now realistically be used as robust development tools. Examples of current uses of such technologies will be explored as well as investigating future applications such as combined image/spectroscopic analyses to track single components within blended systems. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Quantitative Correlation between Viscosity of Concentrated MAb Solutions and Particle Size Parameters Obtained from Small-Angle X-ray Scattering.

    Science.gov (United States)

    Fukuda, Masakazu; Moriyama, Chifumi; Yamazaki, Tadao; Imaeda, Yoshimi; Koga, Akiko

    2015-12-01

    To investigate the relationship between viscosity of concentrated MAb solutions and particle size parameters obtained from small-angle X-ray scattering (SAXS). The viscosity of three MAb solutions (MAb1, MAb2, and MAb3; 40-200 mg/mL) was measured by electromagnetically spinning viscometer. The protein interactions of MAb solutions (at 60 mg/mL) was evaluated by SAXS. The phase behavior of 60 mg/mL MAb solutions in a low-salt buffer was observed after 1 week storage at 25°C. The MAb1 solutions exhibited the highest viscosity among the three MAbs in the buffer containing 50 mM NaCl. Viscosity of MAb1 solutions decreased with increasing temperature, increasing salt concentration, and addition of amino acids. Viscosity of MAb1 solutions was lowest in the buffer containing histidine, arginine, and aspartic acid. Particle size parameters obtained from SAXS measurements correlated very well with the viscosity of MAb solutions at 200 mg/mL. MAb1 exhibited liquid-liquid phase separation at a low salt concentration. Simultaneous addition of basic and acidic amino acids effectively suppressed intermolecular attractive interactions and decreased viscosity of MAb1 solutions. SAXS can be performed using a small volume of samples; therefore, the particle size parameters obtained from SAXS at intermediate protein concentration could be used to screen for low viscosity antibodies in the early development stage.

  6. Research progress of cerebral venous system diseases and cerebral small vessel disease: Chinese scholars' reports published abroad

    Directory of Open Access Journals (Sweden)

    Tian CAO

    2016-11-01

    Full Text Available In recent years, Chinese scholars have published several high-quality articles on cerebral venous system diseases and cerebral small vessel disease (cSVD in foreign professional journals, covering new imaging techniques for diagnosis and differential diagnosis of cerebral venous thrombosis (CVT, combination therapy in severe CVT, influencing factors of cSVD, detection methods and treatment exploration, etc. In this review, we briefly outline the data on their studies. DOI: 10.3969/j.issn.1672-6731.2016.11.005

  7. Research and development of improved efficiency small steam turbines (IESST). Technical progress report, Phase I, 16 April-31 December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Choate, D.M.; Tuttle, A.H.

    1980-01-01

    Product Statistical Bulletins of the National Electrical Manufacturers Association (NEMA) and Turbodyne's shipment records over a 10-y period were researched to determine quantities installed and to define general parameters of design. Engineering studies were conducted to determine the optimum turbine design to meet the defined design parameters. Two conceptual designs plus an added variation of one design were completed together with designs of gearing required to provide speeds compatible with driven equipment speeds. The calculated performance of the recommended design and currently available small steam turbines were compared and a life cycle cost analysis was conducted to determine the economic competitiveness of the new design.

  8. Wood burning stoves and small boilers - particle emissions and reduction initiatives; Braendeovne og smae kedler - partikelemissioner og reduktionstiltag

    Energy Technology Data Exchange (ETDEWEB)

    Illerup, J.B.; Capral Henriksen, T.; Lundhede, T. [Danmarks Miljoeundersoegelser, Aarhus Universitet, Aarhus (Denmark); Breugel, C. van; Zoellner Jensen, N. [Miljoestyrelsen, Copenhagen (Denmark)

    2007-06-15

    Pollution from burning wood in private households, and the environmental and health consequences of this is determined in practice by a complicated interaction between a number of factors, including firing habits, fuel, type of stove/boiler, chimney and location of the chimney in relation to the surroundings. This report maps out the technologies used today for burning wood in private households, how these technologies contribute to particle emissions and which technologies may potentially reduce emissions of particles from burning wood in households in Denmark. Moreover, the possible emissions reductions and the financial costs incurred by consumers from different initiatives have been estimated. This report does not deal with possible initiatives for improvement of firing habits, fuel quality and chimneys. (au)

  9. Extrusion of single-wall carbon nanotubes via formation of small particles condensed near an arc evaporation source

    Science.gov (United States)

    Saito, Yahachi; Okuda, Mitsumasa; Tomita, Masato; Hayashi, Takayoshi

    1995-04-01

    Single-wall (SW) tubes were produced by co-evaporation of carbon and lanthanum in helium gas and examined by transmission electron microscopy (TEM). TEM samples were collected directly from a space near the arc evaporation source during evaporation. SW tubes growing radially from compound particles were observed 4 cm above the source, but not 2 cm. The 'sea urchin'-like morphology of these tubes were similar to those observed for soot deposited on the inner walls of the reaction chamber, suggesting that soot particles were formed first in the gas phase and SW tubes grew from them before deposition on the chamber wall. The temperature distribution and flow velocity of convection around the source are used for discussion of the growth mechanism of the SW tubes.

  10. WWW scattering matrix database for small mineral particles at 441.6 and 632.8 nm

    International Nuclear Information System (INIS)

    Volten, H.; Munoz, O.; Hovenier, J.W.; Haan, J.F. de; Vassen, W.; Zande, W.J. van der; Waters, L.B.F.M.

    2005-01-01

    We present a new extensive database containing experimental scattering matrix elements as functions of the scattering angle measured at 441.6 and 632.8 nm for a large collection of micron-sized mineral particles in random orientation. This unique database is accessible through the World-Wide Web. Size distribution tables of the particles are also provided, as well as other characteristics relevant to light scattering. The database provides the light scattering community with easily accessible information that is useful, for a variety of applications such as testing theoretical methods, and the interpretation of measurements of scattered radiation. To illustrate the use of the database, we consider cometary observations and compare them with (1) cometary analog data from the database, and (2) with results of Mie calculations for homogeneous spheres, having the same refractive index and size distribution as those of the analog data

  11. Radiofrequency ablation of small liver malignancies under magnetic resonance guidance: progress in targeting and preliminary observations with temperature monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Terraz, Sylvain; Cernicanu, Alexandru; Lepetit-Coiffe, Matthieu; Viallon, Magalie; Salomir, Rares; Becker, Christoph D. [University Hospitals of Geneva, Department of Radiology, Geneva 14 (Switzerland); Mentha, Gilles [University Hospitals of Geneva, Department of Visceral Surgery and Transplantation, Geneva (Switzerland)

    2010-04-15

    To evaluate the feasibility and effectiveness of magnetic resonance (MR)-guided radiofrequency (RF) ablation for small liver tumours with poor conspicuity on both contrast-enhanced ultrasonography (US) and computed tomography (CT), using fast navigation and temperature monitoring. Sixteen malignant liver nodules (long-axis diameter, 0.6-2.4 cm) were treated with multipolar RF ablation on a 1.5-T wide-bore MR system in ten patients. Targeting was performed interactively, using a fast steady-state free precession sequence. Real-time MR-based temperature mapping was performed, using gradient echo-echo planar imaging (GRE-EPI) and hardware filtering. MR-specific treatment data were recorded. The mean follow-up time was 19 {+-} 7 months. Correct placement of RF electrodes was obtained in all procedures (image update, <500 ms; mean targeting time, 21 {+-} 11 min). MR thermometry was available for 14 of 16 nodules (88%) with an accuracy of 1.6 C in a non-heated region. No correlation was found between the size of the lethal thermal dose and the ablation zone at follow-up imaging. The primary and secondary effectiveness rates were 100% and 91%, respectively. RF ablation of small liver tumours can be planned, targeted, monitored and controlled with MR imaging within acceptable procedure times. Temperature mapping is technically feasible, but the clinical benefit remains to be proven. (orig.)

  12. A Small Molecule Polyamine Oxidase Inhibitor Blocks Androgen-Induced Oxidative Stress and Delays Prostate Cancer Progression in the TRAMP Mouse Model

    Science.gov (United States)

    Basu, Hirak S.; Thompson, Todd A.; Church, Dawn R.; Clower, Cynthia C.; Mehraein-Ghomi, Farideh; Amlong, Corey A.; Martin, Christopher T.; Woster, Patrick M.; Lindstrom, Mary J.; Wilding, George

    2009-01-01

    High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiological factor in prostate cancer (CaP) occurrence, recurrence and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase (SSAT), the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epithelia produce a large excess of polyamines, the androgen-induced polyamine oxidation that produces H2O2 could be a major reason for the high ROS levels in the prostate epithelia. A small molecule polyamine oxidase inhibitor N,N'-butanedienyl butanediamine (MDL 72,527 or CPC-200) effectively blocks androgen-induced ROS production in human CaP cells as well as significantly delays CaP progression and death in animals developing spontaneous CaP. These data demonstrate that polyamine oxidation is not only a major pathway for ROS production in prostate, but inhibiting this pathway also successfully delays prostate cancer progression. PMID:19773450

  13. A small molecule polyamine oxidase inhibitor blocks androgen-induced oxidative stress and delays prostate cancer progression in the transgenic adenocarcinoma of the mouse prostate model.

    Science.gov (United States)

    Basu, Hirak S; Thompson, Todd A; Church, Dawn R; Clower, Cynthia C; Mehraein-Ghomi, Farideh; Amlong, Corey A; Martin, Christopher T; Woster, Patrick M; Lindstrom, Mary J; Wilding, George

    2009-10-01

    High levels of reactive oxygen species (ROS) present in human prostate epithelia are an important etiologic factor in prostate cancer (CaP) occurrence, recurrence, and progression. Androgen induces ROS production in the prostate by a yet unknown mechanism. Here, to the best of our knowledge, we report for the first time that androgen induces an overexpression of spermidine/spermine N1-acetyltransferase, the rate-limiting enzyme in the polyamine oxidation pathway. As prostatic epithelia produce a large excess of polyamines, the androgen-induced polyamine oxidation that produces H2O2 could be a major reason for the high ROS levels in the prostate epithelia. A small molecule polyamine oxidase inhibitor N,N'-butanedienyl butanediamine (MDL 72,527 or CPC-200) effectively blocks androgen-induced ROS production in human CaP cells, as well as significantly delays CaP progression and death in animals developing spontaneous CaP. These data show that polyamine oxidation is not only a major pathway for ROS production in prostate, but inhibiting this pathway also successfully delays CaP progression.

  14. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ma, Xiaopeng; Phi Van, Valerie; Kimm, Melanie A; Prakash, Jaya; Kessler, Horst; Kosanke, Katja; Feuchtinger, Annette; Aichler, Michaela; Gupta, Aayush; Rummeny, Ernst J; Eisenblätter, Michel; Siveke, Jens; Walch, Axel K; Braren, Rickmer; Ntziachristos, Vasilis; Wildgruber, Moritz

    2017-01-01

    Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT) for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC) model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF) probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib) for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters.

    Science.gov (United States)

    Kaplinghat, Manoj; Tulin, Sean; Yu, Hai-Bo

    2016-01-29

    Astrophysical observations spanning dwarf galaxies to galaxy clusters indicate that dark matter (DM) halos are less dense in their central regions compared to expectations from collisionless DM N-body simulations. Using detailed fits to DM halos of galaxies and clusters, we show that self-interacting DM (SIDM) may provide a consistent solution to the DM deficit problem across all scales, even though individual systems exhibit a wide diversity in halo properties. Since the characteristic velocity of DM particles varies across these systems, we are able to measure the self-interaction cross section as a function of kinetic energy and thereby deduce the SIDM particle physics model parameters. Our results prefer a mildly velocity-dependent cross section, from σ/m≈2  cm^{2}/g on galaxy scales to σ/m≈0.1  cm^{2}/g on cluster scales, consistent with the upper limits from merging clusters. Our results dramatically improve the constraints on SIDM models and may allow the masses of both DM and dark mediator particles to be measured even if the dark sector is completely hidden from the standard model, which we illustrate for the dark photon model.

  16. Identification of biomarkers of radioresponse and subsequent progression towards lung cancer in normal human bronchial epithelial cells after HZE particle irradiation

    Science.gov (United States)

    Story, Michael; Ding, Liang-Hao; Park, Seongmi; Minna, John

    Using variants of a non-oncogenically immortalized human bronchial epithelial cell line HBEC3-KT, we have examined global gene expression patterns after low and high LET irradiation up to 24h post-IR. Using supervised analyses we have identified 427 genes whoes expression can be used to discriminate the cellular response to γ-vs Si or Fe particles even when the biological outcome, cell death, is equivalent. Furthermore, genetic background also determines gene expression response. When HBEC3-KT is compared to the HBEC3-KT cells line where mutant k-RAS is over-expressed and p53 has been knocked down, HBEC-3KTr53, principal component analysis clearly shows that the response of each cell resides in a different 3-D space, that is, basal gene expression patterns as well as the gene expression response are unique to each cell type. Using regression analysis to examine these 427 genes show clusters of genes whose temporal expression patterns are the same and which are unique to a given radiation type. Ultimately, this approach will allow for the interrogation of gene promoters to identify response elements that drive how cells respond to different radiation types. We are extending our examination to O particles and are now examining gene expression as a function of beam quality. We have made substantial progress in the determination of cellular transformation by HZE particles for these cell lines. (Transformation as defined by the ability to grow in soft agar.) For HBEC-3KT, the spontaneous transformation frequency is about 10- 7.ExposuretoeitherF eorSiparticlesinc KT r53celllinedidnotshowanyincreaseintransf ormationf requencyaf terdosesof upto1Gy, however, thesp 3KT.W ehavenowisolatedover160individualf ocithatf ormedinsof tagarf romcellculturesthatwereirradia termcultureandthenre-introducedintosof tagartoassurethattheabilitytogrowinsof tagarisclonal.T odatew 30 With these cell isolates in hand we will begin to determine tumorigenicity by subcutaneous injections in nude

  17. Progress report on nuclear science and technology in China (Vol.3). Proceedings of academic annual meeting of China Nuclear Society in 2013, No.6--particle accelerator sub-volume

    International Nuclear Information System (INIS)

    2014-05-01

    Progress report on nuclear science and technology in China (Vol. 3) includes 10 articles which are communicated on the third national academic annual meeting of China Nuclear Society. There are 10 books totally. This is the sixth one, the content is about particle accelerator sub-volume

  18. A summary of processes relevant for the particle balance of a cold plasma blanket contaminated with a small amount of helium

    International Nuclear Information System (INIS)

    Potters, J.H.H.M.; Goedheer, W.J.

    1982-04-01

    A summary is given of the atomic processes which are relevant for the ionization balance and for the transport in a plasma consisting of hydrogen with a small admixture of helium. Attention is paid mainly to processes in plasmas with temperatures below 100 eV and electron densities between 3x10 13 and 3x10 14 cm -3 conditions which prevail in a so-called cold plasma blanket. The species considered are electrons, protons, hydrogen atoms (ground state and excited), α-particles, He + -ions (ground state and excited), and helium atoms (ground state and excited). The discussed processes are charge exchange, ionization, recombination, (de-) excitation, and elastic scattering

  19. [Elementary particle interactions]: Progress report

    International Nuclear Information System (INIS)

    Close, F.E.

    1988-01-01

    This paper briefly discusses high energy physics research in inelastic scattering of leptons from hadron and nuclear targets; nuclear dependence of parton distributions; and shadowing of nuclear structure functions

  20. Power and Efficiency Analysis of a Solar Central Receiver Combined Cycle Plant with a Small Particle Heat Exchanger Receiver

    Science.gov (United States)

    Virgen, Matthew Miguel

    Two significant goals in solar plant operation are lower cost and higher efficiencies. To achieve those goals, a combined cycle gas turbine (CCGT) system, which uses the hot gas turbine exhaust to produce superheated steam for a bottoming Rankine cycle by way of a heat recovery steam generator (HRSG), is investigated in this work. Building off of a previous gas turbine model created at the Combustion and Solar Energy Laboratory at SDSU, here are added the HRSG and steam turbine model, which had to handle significant change in the mass flow and temperature of air exiting the gas turbine due to varying solar input. A wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP CCGT plant. Variable guide vanes (VGVs) were found in the earlier model to be an effective tool in providing operational flexibility to address the variable nature of solar input. Combined cycle efficiencies in the range of 50% were found to result from this plant configuration. However, a combustor inlet temperature (CIT) limit leads to two distinct Modes of operation, with a sharp drop in both plant efficiency and power occurring when the air flow through the receiver exceeded the CIT limit. This drawback can be partially addressed through strategic use of the VGVs. Since system response is fully established for the relevant range of solar input and variable guide vane angles, the System Advisor Model (SAM) from NREL can be used to find what the actual expected solar input would be over the course of the day, and plan accordingly. While the SAM software is not yet equipped to model a Brayton cycle cavity receiver, appropriate approximations were made in order to produce a suitable heliostat field to fit this system. Since the SPHER uses carbon nano-particles as the solar absorbers, questions of particle longevity and how the particles might affect the flame behavior in the combustor were addressed using the chemical kinetics software Chemkin

  1. Long non-coding RNA ROR is a novel prognosis factor associated with non-small-cell lung cancer progression.

    Science.gov (United States)

    Qu, C-H; Sun, Q-Y; Zhang, F-M; Jia, Y-M

    2017-09-01

    The aim of the present study was to determine the expression levels of long intergenic non-protein coding RNA, regulator of reprogramming (linc-ROR) in non-small-cell lung cancer (NSCLC) patients and to further explore the prognostic value of this lncRNA. In our investigation, we determined the expression of linc-ROR in human NSCLC tissues and matched normal lung tissues by quantitative Real-time-PCR analysis. Also, correlations between linc-ROR expression and the clinicopathological features were evaluated. Survival curves were plotted using the Kaplan-Meier method and differences in survival rates were analyzed using the log-rank test. Cox regression analyses were performed to explore the effect of linc-ROR as an independent predictor of survival. We found that linc-ROR had high expression in NSCLC specimens than that in matched adjacent normal lung tissues (p ROR expression levels were positively correlated with advanced TNM stage (p = 0.007), positive distant metastasis (p = 0.001) and LN metastasis (p = 0.011). Furthermore, significantly shorter 5-year overall survival (OS) and disease-free survival (DFS) were observed in patients with higher expression of linc-ROR (both p ROR expression was an independent prognostic factor for both 5-years OS (p = 0.001) and 5-year DFS (p = 0.001) in NSCLC. Our findings indicate that linc-ROR plays an oncogenic role in NSCLC development and may function as a prognostic and predictive biomarker for NSCLC.

  2. Progress Towards a Core Set of Outcome Measures in Small-vessel Vasculitis. Report from OMERACT 9

    Science.gov (United States)

    MERKEL, PETER A.; HERLYN, KAREN; MAHR, ALFRED D.; NEOGI, TUHINA; SEO, PHILIP; WALSH, MICHAEL; BOERS, MAARTEN; LUQMANI, RAASHID

    2011-01-01

    The past decade has seen a substantial increase in the number and quality of clinical trials of new therapies for vasculitis, including randomized, controlled, multicenter trials that have successfully incorporated measures of disease activity and toxicity. However, because current treatment regimens for severe disease effectively induce initial remission and reduce mortality, future trials will focus on any of several goals including: (a) treatment of mild—moderate disease; (b) prevention of chronic damage; (c) reduction in treatment toxicity; or (d) more subtle differences in remission induction or maintenance. Thus, new trials will require outcome measure instruments that are more precise and are better able to detect effective treatments for different disease states and measure chronic manifestations of disease. The OMERACT Vasculitis Working Group comprises international clinical investigators with expertise in vasculitis who, since 2002, have worked collaboratively to advance the refinement of outcome measures in vasculitis, create new measures to address domains of illness not covered by current research approaches, and harmonize outcome assessment in vasculitis. The focus of the OMERACT group to date has been on outcome measures in small-vessel vasculitis with an overall goal of creating a core set of outcome measures for vasculitis, each of which fulfills the OMERACT filter of truth, discrimination, feasibility, and identifying additional domains requiring further research. This process has been informed by several ongoing projects providing data on outcomes of disease activity, disease-related damage, multidimensional health-related quality of life, and patient-reported ratings of the burden of vasculitis. PMID:19820226

  3. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1

    Directory of Open Access Journals (Sweden)

    Sosna William A

    2010-09-01

    Full Text Available Abstract Background There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a animal model for humans in influenza pathogenicity and transmissibility studies. In this manuscript, a nose-only bioaerosol inhalation exposure system that was recently developed and validated was used in an inhalation exposure study of aerosolized A/Vietnam/1203/2004 (H5N1 virus in ferrets. The clinical spectrum of influenza resulting from exposure to A/Vietnam/1203/2004 (H5N1 through intranasal verses inhalation routes was analyzed. Results Ferrets were successfully infected through intranasal instillation or through inhalation of small particle aerosols with four different doses of Influenza virus A/Vietnam/1203/2004 (H5N1. The animals developed severe influenza encephalomyelitis following intranasal or inhalation exposure to 101, 102, 103, or 104 infectious virus particles per ferret. Conclusions Aerosolized Influenza virus A/Vietnam/1203/2004 (H5N1 is highly infectious and lethal in ferrets. Clinical signs appeared earlier in animals infected through inhalation of aerosolized virus compared to those infected through intranasal instillation.

  4. Highly Effective Non-Viral Antitumor Gene Therapy System Comprised of Biocompatible Small Plasmid Complex Particles Consisting of pDNA, Anionic Polysaccharide, and Fully Deprotected Linear Polyethylenimine

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Koyama

    2015-07-01

    Full Text Available We have reported that ternary complexes of plasmid DNA with conventional linear polyethylenimine (l-PEI and certain polyanions were very stably dispersed, and, with no cryoprotectant, they could be freeze-dried and re-hydrated without the loss of transfection ability. These properties enabled the preparation of a concentrated suspension of very small pDNA complex, by preparing the complexes at highly diluted conditions, followed by condensation via lyophilization-and-rehydration procedure. Recently, a high potency linear polyethylenimine having no residual protective groups, i.e., Polyethylenimine “Max” (PEI “Max”, is available, which has been reported to induce much higher gene expression than conventional l-PEI. We tried to prepare the small DNA/PEI “Max”/polyanion complexes by a similar freeze-drying method. Small complex particles could be obtained without apparent aggregation, but transfection activity of the rehydrated complexes was severely reduced. Complex-preparation conditions were investigated in details to achieve the freeze-dried DNA/PEI “Max”/polyanion small ternary complexes with high transfection efficiency. DNA/PEI “Max”/polyanion complexes containing cytokine-coding plasmids were then prepared, and their anti-tumor therapeutic efficacy was examined in tumor-bearing mice.

  5. RMCSANS-modelling the inter-particle term of small angle scattering data via the reverse Monte Carlo method

    International Nuclear Information System (INIS)

    Gereben, O; Pusztai, L; McGreevy, R L

    2010-01-01

    A new reverse Monte Carlo (RMC) method has been developed for creating three-dimensional structures in agreement with small angle scattering data. Extensive tests, using computer generated quasi-experimental data for aggregation processes via constrained RMC and Langevin molecular dynamics, were performed. The software is capable of fitting several consecutive time frames of scattering data, and movie-like visualization of the structure (and its evolution) either during or after the simulation is also possible.

  6. Synthesis and in vitro experiments of carcinoma vascular endothelial targeting polymeric nano-micelles combining small particle size and supermagnetic sensitivity.

    Science.gov (United States)

    Zhang, Yi; Pan, Jielin; Xu, Qilan; Li, Hao; Wang, Jianhao; Zhang, Chao; Hong, Guobin

    2018-01-01

    Objective: To construct carcinoma vascular endothelial-targeted polymeric nanomicelles with high magnetic resonance imaging (MRI) sensitivity and to evaluate their biological safety and in vitro tumor-targeting effect, and to monitor their feasibility using clinical MRI scanner. Method: Amphiphilic block copolymer, poly(ethylene glycol)- b -poly(ε-caprolactone) (PEG-PCL) was synthesized via the ring-opening polymerization of ε-caprolactone (CL) initiated by poly(ethylene glycol) (PEG), in which cyclic pentapeptide Arg-Gly-Asp (cRGD) was conjugated with the terminal of hydrophilic PEG block. During the self-assembly of PEG-PCL micelles, superparamagnetic γ-Fe 2 O 3 nanoparticles (11 nm) was loaded into the hydrophobic core. The cRGD-terminated γ-Fe 2 O 3 -loaded polymeric micelles targeting to carcinoma vascular endothelial cells, were characterized in particle size, morphology, loading efficiency and so on, especially high MRI sensitivity in vitro. Normal hepatic vascular endothelial cells (ED25) were incubated with the resulting micelles for assessing their safety. Human hepatic carcinoma vascular endothelial cells (T3A) were cultured with the resulting micelles to assess the micelle uptake using Prussian blue staining and the cell signal intensity using MRI. Results: All the polymeric micelles exhibited ultra-small particle sizes with approximately 50 nm, high relaxation rate, and low toxicity even at high iron concentrations. More blue-stained iron particles were present in the targeting group than the non-targeting and competitive inhibition groups. In vitro MRI showed T 2 WI and T 2 relaxation times were significantly lower in the targeting group than in the other two groups. Conclusion: γ-Fe 2 O 3 -loaded PEG-PCL micelles not only possess ultra-small size and high superparamagnetic sensitivity, also can be actively targeted to carcinoma vascular endothelial cells by tumor-targeted cRGD. It appears to be a promising contrast agent for tumor

  7. Acquired TGF beta 1 sensitivity and TGF beta 1 expression in cell lines established from a single small cell lung cancer patient during clinical progression

    DEFF Research Database (Denmark)

    Nørgaard, P; Damstrup, L; Rygaard, K

    1996-01-01

    Three small cell lung cancer cell lines established from a single patient during longitudinal follow-up were examined for in vitro expression of TGF beta and TGF beta receptors, i.e. the components of an autocrine loop. GLC 14 was established prior to treatment, GLC 16 on relapse after chemotherapy...... was found in GLC 16 and GLC 19. These cell lines were also growth inhibited by exogenously administrated TGF beta 1. TGF beta 1 mRNA and protein in its latent form was only expressed in the radiotherapy-resistant cell line, GLC 19. The results indicate that disease progression in this patient was paralleled...... II receptor gene, as examined by Southern blotting. Also, the type I receptor could not be detected by ligand binding assay in this cell line, despite expression of mRNA for this receptor. This agrees with previous findings that type I receptor cannot bind TGF beta 1 without co-expression of the type...

  8. Propensity Score–Matched Analysis of Comprehensive Local Therapy for Oligometastatic Non-Small Cell Lung Cancer That Did Not Progress After Front-Line Chemotherapy

    International Nuclear Information System (INIS)

    Sheu, Tommy; Heymach, John V.; Swisher, Stephen G.; Rao, Ganesh; Weinberg, Jeffrey S.; Mehran, Reza; McAleer, Mary Frances; Liao, Zhongxing; Aloia, Thomas A.; Gomez, Daniel R.

    2014-01-01

    Purpose: To retrospectively analyze factors influencing survival in patients with non-small cell lung cancer presenting with ≤3 synchronous metastatic lesions. Methods and Materials: We identified 90 patients presenting between 1998 and 2012 with non-small cell lung cancer and ≤3 metastatic lesions who had received at least 2 cycles of chemotherapy followed by surgery or radiation therapy before disease progression. The median number of chemotherapy cycles before comprehensive local therapy (CLT) (including concurrent chemoradiation as first-line therapy) was 6. Factors potentially affecting overall (OS) or progression-free survival (PFS) were evaluated with Cox proportional hazards regression. Propensity score matching was used to assess the efficacy of CLT. Results: Median follow-up time was 46.6 months. Benefits in OS (27.1 vs 13.1 months) and PFS (11.3 months vs 8.0 months) were found with CLT, and the differences were statistically significant when propensity score matching was used (P ≤ .01). On adjusted analysis, CLT had a statistically significant benefit in terms of OS (hazard ratio, 0.37; 95% confidence interval, 0.20-0.70; P ≤ .01) but not PFS (P=.10). In an adjusted subgroup analysis of patients receiving CLT, favorable performance status (hazard ratio, 0.43; 95% confidence interval, 0.22-0.84; P=.01) was found to predict improved OS. Conclusions: Comprehensive local therapy was associated with improved OS in an adjusted analysis and seemed to favorably influence OS and PFS when factors such as N status, number of metastatic lesions, and disease sites were controlled for with propensity score–matched analysis. Patients with favorable performance status had improved outcomes with CLT. Ultimately, prospective, randomized trials are needed to provide definitive evidence as to the optimal treatment approach for this patient population

  9. Patterns of metastatic progression after definitive radiation therapy for early-stage and locally advanced non-small cell lung cancer.

    Science.gov (United States)

    Jensen, Garrett L; Tang, Chad; Hess, Kenneth R; Liao, Zhongxing; Gomez, Daniel R

    2017-06-01

    Current preclinical models of metastatic disease (particularly oligometastases) suggest that metastases appear in a hierarchical order. We attempted to identify systematic patterns of metastasis in non-small cell lung cancer (NSCLC) after radiation therapy (XRT). We analyzed 1074 patients treated from 12/21/1998 through 8/20/2012 with ≥60 Gy definitive radiation for initially non-metastatic NSCLC. Location and time of metastases were recorded. Regional nodal failure was noted, as was subsequent distal failure. For further analysis, we considered only the five most common sites of metastasis (bone, brain, liver, adrenal, and lung). Metastatic progression over time was defined and patterns elucidated with Chi square tests. Histologic findings were analyzed with Wilcoxon rank sum tests. A significant multistep linear progression was not apparent. Having a first metastasis in lung or bone was associated with respective 16% (median 2.4 months) and 15% likelihoods (median 7.9 months) of secondary brain metastasis. Initial metastasis in the brain led to metastasis in another organ 29.3% of the time, most often in the lung, bone, and liver (medians 3.6, 7.9, and 3.1 months). Adenocarcinoma was more likely than squamous to metastasize to the brain (18 vs. 9%) and any of the five major sites (41 vs. 27%). We did not appreciate dominant patterns suggesting a multi-step hierarchical order of metastasis. Rather, our findings suggest that certain subgroups may develop different patterns of spread depending on a variety of factors.

  10. Treatment planning with intensity modulated particle therapy for multiple targets in stage IV non-small cell lung cancer

    Science.gov (United States)

    Anderle, Kristjan; Stroom, Joep; Vieira, Sandra; Pimentel, Nuno; Greco, Carlo; Durante, Marco; Graeff, Christian

    2018-01-01

    Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted. Finally, 4D doses were calculated for different motion scenarios. The results from our algorithm were compared to clinical stereotactic body radiation treatment (SBRT) plans. The study included eight patients with 24 lesions in total. Intended dose regimen for SBRT was 24 Gy in one fraction, but lower fractionated doses had to be delivered in three cases due to OAR constraints or failed plan quality assurance. The resulting IMPT treatment plans had no significant difference in target coverage compared to SBRT treatment plans. Average maximum point dose and dose to specific volume in OARs were on average 65% and 22% smaller with IMPT. IMPT could also deliver 24 Gy in one fraction in a patient where SBRT was limited due to the OAR vicinity. The developed algorithm shows the potential of IMPT in treatment of multiple moving targets in a complex geometry.

  11. Coal workers' pneumoconiosis and progressive massive fibrosis are increasingly more prevalent among workers in small underground coal mines in the United States.

    Science.gov (United States)

    Laney, A Scott; Attfield, Michael D

    2010-06-01

    To determine whether the prevalence of coal workers' pneumoconiosis (CWP) or progressive massive fibrosis (PMF) among United States underground miners is associated with mine size. We examined chest radiographs from 1970 to 2009 of working miners who participated in the National Coal Workers Health Surveillance Program for the presence of small and large opacities consistent with pneumoconiosis, based upon the International Labour Organization classification system. A total of 145 512 miners contributed 240 067 radiographs for analysis. From the 1990s to the 2000s, the prevalence of radiographic CWP increased among miners in mines of all sizes, while miners working in mines with fewer than 50 employees had a significantly higher prevalence of CWP compared to miners who worked in mines with 50 or more employees (pmine size was significant for all decades. Since 1999, miners from small mines were five times more likely to have radiographic evidence of PMF (1.0% of miners) compared to miners from larger mines (0.2% of miners) with a prevalence ratio of 5.0 and 95% CI 3.3 to 7.5. The prevalence of CWP among United States coal miners is increasing in mines of all sizes, while CWP and PMF are much more prevalent among workers from underground mines with fewer than 50 workers.

  12. The cell-cell interaction between tumor-associated macrophages and small cell lung cancer cells is involved in tumor progression via STAT3 activation.

    Science.gov (United States)

    Iriki, Toyohisa; Ohnishi, Koji; Fujiwara, Yukio; Horlad, Hasita; Saito, Yoichi; Pan, Cheng; Ikeda, Koei; Mori, Takeshi; Suzuki, Makoto; Ichiyasu, Hidenori; Kohrogi, Hirotsugu; Takeya, Motohiro; Komohara, Yoshihiro

    2017-04-01

    Small cell lung cancer (SCLC) is an aggressive tumor with a poor prognosis. It is well known that various stromal cells, including macrophages, play a role in tumor progression in several types of malignant tumors; however, the significance of tumor-associated macrophages (TAMs) in SCLC has not been fully elucidated. Signal transducer and activator of transcription 3 (STAT3) is a molecule well-known to be related to tumor progression. In the present study, we investigated the relationship of TAMs and SCLC cells to test the hypothesis that TAMs induce tumor progression in SCLC via STAT3 activation. We performed immunohistochemical analysis using surgically resected tumor specimens and in vitro co-culture experiments using human SCLC cell lines and human monocyte-derived macrophages. We first demonstrated via immunostaining that STAT3 activation in tumor cells was predominantly observed in the peripheral areas of tumor nests existing near TAMs in stroma. The indirect co-culture of SCLC cells and macrophages induced STAT3 activation in both cell types, and macrophage-derived culture supernatant (CS) significantly activated STAT3 in SCLC cells. Macrophage-derived CS induced tumor cell proliferation and invasion via STAT3 activation. In addition, chemo-resistance and sphere formation were also increased by macrophage-derived CS. Macrophage-derived interleukin-6 and CC chemokine ligand 4 (CCL4/MIP-1β) were suggested to be associated with STAT3 activation in SCLC cells. CS-induced STAT3 activation in SCLC cells was suppressed by anti-IL-6 receptor antibody, but not by anti-CCL4/MIP-1β antibody. These results suggest that TAMs are likely involved in SCLC progression via STAT3 activation and TAM-derived IL-6 is indicated to be one of molecules related to STAT3 activation in SCLC cells. Thus, the cell-cell interaction between TAMs and SCLC cells might be a target for therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. In-flow detection of ultra-small magnetic particles by an integrated giant magnetic impedance sensor

    Science.gov (United States)

    Fodil, K.; Denoual, M.; Dolabdjian, C.; Treizebre, A.; Senez, V.

    2016-04-01

    We have designed and fabricated a microfluidic system made of glass and polydimethylsiloxane. A micro-magnetometer has been integrated to the system. This sensor is made of a giant magneto-impedance wire known to have very high magnetic sensitivity at room temperature. A liquid-liquid segmented multiphase flow was generated in the channel using a Y-shaped inlet junction. The dispersed phase plugs contained superparamagnetic iron oxide (20 nm) nanoparticles at a molar concentration of 230 mmol/l. We have shown both theoretically and experimentally that in-flow detection of these nanoparticles is performed by the microsystem for concentration as small as 5.47 × 10-9 mol. These performances show that it is conceivable to use this system for ex-vivo analysis of blood samples where superparamagnetic iron oxide nanoparticles, initially used as magnetic contrast agents, could be functionalized for biomarkers fishing. It opens new perspectives in the context of personalized medicine.

  14. Small-scale structures in neutrals and charged aerosol particles as observed during the ECOMA/MASS rocket campaign

    Directory of Open Access Journals (Sweden)

    B. Strelnikov

    2009-04-01

    Full Text Available We present results of in situ measurements of neutral temperature during the ECOMA/MASS rocket campaign. We present and compare results of turbulence measurements conducted simultaneously by both in situ and doppler radar techniques. We show that the derived values of the turbulence energy dissipation rates are similar on average. We also find a region with a near adiabatic lapse rate with turbulence detected at the upper and lower edge. We note that it is consistent with expectation for a Kelvin-Helmholtz instability. We also present an estimate of the Schmidt numbers, Sc, for the charged aerosols that utilizes in situ measured small-scale density fluctuations of charged aerosols and both in situ and radar turbulence measurements. The derived Schmidt numbers fall within the range between 100 and 4500. This result agrees with previous estimates based on multi-frequency observations of PMSE (Rapp et al., 2008 and also with estimates of microphysical parameters presented in the companion paper by Rapp et al. (2009.

  15. Small-scale structures in neutrals and charged aerosol particles as observed during the ECOMA/MASS rocket campaign

    Directory of Open Access Journals (Sweden)

    B. Strelnikov

    2009-04-01

    Full Text Available We present results of in situ measurements of neutral temperature during the ECOMA/MASS rocket campaign. We present and compare results of turbulence measurements conducted simultaneously by both in situ and doppler radar techniques. We show that the derived values of the turbulence energy dissipation rates are similar on average. We also find a region with a near adiabatic lapse rate with turbulence detected at the upper and lower edge. We note that it is consistent with expectation for a Kelvin-Helmholtz instability.

    We also present an estimate of the Schmidt numbers, Sc, for the charged aerosols that utilizes in situ measured small-scale density fluctuations of charged aerosols and both in situ and radar turbulence measurements. The derived Schmidt numbers fall within the range between 100 and 4500. This result agrees with previous estimates based on multi-frequency observations of PMSE (Rapp et al., 2008 and also with estimates of microphysical parameters presented in the companion paper by Rapp et al. (2009.

  16. Magnetic Particle Spectroscopy Reveals Dynamic Changes in the Magnetic Behavior of Very Small Superparamagnetic Iron Oxide Nanoparticles During Cellular Uptake and Enables Determination of Cell-Labeling Efficacy.

    Science.gov (United States)

    Poller, Wolfram C; Löwa, Norbert; Wiekhorst, Frank; Taupitz, Matthias; Wagner, Susanne; Möller, Konstantin; Baumann, Gert; Stangl, Verena; Trahms, Lutz; Ludwig, Antje

    2016-02-01

    In vivo tracking of nanoparticle-labeled cells by magnetic resonance imaging (MRI) crucially depends on accurate determination of cell-labeling efficacy prior to transplantation. Here, we analyzed the feasibility and accuracy of magnetic particle spectroscopy (MPS) for estimation of cell-labeling efficacy in living THP-1 cells incubated with very small superparamagnetic iron oxide nanoparticles (VSOP). Cell viability and proliferation capacity were not affected by the MPS measurement procedure. In VSOP samples without cell contact, MPS enabled highly accurate quantification. In contrast, MPS constantly overestimated the amount of cell associated and internalized VSOP. Analyses of the MPS spectrum shape expressed as harmonic ratio A₅/A₃ revealed distinct changes in the magnetic behavior of VSOP in response to cellular uptake. These changes were proportional to the deviation between MPS and actual iron amount, therefore allowing for adjusted iron quantification. Transmission electron microscopy provided visual evidence that changes in the magnetic properties correlated with cell surface interaction of VSOP as well as with alterations of particle structure and arrangement during the phagocytic process. Altogether, A₅/A₃-adjusted MPS enables highly accurate, cell-preserving VSOP quantification and furthermore provides information on the magnetic characteristics of internalized VSOP.

  17. The Role of Canonical and Non-Canonical Hedgehog Signaling in Tumor Progression in a Mouse Model of Small Cell Lung Cancer

    Science.gov (United States)

    Szczepny, Anette; Rogers, Samuel; Jayasekara, W. Samantha N.; Park, Kwon; McCloy, Rachael A.; Cochrane, Catherine R.; Ganju, Vinod; Cooper, Wendy A.; Sage, Julien; Peacock, Craig D.; Cain, Jason E.; Burgess, Andrew; Watkins, D. Neil

    2017-01-01

    Hedgehog (Hh) signaling regulates cell fate and self-renewal in development and cancer. Canonical Hh signaling is mediated by Hh ligand binding to the receptor Patched (Ptch), which in turn activates Gli-mediated transcription through Smoothened (Smo), the molecular target of the Hh pathway inhibitors used as cancer therapeutics. Small cell lung cancer (SCLC) is a common, aggressive malignancy with universally poor prognosis. Although preclinical studies have shown that Hh inhibitors block the self-renewal capacity of SCLC cells, the lack of activating pathway mutations have cast doubt over the significance of these observations. In particular, the existence of autocrine, ligand-dependent Hh signaling in SCLC has been disputed. In a conditional Tp53;Rb1 mutant mouse model of SCLC, we now demonstrate a requirement for the Hh ligand Sonic Hedgehog (Shh) for the progression of SCLC. Conversely, we show that conditional Shh overexpression activates canonical Hh signaling in SCLC cells, and markedly accelerates tumor progression. When compared to mouse SCLC tumors expressing an activating, ligand-independent Smo mutant, tumors overexpressing Shh exhibited marked chromosomal instability and Smoothened-independent upregulation of Cyclin B1, a putative non-canonical arm of the Hh pathway. In turn, we show that overexpression of Cyclin B1 induces chromosomal instability in mouse embryonic fibroblasts lacking both Tp53 and Rb1. These results provide strong support for an autocrine, ligand-dependent model of Hh signaling in SCLC pathogenesis, and reveal a novel role for non-canonical Hh signaling through the induction of chromosomal instability. PMID:28581526

  18. Real-world usage and clinical outcomes of alectinib among post-crizotinib progression anaplastic lymphoma kinase positive non-small-cell lung cancer patients in the USA

    Directory of Open Access Journals (Sweden)

    DiBonaventura MD

    2017-12-01

    Full Text Available Marco D DiBonaventura,1 William Wong,2 Bijal Shah-Manek,3,4 Mathias Schulz2 1Ipsos Healthcare, Global Evidence, Value & Access, New York, NY, 2Genentech, US Medical Affairs, San Francisco, CA, 3Ipsos Healthcare, Global Evidence, Value & Access, San Francisco, CA, 4College of Pharmacy, Touro University California, CA, USA Background: Alectinib is an approved treatment for anaplastic lymphoma kinase (ALK-positive patients with advanced non-small-cell lung cancer. Despite positive supporting clinical data, there is a lack of real-world information on the usage and patient outcomes of those treated with alectinib post-crizotinib progression. Methods: Participating oncologists (N=95 in the USA were recruited from an online physician panel to participate in a retrospective patient chart review. Physicians randomly selected eligible patients (ie, patients who progressed on crizotinib as their first ALK inhibitor and were treated with alectinib as their second ALK inhibitor, collected demographics and clinical history from their medical charts, and entered the data into an online data collection form. Results: A total of N=207 patient charts were included (age: 60.1±10.4 years; 53.6% male. The patients in our sample were older (median age of 60 vs 53 years, were more likely to be current smokers (12% vs 1%, had better performance status (45% vs 33% had an Eastern Cooperative Oncology Group [ECOG] of 0, and were less likely to have an adenocarcinoma histology (83% vs 96% relative to published clinical trials. The objective response rate was higher than in clinical trials (67.1% vs 51.3%, respectively as was the disease control rate (89.9% vs 78.8%, respectively, though it varied by race/ethnicity, ECOG, and prior treatment history. Discontinuation (0.0% and dose reductions (3.4% due to adverse events were uncommon in alectinib.Conclusion: Patients using alectinib post-crizotinib in clinical practice are older, more racially/ethnically and histologically

  19. Propagation of a spherical shock wave in mixture of non-ideal gas and small solid particles under gravitational field with conductive and radiative heat fluxes

    Science.gov (United States)

    Nath, Gorakh

    Self-similar solutions are obtained for one-dimensional unsteady adiabatic flow behind a spherical shock wave propagating in a dusty gas with conductive and radiative heat fluxes under a gravitational field. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The heat conduction is express in terms of Fourier’s law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The medium is assumed to be under a gravitational field due to heavy nucleus at the origin (Roche Model). The unsteady model of Roche consists of a dusty gas distributed with spherical symmetry around a nucleus having large mass It is assumed that the gravitational effect of the mixture itself can be neglected compared with the attraction of the heavy nucleus. The density of the ambient medium is taken to be constant. Our analysis reveals that after inclusion of gravitational field effect surprisingly the shock strength increases and remarkable difference can be found in the distribution of flow variables. The effects of the variation of the heat transfer parameters, the gravitational parameter and non-idealness of the gas in the mixture are investigated. Also, the effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are investigated. It is found that the shock strength is increased with an increase in the value of gravitational parameter. Further, it is investigated that the presence of gravitational field increases the

  20. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles. III. The Role of Sodium and the Head Echo Size on the Probability of Detection

    Science.gov (United States)

    Janches, D.; Swarnalingam, N.; Carrillo-Sanchez, J. D.; Gomez-Martin, J. C.; Marshall, R.; Nesvorny, D.; Plane, J. M. C.; Feng, W.; Pokorny, P.

    2017-01-01

    We present a path forward on a long-standing issue concerning the flux of small and slow meteoroids, which are believed to be the dominant portion of the incoming meteoric mass flux into the Earth's atmosphere. Such a flux, which is predicted by dynamical dust models of the Zodiacal Cloud, is not evident in ground-based radar observations. For decades this was attributed to the fact that the radars used for meteor observations lack the sensitivity to detect this population, due to the small amount of ionization produced by slow-velocity meteors. Such a hypothesis has been challenged by the introduction of meteor head echo (HE) observations with High Power and Large Aperture radars, in particular the Arecibo 430 MHz radar. Janches et al. developed a probabilistic approach to estimate the detectability of meteors by these radars and initially showed that, with the current knowledge of ablation and ionization, such particles should dominate the detected rates by one to two orders of magnitude compared to the actual observations. In this paper, we include results in our model from recently published laboratory measurements, which showed that (1) the ablation of Na is less intense covering a wider altitude range; and (2) the ionization probability, Beta ip, for Na atoms in the air is up to two orders of magnitude smaller for low speeds than originally believed. By applying these results and using a somewhat smaller size of the HE radar target we offer a solution that reconciles these observations with model predictions.

  1. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles: I. The Case of Arecibo 430 MHz Meteor Head Echo Observations

    Science.gov (United States)

    Janches, D.; Plane, J. M. C.; Nesvorny, D.; Feng, W.; Vokrouhlicky, D.; Nicolls, M. J.

    2014-01-01

    Recent model development of the Zodiacal Dust Cloud (ZDC) model (Nesvorny et al. 2010, 2011b) argue that the incoming flux of meteoric material into the Earth's upper atmosphere is mostly undetected by radars because they cannot detect small extraterrestrial particles entering the atmosphere at low velocities due to the relatively small production of electrons. In this paper we present a new methodology utilizing meteor head echo radar observations that aims to constrain the ZDC physical model by ground-based measurements. In particular, for this work, we focus on Arecibo 430 MHz observations since this is the most sensitive radar utilized for this type of observations to date. For this, we integrate and employ existing comprehensive models of meteoroid ablation, ionization and radar detection to enable accurate interpretation of radar observations and show that reasonable agreement in the hourly rates is found between model predictions and Arecibo observations when: 1) we invoke the lower limit of the model predicted flux (approximately 16 t/d) and 2) we estimate the ionization probability of ablating metal atoms using laboratory measurements of the ionization cross sections of high speed metal atom beams, resulting in values up to two orders of magnitude lower than the extensively utilized figure reported by Jones (1997) for low speeds meteors. However, even at this lower limit the model over predicts the slow portion of the Arecibo radial velocity distributions by a factor of 3, suggesting the model requires some revision.

  2. Particle physics

    CERN Document Server

    Martin, Brian R

    2017-01-01

    An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. Fourth edition of this successful title in the Manchester Physics series. Includes information on recent key discoveries including : An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of ‘physics beyond the standard model’, including the interaction of particle physics with cosmology; Additional problems in all chapters, with solutions to selected problems available on the book’s website; Advanced material appears in optional starred sections.

  3. Screening Key Genes Associated with the Development and Progression of Non-small Cell Lung Cancer Based on Gene-enrichment Analysis and Meta-analysis

    Directory of Open Access Journals (Sweden)

    Wenwu HE

    2012-07-01

    Full Text Available Background and objective Non-small cell lung cancer (NSCLC is one of the most common malignant tumors; however, its causes are still not completely understood. This study was designed to screen the key genes and pathways related to NSCLC occurrence and development and to establish the scientific foundation for the genetic mechanisms and targeted therapy of NSCLC. Methods Both gene set-enrichment analysis (GSEA and meta-analysis (meta were used to screen the critical pathways and genes that might be corretacted with the development and progression of lung cancer at the transcription level. Results Using the GSEA and meta methods, focal adhesion and regulation of actin cytoskeleton were determined to be the more prominent overlapping significant pathways. In the focal adhesion pathway, 31 genes were statistically significant (P<0.05, whereas in the regulation of actin cytoskeleton pathway, 32 genes were statistically significant (P<0.05. Conclusion The focal adhesion and the regulation of actin cytoskeleton pathways might play important roles in the occurrence and development of NSCLC. Further studies are needed to determine the biological function for the positiue genes.

  4. Small-Sized Tungsten Nitride Particles Strongly Anchored on Carbon Nanotubes and their Use as Supports for Pt for Methanol Electro-oxidation.

    Science.gov (United States)

    Liu, Yuan; Yan, Haijing; Zhou, Xiaoguang; Li, Mingxia; Fu, Honggang

    2015-12-07

    The anchoring of small-sized WN (tungsten nitride) nanoparticles (NPs) with good dispersion on carbon nanotubes (CNTs) offers an effective means of obtaining promising materials for use in electrocatalysis. Herein, an effective method based on grinding treatment followed by a nitridation process is proposed to realize this goal. In the synthesis, a solution containing H4 [SiO4 (W3 O9 )4 ] (SiW12 ) and CNTs modified with polyethylenimine (PEI-CNTs) was ground to dryness. Small-sized WN NPs were anchored onto the CNTs with good dispersion after calcination under NH3 . Under hydrothermal assembly conditions (absence of grinding), WN particles of larger size and with inferior dispersion were obtained, demonstrating the important role of the grinding process. The benefit of the small-sized WN has been demonstrated by using WN/CNTs as a support for Pt to catalyze the methanol electro-oxidation reaction. The mass activity of Pt-WN/CNTs-G-70 (where G denotes the grinding treatment, and 70 is the loading amount (%) of WN in the WN/CNTs) was evaluated as about 817 mA mg(-1) Pt , better that those of commercial Pt/C (340 mA mg(-1) Pt ) and Pt/CNTs (162 mA mg(-1) Pt ). The Pt-WN/CNTs-G also displayed good CO tolerance. In contrast, Pt-WN/CNTs prepared without the grinding process displayed an activity of 344 mA mg(-1) Pt , verifying the key role of grinding treatment in the preparation of WN/CNTs with good co-catalytic effect. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Consolidation chemotherapy improves progression-free survival in stage III small-cell lung cancer following concurrent chemoradiotherapy: a retrospective study

    Directory of Open Access Journals (Sweden)

    Chen XR

    2016-09-01

    Full Text Available Xin-Ru Chen,1,* Jian-Zhong Liang,2,* Shu-Xiang Ma,1 Wen-Feng Fang,1 Ning-Ning Zhou,1 Hai Liao,1 De-Lan Li,1 Li-Kun Chen1 1Department of Medical Oncology, 2Department of Pathology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China *These authors contributed equally to this work Background: Concurrent chemoradiotherapy (CCRT is the standard treatment for limited-stage small-cell lung cancer (LD-SCLC. However, the efficacy of consolidation chemotherapy (CCT in LD-SCLC remains controversial despite several studies that were performed in the early years of CCT use. The aim of this study was to reevaluate the effectiveness and toxicities associated with CCT. Methods: This retrospective analysis evaluated 177 patients with stage IIIA and IIIB small-cell lung cancer (SCLC who underwent CCRT from January 2001 to December 2013 at Sun Yat-Sen University Cancer Center (SYSUCC. Overall survival (OS and progression-free survival (PFS were analyzed using Kaplan–Meier methods. Univariate and multivariate analyses were performed to analyze patient prognosis factors. Results: Among the 177 patients, 72 (41% received CCT and 105 (59% did not receive CCT. PFS was significantly better for patients in the CCT group compared to that for patients in the non-CCT group (median PFS: 17.0 vs 12.9 months, respectively, P=0.031, whereas the differences in OS were not statistically significant (median OS: 31.6 vs 24.8 months, respectively, P=0.118. The 3- and 5-year OS rates were 33.3% and 20.8% for patients in the CCT group and 27.6% and 6.7% for patients in the non-CCT group, respectively. Multivariate analysis revealed that having a pretreatment carcinoembryonic antigen level <5 ng/mL (P=0.035, having undergone prophylactic cranial irradiation (P<0.001, and having received CCT (P=0.002 could serve as favorable independent prognostic factors

  6. Survivin protein expression is involved in the progression of non-small cell lung cancer in Asians: a meta-analysis

    International Nuclear Information System (INIS)

    Duan, Liang; Hu, Xuefei; Jin, Yuxing; Liu, Ruijun; You, Qingjun

    2016-01-01

    Surviving expression might serve as a prognostic biomarker predicting the clinical outcome of non-small cell lung cancer (NSCLC). The study was conducted to explore the potential correlation of survivin protein expression with NSCLC and its clinicopathologic characteristics. PubMed, Medline, Cochrane Library, CNKI and Wanfang database were searched through January 2016 with a set of inclusion and exclusion criteria. Data was extracted from these articles and all statistical analysis was conducted by using Stata 12.0. A total of 28 literatures (14 studies in Chinese and 14 studies in English) were enrolled in this meta-analysis, including 3206 NSCLC patients and 816 normal controls. The result of meta-analysis demonstrated a significant difference of survivin positive expression between NSCLC patients and normal controls (RR = 7.16, 95 % CI = 4.63-11.07, P < 0.001). To investigate the relationship of survivin expression and clinicopathologic characteristics, we performed a meta-analysis in NSCLC patients. Our results indicates survivin expression was associated with histological differentiation, tumor-node-metastasis (TNM) stage and lymph node metastasis (LNM) (RR = 0.80, 95 % CI = 0.73-0.87, P < 0.001; RR = 0.75, 95 % CI = 0.67-0.84, P < 0.001; RR = 1.14, 95 % CI = 1.01-1.29, P = 0.035, respectively), but not pathological type and tumor size. (RR = 1.00, 95 % CI = 0.93-1.07, P = 0.983; RR = 0.95, 95 % CI = 0.86-1.05, P = 0.336, respectively). Higher expression of survivin in NSCLC patients was found when compared to normal controls. Survivin expression was associated with the clinicopathologic characteristics of NSCLC and may serves as an important biomarker for NSCLC progression

  7. MiR-424 Promotes Non-Small Cell Lung Cancer Progression and Metastasis through Regulating the Tumor Suppressor Gene TNFAIP1

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2017-05-01

    Full Text Available Background/Aims: This study aimed to investigate the potential roles of miR-424 expression in non-small cell lung cancer (NSCLC metastasis and growth and its underlying mechanism. Methods: The expression of miR-424 in two NSCLC cell lines (A549 and H1975 was altered by transfection with miR-424 mimic and inhibitor. Effects of miR-424 overexpression and suppression on cells migration, invasion and colony formation were analyzed. Target genes for miR-424 were predicted using bioinformatics method and then verified using luciferase assay. Effects of miR-424 expression on cell migration, invasion and proliferation were reanalyzed on the condition of TNFAIP1 was silenced. Moreover, TNFAIP1 silencing and miR-424 modified A549 cells were subcutaneous injected into node BALB/c mice to confirm the regulation of miR-424 on TNFAIP1 in regulating tumor growth. Results: Compared with the control, miR-424 overexpression significantly increased the migrated and invaded cells, as well as the proliferated colonies. TNFAIP1 was a predicted target gene for miR-424, and was negatively regulated by miR-424. TNFAIP1 silence significantly increased the migrated and invaded cells compared to that in control, while these increases were abolished by miR-424 suppression. Animal experiment further evidenced miR-424 affected tumor growth by regulating TNFAIP1. Conclusions: These data demonstrate that miR-424 may be a contributor for NSCLC progression and metastasis through involving in cell migration, invasion and proliferation via inhibiting TNFAIP1. This study may provide theoretical basis for miR-424 in NSCLC target therapeutic treatment.

  8. Cluster-specific small airway modeling for imaging-based CFD analysis of pulmonary air flow and particle deposition in COPD smokers

    Science.gov (United States)

    Haghighi, Babak; Choi, Jiwoong; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long

    2017-11-01

    Accurate modeling of small airway diameters in patients with chronic obstructive pulmonary disease (COPD) is a crucial step toward patient-specific CFD simulations of regional airflow and particle transport. We proposed to use computed tomography (CT) imaging-based cluster membership to identify structural characteristics of airways in each cluster and use them to develop cluster-specific airway diameter models. We analyzed 284 COPD smokers with airflow limitation, and 69 healthy controls. We used multiscale imaging-based cluster analysis (MICA) to classify smokers into 4 clusters. With representative cluster patients and healthy controls, we performed multiple regressions to quantify variation of airway diameters by generation as well as by cluster. The cluster 2 and 4 showed more diameter decrease as generation increases than other clusters. The cluster 4 had more rapid decreases of airway diameters in the upper lobes, while cluster 2 in the lower lobes. We then used these regression models to estimate airway diameters in CT unresolved regions to obtain pressure-volume hysteresis curves using a 1D resistance model. These 1D flow solutions can be used to provide the patient-specific boundary conditions for 3D CFD simulations in COPD patients. Support for this study was provided, in part, by NIH Grants U01-HL114494, R01-HL112986 and S10-RR022421.

  9. Arabidopsis Small Rubber Particle Protein Homolog SRPs Play Dual Roles as Positive Factors for Tissue Growth and Development and in Drought Stress Responses.

    Science.gov (United States)

    Kim, Eun Yu; Park, Ki Youl; Seo, Young Sam; Kim, Woo Taek

    2016-04-01

    Lipid droplets (LDs) act as repositories for fatty acids and sterols, which are used for various cellular processes such as energy production and membrane and hormone synthesis. LD-associated proteins play important roles in seed development and germination, but their functions in postgermination growth are not well understood. Arabidopsis (Arabidopsis thaliana) contains three SRP homologs (SRP1, SRP2, and SRP3) that share sequence identities with small rubber particle proteins of the rubber tree (Hevea brasiliensis). In this report, the possible cellular roles of SRPs in postgermination growth and the drought tolerance response were investigated. Arabidopsis SRPs appeared to be LD-associated proteins and displayed polymerization properties in vivo and in vitro. SRP-overexpressing transgenic Arabidopsis plants (35S:SRP1, 35S:SRP2, and 35S:SRP3) exhibited higher vegetative and reproductive growth and markedly better tolerance to drought stress than wild-type Arabidopsis. In addition, constitutive over-expression of SRPs resulted in increased numbers of large LDs in postgermination seedlings. In contrast, single (srp1, 35S:SRP2-RNAi, and srp3) and triple (35S:SRP2-RNAi/srp1srp3) loss-of-function mutant lines exhibited the opposite phenotypes. Our results suggest that Arabidopsis SRPs play dual roles as positive factors in postgermination growth and the drought stress tolerance response. The possible relationships between LD-associated proteins and the drought stress response are discussed. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. A Small Disc Area Is a Risk Factor for Visual Field Loss Progression in Primary Open-Angle Glaucoma: The Glaucoma Stereo Analysis Study

    Directory of Open Access Journals (Sweden)

    Yasushi Kitaoka

    2018-01-01

    Full Text Available Purpose. The Glaucoma Stereo Analysis Study, a cross-sectional multicenter collaborative study, used a stereo fundus camera (nonmyd WX to assess various morphological parameters of the optic nerve head (ONH in glaucoma patients. We compared the associations of each parameter between the visual field loss progression group and no-progression group. Methods. The study included 187 eyes of 187 patients with primary open-angle glaucoma or normal-tension glaucoma. We divided the mean deviation (MD slope values of all patients into the progression group (<−0.3 dB/year and no-progression group (≧−0.3 dB/year. ONH morphological parameters were calculated with prototype analysis software. The correlations between glaucomatous visual field progression and patient characteristics or each ONH parameter were analyzed with Spearman’s rank correlation coefficient. Results. The MD slope averages in the progression group and no-progression group were −0.58 ± 0.28 dB/year and 0.05 ± 0.26 dB/year, respectively. Among disc parameters, vertical disc width (diameter, disc area, cup area, and cup volume in the progression group were significantly less than those in the no-progression group. Logistic regression analysis revealed a significant association between the visual field progression and disc area (odds ratio 0.49/mm2 disc area. Conclusion. A smaller disc area may be associated with more rapid glaucomatous visual field progression.

  11. Sinus floor augmentation using large (1-2 mm) or small (0.25-1 mm) bovine bone mineral particles: a prospective, intra-individual controlled clinical, micro-computerized tomography and histomorphometric study.

    Science.gov (United States)

    Chackartchi, Tali; Iezzi, Giovana; Goldstein, Moshe; Klinger, Avigdor; Soskolne, Aubrey; Piattelli, Adriano; Shapira, Lior

    2011-05-01

    To compare the amount of newly formed bone after sinus floor augmentation with two different particle sizes of bovine bone mineral (BBM) using clinical, micro-computerized tomography (CT) and histological techniques. Bilateral sinus floor augmentations were performed in 10 patients. Six to 9 months later, bone samples were retrieved and analyzed. Results: Both groups were not different in vertical bone height achieved after augmentation, post-operative complications and maximal torque for the insertion of implants. Micro-CT measurements could not detect a statistically significant difference in bone volume between the groups (with a tendency for new more bone in the small granules group). Histomorphometric analysis revealed that both granule sizes produced the same pattern of bone formation, surrounding the graft granules, and producing a shape of a network, "bridging" between the BBM particles. Multi-nucleated giant cells, probably osteoclasts, were observed directly on the BBM particle surface in both groups. The osteoclast-like cells preferred the small-size BBM particles and not the large particles both in the small-size and the large-size granules group. Both sizes of BBM granules preformed equally and achieved the aim of the sinus floor augmentation procedure clinically and histologically. © 2010 John Wiley & Sons A/S.

  12. Recent Progress on the Description of Relativistic Spin: Vector Model of Spinning Particle and Rotating Body with Gravimagnetic Moment in General Relativity

    Directory of Open Access Journals (Sweden)

    Alexei A. Deriglazov

    2017-01-01

    Full Text Available We review the recent results on development of vector models of spin and apply them to study the influence of spin-field interaction on the trajectory and precession of a spinning particle in external gravitational and electromagnetic fields. The formalism is developed starting from the Lagrangian variational problem, which implies both equations of motion and constraints which should be presented in a model of spinning particle. We present a detailed analysis of the resulting theory and show that it has reasonable properties on both classical and quantum level. We describe a number of applications and show how the vector model clarifies some issues presented in theoretical description of a relativistic spin: (A one-particle relativistic quantum mechanics with positive energies and its relation with the Dirac equation and with relativistic Zitterbewegung; (B spin-induced noncommutativity and the problem of covariant formalism; (C three-dimensional acceleration consistent with coordinate-independence of the speed of light in general relativity and rainbow geometry seen by spinning particle; (D paradoxical behavior of the Mathisson-Papapetrou-Tulczyjew-Dixon equations of a rotating body in ultrarelativistic limit, and equations with improved behavior.

  13. Final Report: Particle Physics Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Karchin, Paul E. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy; Harr, Robert F. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy; Mattson, Mark. E. [Wayne State Univ., Detroit, MI (United States). Department of Physics and Astronomy

    2011-09-01

    We describe recent progress in accelerator-based experiments in high-energy particle physics and progress in theoretical investigations in particle physics. We also describe future plans in these areas.

  14. Motexafin Gadolinium Combined With Prompt Whole Brain Radiotherapy Prolongs Time to Neurologic Progression in Non-Small-Cell Lung Cancer Patients With Brain Metastases: Results of a Phase III Trial

    International Nuclear Information System (INIS)

    Mehta, Minesh P.; Shapiro, William R.; Phan, See C.; Gervais, Radj; Carrie, Christian; Chabot, Pierre; Patchell, Roy A.; Glantz, Michael J.; Recht, Lawrence; Langer, Corey; Sur, Ranjan K.; Roa, Wilson H.; Mahe, Marc A.; Fortin, Andre; Nieder, Carsten; Meyers, Christina A.; Smith, Jennifer A.; Miller, Richard A.; Renschler, Markus F.

    2009-01-01

    Purpose: To determine the efficacy of motexafin gadolinium (MGd) in combination with whole brain radiotherapy (WBRT) for the treatment of brain metastases from non-small-cell lung cancer. Methods and Materials: In an international, randomized, Phase III study, patients with brain metastases from non-small-cell lung cancer were randomized to WBRT with or without MGd. The primary endpoint was the interval to neurologic progression, determined by a centralized Events Review Committee who was unaware of the treatment the patients had received. Results: Of 554 patients, 275 were randomized to WBRT and 279 to WBRT+MGd. Treatment with MGd was well tolerated, and 92% of the intended doses were administered. The most common MGd-related Grade 3+ adverse events included liver function abnormalities (5.5%), asthenia (4.0%), and hypertension (4%). MGd improved the interval to neurologic progression compared with WBRT alone (15 vs. 10 months; p = 0.12, hazard ratio [HR] = 0.78) and the interval to neurocognitive progression (p = 0.057, HR = 0.78). The WBRT patients required more salvage brain surgery or radiosurgery than did the WBRT+MGd patients (54 vs. 25 salvage procedures, p < 0.001). A statistically significant interaction between the geographic region and MGd treatment effect (which was in the prespecified analysis plan) and between treatment delay and MGd treatment effect was found. In North American patients, where treatment was more prompt, a statistically significant prolongation of the interval to neurologic progression, from 8.8 months for WBRT to 24.2 months for WBRT+MGd (p = 0.004, HR = 0.53), and the interval to neurocognitive progression (p = 0.06, HR = 0.73) were observed. Conclusion: In the intent-to-treat analysis, MGd exhibited a favorable trend in neurologic outcomes. MGd significantly prolonged the interval to neurologic progression in non-small-cell lung cancer patients with brain metastases receiving prompt WBRT. The toxicity was acceptable

  15. Distribution of metals in various particle-size fractions in topsoils of a small dry valley system (European Russia, forest zone)

    Science.gov (United States)

    Samonova, Olga; Aseyeva, Elena

    2017-04-01

    A detailed study of heavy metals distribution in various soil grain-size fractions helps to increase the knowledge about the complex nature of metals' occurrence and their distribution pathways in the environment. On the basis of particle size fractionation of topsoil horizons we examined the specific behavior of heavy metals in a small erosional landform located in the humid temperate zone of the Russian Plain. The object of the study is a 400 m small U-shaped dry valley (balka in Russian) with a catchment area of 32.8 ha located in the central part of the Protva river basin, 100 km southwest of Moscow. The uppermost parts of the landform are incised in Late Pleistocene loessial loams, which cover significant portions of interfluve area in the region, while the middle and the lower parts cut through Middle Pleistocene glacial sediments. A total of 50 samples were collected from topsoil horizons of different landform geomorphic units along three cross-sections as well as along the bottom of the landform and its detrital fan. Samples were analyzed for Mn, Cu, Ni, Co, Cr, Zn, Pb, Ti, Zr, and Fe content. Eleven samples were chosen for physical fractionation into 5 grain-size fractions (1-0.25 mm, 0.25-0.05 mm, 0.05-0.01 mm, 0.01-0.001 mm and calculated for Cu, Ni, Co, Fe, Mn, Ti and Zr reach their maximum in the 1-0.25 mm fraction (for Cu and Ni exceeding 75%, for Ti, Zr being around 40%). For Zn, Cr and Pb the maximum variation (50-60%) was found in the 0.25-0.05 mm fraction. In contrast, the two studied silt fractions and also the clay showed very low variations of all metal contents (except for Mn) characteristically in the range between 6% (Cr) and 23.5% (Zn). Unlike the finer fractions, which displayed very poor geochemical differentiation across the landform's geomorphic units, the coarser (sand) fractions showed distinct spatial patterns in the elements' distribution, possibly related to migration processes, the depletion of metals in the landforms' slopes and

  16. Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields

    Science.gov (United States)

    Cécé, Raphaël; Bernard, Didier; Brioude, Jérome; Zahibo, Narcisse

    2016-08-01

    Tropical islands are characterized by thermal and orographical forcings which may generate microscale air mass circulations. The Lesser Antilles Arc includes small tropical islands (width lower than 50 km) where a total of one-and-a-half million people live. Air quality over this region is affected by anthropogenic and volcanic emissions, or saharan dust. To reduce risks for the population health, the atmospheric dispersion of emitted pollutants must be predicted. In this study, the dispersion of anthropogenic nitrogen oxides (NOx) is numerically modelled over the densely populated area of the Guadeloupe archipelago under weak trade winds, during a typical case of severe pollution. The main goal is to analyze how microscale resolutions affect air pollution in a small tropical island. Three resolutions of domain grid are selected: 1 km, 333 m and 111 m. The Weather Research and Forecasting model (WRF) is used to produce real nested microscale meteorological fields. Then the weather outputs initialize the Lagrangian Particle Dispersion Model (FLEXPART). The forward simulations of a power plant plume showed good ability to reproduce nocturnal peaks recorded by an urban air quality station. The increase in resolution resulted in an improvement of model sensitivity. The nesting to subkilometer grids helped to reduce an overestimation bias mainly because the LES domains better simulate the turbulent motions governing nocturnal flows. For peaks observed at two air quality stations, the backward sensitivity outputs identified realistic sources of NOx in the area. The increase in resolution produced a sharper inverse plume with a more accurate source area. This study showed the first application of the FLEXPART-WRF model to microscale resolutions. Overall, the coupling model WRF-LES-FLEXPART is useful to simulate the pollutant dispersion during a real case of calm wind regime over a complex terrain area. The forward and backward simulation results showed clearly that the

  17. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, M.; Webb, B.W.

    1996-06-01

    To aid in the evaluation and development of advanced coal-combustion models, comprehensive experimental data sets are needed containing information on both the condensed and gas phases. To address this need a series of test were initiated on a 300 kW laboratory-scale, coal-fired reactor at a single test condition using several types of instrumentation. Data collected on the reactor during the course of the test includes: gas, particle, and wall temperature profiles; radiant, total, and convective heat fluxes to the walls; particle size and velocity profiles; transmission measurements; and gas species concentrations. Solid sampling was also performed to determine carbon and total burnout. Along with the extensive experimental measurements, the particle dispersion and radiation submodels in the ACERC comprehensive 2D code were studied in detail and compared to past experimental measurements taken in the CPR. In addition to the presentation and discussion of the experimental data set, a detailed description of the measurement techniques used in collecting the data, including a discussion of the error associated with each type of measurement, is given.

  18. On the interaction of waves carrying light, sound and small particles : wave-based methods for miniature laboratories and fast optical sensing

    NARCIS (Netherlands)

    van 't Oever, Jan Joannes Frederik

    2018-01-01

    The main theme of this thesis is waves: sound waves for trapping, guiding or mixing suspended particles, and light waves for making sound waves and rough surfaces visible. One of the important functions on a Lab-on-a-Chip system is suspended particle manipulation and concentration. One way to

  19. Impact of treatment with bevacizumab beyond disease progression: a randomized phase II study of docetaxel with or without bevacizumab after platinum-based chemotherapy plus bevacizumab in patients with advanced nonsquamous non–small cell lung cancer (WJOG 5910L)

    International Nuclear Information System (INIS)

    Takeda, Masayuki; Okamoto, Isamu; Yamanaka, Takeharu; Nakagawa, Kazuhiko; Nakanishi, Yoichi

    2012-01-01

    Bevacizumab, a humanized antibody to vascular endothelial growth factor (VEGF), shows clinical activity against human cancer, with its addition to standard chemotherapy having been found to improve outcome in patients with advanced nonsquamous non–small cell lung cancer (NSCLC). However, there have been no evidence-based studies to support the continued use of bevacizumab beyond disease progression in such patients treated with the drug in first-line therapy. We have now designed a randomized phase II trial to examine the clinical benefit and safety of continued bevacizumab treatment in patients with advanced nonsquamous NSCLC whose disease has progressed after first-line treatment with bevacizumab plus a platinum-based doublet. WJOG 5910L was designed as a multicenter, open-label, randomized, phase II trial by the West Japan Oncology Group of docetaxel (arm A) versus docetaxel plus bevacizumab (arm B) in patients with recurrent or metatstatic nonsquamous NSCLC whose disease has progressed after first-line treatment with bevacizumab plus a platinum-based doublet. Patients in arm A will receive docetaxel at 60 mg/m 2 and those in arm B will receive docetaxel at 60 mg/m 2 plus bevacizumab at 15 mg/kg, with each drug administered on day 1 every 21 days until progression or unacceptable toxicity. The primary endpoint of the study is progression-free survival, with secondary endpoints including response rate, overall survival, and safety, for patients treated in either arm. UMIN (University Hospital Medical Information Network in Japan) 000004715

  20. Real-World Treatment Patterns, Survival, and Prediction of CNS Progression in ALK-Positive Non-Small-Cell Lung Cancer Patients Treated with First-Line Crizotinib in Latin America Oncology Practices.

    Science.gov (United States)

    Martín, Claudio; Cardona, Andrés F; Zatarain-Barrón, Zyanya Lucia; Ruiz-Patiño, Alejandro; Castillo, Omar; Oblitas, George; Corrales, Luis; Lupinacci, Lorena; Pérez, María Angelina; Rojas, Leonardo; González, Lisde; Chirinos, Luis; Ortíz, Carlos; Lema, Mauricio; Vargas, Carlos; Puparelli, Carmen; Carranza, Hernán; Otero, Jorge; Arrieta, Oscar

    2018-03-06

    This study describes the real-world characteristics, treatment sequencing, and outcomes among Hispanic patients with locally advanced/metastatic ALK-positive non-small-cell lung cancer (NSCLC) treated with crizotinib. A retrospective patient review was conducted for several centers in Latin America. Clinicians identified ALK-positive NSCLC patients who received crizotinib and reported their clinical characteristics, treatments, and survival. Overall survival and progression-free survival (PFS) were described. A Random Forest Tree (RFT) model was constructed to predict brain progression. A total of 73 patients were included; median age at diagnosis was 58 years, 60.3% were female, and 93.2% had adenocarcinoma. Eighty-nine percent of patients were never smokers/former smokers, 71.1% had ≥2 sites of metastasis, and 20.5% had brain metastases at diagnosis. The median PFS on first-line crizotinib was 7.07 months (95% CI 3.77-12.37) and the overall response rate was 52%. Of those who discontinued crizotinib, 55.9% progressed in the central nervous system (CNS). The RFT model reached a sensitivity of 100% and a specificity of 88% for prediction of CNS progression. The overall response rate and the PFS observed in Hispanic patients with ALK-positive NSCLC treated with first-line crizotinib were similar to those in previous reports. An RFT model is helpful in predicting CNS progression and can help clinicians tailor treatments in a resource-limited practice. © 2018 S. Karger AG, Basel.

  1. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution — ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  2. The Internalization of Externalities from Electrical Power Plants as a Tool for Progressing Towards Sustainability in Small Island Developing States: The Case of Bahrain

    NARCIS (Netherlands)

    A.J.M. Al-Hesabi (Ali)

    2012-01-01

    textabstractPower is the engine of growth of any economy. Consumption of electrical energy is a universally accepted indicator of progress in the productive sectors, and of the well being of the people of any country. No major economic activity can be sustained without an adequate and reliable

  3. Early lesion-specific 18F-FDG PET response to chemotherapy predicts time to lesion progression in locally advanced non-small cell lung cancer

    DEFF Research Database (Denmark)

    Nygård, Lotte; Vogelius, Ivan Richter; Fischer, Barbara M

    2016-01-01

    BACKGROUND AND PURPOSE: We hypothesize that the lesion-to-lesion variability in FDG-PET response after one cycle of chemotherapy for NSCLC in an individual patient may inform radiation dose redistribution. To test this hypothesis, we investigate if time to lesion-progression in patients with mult...... patient response involves a loss of biological information on heterogeneity between lesions. Poor lesion-specific response after one cycle chemotherapy may identify lesions that would benefit from an individualized radiotherapy strategy....

  4. Exploring the Perceptions of Inhibitors and Drivers of Social Media Progression among Small and Medium Enterprises at Different Stages of E-Business Maturity.

    OpenAIRE

    Velthoven, Gerlach

    2009-01-01

    The adoption of social media (web 2.0) in the e-marketing strategy of small and medium enterprises (SMEs) is not yet researched much. Research findings in bigger companies in the USA, Europe and the Netherlands suggest that the issue is high on the think list of marketers and entrepreneurs. But what are the drivers and barriers for small and medium enterprises to make, execute, and further develop their strategy on social media? This paper places the perceptions and actions of 10 SMEs in the ...

  5. Chitosan and chitosan-based particle systems containing a bioactive fish peptide in the abatement of Escherichia coli related infections in the small intestine

    DEFF Research Database (Denmark)

    Bechstein, Stefanie

    . Additionally, it should have preventive effects and should also be able to eradicate an already established infection or biofilm. Hence, chitosan appears to be a good choice. Chitosan is a natural polymer that is commonly found in crustacean shells and exhibits antibacterial activity. The effect is supposably...... probably due to a high particle stability, suggesting that further modifications and improvements of the systems have to be undertaken. Coated particles were shown to interact with the bacteria sufficiently and the CS coat was able to initiate bacterial aggregation. Furthermore, chitosan and CS...

  6. Short communication: The effect of an exogenous enzyme with amylolytic activity on gas production and in vitro rumen starch degradability of small and large particles of corn or barley meals.

    Science.gov (United States)

    Gallo, A; Giuberti, G; Duval, S; Moschini, M; Masoero, F

    2016-05-01

    The objective of this study was to evaluate the effect of exogenous amylase supplementation on gas production and on in vitro rumen starch degradability (IVSD) of different sized particles of corn and barley meals (Cm and Bm, respectively). An aqueous liquid amylase formulation from Bacillus licheniformis was tested at 3 enzyme doses (EnzD; 0, 300 and 1,500 kilo novo units/kg of dry matter) on small (starch degradation was greater for small than for large particles of Bm, being 0.187 and 0.125 1/h, respectively. Conversely, the rate of starch degradation of Cm averaged 0.063 1/h and was similar among treatments. Enzyme supplementation tended to reduce lag time and to increase rate of fermentation for both PS of Cm and Bm, with a more pronounced effect for small PS. A limited EnzD effect was measured for IVSD data and rate of starch degradation; PS influenced fermentation parameters and the magnitude of starch degradation more than EnzD. Supplementation with exogenous amylase influenced the rumen fermentation pattern of small and large PS of Cm and Bm, even if the effect of the enzyme supplementation differed according to the PS of cereal meals. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Exploring the Perceptions of Inhibitors and Drivers of Social Media Progression among Small and Medium Enterprises at Different Stages of E-Business Maturity.

    NARCIS (Netherlands)

    Gerlach Velthoven

    2009-01-01

    The adoption of social media (web 2.0) in the e-marketing strategy of small and medium enterprises (SMEs) is not yet researched much. Research findings in bigger companies in the USA, Europe and the Netherlands suggest that the issue is high on the think list of marketers and entrepreneurs. But what

  8. How small bugs tie down big rocks: Measuring and modeling the forces acting between nets spun by Caddisfly larvae (Hydropsychidae) and gravel particles at the onset of motion

    Science.gov (United States)

    Mclaughlin, M. K.; Tumolo, B.; Sklar, L. S.; Albertson, L.; Daniels, M.

    2017-12-01

    The influence of life on geomorphic processes is commonly inferred from correlations between the size and abundance of individual organisms and the change in process thresholds and rates from abiotic conditions. However, to understand and model the underlying mechanisms, it is helpful to make direct measurements of the forces acting between organisms and the earth materials they inhabit. For example, flume studies have found that the presence of net-spinning caddisfly larvae (Trichoptera: Hydropsychidae) can increase the shear stress required to initiate particle motion by more than a factor of two, with potentially significant implications for the timing and magnitude of bedload sediment transport in gravel-bedded rivers. To explore the underlying mechanics we conducted flume experiments at the Stroud Water Research center in Avonadale, Pennsylvania, using strain gages to measure the forces acting between caddisfly nets and sediment particles of various sizes, during the process of initial particle motion. We combine these measurements with high-speed video images to document for the first time, the three dimensional dynamics of net stretching, tearing, and detachment that govern the magnitude of the increase in critical shear stress. We are using these data and insights to substantially improve a previously published theoretical model for the mechanics of sediment stabilization by caddisfly larvae. In particular, we seek to constrain the range of particle sizes potentially stabilized by caddisfly larvae and explain mechanistically why the effect of caddisfly nets varies with particle size. These predictions have implications for understanding feedbacks between bed stabilization by caddisflies, insect density, inter-specific niche partitioning, and the movement of sediment that shapes gravel-bed channels.

  9. Particles, contacts, bulk behavior

    NARCIS (Netherlands)

    Luding, Stefan; Tomas, J.

    2014-01-01

    Granular matter consists of discrete “particles”. These can be separate sand-grains, agglomerates (made of many primary particles), or solid materials like rock, composites, or metal-alloys—all with particulate inhomogeneous, possibly anisotropic micro-structure. Particles can be as small as

  10. Structure and thermodynamics of nonideal solutions of colloidal particles. Investigation of salt-free solutions of human serum albumin by using small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjøberg, B.; Mortensen, K.

    1997-01-01

    the Monte Carlo simulations. It is found that the SANS data can be explained by a model where the HSA molecules behave as hard ellipsoids of revolution with semiaxes a = 6.8 nm, b = c = 1.9 nm. In addition to the hard core interaction, the particles are also surrounded by a soft, repulsive rectangular......The understanding of the structural and thermodynamic properties of moderately or highly concentrated solutions is fundamental, e.g., in medicine and biology and also in many technical processes, In this work, we have used the small-angle neutron scattering method (SANS), in combination with Monte...... Carlo simulation, to study salt-free solutions of human serum albumin (HSA) in the concentration range up to 0.26 g ml(-1). The model calculations of the theoretical SANS intensities are quite general, thus avoiding the approximation that the relative positions and orientations of the particles...

  11. Structure and thermodynamics of nonideal solutions of colloidal particles. Investigation of salt-free solutions of human serum albumin by using small-angle neutron scattering and Monte Carlo simulation

    DEFF Research Database (Denmark)

    Sjøberg, B.; Mortensen, K.

    1997-01-01

    The understanding of the structural and thermodynamic properties of moderately or highly concentrated solutions is fundamental, e.g., in medicine and biology and also in many technical processes, In this work, we have used the small-angle neutron scattering method (SANS), in combination with Monte...... Carlo simulation, to study salt-free solutions of human serum albumin (HSA) in the concentration range up to 0.26 g ml(-1). The model calculations of the theoretical SANS intensities are quite general, thus avoiding the approximation that the relative positions and orientations of the particles...

  12. Research Progress in Non-small Cell Lung Cancer 
with Concomitant EML4-ALK Fusion Gene and EGFR Gene Mutation

    Directory of Open Access Journals (Sweden)

    Zhu ZENG

    2011-11-01

    Full Text Available Lung cancer is one of the most prevalence malignances, of which non-small cell lung cancer (NSCLC account for 80%-85% of lung cancer. Molecular target therapy is one of the most popular and promising field of NSCLC treatment, and its hotspots includes EGFR (epidermal growth factor receptor, EML4-ALK (echinoderm microtubule associated protein like4-anaplastic lymphoma kinase, etc. Former researches indicated that EML4-ALK fusion and EGFR mutation were excluded mutually. However, cases of patients harbored concomitant EML4-ALK fusion gene and EGFR mutation have been reported continuously at recent. This review aims to summarize the incidence and molecular structure of EML4-ALK fusion gene and EGFR mutation, as well as clinical features of patients with the concomitant genes induced NSCLC.

  13. Prostatic Arterial Embolization with Small Sized Particles for the Treatment of Lower Urinary Tract Symptoms Due to Large Benign Prostatic Hyperplasia: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2015-01-01

    Full Text Available Background: The clinical failure after prostatic artery embolization (PAE with conventional particles was relatively high, in treatment for lower urinary tract symptoms (LUTS due to benign prostatic hyperplasia (BPH. We reported the results of PAE with combined polyvinyl alcohol particles 50 μm and 100 μm in size as a primary treatment in 24 patients with severe LUTS secondary to large BPH. Methods: From July 2012 to June 2014, we performed PAE in 24 patients (65-85 years, mean 74.5 years with severe LUTS due to large BPH (≥80 cm 3 and refractory to medical therapy. Embolization was performed using combination of 50 μm and 100 μm in particles size. Clinical follow-up was performed using the International Prostate Symptom Score (IPSS, quality of life (QoL, peak urinary flow (Q max , postvoid residual (PVR volume, the International Index of Erectile Function (IIEF, prostatic specific antigen (PSA, and prostatic volume measured by magnetic resonance imaging at 1, 3, 6, and every 6-month thereafter. Technical success was defined when PAE was completed in at least one pelvic side. Clinical success was defined as the improvement of both symptoms and QoL. A Student′s t-test for paired samples was used. Results: PAE was technically successful in 22 patients (92%. Bilateral PAE was performed in 19 (86% patients and unilateral in 3 (14% patients. Follow-up data were available for 22 patients observed for mean of 14 months. The clinical improvement at 1, 3, 6, and 12-month was 91%, 91%, 88%, and 83%, respectively. At 6-month follow-up, the mean IPSS, QoL, PVR, and Q max were from 27 to 8 (P = 0.001, from 4.5 to 2.0 (P = 0.002, from 140.0 ml to 55.0 ml (P = 0.002, and from 6.0 ml/s to 13.0 ml/s (P = 0.001, respectively. The mean prostate volume decreased from 110 cm 3 to 67.0 cm 3 (mean reduction of 39.1%; P = 0.001. The PSA and IIEF improvements after PAE did not differ from pre-PAE significantly. No major adverse events were noted. Conclusions

  14. Prostatic Arterial Embolization with Small Sized Particles for the Treatment of Lower Urinary Tract Symptoms Due to Large Benign Prostatic Hyperplasia: Preliminary Results

    Science.gov (United States)

    Li, Qiang; Duan, Feng; Wang, Mao-Qiang; Zhang, Guo-Dong; Yuan, Kai

    2015-01-01

    Background: The clinical failure after prostatic artery embolization (PAE) with conventional particles was relatively high, in treatment for lower urinary tract symptoms (LUTS) due to benign prostatic hyperplasia (BPH). We reported the results of PAE with combined polyvinyl alcohol particles 50 μm and 100 μm in size as a primary treatment in 24 patients with severe LUTS secondary to large BPH. Methods: From July 2012 to June 2014, we performed PAE in 24 patients (65–85 years, mean 74.5 years) with severe LUTS due to large BPH (≥80 cm3) and refractory to medical therapy. Embolization was performed using combination of 50 μm and 100 μm in particles size. Clinical follow-up was performed using the International Prostate Symptom Score (IPSS), quality of life (QoL), peak urinary flow (Qmax), postvoid residual (PVR) volume, the International Index of Erectile Function (IIEF), prostatic specific antigen (PSA), and prostatic volume measured by magnetic resonance imaging at 1, 3, 6, and every 6-month thereafter. Technical success was defined when PAE was completed in at least one pelvic side. Clinical success was defined as the improvement of both symptoms and QoL. A Student's t-test for paired samples was used. Results: PAE was technically successful in 22 patients (92%). Bilateral PAE was performed in 19 (86%) patients and unilateral in 3 (14%) patients. Follow-up data were available for 22 patients observed for mean of 14 months. The clinical improvement at 1, 3, 6, and 12-month was 91%, 91%, 88%, and 83%, respectively. At 6-month follow-up, the mean IPSS, QoL, PVR, and Qmax were from 27 to 8 (P = 0.001), from 4.5 to 2.0 (P = 0.002), from 140.0 ml to 55.0 ml (P = 0.002), and from 6.0 ml/s to 13.0 ml/s (P = 0.001), respectively. The mean prostate volume decreased from 110 cm3 to 67.0 cm3 (mean reduction of 39.1%; P = 0.001). The PSA and IIEF improvements after PAE did not differ from pre-PAE significantly. No major adverse events were noted. Conclusions: The

  15. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis.

    Science.gov (United States)

    Kollareddy, Madhu; Sherrard, Alice; Park, Ji Hyun; Szemes, Marianna; Gallacher, Kelli; Melegh, Zsombor; Oltean, Sebastian; Michaelis, Martin; Cinatl, Jindrich; Kaidi, Abderrahmane; Malik, Karim

    2017-09-10

    Neuroblastoma is a biologically and clinically heterogeneous pediatric malignancy that includes a high-risk subset for which new therapeutic agents are urgently required. As well as MYCN amplification, activating point mutations of ALK and NRAS are associated with high-risk and relapsing neuroblastoma. As both ALK and RAS signal through the MEK/ERK pathway, we sought to evaluate two previously reported inhibitors of ETS-related transcription factors, which are transcriptional mediators of the Ras-MEK/ERK pathway in other cancers. Here we show that YK-4-279 suppressed growth and triggered apoptosis in nine neuroblastoma cell lines, while BRD32048, another ETV1 inhibitor, was ineffective. These results suggest that YK-4-279 acts independently of ETS-related transcription factors. Further analysis reveals that YK-4-279 induces mitotic arrest in prometaphase, resulting in subsequent cell death. Mechanistically, we show that YK-4-279 inhibits the formation of kinetochore microtubules, with treated cells showing a broad range of abnormalities including multipolar, fragmented and unseparated spindles, together leading to disrupted progression through mitosis. Notably, YK-4-279 does not affect microtubule acetylation, unlike the conventional mitotic poisons paclitaxel and vincristine. Consistent with this, we demonstrate that YK-4-279 overcomes vincristine-induced resistance in two neuroblastoma cell-line models. Furthermore, combinations of YK-4-279 with vincristine, paclitaxel or the Aurora kinase A inhibitor MLN8237/Alisertib show strong synergy, particularly at low doses. Thus, YK-4-279 could potentially be used as a single-agent or in combination therapies for the treatment of high-risk and relapsing neuroblastoma, as well as other cancers. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  16. Small scale laboratory studies of flow and transport phenomena in pores and fractures: Phase II. Progress report, 3rd year continuation proposal, and work plan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, J.L.

    1994-05-01

    Small scale laboratory experiments, equipped with an ability to actually observe behavior on the pore level using microscopy, provide an economical and easily understood scientific tool to help us validate concepts and assumptions about the transport of contaminants, and offers the propensity to discover heretofore unrecognized phenomena or behavior. The main technique employs etched glass micromodels, composed of two etched glass plates, sintered together, to form a two dimensional network of three dimensional pores. Flow and transport behavior is observed on a pore or pore network level, and recorder on film and video tape. This technique is coupled with related column studies. These techniques have been used to study multiphase flow, colloid transport and most recently bacteria transport. The project has recently moved to the Bacteria Transport Subprogram, and efforts have been redirected to support that Subprogram and its collaborative field experiment. We proposed to study bacteria transport factors of relevance to the field experiment, using micromodels and other laboratory techniques. Factors that may be addressed include bacteria characteristics (eg, hydrophobicity), pore size and shape, permeability heterogeneity, surface chemistry (eg, iron oxide coatings), surface chemistry heterogeneity, active versus resting cell bacteria, and mixed bacteria populations. In other work we will continue to examine the effects of fluid-fluid interfaces on bacteria transport, and develop a new assay for bacteria hydrophobicity. Finally we will collaborate on characterization of the field site, and the design, operation, and interpretation of the field experiment.

  17. Particle accelerators and the progress of particle physics

    CERN Document Server

    Mangano, Michelangelo

    2016-01-01

    The following sections are included: •The Standard Model of fundamental interactions •Accelerators, and the experimental path towards the standard model •Complementarity and synergy of different accelerator facilities •The future challenges

  18. Elementary particle physics. Progress report, 1993 - 1995

    International Nuclear Information System (INIS)

    Izen, J.M.

    1997-10-01

    A brief summary is given for each of the following topics: (1) Beijing Spectrometer (BES) run history and plans; (2) BES physics topics; (3) UTD BES personnel; (4) UTD physics analysis of 4.03 GeV data; (5) BES software and data processing; (5) UTD computing upgrade; (6) PEPII b Factory; and (7) budget justification

  19. Behaviour of radiocaesium in coastal rivers of the Fukushima Prefecture (Japan) during conditions of low flow and low turbidity – Insight on the possible role of small particles and detrital organic compounds

    International Nuclear Information System (INIS)

    Eyrolle-Boyer, Frédérique; Boyer, Patrick; Garcia-Sanchez, Laurent; Métivier, Jean-Michel; Onda, Yuichi; De Vismes, Anne; Cagnat, Xavier; Boulet, Béatrice; Cossonnet, Catherine

    2016-01-01

    To investigate riverine transfers from contaminated soils of the Fukushima Prefecture in Japan to the marine environment, suspended sediments, filtered water, sediments and detrital organic macro debris deposited onto river beds were collected in November 2013 within small coastal rivers during conditions of low flow rates and low turbidity. River waters were directly filtered on the field and high efficiency well-type Ge detectors were used to analyse radiocaesium concentrations in very small quantities of suspended particles and filtered water (a few mg to a few g). For such base-flow conditions, our results show that the watersheds studied present similar hydro-sedimentary behaviours at their outlets and that the exports of dissolved and particulate radiocaesium are comparable. Moreover, the contribution of these rivers to the instantaneous export of radiocaesium to the ocean is similar to that of the Abukuma River. Our preliminary results indicate that, in the estuaries, radiocaesium concentrations in suspended sediments would be reduced by more than 80%, while radiocaesium concentration in filtered waters would be maintained. Significant correlations between radiocaesium concentrations and radiocaesium inventories in the soils of the catchments indicate that there was at that time little intra and inter-watershed variability in the transfer processes of radiocaesium from lands to rivers at this regional scale. The apparent liquid–solid partition coefficient (K D ) values acquired for the lowest loads/finest particles complement the values acquired by using sediment traps and highlight the strong capacity of the smallest particles to transfer radiocaesium. Finally, but not least, our observations suggest that there could be a significant transfer of highly contaminated detrital biomass from forest litter to the downstream rivers in a rather conservative way. - Highlights: • Radiocesium concentrations were assessed by using high performance well-type Ge

  20. Magnetic dynamics of small α-Fe2O3 and NiO particles studied by neutron scattering

    DEFF Research Database (Denmark)

    Lefmann, Kim; Bødker, Franz; Hansen, Mikkel Fougt

    1999-01-01

    We have studied the magnetic dynamics in nanocrystalline samples of α-Fe2O3 (hematite) and NiO by inelastic neutron scattering. By measuring around the structural and the antiferromagnetic reflections, we have probed uniform and staggered magnetic oscillations, respectively. In the hematite...... particles, we observed a clear double peak in the energy distribution of the antiferromagnetic signal, in addition to a quasi-elastic peak. We interpret the double peak to represent collective magnetic excitations. Broadening of the central quasi-elastic peak with increasing temperature is interpreted...... magnetic oscillations very similar to the antiferromagnetic signal, as is expected for a simple antiferromagnet. The hematite sample did not show any signs of uniform oscillations, although these have been predicted theoretically....

  1. Comparison of emissions and toxicological properties of fine particles from wood and oil boilers in small (20-25 kW) and medium (5-10 MW) scale

    Science.gov (United States)

    Kaivosoja, T.; Jalava, P. I.; Lamberg, H.; Virén, A.; Tapanainen, M.; Torvela, T.; Tapper, U.; Sippula, O.; Tissari, J.; Hillamo, R.; Hirvonen, M.-R.; Jokiniemi, J.

    2013-10-01

    The aim of this study was to compare four alternatives for providing decentralized energy production in small communities in terms of their flue gas emissions and toxicological properties of the emissions. In this study, two different size classes of boilers were examined and the use of fossil fuel oils was compared against wood fuels. The lowest PM1 emission, 0.1 mg MJ-1, was observed from small-scale light fuel oil combustion. In medium-scale wood combustion, PM1 emission values from a grate fired wood combustion boiler (10 MW) without particulate filtration were the highest (264 mg MJ-1) but were substantially reduced down to 0.6 mg MJ-1 due to the usage of an electrostatic precipitator (ESP). The wood combustion particles were mainly formed of potassium salts. In light fuel oil combustion, one of the main components in the particles was sulphate whereas in heavy fuel oil combustion also significant amounts of V and Ni were emitted. Pellet combustion produced the lowest PAH emissions. Overall, oil combustion produced higher amount of PAHs than wood combustion. This was indicated also as a higher cytotoxicity of the oil combustion samples when compared to those from wood combustion in the corresponding scale of boilers. However, when calculated on an equal mass basis, the particles collected after ESP were even more cytotoxic which can be explained by the altered chemical characteristics of the emissions in the ESP. Due to the variation in the emissions and in the toxicity of the emissions, we propose that in the long term, not only the emission levels but also the toxicity of the emissions should be taken into account in the regulations of the emission limits of the combustion plants.

  2. Particle acceleration by electromagnetic pulses

    International Nuclear Information System (INIS)

    Lai, H.M.

    1982-01-01

    Particle interaction with plane electromagnetic pulses is studied. It is shown that particle acceleration by a wavy pulse, depending on the shape of the pulse, may not be small. Further, a diffusive-type particle acceleration by multiple weak pulses is described and discussed. (author)

  3. About the role of physico-chemical properties and hydrodynamics on the progress of a precipitation reaction: the case of cerium oxalate particles produced during the coalescence of drops

    International Nuclear Information System (INIS)

    Jehannin, Marie

    2015-01-01

    changes the precipitation behavior. Location, size and morphology of the solid particles can be controlled independently by the surface tension difference between the two coalescing droplets and by the initial stoichiometry (both influencing the local supersaturation ratio). The precipitation patterns are visualized by optical microscopy (reflection and confocal). The sizes and morphologies of the precipitated solid particles are characterized also by confocal optical microscopy and in addition by Scanning Electron Microscopy (SEM). Their structures are determined by X-Ray Diffraction (XRD) and Small Angle X-ray Scattering (SAXS). (author) [fr

  4. ERCC1 expression in circulating tumor cells (CTCs) using a novel detection platform correlates with progression-free survival (PFS) in patients with metastatic non-small-cell lung cancer (NSCLC) receiving platinum chemotherapy.

    Science.gov (United States)

    Das, Millie; Riess, Jonathan W; Frankel, Paul; Schwartz, Erich; Bennis, Robyn; Hsieh, H Ben; Liu, Xiaohe; Ly, Janey C; Zhou, Lisa; Nieva, Jorge J; Wakelee, Heather A; Bruce, Richard H

    2012-08-01

    To utilize a novel circulating tumor cell (CTC) technology to quantify ERCC1 expression on CTCs and determine whether ERCC1 expression levels predict efficacy of platinum-based chemotherapy in patients with metastatic non-small-cell lung cancer (NSCLC). ERCC1 expression was measured in 17 metastatic NSCLC patients who received platinum-based therapy and had ≥2 intact CTCs with acceptable ERCC1 expression assay results. ERCC1 levels were determined from average expression on individual CTCs in each sample. Progression-free survival (PFS) was calculated from the date of therapy initiation. PFS decreased with increasing ERCC1 expression (ptest, linear regression). Lack of ERCC1 expression was associated with longer PFS (266 days versus 172 days, log-rank, ptest (linear regression)). The hazard ratio is 4.38 (95% CI 1.76-10.9) for each log-change in CK value until progression was noted on imaging. Low expression of ERCC1 on CTCs correlates with PFS in patients with metastatic NSCLC receiving platinum-based therapy. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Low speed/low rarefaction flow simulation in micro/nano cavity using DSMC method with small number of particles per cell

    International Nuclear Information System (INIS)

    Amiri-Jaghargh, Ali; Roohi, Ehsan; Niazmand, Hamid; Stefanov, Stefan

    2012-01-01

    The aim of this study is to extend the validity of the simplified Bernoulli-trials (SBT)/dual grid algorithm, newly proposed by Stefanov, as a suitable alternative of the standard collision scheme in the direct simulation Monte Carlo (DSMC) method, for solving low speed/low Knudsen number rarefied micro/nano flows. The main advantage of the SBT algorithm is to provide accurate calculations using much smaller number of particles per cell, i.e., ≈ 1. Compared to the original development of SBT [1], we extend the application of the SBT scheme to the near continuum rarefied flows, i.e., Kn = 0.005, where NTC scheme requires a relatively large sample size. Comparing the results of the SBT/dual grid scheme with NTC, it is shown that the SBT/dual grid scheme could successfully predict the thermal pattern and hydrodynamics field as well as surface parameters such as velocity slip and temperature jump. Nonlinear flux-corrected transport algorithm (FCT) is also employed as a filter to extract the smooth solution from the noisy DSMC calculation for low-speed/low-Knudsen number DSMC calculations. The results indicate that combination of SBT/dual grid and FTC filtering can decrease the total sample size needed to reach smooth solution without losing significant accuracy.

  6. Structural Characterization and Gas Reactions of Small Metal Particles by High Resolution In-situ TEM and TED. [Transmission Electron Microscopy and Transmission Electron Diffraction

    Science.gov (United States)

    Heinemann, K.

    1985-01-01

    A commercial electron microscope with flat-plate upper pole piece configuration of the objective lens and top entry specimen introduction was modified to obtain 5 x 10 to the minus 10th power mbar pressure at the site of the specimen while maintaining the convenience of a specimen airlock system that allows operation in the 10 to the 10th power mbar range within 15 minutes after specimen change. The specimen chamber contains three wire evaporation sources, a specimen heater, and facilities for oxygen or hydrogen plasma treatment to clean as-introduced specimens. Evacuation is achieved by dural differential pumping, with fine entrance and exit apertures for the electron beam. With the microscope operating at .000001 mbar, the first differential pumping stage features a high-speed cryopump operating in a stainless steel chamber that can be mildly baked and reaches 1 x 10 to the minus 8th power mbar. The second stage, containing the evaporation sources and a custom ionization gauge within 10 cm from the specimen, is a rigorously uncompromised all-metal uhv-system that is bakable to above 200 C throughout and is pumped with an 80-liter ion pump. Design operating pressures and image quality (resolution of metal particles smaller than 1 nm in size) was achieved.

  7. Small angle X-ray scattering by TiO2/ZrO2 mixed oxide particles and a Synroc precursor

    International Nuclear Information System (INIS)

    Gazeau, D.; Zemb, T.; Amal, R.; Bartlett, J.

    1992-09-01

    This high resolution small angle X-ray scattering study of a concentrated oxide sol, precursor of the SYNROC matrix for the storage of the high level radioactive waste, evidences a locally cylindrical microstructure. Locally, nanometric cylinders show disordered axis with some concentration dependent connections. This microstructure explains the paradoxal stability of this oxide dispersions upon the addition of concentrated acidic solutions. This stability has a steric origin and electrostatic repulsions are not needed. The addition of aluminium to the initial titanium-zirconium mixture enhances branching on the locally cylindrical microstructure. Finally, we show that the solid powder obtained after calcination (drying) of the sol has the same specific area (∼ 1000 m 2 /g) than the sol. (Author). 23 refs., 7 figs., 1 tab

  8. Numerical prediction effects of particle-particle collisions on gas-particle flows in swirl chamber

    International Nuclear Information System (INIS)

    Liu Yang; Liu Xue; Li Guohui; Jiang Lixiang

    2011-01-01

    In this paper, a unified-second-order-moment two-phase turbulent model incorporating into the kinetic theory of granular flows for considering particle-particle collision (USM-θ) is proposed to study the turbulent gas-particle flows in swirl chamber. Anisotropy of gas-solid two-phase stress and the interaction between two-phase stresses are fully considered by constructing a two-phase Reynolds stress model and a transport equation of two-phase stress correlation. Sommerfeld et al. (1991) experimental data is used to quantitatively validate USM-θ and USM model for analysis the effects of particle-particle collision. Numerical predicted results show that time-averaged velocity and fluctuation velocity of gas and particle using particle temperature model are better than those of without particle temperature model. Maximum particle concentration and temperature located at thin shear layer adjacent to wall surface due to particle inertia. Small-scale particle fluctuation due to particle-particle collision is smaller than large-scale gas-particle turbulence fluctuation. Particle-particle collision leads to the redistribution dissipation of Reynolds stress and particle turbulence kinetic energy.

  9. Progress in Titanium Metal Powder Injection Molding

    OpenAIRE

    German, Randall M.

    2013-01-01

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and im...

  10. The model resolution function - a technique for estimating the quality of approximation of particles by models in small-angle X-ray or neutron scattering

    International Nuclear Information System (INIS)

    Mueller, J.J.; Damaschun, G.; Schmidt, P.W.

    1985-01-01

    Although the quality of a structure model obtained from small-angle X-ray or neutron scattering curves for polymers can be determined qualitatively by comparing the isotropic scattering curve calculated for the model with the experimental scattering data for a solution of polymer molecules, other methods are needed for a more precise evaluation. A model resolution function has been defined to permit quantitative comparisons. With this function, the quality of the approximation can be assessed, and the structure resolution can be determined. An overinterpretation of scattering curves by use of complex but uniform-density models can thus be avoided. Furthermore, the value of the Porod volume calculated from the scattering data has been found to depend strongly on the interval in which the scattering data are recorded or selected for evaluation. The calculations with the atomic model curves showed that it is impossible to compute physically meaningful values of the hydration of the molecules from the Porod volume and the dry volume by use of extrapolated scattering curves with an insufficient resolution. The theory of the model resolution function and the interpretation of the Porod volume have been verified and tested with experimental scattering curves from solutions of RNA molecules. (orig.)

  11. Fuzzy Logic Particle Tracking

    Science.gov (United States)

    2005-01-01

    A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true

  12. Progress Report

    DEFF Research Database (Denmark)

    Duer, Karsten

    1999-01-01

    Progress report describing the work carried out by the Danish participant in the ALTSET project in the period January 1999 to July 1999.......Progress report describing the work carried out by the Danish participant in the ALTSET project in the period January 1999 to July 1999....

  13. Diesel particles - a health hazard

    Energy Technology Data Exchange (ETDEWEB)

    Ege, C.

    2004-08-15

    To all appearances, small particles belong to the pollutants presenting the biggest health hazards. Particles come especially from diesel-powered vehicles. According to researchers, particles cause thousands of early deaths each year in the big cities in Denmark alone, and up to 1,250 of these deaths could be prevented by fitting particle filters on diesel-powered vehicles. That is more than deaths caused by traffic accidents. Especially the elderly are affected. In addition, the small particles seem to aggravate asthma incidences, including the many children with asthma. What makes the small particles so very dangerous is that they can enter the smallest of vessels of the lungs. There is a solution within sight to this grave health hazard. The solution is called particle filters, but they will not come automatically. It requires initiatives in the form of legislation, green taxes and subsidies. The EU is introducing stricter regulations regarding particle emission from heavy vehicles from 2006, though only for new vehicles. It will therefore take many years to abate the problem this way. In the present pamphlet, the Danish Ecological Council offers a number of specific proposals on how to further the introduction of filters on diesel vehicles. The Danish government has taken a small step in the right direction by establishing a subsidy scheme for particle filters. Yet the amount allocated is too small and, because it is not followed up by setting taxes on polluting vehicles, it will have little effect. (au)

  14. Propagation of a spherical shock wave in mixture of non-ideal gas and small solid particles under the influence of gravitational field with conductive and radiative heat fluxes

    Science.gov (United States)

    Nath, G.

    2016-01-01

    Self-similar solutions are obtained for one-dimensional unsteady adiabatic flow behind a spherical shock wave propagating in a dusty gas with conductive and radiative heat fluxes under the influence of a gravitational field. The shock is assumed to be driven out by a moving piston and the dusty gas to be a mixture of non-ideal gas and small solid particles, in which solid particles are uniformly distributed. It is assumed that the equilibrium flow-conditions are maintained and variable energy input is continuously supplied by the piston. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. The medium is assumed to be under the influence of a gravitational field due to central mass ( bar{m} ) at the origin (Roche Model). It is assumed that the gravitational effect of the mixture itself can be neglected compared with the attraction of the central mass. The initial density of the ambient medium is taken to be always constant. The effects of the variation of the gravitational parameter and nonidealness of the gas in the mixture are investigated. Also, the effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are investigated. It is shown that due to an increase in the gravitational parameter the compressibility of the medium at any point in the flow-field behind the shock decreases and all other flow variables and the shock strength are increased. Further, it is found that the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the piston and the shock surface is reduced. The shock waves in dusty gas under the influence of a

  15. Cosmic particles

    International Nuclear Information System (INIS)

    Fritszh, Harald; Max-Planck-Institut fuer Physik und Astrophysik, Muenchen

    1986-01-01

    The paper on 'Cosmic particles' was presented at the conference on 'The early universe and its evolution', Erice, Italy 1986. The link between ideas in cosmology and in elementary particle physics is examined. The subject is discussed under the following topic headings: cosmic kinetics, cosmic dynamics and general relativity, dynamics of the dust universe, particle physics, unity of quarks and leptons, the hot universe and standard particle physics, creation of matter, and the inflation of the universe. (U.K.)

  16. Phase II study of erlotinib plus tivantinib (ARQ 197) in patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer just after progression on EGFR-TKI, gefitinib or erlotinib.

    Science.gov (United States)

    Azuma, Koichi; Hirashima, Tomonori; Yamamoto, Nobuyuki; Okamoto, Isamu; Takahashi, Toshiaki; Nishio, Makoto; Hirata, Taizo; Kubota, Kaoru; Kasahara, Kazuo; Hida, Toyoaki; Yoshioka, Hiroshige; Nakanishi, Kaoru; Akinaga, Shiro; Nishio, Kazuto; Mitsudomi, Tetsuya; Nakagawa, Kazuhiko

    2016-01-01

    Patients with epidermal growth factor receptor (EGFR) activation mutation-positive non-small-cell lung cancer (NSCLC) respond well to EGFR tyrosine kinase inhibitors (EGFR-TKIs), but eventually become resistant in most cases. The hepatocyte growth factor/c-Met (HGF/c-Met) pathway is reported as a poor prognostic factor in various cancers. As c-Met is involved in EGFR-TKI resistance, a c-Met inhibitor and EGFR-TKI combination may reverse the resistance. This study evaluated the efficacy and safety of a c-Met selective inhibitor, tivantinib (ARQ 197), in combination with erlotinib, in Japanese EGFR mutation-positive patients with NSCLC who progressed while on EGFR-TKIs. This study enrolled 45 patients with NSCLC with acquired resistance to EGFR-TKIs, who were orally administered a daily combination of tivantinib/erlotinib. The primary end point was the overall response rate (ORR) and secondary end points included disease control rate, progression-free survival (PFS) and overall survival (OS). The patients underwent a mandatory second biopsy just after progression on EGFR-TKIs. The predictive biomarkers were extensively analysed using tumour and blood samples. The ORR was 6.7% (95% CI 1.4% to 18.3%), and the lower limit of 95% CI did not exceed the target of 5%. The median PFS (mPFS) and median OS (mOS) were 2.7 months (95% CI 1.4 to 4.2) and 18.0 months (95% CI 13.4 to 22.2), respectively. Both were longer in c-Met high patients (c-Met high vs low: mPFS 4.1 vs 1.4 months; mOS 20.7 vs 13.9 months). Partial response was observed in three patients, all of whom were c-Met and HGF high. The common adverse events and their frequencies were similar to those known to occur with tivantinib or erlotinib alone. Although this study did not prove clinical benefit of tivantinib in patients with acquired resistance to EGFR-TKIs, activated HGF/c-Met signalling, a poor prognostic factor, may define a patient subset associated with longer survival by the tivantinib

  17. A phase Ib trial of continuous once-daily oral afatinib plus sirolimus in patients with epidermal growth factor receptor mutation-positive non-small cell lung cancer and/or disease progression following prior erlotinib or gefitinib.

    Science.gov (United States)

    Moran, Teresa; Palmero, Ramón; Provencio, Mariano; Insa, Amelia; Majem, Margarita; Reguart, Noemí; Bosch-Barrera, Joaquim; Isla, Dolores; Costa, Enric Carcereny; Lee, Chooi; Puig, Marta; Kraemer, Sandrine; Schnell, David; Rosell, Rafael

    2017-06-01

    Dysregulation of the downstream PI3K/AKT/mTOR signaling pathway is a proposed mechanism of resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). We investigated safety and antitumor activity of afatinib plus sirolimus as a potential combination to reverse acquired resistance to EGFR-TKIs in a phase IB trial in patients with EGFR mutation-positive non-small-cell lung cancer (EGFR mut NSCLC) and/or disease progression following prior erlotinib/gefitinib. Patients with EGFR mut NSCLC and/or disease progression following at least prior erlotinib/gefitinib were included in the trial. The primary endpoint was incidence of dose-limiting toxicities (DLT) to determine the maximum tolerated dose (MTD). Four initial dose cohorts were proposed to evaluate DLTs. Other endpoints included tumor response, safety, progression-free survival (PFS) and pharmacokinetics. Thirty-nine patients received afatinib and sirolimus. Additional dose cohorts were added since the second cohort (afatinib 40mg/day and sirolimus 5mg/day) was considered to have excessive toxicity. All patients experienced adverse events (AE) [grade 3: 66.7%; serious AE: 56.4%]. The most frequent AEs were diarrhea (94.9%), mucosal inflammation (64.1%), asthenia (53.8%) and rash (53.8%). Discontinuations and dose reduction due to AEs occurred in 23.1% and 25.6% of patients. MTD was determined as afatinib 30mg and sirolimus 1mg. Responses were observed in 5 patients (12.8%) [2 (5.1%) with confirmed partial response (PR); 3 (7.7%) with unconfirmed PR], and stable disease in 18 patients (46.2%). Four of the 5 responses were at doses above MTD. PFS at 6 months was estimated in 33.3% (median PFS 3.4 months). Pharmacokinetic parameters of afatinib and sirolimus were similar after single administration or in combination. The combination of afatinib and sirolimus showed lower responses than expected. Together with increased AEs and poor tolerability, this precludes clinical use and further

  18. Strange particles

    International Nuclear Information System (INIS)

    Chinowsky, W.

    1989-01-01

    Work done in the mid 1950s at Brookhaven National Laboratory on strange particles is described. Experiments were done on the Cosmotron. The author describes his own and others' work on neutral kaons, lambda and theta particles and points out the theoretical gap between predictions and experimental findings. By the end of the decade, the theory of strange particles was better understood. (UK)

  19. Progressive Business

    DEFF Research Database (Denmark)

    Christiansen, Christian O.

    2016-01-01

    Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015.......Guest Post to the Society for U.S. Intellectual History Blog. Brief introduction to the book Progressive Business: An Intellectual History of the Role of Business in American Society, Oxford U.P., 2015....

  20. Particle and nuclear physics

    CERN Document Server

    Faessler, Amand

    1971-01-01

    Progress in Particle and Nuclear Physics, Volume 26 covers the significant advances in understanding the fundamentals of particle and nuclear physics. This volume is divided into four chapters, and begins with a brief overview of the various possible ideas beyond the standard model, the problem they address and their experimental tests. The next chapter deals with the basic physics of neutrino mass based on from a gauge theoretic point of view. This chapter considers the various extensions of the standard electroweak theory, along with their implications for neutrino physics. The discussio

  1. Ice particle collisions

    Science.gov (United States)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation

  2. Advances of the Role of Lung Cancer Driver Gene and PD-1/PD-L1 Pathway Interaction in the Tumorigenesis and Progression of Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yan SHI

    2017-11-01

    Full Text Available Programmed death 1 (PD-1 and programmed death 1 ligand (PD-L1 pathway is a key mechanism of immune regulation, and its abnormal activation in tumor tissues suggests that PD-1/PD-L1 pathway may participate in the regulation of tumor immune escape. Driver gene mutation which is known as a key factor in the tumorigenesis of non-small cell lung cancer (NSCLC, was also reported to play a important role in the process of tumor immune escape. It indicates that there is an interaction between driver gene and PD-1/PD-L1 pathway. The purpose of this paper is to review the relationship between PD-1/PD-L1 pathway and lung cancer driver gene, such as epidermal growth factor receptor (EGFR, Kirsten rate sarcoma viral oncogene homolog (KRAS and echinoderm microtubuleassociated protein-like 4 - anaplastic lymphoma kinase (EML4-ALK and to summarize the role of lung cancer driver gene and PD-1/PD-L1 pathway interaction in the tumorigenesis and progression of NSCLC.

  3. Violation of Particle Anti-particle Symmetry

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Symmetry is a fundamental concept which can be found in the whole range of human activities e. g. from arts to science. The beauty of a statues is often related to its symmetric form. In physics, all the laws are related to some sort of symmetry. Equally important is a small breakdown ofsymmetry. Even for the case of a statue, its beauty might be enhanced by introducing small distortions. In this course, we investigate the role symmetry in the world of elementary particles. Some symmetries found there are very similar to those which can be seen in our daily life, while others are more exotic and related to the quantum nature of the elementary particles. Our particular focus ismade on symmetry and its violation between the matter and anti-matter, known as CP violation. It is experimentally well established that particleand anti-particle behave a tiny bit differently in the world of elementary particles. We discuss how this would be explained and how we can extendour knowledge. Evolution of our universe is stro...

  4. Ultrafine particles

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Weschler, Charles J.; Wierzbicka, Aneta

    2013-01-01

    Particle number (PN) concentrations (10-300 nm in size) were continuously measured over a period of ∼45 h in 56 residences of nonsmokers in Copenhagen, Denmark. The highest concentrations were measured when occupants were present and awake (geometric mean, GM: 22.3 × 103 cm-3), the lowest when...... the homes were vacant (GM: 6.1 × 103 cm-3) or the occupants were asleep (GM: 5.1 × 103 cm-3). Diary entries regarding occupancy and particle related activities were used to identify source events and apportion the daily integrated exposure among sources. Source events clearly resulted in increased PN...... concentrations and decreased average particle diameter. For a given event, elevated particle concentrations persisted for several hours after the emission of fresh particles ceased. The residential daily integrated PN exposure in the 56 homes ranged between 37 × 103 and 6.0 × 106 particles per cm3·h/day (GM: 3...

  5. Electrostatics, small particles, and laser fusion targets

    International Nuclear Information System (INIS)

    Hendricks, C.D.

    1978-01-01

    The success of any Inertial Confinement Fusion system for the production of useful power depends critically on the production of suitable targets. This is true whether the arrangement is that proposed by Nuckolls et al. or some other arrangement. The target must have characteristics such as material composition, structure, and surface finish which are tailored to the laser pulse length, energy, peak and average power and pulse shape. To provide useful power on a continuous basis, it is likely that the repetition rate will be 1.0 to 10 per second. Thus, in a 24 hour running period 864,000 targets may be necessary and one must be placed at the focal point of the laser every tenth of a second. For economic operation it is necessary that the targets be produced at costs of less than $1.00 per target

  6. Measurement of Optical Properties of Small Particles

    Science.gov (United States)

    Arakawa, E. T.; Tuminello, P. S.; Khare, B. N.; Millham, M. E.; Authier, S.; Pierce, J.

    1997-01-01

    We have measured the optical constants of montmorillonite and the separated coats and cores of B. subtilis spores over the wavelength interval from 200 nm to 2500 nm. The optical constants of kaolin were obtained over the wavelength interval from 130 nm to 2500 nm. Our results are applicable to the development of systems for detection of airborne biological contaminants. Future work will include measurement of the optical constants of B. cereus spores, B. sub tilts vegetative cells, egg albumin, illite, and a mixture (by weight) of one third kaolin, one third montmorillonite, and one third illite.

  7. Particle cosmology

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.

  8. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  9. Particle Physics

    CERN Document Server

    Martin, B R

    2008-01-01

    An essential introduction to particle physics, with coverage ranging from the basics through to the very latest developments, in an accessible and carefully structured text. Particle Physics: Third Edition is a revision of a highly regarded introduction to particle physics. In its two previous editions this book has proved to be an accessible and balanced introduction to modern particle physics, suitable for those students needed a more comprehensive introduction to the subject than provided by the 'compendium' style physics books. In the Third Edition the standard mod

  10. Particle-two particle interaction in configuration space

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.

    1982-07-01

    The problem if three indentical particles with zero-range two-particle interaction is considered. An explicit expression for the effective potential between one particle and the remaining two-particle system is obtained in the coordinate representation. It is shown that for arbitrary energies, at small and, for zero energy, at large distances rho between the one particle and centre of mass of the other two particles the diagonal matrix element of the effective potential is attractive and proportional to 1/rho 2 . This property of the effective potenial explains both the Thomas singularity and the Efimov effect. In the case of zero total energy of the system the general form of the solution of the three-particle integral equation is found in configuration space. (orig.)

  11. Small Quantum Structures with Small State Spaces

    Science.gov (United States)

    Navara, Mirko

    2008-01-01

    We summarize and extend results about “small” quantum structures with small dimensions of state spaces. These constructions have contributed to the theory of orthomodular lattices. More general quantum structures (orthomodular posets, orthoalgebras, and effect algebras) admit sometimes simplifications, but there are problems where no progress has been achieved.

  12. Progresso científico em pequenos ruminantes na primeira década do século XXI Scientific progress in small ruminants in the first decade of 21st century

    Directory of Open Access Journals (Sweden)

    Kléber Tomás de Resende

    2010-07-01

    Full Text Available O interesse pelos pequenos ruminantes aumentou nos últimos anos sob os aspectos produtivo e científico. No Brasil, caprinos e ovinos são os que despertam maior interesse econômico. Assim, este trabalho foi conduzido com o objetivo de discutir o progresso científico com caprinos e ovinos nos últimos dez anos. Foram pesquisadas várias bases de dados, entre elas as do Institute for Scientific Information (ISI, da Scientific Electronic Library Online - SciELO, da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, do Instituto Brasileiro de Geografia e Estatística - IBGE e da Food and Agriculture Organization of the United Nations - FAO. Na última década, os pequenos ruminantes têm merecido especial atenção dos pesquisadores, o que pode ser comprovado pelo aumento de 41% nas publicações mundiais envolvendo estas espécies, o que foi acompanhado por aumento ainda mais expressivo, 219%, em âmbito nacional. A evolução também foi observada sob os aspectos metodológicos dos projetos, ressaltando a abordagem multidisciplinar nas pesquisas mais atuais. Nos últimos dez anos, houve crescimento do aporte de recursos para editais temáticos demandados pela sociedade e pela cadeia da carne e do leite, além da preocupação com qualidade, competitividade e sustentabilidade.Worldwide interest in small ruminants has increased in recent years in both, the productive and scientific aspects. In Brazil, the same trend has been observed, however, among all small ruminants, goats and sheep can be highlighted. Thus, this review aimed to discuss scientific progress in goat and sheep in the last decade. Data were collected in different databases, such as Institute for Scientific Information (ISI, Scientific Electronic Library Online - SciELO, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES, Instituto Brasileiro de Geografia e Estatística - IBGE and Food and Agriculture Organization of the United Nations

  13. Quick photo-Fenton degradation of phenolic compounds by Cu/Al2O3-MCM-41 under visible light irradiation: small particle size, stabilization of copper, easy reducibility of Cu and visible light active material.

    Science.gov (United States)

    Pradhan, Amaresh C; Nanda, Binita; Parida, K M; Das, Mira

    2013-01-14

    The present study reports the photo-Fenton degradation of phenolic compounds (phenol, 2-chloro-4-nitrophenol and 4-chloro-2-nitrophenol) in aqueous solution using mesoporous Cu/Al(2)O(3)-MCM-41 nanocomposite as a heterogeneous photo-Fenton-like catalyst. The in situ incorporation of mesoporous Al(2)O(3) (MA) into the framework of MCM-41 (sol-gel method) forms Al(2)O(3)-MCM-41 and wetness impregnation of Cu(II) on Al(2)O(3)-MCM-41 generates mesoporous Cu/Al(2)O(3)-MCM-41 composite. The effects of pH and H(2)O(2) concentration on degradation of phenol, 2-chloro-4-nitrophenol and 4-chloro-2-nitrophenol are studied. Kinetics analysis shows that the photocatalytic degradation reaction follows a first-order rate equation. Mesoporous 5 Cu/Al(2)O(3)-MCM-41 is found to be an efficient photo-Fenton-like catalyst for the degradation of phenolic compounds. It shows nearly 100% degradation in 45 min at pH 4. The combined effect of small particle size, stabilization of Cu(2+) on the support Al(2)O(3)-MCM-41, ease reducibility of Cu(2+) and visible light activeness are the key factors for quick degradation of phenolic compounds by Cu/Al(2)O(3)-MCM-41.

  14. Magnitude of the benefit of progression-free survival as a potential surrogate marker in phase 3 trials assessing targeted agents in molecularly selected patients with advanced non-small cell lung cancer: systematic review.

    Directory of Open Access Journals (Sweden)

    Katsuyuki Hotta

    Full Text Available BACKGROUND: In evaluation of the clinical benefit of a new targeted agent in a phase 3 trial enrolling molecularly selected patients with advanced non-small cell lung cancer (NSCLC, overall survival (OS as an endpoint seems to be of limited use because of a high level of treatment crossover for ethical reasons. A more efficient and useful indicator for assessing efficacy is needed. METHODS AND FINDINGS: We identified 18 phase 3 trials in the literature investigating EGFR-tyrosine kinase inhibitor (TKIs or ALK-TKIs, now approved for use to treat NSCLC, compared with standard cytotoxic chemotherapy (eight trials were performed in molecularly selected patients and ten using an "all-comer" design. Receiver operating characteristic analysis was used to identify the best threshold by which to divide the groups. Although trials enrolling molecularly selected patients and all-comer trials had similar OS-hazard ratios (OS-HRs (0.99 vs. 1.04, the former exhibited greater progression-free survival-hazard ratios (PFS-HR (mean, 0.40 vs. 1.01; P<0.01. A PFS-HR of 0.60 successfully distinguished between the two types of trials (sensitivity 100%, specificity 100%. The odds ratio for overall response was higher in trials with molecularly selected patients than in all-comer trials (mean: 6.10 vs. 1.64; P<0.01. An odds ratio of 3.40 for response afforded a sensitivity of 88% and a specificity of 90%. CONCLUSION: The notably enhanced PFS benefit was quite specific to trials with molecularly selected patients. A PFS-HR cutoff of ∼0.6 may help detect clinical benefit of molecular targeted agents in which OS is of limited use, although desired threshold might differ in an individual trial.

  15. Hunting particles

    International Nuclear Information System (INIS)

    Southworth, B.; Boixader, G.

    1978-09-01

    The authors provide a general introduction to elementary particle physics and the work of CERN. This introduction is aimed at the young reader and uses cartoons to explain how elementary particles behave and how they are studied in the CERN accelerators. The purpose and administration of CERN is also briefly summarized. (W.D.L.)

  16. Particle accelerator

    International Nuclear Information System (INIS)

    Ress, R.I.

    1976-01-01

    Charged particles are entrained in a predetermined direction, independent of their polarity, in a circular orbit by a magnetic field rotating at high speed about an axis in a closed cylindrical or toroidal vessel. The field may be generated by a cylindrical laser structure, whose beam is polygonally reflected from the walls of an excited cavity centered on the axis, or by high-frequency energization of a set of electromagnets perpendicular to the axis. In the latter case, a separate magnetostatic axial field limits the orbital radius of the particles. These rotating and stationary magnetic fields may be generated centrally or by individual magnets peripherally spaced along its circular orbit. Chemical or nuclear reactions can be induced by collisions between the orbiting particles and an injected reactant, or by diverting high-speed particles from one doughnut into the path of counterrotating particles in an adjoining doughnut

  17. Communication of nuclear data progress: No.9 (1993)

    International Nuclear Information System (INIS)

    1993-06-01

    The is the ninth issue of > (CNDP), in which the nuclear data progress in China during the passed year is carried. It includes optical model parameters for both small angles and larger angles elastic scattering, n-T phase shift analyses, forbidden angular region of secondary particle emission, introduction to codes CMUP2 and CFUP1, diffusion process of nuclear fission, techniques used for charged particle evaluation at CNDC, evaluation of neutron nuclear data for 7 Li and revision on recommended data of 238 U for CENDL-2, Chinese Evaluated Nuclear Parameter Library (CENPL) (II) and computer program library at CNDC, covariance data evaluation for experimental data and several examples of least squares combination for derived data, and calculation of thermal neutron scattering law for anisotropic microcrystals etc

  18. Particle separation

    International Nuclear Information System (INIS)

    Baker, C.A.

    1990-01-01

    Solid particles are separated from a liquid which also contains ferric hydroxide by subjecting the liquid to ultrasonic agitation from a transducer in order to break up the flocs so that they will pass with the liquid through a filter belt. The belt thus retains the solid particles without interference from the flocs. As shown the woven nylon belt collects rare radioactive solid particles from liquid and carries them under sensors. The belt is washed clean, with further ultrasonic agitation in a trough on its return run. (author)

  19. Monte Carlo calculations of elementary particle properties

    Science.gov (United States)

    Guralnik, G. S.; Warnock, T.; Zemach, C.

    1984-01-01

    The object of this project is to calculate the masses of the elementary particles. This ambitious goal apparently is not possible using analytic methods or known approximation methods. However, it is probable that the power of a modern super computer will make at least part of the low lying mass spectrum accessible through direct numerical computation. Initial attempts by several groups at calculating this spectrum on small lattices of space time points have been very promising. Using new methods and super computers considerable progress has been made towards evaluating the mass spectrum on comparatively large lattices. Only more time and faster machines with increased storage will allow calculations of systems with guaranteed minimal boundary effects. The ideas that currently go into this calculation are outlined.

  20. Energy related applications of elementary particle physics

    International Nuclear Information System (INIS)

    Rafelski, J.

    1989-01-01

    Study of muon catalysis of nuclear fusion and phenomena commonly referred to as cold fusion has been central to our effort. Muon catalyzed fusion research concentrated primarily on the identification of energy efficient production of muons, and the understanding and control of the density dependence of auto-poisoning (sticking) of the catalyst. We have also developed the in-flight fusion description of the tμ-d reaction, and work in progress shows promise in explaining the fusion cycle anomalies and smallness of sticking as a consequence of the dominant role of such reactions. Our cold fusion work involved the exploration of numerous environments for cold fusion reactions in materials used in the heavy water electrolysis, with emphasis on reactions consistent with the conventional knowledge of nuclear physics reactions. We then considered the possibility that a previously unobserved ultra-heavy particle X - is a catalyst of dd fusion, explaining the low intensity neutrons observed by Jones et. al. 29 refs

  1. Elementary Particles

    Science.gov (United States)

    Parham, R.

    1974-01-01

    Presents the text of a speech given to a conference of physics teachers in which the full spectrum of elementary particles is given, along with their classification. Also includes some teaching materials available on this topic. (PEB)

  2. Die Partikel "khot'" ("khotya") (The Particle "khot'" ["khotya"])

    Science.gov (United States)

    Helm, Petra

    1976-01-01

    Considers the various meanings and uses of the Russian particle "khot'." The article adapts material from "Particles in Colloquial Russian" (Progress Publishers, Moscow) by A.N. Vasilyeva. (Text is in German.) (FB)

  3. Summary of the particle physics and technology working group

    International Nuclear Information System (INIS)

    Stephan Lammel et al. email = crathbun@fnal.gov

    2002-01-01

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large

  4. Summary of the particle physics and technology working group

    Energy Technology Data Exchange (ETDEWEB)

    Stephan Lammel et al.

    2002-12-10

    Progress in particle physics has been tightly related to technological advances during the past half century. Progress in technologies has been driven in many cases by the needs of particle physics. Often, these advances have benefited fields beyond particle physics: other scientific fields, medicine, industrial development, and even found commercial applications. The particle physics and technology working group of Snowmass 2001 reviewed leading-edge technologies recently developed or in the need of development for particle physics. The group has identified key areas where technological advances are vital for progress in the field, areas of opportunities where particle physics may play a principle role in fostering progress, and areas where advances in other fields may directly benefit particle physics. The group has also surveyed the technologies specifically developed or enhanced by research in particle physics that benefit other fields and/or society at large.

  5. Particle detectors

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The lecture series will present an overview of the basic techniques and underlying physical principles of particle detectors, applied to current and future high energy physics experiments. Illustrating examples, mainly from the field of collider experiments, will demonstrate the performance and limitations of the various techniques. After an introduction the following topics will be covered: Tracking (gas, solid state based) - Scintillation and light detection Calorimetry - Particle Identification - Electronics and Data Acquisition - Detector Systems

  6. Auroral particles

    Science.gov (United States)

    Evans, David S.

    1987-01-01

    The problems concerning the aurora posed prior to the war are now either solved in principle or were restated in a more fundamental form. The pre-war hypothesis concerning the nature of the auroral particles and their energies was fully confirmed, with the exception that helium and oxygen ions were identified as participating in the auroral particle precipitation in addition to the protons. The nature of the near-Earth energization processes affecting auroral particles was clarified. Charged particle trajectories in various electric field geometries were modeled. The physical problems have now moved from determining the nature and geometry of the electric fields, which accelerate charged particles near the Earth, to accounting for the existence of these electric fields as a natural consequence of the solar wind's interaction with Earth. Ultimately the reward in continuing the work in auroral and magnetospheric particle dynamics will be a deeper understanding of the subtleties of classical electricity and magnetism as applied to situations not blessed with well-defined and invariant geometries.

  7. Particle physics and inflationary cosmology

    CERN Document Server

    Linde, Andrei D

    1990-01-01

    This is the LaTeX version of my book "Particle Physics and Inflationary Cosmology'' (Harwood, Chur, Switzerland, 1990). I decided to put it to hep-th, to make it easily available. Many things happened during the 15 years since the time when it was written. In particular, we have learned a lot about the high temperature behavior in the electroweak theory and about baryogenesis. A discovery of the acceleration of the universe has changed the way we are thinking about the problem of the vacuum energy: Instead of trying to explain why it is zero, we are trying to understand why it is anomalously small. Recent cosmological observations have shown that the universe is flat, or almost exactly flat, and confirmed many other predictions of inflationary theory. Many new versions of this theory have been developed, including hybrid inflation and inflationary models based on string theory. There was a substantial progress in the theory of reheating of the universe after inflation, and in the theory of eternal inflation. ...

  8. The particle zoo

    CERN Document Server

    AUTHOR|(CDS)2079223

    2016-01-01

    What is everything really made of? If we split matter down into smaller and infinitesimally smaller pieces, where do we arrive? At the Particle Zoo - the extraordinary subatomic world of antimatter, neutrinos, strange-flavoured quarks and yetis, gravitons, ghosts and glueballs, mindboggling eleven-dimensional strings and the elusive Higgs boson itself. Be guided around this strangest of zoos by Gavin Hesketh, experimental particle physicist at humanity's greatest experiment, the Large Hadron Collider. Concisely and with a rare clarity, he demystifies how we are uncovering the inner workings of the universe and heading towards the next scientific revolution. Why are atoms so small? How did the Higgs boson save the universe? And is there a theory of everything? The Particle Zoo answers these and many other profound questions, and explains the big ideas of Quantum Physics, String Theory, The Big Bang and Dark Matter...and, ultimately, what we know about the true, fundamental nature of reality.

  9. Particle fuel bed tests

    International Nuclear Information System (INIS)

    Horn, F.L.; Powell, J.R.; Savino, J.M.

    1985-01-01

    Gas-cooled reactors, using packed beds of small diameter coated fuel particles have been proposed for compact, high-power systems. The particulate fuel used in the tests was 800 microns in diameter, consisting of a thoria kernel coated with 200 microns of pyrocarbon. Typically, the bed of fuel particles was contained in a ceramic cylinder with porous metallic frits at each end. A dc voltage was applied to the metallic frits and the resulting electric current heated the bed. Heat was removed by passing coolant (helium or hydrogen) through the bed. Candidate frit materials, rhenium, nickel, zirconium carbide, and zirconium oxide were unaffected, while tungsten and tungsten-rhenium lost weight and strength. Zirconium-carbide particles were tested at 2000 K in H 2 for 12 hours with no visible reaction or weight loss

  10. Light Scattering By Nonspherical Particles: Current Status and Challenging Issues

    Science.gov (United States)

    Mishchenko, Michael; Hansen, James E. (Technical Monitor)

    2000-01-01

    Quantitative analyses of remote sensing measurements of aerosols, clouds, precipitation, and particulate surfaces as well as computations of the Earth's radiation balance require detailed understanding of the interaction of small particles with light and other electromagnetic radiation. The convenient availability of the Lorenz-Mie theory has led to a widespread practice of treating all particles as if they were spheres. However, many natural and anthropogenic particles have nonspherical shapes, and the accumulated knowledge suggests that their scattering and radiative properties can be dramatically different from those of equivalent spheres. This presentation will summarize the recent significant progress achieved in the area of electromagnetic scattering by nonspherical particles and outline major problems that still await solution. The talk will cover the following specific topics: (1) comparison of most widely used exact and approximate theoretical techniques; (2) outline of laboratory and field measurement techniques; (3) compare theory and experiment; (4) need for a statistical approach in dealing with natural particles; (5) remote sensing and radiative transfer applications; and (6) major unsolved problems.

  11. Progressivity Enhanced

    Directory of Open Access Journals (Sweden)

    Marko Hren

    2013-09-01

    Full Text Available Rather than a scientific text, the author contributes a concise memorandum from the originator of the idea who has managed the campaign for the conversion of the military barracks into a creative cluster between 1988 and 2002, when he parted ways with Metelkova due to conflicting views on the center’s future. His views shed light on a distant period of time from a perspective of a participant–observer. The information is abundantly supported by primary sources, also available online. However, some of the presented hypotheses are heavily influenced by his personal experiences of xenophobia, elitism, and predatorial behavior, which were already then discernible on the so-called alternative scene as well – so much so that they obstructed the implementation of progressive programs. The author claims that, in spite of the substantially different reality today, the myths and prejudices concerning Metelkova must be done away with in order to enhance its progressive nature. Above all, the paper calls for an objective view on internal antagonisms, mainly originating in deep class divisions between the users. These make a clear distinction between truly marginal ndividuals and the overambitious beau-bourgeois, as the author labels the large part of users of Metelkova of »his« time. On these grounds, he argues for a robust approach to ban all forms of xenophobia and self-ghettoization.

  12. Saha equation, single and two particle states

    Science.gov (United States)

    Kraeft, W. D.; Girardeau, M. D.; Strege, B.

    1990-01-01

    Single- and two-particle properties in a dense plasma are discussed in connection with their role in the mass action law for a partially ionized plasma. The two-particle-bound states are nearly density independent, while the continuum is essentially shifted. The single-particle states are damped, and their energy has a negative shift and a parabolic behavior for small momenta.

  13. An active particle accelerator

    International Nuclear Information System (INIS)

    Goldman, T.

    1991-01-01

    Although a static charge is difficult to maintain on macroscopic particles, it is straightforward to construct a small object with a regularly oscillating electric dipole moment. For objects of a given size, one may then construct an accelerator by appropriately matching the frequency and separations of an external array of electrodes to this size. Physically feasible size ranges, an accelerator design, and possible applications of such systems are discussed. 8 refs., 9 figs

  14. Microplastic Particles in Food

    OpenAIRE

    German Federal Institute for Risk Assessment

    2015-01-01

    The term microplastic is used for small plastic particles of different origins, sizes and chemical composition. The exact sizes of microplastics have not been uniformly defined in the relevant literature, they mostly range from 0.001 mm to less than 5 mm. Basically, two types of microplastics are distinguished, primary and secondary microplastic. Primary microplastic is specific produced industrially in the form of plastic-based granulates or pellets. Secondary microplastic occurs through che...

  15. White Matter Lesion Progression in LADIS

    DEFF Research Database (Denmark)

    Schmidt, Reinhold; Berghold, Andrea; Jokinen, Hanna

    2012-01-01

    BACKGROUND AND PURPOSE: White matter lesion (WML) progression has been advocated as a surrogate marker in intervention trials on cerebral small vessel disease. We assessed the rate of visually rated WML progression, studied correlations between lesion progression and cognition, and estimated sample...... sizes for clinical trials with pure WML progression vs combined WML progression-cognitive outcomes. METHODS: Those 394 participants of the Leukoaraiosis and Disability Study (LADIS) study with magnetic resonance imaging scanning at baseline and 3-year follow-up were analyzed. WML progression rating...

  16. On small clusters

    International Nuclear Information System (INIS)

    Bernardes, N.

    1984-01-01

    A discussion is presented of zero-point motion effects on the binding energy of a small cluster of identical particles interacting through short range attractive-repulsive forces. The model is appropriate to a discussion of both Van der Waals as well as nuclear forces. (Author) [pt

  17. Taking account of the recoil effect under a light particle scattering on two heavy particles

    International Nuclear Information System (INIS)

    Peresypkin, V.V.

    1978-01-01

    Proceeding from the Faddeev equations the derivation of the Bruekner formula describing a light particle scattering by a system of two fixed force centers is presented. Using the zero-range two-particle potential and assuming the ratio of the incident particle mass to the heavy particle mass to be a small perturbation parameter the correction to the Bruekner formula is obtained taking into account the heavy particle recoil

  18. Light scattering by particles in water theoretical and experimental foundations

    CERN Document Server

    Jonasz, Miroslaw

    2007-01-01

    Light scattering-based methods are used to characterize small particles suspended in water in a wide range of disciplines ranging from oceanography, through medicine, to industry. The scope and accuracy of these methods steadily increases with the progress in light scattering research. This book focuses on the theoretical and experimental foundations of the study and modeling of light scattering by particles in water and critically evaluates the key constraints of light scattering models. It begins with a brief review of the relevant theoretical fundamentals of the interaction of light with condensed matter, followed by an extended discussion of the basic optical properties of pure water and seawater and the physical principles that explain them. The book continues with a discussion of key optical features of the pure water/seawater and the most common components of natural waters. In order to clarify and put in focus some of the basic physical principles and most important features of the experimental data o...

  19. CAS CERN Accelerator School superconductivity in particle accelerators

    International Nuclear Information System (INIS)

    Turner, S.

    1989-01-01

    One of the objectives of the CERN Accelerator School is to run courses on specialised topics in the particle accelerator field. The present volume contains the proceedings of one such course, this time organized in conjunction with the Deutsches Elektronen Synchrotron (DESY) on the subject of superconductivity in particle accelerators. This course reflects the very considerable progress made over the last few years in the use of the technology for the magnet and radio-frequency systems of many large and small accelerators already in use or nearing completion, while also taking account of the development work now going on for future machines. The lectures cover the theory of superconductivity, cryogenics and accelerator magnets and cavities, while the seminars include superfluidity, superconductors, special magnets and the prospects for high-temperature superconductors. (orig.)

  20. Progress report

    International Nuclear Information System (INIS)

    Brumovsky, M.

    1979-01-01

    Progress Report, covering the period up to the end of 1979 year, was sent to the IAEA according to the research agreement No. 1971 /CF. This work covered the following fields: preparation and dummy irradiation experiments with a new experimental capsule of ''CHOUCA-M'' type; measurement of temperature fields and design of specimen holders; measurement of neutron energy spectrum in the irradiation place in our experimental reactor of VVR-S type (Nuclear Research Institute) using a set of activation detectors; unification and calibration of the measurement of neutron fluence with the use of Fe, Cu, Mn-Mg and Co-Al monitors; development and improvement of the measuring apparatus and technique for the dynamic testing of pre-cracked specimens with determination of dynamic parameters of fracture mechanics; preparation and manufacture of testing specimens from the Japanese steels - forging, plate and weld metal; preparation of the irradiation capsule for assembling

  1. In the vortex of particles

    International Nuclear Information System (INIS)

    Zito, Marco

    2015-01-01

    Aimed to a large public, this book tells the story of the elaboration of the standard atomic model which now comprises thirty seven particles and four fundamental forces. On this way, several discoveries and inventions became landmarks of progress and history: X rays, superconductivity, Internet, nuclear bombs. It also opened new perspectives on the knowledge on matter, notably with the mysterious black matter

  2. New techniques for particle accelerators

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1990-06-01

    A review is presented of the new techniques which have been proposed for use in particle accelerators. Attention is focused upon those areas where significant progress has been made in the last two years--in particular, upon two-beam accelerators, wakefield accelerators, and plasma focusers. 26 refs., 5 figs., 1 tab

  3. Particle electric dipole-moments

    Energy Technology Data Exchange (ETDEWEB)

    Pendlebury, J.M. [Sussex Univ., Brighton (United Kingdom)

    1997-04-01

    The incentive to detect particle electric dipole-moments, as a window on time-reversal violation, remains undiminished. Efforts to improve the measurements for the neutron, the electron and some nuclei are still making rapid progress as more powerful experimental methods are brought to bear. A new measurement for the neutron at ILL is presented. (author). 7 refs.

  4. New particle searches

    International Nuclear Information System (INIS)

    Derrick, M.

    1985-01-01

    The Standard Model is a remarkable result of decades of work in particle physics, but it is clearly an incomplete representation of the world. Exploring possibilities beyond the Standard Model is a major preoccupation of both theorists and experimentalists. Despite the many suggestions that are extant about the missing links within the Standard Model as well as extensions beyond it, no hard experimental evidence exists. In particular, in more than five years of experimentation both at PETRA and PEP no new particles have been found that would indicate new physics. Several reasons are possible for these negative results: the particles may be too heavy; the experiments may not be looking in the proper way; the cross sections may be too small or finally the particles may not exist. A continuing PEP program, at high luminosity will ensure that the second and third reason continue to be addressed. The higher energy e + e - storage rings such as TRISTAN and LEP will extend the mass limits. High mass particles can also be produced at the CERN collider and soon with the Tevatron collider. A concise summary of the mass limits from the PETRA experiments has been given in a recent Mark J publication. The results shown provide a convenient yardstick against which to measure future search experiments

  5. Cosmology and particle physics

    International Nuclear Information System (INIS)

    Salati, P.

    1986-01-01

    If the hot Big Bang model is correct, the very early universe provides us with a good laboratory to test our ideas on particle physics. The temperature and the density at that time are so high that each known particle must exist in chemical and in thermal equilibrium with the others. When the universe cools, the particles freeze out, leaving us today with a cosmic background. Such a kind of relic is of great interest because we can probe the Big Bang Model by studying the fossilized gas of a known particle. Conversely we can use that model to derive information about a hypothetical particle. Basically the freezing of a gas occurs a temperature T o and may be thermal or chemical. Studying the decoupling of a stable neutrino brings information on its mass: if the mass M ν lies in the forbidden range, the neutrino has to be unstable and its lifetime is constrained by cosmology. As for the G.U.T. Monopole, cosmology tells us that its present mass density is either to big or to small (1 monopole/observable universe) owing to a predicted flux far from the Parker Limit. Finally, the super red-giant star life time constrains the axion or the Higgs to be more massive than .2 MeV [fr

  6. Particle detectors

    CERN Document Server

    AUTHOR|(CDS)2068232

    1998-01-01

    The lecture series will present and overview of the basic techniques and underlying physical principles of particle detectors, applied to current and future high energy physics experiments. Illustrating examples, mainly from the field of collider experiments, will demonstrate the performance and limitations of the various techniques. After and introduction we shall concentrate on particle tracking. Wire chambers, drift chambers, micro gaseous tracking devices and solid state trackers will be discussed. It follows and overview of scintillators, photon detection, fiber tracking and nuclear emulsions. One lecture will deal with the various techniques of calorimetry. Finally we shall focus on methods developed for particle identification. These comprise specific energy loss, time of flight Cherenkov and transition radiation detectors.

  7. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  8. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1994-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets, with a few more additions - with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers - exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the foree of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc. (orig.)

  9. Stable particles

    International Nuclear Information System (INIS)

    Samios, N.P.

    1993-01-01

    I have been asked to review the subject of stable particles, essentially the particles that eventually comprised the meson and baryon octets. with a few more additions -- with an emphasis on the contributions made by experiments utilizing the bubble chamber technique. In this activity, much work had been done by the photographic emulsion technique and cloud chambers-exposed to cosmic rays as well as accelerator based beams. In fact, many if not most of the stable particles were found by these latter two techniques, however, the forte of the bubble chamber (coupled with the newer and more powerful accelerators) was to verify, and reinforce with large statistics, the existence of these states, to find some of the more difficult ones, mainly neutrals and further to elucidate their properties, i.e., spin, parity, lifetimes, decay parameters, etc

  10. Investigation on non-glass laser fusion targets: their fabrication, characterization, and transport. Charged Particle Research Laboratory report No. 2-81, progress report, June 1, 1980-January 31, 1981

    International Nuclear Information System (INIS)

    Kim, K.

    1981-01-01

    A summary is presented of the research progress made under LLNL Subcontract 8320003 for the period of June 1, 1980 through January 31, 1981. The main theme of the research has continued to be the development of techniques for fabricating, characterizing, and transporting laser fusion targets on a continuous basis. The target fabrication techniques are intended mainly for non-glass spherical shell targets, both cryogenic and non-cryogenic. Specifically, progress has been made in each of the following categories. (1) Investigation of liquid hydrogen behavior inside a spherical laser fusion target. (2) Development of automated target characterization scheme. (3) Study of cryogenic target fabrication scheme utilizing cold-gas-levitation and electric field positioning. (4) Development of a cryogenic target fabrication system based on target free-fall method. (5) Generation of hydrogen powder using electro-hydrodynamic spraying. (6) Study of target-charging techniques for application to contactless cryogenic target fabrication. (7) Development of hollow metal sphere production technique. A brief summary of the research progress made in each category is presented

  11. Preliminary Measurement of Lunar Particle Shapes.

    Science.gov (United States)

    Rickman, Doug

    2013-01-01

    Particle shape is a basic parameter and essential for many engineering applications. Very little data is published on the shape of lunar particles. An unpublished review found that even where the same samples were studied the results were contradictory, probably because of extremely small sample sizes. Other workers have made fundamental errors in algorithms. There are many ways to measure particle shape. One common approach is to examine the particles as intersected by a plain, such as a thin section. If discrete particles can be segmented from the image, programs such as ImageJ can readily obtain shape measurements for each particle.

  12. Particle Physics

    CERN Multimedia

    2005-01-01

    While biomedicine and geoscience use grids to bring together many different sub-disciplines, particle physicists use grid computing to increase computing power and storage resources, and to access and analyze vast amounts of data collected from detectors at the world's most powerful accelerators (1 page)

  13. Pinpointing particles

    International Nuclear Information System (INIS)

    Miller, David J.

    1987-01-01

    The Conference on Position-Sensitive Detectors held at London's University College from 7-11 September highlighted the importance and the growing applications of these precision devices in many branches of science, underlining once again the high spinoff potential for techniques developed inside particle physics

  14. An enhancement of binary particle swarm optimization for gene selection in classifying cancer classes.

    Science.gov (United States)

    Mohamad, Mohd Saberi; Omatu, Sigeru; Deris, Safaai; Yoshioka, Michifumi; Abdullah, Afnizanfaizal; Ibrahim, Zuwairie

    2013-04-24

    Gene expression data could likely be a momentous help in the progress of proficient cancer diagnoses and classification platforms. Lately, many researchers analyze gene expression data using diverse computational intelligence methods, for selecting a small subset of informative genes from the data for cancer classification. Many computational methods face difficulties in selecting small subsets due to the small number of samples compared to the huge number of genes (high-dimension), irrelevant genes, and noisy genes. We propose an enhanced binary particle swarm optimization to perform the selection of small subsets of informative genes which is significant for cancer classification. Particle speed, rule, and modified sigmoid function are introduced in this proposed method to increase the probability of the bits in a particle's position to be zero. The method was empirically applied to a suite of ten well-known benchmark gene expression data sets. The performance of the proposed method proved to be superior to other previous related works, including the conventional version of binary particle swarm optimization (BPSO) in terms of classification accuracy and the number of selected genes. The proposed method also requires lower computational time compared to BPSO.

  15. Zooplankton Grazing Effects on Particle Size Spectra under Different Seasonal Conditions

    Science.gov (United States)

    Stamieszkin, K.; Poulton, N.; Pershing, A. J.

    2016-02-01

    Oceanic particle size spectra can be used to explain and predict variability in carbon export efficiency, since larger particles are more likely to sink to depth than small particles. The distribution of biogenic particle size in the surface ocean is the result of many variables and processes, including nutrient availability, primary productivity, aggregation, remineralization, and grazing. We conducted a series of grazing experiments to test the hypothesis that mesozooplankton shift particle size spectra toward larger particles, via grazing and egestion of relatively large fecal pellets. These experiments were carried out over several months, and used natural communities of mesozooplankton and their microbial prey, collected offshore of the Damariscotta River in the Gulf of Maine. We analyzed the samples using Fluid Imaging Technologies' FlowCam®, a particle imaging system. With this equipment, we processed live samples, decreasing the likelihood of losing or damaging fragile particles, and thereby lessening sources of error in commonly used preservation and enumeration protocols. Our results show how the plankton size spectrum changes as the Gulf of Maine progresses through a seasonal cycle. We explore the relationship of grazing community size structure to its effect on the overall biogenic particle size spectrum. At some times of year, mesozooplankton grazing does not alter the particle size spectrum, while at others it significantly does, affecting the potential for biogenic flux. We also examine prey selectivity, and find that chain diatoms are the only prey group preferentially consumed. Otherwise, we find that complete mesozooplankton communities are "evolved" to fit their prey such that most prey groups are grazed evenly. We discuss a metabolic numerical model which could be used to universalize the relationships between whole gazer and whole microbial communities, with respect to effects on particle size spectra.

  16. Particle reduction strategies - PAREST. Evaluation of emission reduction scenarios using chemical transport calculations. PM10- and NO2-immission contributions in Germany. Wood combustion in small combustion systems; installations of the 13th and 17th BImSchV (Federal Immission Control Act). Sub-report

    International Nuclear Information System (INIS)

    Stern, Rainer

    2013-01-01

    This report was prepared within the research project ''Particle reduction strategies - PAREST.'' In this paper with the chemical transport model REM CALGRID following questions were investigated: 1 What is the contribution of the wood-fired small combustion plants in Germany to the PM10- and NO 2 -concentrations? 2 What is the contribution of the 13th and 17th BlmSchV covered installations to the PM10 and NO 2 concentrations in Germany? [de

  17. Elementary particle physics: Experimental

    International Nuclear Information System (INIS)

    Lord, J.J.; Burnett, T.H.; Wilkes, R.J.

    1989-01-01

    We are carrying out a research program in high energy experimental particle physics. Studies of high energy hadronic interactions and leptoproduction processes continue using several experimental techniques. Progress has been made on the study of multiparticle production processes in nuclei. Ultra-high energy cosmic ray nucleus-nucleus interactions have been investigated by the Japanese American Cosmic Emulsion Experiment (JACEE) using balloon-borne emulsion chamber detectors. In the area of particle astrophysics, our studies of cosmic ray nuclear interactions have enabled use to make the world's most accurate determination of the comparison of the cosmic rays above 10 13 eV. We have only the detector that can observe interaction vertices and identify particles at energies up to 10**15 eV. Our observations are getting close to placing limits on the acceleration mechanisms postulated for pulsars in which the spin and magnetic moment axes are at different angles. In June, 1989 approval was given by NASA for our participation in the Space Station program. The SCINATT experiment will make use of emulsion chamber detectors, similar to the planned JACEE hybrid balloon flight detectors. These detector will permit precise determination of secondary particle charges, momenta and rapidities, and the accumulation of data will be at least a factor of 10 to 100 greater than in balloon experiments. Emulsion chamber techniques ate also employed in an experiment using accelerator heavy ion beams at CERN and Brookhaven National Laboratory to investigate particle production processes in central collisions of nuclei in the energy range 15 -- 200A GeV. Our study of hadroproduction in lepton interactions is continuing with approval of another 8 months run for deep inelastic muon scattering experiment E665 at Fermilab

  18. Particle Swarm Optimization Toolbox

    Science.gov (United States)

    Grant, Michael J.

    2010-01-01

    The Particle Swarm Optimization Toolbox is a library of evolutionary optimization tools developed in the MATLAB environment. The algorithms contained in the library include a genetic algorithm (GA), a single-objective particle swarm optimizer (SOPSO), and a multi-objective particle swarm optimizer (MOPSO). Development focused on both the SOPSO and MOPSO. A GA was included mainly for comparison purposes, and the particle swarm optimizers appeared to perform better for a wide variety of optimization problems. All algorithms are capable of performing unconstrained and constrained optimization. The particle swarm optimizers are capable of performing single and multi-objective optimization. The SOPSO and MOPSO algorithms are based on swarming theory and bird-flocking patterns to search the trade space for the optimal solution or optimal trade in competing objectives. The MOPSO generates Pareto fronts for objectives that are in competition. A GA, based on Darwin evolutionary theory, is also included in the library. The GA consists of individuals that form a population in the design space. The population mates to form offspring at new locations in the design space. These offspring contain traits from both of the parents. The algorithm is based on this combination of traits from parents to hopefully provide an improved solution than either of the original parents. As the algorithm progresses, individuals that hold these optimal traits will emerge as the optimal solutions. Due to the generic design of all optimization algorithms, each algorithm interfaces with a user-supplied objective function. This function serves as a "black-box" to the optimizers in which the only purpose of this function is to evaluate solutions provided by the optimizers. Hence, the user-supplied function can be numerical simulations, analytical functions, etc., since the specific detail of this function is of no concern to the optimizer. These algorithms were originally developed to support entry

  19. Phase I/II trial of vorinostat (SAHA) and erlotinib for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutations after erlotinib progression.

    Science.gov (United States)

    Reguart, Noemi; Rosell, Rafael; Cardenal, Felipe; Cardona, Andres F; Isla, Dolores; Palmero, Ramon; Moran, Teresa; Rolfo, Christian; Pallarès, M Cinta; Insa, Amelia; Carcereny, Enric; Majem, Margarita; De Castro, Javier; Queralt, Cristina; Molina, Miguel A; Taron, Miquel

    2014-05-01

    Vorinostat or suberoylanilide hydroxamic acid (SAHA) is a novel histone deacetylase inhibitor with demonstrated antiproliferative effects due to drug-induced accumulation of acetylated proteins, including the heat shock protein 90. We prospectively studied the activity of vorinostat plus erlotinib in EGFR-mutated NSCLC patients with progression to tyrosine kinase inhibitors. We conducted this prospective, non-randomized, multicenter, phase I/II trial to evaluate the maximum tolerated dose, toxicity profile and efficacy of erlotinib and vorinostat. Patients with advanced NSCLC harboring EGFR mutations and progressive disease after a minimum of 12 weeks on erlotinib were included. The maximum tolerated dose of vorinostat plus erlotinib was used as recommended dose for the phase II (RDP2) to assess the efficacy of the combination. The primary end point was progression-free-survival rate at 12 weeks (PFSR12w). Pre-treatment plasma samples were required to assess T790M resistant mutation. A total of 33 patients were enrolled in the phase I-II trial. The maximum tolerated dose was erlotinib 150 mg p.o., QD, and 400mg p.o., QD, on days 1-7 and 15-21 in a 28-day cycle. Among the 25 patients treated at the RDP2, the most common toxicities included anemia, fatigue and diarrhea. No responses were observed. PFSR12w was 28% (IC 95%: 18.0-37.2); median progression-free survival (PFS) was 8 weeks (IC 95%: 7.43-8.45) and overall survival (OS) 10.3 months (95% CI: 2.4-18.1). Full dose of continuous erlotinib with vorinostat 400mg p.o., QD on alternative weeks can be safely administered. Still, the combination has no meaningful activity in EGFR-mutated NSCLC patients after TKI progression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Chicago particle accelerator conference

    International Nuclear Information System (INIS)

    Southworth, Brian

    1989-01-01

    Naturally, emphasis at the Particle Accelerator Conference in Chicago in March was on work in the US, just as the newly instituted European Particle Accelerator Conference places emphasis on work in the 'old continent'. All will come together at the international conference in Japan in August. The proposed US Superconducting Supercollider (SSC) was highlighted in the opening talk at Chicago. Progress on this inchoate project to explore the TeV (1000 GeV) energy region by colliding 20 TeV proton beams was reported by the recently-appointed Director of the SSC Laboratory, Roy Schwitters. He reviewed the physics challenges and described progress and plans towards full authorization of construction.This year, the SSC conceptual design will be transformed into a 'site specific' report, now that the location at Waxahachie in Ellis County, Texas, has been selected. The Central Design Group, based in Berkeley for the past few years, will soon move to the Waxahachie region. The top management structure is taking shape and an International Advisory Committee is being formed

  1. Active particles

    CERN Document Server

    Degond, Pierre; Tadmor, Eitan

    2017-01-01

    This volume collects ten surveys on the modeling, simulation, and applications of active particles using methods ranging from mathematical kinetic theory to nonequilibrium statistical mechanics. The contributing authors are leading experts working in this challenging field, and each of their chapters provides a review of the most recent results in their areas and looks ahead to future research directions. The approaches to studying active matter are presented here from many different perspectives, such as individual-based models, evolutionary games, Brownian motion, and continuum theories, as well as various combinations of these. Applications covered include biological network formation and network theory; opinion formation and social systems; control theory of sparse systems; theory and applications of mean field games; population learning; dynamics of flocking systems; vehicular traffic flow; and stochastic particles and mean field approximation. Mathematicians and other members of the scientific commu...

  2. Dimensional considerations about elementary particles

    International Nuclear Information System (INIS)

    Cocconi, G.

    1978-01-01

    The search for fundamental elementary particles responsible for the observed behaviour of matter during the past decades is briefly reviewed, and the possibility is considered that the four fundamental interactions that shape things merge into a unique field when matter is so compressed that particles are at extremely small distances from one another. These interactions are the gravitational interaction, the electromagnetic interaction, the strong interaction, and the weak interaction. It is thought that a simple geometrical criterion, termed the 'elementary criterion', would suffice to indicate how the various interactions should behave as particles are brought closer to one another and thus approach the situation where all interactions merge. (6 references). (U.K.)

  3. LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles - Part 2: First results from balloon and unmanned aerial vehicle flights

    Science.gov (United States)

    Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel

    2016-08-01

    In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.

  4. Thorium utilization program. Quarterly progress report for the period ending February 28, 1977. [Fuel element crushing, burning; particle classification; solvent extraction; dry solids handling; plant management; HET fuel shipping; HTGR recycle demonstration facility

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-01

    General Atomic Thorium Utilization Program activities progressed on schedule during the quarter, with continuation of the head-end reprocessing equipment testing program. Individual testing of the tertiary, oversize crushers and the screener was completed. Preparation of the equipment for testing as a system is under way. Tests on the tertiary crusher revealed no operating problems. No material holdup areas or bypass of the crushing cavity were detected. The initial issue of a functional level diagram for the Fuel Element Size Reduction System has been prepared for preliminary review. Heat transfer coefficients were calculated from data obtained in six 0.40-m primary burner heatup runs. Six runs were made on the 0.20-m primary burner. Other significant 0.20-m burner work included fabrication and initial testing of an electrical resistance probe bed level sensor and preliminary heat transfer design calculations for determining the cooling requirements to maintain the recycling fines cyclone exit temperature at approximately 500/sup 0/C. The conceptual design of the engineering-scale dissolver-centrifuge for incorporation into the head-end line was completed. Three solvent extraction feed adjustment runs were completed. Two of the runs were representative of the continuous intercycle concentration step. The other run was a continuous operation which utilized leacher product as feed. Progress with dry solids handling component and system testing continues. Efforts were focused on completion of the HET fuel shipping conceptual design report, development of detailed costs, and identification of all system interfaces. The Reprocessing Flowsheet Review and Materials Balance Study of reprocessing head-end and off-gas treatment systems is in technical review.

  5. Rainbow Particle Imaging Velocimetry

    KAUST Repository

    Xiong, Jinhui

    2017-04-27

    Despite significant recent progress, dense, time-resolved imaging of complex, non-stationary 3D flow velocities remains an elusive goal. This work tackles this problem by extending an established 2D method, Particle Imaging Velocimetry, to three dimensions by encoding depth into color. The encoding is achieved by illuminating the flow volume with a continuum of light planes (a “rainbow”), such that each depth corresponds to a specific wavelength of light. A diffractive component in the camera optics ensures that all planes are in focus simultaneously. With this setup, a single color camera is sufficient to track 3D trajectories of particles by combining 2D spatial and 1D color information. For reconstruction, this thesis derives an image formation model for recovering stationary 3D particle positions. 3D velocity estimation is achieved with a variant of 3D optical flow that accounts for both physical constraints as well as the rainbow image formation model. The proposed method is evaluated by both simulations and an experimental prototype setup.

  6. Particle Mechanics

    CERN Document Server

    Collinson, Chris

    1995-01-01

    * Assumes no prior knowledge* Adopts a modelling approach* Numerous tutorial problems, worked examples and exercises included* Elementary topics augmented by planetary motion and rotating framesThis text provides an invaluable introduction to mechanicsm confining attention to the motion of a particle. It begins with a full discussion of the foundations of the subject within the context of mathematical modelling before covering more advanced topics including the theory of planetary orbits and the use of rotating frames of reference. Truly introductory , the style adoped is perfect for those u

  7. Cosmology, physics of particles and nuclei

    International Nuclear Information System (INIS)

    2003-01-01

    A recent trend, already noted in the previous activity report, is the cross-fertilization between cosmology and high-energy physics, with some twenty research articles at this interface in the last 2 years. Results are presented along 3 main directions. 1) Cosmology and astro-particle physics. One may quote among others: the idea that dark matter may not be as weakly interacting as previously thought; a general study of the growth of small perturbations in the context of higher-dimensional theories; a possible explanation of the smallness of the cosmological constant through violation of Lorentz invariance in the gravity sector. In the field of observational cosmology, a 3-point correlation has been detected for the first time using gravitational lensing experiments. 2) Particle physics beyond the standard model. New developments in this field are triggered by progress on both experimental and theoretical sides. The first unambiguous observation of neutrino oscillations implies that neutrinos have non-zero masses. The constraints imposed by existing data on models based on the seesaw mechanism have been studied. The 'de-construction' of supersymmetric theories, inspired by recent advances in higher-dimensional theories, leads to a parameter-free prediction for the mass of the Higgs boson. 3) Strong interactions. Experiments at Hera have triggered new studies of hadronic interactions in the regime of high parton densities, which is also the high-energy limit for QCD: the phenomenon of 'parton saturation' is expected to occur. QCD calculations have been applied to various observables: jet physics, diffractive processes at Hera and in collider experiments, and multiplicity correlations in phase space. (A.C.)

  8. Cosmology, physics of particles and nuclei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    A recent trend, already noted in the previous activity report, is the cross-fertilization between cosmology and high-energy physics, with some twenty research articles at this interface in the last 2 years. Results are presented along 3 main directions. 1) Cosmology and astro-particle physics. One may quote among others: the idea that dark matter may not be as weakly interacting as previously thought; a general study of the growth of small perturbations in the context of higher-dimensional theories; a possible explanation of the smallness of the cosmological constant through violation of Lorentz invariance in the gravity sector. In the field of observational cosmology, a 3-point correlation has been detected for the first time using gravitational lensing experiments. 2) Particle physics beyond the standard model. New developments in this field are triggered by progress on both experimental and theoretical sides. The first unambiguous observation of neutrino oscillations implies that neutrinos have non-zero masses. The constraints imposed by existing data on models based on the seesaw mechanism have been studied. The 'de-construction' of supersymmetric theories, inspired by recent advances in higher-dimensional theories, leads to a parameter-free prediction for the mass of the Higgs boson. 3) Strong interactions. Experiments at Hera have triggered new studies of hadronic interactions in the regime of high parton densities, which is also the high-energy limit for QCD: the phenomenon of 'parton saturation' is expected to occur. QCD calculations have been applied to various observables: jet physics, diffractive processes at Hera and in collider experiments, and multiplicity correlations in phase space. (A.C.)

  9. Particle Emissions from Domestic Gas Cookers

    DEFF Research Database (Denmark)

    Glarborg, Peter; Livbjerg, Hans; Wagner, Ayten Yilmaz

    2010-01-01

    The authors experimentally studied the formation of submicron particles from a domestic gas cooker in a compartment free from external particle sources. The effects of fuel (methane, natural gas, odorant-free natural gas), primary aeration, flow rate, and fuel sulphur content on particle emissions...... of the emitted particles were found to have a mean value of about 7 nm for partially premixed flames, increasing to ∼10 nm for nonpremixed flames. The quantity of primary air had a strong impact on the particle emissions, showing a minimum at a primary aeration level of 60-65%. Presence of sulphur in small...

  10. Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow

    DEFF Research Database (Denmark)

    Salewski, Mirko; Fuchs, Laszlo

    2008-01-01

    Aerodynamic four-way coupling models are necessary to handle two-phase flows with a dispersed phase in regimes in which the particles are neither dilute enough to neglect particle interaction nor dense enough to bring the mixture to equilibrium. We include an aerodynamic particle interaction model...... levels in the flow then decrease. The impact of the stochastic particle description on the four-way coupling model is shown to be relatively small. If particles are also allowed to break up according to a wave breakup model, the particles become polydisperse. An ad hoc model for handling polydisperse...

  11. [Construction of a small angle neutron scattering spectrometer for investigation of microemulsions and micellar solutions in bulk, in porous materials and under shear]. Progress report [Phase 1, July 1, 1990--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report presents the status of the small-angle diffractometer; 3-D microstructure of bicontinuous microemulsions from SANS and simulation; local geometry of the surfactant monolayer in microemulsions; surface ordering in microemulsions; dynamics of water-in-oil droplet microemulsions; and micellar formation and correlation in the cavity of porous silica glass.

  12. Small Data

    NARCIS (Netherlands)

    S. Pemberton (Steven)

    2014-01-01

    htmlabstractThe term “Open Data” often goes hand in hand with the term “Big Data”, where large data sets get released allowing for analysis, but the Cinderella of the Open Data ball is Small Data, small amounts of data, nonetheless possibly essential, that are too small to be put in some database or

  13. Recent progress on laser acceleration research

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa; Dewa, Hideki; Hosokai, Tomonao; Kanazawa, Shuhei; Kando, Masaki; Kondoh, Shuji; Kotaki, Hideyuki

    2000-01-01

    Recently there has been a tremendous experimental progress in ultrahigh field particle acceleration driven by ultraintense laser pulses in plasmas. A design of the laser wakefield accelerators aiming at GeV energy gains is discussed by presenting our recent progress on the laser wakefield acceleration experiments, the developments of high quality electron beam injectors and the capillary plasma waveguide for optical guiding of ultrashort intense laser pulses. (author)

  14. Computational Modelling of Gas-Particle Flows with Different Particle Morphology in the Human Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Kiao Inthavong

    2009-01-01

    Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.

  15. Infrastructures of progress and dispossession

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    2016-01-01

    to reposition small and medium-scale farmers as backward. Th is article analyzes how farmers struggle to fi nd their place within a neoliberal urban ecology where diff erent conceptions of what constitutes progress in contemporary Peru infl uence the landscape. Using an analytical lens that takes material...... and organizational infrastructural arrangements, it is argued, can open up for understanding how local and beyond-local processes tangle in complex ways and are productive of new subjectivities; how relations are reconfi gured in neoliberal landscapes of progress and dispossession. Such an approach makes evident how...

  16. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    experimental measurements was applied to evaluate particle losses in supply and return duct runs. Model results suggest that duct losses are negligible for particle sizes less than 1 μm and complete for particle sizes greater than 50 μm. Deposition to insulated ducts, horizontal duct floors and bends are predicted to control losses in duct systems. When combined with models for HVAC filtration and deposition to indoor surfaces to predict the ultimate fates of particles within buildings, these results suggest that ventilation ducts play only a small role in determining indoor particle concentrations, especially when HVAC filtration is present. However, the measured and modeled particle deposition rates are expected to be important for ventilation system contamination.

  17. Health effects of exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Pihlava, T.; Uuppo, M.; Niemi, S.

    2013-11-01

    This report introduces general information about diesel particles and their health effects. The purpose of this report is to introduce particulate matter pollution and present some recent studies made regarding the health effects of particulate matter. The aim is not to go very deeply into the science, but instead to keep the text understandable for the average layman. Particulate matter is a complex mixture of extremely small particles and liquid droplets. These small particles are made up of a number of components that include for example acids, such as nitrates and sulphates, as well as organic chemicals, metals and dust particles from the soil. Particulate matter comes from several sources, such as transportation emissions, industrial emissions, forest fires, cigarette smoke, volcanic ash and climate variations. Particles are divided into coarse particles with diameters less than 10 ..m, fine particles with diameters smaller than 2.5 ..m and ultra-fine particles with diameters less than 0.1 ..m. The particulate matter in diesel exhaust gas is a highly complex mixture of organic, inorganic, solid, volatile and partly volatile compounds. Many of these particles do not form until they reach the air. Many carcinogenic compounds have been found in diesel exhaust gas and it is considered carcinogenic to humans. Particulate matter can cause several health effects, such as premature death in persons with heart or lung disease, cancer, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function and an increase in respiratory symptoms, such as irritation of the airways, coughing or difficulty breathing. It is estimated that in Finland about 1300 people die prematurely due to particles and the economic loss in the EU due to the health effects of particles can be calculated in the billions. Ultra-fine particles are considered to be the most harmful to human health. Ultrafine particles usually make the most of their quantity and surface area

  18. Progress in diagnostics of the COMPASS tokamak

    Science.gov (United States)

    Weinzettl, V.; Adamek, J.; Berta, M.; Bilkova, P.; Bogar, O.; Bohm, P.; Cavalier, J.; Dejarnac, R.; Dimitrova, M.; Ficker, O.; Fridrich, D.; Grover, O.; Hacek, P.; Havlicek, J.; Havranek, A.; Horacek, J.; Hron, M.; Imrisek, M.; Komm, M.; Kovarik, K.; Krbec, J.; Markovic, T.; Matveeva, E.; Mitosinkova, K.; Mlynar, J.; Naydenkova, D.; Panek, R.; Paprok, R.; Peterka, M.; Podolnik, A.; Seidl, J.; Sos, M.; Stockel, J.; Tomes, M.; Varavin, M.; Varju, J.; Vlainic, M.; Vondracek, P.; Zajac, J.; Zacek, F.; Stano, M.; Anda, G.; Dunai, D.; Krizsanoczi, T.; Refy, D.; Zoletnik, S.; Silva, A.; Gomes, R.; Pereira, T.; Popov, Tsv.; Sarychev, D.; Ermak, G. P.; Zebrowski, J.; Jakubowski, M.; Rabinski, M.; Malinowski, K.; Nanobashvili, S.; Spolaore, M.; Vianello, N.; Gauthier, E.; Gunn, J. P.; Devitre, A.

    2017-12-01

    The COMPASS tokamak at IPP Prague is a small-size device with an ITER-relevant plasma geometry and operating in both the Ohmic as well as neutral beam assisted H-modes since 2012. A basic set of diagnostics installed at the beginning of the COMPASS operation has been gradually broadened in type of diagnostics, extended in number of detectors and collected channels and improved by an increased data acquisition speed. In recent years, a significant progress in diagnostic development has been motivated by the improved COMPASS plasma performance and broadening of its scientific programme (L-H transition and pedestal scaling studies, magnetic perturbations, runaway electron control and mitigation, plasma-surface interaction and corresponding heat fluxes, Alfvenic and edge localized mode observations, disruptions, etc.). In this contribution, we describe major upgrades of a broad spectrum of the COMPASS diagnostics and discuss their potential for physical studies. In particular, scrape-off layer plasma diagnostics will be represented by a new concept for microsecond electron temperature and heat flux measurements - we introduce a new set of divertor Langmuir and ball-pen probe arrays, newly constructed probe heads for reciprocating manipulators as well as several types of standalone probes. Among optical tools, an upgraded high-resolution edge Thomson scattering diagnostic for pedestal studies and a set of new visible light and infrared (plasma-surface interaction investigations) cameras will be described. Particle and beam diagnostics will be covered by a neutral particle analyzer, diagnostics on a lithium beam, Cherenkov detectors (for a direct detection of runaway electrons) and neutron detectors. We also present new modifications of the microwave reflectometer for fast edge density profile measurements.

  19. Visualisation of axolotl blastema cells and pig endothelial progenitor cells using very small super paramagnetic iron oxide particles in MRI: A technique with applications for non invasive visualisation of regenerative processes

    DEFF Research Database (Denmark)

    Lauridsen, Henrik; Kjær, N.B.; Bek, Maria

    Objectives: Regenerative studies on model animals often require invasive techniques such as tissue sampling and histology for visualisation of regenerative processes. These interactions are avoided using non invasive imaging techniques. The internalisation of very small super paramagnetic iron...

  20. Solid-State Division progress report for period ending March 31, 1983

    International Nuclear Information System (INIS)

    Green, P.H.; Watson, D.M.

    1983-09-01

    Progress and activities are reported on: theoretical solid-state physics (surfaces; electronic, vibrational, and magnetic properties; particle-solid interactions; laser annealing), surface and near-surface properties of solids (surface, plasma-material interactions, ion implantation and ion-beam mixing, pulsed-laser and thermal processing), defects in solids (radiation effects, fracture, impurities and defects, semiconductor physics and photovoltaic conversion), transport properties of solids (fast-ion conductors, superconductivity, mass and charge transport in materials), neutron scattering (small-angle scattering, lattice dynamics, magnetic properties, structure and instrumentation), and preparation and characterization of research materials (growth and preparative methods, nuclear waste forms, special materials)